Chapter 3
topology and mappings

We begin this chapter by briefly examining all the major concepts of the metric topology for R™.

‘Then we discuss limits for functions and mappings from using the rigorous € ~ § formulation. Far

this chapter and course a "function” has range which is a subset of E. In contrast, a mapping has
a range which is in some subset of R™ for n > 2 if we want to make it interesting!. Continuity
is defined and a number of basic theorems are either proved by me or you. Finally I quote a few
important (and less trivial) theorems about topology and mappings in R,

3.1 functions and mappings

In this section we disucss basic vocabulary for functions and mappings.

Definition 3.1.1.

Let U CR™ and V C R then we say that f: U — V is a function iff f(z) assigns a single
value in V for each input z € U. We say a function is single-valued from domain {7 to
codomain V. We denote dom(f) = U. The range or image of the function is defined by:

range(f) = f(D) ={y € B | Iz € U such that f(x) =y}

We can also say that ” f is a real-valued function of U".

Example 3.1.2. . .

@ fey=x> fr xeR, demlf) = R
@ VR = RX = et for TR dom(3)= R

1 generally prefer the term function for a more abstract concept: 1 would like to say f: A — B is an B-valued
function of A and I don't make any restriction except that A, B must be sets. Anyhow, I'll try to respect the custom
of calculus for this course because it saves us a lot of talking. I will use the term "abstract function” if I don’t wish
to presuppose the codmain contains only real numbers.
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30 CHAFTER 3. TOPOLOGY AND MAPPINGS

A mapping is an abstract function with codmain in R"

Definition 3.1.3.

Let U ¢ B™ and V C ™ then we say that f : U — V is a mapping iff f(x) assigns a
single value in V" for each input © € 7. We say a f is a single-value mapping from domain
U to codomain V. We mean for dom(f) = U to be read that the domain of f is U. The
range or image of the mapping is the set of all possible outputs: we denote

range(f) = f(D} = {y € B" | do € U such that f{z) =y}

Suppose that = =€ dom(f) and f(x) = (fi(x), fo{x),..., fm(z)) then we say that
fivfav oo, i are the component functions of [ and f = (f;) = (f1, f2,--- fm)-

In the case m = 1 we find that the concept of a mapping reduces to a plain-old-function.
. Example 3.1.4. . . |
X: R — R wheee X (r,0) = {Fwsp, "sho>
we hove L mp onovJ’D fun chong
X, (re)y=rwse € ¥ (re) =tranb,

Definition 3.1.5.

A mapping f: U CR™ - V C '™ is said to be injective or 1-1 on § C U iff f(2) = f(y)
implies & = y for all z,y & §. If a mapping is 1-1 on its domain then it is said to be 1-1
or injective. The mapping f is said to be surjective or onto T' C V iff for each v € T
there exists v € U such that f(u) = v; in set notation we can express: f is onto 7" iff
fUY =T. A mapping is said to be surjective or onto iff it is onto its codomain. A mapping
is a bijection or 1-1 correspondance of {7 and V iff f is injective and surjective.

Example 3.1.6. . .
®_ f (x,4) = (ex ) ‘éz, ’&) is onto (0,e0)x [o,00)x {2]
%‘:\:bv‘\ ’\'l\kf'b dom (-H = \?2_ -ro prove Hais led

(a1b,e) € (029 % [°°°\’<'Y and  obrecue Yhab ﬂn(&)pﬁ e[
hee A0 omd b 20 hen @

£ (latey, 45, 2) = (9@ ()% 2) = (a,b, 3)=ls4)

@ %.' K~ (D/w) dhehined {"a %(x)_:ex TR ‘:){}'eclh'on_
9\.\.' \R-—-? \R Mh‘-%o \'Jua k(K\—"‘:Xz U hl.:“‘ef \"" Nar an’b.
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We can also adjust the domain of a given mapping by restriction and extension.

Definition 3.1.7.

Let f:UCR" =V CR™ be a mapping. If R C U then we define the restriction of f
to R to be the mapping flg : R = V where f|gp(x) = f(z) forallz € R. If U C S and
V' C T then we say a mapping g: § — T is an extension of [ ilf glyum¢p) = f-

When [ say g{dom( 5y = [ this means that these functions have matching domains and they agree
at each point in that domain; glgom(s)(z) = f(z) for all z € dom(f). Once a particular subset
is chosen the restriction to that subset is a unique function. Of course there are usually many
susbets of dom(f so you can imagine many different restictions of a given function. The concept of
extension is more vague, once you pick the enlarged domain and codomain it is not even necessarily
the case that another extension to that same pair of sets will be the same mapping. To obtain
uniqueness for extensions one needs to add more stucture. This is one reason that complex variables
.are interesting, there are cases where the structure of the complex theory forces the extension of a
complex-valued function of a complex variable to be unique. This is very surprising.

Example 3.1.8. . .

O Lt FOd= 43 tan f| 00 =% whee f| (0= -,
dom (4) =R {o,20) (-29,0]

® Let $03 =Mt for Xelom), If 96) = Anlxi for xefR—{c]
/H’\uf\ ‘%\(o o5\ '-:'F Se 2 is an exbkenrivn of 'F

Definition 3.1.9.

Let wyr : B® — U C RB™ be a mapping such that mp:{z) = o for all x € U. We say that piy
is a projection onto /. The identity mapping on U C R" is defined by Idy : U — U
with Fdy{2) = x for all ® € U. We may also denote Idgn = Id, = Id where convenient.
The j-th projection function is 7r; : R* = R defined by (@i, @0, ... z,) = ay

Notice that every identity map is a projection however not every projection is an identity.

Example 3.1.10. . .

let U= I\sz’ {o} = -{ {xv, 8) l %X, € E}y dhie i He x%npla.ne.

z
Sy Ty labe)=(ab o),
| .y
R
:
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Definition 3.1.11.

let f: VCR =+ WCR"and g : 7 CR*" - V C R™ are mappings such that
g(U) € dom{f) then fog : U — W is a mapping defined by (f<g)(z) = f(g(z)) for all
z € U. We say [ is the outside function and g is the inside function. :

Notice that the definition of the composite assumes that the range of the inside function fits nicely
in the domain of the outside function. If domains are not explicitly given then it is customary
to choose the domain of the composite of two functions to be as large as possible. Indeed, the
typical pattern in calculus is that the domain is implicitly indicated by some formula. For example,
g{z) = e“’iT“”ji has implied domain dom(g) = (—00,4) U (4, c0) however if we simply the formula
to give g(z) = €® then the implied domain of R is not correct. Of course we can not make that
simplification unless © # 4. In short, when we do algebra for variables we should be careful to
consider the values which the variables may assume. Often one needs to break a calculation into
cases to avoid division by zero.
Example 3.1.12. . . .

