Chapter 9

theory of differentiation

In the last chapter I began by announcing I would apply the central theorems of this course to
solve interesting applied problems. If you remembered that I said that you may be a bit perplexed
after completing the preceding chapter. Where did we use these theorems? It would seem we
mostly just differentiated and pulled a magic A from the thin air. Where did we use the inverse or
implicit mapping theorems? It's subtle. These theorems go to the existence of a mapping, or the
solution of a system of equations. Often we do not even care about finding the inverse or solving
the system. The mere existence justifies other calculations we do make explicit. In this chapter
I hope to state the inverse and implicit funciion theorems carefully. I leave the complete proofs
for Edward’s text, we will just discuss portions of the proof. In particular, I think it’s worthwhile
to discuss Newton'’s method and the various generalizations which reside at the heart of Edward’s
proof. In contrast, I will take it easy on the analysis. The arguments given in Edward’s generalize
easily to the infinite dimensional case. I do think there are easy arguments but part of his game-
plan is set-up the variational calculus chapter which is necessarily infinite-dimensional. Finally, I
conclude this chapter by examining a few examples of constrained partial differentiation.

9.1 Newton’s method for solving the insolvable

I'll begin with a quick review of Newton's method for functions.

Problem: given a function f : R — R which is continuously differentiable on [a,b] and
fla) <0 < f(b) with f'(z) > 0 for cach = € {a,b] how can we find the solution to f(z) =0
w.r.t. the interval [a,b]?

Solution: Newton’s Method. In a nutshell, the idea is to guess some point in z, € [a, b} and
then replace the function with the tangent line to (z,, f(z,)). Then we can easily calculate the zero
of the tangent line through elementary algebra.

flzo)
f'(zo)

y:L}:'D(m)=f($o)“§‘f,(mo)(mmma)=0 = T =T —
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156 CHAPTER 8. THEORY OF DIFFERENTIATION

Now, this is just the first ap%)roximation, we can apply the idea again to our new guess z; = T;
that is define 7, = z, — 7o) and think of x; as our new "x,". The zero of the tangent line to

(z1, f(x1)) is called z2 and we can calculate,

?J=L?1(33):f($1)+f’($1)($“'-’131)=0 = Ty =1T1 ™

Notice that if f{z;) = 0 then we found the zero and the method just gives z2 = z;. The idea then
is to continue in this fashion and define the n-th guess iteratively by

Newton’s Method:

flen)

Tpt1 = T — f‘.(l' )
L

If for some particular n we actually find the exact value of the zero then the iteration just stays on
that value. Otherwise, it can be shown that lim, o T, = z. where [f(z,)=0.
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This is the sunplest form of Newton’s method but it is also perhaps the hardest to code. We'd
have to calculate a new value for the derivative for each step. Edwards gives two modifications of
the method and proves convergence for each.

Modified Newton Methods:

f(zn)
M

9 . X f (-'T; n.)

o | Tp+1 = En — f’{a)

where we know 0 < m < f'{x) < M.

L | Tps1 = op —

where we know f'(a) # 0.

In case {1.) Edwards uses the concept of a contraction mapping to prove that the sequence
converges and he even gives an estimate to bound the error of the guess (see Theorem 1.2 on pg.
164). Then he cautions against {2.) because it is possible to have Fig. 3.2 on pg. 162 occur, in
other words if we guess badly to begin we might never find the root z,. The remedy is fairly simple,
you just look on smaller intervals. For (2.) he states the result concretely only in a local case (see
Theorem 1.3 on pg. 165). I actually have only stated a particular case of his Theorem since I have
made b = 0. The proof of the inverse function theorem builds from method (2.) but I'll give an
example of (1.) because it’s interesting and it should help make this whole discussion & little more
tangible.

b
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In case (2.) we can actually solve the equation f(z) = y for a given value y close to b provided
f(a) = b and f'(a) # 0. The idea here is just to replace the function at (z,, f(x,)) with the line
Lz} = f(zo)+ f'{a){x—=,) and then we solve L(z) = y to obtain z = xomﬂﬁrgT;y_ Note here we use
the slope from the point (a, b) throughout the iteration, in particular we say £; = z and start iterat-
ing as usual: T4 = Ty — ! (Jf,’zl}_y

(see Theorem 1.3 on pg. 165 in Edwards for proof this converges)

Problem: given a function f : B — R which is continuously differentiable near a and
f{a) 5 0, can we find a function g such that f(g(y))) = v for ¥ near the image f(a)?

