Chapter 14

variational calculus

14.1 history

The problem of variational calculus is almost as old as modern calculus. Variational calculus seeks
to answer questions such as:

Remark 14.1.1.

I. what is the shortest path between two points on a surface ?

2. what is the path of least time for a mass sliding without [riction down some path
between two given points 7

3. what is the path which minimizes the energy for some physical system 7

4. given two points on the z-axis and a parficular area what curve has the longest
perimeter and bounds thal area between those points and the z-axis?

You'll notice these all involve a variable which is not a real variable or even a vector-valued-variable.
Instead, the answers to the questions posed above will be paths or curves depending on how you
wish to frame the problem. In variational caleulus the variable is a function and we wish to find
extreme values for a functional. In short, a functional is an abstract function of functions. A
functional takes as an input a function and gives as an output a number. The space from which
these functions are taken varies from problem to problem. Often we put additional contraints
or conditions on the space of admissable solutions. To read about the full generality of the
problem you should look in a text such as Hans Sagan’s. Our treatment is introductory in this chap-
ter, my aim is to show you why it is plausible and then to show you how we use variational calculus.

We will see that the problem of finding an extreme value for a functional is equivalent to solving
the Fuler-Lagrange equations or Euler equations for the functional. Euler predates Lagrange in his
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224 CHAPTER 14. VARIATIONAL CALCULUS

discovery of the equations bearing their names. FEulers’s initial attack of the problem was to chop
the hypothetical solution curve up into a polygonal path. The unknowns in that approach were
the coordinates of the vertices in the polygonal path. Then through some ingenious calculations
he arrived at the Euler-Lagrange equations. Apparently there were logical flaws in Euler's origi-
nal treatment. Lagrange later derived the same equations using the viewpoint that the variable
was a function and the variation was one of shifting by an arbitrary function. The treatment of
variational calculus in Edwards is neither Euler nor Lagrange’s approach, it is a refined version
which takes in the contributions of generations of mathematicians working an the subject and then
merges it with careful functional analysis. I'm no expert of the full history, I just give you a rough
sketch of what I've gathered from reading a few variational caleulus texts.

Physics played a large role in the development of variational caleulus. Lagrange was a physicist
as well as a mathematician. At the present time, every physicist takes course(s) in Lagrangian
Mechanics. Moreover, the use of variational calculus is fundamental since Hamilton's principle says
that all physics can be derived from the principle of least action. In short this means that nature is
lazy. The solutions realized in the physical world are those which minimize the action. The action

Syl = fL(y, ', t)dt

is constructed from the Lagrangian L =T — U where 7" is the kinetic energy and U is the potential
energy. In the case of classical mechanics the Euler Lagrange equations are precisely Newton’s
equations. The Hamiltonian H = T 4 U is similar to the Lagrangian except that the funda-
mental variables are taken to be momentum and position in contrast to velocity and position in
Lagrangian mechanics. Hamiltonians and Lagrangians are used to set-up new physical theories.
Fuler-Lagrange equations are said to give the so-called classical limit of modern field theories. The
concept of a force is not so useful to quantum theories, instead the concept of energy plays the
central role. Moreover, the problem of quantizing and then renormalizing field theory brings in
very sophisiticated mathematics. In fact, the math of modern physics is not understood. In this
chapter I'll just show you a few famous classical mechanics problems which are beatifully solved by
Lagrange’s approach. We’'ll also see how expressing the Lagrangian in non-Cartesian coordinates
can give us an easy way to derive forces that arise from geometric contraints. Hopefully we can
derive the coriolis force in this manner. I also plan to include a problem or two about Maxwell's
equations from the variational viewpoint. There must be at least a dozen different ways to phrase
Maxwell's equations, one reason I revisit them is to give you a concrete example as to the fact that
physics has many formulations.

I am following the typical physics approach to variational calculus. Edwards’ last chapter is more
natural mathematically but I think the math is a bit much for your first exposure to the subject.
The treatment given here is close to that of Arfken and Weber's Mathematical Physics text, how-
ever I suspect you can find these calculations in dozens of classical mechanics texts. More or less
our approach is that of Lagrange.
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14.2 the variational problem

Qur goal in what follows here is to maximize or minimize a particular function of functions. Suppose
F, is a set of functions with some particular property. For now, we may could assume that all the
functions in F, have graphs that include (z1,71) and (z2,y2). Consider a functional J : F, — F,
which is defined by an integral of some function f which we call the Lagrangian,

Jy] = f 2 fly, v, z)dx.

