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philosophy

Let’s begin with several questions:

1. what is math?

2. how should we understand math?

3. how should we do math?

First, let me clarify math is not just learning how to do set problems according to some set of
rules. That is not math. Math is about structure and systematic analysis. I sometimes say the
phrase “we have it down to a science” ought to be replaced with “we have it down to a math”.
Mathematics once proved properly will not change. When we learn why a theorem is true that has
value which will continue to extend to every generation which follows. Math is timeless art. In my
estimation, math is beautiful. Algebra, Trigonmetry and Calculus are beautiful. However, their
beauty in isolation hardly measures against the sense of wonder at how it all works together.

How then should we understand mathematics? What process is needed? There is no one answer to
this question. Personally, I learn from reading books or notes about it, from writing down proofs
and problems by my own pen. I also learn much more from trying to explain math to someone
else. In all of the activities above I try to pay special attention to definitions and motivations.
Ideally I find a narrative in which I can tell the math as part of a larger story. Finding an example
and a counter-example for each idea can be very enlightening. The power of examples cannot be
overstated.

Finally we get to the real point here. I suspect you think of math primarily as item 3. Nothing
wrong with that based on your experience thus far in math. I’d be surprised if you had a teacher
before who emphasized the ”why” rather than the ”how” of mathematics. This is perhaps the
primary distinguishing feature of university calculus: we aspire to calculate with maximal under-
standing. We ought not use a theorem unless we have an idea of how to prove it. This is our goal.
In all the courses in which I teach mathematics I attempt to provide proofs for those theorems and
propositions which I claim to be true. Granted, there is not always enough time, but we should be
ready to give a defense for those truths which we hold dear.

Humility is required from the outset. Some things we cannot understand completely with the tools
which are currently at our disposal. Calculus is built with real numbers. I will not attempt to
construct real numbers from first principles. Instead, our starting point is to assume that real
numbers exist, replete with their standard properties. From those rules we will build the calculus.



3

format of my notes

These notes were prepared with LATEX. You’ll notice a number of standard conventions in my notes:

1. definitions are in green.

2. remarks are in red.

3. theorems, propositions, lemmas and corollaries are in blue.

4. proofs start with a Proof: and are concluded with a 2.

5. often figures in these notes were prepared with Graph, a simple and free math graphing
program.

6. new to this version of the notes, I also include links to Desmos pages which illustrate various
topics.

Finally, please be warned these notes are a work in progress. I look forward to your input on
how they can be improved, corrected and supplemented. I prepared them with LATEXwhich is the
standard format for modern mathematical literature. It is open source software and if you are a
math major it is a great idea to start experimenting with LATEXfor report-writing etc...

It is best if you also have an old edition of a standard calculus text. I recommend the texts by
Thomas or Anton. They have many many problems and are written with a love of mathematics.
Stewart’s text also has a vast array of problems for practice.

I deferred proofs and some extra curricular discussion to an Appendix. If you are a Math major
who wishes to seek graduate education then I would strongly encourage you study the Appendix
and talk to me about it in office hours.

I have also reformated these notes to include white space for many of the examples I will write in
lecture. I intend for students to bring a physical copy of these notes in which they can fill out this
missing parts. Part of the grade will be based on completing the notes. Part of attendance is both
bringing these notes and filling them out. Of course, if you prefer to take notes separately that is
also fine, but I will ask that you carry these notes to class and fill in the missing parts after class
regularly. I don’t expect you print them in color, but please keep in mind the electronic copy which
has both color and hyperlinks in various spots. Notice also, the Table of Contents is linked to the
Sections and this is a pdf which is easily searched if you are looking for a particular topic.

Hope this makes sense, please ask if you have any doubt the meaning of my instructions here.

Thanks!

James Cook, June 7, 2021.
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Chapter 1

foundations and background

This chapter is unlike the later portions of this course in that there are no proofs. We have three
major aims. First, explain the mathematical prehistory which led to calculus. Second, to review
and/or introduce terminology. Third, to review calculational techniques which the reader ought
to know from previous study of mathematics. I have included textboxes to write examples where
they are given in lecture.

1.1 brief history of math

In this section I detail some history which predates the discovery of calculus. The history of math
which was discovered and created after calculus is far more vast.

1.1.1 geometry

The ancient Chinese, Greeks, Egyptians and Babylonians all had some understanding of numbers
and geometry. Apparently the pythagorean theorem a2 + b2 = c2 was known to Babylonians as
early as 1700 BC1. Pythagorus was one of the earliest Greek mathematicians (572-497 BC) and his
followers the pythagoreans were an interesting bunch. They elevated math to a form of mysticism.
Their creed was that numbers were the substance of all things. Calculations were tied to music to
make the mystic connection between numbers and reality and they used special geometric patterns
to aid arithmetic calculations. Plato(429-348 BC) and Aristotle(387-322 BC) advanced the cause
of axiomatic reasoning. For mathematics this probably was a good thing. For physics, not so
much. Aristotle’s flawed physical ideas were so philosophically appealing that we were unable to
escape them for over a milennia. Of course, all physical ideas are flawed at some level, Aristotle’s
physics did explain much, but the explanations were hardly what we could call mathematical. That
said, the axiomatic approach did inspire Euclid to make his book of elements at a level of rigor
which was valuable to many future generations of mathematicians. Geometry is the perhaps the
earliest example of an accurate mathematical model of reality. In fact, for about 2000 years no

1see pg. 30 of Katz’ History of Mathematics second ed., page 45 has nice summary of different societies respective
mathematical achievements
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10 CHAPTER 1. FOUNDATIONS AND BACKGROUND

one could convincingly imagine any other idea of geometry. The study of physics for things which
don’t move is called statics. The architecture of ancient societies speak to the fact that mathe-
matics were known to at least some in those societies. Probably much has been lost. The history
of mathematics is full of multiple discoveries of mathematical theorems, it is common for different
mathematicians to find the same theorems even though they never met, or perhaps even lived in
the same time.

1.1.2 numbers

What about numbers? The ancients certainly knew about whole numbers and fractions. The
phythagoreans took it a step further and realized that there must be more than just numbers of
that type. They proved that the hypotenuse of a triangle had a length that need not be a fraction.
For example, if you consider a right triangle with side lengths 1 and 1 then the hypotenuse must
have length

√
2. They actually proved that

√
2 could not have the form p/q for a pair of whole

numbers p, q. One way to understand the development of numbers is to understand the questions
which prompted their discovery:

(1.) enumeration or counting leads us to natural numbers and zero.

(2.) accounting leads us to negative numbers since you can either make $$ or lose it.

(3.) fractions come from commerce or manufacture; take a pie and cut it into fractions.

(4.) analytic two-dimensional geometry leads us to irrational numbers; triangles can
have irrational side-lengths.

(5.) algebra leads us to complex numbers. The solution to the cubic equation necessi-
tates complex numbers even in the case that the solutions are real.

(6.) three dimensional geometry leads us to quaternions. Hamilton showed how to use
quaternions to describe motion in three dimensions.

(7.) quantum mechanics for fields leads us to super numbers. Berezin invoked mathe-
matics which demanded the variables anticommute. Such variables can be thought
of as taking values in the super numbers.

There are dozens if not hundreds of other types of numbers. This list is merely reflects my interest
in physics. In almost every case when a new type of number was discovered it would be relegated
to a lesser status than those earlier known numbers. There was a time when mathematicians
would not count negative solutions because they weren’t ”real” solutions. Later, Kronecker and
his followers eschewed use of non-rational numbers. To them the worth of transcendental numbers
was in doubt. In my experience students rarely doubt the validity of real numbers. The decimal
expansion is quite convincing and we have machines which say it’s true so it must be, right? Those
same machines will sometimes closemindedly say that x2 + 1 = 0 has no solution. But, x2 + 1 = 0
does have solution. It’s just an imaginary solution. Gauss proved that imaginary numbers exist in
about 1800. Of course, mathematicians had used complex numbers in one way another for about
200 years before Gauss. This course is primarily focused on real numbers however I will spend
some time discussing complex numbers from time to time.
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1.1.3 algebra and physics

The connection between physics and algebra is profound. It is this connection that allowed Galileo
and Newton to push past the ”common sense” of Aristotle. Galileo(1554-1642) studied Archimedes
and Aristotle, but he found the later to be illogical. His reaction to his doubt is what changed
things, rather than being content to make purely philosophical objections he took it a step further
and investigated through experiments to deduce what the correct rules were. For example, through
the study of balls rolling down inclines he was able to deduce the formula y = 1

2gt
2, the height

dropped is proportional to the square of the time, independent of weight. Galileo’s work helped
provide a back-drop for Newton and others who were able to explain how Galileo’s equations arose
from basic physics.

Kepler(1571-1630) also used math to study astronomical data collected by Tycho Brahe over
several decades. Upon Brahe’s death Kepler tried to fit the data to show the planets traveled
in circles around the sun (the heliocentric circular model was proposed to Europe by Nicolaus
Copernicus(1473-1543)). However, the data forced Kepler to admit that the planets actually travel
in ellipse according to what we now call it Kepler’s Laws. In a nutshell, Kepler observed the planets
orbit in ellipses while sweeping out equal areas in equal times such that the square of the semi-major
axis was proportional to the cube of the period. Obviously, to understand these statements you
need to have the idea of Cartesian coordinates. Interestingly, Kepler actually was not so happy
about the data’s seeming departure from the supposed perfect symmetry of circles. He spend a
large amount of his later years trying to fit the solar system into his system of platonic solids.
Platonic solids are regular polyhedra which can be inscribed in a sphere: these are associated to
the four basic elementals of the ancient greeks: the cube of earth, fire of the tetrahedron, air of the
octahedron, water of the icosahedron and over them all the universe of the dodecahedron. Kepler
wanted to somehow use the platonic solids to model space. It didn’t work. All of this laid the
foundation for the discovery of calculus.

I suppose there were two major changes that were in motion at the time just before and including
Newton. First, flat earth or earth-centered cosmology was being more and more doubted as evidence
mounted for Copernican heliocentric models. The observations of Galileo of moons orbiting Jupiter
made the possibility of orbital motion undeniable. Second, the idea that math should be used to
phrase physical ideals was encouraged by the methodology of Galileo, Kepler and others. The
physical question that would lead Newton to calculus was prompted by all of these events.

1.1.4 discovery of calculus

The term ”calculus” apparently originates from the ancient Romans practice of using tiny pebbles
to calculate. A calculus was one such pebble. The greeks, chinese and probably others discovered
portions of calculus, but none of them possessed a notation which made the ideas accessible to
anyone except experts. In contrast, we ordinary mortals can understand calculus without making
it our life’s work (although, you may feel that way at certain points this semester). Archimedes(287-
212 BC) made arguments that very much mirror arguments we have only formalized in the 19-th
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century. His argument to determine the value for π shows he had an idea much like we will formalize
with limits. Beyond limits calculus is largely motivated by two problems:

(1.) what is the tangent line to a given shape?

(2.) what is the area of some shape?

Both of these will be solved carefully this semester by applying appropriate limiting processes. The
ancients had no formal method for limits, but they did have some intuitive grasp of limits. The
idea of dividing an area into smaller pieces to add together to find the net-area is hardly new to
Newton’s time. Solutions to various tangent problems also existed before calculus. Isaac Barrow
was Newton’s teacher before his great discoveries and Barrow did important work on the tangent
problem. In fact, Barrow had some understanding of the fundamental theorem of calculus. He
understood something about the connection between tangents and areas, however he did not ap-
preciate the importance enough to push the theory forward.

Sir Isaac Newton(1642-1727) was the first to see clearly the connection between these seemingly
disparate problems of areas, tangents and physics. In physics, Newton insisted his answers were
mathematically phrased. He took Galileo’s ideal to a whole new level. He was also unkind to those
who refused to follow this route, apparently Hooke said he solved some of the problems Newton
solved concerning gravitation. However, Hooke’s solution lacked mathematical clarity so Newton
rejected his ideas and went so far as to eliminate mention of Hooke in his Principia. Newton insisted
physical law must be mathematical.

Let me say just a bit more about what distinguished Newton’s historical period from that of
say Galileo(1554-1642). The representation of irrational numbers by decimal expansions was ap-
parently due to work by the French mathematician Viete (1540-1603), the Dutch mathematician
Stevin(1548-1620) and the Scottish mathematician John Napier(1550-1617)2. Modern symbolism
for algebra was not known to the ancients as far as we know. The compact notation we use today
was arrived at through a progression of steps. See Katz’ text for details. In a nutshell our notation
is due to Viete(1540-1603), Descartes(1596-1650) and Fermat(1601-1665). Descartes’ master work
set forth a framework in which Newton was free to conduct concrete geometric experiments while
the number system put forth by Stevin gave a notation to think about numbers of arbitrarily small
magnitude. Basically, the mathematics needed to make calculus happen only arose in the 50 years
or so before Newton made his great advances. By the time Newton came of age the ideas of analytic
geometry and unending decimal expansions of numbers were taught in the university. In retrospect,
Descartes and Fermat were close to the discovery, but they were missing the fundamental theorem
of calculus. They understood parts of the puzzle, but Newton and Leibniz grasped the big picture.

Despite the great success of Newton’s version of calculus, it was not entirely rigorous. His argu-
ments involved the use of fluxions which were strange quantities which were not zero but were
really really small. How small you ask? Well, if you divided one by a fluxion then you’d obtain ∞.