Let X : (0,00 % ("Th, T )=Rbe debined by X (r,6) = (rwi®, rrng).

and Fi (02 xR —> RY be dekved by Fx4)= (\IK"'W‘ > ol (94)).
L°+ (\" B) e cdlom LZ) no‘l\'u. '“M:JO Coof (_'TTA,W/;) = (D} l) whereat sin ("yz TV;.)-: (‘IJU
(F- z')(r,e\ = F(x(re) w!_mmmw ”
= F(rws@,rﬂ‘f\s) ) Swre Z(rfa)
= ('\ﬁ"us"‘—e +rintg , tun™ k;_slr}g)) s ™ dem (F)
= ({2, tun” (hab))
= (r,e)

Definition 3.1.13.

Let f: U CR"™ =V CR™ be a mapping, if there exists a mapping g : f({/) = U such that
fog=Idyyyand go f = Idy then g is the inverse mapping of [ and we denote g = 1.

If a mapping is injective then it can be shown that the inverse mapping is well defined. We define
fHy) = 2 iff f(z) =y and the value £ must be a single value if the function is one-one. When a
function is not one-one then there may be more than one point which maps to a particular point
in the range.

Example 3.1.14. . .
Kt (o,00)% ("W W) —qﬂazo,m)x i be dehned
by X (¢r,8) = (rwso,rsme), We (un show
X is injedve and onb (o, 00) <R Fhus
Maeee exits X (o,00) xR —> dom (E). TIa pochicular,

= (x0) = (B, ke (W)

Nele Aha % 2109 Showr X Zﬂ - Id]
[OIM)X[R.
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Definition 3.1.15.
Let f:UCR" - V CR™ be a mapping. We define a fiber of f over y € range(f) as

f‘l{y} = {2z e U|f(z) = v}

Notice that the inverse image of a set is well-defined even if there is no inverse mapping. Moreover,
it can be shown that the fibers of a mapping are disjoint and their union covers the domain of the
mapping:

W £ = FHyinf Yz =0 U £y = dom(s).
y € range(f)

This means that the fibers of a mapping partition the domain.

~ Example 3.1.16. . . .

Led F (x,\/)”—z. ”'><. ” -Q;r | D./E,Q | (Xt‘f) e d.am(xc) = ['_ol; ].x.'.[o., |]

LR
— down (f)
f el
- XK
Ki
| Y N
Fa err:o*:<({=)": (o]

Definition 3.1.17.

Let f: U CR" = V C R™ be a mapping. Furthermore, suppose that s : {7 — U is a
mapping which is constant on each fiber of f. In other words, for each fiber f~'{y} C U
we have some constant v € U such that s(f~"'{y}) = u. The subset s~ (/) C U is called a
cross section of the fiber partition of f.

How do we construct a cross section for a particular mapping? For particular examples the details
of the formula for the mapping usually suggests some obvious choice. However, in general if you
accept the axiom of choice then you can be comforted in the existence of a cross section even in
the case that there are infinitely many fibers for the mapping.

Example 3.1.18. . . . .
Let F(xyv) = X*+y®  He oM (%y) € R® cwch thih x*+4> = 1,

-
Tha  Fbers ace ciccles, and the oeiopn £ o) = (o0}, let us
P dhne o &M\ bv&

‘F s{r)y= (& ir
//K S 5o ) )\« r(e/f'q/ﬁl it
¥, » T tou o\l o Lt
@&&—/ [ Stbl\]"‘: r“‘\'a o etw/‘{-
S 6,1]

) () y
Nokw £ s = Ve, Ya) = ) §) =ffFein=r
N oke ‘H Vs '\néed{ve be cavst  each fiker ir cedmed Yo o \MM{:.

sleyn
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Proposition 3.1.19.

Let f : U CR"™ = V C R™ be a mapping. The restriction of f to a cross section §
of U is an injective function. The mapping f : U — f(U) is a surjection. The mapping
fls = 8§ = f(U) is a bijection. -

The proposition above tells us that we can take any mapping and cut down the domain and/or
codomain to reduce the function to an injection, surjection or bijection. If you look for it you'll see
this result behind the scenes in other courses. For example, in linear algebra if we throw out the
kernel of a linear mapping then we get an injection. The idea of a local inverse is also important
to the study of calculus.
Example 3.1.20. . . Let 1 (0,1)x[01] IR be debmed 6"&
P (xyv) = X is net ente R, |
. Co . ~1 - } [
ond 4 net injectve  Sinca FhxT = {xix o)1l Veu
tun  chedt S [o, 1) =3 dom (F] with s{x) = (X, Vo) is a fechwn
O'F 'F- More ovte, f= ['o‘l-)x£°a|]'“’"5 [o!l] is ento  wnd -F!S (s,1)
1

‘ ‘e b e oy
Definition 3.1.21. ' o '&ed\'n ’

Let f: U0 CR" — V CR'™ be a mapping then we say a mapping g is a local inverse of f
iff there exits § C U such that g = (f|s) 7"

Usually we can find local inverses for functions in calculus. For example, f(z) = sin(z) is not 1-1
therefore it is not invertible. However, it does have a local inverse g(y) = sin™!(y). If we were
more pedantic we wouldn't write sin™'(y). Instead we would write g(y) = (sin ![ -1 E])_l(y) since
the inverse sine is actually just a local inverse. To construct a local inverse for sgmg mapping we
must locate some subset of the domain upon which the mapping is injective. Then relative to that
subset we can reverse the mapping. The inverse mapping theorem (which we'll study mid-course)
will tell us more about the existence of local inverses for a given mapping.

Definition 3.1.22.

Let f: U, CR" =+ Vi CRPand g: Uy CR" — Vo € RY be a mappings then (f,g) is a
mapping from Uy to Vi x Va defined by (f, g)(x) = (f(z), g(z)) for all © € Uy.

There's more than meets the eye in the definition above. Let me expand it a bit here:

(f,g)(-’L) = (fl (:L‘), f2(m)!' ":fp(m)’gl(ngZ(m): e 19{](3")) where x = ($1:$27-- -swn)

You might notice that Edwards uses 7 for the identity mapping whereas I use Id. His notation is
quite reasonable given that the identity is the cartesian product of all the projection maps:

T = (X1, T2,..., )

I've had courses where we simply used the coordinate notation itself for projections, in that nota-
tion have formulas such as z(a,b,¢) = a, z;(a) = e; and z;(e;) = d;;.
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Example 3.1.23. . .