We suppose that f is given but y is a variable. Consider that if we are given a function * € F,
and another function n such that n(z,) = n{zs) = 0 then we can reach a whole family of functions
indexed by a real variable « as follows (relabel y*(x) by y(z,0) so it matches the rest of the family
of functions):

y(z, a) = y(z,0) + an(z)

Note that = — y(z, o) gives a function in F,. We define the variation of y to be

5y = an(z)

This means y(z, a) = y(z, 0) + dy. We may write J as a function of & given the variation we just
described:

J(a) = f * Flule @), y(o oY, ) do

It is intuitively obvious that if the function y*(z) = y(x,0) is an extremum of the functional then
we ought to expect

[3.](05)} _0
da |, _p
Notice that we can calculate the derivative above using multivariate calculus. Remember that
yz, o) = y{z,0) + an(z) hence y(z,a) = y(x,0) + an(z) thus fgl 77 and 6” =75 = %.
Consider that:
aJ(e) O
o) _ 2 [ ol 0) (2,0’ ) s |
/ 6‘f By Bf By " af 8z e
. EN Bcv 8y o ' Bz da
4 9f dn
/m (Bu e )dm (14.1)

Observe that

af 9/ afdn
dm[ﬂy ] dz [ag]“ay ' dx
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Hence continuing Equation 14.1 in view of the product rule above,
aJ{a) [/ Of d|adf d | af
dae -/wl ( @n + dx By"n dx | Oy m )de
ar | /I( af [af] )
- + iy — dr 14.2
7 2y Jz \ O dz | oy’ |" (14.2)

oy
o dfor
‘/z](ay dw[ay])"d”

Note we used the conditions 7(z;) = n{x2) to see that, 2 nlxl = d_,r’ Lnp() — w“in('nl) = 0. Qur goal
is to find the extreme values for the functional .J. Let me take a few sentences to again restate
our set-up. Generally, we take a function y then J maps to a new function J[y]. The family of
functions indexed by o gives a whole ensemble of functions in #, which are near ¥* according to
the formula,

y(z, @) = y*(z) + an(z)

Let’s call this set of functions W);. If we took another function like 7, say { such that ((z;) =
{{z2) = 0 then we could look at another family of functions:

y(z,a) = y*(r) + al{z)

and we could denote the set of all such functions generated from ¢ to be W;. The total variation
of y based at y* should include all possible families of functions in F,. You could think of W, and
W¢ be two different subspaces in F,. If % ( then these subspaces of 7, are likely disjoint except
for the proposed extremal solution y*. It is perhaps a bit unsettling to realize there are infinitely
many such subspaces because there are infinitely many choices for the function 5 or ¢. In any event,
each possible variation of ¥* must satisfy the condition [_aggx}} = 0 since we assume that y*
=()

is an extreme value of the functional J. It follows that the Equ;tion 14.2 holds for all possible 1.
Therefore, we ought to expect that any extreme value of the functional J{y] le flu, v, x)dz
must solve the Buler Lagrange Equations:

af d[af
dy  dr

a——;} = () Euler-Lagrange Equations for J{y f FOny' . x)dx
¥ &

14.3 wvariational derivative

The role that # played in the discussion in the preceding section is somewhat similar to the role
that the "hA” plays in the definition f/(a) = limp_g w You might hope we could replace
arguments in 5 with a more direct approach. Physicists have a heuristic way of making such
arguments in terms of the variation §. They would cast the arguments in the last page by just
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"taking the variation of J”. Let me give you their formal argument,

Tz

5J=§[ f(y,y’,m)dm]

T1

=[ m251‘?;5:, }

1

=/m(a£5 +af,( )+B_f )dm
=/m1 (3f +gfd(¢5y))d:l: (14.3)

dy
-5, (G =la])
oyl -+ — - - dydz

81 2 o tdy dx|dy
Therefore, since 0y = 0 at the endpoints of integration, the Euler-Lagrange equations follow from
6J = 0. Now, if you're like me, the argument above is less than satisfying since we never actually
defined what it means to "take 6” of something. Also, why could I commute the variational § and
% )? That said, the formal method is not without use since it allows the focus to be on the Euler
Lagrange equations rather than the technical details of the variation.

Remark 14.3.1.