2page 418 of Katz’ text
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What were these fluxions and what is ∞? It was easy to set aside these worries because the list of
problems that Newton solved grew ever larger as his discoveries came to light in the 17-th century.
After postulating his laws of mechanics he was able to derive the formula found by Galileo. Then,
prompted by Edmund Halley, he proved Kepler’s Laws follow from his universal law of gravitation.
Anyway, we could go on about Newton for many pages. Even after all this success there were those
mathematicians who were unhappy because at the base of it all these fluxions seemed ad-hoc and
not so well-posed mathematically.

Gottfried Wilhelm Leibniz(1646-1716) independently discovered calculus after Newton but pub-
lished it before him. Leibniz also lacked formal rigor at the base of his theory, but his notation was
superior to Newton’s and for that reason we still use many notations first introduced by Leibniz.

1.2 set theory

A set is a collection of objects called elements. We denote the sentence ”x is an element of S” by
the short-hand symbolic sentence; ”x ∈ S”. The sentence ”x ∈ S” can also be read ”x is in S”.
For example, R is the set of all real numbers so to say x ∈ R simply means that x is a real number.

Definition 1.2.1. set equality

We say S = T when S and T have the all the same elements.

A common notation to characterize the elements of a set is simply to list the elements: for example,
S = {A,B,C} means that S is a set which contains the objects A,B and C. The ordering of the
elements is not special for a general set, this means S = {B,A,C} = {C,A,B} etc... Often it
is difficult or impossible to list all the elements is a set. In such a case we may be able to use
set-builder notation to define a set:

S = {x | x has property P }. (1.1)

The set with no elements is called the empty set and it is denoted by {} or ∅.

Definition 1.2.2. subset

We say S is a subset of T and denote S ⊆ T if for each s ∈ S we can show s ∈ T .

Notice that set-equality can be conveniently characterized by the concept of a subset. Think about
it: S = T means that S ⊆ T and T ⊆ S.

Definition 1.2.3. union, intersection and difference of sets

Let S and T be sets,

S ∪ T = {x | x ∈ S or x ∈ T} S ∩ T = {x | x ∈ S and x ∈ T} S − T = {s ∈ S | s /∈ T}

I should introduce some standard notations:
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Definition 1.2.4.

• Natural numbers; N = {1, 2, 3, . . . }.

• Integers; Z = {. . . ,−2,−1, 0, 1, 2, . . . }.

• Rational numbers; Q =
{
p
q | p, q ∈ Z, q 6= 0

}
.

The notation Z>0 = N and Z≥0 = N ∪ {0} and Z<0 = −N = {−x | x ∈ N} are also encouraged if
the reader finds them natural.

In-Class Example 1.2.5. Let S = {1, 2, 3} and T = {−1, 0, 1}. Find S ∪ T and S ∩ T .
Determine which of N, Z or Q contains S ∪ T as a subset.

.

.

.

Given a pair of elements we can form an ordered pair. A key property of the ordered pair (x, y) is
that (x, y) = (a, b) if and only if x = a and y = b.

Definition 1.2.6. Cartesian Product:

If A,B are sets then A×B = {(x, y) |x ∈ A, y ∈ B}.

We use the notation A× A = A2 for the set of ordered pairs from A. For example, R2 = R× R is
the set of ordered pairs of real numbers. We naturally associate R2 with the (x, y)-plane.

Example 1.2.7. Let A = {1, 2, 3, 4, 5} and B = {1, 2, 3} then A × B has 15 elements and can be
visualized as a grid of points. Click here to see the Desmos code for creating the diagram below

In-Class Example 1.2.8. Using A,B as above, is (1, 5) ∈ A×B ? Is (5, 1) ∈ A×B ?

https://www.desmos.com/calculator/fnw9jwovkb
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1.3 real numbers

Real numbers can be constructed from set theory and about a semester of mathematics. We will
accept the following as axioms3

Definition 1.3.1. The set of real numbers is denoted R and is defined by the following axioms:

(A1) addition commutes; a+ b = b+ a for all a, b ∈ R.

(A2) addition is associative; (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R.

(A3) zero is additive identity; a+ 0 = 0 + a = a for all a ∈ R.

(A4) additive inverses; for each a ∈ R there exists −a ∈ R and a+ (−a) = 0.

(A5) multiplication commutes; ab = ba for all a, b ∈ R.

(A6) multiplication is associative; (ab)c = a(bc) for all a, b, c ∈ R.

(A7) one is multiplicative identity; a1 = a for all a ∈ R.

(A8) multiplicative inverses for nonzero elements;
for each a 6= 0 ∈ R there exists 1

a ∈ R and a 1
a = 1.

(A9) distributive properties; a(b+c) = ab+ac and (a+b)c = ac+bc for all a, b, c ∈ R.

(A10) totally ordered field; for a, b ∈ R:

(i) antisymmetry; if a ≤ b and b ≤ a then a = b.

(ii) transitivity; if a ≤ b and b ≤ c then a ≤ c.
(iii) totality; a ≤ b or b ≤ a

(A11) least upper bound property: every nonempty subset of R that has an upper
bound, has a least upper bound. This makes the real numbers complete.

Modulo A11 and some math jargon this should all be old news. An upper bound for a set S ⊆ R
is a number M ∈ R such that M > s for all s ∈ S. Similarly a lower bound on S is a number
m ∈ R such that m < s for all s ∈ S. If a set S is bounded above and below then the set is said to
be bounded. The intervals of R are defined next:

Definition 1.3.2. Intervals of R include R = (−∞,∞) as well subsets of R of the form:

• open interval from a to b; (a, b) = {x|a < x < b}.
• half-open interval; (a, b] = {x | a < x ≤ b}.
• half-open interval; [a, b) = {x | a ≤ x < b}.
• closed interval; [a, b] = {x | a ≤ x ≤ b}.
• closed ray from a to ∞; [a,∞) = {x | x ≥ a}.
• closed ray from −∞ to a; (−∞, a] = {x | x ≤ a}.

3an axiom is a basic belief which cannot be further reduced in the conversation at hand. If you’d like to see a
construction of the real numbers from other math, see Ramanujan and Thomas’ Intermediate Analysis which has the
construction both from the so-called Dedekind cut technique and the Cauchy-class construction.
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• open ray from a to ∞; (a,∞) = {x | x > a}.
• open ray from −∞ to a; (−∞, a) = {x | x < a}.

Example 1.3.3. [a, b], (a, b), [a, b), (a, b] all have a as a lower bound and b as an upper bound. The
set (−∞, a) has least upper bound a, but is unbounded below. Likewise, (a,∞) has greatest lower
bound a, but is unbounded above.

Another ubiqitous concept is the number line4. In the diagram below I picture some of the
standard intervals. We use solid bold dots to indicate the point is included in the set, whereas an
open dot indicates that point is excluded.

The cartesian product of R and R gives us R2 = R×R = {(x, y) | x, y ∈ R}. In this context (x, y)
is called an ordered pair of real numbers. Notice that the notation (a, b) could refer to a point
in R2 or it could refer to a open interval. These are very different objects yet we use the same
notation for both. The point (a, b) ∈ R2 whereas the interval (a, b) ⊆ R.

In-Class Example 1.3.4. Question: is (4, 3) a point or an open interval?

.

We can also appreciate the distinction between intervals and points by picturing the cartesian
product of intervals as a subset of R2:

Example 1.3.5. I created ( via Desmos ) the picture below to illustrate the subset (−6, 7]× [1, 5]

4Rene’ Descartes popularized this concept in the early 17th century; the number line is the foundation of analytical
geometry. The fundamental idea in analytic geometry is that there is a 1-1 correspondence between lines and the
real numbers.

https://www.desmos.com/calculator/qiv4ud93r5
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The real numbers and rational numbers are examples of fields. A field is a set which satisfies axioms
A1-A9. In fact, both Q and R are ordered fields which means follow axioms A1-A10. However,
the rational numbers are not complete, they do not satisfy A11. For example, π /∈ Q and

√
2 /∈ Q.

If you take the set of truncated decimal expansions of
√

2; S = {1, 1.4, 1.41, . . . } then S ⊆ Q yet
the least upper bound of S is

√
2 /∈ Q. The rational numbers are missing something we need for

making analytical arguments. Fortunately, the completion5 of the rational numbers gives us all of
R which does satisfy A11. Certainly A11 is the most technical of all the axioms of R and it is also
the property which is crucial to many central theorems of calculus6.

It is useful to catalogue the following properties of inequalities:

Theorem 1.3.6. properties of inequalities:

Let a, b, c, d ∈ R,

(1.) a2 ≥ 0 and a2 = 0 if and only if a = 0,

(2.) If a < b then a+ c < b+ c and a− c < b− c,

(3.) If a < b and c < d then a+ c < b+ d,

(4.) If a < b and b < c then a < c,

(5.) if c > 0 then a < b implies ca < cb.

(6.) if c < 0 then a < b implies ca > cb.

You should not be surprised to hear that a similar theorem also holds if we replace < with > or ≤
with ≥ as appropriate throughout.

Definition 1.3.7. absolute value

The absolute value of a real number x is denoted |x| and is defined |x| =
√
x2. Notice

this formula is equivalent to the case-wise formula:

|x| =

{
x if x ≥ 0

−x if x ≤ 0

This distance between a, b ∈ R is denoted d(a, b) and it is defined by d = |b− a|.

5if you’re curious, and this comment is certainly from beyond the proper scope of this course, completion of the
rational numbers is formed by adjoining the limit points of all Cauchy sequences of rational numbers. Moreover, the
completion of Q can be done in a rather different way to give the pyadics, much of real analysis also can be done in
that context. Ask me if interested, I can recommend some reading.

6 I should mention, there are all sorts of nonstandard ideas about calculus on sets other than R, there is fractional
calculus, discrete calculus, and for the past decade or so I’ve tinkered in something called A-calculus where A is an
algebra which could be complex numbers or other stranger things
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Notice that |x| is the distance from the origin to x; d(0, x) = |x − 0| = |x|. I should also
point out our custom is that the square root function is by definition the positive root;

√
x ≥ 0.

Notice we can characterize a nonzero positive number by the equation x = |x| whereas a nonzero
negative number x has |x| = −x.

Theorem 1.3.8. properties of absolute value:

Let a, b, ε ∈ R with ε > 0,

(1.) absolute value is non-negative; |a| ≥ 0,

(2.) absolute value is zero only if number is zero; |a| = 0 iff a = 0,

(3.) absolute value of product is product of absolute values; |ab| = |a||b|,

(4.) bounded absolute value unwraps as compound inequality; |a| < ε ⇔ −ε < a < ε,

(5.) unbounded absolute value unwraps into two disjoint cases;

|a| > ε⇔ a < −ε or a > ε.

(6.) triangle inequalities ;

(i.) |a+ b| ≤ |a|+ |b| (ii.) |a− b| ≥ |a| − |b| (iii.)
∣∣|a| − |b|∣∣ ≤ |a− b|

It is probably useful to study the geometric significance of the theorem on absolute values. Note
that |x| = |x− 0| = d(x, 0); absolute value gives the distance to the origin. This makes (4.)
and (5.) easy to understand.

In-Class Example 1.3.9. Let A = {x ∈ R | |3x + 12| < 3}. Express A as an interval. Also, let
B = {x ∈ R | |3x+ 12| ≥ 3} and express B as the union of two intervals. Find A∪B, and discuss.
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Definition 1.3.10. neighborhoods

An open neighborhood centered at a with radius δ > 0 is denoted Bδ(a) where

Bδ(a) = {x ∈ R | d(a, x) < δ} = (a− δ, a+ δ).

An deleted open neighborhood centered at a with radius δ > 0 is denoted Bδ(a)o where

Bδ(a)o = {x ∈ R | 0 < d(a, x) < δ} = (a− δ, a) ∪ (a, a+ δ).

The concept of a deleted neighborhood will be central to the study of limits. 7

In-Class Example 1.3.11. Find a and δ for which Bδ(a) = (3, 11). Hint: a is the midpoint of
Bδ(a) and the length of Bδ(a) on the number line is twice the radius δ.

.

.

We would sometimes like to insist that a give set of real numbers has no holes. In other words, you
can draw the set as a connected line-segment or ray on the number line.

Definition 1.3.12. connected subsets of real numbers.

We say U ⊆ R is connected if and only if

U ∈ {R, (−∞, a), (a,∞), (−∞, a], [a,∞), [a, b], (a, b], [a, b), (a, b), {a}}

for some a, b ∈ R where a < b.

The definition I gave above is rather clumsy, but I believe it should be readily understood by
calculus students8. Next, we sometimes need the concept of a boundary point. In a nut-shell a
boundary point is a point on the edge of a set.

7I’m using a B for neighborhood because it matches a notation I’ll use later for studies of higher dimensional open
sets: generally, Bδ(a) = {x ∈ Rn | ||x− a|| < δ} is an open-ball of radius δ in n-dimensional space. Also, be warned
that the concept of a neighborhood varies from text to text.

8Equivalently, you could say U is connected iff there do not exist U1, U2 such that U1 ∩ U2 = ∅ and U1 ∪ U2 = U .
A pair of sets like U1, U2 is called a separation of U .
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Definition 1.3.13. boundary points.

We say p ∈ U ⊆ R is a boundary point of U if and only if every open neighborhood
centered at p intersects points in R − U and U . In other words, boundary points of U
are positioned so that they are close to points both inside and outside U . We denote the
boundary of U by bd(U). If a ∈ bd(U) and there exists ε > 0 such that

• (a− ε, a) ⊂ U then a is a right boundary point of U ,

• (a, a+ ε) ⊂ U then a is a left boundary point of U .

