Chapter 8

on manifolds and multipliers

In this chapter we show the application of the most difficult results in this course, namely the
implicit and inverse mapping theorems. Our first application is in the construction of manifolds
ag graphs or level sets. Then onece we have a convenient concept of a manifold we discuss the idea
of Lagrange multipliers. The heart of the method combines orthogenal complements from linear
algebra along side the construction of tangent spaces in this course. Hopefully this chapter will
heip you understand why the implicit and inverse mapping theorems are so useful and also why
we need manifolds to make sense of our problems. The patching definition for a manifold is not of
much use in this chapter although we wiill mention how it connects to the other two formulations
of a manifold in B™ in the context of a special case.

8.1 surfaces in B’

Manifolds or surfaces play a role similar to functions in this course. Our goal is not the study of
manifolds alone but it's hard to give a complete account of differentiation unless we have some idea
of what is a tangent plane. This subsection does break from the larger pattern of thought in this
chapter. Linclude it here to try to remind how surfaces and tangent planes are deseribed in B9, We
need some amount of generalization beyond this section because the solution of max/min problems
with constraints will take us into higher dimensional surfaces even for problems that only involve
two or three spatial dimensions. We treat those questions in the next chapter.

There are three main meihods to describe surfaces:

1. As a graph: § = {(2,v,2) | 2 = f(2,9) where (2,¥) € dom()}.
2. As a level surface: 5 = {{z,y,2) | F(x,y,z) =0}

3. As a parametrized surface: S = {X (1, v) | (u,v} & dom(X)}
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Let me remind you we found the tangent plane at (2, 4., 20) € S for each of these formalisms as
follows (continuing to use the same notation as above):

1. For the graph: z = z, + f(o Yo) + fo(0, ya) (@ — 20} + fy(ﬂ;m'yo)(y — Yo).

I

. For the level surface: plane through (x,, y,, 2o) with normal (VF)(zs, yo, 20)

3. For the parametrized surface: find {u,, v,) with X (e, v0) = (To, Yo, o), the tangent
plane goes through X (u,,v,) and has normal N (ue, v,) = Xy (o, Ve) ¥ Xy{te, vn).

Perhaps you recall that the normal vector field to the surface § was immportant in the formulation
of surface integrals to calculate the flux of vector fields.

Example 8.1.1. The plane through the point ¥, with normal @ =< a,b, ¢ > can be described as:
1. all 7€ B3 such that (F—7,) -7 = 0.
2. all (w,y,z) € B such that a(x — 2,) + by —yo) + e{z — 2,) =0
8. if ¢ # 0, the graph z = fa(x,y) where fa(z,y) = 2o -+ 4z~ 2,) + %(y - Uo)
4. if b# 0, the graph y = fa(w, z) where fo(r,2) = gy -+ F(x — 25) + 72 — 25)
if @ % 0, the graph . = f1(y, z) where fily, 2) = 2, + é’-(y = o) + £{z = z;)

6. given any two hnearly independent vectors a, b in the plane, the plane is the tmoge of the
mapping X : B® — B3 defined by X{(u,v) = 7, + ud + vb

Example 8.1.2. The sphere of radius B centered about the origin can be deseribed as:

Loall (x,y.2) € BY such thet Flx,y, z2) = a° 4+ y* + 22 = R?

S

the graphs of 2 = fy(r,y) where fo(a,y) =+

o

L for {u,v) € [B,27] x [0, 7], X{u,v}= (Rcosusinv, Rsinusinv, Kcosv)

You may recall that the ievel surface concept allowed by far the easiest computation of the normal
ol the tangent plane for a particular point. For example, VF =< 22,2y, 2z > in the preceding
example. Contrast that to caleulation of X, x X, where the » denotes the dreaded cross-product.
Of course each formalism has its place in caleulus II1.
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Remark 8.1.3.

In this warm-up section we have hopefully observed this much about surfaces in R?:

1. the tangent plane is always 2-dimensional, it is really a plane in the traditional sense
of the term.

Lo

. the normal to the tangent plane is always I-dimensional, the normal through a par-
ticular point on the surface is just a line which is orthogonal to all possible tangents
through the point.

3. the dimension of the tangent plane and normal give the total dimension of the ambient

space; 241 = 3.