The more adept reader at this point should realize the hypocrisy of me calling the above
calculation formal since even my presentation here was formal, I also used an analogy, I
assumed that the theory of extreme values for multivariate calculus extends to function
space. But, F, is not R, it’s much bigger. Edwards builds the correct formalism for a
rigourous calculation of the variational derivative. To be careful we’d need to develop the
norm on function space and prove a number of results about infinite dimensional linear
algebra. Take a look at the last chapter in Edwards’ text if you're interested. I don't
believe I'll have time to go over that material this semester.

14.4 FEuler-Lagrange examples

I present a few standard examples in this section. We make use of the calculation in the last
section. Also, we will use a result from your homework which states an equivalent form of the

Fuler-Lagrange equation is
af d ,Of
i v

dr dz

This form of the Euler Lagrange equation yields better differential equations for certain examples.
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14.4.1 shortest distance between two points in plane

If s denotes the arclength in the xy-plane then the pythagorean theorem gives ds? = dz? -+ dy?

1

infinitesimally. Thus, ds = /1 + %2 dr and we may add up all the little distances ds to find the
total length between two given points (z1,y1) and (za, ya):

J[y}=fm2 1+ (y') de

T
Identify that we have f(y,v',z) = /1 + (v')2. Calculate then,

3f_0 and ﬁ= y

dy o i+ ()2
Euler Lagrange equations yield,
d [af ] of d [ y } y
— | === = — || =0 = —eee—— = &
dz [33/' ay dr | /14 (y')? VI+ ()

where & € R is constant with respect to z. Moreover, square both sides to reveal

()’ 2 "2 K dy k?
1+ (V)2 = W=itmE 7 R ioEeT

where I have defined m is defined in the obvious way. We find solutions y = ma + b. Finally, we
can find m, b to fit the given pair of points {z1,31) and (x4, y2) as follows:

'U?"'Ul(

T —Iy)
o — I

o =mz; + b and Yo =mzs + b = Y=y +

provided x; # zo. If &1 # x4 and y; # y2 then we could perform the same calculation as above
with the roles of z and y interchanged,

Jz] = ]-yz V14 (z) dy

where &' = dz/dy and the Euler Lagrange equations would vield the solution

Lo - L1
Y2 — 1

=1z + (y — )

Finally, if both coordinates are equal then (z1,y1) = (z2,y2) and the shortest path between these
points is the trivial path, the armchair solution. Silly comments aside, we have shown that a
straight line provides the curve with the shortest arclength between any two points in the plane.
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14.4.2 surface of revolution with minimal area

Suppose we wish to revolve some curve which connects (z1,71) and (z2,y2) around the x-axis. A
surface constructed in this manner is called a surface of revolution. In calculus we learn how
to calculate the surface area of such a shape. One can imagine deconstructing the surface into a
sequence of ribbons. Each ribbon at position z will have a "radius” of y and a width of dx however,
because the shape is tilted the area of the ribbon works out to dA = 2wyds where ds is the arclength.

Y} A

e U’mfuf’ﬁ
- ("rmj
Vi = £ 1x)
@Wa}y‘.ml‘
e a2 E
for %EXEXs

as

cmg_f

Y
Ny

Jd's
(g,ﬂ;&;

If we choose = as the parameter this yields dA = 2=xy+/1 + (y')? dz. To find the surface of minimal

surface area we ought to consider the functional:

Aly] = fm 2ryy/ 1+ ()2 dz

I

Identify that f(y,v/,z) = 2my/1+ (¥')? hence f, = 2w/1+ (y')? and f, = 2myy’/+/1+ (¥)2.

The usual Fuler-Lagrange equations are not easy to solve for this problem, it’s easier to work with

the equations you derived in homework,

of d  Of
a“a‘g[f Yoy J

Hence,

[gwym L())z} _

Dividing by 27 and making a common denominator,

d y ] y
dz [\/1 + (') 1+ (y')?
where % is a constant with respect to z. Squaring the equation above yields

bl
y- 2 9 9 2 dyn?
— =k = Yy —k* =k (5E)°
d
14 (F)?

Solve for dz, integrate, assuming the given points are in the first quadrant,

=kcosh™' (£} +¢

P/d_@:fﬂ
/yz_kz
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r—=c
y—kcosh( i )

generates the surface of revolution of least area between two points. These shapes are called
Catenoids they can be observed in the formation of soap bubble between rings. There is a vast
literature on this subject and there are many cases to consider, I simply exhibit a simple solution.
For a given pair of points it is not immediately obvious if there exists a solution to the Euler-
Lagrange equations which fits the data. (see page 622 of Arfken).