Notice that a boundary point of U need not be in U ; for example U = (0, 1] has bd(U) = {0, 1}
and 0 /∈ U . On the other hand, it is possible for the whole set to be comprised of boundary points:
bd(N) = N. We can break down any set of real numbers into two types of points:

(1.) boundary points

(2.) interior points

For example, [0, 1) = {0} ∪ (0, 1). We have bd[0, 1) = {0, 1} whereas int([0, 1) = (0, 1).

Definition 1.3.14. interior points.

Suppose U ⊂ R then we say p ∈ U is an interior point of U if there exists ε > 0 such that
Bε(p) ⊆ U . The set of all interior points of U is denoted int(U).

Note int(N) = ∅ whereas int(0, 1) = (0, 1). In contrast, bd(N) = N and bd(0, 1)∩ (0, 1) = ∅. Finally,
we have all the terminology necessary to carefully define an open set:

Definition 1.3.15. open sets, closed sets.

We say U ⊆ R is an open set if and only if each point in U is an interior point. Likewise,
we say U is a closed set if and only if U = U ∪ ∂U .

A closed set contains all its boundary points whereas an open set contains only interior points.

In-Class Example 1.3.16.
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1.4 functions

In this section we review terminology for functions.

Definition 1.4.1.

Let A,B ⊆ R. We say f : A → B is a function if for each x ∈ A the rule for f assigns a
single-element f(a) ∈ B. In particular, if f(a) = b1 and f(a) = b2 then b1 = b2.

• The domain is the set of inputs for f ; dom(f) = A.

• The range is the set of outputs for f ; range(f) = {f(x) | x ∈ A}.

• The graph of f is given by graph(f) = {(x, y) | x ∈ dom(f), y = f(x)}.

The rule for f could be given by a formula, a given graph, diagram or even a table of values. When
f is defined by a formula f(x) our convention is to let the domain for f be the set of all x for which
f(x) is a real number. The graph of a function must satisfy the vertical line test; the intersection
of graph(f) and x = a has at most one point.

In-Class Example 1.4.2. Let f1(x) =
√

3− x, f2(x) = 1
x2−4 and f3(x) = 7.

Find the natural domains for f1, f2 and f3.

.

.

.

.

In-Class Example 1.4.3. Consider the two graphs given in lecture. Which is the graph of a
function ? For the function graph, find the domain and range.

.

.

.
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Definition 1.4.4.

If f, g : U → R are functions then we say f = g if f(x) = g(x) for all x ∈ U . Otherwise, we
say the functions are not equal and write f 6= g.

In other words, two functions are equal if they pointwise agree. We are very picky about the ”for
all” part above. If there is even one point of disagreement then the functions are not equal.

In-Class Example 1.4.5. Let f(x) = x and g(x) = x2

x . Explain why f 6= g.

Given functions f, g we define new functions f + g, f − g, fg, fg , f ◦ g by the rules:

(f ± g)(x) = f(x)± g(x), (fg)(x) = f(x)g(x),
f

g
(x) =

f(x)

g(x)
, (f ◦ g)(x) = f(g(x)). (1.2)

We should notice the product of functions commutes; fg = gf . However, the composition of
functions need not commute: f ◦ g 6= g ◦ f . The next example illustrates these observations.

In-Class Example 1.4.6. Let f(x) = 3x + 2 and g(x) = 7 − 4x. Calculate formulas for
(fg)(x), (f ◦ g)(x) and (g ◦ f)(x).

Definition 1.4.7.

• image of S under f is given by f(S) = {f(x) | x ∈ S}.

• inverse image of T under f is given by f−1(T ) = {x dom(f)|f(x) ∈ T}.

Graphically, the image of S ⊆ dom(f) is the set of y-values attained from S-inputs. In contrast,
the inverse image of T is the set of all x-values in the domain for which the y-values fall in T .

In-Class Example 1.4.8. Forward and inverse image from a given graph.
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Example 1.4.9. Suppose f(x) = 3x+ 2. Observe that:

f([0, 2]) = {3x+ 2 | x ∈ [0, 2]} = [2, 8].

On the other hand, f−1([0, 2]) is the set of x ∈ R such that

3x+ 2 ∈ [0, 2] ⇒ 0 ≤ 3x+ 2 ≤ 2 ⇒ −2 ≤ 3x ≤ 0 ⇒ −2/3 ≤ x ≤ 0.

We find f−1([0, 2]) = [−2/3, 0].

Example 1.4.10. Let f(x) = x2 then

f([0, 2]) = {x2 | x ∈ [0, 2]} = [0, 4] & f−1([0, 4]) = [−2, 2].

Definition 1.4.11. Let A,B ⊆ R and f : A→ B be a function, then f is

• onto if range(f) = f(A) = B.

• one-to-one if for all x1, x2 ∈ A, f(x1) = f(x2) implies x1 = x2.

The term surjective is sometimes used in place of onto and the term injective is synonomous
with one-to-one. Notice that a function which is one-to-one must pass the horizontal line test;

Horizontal line test: no horizontal line intersects the graph of f at two or more points.

We call f−1{y} = {x ∈ dom(f) | f(x) = y} the fiber of f over y, so another way to characterize
injectivity is to say all the nonempty fibers are singletons9. One-to-one means that each output
value is attained by just one input value.

Example 1.4.12. Let f(x) = mx + b where m 6= 0. If f(x1) = f(x2) then mx1 + b = mx2 + b
implies mx1 = mx2 implies x1 = x2 thus f is one-to-one. Indeed, the graph y = mx + b is a
non-horizontal line and it is graphically clear this passes the horizontal line test.

Definition 1.4.13. Let A,B ⊆ R and f : A → B be a one-to-one and onto function, then
f−1 : B → A is the inverse function defined by f−1(y) = x if and only if f(x) = y.

A given function and its inverse are related by the following equations:

f−1(f(x)) = x & f(f−1(y)) = y (1.3)

for all x ∈ dom(f) = range(f−1) and y ∈ range(f) = dom(f−1). These equations are important
since they allow us to effectively cancel f or f−1 by composition with f−1 or f as appropriate.

9 a singleton is a set which contains just one point
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Example 1.4.14. If f(x) = 10x then the inverse function is known as the the common log or log
base 10 and we denote f−1(y) = log(y) . If 10x = 103−x then we may solve by taking the common
log of the equation; log(10x) = log(103−x) implies x = 3− x thus 2x = 3 and we find x = 3/2.

A good problem to stretch your algebra muscles is found in calculating the inverse function for a
given function. Algorthim: to find f−1(y) solve y = f(x) for x.

In-Class Example 1.4.15. Let f(x) =
3x+ 1

2x− 7
. Find f−1(y). Also, find domain and range for f .

Example 1.4.16. Let f(x) = x2 − 4 then y = x2 − 4 yields x2 = y + 4 and thus x = ±
√
y + 4.

Thus f is not invertible. Indeed, f is not one-to-one since y = x2 − 4 fails the horizontal line test.

Example 1.4.17. Let f(x) = xn for some n ∈ N. If n is even then y = f(x) fails horizontal line
test. If n is odd then y = xn has unique solution x = y1/n thus f−1(y) = y1/n.

I should mention, (xn)1/n = |x| = ±x and we sometimes use the radical notation x1/n = n
√
x. It is

often useful to narrow the domain of a given function to make it one-to-one.

Definition 1.4.18. Let A,B ⊂ R and f : A → B be a function and S ⊆ A then we say that g
is the restriction of f to S if g : S → B and g(x) = f(x) for all x ∈ S. We write g = f |S to
indicate that g is the restriction of f to the set S. If g is a restriction of f then we say that f is
an extension of g.

We can use restriction to carefully define the concept of a local inverse.

Definition 1.4.19. Let A,B ⊂ R and f : A → B be a function and S ⊆ A such that f |S is a
one-to-one function. If f(S) = T then g : T → S is defined by g(y) = x if and only if f(x) = y.
We say g is a local inverse of f with respect to S and write g = f |−1S .
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Notice the condition that f |S is one-to-one implies the equation f(x) = y has a unique solution x.

In-Class Example 1.4.20. Let f(x) = x2 − 4. Find an S for which the local inverse f |−1S exists.

Example 1.4.21. The trigonometric functions f(x) = sinx, g(x) = cosx and h(x) = tanx are not
one-to-one on their domains. When we talk about inverse functions for sine, cosine and tangent
we’re actually talking about local inverses. In particular,

sin−1 = f
∣∣−1
[−π/2,π/2], & cos−1 = g

∣∣−1
[0,π]

& tan−1 = h
∣∣−1
[−π/2,π/2].

If you’re calculator is in radian mode, you will observe range(sin−1) = [−π/2, π/2] = range(tan−1)
whereas range(cos−1) = [0, π].

Appendix 7.4 has pictures which explain the example above in some depth. The local inverses
of the trigonometric functions are especially useful because of the periodicity of the trigonometric
functions. For example:

In-Class Example 1.4.22. Find the solution set of sinx = 1/2. Note, sin−1(1/2) = π/6. Picture
y = sinx to aid in finding the solution set.
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Let me give some precise language to describe graphs going up or down:

Definition 1.4.23. Given function f : U ⊆ R→ R and I ⊆ U then f is

• increasing on I ⊆ U if a, b ∈ I with a < b implies f(a) ≤ f(b),

• strictly increasing on I ⊆ U if a, b ∈ I with a < b implies f(a) < f(b),

• decreasing on I ⊆ U if a, b ∈ I with a < b implies f(a) ≥ f(b),

• strictly decreasing on I ⊆ U if a, b ∈ I with a < b implies f(a) > f(b),

If f is either increasing, strictly increasing, decreasing or strictly decreasing on I = dom(f) then
we say that f is respectively increasing, strictly increasing, decreasing or strictly decreasing. If f is
either increasing or decreasing then we say f is monotonic.

If f(x) = c for all x ∈ I then we say f is constant on I. In view of our definition a constant
function is both increasing and decreasing.

Definition 1.4.24. Suppose f is a function such that x ∈ dom(f) implies −x ∈ dom(f) then

• we say f is even if f(−x) = f(x) for all x ∈ dom(f),

• we say f isodd if f(−x) = −f(x) for all x ∈ dom(f).

Notice the graph of an even function f has (x, y) ∈ graph(f) only if (−x, y) is also in the graph.
Such graphs are said to be symmetric with respect to the y-axis. In contrast, the graph of an
odd function is said to be symmetric with respect to the origin.

In-Class Example 1.4.25. Let n ∈ N and suppose f(x) = x2n−1, g(x) = x2n, h(x) = 1 + x.
Determine if the given functions are even, odd or neither.

.

.

.

.

If x,−x ∈ dom(f) for each x ∈ dom(f)) then we can express f as the sum of an even and odd
function since f(x) = 1

2 [f(x) + f(−x)]︸ ︷︷ ︸
even

+ 1
2 [f(x)− f(−x)]︸ ︷︷ ︸

odd

. For example:



1.4. FUNCTIONS 27

Example 1.4.26. Even and odd parts of ex are the hyperbolic cosine and hyperbolic sine

ex = 1
2 [ex + e−x]︸ ︷︷ ︸

coshx

+ 1
2 [ex − e−x]︸ ︷︷ ︸

sinhx

In-Class Example 1.4.27. Show that (coshx)2 − (sinhx)2 = 1.

.

.

I’ll conclude by reminding you how we can create new graphs from old by standard transformations:

Theorem 1.4.28.

Let f be a function and suppose c > 0 then

• if g(x) = f(x) + c then graph(g) is a upward translation of graph(f) by c-units.

• if g(x) = f(x)− c then graph(g) is a downward translation of graph(f) by c-units.

• if g(x) = f(x− c) then graph(g) is a right translation of graph(f) by c-units.

• if g(x) = f(x+ c) then graph(g) is a left translation of graph(f) by c-units.

• if g(x) = −f(x) then graph(g) is the relection across the x-axis of graph(f).

• if g(x) = f(−x) then graph(g) is the relection across the y-axis of graph(f).

• if g(x) = cf(x) then graph(g) is the vertical dilation of graph(f) by a factor of c. If
0 < c < 1 then the graph is compressed whereas if c > 1 then the graph is stretched.

• if g(x) = f(x/c) then graph(g) is the horizontal dilation of graph(f) by a factor
of c. If 0 < c < 1 then the graph is compressed whereas if c > 1 then the graph is
stretched.

In-Class Example 1.4.29. Consider y = 3 −
√
x− 1. Use transformations to obtain this graph

from the known y =
√
x graph.
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1.5 catalogue of elementary functions

The functions discussed in this section are central to our study of calculus.

1.5.1 power functions

We say f is a power function if f(x) = xa where a is a fixed constant. There are a few special
cases with added labels,

(1.) a = n ∈ N then f(x) = xn is a homogeneous polynomial.

(2.) a = 1
n with n ∈ N then f(x) = x

1
n ≡ n

√
x is the nth-root function.

(3.) a = −1 then f(x) = 1
x is the reciprocal function.

1.5.2 polynomial functions

We say p is a polynomial function of degree n if it has the form

p(x) = anx
n + an−1x

n−1 + · · · a1x+ ao (1.4)

where an 6= 0 and we call an, an−1, . . . , ao ∈ R the coefficients of the polynomial. w1here and we
call the coefficients of the polynomial. The set of all polynomials in the variable x is denoted R[x].
To say p(x) ∈ R[x] is to say p(x) is a polynomial.
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1.5.3 rational functions

We say that f is a rational function if it has the form f(x) = p(x)/q(x) for a pair of polynomial
functions p and q. The zeros of f occur at the zeros of p if anywhere. However, it is possible that a
zero of p is also a zero of q in which case the point could be a zero, a hole in the graph or a vertical
asymptote. The domain of a rational function is all the points where we avoid division by zero;

dom

(
p

q

)
= {x ∈ R | q(x) 6= 0}.

