Chapter 4

geometry of curves

¥ the curve is assigned a sense of direction then we call it an oriented curve. A particular curve
can be parametrized by many different paths. You can think of a parametrization of a curve as a
process of pasting a Hexible numberline onto the curve.

Definition 4.0.10.

Let €' ¢ B™ be an oriented curve which starts at P and ends at Q. We say that + : [a, b] —
R" is a smooth non-stop parametrization of C' if y([a,b]) = C, y(a) = P, v(b) = Q,
and v is smooth with +/(¢) # 0 for all ¢ € [a,b]. We will typically call v a path from P to
(7 which covers the curve C.

I have limited the definition to curves with endpoints however the definition for curves which go
on without end is very similar. You can just drop one or both of the endpoint conditions.

4.1 arclength
Let’s begin by analyzing the tangent vector to a path in three dimensional space. Denote 7 =
(%, y,2) where z,y, z € C*®([q, b], R) and calculate that

) = 1 o e dy i
YO =g =<Gd @ >

Multiplying by dt yields
d . dy dz
Y (t)dt = Gdt =< %&, L 42 > gy

The arclength ds subtended from time t to time ¢ + di is simply the length of the vector ~/(t)dt
which yields,

ds = ||y (t)dt]| = /&~ + 4" 4 £74t

You can think of this as the length of a tiny bit of string that is laid out along the curve from
the point y(¢) to the point «(t + dt). Of course this infinitesimal notation is just shorthand for an
explicit limiting processes. If we sum together all the little bits of arclength we will arrive at the
total arclength of the curve. In fact, this is how we define the arclength of a curve. The preceding
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discussion was in 3 dimensions but the formulas stated in terms of the norm generalizes naturally
to R™.

Definition 4.1.1.

Let =y : [a,b] = R™ be a smooth, non-stop path which covers the oriented curve C. The
arclength function of v is a function s : [a,b] — R where

"t
5= [ Il

for each t € [a,b]. If 4 is a smooth non-stop path such that ||3/(¢)|| = 1 then we say that %
is a unit-speed curve. Moreover, we say 7 is parametrized with respect to arclength.

The arclength function has many special properties. Notice that item (1.) below is actually just
the statement that the speed is the magnitude of the velocity vector.

Proposition 4.1.2.

Let v : [a,b] = R™ be a smooth, non-stop path which covers the oriented curve . The
arclength function of v denoted by sy : [a,b] ~+ R has the following properties:

L g (sy(w)) = ||7 (w)|| %2,
2. L2 5 0 for all t € (a,b),
3. sy is a 1-1 function,

4. sy has inverse s> : s5y([e,0]) = [a, b].

Proof: We begin with (1.). We apply the fundamental theorem of calculus:

dit

d oo d Y T,
syt = G [ Il = 11 ()l 5

for all w € (a,b). For (2.), set w = ¢ and recall that ||[7/'(¢)|]| = 0 il v/(#) = 0 however we were
given that «+ is non-stop so +'(¢) # 0. We find dd% > 0 for all £ € (a,0) and consequently the
arclength function is an increasing function on (a,b). For (3.), suppose (towards a contradiction)

that s, {x) = s4(y) where a < z < y < b. Note that v smooth implies s, is differentiable with

- continuous derivative on-(a,b)-therefore-the mean value theorem applies -and-we-can-deduce that-— - - o

there is some point on ¢ € (2, y) such that ‘s’w(c) = 0, which is impossible, therefore (3.) follows. If
a function is 1-1 then we can construct the inverse pointwise by simply going backwards for each
point mapped to in the range; &7 Yiz) = y iff s5,{y) = x. The fact that s, is single-valued follows
from (3.}. O
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If we are given a curve C covered by a path + (which is smooth and non-stop but may not be
unit-speed) then we can reparametrize the curve C with a unit-speed path ¥ as follows:

F{(s) = v(s7(s))

where s ! is the inverse of the arclength function.

Proposition 4.1.3.

If v is a smooth non-stop path then the path ¥ defined by 5(s) =y(s5 1(s)} is unit-speed.