14.4.3 Braichistochrone

Suppose a particle slides freely along some curve from (z1, y1) to (2, ¥2) = (0, 0) under the influence
of gravity where we take y to be the vertical direction. What is the curve of quickest descent?
Notice that if x; = 0 then the answer is easy to see, however, if xy 5 0 then the question is not
trivial. To solve this problem we must first offer a functional which accounts for the time of descent.

Note that the speed v == ds/dt so we'd clearly like to minimize J = f((cféi“" 1) c,ff Since the object is

assumed to fall freely we may assume that energy is conserved in the motion hence

1
—mv® = mg(y - y1) = v=+/2(y — )

2
As we've discussed in previous examples, ds = /1 + (y')?dt so we find

1+(y

Tl = 29 -

f(y,y'.w)

Notice that the moedified Euler-Lagrange equations % - % [ -1 %] = 0 are convenient since

fz = 0. We calculate that

af 1 2y’ y

By o [ 20— v} alw — )L+ WD)
“V 29(n—v)

Hence there should exist some constant 1/(k+/2¢g) such that

1+ (y)? (v')? 1

2000 —y)  V2ln -9 +F )2 kg

It follows that,

1 —_—

Vi -+ 0D % - (yl N ?”) (1 + (%)2) =
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We need to solve for dy /dz,

(@)2_y+k2—yi

dy\*
- == ) =k - =
(n — ) (dm) 1y +y o =

Or, relabeling constants a = y; and b = k% — ¢; and we must solve

b —
@.—_i +ty = :r:x:i:/ 2 ydy
da a—y b4y

The integral is not trivial. It turns out that the solution is a cycloid (Arfken p. 624):

mw—*a;b(G-i-sin(B)) —d y= ”‘;“b(l—cos(@)> _b

This is the curve that is traced out by a point on a wheel as it travels. If you take this solution
and calculate J[ycyetoid] you can show the time of descent is simply

_run
=3 2g

if the mass begins to descend from (z3, ¥2). But, this point has no connection with (z1,11) except
that they both reside on the same cycloid. It follows that the period of a pendulum that follows
a cycloidal path is indpendent of the starting point on the path. This is not true for a circular
pendulum in general, we need the small angle approximation to derive simple harmonic motion. It
turns out that it is possible to make a pendulum follow a cycloidal path if you let the string be
guided by a frame which is also cycloidal. The neat thing is that even as it loses energy it still
follows a cycloidal path and hence has the same period. The " Brachistochrone” problem was posed
by Johann Bernoulli in 1696 and it actually predates the variational calculus of Lagrange by some
50 or so years. This problem and ones like it are what eventually prompted Lagrange and Euler to
systematically develop the subject. Apparently Galileo also studied this problem however lacked
the mathematics to crack it.
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14.5 Euler-Lagrange equations for several dependent variables

We still consider problems with just one independent parameter underlying everything. For prob-
lems of classical mechanics this is almost always time {. In anticipation of that application we
choose to use the usual physics notation in the section. We suppose that our functional depends on
functions y1,42, ..., ¥n of time ¢ along with their time derivatives 1,99, ..., .. We again suppose
the functional of interest is an integral of a Lagrangian function f from time ¢, to time ts,

t2
J[(y:)] = t F s, 41, t) dt

here we use (y;) as shorthand for (yi,¥2,...,ys) and (%) as shorthand for (41, %0,...,%,). We
suppose that n-conditions are given for each of the endpoints in this problem; w;(t1) = w;; and
yi(ta) = yin. Moreover, we define 7, to be the set of paths from R to R® subject to the conditions
just stated. We now set out to find necessary conditions on a proposed seolution to the extreme
value problem for the functional J above. As before let’s assume that an extremal solution y+ € F,
exists. Moreover, imagine varying the solution by some variational function # = (1;) which has
(1) = (0,0,...,0) and n(t2) = (0,0,...,0). Consequently the family of paths defined below are
all in F,,
y{t, e} = y7(t) + an(t)

Thus y(t,0) = y*. In terms of component functions we have that
vilt, o) = yi (t) + ami(t).
You can identify that dy; = y;(f, o) — 7 (¢) = an;(t). Since y* is an extreme solution we should

expect that g—i = (. Differentiate the functional with respect to « and make use of the

