Chapter 6

differentiation

In this chapter we define differentiation of mappings. I follow Edwards fairly closely, his approach
is efficient and his langauge clarifies concepts which are easily confused. Susan Colley’s text Vector
Caleulus is another good introductory text which describes much of the mathematics in this chapter.
When I teach calculus III 1 do touch on the main thrust of this chapter but 1 shy away from proofs
and real use of linear algebra. That is not the case here.

6.1 derivatives and differentials

In this section we motivate the general definition of the derivative for mappings from RB" to R™.
Naturally this definition must somehow encompass the differentiation concepls we've already dis-
cussed in the calculus sequence: let’s recall a few exatnples to set the stage,
1. derivatives of functions of B, for example f(z) = 2* has f'(z) = 2z
2. derivatives of mappings of B, for example f(t} = (¢,¢%,#%) has f'(t) =< 1,2¢,3t% >.
3. f:dom(f) C R? -+ R has directional derivative (D, f){(p) = (V)(p} - u
- A o of of
where Vf = grad(f) =< 3=, i
4. X :UcCR:, — Riy: parametrizes a surface X{U) and N{u,v) = —C% X ‘2}—3 gives the normal
vector feld to the surface.

We'd like to understand how these derivatives may be connected in some larger context. If we could
find such a setting then that gives us a way to state theorems about derivatives in an efficient and
general manner. We also should hope to gain a deeper insight into the geometry of differentiation.
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6.1.1 derivatives of functions of a real variable

Let’s revisit the start of Calculus I. We begin by defining the change in a function f between the
point a and a + h:

Af = fla-+h)— f(a).
We can approximate this change for small values of h by replacing the function with a line. Recall
that the line closest to the function at that point is the tangent line which has slope f/(a) which
we define below.
Definition 6.1.1.
suppose f: U C R — B then we say that [ has derivative f'(a) defined by the limit below
(i the limit exists, otherwise we say f is not dilferentiable at a)

f'(a) = lim fla+h)— f(a)

h—0 h

If f has a derivative at a then it also has a differential df, : B — B at e which is a function
defined by df,(h) = hf'(a). Finally, if  has derivative f’{a) at « then the tangent line to
the curve has equation y = f{a) + f'(a)(@ — a).

Notice that the derivative at a point is a number whereas the differential at a point is a linear
map!. Also, the tangent line is a ” paralell translate” of the line through the origin with slope fla).

Example 6.1.2. . .

Definition 6.1.3.
Suppose [ U7 C R — B and suppose ['(v) exists for each v € V < 7. We say that f has
derivative [ : V' C B — B defined by

f'(r) = lim Fla+h)— fr)

h—0 h

for cach r ¢ V.

In words, the derivative function is defined pointwise by the derivative at a point.

'We will maintain a similar distinction in the higher dimensional cases so T want to draw your attention to the
distinetion in terminology from the outset.
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Proposition 6.1.4.

Suppose ¢ € dom(f) where f : dom(f) C R — B and e € dom(f’) then df, is a linear
transformation from R to B,

Proof: Let ¢,h k€ B and o € dom( ") which simply means [{a) is well-defined. Note that:
dfyleh + k) = (ch + E)Yf(a) = chf/(a) + ki {a) = edf (B) + df. (k)

for all e, h, k thus df, is linear transformation. iJ

The differential is likewise defined to be the differential form df : dom(f) — L{R,R) = R”

where df (a) = df, and df, is a linear function from R to B. We'll study differential forms in more

depth in a later section.

6.1.2 derivatives of vector-valued functions of a real variable

A vector-valued function of a real variable is a mapping from a subset of R to some subset R"™.
In this section we discuss how to differentiate such functions as well as a few interesting theorems
which are known for the various vector products.

We can revisit the start of Caleulus III. We begin by defining the change in a vector-valued function
f between the inputs a and a -+ At

Af = fla+h) = f(a).

This is a vector. We can approximate this change for small values of h by replacing the space curve
a — f(a) with a line t — f(a) + ¢f'(a) in R™. The direction vector of the tangent line is f'(a)
which we define below.

Definition 6.1.5.

Suppose f: U ¢ B — R then we say that f has dervivative /(a) defined by the limit below
(if the limit exists, otherwise we say f is not differentiable at a)

fa) = Him fla+h) = [(a)

fi=+0 h

We define J" to be the function defined pointwise by the limit above for all such values as
the limit converges. Il f has a derivative at o then it also has a differential df, ' R — B”
at ¢ which is a mapping defined by df,(h) = hf'(a). The vector-valued-differential form df

is defined pointwise by df (a) = df, for all a € dom([f").

The tangent line is a " paralell translate” of the line through the origin with direction-vector f'(a).
In particular, if f has a derivative of f'(a) at a then the tangent line to the curve has parametric
equation 7{(t) = f(a) + tf'(a).
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Proposition 6.1.6.

Suppose a € dom(f) where [ : dom(f} C R — R" and a € dom(f’) then the differential df,
is a linear transformation from B to R™.

The proof is almost identical to the proof for real-valued functions of a real variable. Note:
dfo(ch + k) = (ch+ k) f(a) = chf'(a) + kf'(a) = cdfa(h) -+ df. (k)

for all h, %k, ¢ € B hence df, is a linear transformation.

6.1.3 directional derivatives

Let m = n, the image of a injective continuous mapping #' : dom(F) C R* — R™ gives an n-
dimensional continuous surface in R™ provided the mapping F satisfy the topological requirement
dom(F') = R". This topological fine print is just a way to avoid certain pathological cases like space
filling curves. We proved in Example 3.4.7 that the unit-sphere is a continuous surface. The proof
that the sphere of radius 2 is a continuous surface is similar. In the example that follows we'll see
how curves on the surface provide a definition for the tangent plane.

Example 6.1.7. The sphere of radius 2 cenlered at the origin has equation x° + y> + 2% = 4. We
can view the top-half of the sphere as the image of the mapping F : B2 — B® where

Flo,y)=(m y, Vi—a>—y?).

The tangent plane o the sphere at some point on the sphere can be defined as the set of all tangent
vectors to curves on the sphere which pass through the point: let S be the sphere and p € S then
the tangent space to p is infuilively defines as follows:

1,5 =4~ (0) | v: R~ 5, a smooth curve with ~(0) = p}

A line in the direction of < a,b > through (1,1) in B> has parametric representation 7(t) =
(14 at, 1+ 0t). We can construct curves on the sphere that pass through F(1,1) = (1,1,v2) by
simply mapping the lines in the plane to curves on the sphere; ¥(t) = F(#(t)) which gives

(t) = ( L+ at, 1+ b, \/4—(1+at)2—(1+bt)2)

Now, not all curves through p have the same form as «v(t) above but it is fairly clear thatl if we
allow (a,b) to trace out all possible directions in R* then we should cover T,S. A short calculation
reveals that

7' (0) =< a,b, ;—,;-(a +b) >

These are vectors we should envision as attached to the poini (1,1, \/5) A generic poini in the
tangent plane to the point should have the form p+ +'(0). This gives equations:

w=1+a, y=1+b, 3=\/:_%(a+b)
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we can find the Cortesian equolion for the plane by eliminating a, b

a=x -1, b=y-1 = z=\/§wfg($+yw2) = z+y+v2 =4

We find the tangent plane to the sphere 22 + y* 4+ 2% = 4 has normal < 1,1,V2 > af the point

(1,1,/2).

Of course there are easier ways to calculate the equalion for a tangent plane. The directional
derivative of a mapping F at a poini a € dom(F) along v is defined to be the derivative of the
curve v(t) = F(a + tv). In other words, the directional derivaiive gives you the instantaneous
vector-rate of change in the mapping F at the point ¢ along ». In the case that m = 1 then
F idom(F) CR" — R and the directional derivative gives the instantaneous rate of change of the
function F at the point a along v. You probably insisted that [[u]| = 1 in caleulus TIT but we make
no such demand here. We define the directional derivative for mappings and vectors of non-unit
length.

Definition 6.1.8.

