Chapter 2

analytic geometry

In this chapter I will describe n-dimensional Euclidean space and its essential properties. Much of

this is not much removed from the discussion of vectors in calculus I11. However, we will state as
many things as possible for arbitrarily many finite dimensions. Also, we will make use of matrices
and linear algebra where it is helpful. For those of yon who have not yet taken linear algebra, 1
have included a few exercises in the Problem sets to help elucidate matrix concepts. If you do those
exercises it should help. If you need more examples just ask.

2.1 Euclidean space and vectors

Rene Descartes put forth the idea of what we now call Cuortesian coordinates for the plane several
hundred years ago. The Euclidean concept of geometry predating Descartes seems abstract in
comparison. Try graphing without coordinates. In any event, the definition of Cartesian coordinates
and R™ are intertwined in these notes. If we talk about R™ then we have a preferred coordinate
system because the zero point is at the origin.!

Definition 2.1.1.

We define B = { (w,29,...,an) l@; € B foreachi=1,2,...,n}. If P = (a1, a0,...,0,)
is a point in R” then the j-th Cartesian coordinate of the point P is a;.

Notice that? in terms of sets we can write B2 = R xR and B? = R x B x R. Since points in
R™ are in 1-1 correspondance with vectors in R™ we can add vectors and rescale them by scalar
multiplication. If I wish to emphasize that we are working with vectors I may use the notation
< a,b,c >€ V3 etc... However, we will think of R"® as both a set of points and a set of vectors,
which takes precendence depends on the context.

'some other authors might use R™ is refer to abstract Euclidean space where no origin is given apriori by the
mathematics. Given Euclidean space £ and a choice of an origin O, one can always set-up a 1-1 correspondance with
E™ by mapping the origin to zero in R".

*Technically these are ambiguous since the Cartesian product of sets is nonassociative but in these notes we
identify R x (B x R) and (R x B} x R as the same object. Btw, my Math 200 notes have more on basics of Cartesian
products.
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Definition 2.1.2.

We define V" = {< vy, va,...,0p > | v; € Rforeach i =1,2,...,n}

If v =< vy,ve,..., vy > is a vector in R” then the j-th component of the vector v is v;.
Let v,we V" with v =< 1 >, 1w =< w; > and ¢ € R then we define:

v w =< v+ wy,ve W, ..., Uy + Wh > CU =< O, Cla, ..., Cliy > .

I will refer to V™ as the set of n-dimensional real vectors. The dot-product is used to define angles
and lengths of vectors in V™,

Definition 2.1.3.

IF v =< v,ve,..., 10, > and w =< wy,Wa,...,w, > are vectors in V™ then the dot-
product of v and w is a real number defined by:

T = MWy Ry R e vty

The length (or norm) of a vector v =< vy, vy, ..., v, > is denoted ||v]| and is the real
number defined by:

H.1J|§ = AU - U == 7)%—}—1,-'13.;_..‘_*_1,;“"_

IFv =< vy, w0, 0, >5% 0 and w =< wy,wq,...,w, >7F 0 are vectors in V" then the
angle # between v and w is defined by:

U
i = cos_l( B T )
el [{wl]

The vectors v, w are said to be orthogonal ifl v - w = 0.

Example 2.1.4. . .

@ V.o = vl vl by Vo) = O
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The dot-product has many well-known properties:

Proposition 2.1.5.

Suppose z,y,z € R **! and ¢ € R then
lLz-y=y- -z
2. z-(yt+z)=z-y+x-2
3. clz-y)={cz) y=z"(cy)

4. z-z>0andz-z=0ilz=0

Notice that the formula cos™! [I'Ir_lxﬁilﬂﬂ] needs to be justified since the domain of inverse cosine does

not_contain all real numbers. The inequality that we need for it to be reasonable is. ||'I'm_TI—Fyl?fﬂlSl’

otherwise we would not have a number in the dom(cos™) = range(cos) = [~1,1]. An equivalent
inequality is |z - y| < [|z}| {|y|| which is known as the Cauchy-Schwarz inequality.