The reciprocal function is a rational function.

Example 1.5.1. A typical example of a rational function is

f(x) =
x(x− 1)(x− 3)

x(x2 − 5x+ 6)

this function has a hole in the graph at zero and three. It has a vertical asymptote at x = 2. It has
a zero at (1, 0).

Note, dom(f) = (−∞, 0) ∪ (0, 2) ∪ (2, 3) ∪ (3,∞) = R− {0, 2, 3}.

In-Class Example 1.5.2. What is the domain of f(x) = xp where p ∈ R ? What is the domain
of a polynomial p(x) ? What two features of the graph of a rational function coincide with points
which are not in the domain of the rational function ?
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Example 1.5.3. Consider f(x) =
(x− 4)(x− 1)2(x− 10)2(x− 2)

(x+ 2)2(x− 1)(x− 2)
this function has algebraic

critical numbers −4,−2, 1, 2, 10. There are holes in its graph at (1, 0) and (2, 24). It also has
a vertical asymptote at x = −2. The reduced function in this case is obtained from cancelling the
(x− 1) and (x− 2) factors in the denominator to obtain:

fred(x) =
(x− 4)(x− 1)2(x− 10)2(x− 2)

(x+ 2)2(x− 1)(x− 2)

which has no holes in the graph, however, x = 2 is still a veritcal asymptote for y = fred(x). I
made a graph in Desmos, you can explore it here.

1.5.4 algebraic functions

We say that f is an algebraic function if it has a formula which is comprised of finitely many
algebraic operations. By algebraic we mean you may add, subtract, multiply, divide and raise to
powers or take roots. This category of functions includes power functions, polynomial functions
and rational functions and a host of more complicated functions built from root-based formulas.
For example, f(x) =

√
x2 = |x| defines an algebraic function.

In-Class Example 1.5.4. Casewise defined functions can be algebraic functions in disguise. Find

an algebraic formula for the f(x) =

{
x2 x ≥ 0

−x2 x < 0

https://www.desmos.com/calculator/z1quds6hqh
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1.5.5 trigonometric functions

Trigonometric functions such as sine, cosine and tangent are based on the geometry of triangles.
Recall a right triangle is one for which an angle measures 90 degrees (or radians, or 100 grads, etc...).

In the picture above we assume that A,B,C > 0 and we have drawn the triangle so that 0 <
θ < π/2, it is an acute angle. You may recall that the side A is adjacent to the angle θ while
the side B is opposite the angle θ. The longest side C is called the hypotenuse. We know the
Pythagorean Theorem states A2 +B2 = C2.

These functions extend the quadrant I geometric quantities to the other three quadrants. The
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definitions also make polar coordinates work. The polar coordinates of P = (x, y) are r, θ where

x = r cos(θ) y = r sin(θ), r2 = x2 + y2, tan(θ) =
y

x

and we call r the radial coordinate and θ is the standard angle. There are a number of
conventions as to what particular values the polar coordinates should be allowed to take. We
usually10 insist that r ≥ 0 but make no particular restriction on θ, this means that r =

√
x2 + y2

however θ is not uniquely defined for a given point because we can always add a integer multiple
of 2π and still get the same point. The xy-plane is divided into four quadrants. See below how the
sine and cosine of the standard angle θ matches the signs of sin(θ) and cos(θ).

Or perhaps the following diagrams make more sense to you,

Since r =
√
x2 + y2 ≥ 0 we see that the formulas x = r cos(θ) and y = r sin(θ) reproduce the

correct signs for the Cartesian coordinates x and y. My point here is simply that sine and cosine
not only include basic geometric ratios about triangles, they also encode the signs of the Cartesian
coordinates in all four quadrants.

10admittedly , we do allow r < 0 when we discuss polar graphing later in the calculus sequence. There is some
ambiguity about what is meant by polar coordinates, I simply made a choice here.
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In-Class Example 1.5.5. Find the standard angles of (1, 1) and (−1,−1). Draw a picture to
guide your logic.

1.5.6 reciprocal trigonometric functions

Reciprocal trigonometric functions: these appear quite often in difficult integrations. Se-
cant, cosecant and cotangent are defined to be one over the functions cosine, sine and tangent
respectively. We use the notation,

sec(θ) =
1

cos(θ)
csc(θ) =

1

sin(θ)
cot(θ) =

cos(θ)

sin(θ)

The graphs of these functions are given below:

In-Class Example 1.5.6. We know cos2 θ + sin2 θ = 1. Find identities for the recipocal trig
functions by dividing by cos2 θ and also sin2 θ.
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1.5.7 inverse trigonometric functions

Inverse trigonometric functions: we should be careful to distinguish the inverse trigonometric
functions from the reciprocal trig functions. The inverse trig functions are denoted by sin−1, cos−1

and tan−1 which I refer to as inverse sine, inverse cosine and inverse tangent respectively.
They satisfy the equations,

sin−1(sin(x)) = x cos−1(cos(y)) = y tan−1(tan(z)) = z

for x ∈ [−π
2 ,

π
2 ], y ∈ [0, π] and z ∈ (−π

2 ,
π
2 )

sin(sin−1(x)) = x cos(cos−1(y)) = y tan(tan−1(z)) = z

For x ∈ [−1, 1], y ∈ [−1, 1] and z ∈ R. Let us collect the graphs of the inverse trig functions for
future reference.

The green lines illustrate horizontal asymptotes of inverse tangent. The occur at y = π/2 and
y = −π/2. These are all local inverses, this is the reason the ”inverse tangent” failed to provide us
the correct angle outside quadrants I and IV. The inverse tangent function is only truly the inverse
of tangent in quadrants I and IV for −π/2 < θ < π/2.

1.5.8 exponential functions

Exponential functions: let a > 0 then we say that is an exponential function if f(x) = ax

for each x ∈ R. The fixed number a is called the base of the exponential function. Exponential
functions are nonzero everywhere. The graph below shows the three shapes an exponential function
may take.
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If a > 1 then f(x) = ax gives us exponential growth. If 0 < a < 1 then f(x) = ax gives us
exponential decay. The graph appears to get to zero, but this is not the case, exponential functions
never reach zero. We see that if a 6= 1,

dom(ax) = (−∞,∞) range(ax) = (0,∞)

If f(x) = ex then this is the exponential function, more often than not we will work with this
particular base, the number e ≈ 2.71 . . . is called Euler’s number in honor of the famous math-
ematician Euler. It is a transcendental number which means it is defined by an equation which
transcends simple algebra. We will discuss ex is some depth in later chapters.

1.5.9 logarithmic functions

Logarithmic functions: these are the inverse functions of the exponential functions. Suppose
a > 1, we say that f(x) = loga(x) is a logarithmic function, and that the log base a of x (this is
how we verbalize the formula when we’re talking out the math) satisfies the following equations,

loga(a
x) = x aloga(x) = x

In this sense the logarithm and exponential functions cancel. An equivalent way to define the
logarithm is to say that if y = ax then loga(y) = x. Notice that the input of the logarithm must
be positive since aloga(x) is positive; dom(loga(x)) = 0,∞).

dom(loga(x)) = (0,∞) range(loga(x)) = (−∞,∞)

The natural log function is denoted ln(x), this the logarithmic function with base e = 2.71 . . .
that simply means loge(x) = ln(x). This particular logarithmic function is so important that it
gets its own notation. We will encounter it frequently in later chapters.
The graph of y = ln(x) shows that the natural log has one zero at x = 1.
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We can see that dom(ln(x)) = (0,∞) and the range(ln(x)) = (−∞,∞).

The following table has useful identities:

In-Class Example 1.5.7. Express ax and loga(x) in terms of the exponential and log base e.
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1.5.10 hyperbolic functions

Hyperbolic functions: these are little less common then some of the other functions we have
discussed so far, however they are useful both for certain questions of integration and also Einstein’s
special relativity.

1. hyperbolic cosine: cosh(x) = 1
2(ex + e−x),

2. hyperbolic sine: sinh(x) = 1
2(ex − e−x),

3. hyperbolic tangent: tanh(x) = sinh(x)
cosh(x) .

At first glance it is a little strange to call these trigonometric, that label comes from an under-
standing of cosine and sine in terms of imaginary exponentials eix where i =

√
−1. We will discuss

imaginary exponentials in due time. For now just observe that

cosh2(x)− sinh2(x) = 1.

This is clearly similar to the corresponding identity cos2(x) + sin2(x) = 1. We also note that
cosh(0) = 1 and sinh(0) = 0, these identities make hyperbolic cosine and sine a better choice of
notation than ex and e−x for certain questions.

The inverse hyperbolic functions are cosh−1(x), sinh−1(x) and tanh−1(x). These satisfy the
formulas,

cosh(cosh−1(x)) = x sinh(sinh−1(y)) = y tanh(tanh−1(z)) = z

for x ∈ [1,∞), y ∈ R and z ∈ (−1, 1) and,

cosh−1(cosh(x)) = x sinh−1(sinh(y)) = y tanh−1(tanh(z)) = z

for x ∈ [0,∞), y ∈ R and z ∈ R. The hyperbolic sine and tangent functions are injective so they
have a global inverse. In contrast, the hyperbolic cosine is not injective and it is customary to let



38 CHAPTER 1. FOUNDATIONS AND BACKGROUND

cosh−1(x) denote the local inverse for hyperbolic cosine restricted to [0,∞).

The inverse hyperbolic functions can be expressed with logs of algebraic functions:

cosh−1(x) = ln(x+
√
x2 − 1) for x ≥ 1.

sinh−1(x) = ln(x+
√
x2 + 1) for x ∈ R.

tanh−1(x) =
1

2
ln

(
1 + x

1− x

)
for |x| < 1.

In-Class Example 1.5.8. Derive one or more of the above identities.
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1.6 algebra

I’ll focus primarily on problems of polynomial algebra in this section. Let us begin with the basic
terminology, a polynomial in standard form is an expression of the form

p(x) = anx
n + · · ·+ a1x+ a0 (1.5)

where a0, a1, . . . , an ∈ R are called coefficients and if the leading coefficient an 6= 0 then we write
deg(p) = n to indicate the degree of p(x) is n. If the leading coefficient an = 1 then we call p(x)
a monic polynomial. Some special cases of note:

• for m 6= 0 the polynomial p(x) = mx+ b is a linear polynomial

• for a 6= 0 the polynomial p(x) = ax2 + bx+ c is a quadratic polynomial

• for a 6= 0 the polynomial p(x) = ax3 + bx2 + cx+ d is a cubic polynomial

If there exist polynomials p1(x), p2(x), . . . , pr(x) with deg(pj) ≥ 1 such that

p(x) = p1(x)p2(x) · · · pr(x) (1.6)

then the expression above is called a factorization of p(x) with factors p1(x), p2(x), . . . , pr(x).
Up to this point I have only discussed expressions, let us now turn our attention to equations.
A polynomial equation of degree n is an equation of the form

anx
n + · · ·+ a1x+ a0 = 0 (1.7)

where an, . . . , a1, a0 ∈ R and an 6= 0. Solving such an equation is in general very challenging
and may even defy closed form solution11. Solving the polynomial equation p(x) = 0 is greatly
simplified if we have a factorization of p(x). Observe

p(x) = p1(x)p2(x) · · · pr(x) = 0 (1.8)

is true if there is some pj(x) = 0. Therefore, to solve p(x) = 0 we can instead solve:

p1(x) = 0, p2(x) = 0, · · · pr(x) = 0. (1.9)

In-Class Example 1.6.1. Solve x3 − 2x2 − 5x+ 6 = 0.
Hint: x3 − 2x2 − 5x+ 6 = (x− 1)(x+ 2)(x− 3).

11only for degree n = 1, 2, 3, 4 are their general solutions, for n ≥ 5 there does not exist a general formula in terms
of the coefficients via elementary algebra. This was proved by Abel in about 1819 then greatly clarified by the work
of Galois around 1830.
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Theorem 1.6.2. Polynomial long division.

If polynomials p(x), q(x) have deg(p) > deg(q) then there exist polynomials f(x) and r(x)
such that

p(x) = f(x)q(x) + r(x)

and either r(x) = 0 or deg(r) < deg(q). We call r(x) the remainder and f(x) the poly-
nomial part of p(x)/q(x).

There is a standard algorithm to calculate f(x) and r(x) as in the theorem above. For example:

Example 1.6.3.
x + 3

x3 − 3
)

x4 + 3x3 + x2 + 2x + 6
− x4 + 3x

3x3 + x2 + 5x + 6
− 3x3 + 9

x2 + 5x+ 15

This reveals that x4 + 3x3 + x2 + 2x + 6 = (x + 3)(x3 − 3) + x2 + 5x + 15. Note the remainder
r(x) = x2 + 5x+ 15 whereas the polynomial part is x+ 3. In addition,

x4 + 3x3 + x2 + 2x+ 6

x3 − 3
= x+ 3 +

x2 + 5x+ 15

x3 − 3
. (1.10)

Once we know polynomial long division, the remainder theorem naturally follows:

Theorem 1.6.4. remainder theorem

Let c ∈ R and p(x) be a polynomial. Then, p(x) = (x− c)f(x) + r and r = p(c).