=[)
chain rule for f which is a function of some 2n 4+ 1 variables,
aJ{« 0 t2 )
@ [ it w e
ty

oy _52
2 O-( af dy;  B) 8y
“[ (a@%*@;é&)dt

1 g=1

g Bf of dnj; )
- i+ dt 14.4
/t.l ;( aJ_’J aUJ dt ( )

2 & d of )
Z 67}_1 i1 /tl = ( ay] Tt i g

Since n{t;) = n{ta) = 0 the first term vanishes. Moreover, since we may repeat this calculation for
all possible variations about the optimal solution y* it follows that we obtain a set of Euler-Lagrange
equations for each component function of the solution:

r)_f - —i'— df] 0 j=1,2,...n Euler-Lagrange Eqns. for J[{y)] / f i, vin t) dt
dy;  di | dy; '
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Often we simply use % = x, y» = y and y3 = z which denote the position of particle or perhaps
Just the component functions of a path which gives the geodesic on some surface. In either case
we should have 3 sets of Euler-Lagrange equations, one for each coordinate. We will also use non-
Cartesian coordinates to describe certain Lagrangians. We develop many useful results for set-up
of Lagrangians in non-Cartesian coordinates in the next section.

14.5.1 free particle Lagrangian

For a particle of mass m the kinetic energy K is given in terms of the time derivatives of the
coordinate functions z,y, z as follows:

K=+ +2)

Construct a functional by integrating the kinetic energy over time t,

t2
S = r 2(3% + 9 + 3%) dt
L1

The Euler-Lagrange equations for this functional are

Bz dt

By dt 2

%wi% 8]('_d8£ aK  d[oK
dr  di| 8% ay

Since %L; = mi, % = my and % = mz it follows that

ID=mrE' 0 =my Ommfi.l

You should recognize these as Newton’s equation for a particle with no force applied. The solution
is (z(t), y(t), 2(t)) = (ro + tvy, yo + tvy, 2o + tv.) which is uniform rectilinear motion at constant
velocity (vg, vy, v2). The solution to Newton’s equation minimizes the integral of the Kinetic energy.
Generally the quantity S is called the action and Hamilton’s Principle states that the laws of physics
all arise from minimizing the action of the physical phenomena. We’ll return to this discussion in
a later section.

14.5.2 geodesics in R?

A geodesic is the path of minimal length between a pair of points on some manifold. Note we
already proved that geodesics in the plane are just lines. In general, for B3, the square of the
infinitesimal arclength element is ds® = dz? + dy® + dz®. The arclength integral from p =20 to
7 = (¢zy @y, g=) in R? is most naturally given from the parametric viewpoint:

i
S:/ V24 g%+ 22 dt
8]
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We assume (z(0), y(0), 2(0)) = (0,0,0) and {z(1),y(1),2(1)) = ¢ and it should be clear that the
integral above calculates the arclength. The Euler-Lagrange equations for z, v, z are

d Z _o A v _o O 5 .,
di '\/3'32‘!‘?;[2-{‘22 o dt 1/i2+y2+é2 o dt ’i:2+’y‘2“§~2,:2 -
It follows that there exist constants, say a, b and ¢, such that
& 7 Z
R S T R S
Vit R+ 22 ViR + P+ 22 VB2 + i+ 2

These equations are said to be coupled since each involves derivatives of the others. We usually
need a way to uncouple the equations if we are to be successful in solving the system. We can
calculate, and equate each with the constant 1:

i 3 § 3 2
a/E 4+ 2+ 32 bER R+ 22 /iR 2+ 22

But, multiplying by the denominator reveals an interesting identity

1 =

$2+?j2+22:—=""m
a

The solution has the form, z(t) = tq,., y(t) = tg, and z(¢) = tg.. Therefore,

{(z(t), y(t), (1)) = t(gz, 0y, €=) = tg.

for 0 < ¢ < 1. These are the parametric equations for the line segment from the origin to ¢.

14.6 the Euclidean metric

The square root in the functional of the last subsection certainly complicated the calculation. It
is intuitively clear that if we add up squared line elements ds® to give a minimum then that ought
to correspond to the minimum for the sum of the positive square roots ds of those elements. Let’s
check if my conjecture works for R:

1
S:f (22447 +2%) dt
4] N et
QAR KR )
This gives us the Euler Lagrange equations below:
&=, =0, E=10

The solution of these equations is clearly a line. In this formalism the equations were uncoupled
from the outset.
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Definition 14.6.1.