Proposition 2.1.6.

Ifz,y € R ™! then |z - y| < ||=||||v]|

These properties are easy to justify for the norm we defined in this section.

Proposition 2.1.7.

Let z,y € B ™*! and suppose ¢ € R then
L Jlez] = {ef ||=]]

2. e+ yll < [l + [yl

Every nonzero vector can be written as a unit vector scalar multiplied by its magnitude.

z € V" such that v # 00 = v = ||v||¢ where ¢ = W}'WITU'

You should recall that we can write any vector in V? as
v=<a,bec>=0a<1,0,0>+b<0,1,0> +e < 0,0,1>=ai +bj + ck

where we defined the i =< 1,0,0 >, 7 =< 0,1,0 >, k& =< 0,0,1 >. You can easily verify that
distinct Cartesian unit-vectors are orthogonal. Sometimes we need to produce a vector which is
orthogonal to a given pair of vectors, it turns out the cross-product is one of two ways to do that
in V3. We will see much later that this is special to three dimensions.
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Definition 2.1.8.

If A =< Ay, As, A3 > and B =< By, B, By > are vectors in V9 then the cross-product
of A and B is a vector A x B which is defined by:

4‘1‘ X _é =< AaBg — AsBs, AaB3 — A B3, A1Ba — AsBy >,

The magnitude of A x B can be shown to satisfy {|A x B|| = [|4]| [} B||sin(#) and the direction can
be deduced by right-hand-rule. The right hand rule for the unit vectors yields:

¥

ixj=k kxi=j, jxk=i

If I wish to discuss both the point and the vector to which it corresponds we may use the notation

P.={a1,09 ey lin)t=>. P =< 01y Qayrny gy >

With this notation we can easily define directed line-segments as the vector which points from one
point to another, also the distance bewtween points is simply the length of the vector which points
from one point to the other:

Definition 2.1.9.

Let P,@@ € R®. The directed line segment from P to ) is p?j = (,—j — B. This vector is
drawn from tail € to the tip P where we densote the direction by drawing an arrowhead.
The distance between P and Q is d(P, Q) =] ;’a I1-

2.1.1 compact notations for vector arithmetic

I prefer the following notations over the hat-notation of the preceding section because this notation
generalizes nicely to n-dimensions.

e1 =< 1,0,0 > eg =< (1,0> e; =< 0,0,1>.

Likewise the I{ronecker delta and the Levi-Civita symbol are at times very convenient for abstract
calculation:

1 i b (40 k) €{(1,2,3),(3,1,2),(2,3,1)}
T =
LV { - J Eijk = -1 (iajs k’) & {(3121 1): (2?17 3)1(11312)}
0 i#7 . :
0 if any index repeats

An equivalent definition for the Levi-civita symbol is simply that €193 = 1 and it is antisymmetric
with respect to the interchange of any pair of indices;

Cijk = €ki = €hkij = —E€kji = €jik = TEikj.
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Now let us restate some earlier results in terms of the Einstein repeated index conventions®, let
A, BeV®and ¢ € R then

A= Apey, standard basis expansion
e - ej = 0 ortheonormal basis

(A+ B); = 4;+ B;  vector addition

(A—~B); = A;— B; vector subtraction

(cff),; = cA; scalar muitiplication
A-B= Ap B, dot product

(/I X fﬁ)k = ¢;;;A4; B; cross product.

All but the last of the above are readily generalized to dimensions other than three by simply
increasing the number of components. However, the cross product is special to three dimensions.

..I.can’t.emphasize.enough.that .the.formulas. given .above.for. the.dot. and.cross. products.can.be
utilized to yield great efficiency in abstract calculations.

Example 2.1.10. . .

