Chapter 5

Euclidean structures and physics

Although much was known about the physical world prior to Newton that lnowledge was highly
unorganized and formulated in such a way that is was difficult to use and understand!. The advent
of Newton changed all that. In 1665-1666 Newton transformed the way people thought about
the physical world, years later he published his many ideas in ”Principia mathematica philosphiae
naturalia” (1686). His contribution was to formulate three basic laws or principles which along
with his universal law of gravitation would prove sufficient to derive and explain all mechanical
systems both on earth and in the heavens known at the time. These basic laws may be stated as
follows:

1. Newton’s First Law: Every particle persists in its state of rest or of uniform
motion in a straight line unless it is compelled to change that state by impressed forces.

2. Newton’s Second Law: The rate of change of motion is proportional to the
motive force impressed; and is made in the direction of the straight line in which that
force is impressed.

3. Newton’s Third Law: To every action there is an equal reaction; or the mu-
tual actions of two bodies upon each other are always equal but oppositely directed.

Until the early part of the last century Newton’s laws proved adeguate. We now know, however
that they are only accurate within prescribed limits. They do not apply for things that are very
small like an atom or for things that are very fast like cosmic rays or light itself. Nevertheless
Newton’s laws are valid for the majority of our common macroscopic experiences in everyday life.

%What follows is borrowed from Chapter 6 of my Mathematical Models in Physics notes which is turn borrowed
from my advisor Dr. R.O. Fulp’s notes [or Math 430 at NCSU. I probably will not cover all of this in lecture but I
thought 1t might be interesting to those of you who are more physically minded. I have repeated some mathematical
definitions in this chapter in the interest of making this chapter more readable. This chapter gives you an example
of the practice of Mathematical Physics. One common idea in Mathematical Physics is to take known physics and
reformulate it in a proper mathematical context. Physicists don’t tend to care aboui domains or existence so if we
are to understand their calculations then we need to do some work in most cases.
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74 CHAPTER 5. EUCLIDEAN STRUCTURES AND PHYSICS

It is implicitly presumed in the formulation of Newton’s laws that we have a concept of a straight
line, of uniform motion, of force and the like. Newton realized that Euclidean geometry was a
necessity in his model of the physical world. In a more critical formulation of Newtonian mechanics
one must address the issues imphlicit in the above formulation of Newton’s laws. This is what
we attempt in this chapter, we seek to craft a mathematically rigorous systematic statement of
Newtonian mechanics.

5.1 Euclidean geometry

Note: we abandon the more careful notation of the previous chapters in what follows.
In a nutshell we are setting R® = V3, this is usually done in physics. We can identify
a given point with a vector that eminates from the origin to the point in question. It
will be clear from the context if a point or a vector is intended.

Nowadays Euclidean geometry is imposed on a vector space via an inner product structure. Let
T1,T2, T3, Y1, Y2, ¥3. € € R. As we discussed R? is the set of 3-tuples and it is a vector space with
respect to the operations,

(w1, T2, 23) + (Y1, Y2, ¥3) = (T1 + y1, 22 + Y2, 33 + y3)

c(z, z2,x3) = (cxy, cxg, cT3)

where x1, T2, T3, Y1, Y2, ¥3,¢ € R. Also we have the dot-product,
(z1, 22, %3) (Y1, ¥2,¥3) = T191 + Tt + z3y3

from which the length of a vector & = (x1, 22, 23) € R® can be calculated,
2| =V -z = /2] + 25 + a3
meaning |z|? = z - z. Also if 2,5 € R? are nonzero vectors then the angle between them is defined

by the formula,
g:COS_l(:ﬂ.y)
|yl

In particular nonzero vectors x and y are perpendicular or orthogonal iff 8 = 90° which is so iff
cos(f) = 0 which is turn true if z -y = 0.

Definition 5.1.1.

A function L : B? —+ B3 is said to be a linear transformation if and only if there is a
3 x 3 matrix A such that L(z) = Az for all z € B3, Here Az indicates multiplication by
the matrix A on the column vector x
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Definition 5.1.2.

An orthogonal transformation is a linear transformation £, : B? — R* which satisfies
L{z) L{y) =z -y

for all z,y € R®. Such a transformation is also called an linear isometry of the Buclidean
metric.