Example 1.6.5.
x2 + 2x

x+ 1
)

x3 + 3x2 + 2x+ 7
− x3 − x2

2x2 + 2x
− 2x2 − 2x

7

Shows p(x) = x3 + 3x2 + 2x+ 7 = (x+ 1)(x2 + 2x) + 7. Note p(−1) = −1 + 3− 2 + 7 = 7.

Theorem 1.6.6. factor theorem

Let c ∈ R and p(x) be a polynomial. Then, p(x) = (x− c)f(x) if and only if p(c) = 0.

Proof: Suppose p(x) = (x − c)f(x) then p(c) = (c − c)f(c) = 0. Conversely, if p(c) = 0 then by
the remainder theorem p(x) = (x− c)f(x). 2
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In-Class Example 1.6.7. Let p(x) = x4 − 5x3 + 5x2 + 5x− 6. Factor p(x).
Hint: consider −1, 1, 2, 3 as potential zeros for p(x).

In-Class Example 1.6.8. Let p(x) = x3 + 3x2 + x− 5. Factor p(x).
Hint: p(1) = 0 and x2 + 4x+ 5 is a factor of p(x).

It turns out that x2 + 4x + 5 cannot be factored using real polynomials. In general, a quadratic
polynomial can be factored via the technique of completing the square, but it is always fastest to
guess and check or to use A2 −B2 = (A−B)(A+B) or (A+B)2 = A2 + 2AB +B2.

In-Class Example 1.6.9. Factor p(x) = x2 + 3x+ 2.

In-Class Example 1.6.10. Factor p(x) = 16x2 − 9.

In-Class Example 1.6.11. Factor p(x) = x2 + 6x+ 9.
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To complete the story of factoring over R we need to introduce complex numbers.

Definition 1.6.12. complex numbers and terminology

C = {a+ ib | a, b ∈ R and i2 = −1}

We say z = x+ iy where x, y ∈ R is in cartesian form where Re(z) = x is the real part
of z and Im(z) = y is the imaginary part of z. The complex conjugate of z is given
by z̄ = x− iy. The length of z = x+ iy is denoted |z| =

√
x2 + y2 and since zz̄ = x2 + y2

we have |z| =
√
zz̄. If z 6= 0 then

1

z
=

z̄

zz̄
=

x− iy
x2 + y2

.

Complex numbers share all the same algebraic properties as real numbers; Axioms 1-9 from Defini-
tion 1.3.1 hold for C provided we multiply complex numbers as follows:

(a+ ib)(c+ id) = ac− bd+ i(ad+ bc). (1.11)

There is much more to say about C and you can read Appendix 7.3 if you are curious.

In-Class Example 1.6.13. Let z = 3 + 2i. Find the cartesian form of 1
z + iz.

Note that since −i2 = 1 we may express a sum of squares as a difference of squares;

A2 +B2 = A2 − i2B2 = A2 − (iB)2 = (A− iB)(A+ iB) (1.12)

We should keep the identity above in mind as we study how to factor a quadratic.

In-Class Example 1.6.14. Factor x2 + 9.

In-Class Example 1.6.15. Factor 9(x+ 1)2 + 16.
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Theorem 1.6.16. completing the square

The quadratic polynomial p(x) = ax2 + bx+ c can be expressed as p(x) = a(x− h)2 + k for
h = −b/2a and k = p(h).

The technique of completing the square has basically two steps:

• factor out a: p(x) = a
(
x2 + b

ax+ c
a

)
,

• group terms with x:

p(x) = ax2 + bx+ c = a

[(
x+

b

2a

)2

−
(
b

2a

)2

+
c

a

]
,

In the examples below, the polynomials have a = 1 so the first step is not needed.

In-Class Example 1.6.17. Complete the square for p(x) = x2 + 2x+ 5.

In-Class Example 1.6.18. Complete the square for p(x) = x2 + 10x+ 25.

Example 1.6.19. Since A2 −B2 = (A−B)(A+B) we can factor after completing the square:

p(x) = x2 − 6x− 1

= (x− 3)2 − 9− 1

= (x− 3)2 − (
√

10)2

= (x− 3−
√

10)(x− 3 +
√

10).

In-Class Example 1.6.20. Complete the square for p(x) = x2 − 4x+ 6 and use the concept from
Equation 1.12 to factor p(x).
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We observe three possible patterns following from the mechanics of completing the square; either
we obtain constant term which is negative, zero or positive. Correspondingly, the factorization of
the quadratic features distinct real factors, a repeated real factor or a pair of complex factors.

Theorem 1.6.21. factoring ax2 + bx+ c and solving ax2 + bx+ c = 0.

If a, b, c ∈ R and a 6= 0 then p(x) = a(x− r+)(x− r−) where

r± =
−b±

√
b2 − 4ac

2a

• distinct real factors if b2 − 4ac < 0 then p(x) = a(x− r+)(x− r−)

• repeated real factor if b2 − 4ac = 0 then p(x) = a(x− r)2

• irreducible over R, conjugate complex factors if b2 − 4ac > 0 then

p(x) = a((x− α)2 + β2) = a(x− α− iβ)(x− α+ iβ).

Likewise, to solve ax2 + bx + c = 0 we find solutions x = r±. If b2 − 4ac ≥ 0 then a real
solution exists, however if b2−4ac < 0 then there is no real solution. In the case b2−4ac < 0
the solutions form a conjugate pair: r+ = r−.

Pragmatically, you could just use the formula for r± to factor ax2 + bx+ c as indicated. That said,
completing the square on specific examples is almost always faster... unless you can see how to
factor by guessing or some other special form.

In-Class Example 1.6.22. Factor p(x) = x2 + 3x+ 2 and solve p(x) = 0.

Theorem 1.6.23. complex solutions come in conjugate pairs and correspond to irreducible factors.

If p(x) = anx
n + · · · + a1x + a0 is a polynomial with coefficients an, . . . , a1, a0 ∈ R and

p(α+ iβ) = 0 where α, β ∈ R then p(α− iβ) = 0 and (x− α)2 + β2 is a factor of p(x).

In-Class Example 1.6.24. Factor p(x) = x4− 4x3 + 6x2− 4x+ 5 over R given that p(2 + i) = 0.
Hint: the theorem above indicates that (x− 2)2 + 1 = x2 − 4x+ 5 is a factor of p(x).
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In-Class Example 1.6.25. Reverse example time. Write a polynomial p(x) of least degree for
which p(1) = 0, p(−3) = 0 and p(3 + 2i) = 0 such that p(0) = 7. Leave in factored form!

Theorem 1.6.26. fundamental theorem of algebra

If p(x) is a polynomial with real coefficients then it can be factored into a product of linear
and irreducible quadratic factors. Each irreducible quadratic factor can be split into a pair
of linear factors corresponding to a conjugate pair of complex zeros to the equation p(x) = 0.

Example 1.6.27.

p(x) = x4 − 1 = (x2 + 1)(x2 − 1) = (x2 + 1)︸ ︷︷ ︸
irred. quad.

(x+ 1)(x− 1)︸ ︷︷ ︸
linear

= (x+ i)(x− i)(x+ 1)(x− 1)︸ ︷︷ ︸
complex linear factorization

Example 1.6.28.

p(x) = x2 + 4x+ 13 = (x+ 2)2 + 9︸ ︷︷ ︸
irred. quad

= (x+ 2)2 − (3i)2︸ ︷︷ ︸
difference of squares

= (x+ 2− 3i)(x+ 2 + 3i)︸ ︷︷ ︸
conjugate factors

Example 1.6.29.

p(x) = x4 + 4x3 + 3x2 = x2(x2 + 4x+ 3) = x2(x+ 1)(x+ 3)

Finally, there are occasions where Pascal’s Triangle and the special form identities for (A + B)n

are useful. I’ll share the first few of these for reference:

(A+B)2 = A2 + 2AB +B2 (1.13)

(A+B)3 = A3 + 3A2B + 3AB2 +B3

(A+B)4 = A4 + 4A3B + 6A2B2 + 4AB3 +B4

(A+B)5 = A5 + 5A4B + 10A3B2 + 10A2B3 + 5AB4 +B5.

In-Class Example 1.6.30. Copy Pascal’s triangle from the board. Also, factor x3−6x2+12x−8.
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1.7 sign-chart method to solve inequalities

The logical justification for the techniques used in this section is provided later in this course when
we study continuity. It turns out that a theorem due to a 19-th century Jesuit priest named Bolzano
justifies carefully how a function may change signs from positive to negative. Long story short, if
we are dealing with a polynomial or a rational function then the sign changes can only occur at
vertical asymptotes, holes in the graph or simply a zero of the function. We call numbers where
the function is either zero or undefined algebraic critical numbers.

Definition 1.7.1. algebraic critical numbers.

Suppose f : dom(f) ⊆ R → R is a function then we say c ∈ dom(f) ∪ bd(dom(f)) is an
algebraic critical number iff either c /∈ dom(f) or f(c) = 0.

I have added the qualifier ”algebraic” to distinguish this concept from a later technical meaning we
ascribe to the term critical point12.

The guiding principle of this section is that a function can only change signs at algebraic critical
numbers. Therefore, if we draw a number line with the algebraic critical points labeled and draw
little ±’s to indicate the sign of the function then we can roughly sketch the function and also
quickly read solutions to inequalities. That’s the big idea, let’s see how it is implemented.

Example 1.7.2. Suppose f(x) = x2 + x− 6. Find solution of x2 + x− 6 ≥ 0. Notice that we can
factor f(x) = (x+ 3)(x− 2) thus f(−3) = 0 and f(2) = 0. Pick tests points to the left and right of
each algebraic critical number and evaluate the function. In this case, easy choices are

f(−4) = (−1)(−6) = 6, f(0) = −6, f(3) = (6)(1) = 6

hence the following sign chart is derived:

We find x2 + x − 6 ≥ 0 if x ∈ (−∞,−3] ∪ [2,∞). As an additional application of this sign chart,
suppose you were asked to find the domain of g(x) which is defined implicitly by the following
formula:

g(x) =
1√

6− x− x2
.

We would require x ∈ dom(g) if and only if 6 − x − x2 > 0. But, this is the same as stating
x ∈ dom(g) if and only if x2 + x− 6 < 0 hence, by the sign chart, dom(g) = (−3, 2).

12critical numbers are algebraic critical numbers of the derivative function, but you’re not allowed to know that
just yet... oops.
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The other way to attack such problems is to tackle the nonlinear inequalities one case at a time
until the possibilities are exhausted. For some of you who are gifted in that vein of thought I do
not discourage your line of thinking. However, I believe the sign-chart will aid understanding for
many. In particular, it helps me sort things out when the expression is less than trivial. Notice
that we don’t even have to graph the function. The sign chart captures all the data we need for
the solution of inequalities.

Example 1.7.3. Find the domain of g(x) =
√
−(x+ 3)(x− 3)2. Note that we need −(x+ 3)(x−

3)2 ≥ 0. Define f(x) = −(x + 3)(x − 3)2 and observe c = −3, 3 are algebraic critical numbers.
Observe that f(−4) = 1 > 0, f(0) = −27 < 0 and f(4) = −7 < 0 hence the sign chart for f is:

We find that −(x+ 3)(x− 3)2 ≥ 0 for x ∈ (−∞,−3] ∪ {3}. Therefore, dom(g) = (−∞,−3] ∪ {3}.

In-Class Example 1.7.4. Solve the following inequality:

(x2 + 3x)(x2 + 4x+ 5)

x2 − 2x
≤ 0.
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Chapter 2

limits

In this chapter we begin by studying the tangent problem and why it necessarily requires the in-
vention of a limiting process. Then, in Section 2.2 we give a careful definition of the limit and we
introduce related concepts of left and right limits as well as divergence of limits and finally limits
at ±∞. This toolset of limiting concepts allows us to give careful descriptions of geometric fea-
tures such as finite-jump discontinuities, hole-in-the-graph, vertical asymptote and finally horizontal
asymptote. Careful limit proofs from the εδ-definition are offered in Subsection 7.5.1. Section 7.6
contains statements and proofs of the limit laws as well as the basic limits of elementary func-
tions such as polynomial, rational, algebraic, exponential, hyperbolic and trigonometruc functions.
Application of the limit laws to calculate a variety of limits is given in Section 2.3. The Squeeze
Theorem is proved and illustrated in Section 7.7. Continuity is defined and the continuity of ele-
mentary functions is detailed in Section 2.5. Finally, in Section 2.6 we prove the Intermediate Value
Theorem (IVT) and use it to show that the inverse of a continuous function is likewise continuous.

2.1 the tangent problem: why we need limits

The tangent line to a given point on a circle is a line which intersects the circle at the point of
tangency and nowhere else. Geometrically is intuitively clear that such a tangent line must be
perpendicular to the diameter of the circle which also goes through the point of tangency. For
example, the unit circle given by x2 + y2 = 1 has point (xo,

√
1− x2o) with tangent line as pictured

below, you can move the line around for fun at Desmos demonstration page:

49

https://www.desmos.com/calculator/hqsyzpqaxe
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Properties of tangents to circles have been studied since the time of the ancients. For example, there
are numerous results in Euclid’s Elements which are centered around the study of these tangents.
Naturally we would like to extend the concept of a tangent line to other curves. For instance, the
graph of a function y = f(x). Intuitively we want the tangent line to touch the curve at the point
of tangency in such a way that it resembles the given graph as closely as possible. In other words,
the tangent line should be the best linear approximation of the graph near the point of tangency.
For example, see the picture below:

you can click here to try moving the tangent line around. Let’s pause to review equations of lines
before we go further into our discussion of tangent lines.