© [:R — RT b dehmd by fieva)= (97
%; ﬂzg———a i be defined bvé %0y 2) = Nexy, 2)

6C7 c:)) d \123-—-3 \{23 1’\&5 (-F/ %)(;{’J - ('F(’?)) %(f))

& T [Tag—-a lEz be  dehned b‘a 'IT-xy (X,VIE) = (x,¥)
e
TT: R R be  defnd by T, (xyz) = E

. \/uw Con Sl ..(T]—;..'“ -ﬁ-%)_: IOI/]?? P

The constructions thus far in this section have not relied on the particular properties of real
vectors. If you look at the definitions they really only depend on an understanding of sets, points
and subsets. In contrast, the definition given below defines the sum of two mappings, the scalar
product of a mapping and a constant or a function, and the dot-product of two mappings.

Definition 3.1.24.

Let f,g: U CEB* = R™ be amappings and ¢ € R and I I/ = R a function. We define:
1. f+ g is a mapping from U to B™ where (f + g}(z) = f(@) +glz) forall z € U.

2. hf is a mapping from U to BR™ where (hf)(z) = h(2)f(z) for all z € U.

o)

. ef is a mapping from U to B™ where {¢f)(z) = cf (z} for all z € U.

LN

g is a function of U where (f - g){(x}) = f(2) - g(x) for all 2 € U.

We cannot hope to define the product and quotient of mappings to be another new mapping
because we do not know how to define the product or quotient of vectors for arbitrary dimensions.
In contrast, we can define the product of matrix-valued maps or of complex-valued maps because
we have a way to multiply matrices and complex numbers. If the range of a function allows for
some type of product it generally makes sense to define a corresponding operation on functions
which map into that range.
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Definition 3.1.25.

Let f,g:U € B" = C be complex-valued functions. We define:
1. fgis a complex-valued function defined by (fg)(z) = f(z)g(x) for all z € U.

2. 0 ¢ g(U) then f/g is a complex-valued function defined by (f/g)(x) = f(x)/g(x)
forall z € U.

Example 3.1.26. . .

fe) = el = (O +ish® dne F:IR— C
a(g) = 3+:6

. '(CDIS""'“’-'SV}?'@)(:?*‘ 28} U
et + 35l +18es@ - O 60O
3cs @~ BB +1 (3550 6 * @cqg),

¥t

1

Definition 3.1.27.

let AB. UCR—-R™"and X : U CRE -+ R"™P be matrix-valued functions and
f:UCR =R We define:
1. A+ B is a matrix-valued function defined by (A4 B){x) = A{x) + B(z) for all x € U.

2. AX is a matrix-valued function defined by (AX)(x) = A(x)B(z) for all z € U.

3. [A is a matrix-valued function defined by (fAY &) = fx)Alx) fér all v € U.

The calculus of matrices is important to physics and differential equations.

Example 3.1.28. . .

o
2 ) - et r
Le—[- A/B.‘//?*"'"B//?z 5e d&gw{ éy AW: i—tz‘/ &‘(3[,1"/:/142 )(--TJ

3 £ 1+et  a+i
(heB)tH) = AW+t = [} t=]+/; j;]:/i;z gt

1A et etiat* £ +att
= AX}B () = =
(Ae) (*) (} ) [J’f ]tz][tt ;{_3] l_tei"‘!'jq }{.2+/f$ .

sint QAShi ]
[ia‘rsmi £2sint .

Let €4 = siat

FAYn = PR = st )

1}
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3.2 elementary topology and limits

In this section we describe the metric topology for R™. In the study of functions of one real variable
we often need to refer to open or closed intervals. The definition that follows generalizes those
concepts to n-dimensions. I have included a short discussion of general topology in the Appendix
if you’d like to learn more about the term.

Definition 3.2.1.

An open ball of radius ¢ centered at a € R” is the subset all points in B" which are less
than e units from «, we denote this open ball hy

Ba)={z e R" | ||z —a|| < €}
The closed ball of radius € centered at o & B" is likewise defined

Bi(o) = {x € B" | fle ~al| < ¢}

Notice that in the n = 1 case we observe an open ball is an open interval: let a € R,
Bfa)={zecR |||z —¢a|ll]<e}={zeR||lz—al<e}=(a—¢€,a+¢)

In the n = 2 case we observe that an open ball is an open disk: let (a,b) € RZ,

Be((a,b) = {(,9) € B [ ||(z,9) ~ (@,b) | < e} = {(z,1) € B® | V&~ a)° + {y — b)® < €}

For n = 3 an open-ball is a sphere without the outer shell. In contrast, a closed ballinn =3 is a
solid sphere which includes the outer shell of the sphere.

Definition 3.2.2.

Let D C E". We say y € D is an interior point of D2 iff there exists some open ball
centered at y which is completely contained in D). We say ¥ € R" is a limit point of D iff
every open ball centered at y contains points in D — {y}. We say y € R" is a boundary
point of D il every open ball centered at y containg points not in D and other points which
are in D — {y}. We say y € D is an isolated point of D if there exist open balls about
y which do not contain other points in D). The set of all interior points of [J is called the
interior of D). Likewise the set of all bounddly points for D is denoted J0. The closure
of I is defined to be D' = DU {y EIR | ¥ a limit point}

If yow're like me the paragraph above doesn’t help much until 1 see the picture helow. All the terms
are aptly named. The term "limit point” is given becanse those points are the ones for which it is
natural to define a limit.

U, it el onm heribr P+‘-

Example 3.2.3. . . f
% oJ; . O Y %, o bwmd points
. 0'% ptd’wui wa&f/t e R
D\:Ei? @ ba is s ;\o\kuj Pf) wb

t,

O\rhum Ut)\

® W, & 90, V. is beandery P
Yeeis
o g:r r @ T Loed im t'nne‘-)‘\“‘g deotr

- '\‘
?0\1‘\ v

i inktodr l'\o\e..
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Definition 3.2.4.

Let A C R” is an open set iff {for each € A there exists € > 0 such that @ € B {z) and
Be(r) € A Let B CR" is an closed set iff its complement R" - B={x ¢ R" |z ¢ B}
is an open set.

Notice that R — [a,b] = (oo, a) U (b, 00). It is not hard to prove that open intervals are open hence
we find that a closed interval is a closed set. Likewise it is not hard to prove that open balls are
open sets and closed balls are closed sets. | may ask you to prove the following proposition in the
homeworlk.