The term isometry means the same measure, you can see why that’s appropriate from the following,
|L(@)]? = L(z) - L{z) = 2 - = = |z’

for all & € R®. Taking the square root of both sides yields |L(z)| = |z}; an orthogonal transformation
preserves the lengths of vectors in R? Using what we just learned its easy to show orthogonal
transformations preserve angles as well,

_ L@ Iy _ sy

|L() L) [zlly]
Hence taking the inverse cosine of each side reveals that the angle ; between L(z) and L{y) is
equal to the angle § between z and y; #; = . Orthogonal transformations preserve angles.

Definition 5.1.3.

cos{fr)

= cos(6)

We say [ € R? is a line if there exist ,v € R? such that

l={aeR™" lz=a+1lv, € R}

Proposition 5.1.4.

If L is an orthonormal transformation then L(l) is also a line in R3.

To prove this we simply need to find new o’ and »' in R* to demonstrate that L(l) is a line. Take
a point on the line, z €1 :
L(z) = L(a+tv)
= L(a) +tL(v)
thus L(z) is on a line described by = = L(a} + tL(v), so we can choose o’ = L(e) and v' = L{v) it
turns out; L(l) = {z e R? | z = &’ + t'}.

(5.1)

If one has a coordinate system with unit vectors z, 7, k along three mutually orthogonal axes then an
orthogonal transformation will create three new mutually orthogonal unit vectors L(i) = 2, L(j) =
_'}",L(!E) = k' upon which one could lay out new coordinate axes. In this way orthogonal transfor-
mations give us a way of constructing new "rotated” coordinate systems from a given coordinate
system. Moreover, it turns out that Newton's laws are preserved ( have the same form ) under
orthogonal transformations. Transformations which are not orthogonal can greatly distort the form
of Newton’s laws.
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Remark 5.1.5.

If we view vectors in B® as column vectors then the dot-product of z with y can be written

as z -y = 'y for all 2, € B3, Recall that =7 is the transpose of z, it changes the column

vector x to the corresponding row vector xT.

Let us consider an orthogonal transformation L : R® — R® where L(z) = Az. What condition on
the matrix A follows from the the L being an orthogonal transformation ?

L(z)-Lly)=z-y = (Az)"(4y) =ay
= 2T (AT Ay ==zTy
= 2T(AT Ay = =TIy
= 2T(ATA - Iy =0.

(5.2)

But T (ATA—~ Iy =0 for all z,y € R® if ATA—T =0 or ATA=1. Thus L is orthogonal iff its
matrix A satisfies AT A = I. This is in turn equivalent to A having an inverse and A~ = AT.

Proposition 5.1.6.

The set of orthogonal transformations on B3 is denoted ((3). The operation of function
composition on O(3) makes it a group. Likewise we also denote the set of all orthogonal
matrices by O(3), PR '

: OB)={AchR¥™ | ATA=1}

it is also a group under matrix multiplication.

Usually we will mean the matrix version, it should be clear from the context, it's really just a
question of notation since we know that I and A contain the same information thanks to linear
algebra. Recall that every linear transformation L on a finite dimensional vector space can be
represented by matrix multiplication of some matrix A.

Proposition 5.1.7.

The set of special orthogonal matrices on R? is dencted SO(3),
0(3) = {A e B33 | ATA =1 and det(4) = 1}

it is also a group under matrix multiplication and thus it is a subgroup of O(3). It is shown
in standard linear algebra course that every special orthogonal matrix rotates R® about
some line. Thus, we will often refer to SO(3) as the group of rotations.

There are other transformations that do not change the geometry of R3.

Definition 5.1.8.

A translation is a function T : B — B? defined by T'(z) = = + v where v is some fixed
vector in B3 and w is allowed to vary over 3.
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Clearly translations do not change the distance between two points z,y € RY,
|T(z) - T(y)| = |z +v— (y—v)| = |z —y| = distance between z and y.

Also if z,y, z are points in R? and # is the angle between y — = and z — z then 8 is also the angle
between T'(y) — T'(x) and T(z) — T(z). Geometrically this is trivial, if we shift all points by the
same vector then the difference vectors between points are unchanged thus the lengths and angles
between vectors connecting points in R? are unchanged.

Definition 5.1.9.

A function ¢ : B® — B3 is called a rigid metion if there exists a vector + € B? and a
rotation matrix A € SO(3) such that ¢(z) = Az + r.