Prove Ae(BxCT)=C- (AxE)

K\# (@xéj = ‘A‘i{ (gxﬁ)k

= A\,{ Eiﬁ‘_k %‘CQ;

Sije A, 8.C4
= Cin CL AW S D
€ wdj Gy Au B MJ{'”"_ E‘&" = E*k} == Sy
T G Cxij An B ST S
= C, (\t‘%%é’)ﬁ'
¢ (RxB),

Anetten €.><u.m1{ DU tan  prove =h g, 8 8
'Hf\e,vx Jﬁms r()-cvx,hiw,;a tenm be Uted o eu)'&dwb_ MSV? e

- g iplﬁ oL Pr"t‘imok‘&
LP\K@KC]R - i(‘;k Ry {‘B%C);&
= s&u Emp:h As Bm Cp

':;- - %lmgﬂg P\ 8 C? + gs?g‘u_mp\ @mc

il

—

3there are more details to be seeg in the Appendix if you're curious

——

= ~A; B, Ce + B B C

= -8 + @8

= [®-08-®8)2]  n Relixd)-Be)s -
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2.2 matrices

An m x n matrix is an array of numbers with m-rows and n-columns. We define R ™*" to be the
set of all m x n matrices. The set of all n-dimensional column vectors is R %!, The set of all
n-dimensional row vectors is R'*™. A given matrix A € R ™*® has mn-components Ai;. Notice
that the components are numbers; A;; € R for all 4,7 such that 1 < i <mand 1 £ j < n. We
should not write A = A;; because it is nonesense, however A = [A;;] is quite fine.

Suppose A € R ™*™ note for 1 < j < n we have col;(A) € R™*?! whereas for 1 <i < m we
find row;{A) € R1*™, In other words, an m x n matrix has n columns of length m and n rows of
length m.

Definttion 2.2.1.

Two matrices A and B are equal iff A;; = By; for all i,5. Given matrices A, B with

‘| components A;;, By; and constant ¢ € R we define
(A -+ B),J = ﬂ,’j -+ B-,‘j (CA)U' = (.',.A,jj , for all 4, 7.

The zero matrix in R ™" is denoted () and defined by 0;; = 0 for all 4, j. The additive
inverse of A € R ™" is the matrix —A4 such that A+ (~A) = 0. The components of the
additive inverse malrix are given by (—A}i; = —A;; for all i, y. Likewise, if A € R ™" and
B € R "P then the product AB € R ™*F ig defined by:

n
L
(AB)T_? = >___, ’Aff\'Biutj
k=1
for each 1 <i<mand 1 <7 <p In the case m = p =1 the indices 4, 7 are omitted in the

equation since the matrix product is simply a number which needs no index. The identity
matrix in R "*" is the n x »n square matrix [/ whose components are the Kronecker delta;

T i=j . : . . .
lij =0 = - J The notation I, is sometimes used if the size of the identity matrix
i # ]
needs emphasis, otherwise the size of the matrix 7 is to be understood from the context.
10 1 00
Iy = 01 Iy=|10 1 0
g 01

Let A € R "*". If there exists B € R "™ such that AB = [ and BA = I then we say that
A is invertible and A~! = B. Invertible matrices are also calied nonsingular. If a matrix
has 1o inverse then it is called a noninvertible or singular matrix. Let A £ R ™% then
AT € B ¥ j5 called the transpose of A and is defined by (AT Jjii= Ay forall 1 <i<m
and 1 < § < n. Note dot-product of v,w € V" is given by v - w = v’ w.
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Remark 2.2.2.

Definition 2.2.3.

We will use the convention that points in IR™ are column vectors. However, we will use the
somewhat subtle notation (z,xs,...2n) = [T1, T2, ... z,]". This helps me write R” rather
than R "*! and I don't have to pepper transposes all over the place. If you've read my
linear algebra notes you'll appreciate the wisdom of our convention. Likewise, for the sake
of matrix multiplication, we adopt the subtle convention < @y, @, ... 2, >= [T1, T2, ... :Bn]T
for vectors in V™. Worse yet 1 will later in the course fail to distinguish hetween V" and
R". Most texts adopt the view that points and vectors can be identified. so there is no
distinction made between these sets. We also follow that view, however I reserve the right
to use V™ if | wish to emphasize that | am using vectors. '

Let ¢; € R™ be defined by (e;); = d;;. The size of the vector e; is determined by context.
| We call e; the i-th standard basis vector.