Proposition 3.2.5.

A closed set contains all its limit points, that is 4 C B is closed iff A = A.

Example 3.2.6. . .
@ (U-lb\ hM \imar'l‘ pufnlrs X=a € x=b. Ht.rwt.w.r, 0‘-,\7 é [fﬁ-\ b)
ond  we  wnote  thab (o, b) is not o closed set,

@ (a by = YA,\)) which is o cliced set. Closed Mlenvalo ave closed Sedr,

In caleculus T the limit of a function is defined in terms of deleted open intervals centered about the
limit point. We can define the limit of a mapping in terms of deleted open balls centered at the
limit point.

Definition 3.2.7.

Let f: U CR" =V CE™ be a mapping. We say that f has limit b € B™ at limit point a
of U iff for each € > 0 there exists a & > 0 such that » € R" with 0 < ||z — al|| < § implies
[If(z) — b|| < e. In such a case we can denote the above by stating that

lim flz)=1b

L

In calculus I the limit of a function is defined in terms of deleted open intervals centered about the
limit point. We now define the limit of a mapping in terms of deleted open balls centered at the
limit point. The term ”deleted” refers to the fact that we assume 0 < ||z ~ a|| which means we
do not consider £ = a in the limiting process. In other words, the limit of a mapping considers
values close to the limit point but not necessarily the limit point itself. The case that the function
is defined at the limit point is special, when the limit and the mapping agree then we say the
mapping is continuous at that point.

Example 3.2.8.
In Calenbug T w/e Prou-e_ ’ﬁf\"i’ ﬁ\ﬁmbr\:hunb_ 'R&hr_,‘h'un:
ore  conBinuous on A thtecior  of Aheic fomams. Eoc examp (e
) = er Cos CX)/ Stn (x)/ P (x) (Po\ianomlcj) are  andiavous on R
whereans  C(x) = %L':"—l} is Gnatinvews for X< M such thed ix) £ o,

OL«. o be honest we dont prove ol Ahese %\h%s hUPEMlca we

of  east show e shudents fhow —t’hu—b wuca/\do fma o Pr:fu-(_ 'l"‘n—;
Sbi‘b'ﬂ- .
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Definition 3.2.9.

Let f: U CR" = V CR™ be a mapping. If o € U is a limit point of f then we say that f
is continuous at o iff

Jim f(z} = f(a)

If @ € U is an isolated point then we also say that f is continous at e. The mapping f is
continous on S iff it is continous at cach point in S. The mapping f is continuous iff
it is continuous on its domain.

Notice that in the m = n == 1 case we recover the definition of continuous funcéions from cale. 1.

Proposition 3.2.10.

Let f: U CR" — V C R™ be a mapping with component functions fi, fa,..., fin hence
F=(f1,fa....fm)- Ha €U is a limit point of f then

T--ra

]J'_Iflf(:c)=b = lim f;(z) =b; for each j =1,2,... m.

We can analyze the limit of a mapping by analyzing the limits of the component functions:

Example 3.2.11. . .

Lt £09= (5, sty , X)) e £=0, 0 1)
whane  £64 = IXT A0 =sin0d , K= T A e R-{0)

/pl'm‘][:()():-" '-J?": o

X35
,;f_/_,; (th(x)) = 0 Xﬂ_’r:"o (J';i fth/ %}ﬁ) = (O/ °, /)
Xx-f;\o ( -Igl_x‘) = 1

The following follows immediately from the preceding proposition.

Proposition 3.2.12.

Suppose that f: U/ CR™ = V € R™ is a mapping with component functions fi, fa, ..., fin.
Let o € U be a limit point of f then f is continous at a iff f; is continuous at a for

J=12,...,m. Moreover, f is continuous on S iff all the component functions of f are
continuous on S. Finally, a mapping f is continous iff all of its component functions are
continuous. .

The proof of the proposition is in Edwards, it's his Theorem 7.2. It’s about time I proved something.



40 CHAPTER 3. TOPOLOGY AND MAPPINGS

Proposition 3.2.13.

|The projection functions are continuous. The identity mapping is continuous.

Proof: Let ¢ > 0 and choose § = e, If @ € B® such that 0 < ju — a]| < 6 then it {ollows that
lie — ai| < e.. Therefore, fimg.,q & = @ which means that lim, ., fd{x) = Id(a) for all @ € R™.
Hence Id is continnons on B which means fd is continuous. Since the projection functions are
component functions of the identity mapping it follows that the projection functions are also con-

0]

tinuows (using the previons proposition). O

Definition 3.2.14.

The sum and product are functions from R? to B defined by

cs(xyy) =ty opley) =y o

Proposition 3.2.15.

|The sumn and product functions are continuous.

Preparing for the proof: Let the limit point be {(a,b). Consider what we wish to show: given a
point (z,y} such that 0 < |{{z,y) — {a,b)]| < & we wish to show that

ls(z,y) —(a+b)| <€ or for the product |p(z,y) — (ab)| < ¢
follow for appropriate choices of §. Think about the sum for a moment,
ls(r,y) — (@ +b) =le+y—a—bl <|zv—al+|y—b]

I just used the triangle inequality for the absolute value of real numbers. We see that if we could
somehow get control of [z — ¢| and ly — b| then we’d be getting closer to the prize. We have control
of 0 < ||{z,y) — (a,b)|| < & notice this reduces to

e —a,y—bll<§ = VE—aP+u—b02<s

it is clear that (z — a)® < 62 since if it was otherwise the inequality above would be violated as

adding a nonegative quantity (y — b)* only increases the radicand resulting in the squareroot to be

larger than 4. Hence we may assume (z—a)? < §2 and since 4 > 0 it follows | [z — a| < & | Likewise,

ly — b < d| Thus

|s(@,) ~ (a-+b)| = |z +y—a—b| < |z—a]+|y— b <25

We see for the sum proof we can choose § = ¢/2 and it will work out nicely.
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Proofi Let ¢ > 0 and let («.b) € RB® Choose § = ¢/2 and suppose (z.y) € R? such that
Hir,y) — (a,b)]] < 4. Observe that
e y) — (b)) <6 = [[(x—ay=IF <& = |o—al*+y~b? <5
It follows |x — a} < § and |y — b] < §. Thus
[str,y) —(a+di =l t+y—a-b<|v—al+ly—bl<d+d=25=¢

Therefore, limg, .40 $(2,y) = a + b and it follows that the sum function if continuous at (a, b).
But, (a,b) is an arbitrary point thus s is continuous on B? hence the sum function is continuous. CJ.