A rigid motion is the composite of a translation and a rotation therefore it will clearly preserve
lengths and angles in B3, So rigid motions are precisely those transformations which preserve
Euclidean geometry and consequently they are the transformations which will preserve Newton’s
laws. If Newton'’s laws hold in one coordinate system then we will find Newton’s laws are also valid
in a new coordinate system iff it is related to the original coordinate system by a rigid motion. We
now proceed to provide a careful exposition of the ingredients needed to give a rigorous formulation
of Newton's laws.

Definition 5.1.10.

We say that £ is an Euclidean structure on a set S iff £ is a family of bijections from S
onto B3 such that,

(1.) &,Y € & then X o Y~ is a rigid motion.

(2.) if X € £ and ¢ is a rigid motion then do A € &,

Also a Newtonian space is an ordered pair (5, &) where 5 is a set and £ is an Euclidean

structure on 5.

Notice that if X,Y € & then there exists an A € SO(3) and a vector » € R3 so that we have
X(p) = AY(p) + r for every p € S. Explicitly in cartesian coordinates on R? this means,

[X1(p), Xa(p), Xa ()" = ADA(p), Ya(p), Va(@)]T + [r1,m2, 73"

Newtonian space is the mathematical model of space which is needed in order to properly formulate
Newtonian mechanics. The first of Newton’s laws states that an object which is subject to no forces
must move along a straight line. This means that some observer should be able to show that the
object moves along a line in space. We take this to mean that the observer chooses an inertial
frame and makes measurements to decide wether or not the object executes straight line motion
in the coordinates defined by that frame. If the observations are to be frame independent then the
notion of a straight line in space should be independent of which inertial coordinate system is used
to make the measurements. We intend to identify inertial coordinate systems as precisely those
elements of €. Thus we need to show that if ! is a line as measured by A’ € £ then [ is also a line
as measured by Y € £.
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 Definition 5.1.11.

Let (5, &) be a Newtonian space. A subset [ of S is said to be a line in S iff X'(I) is a line
in R? for some choice of X' € £.

The theorem below shows us that the choice made in the definition above is not special. In fact our
definition of a line in § is coordinate independent. Mathematicians almost always work towards
formulating geometry in a way which is independent of the coordinates employed, this is known as
the coordinate free approach. Physicists in contrast almost always work in coordinates.

Theorem 5.1.12.

If I is a line in a Newtonian space (S,&) then V(1) is a line in R? for every Y € £.

Proof: Because [ is a line in the S we know there exists X' € £ and X'(I) isalinein B, Let Y € &
observe that,

Y{§) = (Vo X oX)(l) = (Yo X ) X))

Now since X, Y € £ we have that Yo X lisa rigid motion on R3. Thus if we can show that rigid
motions take lines to lines in R? the proof will be complete. We know that there exist A € § O(3)
and r € R3 such that (Yo X 1)(z) = Az +7 letz € X)) ={sr e R |z =p+tg t e
R and p,q are fixed vectors in R®}, consider

(YoX')z) =Ar+r
=Alp+tg)+r
= (Ap+r) +tAg
=p +tq letting p’ = Ap -+ and ¢’ = Aqg.

(5.3)

The above hold for all z € A'(f), clearly we can see the line has mapped to a new line Y(I) = {z €
R* |z =p +tq ,t € R}. Thus we find what we had hoped for, lines are independent of the frame
chosen from £ in the sense that a line is always a line no matter which element of £ describes it.

Definition 5.1.13.

An observer is a function from an interval I € R intoe £ We think of such a function

A2 I — & as being a time-varying coordinate system on 5. For each ¢ € I we denote X'(¢)
by A ; thus &) : 5~ B3 for cach t € T and Ay(p) = [Xi1(p), Xial(p), Xa(p)] for all p € 8.

Assume that a material particle or more generally a ”point particle” moves in space S in such a
way that at time { the particle is centered at the point (¢t). Then the mapping v: I — § will be
called the trajectory of the particle.
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Definition 5.1.14.

Let us consider a particle with trajectory « : I — S. Further assume we have an observer
AT - E with t — &) then: '

(1.) Ay(+y(t)) is the position vector of the particle at time ¢ € [ relative to the observer .