Proof: Differentiate %(¢) with respect to ¢, we use the chain-rule,
e d o — (g d i -
F(1) = (s () = 7 (577 () L (57 (1),

Hence #/(2) = +'(s3! ))dr {s71(t)). Recall that if a function is increasing on an interval then its
inverse is IlI\LWhQ mcwamng hence, by (2.} of the previous proposition, we can pull the positive
constant, 4 r('” L)) out of the norni. We find, using item (1.) in the previous proposition,

| @1 = 1 (55 MG (57 H(0)) = sy (s7H1)) = () = 1.

Therefore, the curve % is unit-speed. We have ds/dt = 1 when ¢ = s (this last sentence is simply a
sumimary of the careful argument we just concluded). O

Remark 4.1.4.

While there are many paths which cover a particular oriented curve the unit-speed path is
unique and we'll see that formulas for unit-speed curves are particularly simple.

Example 4.1.5.

Vet = (Ret, 3, Reaxy £ t=0, R20
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4.2 vector fields along a path

Definition 4.2.1.

Let C C RY be an oriented curve which starts at P and ends at Q. A vector field along
the curve C is a function from ¢ — V3. You can visualize this as attaching a vector to
each point on C.

The tangent (T), normal(N) and binormal (B) vector fields defined below will allow us to identify
when two oriented curves have the same shape.

Example 4.2.2. N
Fo)
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Definition 4.2.3.

Let v : {a,b] = B® be a path from P to @ in R®, The tangent vector field of ~ is a
mapping T [a, b —+ V3 defined by

1
|l @)l

for each ¢ € la, b]. Likewise, if T'(¢) # 0 for all t € [a,b] then the normal vector field of
7 is a mapping N : [a,b] ~» V3 defined by

T(t) =

¥ (#)

1
@)l

for each ¢ € [o, b]. Finaily, if T7'(t) # 0 for all t € {a,b] then the binormal vector field of
7 is defined by B(t) = T(t) x N(¢) for all ¢ € [a,b]

N{t) = 7 T'()

_Example 4.2.4. Let R > 0 and suppose y(t) = (Rcos(t), Bsin(i),0) for 0 <t < 2r. Weean

calculate
+'(t) =< —Rsin(t}, Reos(t),0 > = Yl =R

Hence T(t) =< —sin{t), cos(t),0 > and we can calculate,

T'(t) =< —cos(t), —sin(t),0 > = ||[T'®)]i=1.
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Thus N(t) =< —cos(t), —sin(t),0 >. Finally we calculate the binormal vector field,

B(t) =T(t) x N(t) = [~sin(t)e; + cos(t)ea] x [— cos(t)e; — sin(t)eq]
= [sin®(t)e; x ep — cos?(t)es X e;
= [sin®(t) + cos®(t)]e; X en
=e3;=<0,0,1>

Notice that T- N = N - B =T - B = 0. For a particular value of t the vectors {T(t), N(t), B(t)}
give an orthogonal set of unit vectors, they provide ¢ comouving frame for ~. It can be shown that
the tongent and normal vectors span the plane in which the path travels for times infintesimally
close to t. This plane is called the osculating plane. The binormal vector gives the normal to the
osculating plane. The curve considered in this example hos a rather boring osculating plane since
B is constant. This curve is just a circle in the ry-plane which is traversed ol constant speed.
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Example 4.2.5. Notice that s(t) = Rt in the preceding ezample. It follows that
¥(s) = (Rcos(s/R), Rsin(s/R),0) for 0 < s < 2w R is the unit-speed path for curve.
We can calculate

¥ (s) =< —sin(s/R),cos(s/R),0 > = [[¥(s)|| =1

Hence T(s) =< —sin(s/R),cos(s/R),0 > and we can also calculate,
T'(s) = + < —cos(s/R), —sin{s/R),0 > = 1T @®)|] = 1/R.
Thus N(s) =< — cos(s/R), —sin{s/R),0 >. Note B=T x N =< 0,0,1> as before.