Solution: Modified Newton’s Method. we seek to solve f(g{y)) = y for ¥ in some neighbor-
hood of a, simply define g,(y) = a and apply the method

) = g (y) — L @)~y
Un-+1 (y) = g'n(y) f’(a,)

Naotice this can be done for each y near f{a), in other words, we have a sequence of functions
{g2352,- Moreover, if we take n — oo this sequence uniformly converges to an exact solution

g. This gives us an iterative way to construct local inverse functions for some given continuously
differentiable function at a point @ such that f'(a) # 0.

The idea of convergence of functions begs the question of what precisely is the ”length” or "norm”
of a function. Again, I postpone such discussion until the very end of the course. For now just
accept that the idea of convergence of sequences of functions is well defined and intuitively it just
means that the sequence matches the limiting function as n — oo. You encountered this idea in the

discussion of Taylor series in calculus I, one can ask whether the sequence of Taylor polynomials
for f does converge to f relative to some interval of convergence.
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The calculations that follow here amaze me. |
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It would be interesting to implement this algorithm in Mathematica.
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9.1.1 local solutions to level curves

Next, we try a similar technique to solve equations of the form G{xz,y) = 0. You should recall that
the solution set of G(z,y) = 0 is called a level curve. Usually we cannot make a global solution
for y; in other words, there does not exist f(z)} such that G(z, f(z)) = 0 for all z in the solution
set of G. For example, G(r,y) = z* + y? — 1 allows us to cast the unit circle as the solution set of
the equation G{(z,y) == 0. But, the unit circle is not the graph of a single function since it fails the
vertical line test. Instead we need a pair of functions to cover the circle. Generally the situation can
get quite complicated. Let's pause to notice there are two points where we cannat find a solution to
G(z,y) = 0 on an open disk about the point: these points are (—1,0) and (1,0). We have trouble
at the vertical tangents, note Gy(z,y) = 2y has G,(—1,0) = G,(1,0) =0 1.

Idea: use the Newton’s method approach to find solution, however, the approach here is slightly
indirect. We'll use the mean value theorem to replace a function with its tangent line. Consider
a fixed z, near a then we have an function of y alone: h{y)} = G{z.,y). Apply the mean value
theorem to & for a y-value y, such that point (z.,y.) has G{z.,y:) = 0,

G($*1 y*) - G(‘T*v b) _ _G($*1 b)

Gy(mhb) - y*““b B U —b
We can solve for y, to obtain:
. G(x4, b)
N )
Define f,(z) = b and define fi(x) by
Gz, fo(z)) Gz, f1(z))

fi(z) = folz) — and fa(z) = fi(z) — and so forth...

Gy(z, fo(x)) Gy(z, fi(z))

Foruntately, Edwards proves we can use an easier formula where the denomimator is replaced with
Gy(a,b) which is pretty close to the formula we have above provided the point considered is close
to (a, b).

Theorem 9.1.4. (Theorem 1.4 in Edwards's Text)

Let G : R? = R be continuously differentiable and (a,b) a point such that G(a,b) = 0 and
Gy(a,b) # 0 then we can find a function f on some closed interval J centered at e which
covers the solution set of G(z,y) = 0 near all points close to (a,b). Moreover, this local
solution is the limit of the sequence of functions inductively defined below:

G(.’L‘,fn(ﬂi))

fa(m) =b and fn-i—l(m) =fn($)—' Gy(a b)

for all n € N. We can calculate solutions iteratively!

Lyes, if we used closed disks then we could find a solution on a disk where (—1,0) or (1,0) was on the boundary,
the point of the discussion is to motivate the implicit function theorem’s langauge
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Look at Example 2 on page 170 for a nice straight-forward application of Theorem 1.4. Perhaps
you're not too excited by this example. Certainly, algebra solves the problem with ease anyway, we
just have to take care with the algebraic steps. I intend for the next example to confound algebraic
techniques and yet we can find an approximate solution:

Example 9.1.5. Let G(z,y) = exp(z® + y*) +z — e. Notice that G(0,1) = 0 and G,(0,1) = 2.
Apply the algorithm:

folz} =1
filzg)=1-3G(z,1) = 1— L{exp(z’ + 1) + = — ¢)
f2(z) = filz) - glezp(a® + [fi(z)P +z — €]
I'd go on but it just gets ugly. What is neat is that
y=filz) =1— §lezp(z® +1) + 2 —e)
gives an approzimation of a local solution of emp(wz + yz) + z — e =0 for points near (0,1).