8.2 manifolds as level sets

We will focus almost exclusively on the level surface formulation of a manifold in the remainder of
this chapter. We say A/ C R" is a manifold of dimension p < n if M has a p-dimensional tangent
plane for each point on M. In other words, A7 is a p-dimensional manifold if it can be locally
approxitnated by RBP at each point on M. Moreover, the set of all vectors normal to the tangent
space will be n — p dimensicnal.

These are general concepts which encompasses lines, planes volumes and much much more. Let me
illustrate by example:

Example 8.2.1. Let g : 7 — B be defined by g(z,y) = y — 2 — 1 note that g(z,y) = 0 gives the
line y—x—1 =0 commonly written as y = x -+ 1; note that the line has direction vector < —1,1 >.
Furthermore, Vg =< 1,—1 > which is orthogenal to < —1,1 >.

Example 8.2.2. Let g B* — B be defined by g(w,u, 2) = y — x — 1 note that g(x,y, 2) = 0 gives
the plane y—x—1 = 0. Furthermore, Vg =< 1, ~1,0 > which gives the normal to the plane g = 0.

Example 8.2.3. Let g : BY — R be defined by glx.y, 2,1) = 4 — 2 — 1 note that g(x,y, z,1) = 0
gives the hyperplane y — x — 1 = 0. Furthermore, Vg =< 1,—1,0,0 > which gives the normal to
the hyperplane g = 0. What does that mean? It means that if I teke any vector in the hyperplane
it is orthogonal to < 1,~1,0,0 >. Let 71,72 be points in the solution set of g(x,y, 2,t) = 0. Denote
™ = (T1,, 21, t1) ond 7y = (22,2, 20, %), we have yp = a1 - 1 and yo = oo + 1. The vector in the
leyperplane is found from the difference of these points:

— —

7= Tg = = (;’I:g,ﬂ,'g + 372‘3,1'12) - (:171, ry 1, 3’1,t1) = (:I}g = Tyl — L, 29 — Z;,tg - i’l)'

1t's easy to see that ¥- Vg = 0 hence Vg is perpendicular to an arbitrary vector in the hyperplane
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If you've begun to develop an intuition for the story we're telling this last example ought to bug
you a hit. Why is the difference of points a tangent vector? What happened to the set of all
tangent vectors pasted together or the differential or the column space of the derivative? All those
concepts still apply but since we were looking at a linear space the space itself matched the tangent
hyperplane. The point of the triple of examples above is just to constrast the nature of the equation
g == 0 in various contexts. We find the dimension of the ammbient space changes the dimension of
the level set. Basically, we have one equation g = 0 and n-unknrowns thesn the inverse image of zero
gives us a (n — 1)-dimensional manifold. If we wanted to obtain a n - 2 dimensional manifold then
we would need two equations which were independent. Before we get to that perhaps I should give
a curvy example.

Example 8.2.4. Let g : B! — R be defined by g(2,y, z,t) = t+22+y>~22% note that g{a,y,2,t) =0
gives a three dimensional subset of B, let’s call it M. Notice Vg =< 2z, 2y, —4z,1 > s nonzero
everywhere. Let’s focus on the point (2,2,1,0) note that ¢(2,2,1,0) = 0 thus the point is on M,
The tangent plane at (2,2,1,0) is formed from the union of all tangent vectors to g = 0 at the
point (2,2,1,0). To find the equation of the langent plane we suppose v : B — M i5 a curve with
¥ # 0 and v(0) = (2,2,1,0). By assumption g{(v(s)) = 0 since v(s) € M for all s € B. Define
Y{0) =< a,b,¢,d >, we find a condition from the chain-rule applicd to g=~v = 0-at ¢ = 0,

d . ,
s

= <d,d,-4,1> - <abed>=0

= da 4 4h — de4-d =0

Thus the equation of the tangent plane is 4(x — 2) + 4(y — 2) — 4z — 1) + ¢ = 0. In invite the
reader to find a vector in the tangent plane and check it is orthogonal io Vg(2,2,1,0). However,
this should not be surprising, the condition the chain rule jusl gave us is just the statement that
< a,b,¢,d >€ Null(Vg{2,2,1,00T) and that is precisely the set of vector orthogonal to Vg(2,2,1, 0).