(2.) %[k‘t(fy(t))]if,zlu is called the wvelocity of the particle at time ¢, € I relative
to the observer X, it is denoted vy (io)- :

(3.) éiTi[‘jf}(’Y(t))]!t.ng is called the acceleration of the particle at time ¢, € [

relative to the observer A, it is denoted ax (&,).

Notice that position, velocity and acceleration are only defined with respect to an observer. We
now will calculate how position, velocity and acceleration of a particle with trajectory v : f — 8
relative to observer V : I — £ compare to those of another observer X : I — £. To begin we note
that each particular £ € I we have A}, Y, € £ thus there exists a rotation matrix A(t) € SO(3) and
a vector v(t) € R® such that,
Ye(p) = A(t) X (p) -+ (t)

for all p € 5. As we let t vary we will in general find that A(t) and r(f) vary, in other words we
have A a matrix-valued function of time given by ¢t = A(f) and r a vector-valued function of time
given by ¢ — r(t). Also note that the origin of the coordinate coordinate system X (p) = 0 moves
to Y(p) = r(t), this shows that the correct interpretation of r(t) is that it is the position of the old
coordinate’s origin in the new coordinate system. Consider then p = (%),

Ve(v(8)) = A(@) A {y(t)) + r(t) (5.4)

this equation shows how the position of the particle in X coordinates transforms to the new position
in Y coordinates. We should not think that the particle has moved under this transformation,
rather we have just changed our viewpoint of where the particle resides. Now move on to the
transformation of velocity, (we assume the reader is familiar with differentiating matrix valued
functions of a real variable, in short we just differentiate component-wise)

OREEANCIO)
= 2{AWA((D) + (1) (5.5)
= SAW]X(70) + A LG ()] + (2] |
= A () + At)oxt) +1(2).

Recalling the dot notation for time derivatives and introducing vy = X o,

vy = Ayy + Avy + 7. (5.6)

We observe that the velocity according to various observes depends not only on the trajectory itself,
but also the time evolution of the observer itself. The case A = I is more familiar, since A = 0 we
have,

vy = vy + 7 =vy + 7. (5.7)
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The velocity according to the observer )V moving with velocity 7 relative to A" is the sum of the

velocity according to A and the velocity of the observer Y. Obviously when A # T the story is
more comphcated, but the case A = I should be familiar from freshman mechanics.
Now calculate how the accelerations are connected,

ay(t) J = [V ()]

S [A'OX (1) + Alt)va (D) +T(L‘)] (5.8)
—A”( X (v(8)) + A B £ [ (v (EN] + A (va(t) + AR) Evx (£)] +77(2)
= A"(0)X(v(1)) + 24 (Hhux (¢) + +A(t)ax (t) + 7 (2)

Therefore we relate acceleration in X to the acceleration in Y as follows,

ay = Aay + ¥+ Avy + 2Auy. (5.9)

The equation above explaing many things, if you take the junior level classical mechanics course
you’ll see what those things are. This equation does not look like the one used in mechanics for
noninertial frames, it is nevertheless the same and if you're interested I'll show you.

Qthpuo NJ.M MS
GI‘\C{ Oq{' CMT[':/

Example 5.1.15.

Example 5.1.16.
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Definition 5.1.17.

is an observer. We say the particle is in a state of rest relative to the observer X if
vy == %[A’t('y(t))] = 0. We say the particle experiences uniformm rectilinear motion
relative to the observer X il t — X;(v(¢)) is a straight line in R? with velocity vector some
nonzero constant vector.

We now give a rigorous definition for the existence of force, a little later we’ll say how to calculate
it..
Definition 5.1.18.

A particle experiences a force relative to an observer X' iff the particle is neither in a
state of vest nor is it in uniform rectilinear motion relative to X. Otherwise we say the
particle experiences no force relative to .

Definition 5.1.19.

An observer A" : I — £ is said to be an inertial observer iff there exists X, € £, 4 € SO(3),
v,w € R? such that Xy = AX, +tv+w for all t € I. A particle is called a free particle iff
it experiences no acceleration relative to an inertial observer.

Observe that a constant mapping into £ is an inertial observer and that general inertial observers
are observers which are in motion relative to a "stationary observer” but the motion is "constant
velocity” motion. We will refer to a constant mapping A : I — £ as a stationary observer.

Theorem 5.1.20.

IfX:1-»E&andY:I— £ are inertial observers then there exists A € SO(3) , v,w € R3
such that }; = A&, +tv+w for all £ € I. Moreover if a particle experiences no acceleration
relative to A then it experiences no acceleration relative to Y.