Example 9.1.6. Let G(z,y) = =2 +y>* +y — 1 note G, = 2y + 1. Note that G(1,0) = 0 and
Gy(1,0) = 1. Calculate the local solution by the algorthim:

folz) =0

fi(z) =0~ mD)—l—m
fo(r)=1—-2*-G(z,1-2*) =z* - 7!

falz) =2 -2t — Gz, 2? — ") =1 -2 — 2! + 225 — 2B

Now, these formulas are somewhat bizarre because we are writing an approzimation centered at
z = 1 as polynomials centered at zero. Ii is probeble that o nicer pattern emerges if we were to
write all of these as polynomials in (x — 1). Notice that f,(1) =0 forn=0,1,2,3.

Example 9.1.7. Let G(z,y) = 2* + y2 + ¥ — 2 note G, = 2y + 1. Note that G(0,1) = 0 and
Gy(0,1) = 3. Calculate the local solution by the algorthim:

folz) =1

filzy=1- %G(:L, 1)
= 1—%3:2

fg(:‘L) e ] — %LL‘Q G(.’E, 1-— B"L' )
=1-22® —[2%+ (1 - Ja?)?+ (1 - {) - 2
=1- %wg - %.734

Note how the approzimation unfolds order by order when the center matches the format in which
we write the expansion.
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If the center a s 0 then what can happen is that the terms of a particular order get spread across
all orders in the Newton’s Method approximation. I've found the expansions generated from the
Newton’s method are not easy to write in a nice form in general... of course, this shouldn’t be
that surprising, the method just gave us a way to solve problems that defy closed-form algebraic
solution.

9.1.2 from level surfaces to graphs

In the preceding section we found that G(z,y) = 0 could be understood as a graph of a function
of a single variable locally, in other words we found a l-manifold. When we have an equation of n-
variables it will likewise find (n—1) free variables. This means that G(z,y, z) = 2?2 +y2+22 -1 =0
gives us a level-surface (the sphere), or G(¢, T, y, z) = —t2+z2 %42 = 0 gives a level-volume (the
light cone?). If we can solve the equation G(z1,ms,...,z,) for z; then we say we have re-written
the level surface as a graph. This is important because graphs are a special case of a parametrized
manifold, the parametric formalism allows us to set-up integrals over higher-dimensional surfaces
and so forth. These things will become clearer when we study integration of differential forms later
in this course. I state Theorem 1.5 in Edwards here for completeness. The essential point is this,
if VG(p) # 0 then there exists j such that gfg(p) # 0 and we can solve for z; by using basically
the same the iterative process we just worked out in the n = 2 case in the preceding subsection.

Theorem 9.1.8. (Theorem 1.5 in Edwards’s Text)

Let G : R® — R be continuously differentiable and p = (a1, as,...,a,) a point such that
G(p) = 0 and G;(p) # 0 then we can find a function f on some closed interval J centered at
a; which covers the solution set of G(x1, za,...,2,) = 0 near all points close to p. Moreover,
this local solution is the limit of the sequence of multivariate functions inductively defined

below: .
1y oy F(E), . .0, Tn)

G:l'.‘j ()
forall n € N. If f = limpe0 fn then G(zy,..., f(Z),...,2n) = 0 for points near p.

fo(f) = Oy and fn+1(j‘) — fn(f) _ G(

Something interesting happens when we apply this theorem to examples which allow explicit closed-
form algebraic solution.

Example 9.1.9. Consider G(z,y,2) = 2+y+22—-4=0. Note that G, =2+ 0 and G{1,1,1) = 0.
Apply the olgorithm.:

fﬂ(xay) =1

filzy)=1- %G(m,z,l) =1- %(m+y+2w4) = _%(3:+y—4)

folz,y) = -3z +y—4) — 3Gz, y, —3(z + v~ 4)) = fi(z,y)

You can clearly see that f, = f1 for olln > 1 thus limy o0 fn = f1- In other words, we found the
exact solution is z = —%(m +y—4).