The Euclidean metric is ds? = dz® + dy® + dz?. Generally, for orthogonal curvelinear
coordinates u, v, w we calculate ds® = m.—_,duz + Hv—i”gdvz + ilv—:'””.;d-wg. We use this as a
!

guide for constructing functionals which caleulate arclength or speed

The beauty of the metric is that it allows us to calculate in other coordinates, consider
T = 7 cos(#) y = rsin(6)

For which we have implicit inverse coordinate transformations r? == 2 + y? and § = tan~!(y/z).
From these inverse formulas we calculate: '

Vir = <afry/r > Vi = < —y/r? z/r® >

Thus, ||Vr|| = 1 whereas ||V#|| = 1/r. We find that the metric in polar coordinates takes the form:

|d32 = dr® + r2df? |

Physicists and engineers tend to like to think of these as arising from calculating the length of
infinitesimal displacements in the r or # directions. Generically, for u, v, w coordinates

1 1 1

dl, = ——du dl, = ——du dly, = ——dw
C V] [[Vvl] [Vl

and ds® = dI2 + dI2 + dI%,. So in that notation we just found dl, = dr and dly = rdf. Notice then
that cylindircal coordinates have the metric,

Lds2 = dr® + r2df? + d22.

For spherical coordinates x = r cos(¢) sin{f!), ¥ = rsin(¢) sin{f) and z = r cos(f) (here 0 < ¢ < 27
and 0 < # < m, physics notation). Calculation of the metric follows from the line elements,

dly = dr dly = rsin{}deo dlg = rdf

Thus,

ds? = dr® -+ r®sin?(0)d¢® + +2d6>.

We now have all the tools we need for examples in spherical or cylindrical coordinates. What about
other cases? In general, given some p-manifold in R™ how does one find the metric on that manifold?
If we are to follow the approach of this section we’ll need to find coordinates on B™ such that the
manifold S is described by setting all but p of the coordinates to a constant. For example, in R?
we have generalized cylindircal coordinates (r, ¢, z,t) defined implicitly by the equations below

x = 7 cos(¢p), y = 7sin(@), z =z, t=t

On the hyper-cylinder » = R we have the metric ds® = R?df? + dz? + dw?®. There are mathemati-
cians/physicists whose careers are founded upon the discovery of a metric for some manifold. This
is generally a difficult task.
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14.7 geodesics

A geodesic is a path of smallest distance on some manifold. In general relativity, it turns out that
the solutions to Eistein’s field equations are geodesics in 4-dimensional curved spacetime. Particles
that fall freely are following geodesics, for example projectiles or planets in the absense of other
frictional /non-gravitational forces. We don't follow a geodesic in our daily life because the earth
pushes back up with a normal force. Also, do be honest, the idea of length in general relativity is a
bit more abstract that the geometric length studied in this section. The metric of general relativity
is non-Euclidean. General relativity is based on semi-Riemannian geometry whereas this section
is all Riemannian geometry. The metric in Riemannian geometry is positive definite. The metric
in semi-Riemannian geometry can be written as a quadratic form with both positive and negative
eigenvalues. In any event, if you want to know more I know some books you might like.

14.7.1 geodesic on cylinder

'The equation of a cylinder of radius R is most easily framed in cylindrical coordinates (r, 8, z); the
equation is merely r = R hence the metric reads

ds* = R*d6* + dz”
Therefore, we ought to minimize the following functional in order to locate the parametric equations
of a geodesic on the cylinder: note ds® = (R2% + %)dfz thus:
S:/m%%dﬂﬂ
Euler-Lagrange equations for the dependent variables # and z are simply:
6=0 i=0.
We can integrate twice to find solutions

0(t) = 0o+ At z(t) = z, + Bt

Therefore, the geodesic on a cylinder is simply the line connecting two points in the plane which is
curved to assemble the cylinder. Simple cases that are easy to understand:
1. Geodesic from (Rcos(fl,), Rsin(f,), z1) to (Rcos(f,), Rsin(f,), z2) is parametrized by 0(t) =
8, and z(t) = z1 + t{zp — z) for 0 < ¢t < 1. Technically, there is some ambiguity here since I
never declared over what range the ¢ is to range. Could pick other intervals, we could use z
at the parameter is we wished then #(z) =6, and z = z for z; < 2 < 2

2. Geodesic from (R cos(f), Rsin(f,), z,) to (Rcos(8a), Rsin(6a), z,) is parametrized by 8(t) =
B +t(02 — 01) and z(t) = z, for 0 < ¢ < 1.