One more example before we dive into the theory ol Lagrange multipliers. (which is little more
than this section applied to word problems plus the powerful orthogonal complement theorem from
linear algebra)

Example 8.2.5. Let G : B — B2 be defined by Gla,y,2,0) = (z+ 2" + 2 =2 2+1y2+ 12 =2). In
this case G(z,y,2,1) = {(0,0) gives a two-dimensional manifold in BY let's call it M. Notice thai
Gi1=0gives =+ 2 +y* =2 and G2 = 0 gives z -+ y> +1* = 2 thus G = 0 gives the intersection of
both of these three dimensional manifolds in BY (no I can’t "see” it either). Note,

V& =< 22,2y, 1,0 > VGe=<0,29,1,2¢ >
It turns oul that the inverse mapping theorem says G = 0 deseribes a manifold of dimension 2 if

the grodient vectors above form a linearly itndependent sci of vectors. For the example considered
here the gradient vectors arve linearly dependent af the origin since VG, (0) = VGo(0) = (0,0,1,0).
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In fact, these gradient vectors are colinear along along the plane x = ¢ = 0 since VG1(0,y,2,0) =
VG2(0,y,2,0) =< 0,2y,1,0 >. We again seek to conirast the tangent plane and its normal at
some particular point. Choose (1,1,0,1) which is in M since G(1,1,0,1) = (0+1+1— 2,0+
1+1-2)=(0,0). Suppose that v : B — M is a path in M which has v(0) = (1,1,0,1) whereas
¥(0) =< a,b,e,d >. Note that VG1(1,1,0,1) =< 2,2,1,0 > and VG2(1,1,0,1) =< 0,2,1,1 >.
Applying the chain rule to both Gy and Gy yields:

(G179 (0) = VG (v(0) < a,b,e,d >=0 . = <2,2,L,0> - <a,be,d >=0
(GaeyY{D) = VGa{y(0) < a,b,c,d >=10 = <0,2,1,1 > - <a,be,d>=0
This is two equations and four unknowns, we can solve it and write the vector in terms of two free

variables correspondant to the fact the tangent space is two-dimensional. Perhaps it's easier to use
malriz techiques to organize the calculation:

43
2210 bl 0
S INEH
) e
We calculate, rref [ é ; 1 [1) } = [ (l) (1] 1[;2 —i:;éz ] t's natural to chose ¢, d as free vari-
ables then we can read that o = d/2 end b= —¢/2 - d/2 hence

<abod>=<df2, ~¢/2 - d/2,c,d >=F < 0,-1,2,0> —I—% <1,-1,0,2 >
We can see o basis for the tangent space. In foct. I can give paramelric eguations for the tangent
space as follows: ‘
Na,)={1,1L0D4+nu<0,-1,2.0> 4+v<1,~-1,0,2 >

Not surprisingly the basis vectors of the tangent spoce are perpendicular to the gradient vectors
VG(1,1,0,1) =< 2,2,1,0 > and VGo{1,1,0,1} =< 0,2,1,1 > which span the normal plane

Ny, to the tangent plane T, at p = {1,1,0,1). We find that T}, is orthogonal to Np. In summary
TpL = N, and T, & N, = B!, This is just a fancy way of saying that the normal and the tangend

plane only intersect al zero and they together span the entive ambient space.

Remark 8.2.6.

The reason T am bothering with these seemingly bizarre examples is that the method of
Liagrange multipliers comes down to the observation thal both the constraint and objective
fnetion’s pradient vectors should be normal to the tangent planc of ¢he constraint surface.
This means they must both reside in the normal to the tangent plane and hence they will
either be eolinear or for several constraints they will be linearly dependent. The geometry
we consider here justifies the method. Linear algebra supplies the harder part which is

that if fwo vectors are both orthogonal to the tangent plane then they wust both be in
the orthogonal complement to the tangent plane. The heart of the method of Lagrange
multipliers is the orthogonal complement theory from linear algebra. Of course, you can be
heartless and st sucessfully apply the method of Lagrange.




150 CHAPTER 8. ON MANIFOLDS AND MULTIPLIERS

8.3 Lagrange multiplier method for one constraint
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8.4 Lagrange multiplier method for several constraints
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