Example 2.2.4. . .

e, e = e = (1,0)
e, € ﬁa? =2 e, = ‘(\/ 0, g) i
A\SO/ ote K—.—; <A'/A"‘/"7 A D = i A-‘ 62

ond K” e;a = i‘ A e-‘ee-}a :Z‘ A S ;}\}50

=
b=y I ‘a

Definition 2.2.5.

Theorem 2.2.6.

The ij-th standard basis matrix for R ™" is denoted Ejj for 1 <i<mand 1 < j < n.
The matrix Ey; is zero in all entries except for the {7, j)-th slot where it has a 1. In other
words, we define (Ej;)p = 6.

Assume A € R ™" and v € R "*! and define (Ej;)i = 80, and (e;), == 6;; as before then,

v = i’unen A= i i: AijEij-
i=1

i=1 j=1

[eA;TA} = row;(A) [Aei] = col;(A) A= (Eg‘)TABJ‘

T T
EijEkz = 5_.;;;E,gg Eij = E{€j € 8 =g -€5 = §ij
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You can look in my linear algebra notes for the details of the theorem. I'll just expand one point
here: Let A € R ™*" then

All Al? Aln.
e
Aml Am? Amn

10 --- 0 01 0 00 0

o0 --- 0 0 0 0 0 0 0

:‘All +A12 . +"'+Amn .
O ! R ¢ : 0
00 --- 0 o060 --- 0 00 1

= AII Eli +A12E12 B i -.A.mnEmn.-..

The calculation above follows from repeated mn-applications of the definition of matrix addition
and another mn-applications of the definition of scalar multiplication of a matrix.

Example 2.2.7. . .

Let A= (& S) ot L

woent Jo seledt K Ga,) *wmpanev{jb
Yhom T wan waald p\% buy €1T o n

[ . " a j .. —_ T .
”Hr\ﬂ Lt + @ 8,8 61 (wéx\'% ) Aié e, A 633/

i

kfor' exo«hmp@j

e he = @,ox[z Hm

:l)::p\kz

Yo dea s Ug‘U(WQ when we s La/
Cj(\}_(}\d\(ﬁiha ‘Foimg G (x) = XTAX .
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2.3 linear transformations

We should recall the precise definition of a linear combination: A linear combination of objects
Ay, Ag, . Agisasum g Ay el 4 - b oAy = ELl c; A; where ¢; € R for each i. Essentially,
a vector space is simply a set of cbjects called "vectors” for which any linear combination of the
vectors is again in the set. In other words, vectors in a vector space can be added by "vector
addition” or rescaled by a so-called "scalar multiplication”. A linear transformation is a mapping
from one vector space to another which preserves linear combinations.

Definition 2.3.1.

Let V, W be vector spaces. If a mapping L : V' — W satishes

T LE R S LG T L e Al g €V

2. Liexy=cL{z}forallz e V and c € R

then we say L is a linear transformation.

Example 2.3.2. . .
L (x) = X.x for X & WZn; thic mesns
3% N I \Rn —s [ Nohw PRIV

L (x+9) = (x+9)- (X+9)

= XX A XWX+ YD

L (x) = mx +b  for L x elld o wivh
ool W\fb oo Aixed conghunds, X9 # 0,

= L)+ X T Liy) = L E‘i
Example 2.3.3 o theoer Since
’ o e con ‘{:H\Lﬁ

MNote L(D-FQ\ = b
buh L (o) +L(c) = brb=7ab |
The funchon L:\Qr——aﬂz whose caroupl/\ (0 o

line need

Example 2.3.4. .. T

L (‘K;,XL} X)) = X, s o mv-ﬁ\t.:ub
Levm R — R, We can show Yhi v bhear
L (xen) = (exy), = Xay, = L+ LIy

L(cx) = (cx), = ¢X, = cL(x)
for oM ox,yp e 27
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Definition 2.3.5.