In-Class Example 2.1.1. Write the equation of a line containing the point (−3, 8) with slope 3

In-Class Example 2.1.2. Find the equation of the line from (a, f(a)) to (b, f(b)) where a 6= b.

https://www.desmos.com/calculator/nedpyqelhp
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How should we define the tangent line to y = f(x) at x = a carefully ? If we denote the function
whose graph is the tangent line by Laf then since (a, f(a)) is the point of tangency it follows from
the point-slope equation of a line that:

y = Laf (x) = f(a) +m(x− a)

for appropriate slope m. How do we select the slope m for the tangent line ? One natural approach
is to think of the tangent line has having the slope of secant lines which are very close to the point
of tangency. A secant line from x = a to x = b on the graph y = f(x) is just the line which connects
the dots (a, f(a)) and (b, f(b)). The equation of the secant line is:

y = f(a) +
f(b)− f(a)

b− a
(x− a) (2.1)

To be clear, we cannot have a = b in the equation above as that causes division by zero. Yet,
that is precisely where we want to be. When a ≈ b the secant line approaches the tangent line. I
have graphed the tangent line as a green-dotted line and graphed the secant line based at a = 1 in
the picture below:

I would encourage you to play with this Desmos demonstration page to appreciate how the secant
lines get closer and closer to the tangent line as we take values of b which are closer and closer to a.
In particular, intuitively we see the slope m for the tangent line should be obtained by calculating:

m = lim
b→a

f(b)− f(a)

b− a
(2.2)

where this limiting process which we denote by limb→a should be understood in terms of taking
values for b which are arbitrarily close to a. However, this limiting process cannot actually allow
a = b since that would cause division by zero for our intended application of the limit. In the next
section we’ll set down a careful definition which does not require vague appeals to intuition. I hope
this section serves to convince you we need the limit to find the slope of the tangent line. Algebra
alone does not have the technology to play the game we need to play; we cannot just plug in b = a.

https://www.desmos.com/calculator/ljadrbahjc
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2.2 definition of limit

Before we can define the limit we must define the sort of points where we can reasonably take limits
for functions on R.

Definition 2.2.1. limit point

Let U ⊆ R. We say p is a limit point of U if for every δ > 0 we have Bδ(p)o ∩ U 6= ∅.
We say p is a limit point of a function f on R if and only if p is a limit point of dom(f). If
there exists η > 0 for which Bη(p)o ⊆ dom(f) then p is an interior limit point of f .

Recall Bδ(p)o = (p − δ, p) ∪ (p, p + δ) thus the definition above simply reduces to the condition
that for p to be a limit point of U there must be at least one other point in U near p no matter
how small we make δ. In fact, we see a limit point p for a function f is a point at which there are
infinitely many points in dom(f) near p. Not every function has a limit point:

Example 2.2.2. Sequences on R are functions a : N→ R where we usually denote a(n) = an. In
this case, no point in N is a limit point since (n− 1/2, n+ 1/2)∩N = {n} hence B1/2(n)o ∩N = ∅.
Every point in the domain of a sequence is called an isolated point.

Sequences are important, we will see them again when we study the area problem later in this
course. For now though, we will focus on functions where there are more than just isolated points:

Definition 2.2.3. limit or double-sided limit

Let f be a function with interior limit point a and suppose L ∈ R. We say that f(x)→ L
as x → a if and only if for each ε > 0 there exists δ > 0 such that for all x ∈ R with
0 < |x− a| < δ it follows |f(x)−L| < ε. In the case that the condition above is met we say
that the limit exists and denote this by lim

x→a
f(x) = L.

Basically the idea is just that if we zoom in on an ε-band centered about L then the limit exists if
we can find a δ-band centered about a such that the box made from the intersection of these bands
captures the graph of the function for all the values in (a− δ, a) ∪ (a, a+ δ)
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In-Class Example 2.2.4. Prove lim
x→a

(x) = a.

In-Class Example 2.2.5. Prove lim
x→a

(x2) = a2.

Example 2.2.6. In each case below, a = 2 is an interior limit point of the function graphed.

However, only the rightmost has a double-sided limit which exists; limx→2 f(x) = 2.

It is useful to have langauge to distinguish between the behavior of the graphs above. The concept
of left and right limits helps us in refining such language. Using the terminology introduced by the
definition below we see the middle graph above has lim

x→2−
f(x) = 3 and lim

x→2+
f(x) = 0.
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Definition 2.2.7. one-sided limits

If f is a function with limit point a.

1.) Assume there exists η > 0 for which (a− η, a) ∩ dom(f) 6= ∅. If for each ε > 0
there exists δ > 0 for which x ∈ R with a < x < a + δ implies |f(x) − L| < ε
then we write lim

x→a+
f(x) = L and call this the right-limit at x = a of f .

2.) Assume there exists η > 0 for which (a, a+ η) ∩ dom(f) 6= ∅. If for each ε > 0
there exists δ > 0 for which x ∈ R with a − δ < x < a implies |f(x) − L| < ε
then we write lim

x→a−
f(x) = L and call this the left-limit at x = a of f .

If (a−η, a)∩dom(f) and (a, a+η)∩dom(f) then Bη(a)o ⊆ dom(f) and a is an interior limit point.
Interior limit points allow for the calculation of left, right and double-sided limits. In contrast, if the
domain of f was [0, 1) then I would not consider limx→0− f(x) or limx→1+ f(x) to be a well-defined
limits. However, limx→0+ f(x) or limx→1− f(x) would be well-defined limits (which may or may
not exist). Quibbles aside, there is a simple relation between left, right and double-sided limits:

Theorem 2.2.8. two-sided limit holds if and only if both left and right limits hold.

Let f be a function with interior limit point a. Let L ∈ R,

lim
x→a

f(x) = L ⇔
{

lim
x→a+

f(x) = L and lim
x→a−

f(x) = L

}

Proof: see Appendix section on limit proofs. 2.

In-Class Example 2.2.9.
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2.2.1 divergent limits and limits at ±∞

The leftmost graph in Example 2.2.6 had a vertical asymptote at the limit point a = 2. We should
provide a careful definition to cover such cases.

Definition 2.2.10. limits which diverge to ∞

Let f be a function and a ∈ R.

• We say that f(x)→∞ as x→ a if and only if for each M > 0 there exists δ > 0 such
that f(x) > M whenever 0 < |x− a| < δ. In the case that the condition above is met
we say that the limit diverges to ∞ and denote this by lim

x→a
f(x) =∞.

• If for each M > 0 there exists δ > 0 such that f(x) > M whenever a < x < a + δ
then we say f(x)→∞ as x→ a+ and write lim

x→a+
f(x) =∞

• Likewise, if for each M > 0 there exists δ > 0 such that f(x) > M whenever a− δ <
x < a then we say f(x)→∞ as x→ a− and write lim

x→a−
f(x) =∞.

The definitions of f(x) → −∞ as x → a or x → a± are very similar we just replace the condition
f(x) > M with f(x) < N for N < 0. It is also interesting that the proposition given in the last
section also applies in this context:

Proposition 2.2.11. two-sided limit diverges to ±∞ iff both left and right limits diverge to ±∞.

lim
x→a

f(x) = ±∞ ⇔
{

lim
x→a+

f(x) = ±∞ and lim
x→a−

f(x) = ±∞
}

In-Class Example 2.2.12.
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One satisfying aspect of carefully defining divergent limits is that we can give a concrete definition
of a vertical asymptote. In fact, we should pause and note that we now have a non-graphical
method of distinguishing between vertical asymptotes, holes in the graph and jump-discontinuities
of a function. All three can arise from formulas which fail if evaluated at the point in question.
The concept of a limit helps us to carefully distinguish what algebra alone cannot hope to detect.

Definition 2.2.13. vertical asymptotes (VA), holes and jumps.

Let f be a function and a ∈ R.

1. We say that f has a vertical asymptote x = a if and only if either of the left or
right limits diverge to ±∞. That is, x = a is a VA if and only if limx→a± f(x) = ±∞.

2. We say that f has a hole in the graph at (a, L) iff a /∈ dom(f) and limx→a f(x) = L

3. We say that f has a finite jump-discontinuity at x = a if and only if both the left
and right limits of f(x) exist in R and do not agree; limx→a+ f(x) = L+ ∈ R and
limx→a− f(x) = L− and L+ 6= L−.

Example 2.2.14. For the following three graphs only the rightmost graph has a double-sided limit
which exists as x→ 0; in fact, f(x)→ 0 and x→ 0 for the rightmost graph.

The left graph has f(x) → 0 as x → 0− whereas the right limit fails to exist due to oscillation as
x→ 0+. The middle graph has a vertical asymptote at x = 0 since f(x)→∞ as x→ 0−.

In-Class Example 2.2.15.
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2.2.2 limits at ±∞, a brief look

The behavior a function for x >> 0 or for x << 0 is captured by the limit of the function at ±∞,

Definition 2.2.16. limits at ∞ or −∞.

We say lim
x→∞

f(x) = L if and only if for each ε > 0 there exists N ∈ R with N > 0 such

that if x > N then |f(x) − L| < ε. Likewise, lim
x→−∞

f(x) = L if and only if for each ε > 0

there exists M ∈ R with M < 0 such that if x < M then |f(x)− L| < ε.

In-Class Example 2.2.17.

Definition 2.2.18. horizontal asymptotes.

If limx→∞ f(x) = L then the function f is said to have a horizontal asymptote of y = L
at ∞. If limx→−∞ f(x) = L then the function f is said to have a horizontal asymptote
of y = L at −∞.

Example 2.2.19. Let f(x) = tan−1(x). We saw in the preliminaries chapter that the inverse
tangent function had horizontal asymptotes of y = π

2 for x >> 0 and y = −π
2 for x << 0.

Therefore,

lim
x→∞

tan−1(x) =
π

2
lim

x→−∞
tan−1(x) = −π

2
.

Vertical asymptotes of the function correspond to horizontal asymptotes for the inverse function.
We can also discuss limits which go to infinity at infinity. It’s just the natural merger of both
definitions but I state it here for completeness.
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Definition 2.2.20. infinite limits at infinity.

The limit at ∞ for a function f is ∞ iff for each M > 0 there exists N > 0 such that for
x > N we find f(x) > M . We denote lim

x→∞
f(x) = ∞ in this case. Likewise, the limit at

−∞ for a function f is ∞ iff for each M > 0 there exists N < 0 such that if x < N then
f(x) > M . We denote this by lim

x→−∞
f(x) = ∞. Similarly, if for each M < 0 there exists

N > 0 such that x > N implies f(x) < M we say lim
x→−∞

f(x) = −∞. Finally, if for each

M < 0 there exists N < 0 such that x < N implies f(x) < M we say lim
x→−∞

f(x) = −∞.

Example 2.2.21. I offer a pair of illustrations to conclude here:

In-Class Example 2.2.22.

If time permits, we will return to this topic later in the course. See Section 5.4 for many examples
and much advice. I don’t think we need all that jazz at the moment, so I defer it.
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2.3 limit calculation

We assume a ∈ R and f, g are functions with limit point a throughout this section unless otherwise
explicitly stated. I’ve written careful proofs for the claims in this section in Appendix 7.6, most of
those proofs are omitted here.

Theorem 2.3.1. Limit Laws

(1.) If lim
x→a

f(x) = L1 and lim
x→a

f(x) = L1 then L1 = L2.

(2.) If lim
x→a

f(x) = Lf ∈ R and lim
x→a

g(x) = Lg ∈ R then lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x).

(3.) Suppose c ∈ R and lim
x→a

f(x) = L ∈ R then lim
x→a

cf(x) = c lim
x→a

f(x).

(4.) Suppose a ∈ R and fi(x)→ Li ∈ R as x→ a for i = 1, 2, . . . , n. Then,

lim
x→a

(c1f1(x) + c2f2(x) + · · ·+ cnfn(x)) = c1 lim
x→a

f1(x) + c2 lim
x→a

f2(x) + · · ·+ cn lim
x→a

fn(x).

(5.) If lim
x→a

f(x) = Lf ∈ R and lim
x→a

g(x) = Lg ∈ R then lim
x→a

[f(x)g(x)] =
(

lim
x→a

f(x)
)(

lim
x→a

g(x)
)

.

(6.) If lim
x→a

f(x) = L1 and lim
y→L1

g(y) = L2 then limx→a g(f(x)) = L2.

(7.) If lim
x→a

f(x) = Lf ∈ R and lim
x→a

g(x) = Lg ∈ R with Lg 6= 0 then lim
x→a

f(x)

g(x)
=

limx→a f(x)

limx→a g(x)
.

(8.) If either one of the following limits exist then so does the other and lim
x→a

f(x) = lim
h→0

f(a+ h).

Proof: ( I will probably prove (2.))
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Theorem 2.3.2. Limits of Elementary Functions

(1.) lim
x→a

x = a.

(2.) lim
x→a

c = c.

(3.) Let a ∈ R and n ∈ N ∪ {0}, lim
x→a

xn = an.

(4.) Suppose cn, . . . , c1, c0 ∈ R and p(x) = cnx
n + · · ·+ c1x+ c0 then lim

x→a
p(x) = p(a).

(5.) If a 6= 0 then limx→a
1
x = 1

a

(6.) If a > 0 then limx→a
√
x =
√
a. In addition, limx→0+

√
x = 0.

(7.) Let a ∈ R with a > 0 and n ∈ N, limx→a x
m
n = a

m
n .

(8.) Let f(x) be defined by a finite number of algebraic operations (possibly including addition,
multiplication, division, taking integer or fractional roots) then lim

x→a
f(x) = f(a)

(9.) Let a ∈ R, limx→a sin(x) = sin(a) and limx→a cos(x) = cos(a).