Iphysically this represents the border of the spacetime which we can interact with in the future or the past,
granting that special relativity actually describes nature without exception...
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You might wonder if this just happened because the preceding example was linear, in fact, it has
little to do with it. Here's another easy example,

Example 9.1.10. Consider G{z,y, z) = z?+y?—z = 0. Note that G, = —1 # 0 and G{0,0,0) = 0.
Apply the algorithm:

fo(z,y) =0
filz,y) =04 G(z,y,0) = z* + ¢°
folmy) =2+ + Glz,y, 22 +v)) =2 + * + [2* + ¥ — (2® + )] = fi(z, )

You can clearly see that f,, = fi for all n > 1 thus im, .o fn = f1. In other words, we found the
exact solution is z = 2 -+ y>.

Part of the reason both of the preceding examples were easy is that the solutions were not just
local solutions, in fact they were global. When the solution is the level surface equation breaks up
into cases it will be more complicated.

Example 9.1.11. Suppose G(z,y, z) = sin{z+y—z) = 0 then solutions must satisfy s-+y—z = nmw
forn € Z. In other words, the algorithm ought to find z = 2 +y — nmw where the choice of n depends
on the locality we seek a solution. This level-set is actually a whole family of disconnected paralell
planes. Let’s see how the algorithm deals with this, feed it (0,0,27) as the starting point (this ought
to select the n = —2 surface. Apply the algorithm te G(z,y,2) = sin(z + y ~ z) where clearly
G(0,0,27) =0 and G, = —cos{—27) = —1 hence:

folz,y) =2m

filz,y) = 27+ G(z,y, 27) = 27 +sin(z + y + 2m) = 27 + sin{z + y)
fa(z,y) = 2m +sin(z + y) + sin(z + y + sinf{z + y))

fa(z,y) = 27 4+ sin(z + y) + sin(z + y + sin(z + y))

+sin{z + y + sin(z + y) + sin(z + y + sin(x + y)))
I deem these formulas weird. Perhaps I can gain some insight by expanding fr,
flzyy=2m+z+y - gz +y)’+--

I'm a little scared to look at fo. There must be some sort of telescoping that happens in order for
us to obtain the real solution of z = x + y + 2m.

It’s not at all obvious to me how the formula above telescopes in the limit that n — occ.
However, unless I'm missing something or making a silly mistake, it seems clear that &
is continuously differentiable at (0.0, 2#7) and G.(0,0,2%) s 0. Therefore, Theorem 1.5
applies and the sequence of function f, should uniformly converge Lo the soliution we know
exists through direct argument in this example. Anyway, my point in this section is not to
make a blanket endorsement that you solve all equations by the algorthim. I am merely
trying to illustrate how it works.
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9.2 inverse and implicit mapping theorems

In the preceding section we began by motivating the inverse function theorem for functions of one
variable. In short, if the derivative is nonzero at a point then the function is 1-1 when restricted to
a neighborhood of the point. Newton’s method, plus a bunch of careful analysis about contraction
mappings which we skipped this semester, then gave an algorithm to calculate the local inverse for
a function of one variable. After that we essentially applied the local inverse idea to the problem of
solving a level curve G{z,y) = 0 locally for an explicit solution of y. The result that such a solution
is possible near points where G, # 0 is known as the implicit function theorem. We then
concluded by observing that almost the same mathematics allowed us to find an explicit solution
of G(z1,...,2p+1) = 0 for one of the variables provided the partial derivative in that direction
was nonzero. This result is also called the implicit function theorem. We used these theorems
implicitly when I pulled parametrizations from my imagination, typically it is the imphcit function
theorem that justifies such a step. Moreover, to insist Vg(p) # 0 means that there exists at least
one partial derivative nonzero so the implicit function theorem applies. All of that said, this section
is basically the same story again. Difference is we have to deal with a little extra notation and
linear algebra since & mapping is actually an ensemble of functions dealt with at once.

9.2.1 inverse mapping theorem

Suppose f : R® — R™ has an inverse f~! = g then we have fog = Id so the chain rule yields
df e dg = d{Ild) = Id since the identity is a linear map and hence it is its own best linear approx-
imation. Note that we find that f'g’ = I, thus (f)~! = ¢’ or in other notation [f']~ = [f~].
With this in mind we wish to find a formula to calculate the inverse function. The definition seems
like a good place to start:

o) =y = gw)=7"Ww)
= g(y) = g(f(a)) + ¢'(a)[v — f(a)]
= gly) = e+ [f' (@) 'y — f(a)]
= 1(¥) = go(¥) + [F"(0)] 'y — f(ga(y))] where go(y) =a
= gnt1(¥) = gn(¥) + [F' (@) v ~ Flgn(¥))] where go(y) =a