Proof: Since A and Y are inertial we have that there exist A, and ), in £ and fixed vectors
Uy, Wy, Vy, Wy € R? and particular rotation matrices A,, Ay, € SO(3) such that

Ay = Ap Xy + vy + wy ytszyn+th+wy'

Further note that since A, Y, € £ there exists fixed @ € SO(3) and u € R? such that ¥, = QX, +u.
Thus, noting that X, = AZ1(X) — tvy, — w,) for the fourth line,

Yo = AyYo + tuy + wy
= Ay (QX, + u) + tu, + wy
= A,QX, + Ayu + vy +wy (5.10)
= A, QAT A — tug — wy) + tuy, + Ayu + wy
= AyQA;IXt + tluy — A, QAL vy] — A, QA wy + Ayu 4wy

Thus define A = 4,QA; € SO(3), v = vy — A, QA v, and w = —A,QAZ w, + Ayu + wy.
Clearly v,w € R® and it is a short calculation to show that A € SO(3), we've left it as an exercise



82 CHAPTER 5. EUCLIDEAN STRUCTURES AND PHYSICS

to the reader but it follows immediately if we already know that SO(3) is a group under matrix

multiplication { we have not proved this yet ) “C'c;il.ecting our thoughts we have established the first
half of the theorem, there exist A € SO(3) and v,w € B3 such that,

yt = A.i\:}_ +tv+w

Now to complete the theorem consider a particle with trajectory v : I — § such that ay = 0. Then
by eqn.[5.9] we find, using our construction of A, v, w above,

ay = Aay + 7+ A.”M.’ + QAUX
= AD+ 0 + Oyx + 2(0)vx (5.11)
= (.

Therefore if the acceleration is zero relative to a particular inertial frame then it is zero for all
inertial frames.

Consider that if a particle is either in a state of rest or uniform rectilinear motion then we can
express it's trajectory - relative to an observer X : I — § by

X(v() = o+ w

for all ¢t € I and fixed v,w € R3. In fact if » = 0 the particle is in a state of rest, whereas if v # 0
the particle is in a state of uniform rectilinear motion. Moreover,

vx(t)=tv+w <= vy =v < ay =0.

Therefore we have shown that according to any inertial frame a particle that has zero acceleration
‘necessarily travels in rectilinear motion or stays at rest,

Let us again ponder Newton’s laws.

1. Newton’s First Law Every particle persists in its state of rest or of uniform
motion in a straight line unless it is compelled to change that state by impressed forces.

2. Newton’s Second Law The rate of change of motion is proportional to the
motive force impressed; and is made in the direction of the straight line in which that
force is impressed.

3. Newton’s Third Law To every action there is an equal reaction; or the mu-
tual actions of two bodies upon each other are always equal but oppositely directed.

It is easy to see that if the first law holds relative to one observer then it does not hold relative
to another observer which is rotating relative to the first observer. So a more precise formulation
of the first law would be that it holds relative to some observer, or some class of observers, but
not relative to all observers. We have just shown that if X is an inertial observer then a particle is
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either in a state of resi or uniform rectilinear motion relotive to X iff its acceleration is zero. If v is
~ the trajectory of the particle the second law says that the force F acting on the body is proportional
to m(dvy/dt) = may. Thus the second law says that a body has zero acceleration iff the force
acting on the body is zero ( assuming m # 0 ). It seems to follow that the first law is a conse-
quence of the second law. What then does the first law say that is not contained in the second law ?

The answer is that the first law is not o mathematical aviom but a physical principle. 1t says
it should be possible to physically construct, at least in principle, a set of coordinate systems at
each instant of time which may be modeled by the mathematical construct we have been calling
an inertial observer. Thus the first law can be reformulated to read:

There exists an inertial observer

The second law is also subject to criticism. When one speaks of the force on a body what is
it that one is describing? Intuitively we think of a force as something which pushes or pulls the
particle off its natural course.