(10.) Let b > 0, limx→a b
x = ba.

Example 2.3.3. In each of the limits below the limit point is on the interior of the domain of the
elementary function so we can just evaluate to calculate the limit.

i.) limx→3(sin(x)) = sin(3)

ii.) limx→−2

(√
x2−3
x+5

)
=

√
4−3
−2+5 = 1

3

iii.) limh→0(sin
−1(h)) = sin−1(0) = 0

iv.) limx→a(x
3 + 3x2 − x+ 3) = a3 + 3a2 − a+ 3.

We did not even need to look at a graph to calculate these limits. Of course it is also possible to
evaluate most limits via a graph or a table of values, but those methods are less reliable.

The example below illustrates the table of values idea.

Example 2.3.4. The following table of values indicates that limx→0+
sin(x)
x = 1
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Now the limit considered in Example 2.3.4 is not nearly as obvious as the limits in Example
2.3.3. I should mention that the limit has indeterminant form of type 0/0 since both sin(x) and
x tend to zero as x goes to zero. One of main goals in this part of the course is to learn how to
analyze indeterminant forms. Thus far we have only encountered case (1.) of the definition below.
The reason these are called ”indeterminant forms” is simply that the value of the limit with an
indeterminant form is not known without further analysis. Limits with these forms might diverge
to infinity, simply not exist or even converge to any number of finite values.

Definition 2.3.5. indeterminant forms.

• we say lim f
g is of ”type 0

0” iff lim f = 0 and lim g = 0

• we say lim f
g is of ”type ∞∞” iff lim f = ±∞ and lim g = ±∞

• we say lim fg is of ”type 0∞” iff lim f = 0 and lim g = ±∞

• we say lim f − g is of ”type ∞−∞” iff lim f =∞ and lim g =∞

Now it is time for us to test our algebraic might. The examples given in this section illustrate all
the basic algebra tricks to unravel undetermined limits. I like to say we do algebra to determine
the limit. The limits are not just decoration, many times an expression with the limit is correct
while the same expression without the limit is incorrect. On the other hand we should not write
the limit if we do not need it in the end. How do we know when and when not? We practice.

In-Class Example 2.3.6.

In-Class Example 2.3.7.
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In-Class Example 2.3.8.

In-Class Example 2.3.9.

In-Class Example 2.3.10.
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In-Class Example 2.3.11.

In-Class Example 2.3.12.
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Example 2.3.13. Piecewise defined functions can require a bit more care. lim
x→0

(
|x|
x

)
= ?.

Recall |x| =

{
−x : x < 0.

x : x ≥ 0.
. In the left limit x→ 0− we have x < 0 so |x| = −x thus,

lim
x→0−

[
|x|
x

]
= lim

x→0−

[
−x
x

]
= lim

x→0−

[
−1

1

]
= −1.

In the right limit x→ 0+ we have x > 0 so |x| = x thus,

lim
x→0−

[
|x|
x

]
= lim

x→0−

[
x

x

]
= lim

x→0−

[
1

1

]
= 1.

Consequently we find that the left and right limits disagree hence limx→0

[
|x|
x

]
= d.n.e..

The function we just looked at in preceding is a step function. They are very important to engi-
neering since they model switching. The graph y = |x|/x looks like a single stair step,

Example 2.3.14. This limit below is not indeterminant, the type ∞/0 will diverge. The question
is merely how does it diverge? It becomes clear this limit is positive after we simplify,

lim
x→0

(
cot(x)

tan(x)

)
= lim

x→0

(
1

cot2(x)

)
= ∞.

Example 2.3.15. This limit below is not indeterminant, the type ∞/0 will diverge. The question
is merely how does it diverge?

lim
x→0−

(
ex + 3

sin(x)

)
= −∞.

I knew it diverged to −∞ since the values of the function are negative for inputs just a little to the
left of zero and I know the sine function has negative values for such inputs.

Remark 2.3.16. Intuition is very important. One of the main reasons to do a lot of homework
is that it refines and sharpens your intuition. Whenever a person with experience is faced with a
limit problem the usual first step we make is to decide what we think the answer ought to be. Then
we supply algebra to confirm our suspicion. If the function is complicated I often plug in points
really close to the limit point to get a feel for the problem. This approach will fail for a certain class
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of sarcastically crafted pathological problems but it is successful for almost all problems assigned in
this introductory course. My point? You can figure out what the answer is often even when you
can’t show your work. This will earn you some partial credit, but the idea here is not just to find
an answer. The steps showing how the answer is deduced are important. At a minimum you ought
to show how indeterminancy is removed for a given problem. I did that in every example in this
section.

2.4 squeeze theorem

There are limits not easily solved through algebraic trickery. Sometimes the ”Squeeze” or ”Sand-
wich” Theorem allows us to calculate the limit. The proof is given in Appendix 7.7

Proposition 2.4.1. squeeze theorem1.

Let f(x) ≤ g(x) ≤ h(x) for all x near a then we find that the limits at a follow the same
ordering,

lim
x→a

f(x) ≤ lim
x→a

g(x) ≤ lim
x→a

h(x).

Moreover, if limx→a f(x) = limx→a h(x) = L ∈ R then limx→a f(x) = L.

We can think of h(x) as the top slice of the sandwich and f(x) as the bottom slice. The function
g(x) provides the BBQ or peanut butter or whatever you want to put in there.

Example 2.4.2. Use the squeeze theorem to calculate limx→0( x
2 sin( 1x) ). Notice that the following

inequality is suggested by the definition or graph of sine

−1 ≤ sin(θ) ≤ 1

Substitute θ = 1/x and multiply by x2 which is positive if x 6= 0 so the inequality is maintained,

−x2 ≤ x2 sin

(
1

x

)
≤ x2

We identify that f(x) = −x2 and h(x) = x2 sandwich the function g(x) = x2 sin( 1x) near x = 0.
Moreover, it is clear that

lim
x→0

( x2 ) = 0 lim
x→0

( −x2 ) = 0.

Therefore, by the squeeze theorem, limx→0( x
2 sin( 1x) ) = 0. Graphically we can see why this works,

1this theorem can also be stated for x → ±∞ or x → a± provided the inequality holds for appropriate values
where the limit is taken
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Perhaps, you’re wondering why we could not just use the limit of product proposition lim fg =
lim f lim g. The problem is that since the limit of sin

(
1
x

)
at zero does not exist due to wild oscillation

at zero. Therefore, we have no right to apply the limit proposition.

Example 2.4.3. Suppose that all we know about the function f(x) is that it is sandwiched by
1 ≤ f(x) ≤ x2 + 2x+ 2 for all x. Can we calculate the limit of f(x) as x→ −1? Well, notice that

lim
x→−1

(1) = 1 lim
x→−1

(x2 + 2x+ 2) = 1.

Therefore, by the Squeeze Theorem, limx→−1 f(x) = 1.

The Squeeze Theorem applies to other types of limits with appropriate modification.

Example 2.4.4. Observe −1 ≤ sin(10t) ≤ 1 implies −e−t ≤ e−t sin(10t) ≤ e−t. Note ±e−t → 0 as
t → ∞ thus the Squeeze Theorem implies lim

t→∞
e−t sin(10t) = 0. The graph below has y = ±e−t as

the red and blue curves which envelop the graph of y = e−t sin(10t)

In-Class Example 2.4.5.
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2.5 continuity of functions

We’ve seen that in many circumstances limx→a f(x) = f(a). A function which satisfies such a
condition at each point in its domain is called continuous. It is convenient to give a definition
here in terms of inequalities since it simultaneous includes endpoints2

Definition 2.5.1. continuity.

Let f be a function and a ∈ dom(f) then f is continuous at a if and only if for each ε > 0
there exists δ > 0 for which |x−a| < δ implies |f(x)− f(a)| < ε. If f is continuous for each
x ∈ U then f is continuous on U . If f is continuous on its domain then f is continuous.

Let us picture the different cases which the above definition captures.

1. If there exists η > 0 for which Bη(a) ⊆ dom(f) then continuity of f at a implies for each
±ε-band centered about y = f(a) we can select the blue ±δ-band centered at x = a for which the
outputs of f fit within the pictured green band:

We should recognize that lim
x→a

f(x) = f(a).

2. If a ∈ dom(f) is a left boundary point of dom(f) the continuity of f at x = a indicates for
each ±ε-band about y = f(a) there exists a blue ±δ-band about x = a whose intersection with
dom(f) returns values for f(x) which fit within the green band:

In this case we have lim
x→a−

f(x) = f(a).

2this definition also makes sequences continuous functions, a fact which probably does not matter to the current
course
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3. If a ∈ dom(f) is a right boundary point of dom(f) the continuity of f at x = a indicates
for each ±ε-band about y = f(a) there exists a blue ±δ-band about x = a whose intersection with
dom(f) returns values for f(x) which fit within the green band:

In this case we have lim
x→a+

f(x) = f(a).

In summary, a function is continuous at x = a if and only if the limit of the function as x approaches
a within dom(f) is given by evaluating f at x = a.

Theorem 2.5.2. Characterizing continuity via limits: f is continuous at a ∈ dom(f) provided

1. a ∈ int(dom(f)) and limx→a f(x) = f(a).

2. a is a left boundary point and limx→a+ f(x) = f(a).

3. a is a right boundary point and limx→a− f(x) = f(a).

Proof: I leave the proof to the reader, it is not especially difficult. 2

Another useful visualization is given below.

4. If we find a single ±ε-band centered about y = f(a) fow which it is impossible to contain the
values y = f(x) for x ∈ (a− δ, a+ δ) then this shows that limx→a f(x) does not exist. For example:

Discontinuity can also arise from just a single point moving off the graph. The key idea is that
continuous functions have graphs where the values adhere to one another locally.
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I should caution the reader who remembers the definition of continuity from their previous course
work. Often in precalculus the description of a continuous function is give by the following slogan:

A continuous function is one whose graph is drawn without lifting your pen.

Unfortunately, this slogan does not work unless the domain of the function is connected. If the
domain is not connected then graph of the function is likewise disconnected.

For example, consider f(x) = 1
x the graph y = 1

x cannot be drawn unless we lift our pen at the
vertical asymptote x = 0:

Notice that dom(f) = (−∞, 0)∪ (0,∞) and for a 6= 0 we have limx→a
1
x = 1

a . Thus f is continuous
at each point in its domain. Hence f is a continuous function.

In-Class Example 2.5.3. Problem: choose a value for c which makes f continuous on R given
that

f(x) =

{
cx+ 3. x < −2

x2 + 3, x ≥ −2
.
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We now return to Section 7.6 and apply the limit laws to our study of continuous functions. To
begin we catalog how we can construct new continuous functions from old:

Theorem 2.5.4. Let f and g be continuous at a and c ∈ R,

1.) f + g is continuous at a,

2.) cf is continuous at a,

3.) fg is continuous at a,

4.) given g(a) 6= 0, f
g is continuous at a.

Moreover, if f and g are continuous functions then f + g, cf and fg are likewise continuous.

Proof: from Proposition 7.6.4 and continuity of f and g at a we find:

lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x) = f(a) + g(a) (2.3)

Therefore, f + g is continuous a for each a ∈ dom(f) ∩ dom(g). We find f + g is continuous on
dom(f) ∩ dom(g). Likewise, if c ∈ R then Proposition 7.6.5 and continuity of f at a yields

lim
x→a

(cf(x)) = c lim
x→a

f(x) = cf(a). (2.4)

Therefore, cf is continuous at a and it follows cf is continuous on dom(f) since the argument
above holds for all a ∈ dom(f). Finally, Proposition 7.6.7 and continuity of f and g at a provides
f(x)g(x) → f(a)g(a) for each a ∈ dom(f) ∩ dom(g). Thus fg is a continuous function. Finally,
apply Proposition 7.6.12 to prove (4.). 2

We also have the composite of continuous functions is continuous:

Theorem 2.5.5. If f is continuous at a and g is continuous at f(a) then g ◦ f is continuous at a.

Proof: If f is continuous at a and g is continuous at f(a) then Proposition 7.6.10 provides
limx→a g(f(x)) = limy→f(a) g(y) = g(f(a)). Therefore, g ◦ f is continuous at a. 2

Continuity allows us to pull limits in and out of function evaluation: if f(x) → Lf ∈ R as x → a
and g is continuous at Lf then:

lim
x→a

g(f(x)) = g
(

lim
x→a

f(x)
)
. (2.5)

Elementary functions include polynomials, sine, cosine, algebraic functions, exponentials, hy-
perbolic functions as well as the inverse functions of all of these. See Section 1.5 for graphs and
discussion of some of the quirks and features of these functions3. Elementary functions are con-
tinuous because we the limit laws allow us to calculate the limit of an elementary function by
evaluation. The points at which the limit of an elementary function does not exist are points
outside the domain of the function.

3I blame Doug Demuro’s You Tube Channel for this quirk and feature of my writing.

https://www.youtube.com/channel/UCsqjHFMB_JYTaEnf_vmTNqg
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In-Class Example 2.5.6.

In-Class Example 2.5.7.

Let us record the continuity of elementary functions in a theorem for future reference:

Theorem 2.5.8. Each function below is continuous on its domain:

1.) Polynomial functions,

2.) Rational functions,

3.) Algebraic functions,

4.) Trigonmetric functions and their reciprocal functions.

5.) Exponential functions,

6.) Hyperbolic trigonmetric functions and their reciprocal functions.

The proof is given in the Appendix at 7.8.1. Essentially all these claims follow from the limit laws.
It turns out the inverse functions require greater sophistication as proved in the Appendix at 7.10.2.