Let L : B7™* — R™*! be a linear transformation, the matrix 4 € B ™*" gyuch that
L(z) = Az for all x € B ™! is called the standard matrix of L. We denote this by
[L] = A or more compactly, [L 4] = A, we say that L, is the linear transformation induced

by A.

Example 2.3.6. . .

L0y) = Dxed, X9, ) e LR R

noed o 3x2 pwtrie,

Example 2.3.7. . .

L (Xt;\’{“ufxij‘*) -

Lo o | \;’l g

— Cs -3 0 =14
l X, N
o o o | X, 3

LR — © i net lnear

’ﬂr\is mwp?ru\
doo v X (0/0/0/3) ve dhor

Hemeorle: ;«C L{o) # O /W\QN\ Y
ot  Wneor Han shor menon | ‘/\\'\?5 g
D ug.e,f(J (,r:rjrgf{m swie O 1 eosy T Ché’(,!’li'
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Proposition 2.3.8.

Let Vi, Vs, Vi be vector spaces and suppose Ly : Vi — Vy and Ly : V, — V3 are linear

transformations then Lype Ly : Vi — V3 is a linear transformation and if V1, V; are column
spaces then [Lge L] = [Laof[L1].

Example 2.3.9. . .

I{ L: (’X’) ﬁ(%,/Xg\ NG Lz (‘)’(,}Xz} = X, + X

P L, {x06)= |1 ¢ ]H ¢ L=l

X.?

Howee, (L ]= Lo T 0] amt (L= 000
= L=t opyy o)=L el

o

t\i‘f\ unjffm£+ e LN Ca_\_r,w\wht(d @
Ao (,um{}ug'a?%«e o‘Jre_cH?)

(LLOLg\) Lx‘rx‘wxa L LL LX*! *y })

= LZ (XUXE

= X, 4%,
= | O Xy
[ 3&){3]
.. [LZUL*X;E‘; §/ O} .
e

@
COm\:)wwij @@@ uegoux -3 8 [\» L:] U-—} L ]
’ﬂf\tg o\,\%ﬁ‘ﬂ“v\ =5 C\r\nzr\ fd& Mw\ﬁvwm_ﬁ

C.Ew\_{,mlvxsi wt “ See T,
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2.4 orthogonal transformations

Orthogonal transformations play a central role in the study of geometry.
Definition 2.4.1.

IFT: R™V — R ™! s a linear transformation such that T(z) - T(y) = z - y for all
z,y € R "% then we say that T' is an orthogonal transformation. The matrix R of
an orthogonal transformation is called an orthogonal matrix and it satisfies RTR = I.
The set of orthogonal matrices is O{n) and the subset of rotation matrices is denoted

SO(n) = {R € O(n)|det(R) = 1}.

The definition above is made so that an orthogonal transformation preserves the lengths of vectors
and the angle between pairs of vectors. Since both of those quantities are defined in terms of the
dot-product it follows that lengths and angles are invariant under a linear transformation since the
dot-product is unchanged. In particular,

[T@IP =T(2) Ta) =z -z ==l = [[T()= el

Likewise, defining # to be the angle between z,y and 67 the angle between T'(z), T(y):

T(x) - T(y)=z y = |[T@)i|T{¥)|| cosér = ||z|||ly||cos @ = cosbr =cosf =

2.5 orthogonal bases

Definition 2.5.1.

A set § of vectors in R "*? is orthogonal iff every pair of vectors in the set is orthogonal.
If 5 is orthogonal and all vectors in S have length one then we say S is orthonormal.