The truth is that a course which seems natural to one observer may not appear natural to
another. One usvally models forces as vectors. These vectors provide the push or pull. The
components of a vector in this context are observer dependent. The second law could almost be
relegated to a definition. The force on a particle at time t would be defined to be max(t) relative
to the observer X'. Generally physicists require that the second law hold only for inertial observers.
One reason for this is that if Fiy is the force on a particle according to an inertial observer X and
Fy, is the force on the same particle measured relative to the inertial observer ) then we claim
Fy = AFy where & and Y are related by

YVi=AX, +tv+w

for v,w € R® and A € S0O(3) and for all t. Consider a particle traveling the trajectory v we find
it’s accelerations as measured by /' and Y are related by,

ay = Aa;g

where we have used eqn.[5.9] for the special case that A is a fixed rotation matrix and r = tv + w.
Multiply by the mass to obtain that may = A(maxy) thus Fyy = AFy. Thus the form of Newton’s
law is maintained under admissible transformations of ohserver.

Remark 5.1.21.

The invariance of the form of Newton’s laws in any inertial frame is known as the Galilean
relativity principle. It states that no inertial frame is preferred in the sense that the physical
laws are the same no matter which inertial frame you take observations from. This claim
is limited to mechanical or electrostatic forces. The force between to moving charges due
to a magnetic field does not act along the straight line connecting those charges. This
exception was important to Einstein conceptually. Notice that if no frame is preferred then
we can never, taking observations solely within an inertial frame, deduce the velocity of
that frame. Rather we only can deduce relative velocities by comparlng observations from
different frames.
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In contrast, if one defines the force relative to one observer Z which is rotating relative to X by
I’z = ynaz then one obtains a much more complex relation between Fy and Fy which involves the
force on the particle due to rotation. Such forces are called fictitious forces as they arise from the
choice of noninertial coordinates, not a genuine force.

Example 5.1.22. ..

5.2 noninertial frames, a case study of circular motion

Some argue that any force proportional to mass may be viewed as a fictitious force, for example
Hooke’s law is F=kx, so you can see that the spring force is genuine. On the other hand gravity
looks like F' = mg near the surface of the earth so some would argue that it is fictitious, however the
conclusion of that thought takes us outside the realm of classical mechanics and the mathematics
of this course. Anyway, if you are in a noninertial frame then for all intents and purposes fictitious
forces are very real. The most familiar of these is probably the centrifugal force. Most introductory
physics texts cast aspersion on the concept of centrifugal force (radially outward directed) because
it is not a force observed from an inertial frame, rather it is a force due to noninertial motion.
They say the centripetal (center seeking) force is really what maintains the motion and that there
is no such thing as centrifugal force. I doubt most people are convinced by such arguments because
it really feels like there is a force that wants to throw you out of a car when you take a hard
turn. If there is no force then how can we feel it 7 The desire of some to declare this force to be
"fictional” stems from there belief that everything should be understood from the perspective of an
inertial frame. Mathematically that is a convenient belief, but it certainly doesn’t fit with everday
experience. Ok, enough semantics. Lets examine circular motion in some depth.

For notational simplicity let us take R® to be physical space and the identity mapping X = id
to give us a stationary coordinate system on R®. Consider then the motion of a particle moving
in a circle of radius R about the origin at a constant angular velocity of w in the counterclockwise
direction in the zy-plane. We will drop the third dimension for the most part throughout since it
does not enter the calculations. If we assume that the particle begins at (R, 0) at time zero then it
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. follows that we can parametrize its path via the equations,

z(t) = Rcos(wt)
y(t) = Rsin(wt) (5.12)

this parametrization is geometric in nature and follows from the picture below, remember we took
w constant so that 6 = wi
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Now it is convenient to write 7(t) = (x(f),y(t)). Let us derive what the acceleration is for the
particle, differentiate twice to obtain

() = (2"(t),y" ()
= (—Rwcos(wt), —Ruw?sin(wt))

= —wi (t)

Now for pure circular motion the tangential velocity v is related to the angular velocity w by
v = whR. In other words w = v/ R, radians per second is given by the length per second divided by
the length of a radius. Substituting that into the last equation yields that,

a(t) = ™ (t) = ——=7r(t) (5.13)

The picture below summarizes our findings thus far.
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Now define a second coordinate system that has its origin based at the rotating particle. We'll call
this new frame ) whereas we have labeled the standard frame X. Let p € R3 be an arbitrary point
then the following picture reveals how the descriptions of X' and Y are related.
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E.'.g;;'-'iem' e aTHEA
Ut Wife b

:r.- . . O

Lo

o feame Saeed ok 1
_ Bﬁ'{?'}= Tl + Y, (7 _;"
S T,

Clearly we find,
X(p) = Y(p) + 1) (5.14)

note that the frames X' and ) are not related by an rigid motion since 7 is not a constant function.