Example 4.2.6. Let m, R > 0 and suppose v(t) = (Rcos(t), Rsin(t),mt) for 0 <t < 2w, We can
calculate

v'(t} =< —Rsin(t), Reos(t),m > = ||7'(¢)|| = vV R? + m2.

Hence T(t) = \/}_IELW < —Rsin{t), Rcos(t),m > and we can calculate,

Thus N(t) =< — cos(t), —sin(t),0 >. Finally we calculate the binormal vector field,

B{t)=T{(t)x N(t) = JJ;W{_R sin(t)e; -+ R cos(t)en -+ meg] % [~ cos(t)e; — sin(t)es]
= —\/ﬁ < msin(t), —-mcos(t), B >
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We again observe that T-N =N -B =1T-B = 0. The osculating plane is moving for this curve,
note the t-dependence. This curve does not stay in a single plane, it is not a planor curve. In fact
this is a circular heliz with radius R and slope m. 4
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Example 4.2.7. Lets reparametrize the heliz as a unit-speed path. Notice that 5,(t) = tv R? 4+ m?
thus we should replace t with s/v R? +m? to obtein 5(s). Let a = 1/vR2 +m? and
¥(s) = (R cos(as), Rsin{as),ams) for 0 < s < 27V RE2 + m?. We can calculate

[P

¥'(s) =< —Rasin(as), Racos(as),am > = |[F(s)||=aVR2+m2=1.

Hence T(s) = a < —Rsin(as), Rcos(as), m > and we can calculate,

T'(s) = Ra® < —cos(as), —sin(as),0 > = ||T'(s)|| = Re® = yorrems

Thus N(s) =< —cos(as), —sin(as), 0 >. Nezt, calculate the binormal vector field,

B(s)=T(s)x N(s) =a<—R sin(as), K cos(as), m > x < —cos{as), —sin(as),0 >

= \/Rzlmg < msin(as), —mcos(as), R >

Hopefully you can start to see that the unit-speed path shares the same T, N, B frame at arclength
s as the previous example with t = s/ R? + m?.

4.3 Frenet Serret equations

We now prepare to prove the Frenet Serret formulas for the T, N, B frame fields. It turns out that
for nonlinear curves the T, N, B vector fields always provide an orthonormal frame. Moreover, for
nonlinear curves, we'll see that the torsion and curvature capture the geometry of the curve.
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Proposition 4.3.1.

If v is a path with tangent, normal and binormal vector fields T,N and B then
{T'(t), N(t), B(t)} is an orthonormal set of vectors for each t € dom(-y).

Proof: It is clear from B(t) = T(t) x N(t) that T(t) - B{t) = N{t) - B(t) = 0. Furthermore, it is
also clear that these vectors have length one due to their construction as unit vectors. In particular
this means that T'(¢) - T(t) = 1. We can diflerentiate this to obtain { by the product rule for
dot-products)

T - TE)+TE)-T'(y=0 = 27 -T'(t) =0

Divide by ||77(£)!| to obtain T'(¢) - N(¢) = 0. [

We omit the explicit #-dependence for the dicussion to follow here, also you should assume the
vector fields are all derived from a particular path v. Since T, N, B are nonzero and point in three
mutually distinct directions it follows that any other vector can be written as a linear combination
of T,N,B. This means! if v € V3 then there exist ¢, ¢, cs such that v = ;T + caN + c3B.
The orthonormality is very nice because it tells us we can calculate the coefficients in terms of
dot-products with T, N and B:

v=cT4+eaN+tesB = cg=v- T, co=v-N,c3=v-B

We will make much use of the observations above in the calculations that follow. Suppose that

T =1 T+ e1a N -+ c13B

N = CQIT + CQQN -4~ ngB

B = C31T -+ ngN + 633B.
We observed previously that 7”7 - T = 0 thus ¢;; = 0. 1t is easy to show N'- N =0 and B'- B =0
thus co2 = 0 and c33. Furthermore, we defined N = WI:E—,”T’ hence ¢33 = 0. Note that

T = c1aN = %TI = Cl9 = ”T’]l

To summarize what we've learned so far:

T = ClzN
N' = C21T + Cg3B
B = cs1 L+ ega N,

We'd like to find some condition on the remaining coefficients. Consider that:

B =T'xN+TxN a product rule

B=TxN =
= B =[c1aN]| X N+ T X [enT + co3B] using previous eqn.
B T
= B = —gyN you can show N =8B x T
= cg1T +egalN = —coaN refer to previous eqn.
= c3; = 0 and €32 = —co3. using LI of {T', N}

You might recognize [v]p = [e1, ¢2, c3]T as the coordinate vector with respect to the basis g = {T, N, B}
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We have reduced the initial set of equations to the following:

T = 612N
N' = Cng + C23B
B’ = —ngN.

The equations above encourage us to define the eurvature and torsion as follows:

Definition 4.3.2.

Let ' be a curve which is covered by the unit-speed path 5 then we define the curvature &
and torsion 7 as follows:

dT dB -
o(8) = ||=Z = e« N{g
W)= ||| == Nes)
One of your homework questions is to show that ca) = —ey5. Given the result you will prove in the
homework we find the famous Frenet-Serret equations:
%ﬂﬁﬁ %:—Hf-l-‘rﬁ ‘é—fz—’rﬁ.

We had to use the arclength parameterization to insure that the formulas above unambiguously
define the curvature and the torsion. In fact, if we take a particular (unoriented) curve then there
are two choices for orienting the curve. You can show that that the torsion and curvature are
independent of the choice of orientation. Naturally the total arclength is also independent of the
orientation of a given curve.

Curvature, torsion can also be calculated in terms of a path which is not unit speed. We simply
replace s with the arclength function s,(f) and make use of the chain rule. Notice that dF/dt =
(ds/dt}{dF/ds) hence,

dT _ dsdl dN _ dsdN dB _

dt T dtds’ dt  dids' dt
Or if you prefer, use the dot-notation ds/di = § to write:

(&

ds
di

£

8

14T _ df 1dN _ dN 1dB _ dB

5dt  ds' §dt T ds' §dt  ds

Substituting these into the unit-speed Frenet Serret formulas yield:

df _ 4, aN _ i : a8 _ _;
SF = 8kN o = skl + 878 = sTN.

-where--f(s;f(t)): T{(t); ]’\?(Slr(t)) =N(t) and E(sn,(t)) =-B(t).-Likewise deduce® that— - - = o e

dar

w(t) = 3|5

§

1) = —% (%‘? - N(t))

*I'm using the somewhat ambiguous notation x(t) = x(s,(t)) and 7(¢) = 7{s,(t)). We do this often in applications
of calculus. Ask me if you'd like further clarification on this point.
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4.4 curvature, torsion and the osculating plane

In the preceding section we saw how the calculus and linear algebra suggest we define curvature
and torsion. We now stop to analyze the geometric meaning of those definitions.

4.4.1 curvature

Let use begin with the curvature. Assume -y is a non-stop smooth path,

dT
dt
Infinitesimally this equation gives ||dT|| = kédt = x%dt = xds. But this is a strange equation
since ||T']| = 1. So what does this mean? Perhaps we should add some more detail to resolve this
puzzle; let dT = T(t + dt) — T(t).
T <]

. ; . B _ -
m}wﬁﬁ(ﬁﬂ) T(M) 4T = T(e+dk) - T (@)

Notice that
[T\ = [T(t+dt) — T(t)] - [T(t + dt) — T(2)]
=T(t+dt)-TE+dt)y+T(t) T(t) —2T(t) - T{t + dt)
=T(t+dt)- Tt +dt)y+T(t) T(t)—27T(¢) - T{t + dt)
= 2(1 - cos(¢)))

where we define ¢ to be the angle between T(t) and T'(t + dt). This angle measures the change
in direction of the tangent vector at ¢ goes to ¢ -+ df. Since this is a small change in time it is
reasonable to expect the angle ¢ is small thus cos{¢) = 1 — %gbz and we find that