It is easy to see that an orthogonal transformation maps an orthonormal set to another orthonormal
set. Observe that the standard basis {e1, es,...,e,} is an orthonormal set of vectors since e; re; =
;7. When I say the set is a basis for R™ this simply means that it is a set of vectors which spans
R™ by finite linear combinations and is also linearly independent. In case you haven’t had linear,

Definition 2.5.2.

1.5 = {vi.ve. . 05} i Iinéarly independent iff Zle e = 0 implies ¢; = 0 for
i=1,2,... k.

K]

S ={vi,va...,v} is spans W iff for each w € W there exist constants wy,wo, ..., wy,
such that w = Z?:l- Wil

3. /7 is a basis for a vector space V iff it is a Hnearly independent set which spans V.
Moreover, if there are n vectors in 3 then we say dim(V') = n.
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In fact, since the dimension of R™ is known to be n either spanning or linear independence of a set
of n vectors is a suflicient condition to insure a given set of vectors is a basis for R™. In any event,
we can prove that an orthonormal set of vectors is linearly independent. So, to summarize, if we
have a linear transformation T we can construct a new orthonormal basis from the standard basis:

T({e1,...,en}) = {T(e1),... T(en)}

Example 2.5.3. In calculus IIT you hopefully observed (perhaps not in this langouge, but the
patterns were there just waiting to be noticed):

1. a line through the origin is spanned by its direction vector.
2. a plane through the origin is spanned by any two non-paralell vectors that lie in that plane.

-8 three-dimensional-space-is- spanned-by-three-non-coplanar-vectors.—For-ezample; 1y k-span-— -
R3.

2.6 coordinate systems

Definition 2.6.1.

A coordinate system of R” is a set of n functions 7; : B® — B for ¢ = 1,2,...,n such
that we can invert the equations

o= Ti{w 2, .., T to obtain i = xi(F1, T2, ... Tn)

on most of €™ In other words, we can group the functions inio a coordinate map @& =
T = (T1,%a,....%,) and T is a 1-1 correspondance on most of R*. We call Z; the j-th
coordinate of the & coordinate system. For a particular coordinate system we also define
the j-th coordinate axis to be the set of points such that all the other coordinates are zero.
If the coordinate axis is a line for each coordinate then the coordinate system is said to be
rectilinear. If the coordinate axis is not a line for all the coordinates then the coordinate
system is said to be curvelinear. If the coordinate axes have orthgonal unit vecéors then
the coordinate system is said to be an orthogonal coordinate system. Likewise, if the
coordinate curves of a curvelinear coordinate system have orthogonal tangent vectors at all
points then the curvelinear coordinate system is said to give an orthogonal coordinate
system.

Example 2.6.2. .
let -)z:)(-ué ok -"-5‘“-‘—‘ ){"l“é,
Nohie b 48 = AR whereas -;(-q = ~AY hence
we hoave tnuwpe relahing ¢ X = -‘.E(—x—-\-g) g Y= _‘i(.—'ﬁz.;. "lé_)
ﬂ\& toocdinet oxes ore frond bua f-cH-ﬂu} X =0 o 15'".0 ’

x ={s)% -

X oxis has O = e > > U =
— &qﬂ-x.l-_‘
T s hos Xm0 2 ST Ly
L [1X) =0 —_ = X
—-\5\9':.-‘-2_‘3. g%'-\ O‘F _‘5
oy .
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The case of Cartesian coordinates has ® = fd. Conceptually we think of the codomain as a different
space than the domain in general. For example, in the case of polar coordinates on the plane we
have a mapping @ : R?> — R? where a circle in the domain becomes a line in the range. The line in
rf space is a representation of the circle in the view of polar coordinates. Students often confuse
themselves by implicitly insisting that the domain and range of the coordinate map are the same
copy of R™ but this is the wrong concept. Let me illustrate with a few mapping pictures:

A @

- ? - s
AT gL
/| > g

T (x,u) = (6,r) = Chn (24), Xy )
T‘"l (@ ir\) = (‘{“w;@ !Y‘S‘l\f\g)