Let. F' i dom{F} CRB” — B and suppose the limit below exists for o € dormi{F) and v € B
i]]{ i1 we . de {;m llw dn echonai derzv*zhve of F at u aleﬁg iz tu b D F{ r;) e l‘ B whm @

CP(ad ) — Fla)
.U,,f* fﬁ) = T ((r IH ”} W) o
[ ~oh

f-% I,Z Y- 7

@,F'(fﬂ
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The directional derivative D, F(a) is homogenous in v.

Proposition 6.1.9.

Let F:domn(F) C R™ — R™ then if D, F(a) exists in R™ then D, F(a) = cD,F{a)

See Edwards pg. 66 the proof is not hard. Let £ : U — B™ define a continuous surface S with
dimension n. The tangent space of S at p & & should be the paralell translate of a n-dimensional
subspace of B™. Moreover, we would like for the tangent space at a point p € § to be very close
to the surface near that point. The change of F near p = F(a) along the curve v(t) = F(a + tv) is
given hy

AF = F(a+ hv) — F{a).

It follows that F(a + hv) = F(a) + hD,F(a) for h & 0. We'd like for the the set of all directional
derivatives at p to form a subspace of R™. Recall{or learn) that in linear algebra we learn that
every subspaces of R™ is the range of some linear operator® This means that if D,F(a) was a
linear operator with respect to v then we would know the set of all directional derivatives formed
a subspace of B™. Note that directional derivative almost gives us linearity since its homogeneous
but we also need the condition of additivity:

DywFla) = D,F(a) + Dy,Fla) additivity of directional derivative

This condition is familar. Recall that Propositions 6.1.4 and 6.1.6 showed the differential df, was
linear for f : dom(f) € R — R™. In fact the differential is the directional derivative in these special
cases if we let v = 1; D1F(a) = dF,(1) for F : dom(F) C R — B™ where ¢ € dom(F"). So we
have already proved the directional derivative is linear in those special cases. Fortunately it's not
so simple for a general mapping. We have to make an additional assumption if we wish for the
tangent space to be well-defined.

Definition 6.1.10.

Suppose that U/ is open and F : I7 C B* — BR™ is a mapping the we say that F is
differentiable at ¢ € {7 iff there exists a linear mapping L E™ — B™ such that
Fla+h)— Fla) — L(h)

lirn = ().
B il

In such a case we call the Bnear mapping L the differential at o and we denote L = JdF},.
The matrix of the differential is called the derivative of F' at « and we denote [dF,] =
F'{a) € B "™*" which means that dF,(v) = F'(a)v for all v € B

*don't helieve it? Let W < RB™ and choose a basis 4 = {f1,...,fu} for W. You can verily that L{v) =
UAalfai- - Ifalfal - 1 fwle deflines a linear transformation with range(L) = Col[f} = W.
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The preceding definition goes hand in hand with the definition of the tangent space given below.

Definition 6.71.11.

Suppose that U = B" isopen and F': U/ C " — ™ {3 a mapping which is differentiable on
U. Hrank(F'(a)) = n at each @ € U then we say that F(U) is a differentiable surface of
dimension n. Also, a map such as F is said to be regular. Moreover, we define the tangent
space to § = I'(I/) at p € § to be the paralell translate of the subspace Col(F'(a)) < R™.
A typical point in the tangent space at p € § has the form p+ F'{a)v for some v € B™.

The condition that rank(F'(a)) = n is the higher-dimensional analogue of the condition that the
direction vector of a line must be nonzero for a line. If we want a genuine n-dimensional surface
then there must be n-linearly independent vectors in the columns in the derivative matrix. If there
were two columns which were linearly dependent then the subspace W = {F'{a)v | v ¢ R"} would
not be n-dimensional.

Remark 6.1.12.

If this all secems a little abstract, relax, the examples are in the next section. I want to wrap
up the mostly theoretical aspects in this section then turn to more calculational ideas such
as partial derivatives and the Jacobian matrix in the next section. We'll see that partial
differentiation gives us an easy straight-forward method to calculate all the theoretical
constructs of this section. Edwards has the caleulations mixed with the theory, I've ripped
them apart for better or worse. Also, we will discuss surfaces and manifolds independently
in the next chapter. ! wouldn’t expect you to entirely understand them from the discussion
in this chapter.

Example 6.1.13. Let F : BR" — R™ be defined by F(v) = p+ Av for all v € B® where the matriz
A€ R ™ such that rank({A) = n and p € R”. We can calculate that [dF,] = A. Observe that
for z e B®,
Flx+h)— F(z) — A(h Ax+ Ah — Az — Ah
lim (& + k) (z) (h) = lim vt A * Ly

h—0 (7] =0 Mk
Therefore, dIFy(h) = Ah for each z € R™ and we find F(R™) is an differentiable surface of dimen-
sional n. Moreover, we find that F(R") is ils own tangeni space, the tangent space is the paralell
translate of Col(A) to the point p ¢ R™. This is the higher dimensional analogue of finding the
tangent line to a line, il’s just the line again.




98 CHAPTER 6. DIFFERENTIATION

The directional derivative helped us connect the definition of the derivative of mapping with the
derivative of a function of R. We now turn it around. If we're given the derivative of a mapping then
the directional derivative exists. The converse is not true, see Example 4 on page 69 of Edwards.

Proposition 6.1.14.

IfF:UCR"— R™is dilferentiable at @ € U then the directional derivative D, F{a)} exists
for each v € R™ and D, F{a} = dFy(v).

Proof: Suppose a € U such that dF, is well-delined then we are given (hat

. Fla+h)—Fla)=dF,(h) |
Him , = [}
E—0 Hal

This is a limit in E", when it exists it follows that the limits thai approach the origin along
particular paths alse exist and are zero. In particular we can consider the path £ = fv for v £ 0
and ¢ > 0. we [ind

Fla+ te) — Fla) — dF{tv) __1_ Fla 4 te) — Fia) — tdi,{v)

lim = —— Jim , =,
Lo, £30) ]|tUH Holl t—ot it
Hence, as i} = ¢ for £ > 0 we find
Fla+te) - Fla td o (v
limm (o + tv) L) = lim ra(v) = dF, (v}
1=yt i i1
Likewise we can consider the path § — fo for v 22 0 and £ <0
) Flo+ ) — Fla) — dF, {te) L Fladin) — Fla) —tdF,(v)y
lim = o lim =},
L=, 2D Qi Hul] st |
Note ] = —t thus the limit above yvields
Fia+iv)— Fla Ll Fy (e . Fla+toy—F .
lim e+t )f (@) = lim -i————(—r—)— = lim L (,‘} ) = 8, ().
10~ - t—0= =t =)= ‘

Therefore,

litn
10

Fla+iv) — Fla) = dF,(v)

and we conelude that D, Flu) = dF, (¢} for all v & B since the v = 0 case follows trivially, T
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6.2 partial derivatives and the existence of the derivative

Definition 6.2.1.

Suppose that F : UV CR" — R™ is a mapping the we say that F is has partial derivative

g—fl(a) at o € U iff the directional derivative in the e; direction exists at a. In this case we
5
denote,

or

—(a) = D, F(a).

d:ﬂi :

Also we may use the notation D, F(a) = D;F(a) or & F = ,(%L;‘; when convenient. We also

e
construct the partial derivative mapping &F : V C B" — E™ as the mapping defined
pointwise for each v € V where &;F (v) exists.

Let’s expand this definition a bit. Note that if F' = (F}, F5,..., F},) then

) — F ila 1€;) — £
De;Fla) = lim F(aﬂli) @ D, Fla) - ¢; = lim FJ"("‘L”E}I) Ej(a)

for each j = 1,2,...m. But then the limit of the component function Fj is precisely the directional
derivative at a along e; hence we find the result

OF oF; | :
B ej = B, in other words, F = (0:;F1,0;Fs,...,0,Fy).

Proposition 6.2.2.

IfF:UCR"— R™ is differentiable at a € U then the directional derivative D,F{a) can
be expressed as a sum of partial derivative maps for each v =< vy, v2,..., v, >€ R™

T

D,F(a) = Z v;0; F (a)

=1

Proof: since F is differentiable at o the dilerential dF, exists and DL F(a) = dF, (v) for all v & 7,

Use linearity ol the dilferentlal to caleulate that
Dy Fua) = dF,(eyey b oo vpey) = opd By (o) + - v, dF ().
Note df7(ey) = Do Fla) = O;F(a) and the prop. follows, [0

Proposition 6.2.3.