Preparing for the proof of continuity of the product funcfion: I'll coentinue to use the same
notation as above. We need to study |p(z,y) — (ab)| = |zy — ab| < e. Consider that

o |zy = ab| = |zy = ya +ya = ab] = |y(z =a) + a(y —b)| < yllz —a|+ |ally =b] .. .

We know that | —a| < § and |y—b| < . There is one less obvious factor to bound in the expression.
What should we do about [y|?. I leave it to the reader to show that:

ly —b] < 6 = ly| < |b| + &

Now put it all together and hopefully we'll be able to "solve” for .
vy — abl =< |yliz — a] + la|ly — b] < (|b] + 8)6 + |a|d = &% + d(la] + {b]) " =" e

I put solve in quotes because we have considerably more freedom in our quest for finding 6. We
could just as well find § which makes the ” = ” become an <. That said let’s pursue equality,

5 _ ol = (bl & v/(al F )" + 4
2

4

& + 8(lal + b)) —e =0

Since €, |al, |b] > 0 it follows that «/(a| + |b])? -+ 4e < /(|a| + [b])2 = |a[+|b}| hence the (+) solution
to the quadratic equation yields a positive & namely:

5 — —lal = 1ol + /(lal + [b])” + 4€
2

Yowsers, | almost made this a homework. There may be an easier route. You might notice we have
run across a few little lemmas (I've boxed the punch lines for the lemmas) which are doubtless
useful in other € — d proofs. We should collect those once we'’re finished with this proof.

Proof: Let ¢ > 0 and let (a,b) € B®. By the calenlations that prepared for the proof we know that
the lollowing quantity is positive, hence choose

ol =+ /AT
- 9

=0,
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Note that?,

ey — ub| = oy — yo+ya —abl = |yl — o)+ aly —b)| algebra
< |ylle = al + |aliy — b triangle inequality
< (b} + ) + |ald by the boxed lemmas
= & 4 d(lel+ 0D algebra
= £

where we know that last step follows due to the steps leading to the boxed equation in the proof
preparation. Therefore, limg, o0 P(7,¥) = ab. and it follows that the product function if con-
tinous at (a,b}. But, (a.b) is an arbitrary point thus p is continuous on R? hence the product
function is continuous. [,

- Lemma 3.2.16.

Assume 4§ > 0.
1. fa,z € R then |z —a| <d = |z|<|a|+4d

2. Ifz,ac R then ||z —a||<d = |zj—qgjl<dforj=12,...n

The proof of the proposition above i3 mostly contained in the remarks of the preceding two pages.

Example 3.2.17. . .
led -F(X,Y)T' x4 Ya. We see b o &hﬂw(jjm{(zaﬂ‘%a):daéai
Neke £ = XX = IK1°5 Reedl dhe Canehy Schunb
L egundiy 17w = Wvliwll Coludote
\£(%)- £(R)| = | %% - B-R| = |&-R)-(X+R)

You tan chech, (B-R)- (R+R) = B.X-RZ+ %

:Ee;b E>O ond = =

Supposs XEM® sumch thob [R-K)< 8 Hhan
\f@)-fR)| < IK-R]||X+R) = §(8§+A) = €.

v Qi F0D) =FUA),
= A

?my notation is that when we stack inequalities the inequality in a particular line refers only to the immediate
vertical successor.

Nole .« | X4R] € KN + 1A

ey
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Proposition 3.2.18.

Let f: VCRP -+ R™ and g: U CR" —+ R” be mappings. Suppose that
limg_,, g(z} = b and suppose that f is continuous at & then

lim (f = g)(z) = /(Jim g(z)).

iT—ra T—ra

The proof is in Edwards, see pages 46-47. Notice that the proposition above immediately gives us
the important result below:

Proposition 3.2.19.

Let f and g be mappings such that feg is well-defined. The composite function feg is
continuous for points a € dorn{f = g) such that the following two conditions hold:

1. g is continuous at a

2. f is continuous at g(a).

I make use of the earlier proposition that a mapping is continuous iff its component functions are
continuous throughout the examples that follow. For example, I know (Id, Id) is continuous since
Id was previously proved continuous.

Example 3.2.20. Note that if f = po(Id, Id) then f(z) = (pﬂ(fd, Id))(a:) = p((Id, Id)(:::)) =
p(z,x) = x2. Therefore, the quadratic function f(z) = x® is continuous on R as it is the composite
of continuous funclions.

Example 3.2.21. Note that if f = pe(pe(Id, Id),Id) then f(z) = p(z®,z) = z*. Therefore, the
cubic function f(z) = x® is continuous on R as it is the composite of continuous functions.

Example 3.2.22. The power function is inductively defined by x* = = and 2" = zz™ ! for all
n € N. We can prove f(x) = z™ is continous by induction on n. We proved the n = 1 case
previously. Assume inductively that f{z) = ™! is continuous. Notice that

" = wz" ! = wf(z) = plw, f(w)) = (pe (Id, f))(x).

Therefore, using the induction hypothesis, we see that g{x) = ™ is the composite of continuous
functions thus it is continuous. We conclude that f(x) = x™ is continuous for alln € N.

We can play similar games with the sum function to prove that sums of power functions are
continuous. In your homework you will prove constant functions are continuous. Putting all of
these things together gives us the well-known result that polynomials are continuous on R.
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Proposition 3.2.23.

Let @ be a limit point of mappings f,g : U € R* — V C R and suppose ¢ € R. If
lim; ., f{z) = b1 € R and limy_, g(z}) = b2 € R then

L limgse (f(2) + g(x) = limyye f(2) + lime—, g(x).
2. hmm—m(f(m)g(w)) = (h.mm—%a f(CE)) (lim:!:-m, Q(E))
3. limgoe(ef(z)) = climza f(z).

Moreover, if f, g are continuous then f - g, fg and cf are continuous.

Proof: Edwards proves (1.} carefully on pg. 48. I'll do (2.) here: we are given that If lim,_, f{2) =
by € B and limg.,, g{e) = b € B thus by Proposition 3.2.11 we find liw, . (f. g)(2) = (&, b2},
Consider then,

e {f(e)gle)) = 1im_,,;m,(p(j“. g)) defn. of product function
= p(limg—a(f. ) since p is continuons
= p(by, b} by Proposition 3.2.11.
= bba definition of product function

( lim, .y, j"(.’::)) ( im, ., g{:r:)) .