Example 2.6.3. .

v z z sloc Coocch‘rwjfas
R ﬂaxyww ﬂzer ! ire curve dMhese,

Generally I admit that I'm being a bit vague here because the common useage of the term coordinate
system is a bit vague. Later I'll define a patched manifold and that structure will give a refinement
of the coordinate concept which is unambiguous. That said, common coordinate systems such
as polar, spherical coordinates fail to give coordinates for manifolds unless we add restrictions on
the domain of the coordinate which are not typically imposed in applications. Let me give a few
coordinate systems commonly used in applications so we can constrast those against the coordinate
systems given from orthonormal hases of R™.

C\t\;r\&ff CwQ- Cooﬁifr\di“@;f

Example 2.6.4. .
3 3

T Ry, — Kecs @i‘ii

. ~ tg/)
T o) = (er, ) whe O = be [V
L !y o= )«{z—%—'-’b?’

%

X
A
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Example 2.6.5. Consider R? with the usual x,y coordinates, polar coordinates 7,4 are given
by the polar radius r = v/z? + 42 and polar angle § = tan~!(y/x). These are inverted to give
z = rcos{f) ond y = rsin(f). Notice that 8 is not well defined along x = 0 if we take the given
formula as the definition. Even so the angle af the origin is not well-defined no matter how you
massage the equations. Peolar coordinates are curvelinear coordinates, setting 8 = 0 yields a roy
along the postive T-azis whereas setting r = 0 just yields the origin.

ﬂ\V} A

|

A . —]

=Y D@
note: \a Coiuﬂiw@

e ,;;J;\aw <o foc hi

Example 2.6.6. Consider R3 with the usual x,v, z coordinates, spherical coordinates p,f, ¢
are given by spherical radius p = 1/z2 + y? + 22, polar angle ¢ = tan~!(y/x) and azimuthial
angle ¢ = cos™1(z/\/22+y2 + 22). These are inverted to give x = pcos(f)sin(¢) and y =
psin(f) sin(¢) and z = pcos(¢). Even so the angles can’t be well-defined everywhere. The function
of inverse tangent can never return a polar angle in quadrants II or III because range(tan™!) =
(=7/2,%/2). In order lo find angles in the quadrants with x < 0 we have to adjust the equations by
hand as we are taught in trigonmetry. Spherical coordinates are also curvelinear, there is no coor-
dinate axis for the spherical radius and the angles have rays rather than lines for their coordinate
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Example 2.6.7. Consider R™ with the usual Cartesian coordinates x = (r1,Z2,...,3,). If p € R™
then we can write

P =€) + x9e2 + -+ + zpe, = [er]es] - - [en][ml,wg,...,mn]T

Let T be an orthogonal transformation and define o rotated basis f; by [fi] - |fa] = [e1] - len] R =
R where R € SO(n). Since RTR =1 it follows that R~ = RT and s0 [e1] - |ea] = [f1]-- - |fu)RT.
Note that p = [fi| - |fa]RTp. However, the y-coordinates will satisfy p = [fi|---|faly where
y = [y1,%2,---,¥n] - We deduce, '

y=R"z.

We find thaot if we sel up o rotated coordinate system where the new basis is formed by rototing the
standord basts by B then the new coordinoies relate to the old coordinates by the inverse rotation
RT =R,

~[:et-me-break-down-the-example-in-the n-=2-case:
Example 2.6.8. Let {e1,es} be the standard basis for R2. In invite the reader to check that

—sing
R(&) = [ cosf —sin € SO(2). If our calculation is correct in the previous example the new

sinf?  cosd
coordinate azes should be obiained from the standard basis by the inverse transformation.

z' | | cos@ sin® z | | mcosf+ysing

¥ | | —sinf cosf y | | —zsing+ycosd
The inverse transformations to give x,y in terms of ',y are similar

x| | cosf —sind '] 1 z'cosf ~y'sind

y |~ | sinf  cosf v | | #'sinf+ 5y cosf
Let’s find the equations of the primed coordinate azes.