UF .U CE' — RB™ s differentiable at a € I/ then the differential dF, has derivative
matrix F'(a) and it has components which are expressed in terms of partial derivatives of

the component functions:
[dFa]i; = 05 F;

forl<i<mandl<j<mn.
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Perhaps it is helpful to expand the derivative matrix explicitly for future reference:

BlFI(a) agFl((L) st anF]_(G.)
Fi(a) = 615:2(0-) 8217:2(3) : aan’z(ﬂ)
01 Fyml(a) 9:Fm(a) - OnFun(a)

Let’s write the operation of the diflerential for a diflerentiable mapping at some point a £ R in
terms of the explicit matrix multiplication by F'(a). Let v = {(v1,ve,...v,) € R,

BlFi(a) 82F1(a) e (9nF; (G) ™
ARy ) = Fllay = | O el GRe)
O Fla) BaFn(a) - OnFm(a) | | vn

You may recall the notation from calculus III at this point, omitting the e-dependence,

VE) = grad(F;) = [ DF;, DuF), -, OuF; ]T

So if the derivative exists we can write it in terms of a stack of gradient vectors of the component
functions: (I used a transpose to write the stack side-ways),

F' = [VR|VE|- - VF.]"
Finally, just to collect everything together,
WP R - 0.7 (VF)T

Oy OaFs - Onlh VR
: : : : = [F | F ||, F | = |7 —

a] E -1111 82 Fm oo an Fm (v F M )

Example 6.2.4. Suppose f : R® = R then Vf = [0:f, 0, [, & Y and we can write the directional
derivative in terms of
Duf = [0af, 8y, 8: /1" v =V ] v

if we insist that ||v|| = 1 then we recover the standard directional derivative we discuss in caleulus
IIl. Naturally the ||V f(a)|l yields the mazimum value for the directional derivalive al o if we
timit the inputs to vectors of unit-length. [f we did not limit the vectors to unit length then the
directional derivative at a can become arbitrarily large as D, f(a) is propertional to the magnitude
of v. Since our primary motivation in calculus I was describing rates of change along certain
directions for some multivariate function it maode sense to speciclize the directional derivative to
vectors of unit-length. The definition used in these notes better serves the theoretical discussion. If
you read my calculus TTT notes you'll find a derivation of how the directionael derivative in Stewart’s
calculus arises from the general definition of the derivative as a linear maopping. Look up page 305g.
Incidentally, those notes may well be better than these in certain respects.
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6.2.1 examples of derivatives

QOur goal here is simply to exhbit the Jacobian matrix and partial derivatives for a few mappings.
At the base of all these calculations is the observation that partial differentiation is just ordinary
differentiation where we treat all the independent variable not being differentiated as constants,
The criteria of indepedence is important. We'll study the case the variables are not independent
in a later section.

Remark 6.2.5.

I have put remarks about the rank of the derivative in the examples helow. Of course this
has nothing to do with the process of calculating Jacobians., It's something to think about
once we master the process of caleulating the Jacobian. Ignore the red comments for now
if you wish

Example 6.2.6. Let f() = (t,1%,1%) then f/(t) = (1,2t,3t%). In this case we have

1
f)y={dfil= | 2
3t*
The Jacobian here is o single colwmn vector. It has rank 1 provided the vector is nonzero. We
gee that f'(t} # (0,8,0) for all t & B, This corresponds to the fact that this space curve hos o
well-defined tangent line for cach point on the path.

Example 6.2.7. Let f(Z,7) = - be o mapping from BY x B3 — R. I'll denote the coordinates
in the domain by (x1,Te, 3,91, Y2, ¥a) thus f{&,4) = x1y1 + zoy2 + 23ys. Colculate,

[dfiz) = VAE DT = [yr, y2, ys, 31, T2, T3]

The Jacobian here is a single row wvector. I has vank 6 provided all entries of the input vectors are
nonzero.

Example 6.2.8. Let f{Z,%) = & § be a mapping fm;m R™ x BR" — B, I'll denote the coordinates
in the domain by (x1,..., %5, 21, ..., yn) thus F(Z,§) = D1, zys. Caleulate,
n T

n
a R Qi __ Cap — a1
2 [z | =30 B =3 b =
=]

[ fz]

Likewise,
n

n n
o vy | = 28 = NT s
i=1 i=1

=1
Therefore, noting that Vf = (Oy, f,. .., 0c, [, Op f, -, Oy f),
[d!f(f,?}*)]rr = (Vf)(f, !?) = 37 KT = (yh S TR B 3‘7;7?.)

The Jacobian here is a single vow vector. It has rank Zn provided oll entries of the input vectors
are nONzEro.
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Example 6.2.9. Suppose F(z,y,z) = (zyz,y, z) we calculate,

%2(;9':,0,0) %:(:{:z,l,[}) %—f:(mq’{}’}_)

Remember these are actually column vectors in my sneaky notation; (vi,...,vn) = [v1,..., 00} .
This means the derivative or Jacobian matrix of F at {x,y, z) is

_ ¥z Tz Ty
Fllz,y,2) = [dFagya)=| 0 1 0
0 ¥ 1

Note, rank(F'(x,y,2)) =3 for all (z,y,2) € B® such that y, = # 0. There are a variety of ways to
see that claim, one way is to observe det[F'(x, y, 2)] = yz and this determinant is nonzero so long
as neither ¥ nor z is zero. In linear algebra we learn that a square matriz s invertible iF it hos
nonzero determinant iff it has lnearly indpendent column vectors.

Example 6.2.10. Suppose F(z,y,z) = (z° + 2%, yz) we calculate,

G=0r0 =0z F=(:)

The derivative is o 2 X 3 malriz in this ezample,

2x 0 2z ]

/ . = = =
F (3‘1 Y, ~) [dF(;E,J ,::)] |: 0 =z y

The mazimum ronk for F' is 2 at a particular point (r,y, z) because there are at most two linearly
. . o - . . .

independent vectors in B*. You can consider the three square submatrices to analyze the rank for
a gwen point. If any one of these is nonzero then the rank (dimension of the column spece) is two.

| 2¢O e 2w 2z 022
My = |: 0 = ] Afy = [ 0 ” ] My = |: =y ]

We'll need cither det(M)) = 2wz 5 0 or det(Ms) = 2wy # 0 or det{My) = ~2:% # 0. I belicve
the anly point where all three of these fail to be frue simuletaneously is when v =y =z = 0. This
mapping has mozrimal rank ot oll points except the origin.

Example 6.2.11. Suppose F{z,y) = {x* + >, zy, x +1y) we calculate,
9=y 8= (2y,m0)

The derivative s a 3 x 2 malriz in this example,

Flla,y) =[dF )= | v =
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The mazimum rank is again 2, this téme because we only have two columns. The rank will be two
tf the columns are not linearly dependent. We can analyze the question of rank a nuwmber of ways
but I find determinants of submatrices a comforting lool in these sort of questions. If the colurnns
are linearly dependent then oll three sub-square-matrices of F' will be zero. Conversely, if even one
of them is nonvanishing then it follows the columns must be linearly independent. The submatrices
for this problem are:

2z 2y : 2r 2y TR
A1 = * Vil ! Nl = '
My [ y o ] M [ 11 ] M {1 1

You can see det(M;) = 2(z? — y*), det(My) = 2(z — y) and det{My) = y — 2. Apparently we have
rank(F'(z,y, £)) = 2 for n!l ( y) € BR? with y # x. In retrospect this is not surprising.

Example 6.2.12. Suppose P(z,v,m) = (P, P} = ( mu? + lA:L ,mu) for some constant k. Let’s
caleulote the derivative via gradienis this time,

VF, = (0F,/0x,0F,/0v, 0P, /dm) = (kz, mu, %1;2}

VP = (0P /dz, 0P, /0v,dP,/Om) = (0,m,v)
Therefore,

' kr mv io?
P'z,u,m) = 2

0 m v
Example 6.2.13. Let F(r,0) = (rcosf,rsin@). We calculate,

& F = (cost,sinf)) and OpF = (—rsind, r cos )
Hence,

i v | cos@ —rsinf
Fi(r,0) = f: sin rcosl }

We caleulate det(F'{r,0)) = r thus this mapping has full rank everywhere excepl the origin.