In your homewaork yvou proved that lim,_,, ¢ = ¢ thus item (3.} follows from (2.). 0.

The propaosition that follows does follow immediately from the propoesition above, however I give a
proof that again llustrates the idea we used in the examples. Reinterpreting a given function as a
composite of more basic functions is a useful theoretical and calculational technique.

Proposition 3.2.24.

Assume f,g: U CR® =V CR are continuous functions at ¢ € U and suppose ¢ € B.
1. f -+ g is continuous at a.
2. fg is continuous at a

3. ¢f is continuous at a.

Moreover, if f, g are continuous then f -+ g, fg and c¢f are continuous.

Proof: Observe that (f + g)(») = (s=(f,g)){x) and (fo)lz) = (p-(f.g))(x). We're given that
f, g are continuous at o and we know s, p are continuous on all of B* thus the composite functions
s={f,q) and pe{f,g) are continuous at a and the proof of items (1.} and (2.) is complete. To
prove {3.) I refer the reader to their homework where it was shown that A(z) =cforallw € U is a
continuous function. We then find (3.} follows from (2.) by setting g = h (lunction multiplication
commutes for real-valued functions). U
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We can use induction arguments to extend these results to arbitrarily many products and sums of
power functions.To prove continuity of algebraic functions we’d need to do some more work with
quotient and root functions. T'll stop here for the moment, perhaps I'll ask you to prove a few more
fundamentals from calculus I. T haven’t delved into the definition of exponential or log functions
not to mention sine or cosine. We will assume that the basic functions of calculus are continuous
on the interior of their respective domains. Basically if the formula for a function can be evaluated
at the limit point then the function is continuous.

It’s not hard to see that the comments above extend to functions of several variables and map-
pings. If the formula for a mapping is comprised of finite sums and products of power func-
tions then we can prove such a mapping is continuous using the techniques developed in this
section. If we have a mapping with a more complicated formula built from elementary func-
tions then that mapping will be continuous provided its component functions have formulas which
are sensibly calculated at the limit point. In other words, if you are willing to believe me that
“sin(z}, cos(z), e, In{z), cosh(z), sinh(z), /7, =, ... are continuous on the interior of their domains
then it’s not hard to prove: ’

1
f(:an,Z) = (Slﬂ($)+e$+ \/COSh(.’L‘g)-’r p'y_i_em’ COSh(ijz)’ ze +yz)>

is a continuous mapping at points where the radicands of the square root functions are nonnegative.
It wouldn’t be very fun to write explicitly but it is clear that this mapping is the Cartesian product
of functions which are the sum, product and composite of continuous functions.

Definition 3.2.25.

A polynomial in n-variables has the form:

o

o P E . S O 18
f(-lll: L. 7-1:71) = Citda,eninl] Ty 0o Ty
tpda, =0

where only finitely many coefficients ¢;, ;, . ;, # 0. We denote the set of multinomials in
n-variables as R(xy, xq, ..., 2p).

Polynomials are R{z). Polynomials in two variables are R(z, y), for example,

flz,y) =ax+by deg(f) = 1, linear function
fHz,y) =az+by+c deg(f) = 1, afline function
flz,y) = az®+bay + o deg(f)=2, quadratic form
flz,y) =ax®+bry+cy® +de+ey+g deg(f)=2

If all the terms in the polynomial have the same number of variables then it is said to be ho-
mogeneous. In the list above only the linear function and the quadratic form were homoge-
neous. Returning to the topic of the previous chapter for a moment we should note that a linear
transformation has component functions which are homogeneous linear polynomials: suppose that
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L : R® —+ R™ is a linear transformation with matrix A € R ™*™ then in the notation of this chapter
we have L = (L, La,..., L) where

Lj(.‘r) = (A:L) cej = Ajlilil -+ Ajgwg +---+ AanUn

It is clear that such functions are continuous since they are the sum of products of continuous func-
tions. Therefore, linear transformations are continuous with respect to the usual metric topology
on R™.

Remark 3.2.26,

There are other topologies possible for B™. For example, one can prove that
[l = Joa) + Jua| + -+ + [un]

gives a-norm-on K™ and the theorems we proved transfer over almost without-change by |-
just trading || - || for || - ||;. The unit "ball” becomes a diamond for the 1-norm. There are
many other norms which can be constructed, infinitely many it turns out. However, it has
been shown that the topology of all these different norms is equivalent. This means that
open sets generated from different norms will be the same class of sets. For example, if
vou can fit an open disk around every point in a set then it’s clear you can just as well fit
an open diamond and vice-versa. One of the things that makes infinite dimensional linear
algebra more fun is the fact that the topology generated by distinet norms need not be
equivalent for infinite dimensions. There is a difference between the open sets generated by
the Euclidean norm verses those generated by the 1-norm. Incidentally, my thesis work is
mostly built over the 1-norm. It makes the supernumbers happy.

3.3 compact sets and continuous images

It should be noted that the sets R™ and the empty set ) are both open and closed (these are the
only such sets in the metric topology, other sets are either open, closed or neither open nor closed).

Theorem 3.3.1.

The mapping f : dom(f) ¢ R" -+ R™ is continuous iff f~1(¥/) is open in dom(f) for all
open sets U C R™. Additionally, f is continuous iff f~1{U) is closed for each closed set U
in R™.

Notice this theorem makes no explicit reference to the norm. It turns out this theorem is used as
the very definition of continuity in more abstract topological settings.

1 leave the proof of the closed case to the reader. I tackel the open case here:

Froof: (=} Suppose [ is continnous and U7 is open in B™ then for cach £ € U there exists an open
hall B.(z) C /. Ifx € f~1{I7) then there exists y € U7 such that f(2) = ¥ and hence there exists an
open ball about B.(y) C U. I propose that f~'(B.(y)) is an open subset of f~1{U/) which contains
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x. Note that y € B.(y) thus f(x) = y implies z & f~1(B.{y)} as according to the definition of
inverse image. We seek to show f~YB.(y)) < f~HU}. Suppose v € f~H{B.()). It follows that
there exists w € B.(y) such that f(w) = v. Note that B.(y) € U therefore w € B, (y} implies
w € U and so v € f~HU) as w € U has f(w) = v. We have shown that an arbitrary element in
FHBAyY) is also in f7HU) hence f~H{B(y)) © F-HU).