1. The y azis has equation o' = 0 hence ¢ = —y'sin(f) and y = 1y cos{B) which yields y =
—cot{f)z fory #0

2. Likewise, the ©' axis has equation y' = 0 hence z = 2’ cos(#) and y = z'sin(0) which yields
y = tan(@)x for 2’ # 0.

Therefore the new primed azes are perpendicular to one another and are apparently rotated by angle
f in the clockwise direction as illustrated below.
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2.7 orthogonal complements

Perhaps you've seen part of this Theoremn before:

Proposition 2.7.1. Pythagorean Theorem in n-dimensions

If z,y € R ®*! are orthogonal vectors then ||z|[2+]||y|{* = ||z-+y||®. Moreover, if 1, T2, - . . Tk
are orthogonal then

[ + fwal[® 4 - -+ [l |* = o + 2o 4+ +a®

The notation W < V is meant to read "W is a subspace of V7. A subspace is a subset of a vector
space which is again a vector space with respect to the operations of V

Proposition 2.7.2. Existence of Orthonormal Basis

I W R ™ then there exists an orthonormal basis of W

The proof of the proposition above relies on an algorthim called Gram-Schmidt orthogonaliza-
tion. That algorithm allows you to take any set of linearly indepedent vectors and replace it with
a new set of vectors which are pairwise orthogonal.

Example 2.7.3. For the record, the standard basis of B ™*! is an orthonormal basis end
v=(v-ej}es +(v-ea)ea+---+(v-en)en

for any vector v in R ™*}.

Definition 2.7.4.

Suppose Wy, We € B ™! then we say Wi is orthogonal to Wy ifl w, - wy = 0 for all
wy € Wy and we € Wa, We denote orthogonality by writing W3 L Wa.

Definition 2.7.5.

Let ¥V be a vector space and Wy, Wa << V. If every v € ¥V can he written as v = wy +wa for a
unique pair of wy € Wy and wy € Wy then we say that 1V is the direct swun of Wi and Ws.
Moreover, we denote the statement *V is a direct sum of Wy and 5" by V = W & Wa.

Proposition 2.7.6.

Let W < R ™*! then
LR™ =waowt.
2. dim(W) +dim(W+) =n,
3. (WhL =W,
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Basically the cross-product is used in V* to select the perpendicular to a plane formed by two
vectors. The theorem above tells us that if we wished to choose a perpendicular direction for a
2-dimensional plane inside V® then we would have a 5 — 2 = 3-dimensional orthogonal complement
to choose a "normal” for the plane. In other words, the concept of a normal vector to a plane is
not so simple in higher dimensions. We could have a particular plane with two different "normal”
vectors which were orthogonall

Example 2.7.7. . . | '
e XY+ E =0 o nﬁrmj AR

W = S(x,vg,a) 1 X+t 2 =0 }:plm«s_

W, o= %i—d\,‘,i}\ff el }: h}dfi:j@\

R = W, @ W,

W, = Span {41;57]
W, = Span f<1,10}

\Rz:: Wa@ W,

Example 2.7.9. . .
Let "\/\/:2Spm\%(l,l,t/l)j(l/O/O/O)F
= WV, = { sy + % (1o,0,0) ] s, & EHZF
This s o P\ome n Y-dim!'l o spaw. Lett
‘p\“mi EArs* Orv\(\o%ar\kj C,om[a[g,me/v;b,

W, = {\/e\YZL‘ ] Ve W = 0O VW«eW;}

o ed \/ » (\,l,!)}):@ ék \/ e (1,0/0/0)-?0
bet V= (%72 A) ned  xeyiz+d =0 & X=0
\4&1’1(}& l/<\1+z+7\30 '{;3\” V":{-wfvfz/l)e%\/v"z,.
Thas W, = { ojtg}EJﬂ%z) l 4 2 elR §

Y
N T —— -
Thie G A W wew, = I
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