Example 6.2.14. Let G(z,y) = (/22 + 4%, tan™(y/2)). We calculate,

oy .
&G = ( i FJJ,TE—i—UB) Md. 0,G = (””“”\/l—— e T ﬂ_)
Hence,
— oy
G'a,y) = ‘/‘j”‘ Ve | = [ Ty ok ] ((using r = /a2 + 37 )
g Ty T

We calculate det(G'(z,y)) = 1/r thus this mapping has full rank everywhere except the origin.
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Example 6.2.15. Let F(z,y) = (v, Vv R2 — 52 — 3%} for a conslani R. We calculate,

V4 /R2m_$2m72= - Y
¥ VR’ N —

Also, Vo = (1,0) and Vy = (0,1) thus

1
Fllz,y) = M 1

P 9 2 ,
d B — o -y~ > U for the

Jy, 2} and enlewlaie,

e !

ally, F oporamelrizes (he sphere

., Y ) B - -
iy, 2) exisis when R0 — 0 — 27 > 0. Geomelrie
/. i

ot

L i

abowe the equalor ol & = 0 whereas G paromelrizes the righi-half of the spheve with @ > 0. These

Mserve thai (3]

paramak
dom (G = {(x, 1) ¢

icodions overlap dn ihe first octand where both 2 end = are posifive
e - 2 o a
| wop = 0 and 2° 4y~ < B

Example 6.2.18. Let F(z,y,2) = (5,9, 2, VB2 — 22 — y* — 22) for a consiant R. We calculate,

Va/R2 — 12 — g% 22 = e —U —=
\/ Y “ VR gtz R P2t Ryt

Also, Vo = (1,0,0), Vy = (0,1,0) and Vz = (0,0,1) thus

1 0 0
0 1 0
0 1

Fllz,y.2) =

0
€L —if —z
gt \/R'z,m'z,y'zﬁzz \/R"l—:r'—’—y'—'—zﬂ

is well-defined. Nole ihad we n

orl 27— % —qf”

. . - 3 Al
s a pavarnalrizeiion of the J-aphere 57 +y*

forw = G {drowing this is a lille trickier)
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Example 6.2.17. Let f(z,y,z) = (x +y, ¥+ z,x + z,zyz). You can calculate,
1 1 0
0 1 1
[df(:r,,? ,::)} = 1 0 1

Yz xz Ty
This mairiz clearly has rank 3 and is well-defined for all of B3,

Example 6.2.18. Let f(z,y,z) = zyz. You can calculale,
[df(:r,y,:)] = [ Yz TE ITY ]

This matriz foils to have vank 3 if m,y ov z are zero. In other words., f'(z,y,z) has rank 3 in
B provided we are al a point which is not on some coordinate plane. (the coordinate planes are
r=0y=0and 2 =0 for the yz, zx and xy coordinate planes respective)

Example 6.2.19. Let f(x,y,z) = {zyz,1 — 2 —y). You can calculate,

{(ﬂ(r,y,z)] - |: -1 —1 O }

This matriz has rank 3 of either xy 0 or (x —y)z 5 0. In contrast to the preceding example, the
derivative does have rank 3 on certain poinis of the coordinate planes. For example, f(1,1,0} and
F1{0,1,1) both give rank(f') = 3.

Example 6.2.20. Let f:R? x B3 be defined by f(x) =z x v for a fized vector v # 0. We denote
= (13, x2,23) and calculate,

d
9z {zxw)= E €l Ti UJBL § EUL. - Ujel = § €ijk mU_;:ek E EajkViCL
a a

Lk i,k i,k Ik

It fallows,

—(7: X u) = ZCUMJJER = Uneg — Vyeq = (0, —vg, va)
ik

) (zxv)= E €aiV€ = v3e1 — viey = (vy, 0, —vq)

N

% T

c) (rxvl= E €3k Ve = Vi€ — tae; = (—wva,v;,0)
T3

Thus the Jacobian is simply,
0 w3 -
[dj(_‘,:,y)] = —ug3 0 -
(23] M 0
In fact, df,(h) = f(h} = h x v for each p € R®. The given mapping is linear so the differential of
the mapping is precisely the mapping iiself.
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Example 6.2.21. Let f(z,y) = (z,y,1 —z —y)}. You can colculale,

1 0

[df(m’y‘z)] = 0 1
-1 -1

Example 6.2.22. Let X{u,v) == (x,y, z) where T,y, 2z denote functions of u,v and I prefer to omit
the explicit depedendence to reduce clutter in the eguations to follow.
X X

S =X, = (:Buayuazu) and v =gy = (fﬂu;yv: ZU)

Then the Jacobian is the 3 x 2 matriz

(LR ﬂ”l'ﬂ'
[d‘?{(u,ﬂ)] = Yu Mo
Iy Zy

The matriz [d_k'(.u_y)] has rank 2 if al least one of the determinants below is nonzero,

det |: Ty -771.'J det By Ly det Yo Yo
[ Yo 2 Zu Zu =

Example 6.2.23. . .

Example 6.2.24. . .
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6.2.2 sick examples and continuously differentiable mappings

We have noted that differentiablility on some set {7 implies all sorts of nice formulas in terms of
the partial derivatives. Curiously the converse is not quite so simple. It is possible for the partial
derivatives to exist on some set and yet the mapping may fail to be differentiable. We need an extra
topological condition on the partial derivatives if we are to avoid certain pathological® examples.

Example 6.2.25. [ found this example in Hubbard’s advenced calculus text(see Fx. 1.9.4, py. 123).
1t is a source of endless odd examples, notation and bizarre quotes. Let f(z) = 0 and
x

1
flz) == +a’sin=
2 T

for all 2 £ 0. I can be shown that the derivative f'(0) = 1/2. Moreover, we can show that f'(x)
exists for all ¥ % 0, we can calculate:

1 1
+ 2x8in — — cos —

/() =
Notice that dom(f') = E. Note then thal the tangent line at (0,0) isy = 2/2. You might be tempted
to say then that this function is increasing of o rate of 1/2 for x near zero. But this claim would be
fulse since you can see that f'(x) oscillates wildly without end near zero. We have a tangent line
at (0,0) with positive slope for a function which is not increasing at (0,0) (recall that increasing is
a concept we must define in o open interval to be careful). This sort of thing cannot haoppen if the
derivative is continuous near the point in question.

| —

The one-dimensional case is quite special, even though we had discontinuity of the derivative we
still had a well-defined tangent line to the point. However, many interesting theorems in calculus
of one-variable require the function to be continuously differentiable near the point of interest. For
example, to apply the 2nd-derivative test we need to find a point where the first derivative is zero
and the second derivative exists. We cannot hope to compute f(z,) unless f' is continuous at z,.
The next example is sick.

Example 6.2.26. Let us define f(0,0) = 0 and

2
7Y

J‘(-?J‘,’y)“—’m

Jor all (z,y) # (0,0} in R®. Tt can be shown that f is continuous at (0,0). Moreover, since
Flx,0) = f{B,y) = 0 for all 2 and all y it follows that [ vanishes identicelly along the coordinate
axis. Thus the rate of change in the e or es directions is zero. We can calculate that

af 2y g af  at —a?y?

= e an =

or = @+ P by " WP
Consider the path to the origin t v (t,t) gives fo(f,t) = 264/(t* + %) = 1/2 hence fo(z,y) — 1/2
along the path t — ({,1), but fz(0,0) = 0 hence the partial derivative f, is not continuous at (0,0).
In this example, the discontinuily of the partial derivatives makes the tangent plone foil {0 exist,

3" pathological” as in, "your clothes are so pathological, where’d you get them?”
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Diefinition 6.2.27.

A mapping £ U CORT Ly B g continuously differentiable at. o & [/ il 'the partial
derivative mappings D; P P\]HI o1 AT ope n set containing ¢ and are cominuous: al o

The defintion above is interesting because of the proposition below. The import of the proposition
is that we can build the tangent plane from the Jacobian matrix provided the partial derivatives
are all continuous, This is a very nice result because the concept of the linear mapping is quite
abstract buf partial differentiation of a given mapping is easy.