Suppose that v is the trajectory of a particle in R?, lets compare the acceleration of «y in frame X’
to that of it in J;.

== ax(t) ="(t) = ay, () +7(t) '
If we consider the special case of v(¢) = r(t) we find the curious but trivial result that Y,(r(2)) = 0
and consequently ay, (¢) = 0. Perhaps a picture is helpful,
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We have radically different pictures of the motion of the rotating particle, in the X’ picture the
particle is accelerated and using our earlier calculation,

on the other hand in the }; frame the mass just sits at the origin with ay g == 0. Since F = rma
we would conclude (ignoring our restriction to inertial frames for a moment) that the particle has
an external force on it in the A" frame but not in the Y frame. This clearly throws a wrench in
the universality of the force concept, it is for this reason that we must restrict to inertial frames if
we are to make nice broad sweeping statements as we have been able to in earlier sections. If we
allowed noninertial frames in the basic set-up then it would be difficult to ever figure out what if
any forces were in fact genuine. Dwelling on these matters actually led Einstein to his theory of
general relativity where noninertial frames play a central role in the theory.

Anyway, lets think more about the circle. The relation we found in the A frame does not tell
us how the particle is remaining in circular motion, rather only that if it is then it must have an
acceleration which points towards the center of the circle with precisely the magnitude mv?/R. 1
believe we have all worked problems based on this basic relation. An obvious question remains,
which force makes the particle go in a circle? Well, we have not said enough about the particle
yet to give a definitive answer to that question. In fact many forces could accomplish the task.
You might imagine the particle is tethered by a string to the central peoint, or perhaps it is stuck
in a circular contraption and the contact forces with the walls of the contraption are providing the
force. A more interesting possibility for us is that the particle carries a charge and it is subject to
a magnetic feld in the z-direction. Further let us assume that the initial position of the charge ¢
is (mv/qB,0,0) and the initial velocity of the charged particle is v in the negative y-direction. I’'ll
work this one out one paper because ] can.
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Cén{:l":’“;-’md; "F\'w,n;; —&;r g.,;: = ./ _ %a:b

!

1 ggi =G Cas{oci)+<:s;r.(wij

%ji = -C, sm[efﬂ szam

Now 51_&%@ b w* ™~ m ) 8 vl

E}{(ﬂ = :L.[Cléilne{?(i‘]—'-:C‘;?Cox@'ﬂ) + Gy
Yy = --.(c Cos(wi:) +Cy s.r(u:g:}) + Cy

F—r\ml.luéi upplu& !f"ﬂbsj Cbﬂd haﬂS‘
; o Lo

‘m’ﬂ} = = 0 = ETg
i) = -V, = €z = l=-Va
X{ﬂ; = MVefg = Voo = 7};(‘-"1) +Cy = Gz
B = 0 = L(eirg =G =0)
Thus Cs'lilc;."i;:nla K reswlls e "."qu\f}}"',“ SipCx - /;c' = '“.V"‘:’w ="M

(k) = (n%/a5) cos [ 1844,)
B (1) = -(mw/q,g) s.n C“'@*/m)
Z = C

This i e crela :Xf"*ﬁ!“’zﬁ“ with radoc R= Mol
lging, in the 2= 0 plene. |

It is curious that magnetic forces cannot be included in the Galilean relativity. For if the velocity
of a charge is zero in one frame but not zero in another then does that mean that the particle has a
non-zero force or no force? In the rest frame of the constant velocity charge apparently there is no
magnetic force, yet in another inertially related frame where the charge is in motion there would
be a magnetic force. How can this be? The problem with our thinking is we have not asked how
the magnetic field transforms for one thing, but more fundamentally we will find that you cannot
separate the magnetic force from the electric force. Later we’ll come to a better understanding of
this, there is no nice way of addressing it in Newtonian mechanics that I know of. It is an inherently

relativistic problem, and Einstein attributes it as one of his motivating factors in dreaming up his
special relativity.
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"What led me more or less directly to the special theory of relativity was the conviction
that the electromotive force acting on a body in motion in a magnetic field was nothing
else but an electric field”

Albert Einstein, 1952,
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