14T1| = v/2(1 — cos(@) = /2(1 — 1 + 3¢?) = /¢ = |¢)|

Therefore, ||dT|| = xds = |¢| and we find |k = id— '

dep

Remark 4.4.1.

to the curve. We say the the reciprocal of the curvature is the radius of curvature r = %

'This makes sense as ds = |1/xk|d@ suggests that a circle of radius 1/x fits snuggly against
the path at time . We form the osculating circle at each point along the path by
placing a circle of radius 1/x tangent to the unit-tangent vector in the plane
with normal B(t). We probably should draw a picture of this. -

-+ The-eurvature-measures-the-infinitesimal-change-in the-direction-of-the-unit-tangent-vector |- - -



62 CHAPTER 4. GEOMETRY OF CURVES

4.4.2 osculating plane and circle

It was claimed that the "infinitesimal” motion of the path resides in a plane with normal B. Suppose
that at some time ¢, the path reaches the point v(t,) = F,. Infinitesimally the tangent line matches
the path and we can write the parametric equation for the tangent line as follows:

1{t) = v(to) + ty'(to) = P, + tu, 1)

where we used that +/(¢) = §T(¢t) and we evaluated at t = %, to define 4(t,) = v, and T(¢,) = Tp.
The normal line through P, has parametric equations (using N, = N(t,)):

n(X) = B, + AN,

We learned in the last section that the path bends away from the tangent line along a circle whose
radius is 1/k,. We find the infinitesimal motion resides in the plane spanned by 7, and N, which
has normal T}, x N, = B(t,). The tangent line and the normal line are perpendicular and could be
thought of as a zy-coordinate axes in the osculating plane. The osculating circle is found with its
center on the normal line a distance of 1/&, from P,. Thus the center of the circle is at:

Qa:Po_“,"};No

T'll think of constructing z,y, 2z coordinates based at P, with respect to the T,, N,, B, frame. We
suppose 7 be a point on the osculating circle and z,y, z to be the coefficients in ¥ = P, + 2T, +
yN, + zB,. Since the circle is in the plane based at P, with normal B, we should set z = 0 for our
circle thus ¥ = 27 + yN.

17~ Qollf =& = 2T+ y+ SINJIP = &
Therefore, by the pythagorean theorem for orthogonal vectors, the x,y, z equations for the oscu-
lating circle are simply® :

b
30f course if we already use x, v, z in a dilferent context then we should use other symbals for the equation of the
osculating circle.
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Finally, notice that if the torsion is zero then the Frenet Serret formulas simplify to:

dT _ AN _ dB _
T = selN S = —8rT = 0.

we see that B is a constant vector field and motion will remain in the osculating plane. The change
in the normal vector causes a change in the tangent vector and vice-versa however the binormal
vector is not coupled to T or N.

Remark 4.4.2,

The torsion measures the infinitesimal change in the direction of the binormal vector relative
to the normal vector of the curve. Because the normal vector is in the planr- of infinitesimal
motion and the binormal is perpendicular to that plane we can say that the torsion measures
how the path lifts or twists up off the plane of infinitesimal motion. Furthermore, we can
expect path which is trapped in a particular plane (these are called planar curves) will
have torsion which is identically zero. We should also expect that the torsion for something
like a helix will be nonzero everywhere since the motion is always twisting up off the plane
of infinitesimal motion. It is probable you will examine these questions in your homework.

4.5 acceleration and velocity

Let's see how the preceding section is useful in the analysis of the motion of physical objects. In the
study of dynamics or the physics of motion the critical objects of interest are the position, velocity
and acceleration vectors. Once a force is supplied we can in principle solve Newton’s Second Law
F = mA and find the equation of motion ¥ = #(t). Moreover, since the map ¢ — 7(¢) is a path
we can analyze the velocity and acceleration in terms of the Frenet Frame {T, N, B}. To keep it
interesting we'll assume the motion is non-stop and smooth so that the analysis of the last section
applies.

{for now the next two pages are stolen from a course I took from Dr. R.Q. Fulp some years
back)
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4.6 Keplers’ laws of planetary motion
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4.6. KEPLERS’' LAWS OF PLANETARY MOTION
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