Proposition 6.2.28.

;H._F is continuously differentiable at o then Fis differentiable at.g: - 7

We'll follow the proofl in Edwards on pages 72-73.
Jobo F = Feep for Some P e Yl,’z,---,l’ﬂ], We seeh 4» chow

conbinoens il of Foob o = T s il ob o Jorema 2.3
mf ol vonetls —H’\.bn Seupys dE = ('o!F:/.., df—;ﬂ) Pruwd;J e !wx.w. dF 0!41
(uu-?_ V\.E,Ezj 'h: ,s‘l’wuu Q\M C:JMPonLkJ{? a,[, F of e (’ﬁﬂ’&wlf\ b\/{)li a—% a,)

Vol\owfma Cdwards (MLJ efher %x{‘s on /Wtu Imﬁgad")f let
= (h,, b, hf\) vnd pote ‘Z‘ and  we caunld
break up h o ag ,(:,Hawf:} ¢
h=h, + he+-sh
Pmuéwm.aj Shote En =0, n .
Lla+h) - £) = EF(&**‘L\H)“F[O\H'\W,)}

= —f(a.-dxr QC&%E) 4—4)}“’1\») {/@4 a)*ﬂujj
Flash)~ £00).
body e )Af\u{:

Flas k) - ;(MK‘) £(a+h, .. a+h )G ¢,y = £ (a+h, .

k=
)ﬂ +InE'Z+-——+L1 €n --«J1 + l’!mz ke ”"\Q“

l {/er, /Qf‘]

V
r‘ges' mu:’rdr\ e_xce'j% ok '}, Pou"}‘fon w}\.e[ﬁ
we heva gith  werses 0y Racoaﬂtae

thic ir b (e +h 1,.,,4—}1,;/ 8, .., On)

Let %(X) = ’F(D'i, -l, X th, Ty a-‘\) ’Hu"" @ (x) = D .F(&. Hpae, 8 )
which existy bua D-SSu\MPJh\an o‘: Lur\‘hﬂudu-.i é#w@"é\“b;\'\) O'F . ;é:'jba .
m.e,u-'w\ﬂ‘ Vh\.wi. *ﬂ«" "h) Con tlndde j b yu.r../\ /{Z‘Nb ‘F /"-"’T) —/:/ﬂq% ) "‘/i 7£ /
2 ' e NEleth) £ - gb,m)é,// ;7 //2 (0: 5:) - D F )by f

hi iThil

ﬂw«: = act) - wm/ f’;/
N A 0‘1L 2o b & e
S ST A,.u Foet)-neell'= o,
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6.3 properties of the derivative

Of course much of what we discover in this section should be old news to you if you understood
differentiation in calculus III. However, in our current context we have efficient methods of proof
and the langauge of linear algebra allows us to summarize pages of calculations in a single line.

6.3.1 additivity and homogeneity of the derivative

Suppose F1 : U C R® — R™ and F» : U € BR" — R™. Furthermore, suppose both of these are
differentiable at a € R". It follows that (df1), = L; and (dF»), = L are linear operators from R"
to R™ which approximate the change in F; and F5 near o, in particular,

¥im F} (a+ hf) hnd Fl (CI) - L1(h) =0 lim
Py Al hes0 T

Pala+h) — Fala) — La(h) _

To prove that H = £ + Fb is differentiable at ¢ € B" we need to find a differential at a for H.
Naturally, we expect dH, = d(Fy + Fa)q = (dF1)q + (dF3)a. Let L = (dF}), + (dF3), and consider,

H{a+h)-H{a)—~L{h}

— i Bleth)rFalath)—Fila)—F(a)=Li(h)—La(h)

lim

h—+0 IRt =40 1211
— lim Fila+h)~Fi(a)—~Li1(h) + lim Fa(ah)-—FPafa)-~La(h)
R0 TRl h=+0 Al
=040
=0

Note that breaking up the limit was legal because we knew the subsequent limits existed and
were zero by the assumption of differentiability of Fy and F» at a. Finally, since L = L + Ly we
know L is a linear transformation since the sum of linear transformations is a linear transformation.
Moreover, the matrix of L is the sum of the matrices for L; and Lo, Let ¢ € R and suppose G = cF}
then we can also show that dG, = d(cF)), = e(dF1),, the calculation is very similar except we just
pull the constant ¢ out of the limit. T'll let you write it out. Collecting our observations:

Proposition 6.3.1.

Suppose Fy U C B* — R™ and Fy : U € R" — B™ are differentiable at @ € IV then
Fy + F5 is differentiable at a and

d(F1 + Fa)e = (dF1)o + (dF)a | or |(F1 + F2){a) = F{(a) + F3(a)

Likewise, if ¢ &€ [E then

d(cF)q = cldF)a | or |(cF) {(a) = c(F{(a))
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6.3.2 product rules?

What sort of product can we expect to find among mappings? Remember two mappings have
vector outputs and there is no way to multiply vectors in general. Of course, in the case we have
two mappings that have equal-dimensional outputs we could take their dot-product. There is a
product rule for that case: if 4, B : R™ — R™ then

9;(A-B) = (0;A)-B)+ A (&;B)

Or in the special case of m = 3 we could even take their cross-product and there is another product
rule in that case:

8:(A x B) = (8;4) x B+ A4 x (8;B)

What other case can we "multiply” vectors? One very important case is R? = C where is is
customary to use the notation (z,y) = z + iy and f = w4 {v. If our range is complex numbers
then we again have a product rule: if f: B" - C and g:R® —+ C then

2i(fg) = (8;Ng + f(d9)

I have relegated the proof of these product rules to the end of this chapter. One other object worth
differentiating is a matrix-valued function of R™. If we define the partial derivative of a matrix to
be the matrix of partial derivatives then partial differentiation will respect the sum and product of
matrices (we may return to this in depth if need be later on):

0;(A+B)=0;B+0;B| [8;(AB) = (8;A)B + A(9; B)

Moral of this story? If you have a pair mappings whose ranges allow some sort of product then it is
entirely likely that there is a corresponding product rule *. There is one product rule which we can
state for arbitrary mappings, note that we can always sensibly multiply a mapping by a function.
Suppose then that G : U CR™ — BR™ and f: U C B" = R are differentiable at ¢ € U. It follows
that there exist linear transformations L : R" — R™ and Ly : R" — R where

lim Glat h) — Gla) - La(h) =0 lim fla+h)~ [la) ~ Lj(h)
h—0 ;lh’” h—+0 h

=10

Since G(a -+ h) = Gla) + Lg(h) and f(a + h) = f(a) + Ly(h) we expect

fGla+h) = (fla) + Li(R)){G(a) + La(R))
= (fG)(a)} + Gla)L;(h) + fla)La(h) + Ly(R) La(h)

~

linear in h 214 grder in A

*In my research 1 consider functions on supernumbers, these also can be multiplied. Naturally there is a product:
rule for super functions, the catch is that super numbers z, 1w do not necessarily commute. However, if they're
homogeneneous zw = (—1)**=wz. Because of this the super product rule is S (fg) = (Far flg + (=11 f(Barg)
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Thus we propose: L(h) = G{a)L;(h) + f(a)Lg(h) is the best linear approximation of fG.
(fC)a-+h) - (fG)(a) = L(h} _

Him

h=0 1]
i 1+ WG lat h) — (@)Cla) — Cla) Ly (h) - J(a)La(h)
=0 7]
_ i et WGla+ 1) = f(@)Gla) = Gla)Ly(h) = fla)Lo(h)
s 7]
1 lim £(@G(a ) - Glat h)f(a)
= 1
+ i L2 NG = Glaf(a+ )
L0 Hh”
i {@6(@) - G(@)f (@)
140 2]
= lim | f(a Gla+h) = Gla) = La(h) | fla+h)— fla) - Lf(hf) al+-
- ’1'—"0['“ : [171] " 2] Gla)
a L) a G(ﬂ-}-fl)—G((L)
(St~ o) R
= Glat+h)~Gl@)~La)] | [ flat+h)—f(a)-Li(h)
=g g A [+ i |
= {}

Where we have made use of the differentiability and the consequent contimiity of both f and G at
a. Furthermore, note

L(h+ck) = Gla)Li(h + ck)+ f(a)La(h + ck)
= Gla)(Lj(h) + cLy(k)) + f(a){La(h) + cLg(k))
= G(a)Ls(h) + fla){La(h) + c(G(a) Ly (k) + fla}Llg(k))
= L{h) 4+ cL(k)

forall b,k € R” and ¢ € R hence L = G(a)L;+ f(a)Lg is a linear transformation. We have proved
(most of) the following proposition:

Proposition 6.3.2.