3. Geodesic from (Rcos(fh), Rsin(f1),z1) to (Rcos(fla), Rsin(f2), z2) is parametrized by
9(1’2):91-{—13(92—91) Z(t :_;]-{—t(zg_«zl)

You can eliminate ¢ and find the equation z = %_—B}(ﬁ — 1) which again just goes to show
you this is a line in the curved coordinates.
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14.7.2 geodesic on sphere

The equation of a sphere of radius R is most easily framed in spherical coordinates {(r, ¢, #); the
equation is merely » = R hence the metric reads

ds* = R*sin®(0)d¢? + R*d6>.

Therefore, we ought to minimize the following functional in order to locate the parametric equations
of a geodesic on the sphere: note ds? = (R? Sing(ﬂ)fi—‘f} + Rgi—fi-)dﬁ thus:

S = f( REsin?(8)¢? + B2 ) dt
J0.60,9)

Euler-Lagrange equations for the dependent variables ¢ and @ are simply: f3 = %( f3) and fy =
adf( f (;z)) which yield:

d

2R%sin(f) cos(8)¢® = L£(2R*) 0= pr

(232 sin? (9)@) .

We find a constant of motion L = 2R? sing(f))qi) inserting this in the equation for the azmuthial
angle # yields:

2R?sin(0) cos(8)¢® = £(2R*) 0= dit(m? smz(e)q‘s).

If you can solve these and demonstrate through some reasonable argument that the solutions are
great circles then I will give you points. I have some solutions but nothing looks too pretty.

Remark 14.7.1.

Pd like to add a few more examples here, but time is up. There are a few more examples in
homework. In particular, the homework has the geodesic problem set-up in a more tractable
manner. It’s easier to solve the geodesic problem if we use one of the coordinates on the
sphere as the parameter for caleulation of arclength. I should have anticipated this in view
of the examples I've already given. The parametric equations for a geodesic will be more
general, for example in the case of the plane we found horizontal and vertical lines at once
whereas one or the other is lost if z or y is taken as the parameter, and hence harder to

solve.
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14.8 Lagrangian mechanics

14.8.1 basic equations of classical mechanics surnmarized

Classical mechanics is the study of massive particles at relatively low velocities. Let me refresh
your memory about the basics equations of Newtonian mechanics. Our goal in this section will be
to rephrase Newtonian mechanics in the variational langauge and then to solve problems with the
Buler-Lagrange equations. Newton’s equations tell us how a particle of mass m evolves through
time according to the net-force impressed on m. In particular,

P
d=r
D)

maE =

ell

If m is not constant then you may recall that it is better to use momentum P = m# = mi”d—t to
set-up Newton'’s 2nd Law:

dP

- =
In terms of components we have a system of differential equations with indpendent variable time
t. If we use position as the dependent variable then Newton’s 2nd Law gives three second order

ODEs,

mi = F, my = F mz = F,

where ¥ = (z,y, z) and the dots denote time-derivatives. Moreover, F=< F;, F,, F, > is the sum
of the forces that act on m. In contrast, if you work with momentum then you would want to solve
six first order ODEs,

P,=F, P,=F, P=F |
and P = mi, P, = my and P, = mz. These equations are easiest to solve when the force is
not a function of velocity or time. In particular, if the force £ is conservative then there exists a
potential energy function U : B® — R such that F = —VU. We can prove that in the case the
force is conservative the total energy is conserved.

14.8.2 kinetic and potential energy, formulating the Lagrangian

Recall the kinetic energy is T = 3m||#]|?, in Cartesian coordinates this gives us the formula:
1
T = sm(d® +§° + ).

If F is a conservative force then it is independent of path so we may construct the potential energy
function as follows: .
#
U(f) = - / B dr
)

Here O is the origin for the potential and we can prove that the potential energy constructed in
this manner has F = —VU. We can prove that the total (mechanical) energy £ = T + U/ for
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a conservative system is a constant; d&/dt = 0. Hopefully these comments are at least vaguely
familiar from some physics course in your distant memory. If not relax, calculationally this chapter
is self-contained, read onward.