(<) Assume that f71({/} is open in dom(f) for each open set U7 € B™. Let a € dom(f). Assume
¢ > (0 and note that B.(f(a)) is an open seb in R™ therefore f1(B(f{a))) is open in dom([).
Note a € f~1(B(f(a)) since f{u) € B (f{u)). Thus e is a point in the open set f~1{B.(f(a)))
so there exists a § > 0 such that Bs{a) C 1B (f(«)) C dom(f). Suppose that r € Bs{a) note
that Bs(a) C f~YHB.(f(n))) hence x € f~HB.(f(a))). It follows that there exists y € B.{f(a))
sich that f{x) = y thus {|f(x) — f(a)|] < e. Thus, lm,, f(2) = f(a) for each « € dom(f) and we
conclude that f is continuous. [

Definition 3.3.2.

A mapping 5 from N to R" is called a sequence and we usually denate S(n) = 5, for all
n € N. If {a,}52, is a sequence then we say liny,oe a, = L iff for each ¢ > 0 there exists
N € N such that for all n > N we have |la,, — L|| < ¢

A sequence of vectors is not so different than a sequence of numbers. A sequence in R™ is just a list
of vectors instead of a list of numbers and our concept of distance is provided by the norm rather
than the absolute value function.

Example 3.3.3. . .
] -
o, = < % ’ "‘An'(n)? 3>
On > <o, I 3 as  Vte——s o0

+

\/ou\ ton  calodate thae ll\fv\.'t)r o‘p a veetor — valued S'Q%AAM\UZ
b-—a 'h.k.\'ng | twaike of Ahe umpdneu—i’o S'e.g\;ue,ncm )

Definition 3.3.4.

A set € C R™ is said to be compact iff every sequence of points in C contains a convergent
subsegence in ' which converges to a point in C

The Bolzano-Weiierstrauss theorem says that every closed interval is compact. It’s not hard to
see that every closed ball in R™ is compact. | now collect the interesting results from pg. 52 of
Fdwards' text: note that to say a set is bounded simply means that it is possible to surround the
whole set with some sufficiently large open ball.
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Proposition 3.3.5.

1. Compact subsets of R" are closed and bounded.

2. Closed subsets of a compact set are compact.

U]

. The cartesian product of compact sets gives a compact set.

4. A subset of R is compact iff it is closed and bounded.

The proof in Edwards is very understandable and the idea of a compact set is really encapsulated
by item (4.).

Proposition 3.3.6.

[Let C be a compact subset of R" and f : dom(f) — B™ a continuous mapping with |
C C dom(f}, it follows that f(C) is a compact subset of R™.

The proposition above simply says that the continuous image of compact sets is compact. We
finally come fo the real reason I am mentioning these topological theorems in this course.

Proposition 3.3.7.

If D is a compact set in B™ and f : D -+ R is a continuous function then f attains a minimum
and maximum value on D. In other words, there exist at least two points a,b € D such
that f{a) < f(z) < f(b) for all x € D.

Since a closed ball is bounded we have that it is compact and the theorem above tells us that if
we take any continuous function then the image of a closed ball under the continuous function
will have absclute extreme values relative to the closed ball. This result is important to our later
efforts to locate min/max values for functions of several variables. The idea will be that we can
approximate the function locally by a quadratic form and the local extreme values will be found
by evaluating the quadratic form over the unit-n-sphere.

Definition 3.3.8.

Let f: U CRE" = B be a mapping. We say f is uniformly continuous ifl for each e > 0
there exists a 6 > 0 such that =,y € U with ||z — y|| < § we find [|f(x) — f(¥)l] <e.

Proposition 3.3.9.

lIf f:C — R is a continuous mapping and ' is compact then f is uniformly continuous.

The Heine-Borel theorem gives a topological refinement of the definition of compactness we gave
earlier in this section. Our definition is equivalent to the following: a compact set is a set for
which every open cover has a finite subcover. An open cover of a set is simply a family
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of open sets whose unions cover the given set. Theorem 8.10 in Edwards states that if we have a
sequence of nested subset in R™ which contains a compact set:

VicVeCVyC... where CcUVn
n=1

then if we go far enough out in the sequence we'll be able to find Vy such that ¢ C V. In other
words, we can find a finite cover for C'. The finite-cover definition is prefered in the abstract setting
because it makes no reference to the norm or distance function. In graduate topology you’ll learn
how to think about open sets and continuity without reference to a norm or distance function. Of
course it's better to use the norm and distance function in this course because not using it would
just resuit in a silly needless abstraction which made all the geometry opaque. We have an idea of
distance and we're going to use it in this course.

3.4 continuous surfaces

We are often interested in a subset of R™. A particular subset may be a set of points, a curve, a
two-dimensional surface, or generally a p-dimensional surface for p < m. There are more patho-
logical subsets in general, you might have a subset which is one-dimensional in one sector and
two-dimensional in another; for example, § = ({0} x R)U B1(0) C R2. What dimensionality would

you ascribe to 87 I give the following defintion to help refine our idea of a p-dimensional continuous
surface inside R™.

Definition 3.4.1.

Let § € B™. We say S is continuous surface of dimension p iff there exists a finite
covering of 5 say Ufmi V; = § such that V; = ®;(U;) for a continuous bijection @; : U; - V;
with continuous inverse and {/; homeomorphic to B? for all ¢ = 1,2,...,k We define
homeomorphic to B? to mean that there exisis a continuous bijection with continuous
inverse from U; to B?. In addition, we insist that on the intersections V3 NV, # 0 the
mappings $;, &) are continuously compatible. If V; NV} # # then the mappings ®;, Oy
are sald to be continuously compatible iff (I)J"-“l o @, iz continuous when restricted to
(I),‘Tl(\/} A V,). Finally we say two subsets IV C R™ and W C RB™ are homeomorphic iff
there exists a continuous bijection from V to W and we write V = W in this case,

You might expect we could just use bijectivity to define dimension of a subset but there are
some very strange constructions that forbid such simple thinking. For example, Cantor showed
that there is one-one mapping of R onto [0,1] x [0, 1]-the unit square. The existence of such a
mapping prompts us to state that R and R? share the same cardnality. The concept of cardnality
ignores dimensionality, it purely focuses on the more basic set-theoretic nature of a given set.
Cardnality® ignores the difference between R and R". Later Netto showed that such mappings
were not continuous. So, you might be tempted to say that a p-dimensional surface is a continuous

31 have an introductory chapter on this topic in my math 200 notes
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image of RP. However, in 1890 Peano was able to construct a (I!!} continuous mapping of the unit-
interval {0, 1] onto the unit square [0, 1] % [0,1]. Peano’s construction was not a one-one mapping.
You can gather from these results that we need both bijectivity and continuity to capture our usual
idea of dimensionality. The curves that Cantor and Peano constructed are called space filling
curves. You might look in Han Sagan’s text Space Filling Curves if you’d like to see more on this
topic.