FG:UCR" - R"and f: U € RB" = R are differentiable at ¢« € U then fG is

differentiable at a and G (a.\ _D}( a)
Qe = (d))aCla) + [()dG, ] [(FG)(a) = Fbaditar + /(

The argument above covers the ordinary product rule and a host of other less comimon rules. Note
again that G(a) and G'(a) are vectors. ,

G (o) £'(n)

S et

Ryt
Xl I xXn = MmN

PY‘O‘\DL‘\:‘\ g\f\ uw\d wr\'lre

3 (£6), = U+ G,

Yvt, Ws oh or g b woedl

/
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6.4 chain rule

The proof in Edwards is on 77-78. I'll give a heuristic proof here which captures the essence of the
argument. The simplicity of this rule continues o amaze me.

Proposition 6.4.1.

FIr FiUC B 5 RP s differentiable ‘at aand G’ VQ BP — ;EP&"T"is"_'diﬁ'erénti'able-'a;t
F(u} E V. lhen G F is; diﬂ'erontmble 'lt a- and : I

d(G F)a = (dC’)p(a F ';_.'m'-;. in maif]‘ix{nofc'é%ﬂi:on?f I(GGF)’(G)Z G'(F{a))F/(a)|

Proof Sketch:

Congrdan XKM’“%

G‘J t x;»* (m. "

7l f’j“”
%[L*“ki.ﬁ.i f“ {a

N

In calculus 111 you may have learned how to calculate partial derivatives in terms of tree-diagrams
and mtermediate variable ete... We now have a way of understanding those rules and all the
other chain rules in terms of one over-arching calculation: matrix multiplication of the constituent
Jacobians in the composite function. Of course once we have this rule for the composite of two
functions we can generalize to n-functions by a simple induction argument. For example, for three
suitably defined mappings F.G, H,

(FoG-H)(a) = FI(G(H(a))G'(H{a)) H'(a)

Example 6.4.2. . . 7/1}477;) % (X/\,«’) — ;{Zié,.?’ &N}g 001. (}"} = ;&«; ;{a;}
e lr‘\&ué: {: M X? i?u. el W’i : )Ti B iﬁ:z oot r
£,y = [‘zx‘ﬁz, 2x?y ] end  BE) = [if
Rdete £o8 s W BT T b )
. |
W= (o808 )= 6

4

S PN

§ b L

+

2

5

i
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Example 6.4.3. . .
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Example 6.4.6. . .
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6.4.1 theorems

The goal of this section is to prove the partial derivatives commute for nice functions. Of course
some of the results we discuss on the way to that goal are interesting in their own right as well.

Definition 6.4.8.

We say 7 C B" is path connected iff any two points in U can be connected by a path
which is contained within the set.

For example, BR™ is connected since given any two points a,b € R" we can construct the path
o(t) = a + t{b— a) from a to b and naturally the path is within the set. You can casily verify that
open and closed balls are also path connected. Even a donut is path connected. However, a pair
donuts is not path connected unless it’s one of those artsy figure-8 deals.

not e A
Lanngulrtbl 0 LOﬂnCM ‘.é—' puth puwteide
" (L;:Fm:
Proposition 6.4.9. T hﬂ\?r:w}%a—
If {7 is a connected open subset of B" then a diﬁ'erenital_iifz mapping F : U — R™ is constant AdE,
it F'luy=0forallu e U. (7)Y ()

Let {‘\‘G e U and %mw fﬁmu l::o\k"(_r w\t\\f\ o Srn.ua-\/l\ \Pmmﬂ ”ﬂ/: l:a,jb]m———-; '[‘J"

Cperhmpg we  shaedd Trgid \)L—M\ Lnnedked = sonoodh poedhs exich Tasfele -D‘)

Gonsilan, F (v )] = @) . If F s cnthet dhan &) conshundd

Wena FYWYYH = 0 bowd ¥ sreoth = TU) #Fo hence

f’("((a)) = Flla)=0 = F'l«) =0 \V/jﬁ V. Len Vf’fff/;

i Pl =0 YueU = £hH6t) - F/(v@l)v'et) = 0

Ay
Thes 3(8) = alb) = F(¥W) = F (i) Rero
= F(A) = FIB) W AR e U A F warhad on S

@

If U is a connected open subset of B™ and the differenitable mappings F, & : U — B such

that F'(z) = G'(x) for all € U then there exists a constant vector ¢ € R™ such that
Fle)=G(x)+cforallze U.

Proposition 6.4.10.

Cuh:'{‘rwd’ Hbﬂ = Fx) - GCP"-\) é&‘a.r\cD note HI(K) - FI(X) hd G/{X) = O \U{X@Lf:
6\3 Ko Previpws prop - H{x) = C ¥xe U heno
Fix) = Gx)+C Y= e U,

Remﬁ.(‘ﬂ‘. \f U wes not fﬂﬂm‘it’*ul wie LquJL owl COV\c,t!M/LQ
.,\'l\ojg Mo F was Lnr\j‘*f’M\/t on conneuield ?uubé’t{ff’ owf 1,

Th Jﬂgpo\o one  CM§ CRrSEs bfﬂ%‘f“'h‘a dﬂmwr\ tn JlJﬂ\.UL Thtp
s 9&)&\ Lownp omr\ks/ ’H'\cw, i W\M‘lmAzQ Cnmneusmﬂ Iwbs”effl?,
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There is no mean value theorem for mappings since counter-examples exist. For example, Exercise
1.12 on page 63 shows the mean value theorem fails for the helix. In particular, you can find
average velocity vector over a particular time interval such that the velocity vector never matches
the average velocity over that time period. Fortunately, if we restrict our attention to mappings
with one-dimensional codomains we still have a nice theorem:

Proposition 6.4.11. (Mean Value Theorem)

Suppose that f : I/ — R is a differentiable function and U/ is an open set. Furthermore,
suppose I/ contains the line segment from a to b in U,

Lop={a+t(b—a) | te 0,1} CU.
It follows that there exists some point ¢ € L,y such that

Fb) = fla) = f'(c)(b - a).

“The  prood Lol From dhe conthmcban, of o« Aunchin on (<
to whidh e e,\e,me.rvhm% menn vatne WD bpp[fe.;{g Lek

CQUC) — -u?(omr k(bm&)) for ostel|
@F l”'( «Javw- ?ft,('e.r , r,w\-!hu-.u{’ CP[;&) = & + }t'“)—&‘.) Wlfu'.'_,f« Pm'mmbh'—z:e:
tre \ag ge,taw\wj) From o o b, CLE:AI[»B PUH = b-a and
‘b% X LM&\“'W{&,

AN = FLEHR) )
Mok gt Lo, ) U be R i dieendidl on [41)
s Aa myT give) C, € Logt) such dhb 9(1)-9L)=97CcC).

L ) ) = 0 - 906) = 97a) = £ (%)) = v""’f;‘)“ b-a).

Definition 6.4.12. [higher derivatives) €= ?‘/G’)‘
We define nested directional derivatives in the natural way:
‘ . Dy fle -+ ek — Dy flx
DIKAL-),!,_}"(.’E) = D;\.(th(.l‘)) = }lllil : ! (I ! !) : f{ : )
1} .
Furthermaore, the second difference is defined by
A (hk) = fla+h+1)— fla+h) = fla+ k) + fa)
!
il el note] Floth) - £la) = £/Cas &h)h
ﬁ bv() T -{‘-(m'hq«h)———{:ﬂwﬂm) = {;‘I(q;rk__;@h)ff,
A2 0 4 1 AN [ fya
e A8 () = &8 (0} = b, (h)

&
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This is Lemma 3.5 on page 86 of Edwards.

Proposition 6.4.13.