We already calculated that if we use T as the Lagrangian then the Euler-Lagrange equations
produce Newton's equations in the case that the force is zero (see 14.5.1). Suppose that we define
the Lagrangian to be L = T'—U for a system governed by a conservative force with potential energy
function /. We seek to prove the Euler-Lagrange equations are precisely Newton’s equations for
this conservative system! Generically we have a Lagrangian of the form

1
L(z,y, 28,9, 2) = om(@” +§° -+ 2) = U(z, . 2).
We wish to find extrema for the functional S = [ L(f) dt. This yields three sets of Euler-Lagrange
equations, one for each dependent variable z,y or z
d [BL} _dL d {BL] _aL d [8]5} _ oL

dt|d¢| Bz  di|oy| oy  dt|6z] 0z
Naote tlhat g—i = mi, % = my and g—‘; = mz. Also note that %&L— = -—‘?,—g = I, g; = —g—g = F,
and %{;— = —%—g = F.. It follows that
miE = F mjj = Fy mz = F,.

Of course this is precisely ma = F for a net-force F =< ., By, F, >, We have shown that
Hamilton’s principle reproduces Newton’s Second Law for conservative forces. Let me take a
moment to state it.

Definition 14.8.1. Hamilton’s Principle:

If a physical system has generalized coordinates ¢; with velocities ¢; and Lagrangian L =
I — U7 then the solutions of physics will minimize the action S defined below:

.,’,2
&= [ Ligj,qj,1)dt
3|

Mathematically, this means the variation 68 = 0 for physical trajectories.

This is a necessary condition for solutions of the equations of physics. Sufficient conditions are
known, you can look in any good variational calculus text. You'll find analogues to the second
derivative test for variational differentiation. As far as I can tell physicists don't care about this
logical gap, probably because the solutions to the Euler-Lagrange equations are the ones for which
they are looking.

'don’t mistake this example as an admission that, Lagrangian mechanics is limited to conservative systems. Quite
the contrary, Lagrangian mechanics is actually more general than the orginal framework of Newton!
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14.8.3 easy physics examples

Now, you might just see this whole exercise as some needless multiplication of notation and for-
malism. After all, I just told you we just get Newton’s equations back from the Euler-Lagrange
equations. To my taste the impressive thing about Lagrangian mechanics is that you get to start
the problem with energy. Moreover, the Lagrangian formalism handles non-Cartesian coordinates
with ease. If you search your memory from classical mechanics you’ll notice that you either do
constant acceleration, circular motion or motion along a line. What if you had a particle con-
strained to move in some frictionless ellipsoidal bowl. Or what if you had a pendulum hanging off
another pendulum? How would you even write Newtons’ equations for such systems? In contrast,
the problem is at least easy to set-up in the Lagrangian approach. Of course, solutions may be less
easy to obtain.

Example 14.8.2. Projectile motion: take = as the vertical direction and suppose a bullet is fired
with initial velocity v =< Ugz, Voy, Vo= >. The potential energy due to gravity is simply U = mg:z
and kinetic energy is given by T = %m(iz + 5% + %), Thus,

L= %m(:i:2 + 97+ 22) —mgz

Euler-Lagrange equations are stimply:

d ] dl T df V1_ 8, _
a[mm} ={) a[my] =0 E[mz} _Bz( mgz) = —mg.

Integrating twice and applying initial conditions gives us the (possibly familiar) equations

1,2

z(t) = T + Vozt, Y(t) = Yo + Voyt, 2(f) = 2o + Voot — 5917

Example 14.8.3. Simple Pendulum: let § denote angle measured off the vertical for a simple
pendulum of mass m and length [. Trigonmetry tells us that

z = [sin(8) y = [cos(d) = @ = [ cos(#)6 y = —lsin(#)f

Thus T = tm(z? + 7) = »}jmlgég. Also, the potential energy due to gravity is U = —mgl cos(#)
which gives us

L = %mlggg + mgl cos(#)

Then, the Buler-Lagrange eguelion in # is simply:
% [g—g] = g—g = %(mlzg) = —mgl gin(§) = f+ %Sin(ﬂ) =0.

In the small angle approzimation, sin(f) = 0 then we have the solution 8(t) = 6, cos(wt + ¢,) for
angular frequency w = \/g/l
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