Example 3.4.2. Lines are one-dimensional surfaces. A line in B™ with direction v # 0 € ™
passing through a € R™ has the form L, = {a +tv | t € R}. Note F(i) = a+ tv is a continuous
mapping from B into BR™. In this silly caose we have Uy = R and & = Id so clearly D, is a
continuous bijection and the image F(R) = Ly is a continuous one-dimensional surface.

Example 3.4.3. A plane Pin B™ with point a € R™ containing linearly independent vectors
i, " € R™ has the form P = {a + s@ + 7 | (s,t) € R®}. Notice that F(s,t) = a -+ si + tif provides
@ continuous bijection from R? to P hence P is a two-dimensional continuous surface in R™.

Example 3.4.4. Suppose that L : R" — R™ is a linear transformation. I claim that range(L) <
R™ is a continuous surface of dimension rank{L). If the mairiz of L is A then the dimension of
the surface L{R) is precisely the number of linearly independent colurmn vectors.

All the examples thus far were examples of flat surfaces. Usually curved surfaces require more
attention.

Example 3.4.5. The open ball of radius one in R™ centered at the origin is homeomorphic to
I&™. To prove this assertion we need to provide a continuous bijection with continuous inverse from
B1{0) to R™. A moments thought suggests

x ol _
&(z) = ¢ llell tan == x € Bi(0) such that z # 0

0 T = {}
might work. The idea is that the point z € B1(0) maps o the point which lies along the same

ray eminating from the origin but a distance tan% along the ray. Note thet as ||z]] = 1 we

find tan# — oa. This map takes the unit-boll and stretches it to cover R™. It is clear that

® is continuous since each component function of ® is the product and composite of continuous
functions. It is clear that ®(x) = 0 iff x = 0. Thus, te prove 1 — 1 suppose that ®(z) = D(y) for
z,y € B1(0) such that x,y # 0. It follows that ||D(z)|| = {|P(y)||. Hence,

B 1l I 7]
tan 5 = tan 5

F4

But =,y € B1(0) thus ||z||,|iy]]| < 1 so we find 0 < ﬂglﬂ—l,% < 5. Tangent is one-one on
the open interval (0,7/2) hence ﬂgﬂ-l = ﬂ—lgili therefore ||z|| = |lyl]. Consider the vector eguation
®(z) = ®{y), replace ||y|| with ||z}| since we proved they're equal,

z owlell _y 7l

— tan = tan
(] 2 |f|] 2
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multiply both sides by the nonzero quantity ||z||/ tan % to find x = y. We have shown that @ is
injective. The inverse mapping is given by

~Liyy = 2tan‘1(||'u}|) 7
e (]

for v € R™ such that v # 0 and ®1(0) = 0. This map takes the vector v and compresses il into the
unit-ball. Notice that the vector length approaches infinitity the inverse maps closer und closer to
the boundary of the ball as the inverse tangent tends to 7/2 as its input tends to infinity. I invite
the reader to verify that this is indeed the inverse of ®, you need to show that ®(®(v) = v for all
v & R® and @Y ®(z)} = = for all z € B1{0).

Remark 3.4.6.

which define a continuous surface. You could call the &; continuous patches if you wish.
A smooth surface will be defined in terms of smooth patches or perhaps in terms of the
inverse maps ® U.which are called coordinate maps. We need to define a few ideas about
differentiability before we can give the definifion for a smooth surface. In fact the concept
of a surface and the deflinition of the derivative in some sense are inseparable. For this
reagon I have begun the discussion of surfaces in this chapter.

I assume that the closed unit-ball B(0) is homeomorphic to B? in the example below. I leave it to
the reader supply proof of that claim.

Example 3.4.7. I claim that the unit-two-sphere §% is a two-dimensional continuous surface in
R3. We define

2= 9B1(0) = {(z,y,2) € R¥ | ¥ + 3 + 2° = 1}

We can write §° = §T U S~ where we define the upper hemisphere St and the lower hemisphere
ST in the usual manner:

St ={{z,y,2) €8% | z2>0} 8§ ={(z,y,2) € 5% | z<0}
The eguator 15 at the intersection,
E=8"n8" ={{z,y,2) € §%|z =0} = §' x {0}
Define mappings Oy, : m C R? = S* as follows:
Byp(z,y) = (2 y £V/1-27—42)
where (z,y) € B2 such that ° + y* < 1. I claim the inverse mappings are

@;1(.'19,3;,2) = ( T, Y )

The example above gives us license to use open balls as the domains for the mappings|
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for all (z,y,z) € 8. Let’s check to see if my claim is correct in the (+) case. Let (z,y,z) € ST,
q)+((b;1($!y1 Z)) = (I)_;_(.’L','y) = ( T, ¥ v 1—a?— y2 ) = (.’lﬁ,y,z)

since (z,v,2) € ST implies z = /1 ~x?~y*>. The (-) case is similar. Likewise let (z,y) €
B1(0) ¢ R? and calculate

(ﬁ:l(@“(m!yn = (I):l( Ty Y, — WV 1 —a? ___yg ) == ('r‘—'r':-y)

It follows that ©.. are bijections and it is clear from their formulas that they are continuous map-
pings. We should check if these are compatible patches. Consider the mapping QD;I od_ . A typical
point in the ®”Y(E) should have the form (z,y) € §1 which means x> + y* = 1, consider then

(@31 = @Yz, y) = 23w,y —v/1 — 22 —y?) = (2,y)

thus <I>;I o _ is5 the identily mapping which is continuous. We find that the two-sphere is a con-
tinuous two-dimensional surface.

Example 3.4.8. Let U be homeomorphic to RP. The image of a continvous mapping F : U7 - R™
is @ p-dimensional continuous surfece in B™. In this case compatibility is trivially satisfied.

Remark 3.4.9.

A p-dimensional surface is locally modeled by RP. You can imagine pasting p-space over the
surface. Bijectivity and continuity insure that the pasting is not pathological as in Cantors’
bijective mapping of [0, 1] onto R" or Peano’s continuous mapping of [0, 1] ento [0, 1] % {0, 1}
In a later chapter we'll add the criteria of differentiability of the mapping. This will make
the pasting keep from getting crinkled up at a point. TFor example, a cone is a continuous
surface however it is not a smooth surface due to the point of the cone