Suppose U7 us an open set and f : 7 — B which is differentiable on U with likewise
differentiable directional derivative function on U7. Suppose that a,a + h,a + k,a+h+ k
are all in U then there exist a, 8 € (0, 1) such that

/_\’?(h,, k) = DDy f(a -+ ah -+ Bk).

The proof is rather neat. The o and A stem from two applications of the MVT, once for the

function then once for its directional derivative.
dob a(x) = Flxa k) = £ thon d9 = 3, - 4t -
Farkhumace, vitia 850 (L) = £loavhtle)m £lorh) - £lorh ) Flo) pole,

AL (W) = 9§ (et h) - 9(»)

,ﬁu]luw‘na = o' (a+ «h)h by MVT 3 ere (1),
Qcﬁuﬂ"ﬂlf = CDh o )(& +a£}\) : o\p{’f- = dicehond derivehyy extet,
. g’?‘ = é‘%m+n{h (h)
P9 = Dl'pau-ghﬁ"u (h) - dFﬂ-‘Wh (1)

= Dy f (ntehel) - Dpflateh) .
- @);,-F)'(m*“'m@k)(m Fue femma e’g (o,1) ED m YT X

- O‘)'A th)(g‘* o h +€L{) : unrmf«/{;ha retadtrin,

Proposition 6.4.14.

Let U7 be an open subset of R, If f: {/ — B is a function with continuous first and second

partial derivatives on U then for all 4,7 = 1,2,...,n we have D;D; f = D;D;f on U;

o*f &
;0 - dz;0z;

Df, Uej,hes) = Dy, Digflas e +ch )

T D (hehe ) = 87, (kej  he;)
= Dhi 6 = 0D 40

((M R T e \xumcaweﬂigr of D {=c Dvﬂp)

AZWE& “’l(‘.’,‘/ Lféé;) —_ 'Dmé th(m 0{1}16’;/-&6{&&‘3‘)

Mo

3
bk G limit Oh k—>0 diop the kb insicde
,;"LQ (Df C_..,\) wLerms“. Cu..n ol s (ﬂ“‘f 6'9 CM 57[
Par%{g_f c[éfiv‘&-’f‘\}ﬁjé Al s g,
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6.5 differential forms and differentials

Definition 6.5.1.

A form field on B is a function from B to the space of all linear maps from R to B. In
other words, a form field assigns a dual vector at each point in B. Remember that B* =
{f:R’ =R fisalincar function}. We call o a differential one-form or differential
form if o can be written as o = ayde for some smooth function o).

The definition above is probably unecessary for this section. I give it primarily for the sake of
making a larger trend easier to grasp later on. Feel free to ignore it for now.

6.5.1 differential form notation

Let g{z) = x for all z € R. Note that g'(x) = 1 and it follows that dg,(z) =1-2 =z for all z € R.
Therefore, dg = g. If we denote g = x so that dx = z in this notation. Note then we can write the
differential in terms of the derivative function:

df (a){(h) = dfo(h) = f/(a)h = f{a)dz.(h) forall h e R

Hence df(a) = f'{a)dz, for all ¢ € R hence df = f'dz or we could denote this by the deceptively
simple formula df = %d% Thus the differential notation introduced in this section is in fact con-
sistent with our usual notation for the derivative from calculus I. However, df and dz are actually
differential forms in this viewpoint so I'm not so sure that df /dz really makes sense anymore. In
retrospect, the main place we shift differentials around as if they are tiny real numbers is in the
calculations of u-substitution or separation of variables. In both of those cases the differential
notation serves as a shorthand for the application of a particular theorem. Just as in calculus II1
the differentials dz, dy, dz in the line integral jC pdx + gdy -+ rdz provide a notational shortand for
the rigorous definition in terms of a path covering the curve C.

Differentials are notational devices in calculus, one should be careful not to make more of them
then is appropriate for a given context. That said, if you adopt the view point that dx, dy, dz are
differential forms and their product is properly defined via a wedge product then the wedge product
together with the total differential {to be discussed in the next section) will generate the formulas
for coordinate change. Let me give you a taste:

dr Ady = d(rcos(8)) A d(rsin{d})

= [cos(f)dr — rsin(0)d] A [sin(f)dr + 7 cos(#)dd)

= 7rcos?(()dr A df — rsin®(0)df A dr

= rdr Adf
where 1 used that dr A dfl = —dff Adr, dr Adr = 0 and df A dff = 0 because of the antisymmety
of the wedge product A. In calculus III we say for polar coordinates the Jacobian is g((“:,g)) = 7.
The determinant in the Jacobian is implicitly contained in the algebra of the wedge produet. If you
want to change coordinates in differential form notation you just substitute in the coordinate change
formulas and take a few total differentials then the wedge product does the rest. In other words, the
Jacobian change of coordinates formula is naturally encoded in the langauge of differential forms.
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6.5.2 linearity properties of the derivative

Proposition 6.5.2.

Suppose that f, g are functions such that their derivative functions f’ and g’ share the same
domain U then (f + g) = '+ g" and {c¢f)" = ¢f’. Moreover, the differentials of those

functions have
d{f +g) = df +dg and  d(cf) = cdf

Proofi The proof that (f 4+ g) = f 4 ¢ and (¢f) = ¢f' follows fram earlier general arguments in
thiz chapter. Consider that,

t](/' ‘!‘ ﬂ)a (h)

LS 4 g) () def. of differential for [+ ¢

= h(f"{a)+¢'(a}} using linearity of derivative.

di {h) +dg,(h)  algebra and del. of dilferential for [ and g.
= (df + dg)a(h) def. of sum of functions.

B

this d(f + g) = df + dg and the proof that d(¢f) = cdf is similar. T
We see that properties of the derivative transfer over to corresponding properties for the differential.
Problem 1.7 on pg 62-63 of Edwards asks you to work out the product and chain rule for differentials.

6.5.3 the chain rule revisited

Proposition 6.5.3.

Suppose that f: dom(f) — range(f) and g : dom{g) — range(g) are functions such that g
is differentiable on U and f differentiable on g(U} then

(f o) (a) = g'(a) f"(g(a))

for each @ € U and it follows d(f o g)y = dfy(a) ° dga-

An intuitive proof is this: the derivative of a composite 15 the slope of the tangent line to the
composite, However, if i and fo are linear functions with slopes iy and ms then fy o fa 18 o linear
function with slope mryme. Therefore, the derivative of a composite s the product of the derivatives
of the inside and outside function and we are forced to evaluate the outside function at gla) since

tlat's the only thing that makes seuse®, Finally,
d(f o g)a)(hy = h(fog)(a) = hg'(a) [ (g(a)}) = dfya (hg'(03) = df o (dg. (1)) = (df oy = dya)(h)
Therefore we Bnd d(f=g)y = df 0, ° dga-

Prool: Let o < {7 then (,i" ‘) == Ty glath)-yie) thus Hmy_,p gle + 8 = limy, g gla) -+ ha' ).
o !!I + () fi fi— 3 .] ¢ fi—+) .] j

It other words, the {unction ¢ and it's tangent line are equai in the imit vou approach the poing
)’ & l o I l ]

this is argument by inevitability, see Agent, Smith for how this turns oui as a pattern of deduction.
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of tangency. Likewise, [M{g(a)} = limg_g Mu‘:i}:!ﬁ(_*?ﬂ Lenee limg .y flyla) + 8 = flg(a)) -+
df'{g(a)). Caleulate then,

o glathy—(f° gie)

(feg)la) = lmy_q 7 defn. of derivative
= limy_,q f(""{”"'i'h‘}lz """" fiala)) defn, of [-g¢
= Hnmy .y ﬂ"‘i(”}H"'q,(;f)))_ﬂ""“')} since gla+ h) = gla) + hg'la)
= g (a) limg_.p M)—'%FM—} made subst. & = ¢’ {a)h

= (1) limg.so Jiglan44f (g(cri‘l-j-{ﬂ(rz}) as floln) + 6y = flgla)) + 8/ (gla))
= g'(a) [ (ylu)) limit of constant is just the constant.