Theorem 9.2.1. (Theorem 3.3 in Edwards’s Text see pg 185)

Suppose f: R™ = R" is continuously differentiable in an open set W containing a and the
derivative matrix f/(a) is invertible. Then f is locally invertible at a. This means that
there exists an open set U C W containing ¢ and V' a open set containing b = f(a) and
a one-one, continuously differentiable mapping g : V — W such that g{f(z)) = z for all
z € U and f(g{y)) = y for all y € V. Moreover, the local inverse g can be obtained as the
Hmit of the sequence of successive approximations delined by

go(y) =a and gni1(y) = ga(y) — [F'(@)] 7' 1f (gn (1)) — ¥]

forall ye V.
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Notice this theorem gives us a way to test coordinate mappings for invertibility, we can simply
calculate the derivative matrix then calculate its determinant to check to see it is nonzero to insure
invertibility and hence the local invertibility of the coordinate map. There still remains the danger
that the mapping doubles back to the same value further out so if we ingist on a strict one-ane
correspondance then more analysis is needed to make sure a given transformation is indeed a
coordinate system. (see Ex 1 on pg. 183 for a function which is everywhere locally invertible and
yet not an injective mapping)
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9.2.2 implicit mapping theorem

Let me begin by stating the problem we wish to consider:

Given continnously differentiable functions G1,Gs, ..., Gy

GJ'L("EIV'-'1$ﬂ?-)y11"'!yn) = U

Locally solve y1,...,4, as functions of z1,...2,. That is, find a mapping & : R™ - R”

such that G(z,y) = 0 iff y = h{x) near some point (a,b) € R™" such that G(a,b) = 0. In
this section we use the notation = = (x1,29,... ) and ¥ = (41,92, ., Yn)-

It is convenient to define partial derivatives with respect to a whole vector of variables,

oc | ™ dzm 8G Oun Bun
Oz 8Gn ... OCa Oy oG, ... 8Gy
[ZE3 i thn dyn

Consider h : R™ — R™ such that G{z,y) = 0 iff y = h(z) near some point (a,b) € R™*" such that
G(a,b) = 0. In other words, suppose G{z,h{z)) = 0. The chain rule reads:

G ac
+

0= 5z t 5,7

Or, provided the matrix % is invertible we can calculate,

= _[09] 00
Wz)= [By O

Theorem 9.2.4. (Theorem 3.4 in Edwards’s Text see py 190)

Let G : R™™ — R" be continuously differentiable in a open ball about the point {a,b)
where G(a,b) = 0. If the matrix %(a, b) is invertible then there exists an open ball U/
containing a in R™ and an open ball W containing (a,b) in R*"™ and a continuously
differentiable mapping & : U — R™ such that G(z,y) = 0 iff y = h(z) for all (z,7) € W.
Moreover, the mapping h is the limit of the sequence of successive approximations defined
inductively below

ho(z) = b, o1 = hn(w) = [55(a, 0)] 7' G(z, ()

foralz e U.
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I have given barely enough details to understand the notation here. If you read pages 188-194 of
Edwards you can have a much deeper understanding. I will not attempt to recreate his masterpiece
here. One important notation 1 should mention is the so-called Jacobian of G with respect to %J

It is the determinant of the partial derivative matrix gG which is denoted detBG = H

This gives us an easy criteria to check on the invertibility of %g. Note that 1f this Jacobian is
nonzero then we may judge the level set G(z,y) = 0 is an n-dimensional space since it is in one-one
carrespondence of some open ball in R™.

Remark 9.2.5.

You.may recall the strange comments in red from my section 6.2. I discussed the rank
of various derivative matrices. In this section we put the free variables {z) at the start
of the list and the dependent variables (y) at the end, however, this is just a notational
choice. In practice if we can select any set of n-variables for G(Ll,gg, v ey Eman) = 0 such
that det[G;;|Gi,] - |Gi,] # 0 then we can solve for z;,,..., 2, in terms of the remaining
variables. "Thus, in retrospect, showing full rank of the derivative matrix could justifies the
local invertibility of certain mappings.
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9.3 implicit differentiation

Enough theory, let’s calculate. In this section I apply previous theoretical constructions to specific
problems. 1 also introduce standard notation for " constrained” partial differentiation which is also
sometimes called "partial differentiation with a side condition”.

G = O
P
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Example 9.3.4. Let dxF F-FT - AU = O find (9}«: !
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