[ have used the notation = to indicate that those equations were not preeisely true. However, the
error is small when boor @ are elose to zero and that is precisely the case which we were faced with
in tliose calendations. Admittably we could give a more rigoruous proof in terms of ¢ and § but

this prool suflices for our purposes hiere. The main thing T wanted you to take from this is that the

Notice that most of the work I am doing here is to prove the result for the derivative. The same
was true in the last subsection. In your homework I say you can assume the product and quotient
rules for functions so that problem shouldn’t be too hard. You just have to pay atiention to how I
defined the diflerential and how it is related to the derivative.
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6.6 special product rules

In this section I gather together a few results which are commonly needed in applications of calculus.

6.6.1 calculus of paths in R®

A path is a mapping from R to R™. We use such mappings to model position, velocity and
acceleration of particles in the case m = 3. Some of these things were proved in previous sections
of this chapter but 1 intend for this section to be self-contained so that you can read it without
digging through the rest of this chapter.

Proposition 6.6.1,

If F,G:U CR — R™ are dilferentiable vector-valued functions and ¢ : U CR — R is a
differentiable real-valued function then for each t € U,

L (F+G)(t)=F'(t)+ G3).

f o)

. (eF)(t) = cF' (1),
@Y (1) = ¢ (OF() + S F'(1).

(P GY(1) = F(1) - G(E) + F(t) - G'(t).

- provided m = 3, (F x GY(t) = F'(t) x G(t) + F(1) x G'(1).

o

a2

6. provided ¢(U) C dom{F"), {F o) (£) = & (t)F(H(1)).

We have to insist that m = 3 for the statement with cross-products since we only have a standard
cross-product in B3, We prepare for the proof of the proposition with a useful lemma. Notice this
lemma tells us how to actually calculate the derivative of paths in examples. The derivative of
component functions is nothing more than calculus I and one of our goals is to reduce things to
those sort of calculations whenever possible.

Lemma 6.6.2.
It F:UCRE—R™Iis differentiable vector-valued function then for all ¢ € U,

Fi(t) = (F{ (1), F3(1), ..., F{t))

We are given that 1the following vector Hinit exists and is equal to F'(4},

F'(#) = lim Lt h) - 1)
I h—b h

then by Proposition 3.2.10 the Hmit of a vector is related to the linits of its compenents as follows:

L hY = Fi(D)
LS AR A} J
F{t) - ey = limy i -
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Thus (F'(#)); = Fi(t) and the lemma follows®. ¥

Proof of proposition: We use the notation 7= 3" Fye; = (... F) aud & = 5, Ge; =
(G, ..., G throughout the proofs below. The Z is 1111(1(3151‘.0()(1 to range over 1,2, .. m. Begin

with {1.),

(F+GY); = $UF+G using the lemma
= (‘f{, Fy + Gy using def. (F + Gy =1+ Gy
= & LIF] o 4 {(rj by caleulus L (f + gY = '+ 4"
= [F'+ L':f}!j def. of vector e:u:.lfl';tlm:l for F* ;‘md G’
Henee (F = GY = F' » G+ F « G'.The proofs of 2.3,5 and 6 are similar. P'H prove (5.9,
| : I '
{F > GYp = L[(F = Gy using the lemma
= L yaIen using def. F » &G
= Z ik -{iﬁ G repeatedly using, (f - ¢g) = /" + 4
T T, o ; e . . . .

= X F.,-jkﬁgdffbj + B repeatedly using, (f¢) = g+ fo'
= T € ‘” St L i1ty dfj;”} property of finite sum Z
= { ‘—(IT‘:,: W @y + (F ox 'jj#)k) def. of cross product
( % G S s !'g?" ) - defl. of vector addition

Notice that the caleulus step really just involves caleulus T applied to the components. The ordinary
product rule was the crucial factor to prove the product vule for cross-products. We'll see the same
for the dot product of mappings. Prove {.L.)

(F -Gy = 41> FGy using del. F - &
= L S G repeatedly using, (f + ) = "+ ¢
== }i:!f]—l:{’(?; -+ 1;%—{ repeatedly using, (foV = o+ fof
= (f;’[ I O if’f; def. of dot product

The proof of (3.) follows from applying the product rile to each component of ¢{£)F(#). The proof
of {2.) follow from (3.) in the case that phi{t} = ¢ so &' (1) = 0. Finally the pl.uof r.).l. (6.1 follows
lroan applying the chain-rule to each component. £

U¢his notation I first saw in a text by Marsden, it means the proofl is partially completed but you shouid read on
to finigh the proof
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6.6.2 calculus of matrix-valued functions of a real variable

Definition 6.6.3.

A matrix-valued function of a real variable is a function from I € B to B ™ " Suppose
AL CR - R™ ™ is such that Ay : [ € B — R is differentiable for each 4,7 then we
define

_@é — [(EA,‘J"‘
dt dt

which can also be denoted (A”);; = Al,. We likewise define [ Adi = [[ A;dt] for 4 with
integrable components. Definite integrals and highor derivatives are also defined component-
wise.

2t 3t
43 5¢
definition above. calculate; to differentiate a maotric we differentiote each component one at a time:

ey | 2 Bt neew_ | 08 s |20
A = [ 122 2043 ] AT = [ 21t GOL ] A0) = [ 0 0 ]

Integrate by integrating each component:

Example 6.6.4. Suppose A(t) = { ll caleulate o few itemns just to illustrate the

e 4 2 1&2}3 t3|§ 4 8
AD)dt = | * bobome2 A(D)dt = - | =
,/‘ *) [tdAFC3 t54~cd} _A, ") W2 e {16 32]
L P

Proposition 6.6.5.

Suppose A, B are matrix-valued functions of a real variable, f is a function of a real variable,
¢ is a constant, and ' is a constant matrix then

1. (AB) = A'B + AB’ (product rule for matrices)

S

C(ACY = A'C

I~

L (CAY =CA
4. (fAY = ["A+ fA
(cAY = cA’

(3

6. (A+BY =4+ B

where each of the functions is evaluated at the same time £ and I assume that the functions
and matrices are differentiable at that value of ¢ and of course the matrices A, 13, (' are such
that the multiplications are well-defined.
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Proof: Suppose A{t) e B ™" and Bt} € B "*? consider,

(IUB’}'U- = (—%{(,.-’-18),3) defn. derivative of matrix
o ;‘f;( > A Brj) defn, of matrix multiplication
=3 (—f—(A,A B3 ]) linearity ol derivative
= S:;[ e A =U%;,] ordinary product riles
14 113, B
=y B;‘.J + 2 . ,5;|.im¥ algebra
= {A'B);; + (AB)y; deln. of matrix multipication
= {A'B + AB')y defn. matrix addition

this proves {1.) as {,j were arbitrary in the caleulation above, The proof of ( J and (3)) foliow

9
quickly from (1.} since ' constant means (7 = 0. Proof of (1.} is similar to (1.):

(fA) = u,, LA defn. derivative of matrix
= ”,,( Y J} defn. of scalar multiplication
= ‘j’; Aij + dF ordinary product rule

= (‘j{ A f(df by defn. matrix addition

— (‘ff

oA+ )”'H Jij  defn. sealar multiplication.

The proof of (5.} follows from taking f{t) = ¢ which has /' = 0. 1 leave the proof of (6.) as an
exercise for the reader. L.

To summarize: the calculus of matrices is the same as the calculus of functions with the small
qualifier that we must respect the rules of matrix algebra. The noncommutativity of matrix mul-
tiplication is the main distinguishing feature.

6.6.3 calculus of complex-valied functions of a real variable

Differentiation of functions from B to € is defined by splitting a given function into its real and
imaginary parts then we jusi diflerentiate with respect to the real variable one component at a
time. For example:

ﬁn(eg"' cos(t) + ie* sin(t)) = d ( 2 cos(t)) + i(—%(ez‘sin(t))

dt 7
= (2e* cos(t) — e sin(t)) + 1(2e* sin(t) + e** cos(t)) (6.1)
( +1)(cos(?) + isin(t))
) (2

+in

e
= (2-
where I have made use of the identity” e¥% = e%(cos(y) + i sin(y)). We just saw that 7;6“ = AeM
which seems obvious enough until you appreciate that we just proved it for A = 2 4.

Tar definition, depending on how you choose to set-up the complex exponential, 1 take this as the definition in
calcalus 11