Theorem 2.5.9. invertible continuous function have continuous inverses.

Suppose S, T ⊆ R and S is connected. If f : S → T is continuous with inverse f−1 : T → S
then f−1 is continuous.
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Remark 2.5.10. If f is a one-to-one function on S then f(x) = y can be used to define f−1(y) = x.
Moreover, (a, b) ∈ graph(f) if and only if (b, a) ∈ graph(f−1). This means we can draw the graph
of the inverse function by drawing the same pattern as the function graph by simply exchanging the
vertical and horizontal directions in the graphing in the xy-plane. For example, here are the graphs
of sine and its inverse:

If f is continuous then there is no jump in the graph, since f−1 is drawn in the same way (just
diagonally flip the paper) it stands to reason that f−1 also has no jump in its graph. That is to say,
continuity of the inverse function for a continuous function with connected domain is completely
unsurprising.

Proposition 2.5.11. continuity of power function for arbitrary power.

Let p ∈ R and a > 0 then limx→a x
p = ap.

Proof:

Given the inverse function theorem and the results already given in this section it should be clear
that all the functions from Section 1.5 are continuous.

Theorem 2.5.12. most elementary functions are continuous on the interior of their domain.

Polynomial, rational, power, trigonometric, hyperbolic as well as their respective local in-
verse functions are continuous on the interior of their respective domains.

Proof: Theorem 7.8.1 provides continuity of the polynomial, rational, algebraic, trigonometric,
exponential and hyperbolic functions. Each inverse function is given a connected domain hence
Theorem 7.10.2 applies to provide the desired continuity for the inverse function. 2
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In-Class Example 2.5.13.

In-Class Example 2.5.14.

In-Class Example 2.5.15.
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2.6 intermediate value theorem

The proof of the intermediate value theorem is given at the conclusion of this section.

Theorem 2.6.1. intermediate value theorem (IVT).

Suppose that f is continuous on an interval [a, b] with f(a) 6= f(b) and let N be a number
such that N is between f(a) and f(b) then there exists c ∈ (a, b) such that f(c) = N .

Notice that this theorem only tells us that there exists a number c, it does not actually tell us how
to find that number. This theorem is quite believable if you think about it graphically. Essentially
it says that if you draw a horizontal line y = N between the lines y = f(a) and y = f(b) then since
the function is continuous we must cross the line y = N at some point. Remember that the graph
of a continuous function has no jumps in it so we cannot possibly avoid the line y = N . Let me
draw the situation for the case f(a) < f(b),

The IVT can be used for an indirect manner to locate the zeros of continuous functions. The theo-
rem motivates an iterative process of divide and conquer to find a zero of the function. Essentially
the point is this, if a continuous function changes from positive to negative or vice-versa on some
interval then it must be zero at least one place on that interval. This observation suggests we
should guess where the function is zero and then look for smaller and smaller intervals where the
function has a sign change. We can just keep zooming in further and further and getting closer and
closer to the zero. Perhaps you have already used the IVT without realizing it when you looked
for an intersection point on your graphing calculator.

Example 2.6.2. Show that there exists a zero of the polynomial P (x) = 4x3− 6x2 + 3x− 2 on the
interval [1, 2]. Observe that,

P (1) = 4− 6 + 3− 2 = −1 < 0

P (2) = 32− 24 + 6− 2 = 12 > 0

We know that P is continuous everywhere and clearly P (1) < 0 < P (2) so by the IVT we find there
exists some point c ∈ (1, 2) such that P (c) = 0. To find the precise value of c would require more
work.
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In-Class Example 2.6.3. Show there exists a solution of x5 + 4x2 = 100

Example 2.6.4. Does tan−1(x) = − cos(x) for some x ∈ (−2, 2) ? Let’s rephrase the question.
Does f(x) = tan−1(x) + cos(x) = 0 for some x ∈ (−2, 2)? This is the same question, but now we
can use the IVT plus the sign change idea. Observe,

f(−2) = tan−1(−2) + cos(−2) = −1.52

f(2) = tan−1(2) + cos(2) = 0.691.

Obviously f(−2) < 0 < f(2) and both tan−1(x) and cos(x) are continuous everywhere so by the
IVT there is some c ∈ (−2, 2) such that f(c) = 0. Clearly c has tan−1(c) = − cos(c). If you
examine the graphs of y = tan−1(x) and y = − cos(x) you will find that they intersect at c = −0.82
(approximately).

Example 2.6.5. Consider two increasing functions which model some physical process as a function
of time t. Suppose further f(t) < g(t) for 0 ≤ t < 1 and f(t) > g(t) for t > 1. We might think
it must be the case that f(1) = g(1). How else can the values of f(t) overtake the values of g(t) ?
Well, consider the following:

If we define h(t) = f(t)− g(t) then notice h(t) < 0 for t < 1 yet h(t) > 0 for t > 1. If we carelessly
applied the IVT then we would conclude h(1) = 0. However, f is discontinuous hence h is not
continuous and we cannot apply the IVT. Indeed, there is no t > 0 for which f(t) = g(t). The
graph y = f(t) jumps over y = g(t) somewhat magically at t = 1.
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This sort of discontinuity is often due to a switch which is activated by some entity. In contrast,
macroscopic motion of large processes tend to follow more gradual patterns with variation which
follows a typical bound throughout the process. If I ran an experiment and I observed there was
a jump like that in the graph I would assume much investigation was needed as to the mechanics
which caused the jump. It makes one suspect the rules governing the rest of the processes were
violated at the jump.

Remark 2.6.6. root finder for continuous functions.

Let me take a moment to write an algorithm to find roots. Suppose we are given a continuous
function f , we wish to find c such that f(c) = 0.

1. Guess that f is zero on some interval (ao, bo).

2. Calculate f(ao) and f(bo) if they have opposite signs go on to 3.) otherwise return to
1.) and guess differently.

3. Pick c1 ∈ (ao, bo) and calculate f(c1).

4. If the sign of f(c1) matches f(ao) then say a1 = c1 and let b1 = bo. If the sign of f(c1)
matches f(bo) then say b1 = c1 and let a1 = ao

5. Pick c2 ∈ (a1, b1) and calculate f(c2).

6. If the sign of f(c2) matches f(a1) then say a2 = c2 and let b2 = b1. If the sign of f(c2)
matches f(b1) then say b2 = c2 and let a2 = a1

and so on... If we ever found f(ck) = 0 then we would stop there. Otherwise, we can repeat
this process until the subinterval (ak, bk) is so small that we know the zero to some desired
accuracy. Say you wanted to know 2 decimals with certainty, if you did the iteration until
the length of the interval (ak, bk) was 0.001 then you would be more than certain. Of course,
a careful analysis of this algorithm and its limitations would also need to consider rounding
errors and the inherent limitations of machine arithmetic. Beware the machine ε.

In-Class Example 2.6.7. Find solution of x5 + 4x2 = 100 on [0, 3] by the method of bisection.



Chapter 3

differential calculus

We will define the derivative of a function in this chapter. The need for a derivative arises naturally
within the study of the motion of physical bodies.

You are probably already familiar with the average velocity of a body. For example, if a car travels
100 miles in two hours then it has an average velocity of 50 mph. That same care may not have
traveled the same velocity the whole time though, sometimes it might have gone 70mph at the
bottom of a hill, or perhaps 0mph at a stoplight. Well, this concept I just employed used the idea
of instantaneous velocity. It is the velocity measured with respect to an instant of time.

How small is an ”instant”? Well, it’s pretty small. You might imagine that this ”instant” is some
agreed small unit of time. That is not the case, there is no natural standard for all processes. I
suppose you could argue with the policeman that your average rate of speed to school was 30mph
(taking the ”instant” to be 10 minutes for me) but I bet all he’ll care about is the 40mph you did
through the 20mph school zone. The ”velocity” of a car as measured by radar is essentially the
instantaneous velocity. It is the time rate change in distance for an arbitrarily small increment of
time. It seems intuitive to want such a description of motion, I have a hard time thinking about
how we would describe motion without instantaneous velocity. But, then I have ( we all have )
grown up under the influence of Isaac Newton’s ideas about motion. Certainly he was not alone in
the development of these ideas, Galileo, Kepler and a host of others also pioneered these concepts
which we take for granted these days. Long story short, differential calculus was first motivated by
the study of motion. Our goal in this chapter is to give a precise meaning to such nebulous phrases
as ”instant” of time. The limits of the previous chapter will aid us in this description.

Generally, the derivative of a function describes how the function changes with respect to its in-
dependent variable. When the independent variable is time then it is a time-rate of change. But,
that need not always be the case. I believe that Newton first thought of things changing with
respect to time, he had physics on the brain. In contrast, Leibniz considered more abstract rates of
change and the modern approach probably is closer to his work. We typically use Leibniz’ notation.

77
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Let me briefly describe the content of this chapter. We begin by defining tangent lines and infinites-
imal rates of change. Then the derivative as a function is defined and several examples exhibiting
the tangent line construction are given. Next, linearity and the power rule are developed. Breaking
from logical minimalism for the sake of pedagogical efficiency we then find derivatives of exponen-
tial, sine and cosine functions. Inclusion of that material at that point allows us to integrate those
important transcendental function in the later sections of the chapter. Finally, we conclude the
chapter by working out the major rules of differential calculus: the product, quotient and chain
rules and their beautiful applications in the techniques of logarithmic and implicit differentiation.

Finally, I cannot overstate the importance of this chapter. The derivative forms the core of the
calculus sequence. And it describes much more than velocity, that is just one application. Basically,
if something changes then a derivative can be used to model it. It’s ubiquitous.

3.1 differentiability at a point

Let a be a fixed number throughout this discussion. Let h be an number which we allow to
vary. Then a secant line at (a, f(a)) is simply a line which connects (a, f(a)) to another point
(a+ h, f(a+ h)) which is also on the graph of the function. For example:

You can imagine that as h increases or decreases we will get a different secant line. In fact, there
are infinitely many secant lines. See this Desmos graph to adjust the value of h, or to animate
−1 < h < 1. Notice that the slope of the pictured secant line is just the rise over the run, that is

m =
4y
4x

=
f(a+ h)− f(a)

a+ h− a
=
f(a+ h)− f(a)

h
. (3.1)

This may look familiar to you. it is the so-called ”difference quotient” some of you may have seen
in your precalculus course. We should also realize the slope of the secant line gives the average
rate of change of y with respect to x. In the limit h→ 0 we obtain the tangent line whose
slope can be interpreted as the instantaneous rate of change of y with respect to x.

https://www.desmos.com/calculator/td64aarijl
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Definition 3.1.1. slope of function, derivative at point, tangent line.

If the limit below exists then we say f is differentiable at x = a and define

f ′(a) = lim
h→0

(
f(a+ h)− f(a)

h

)
For f differentiable at x = a, the equation of the tangent line is y = f(a) + f ′(a)(x− a)

and we say the slope of f at a is f ′(a).

The tangent line is unique when it exists because limits are unique when they exist. However, there
is more than one method to formulate f ′(a). Substitute x = a+ h. As h→ 0 note x = a+ h→ a.
Thus, by the substition law for limits,

f ′(a) = lim
x→a

(
f(x)− f(a)

x− a

)
(3.2)

The formulation of f ′(a) above is sometimes useful.

Example 3.1.2. If we consider y as position and t as time then average velocity from t to t+4t
is given by 4y4t = y(t+4t)−y(t)

4t . The velocity at time t for position y is thus defined,

v(t) = y′(t) = lim
4t→0

(
y(t+4t)− y(t)

4t

)
. (3.3)

No qualifier is placed on v(t) because it is understood from here on out that unless qualified the
”velocity” is the ”instantaneous velocity”. The necessity of this concept led Newton and others
interested in the physics of motion to the mathematics of calculus.

We can question the necessity of limits in the formulation of the tangent line. Indeed, when Newton
and Leibniz formulated calculus initially there was no well formulated concept of limit. Newton
thought of the derivative as a quotient of fluxions and apparently Leibniz had some similar idea.
A fluxion is alternatively called an infinitesimal. These are very very small quantities that have
properties which ultimately forbid them being understood as real numbers.

Nonstandard analysis introduces some algebraic formalism to implement infinitesimals along side
ordinary real numbers in an extended number system. In such a formalism we can literally claim
the slope is formed by a ratio. Limits are replaced with the trouble of introducing infinitesimals
carefully. As a matter of intuition, it is sometimes convenient to conceptualize dy

dx as a fraction1

You can read more in a number of places. For example, see this discussion on the Math Educator
Stack Exchange website.

1It is a useful heuristic to guide the construction of models. For example, pressure P = dF
dA

where dF is the little
pressure applied over the little area dA. We can think of dF = PdA in such a context. Calculations such as that
fall under a general family of calculations I call the infinitesimal method. If time permits we will discuss how the
infinitesimal method aids applications of integral calculus. Of course, this is rather off topic at the moment

https://matheducators.stackexchange.com/q/5989/128
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In-Class Example 3.1.3. Find the slope of the function y = x2 at x = 1 and graph both the
function and its tangent line.

Example 3.1.4. The absolute value function is f(x) = |x|. Observe difference quotient has differ-
ent left and right limits at zero.

lim
h→0−

|0 + h| − |0|
h

= lim
h→0−

|h|
h

= lim
h→0−

−h
h

= lim
h→0−

(−1) = −1.

lim
h→0+

|0 + h| − |0|
h

= lim
h→0+

|h|
h

= lim
h→0+

h

h
= lim

h→0+
(1) = 1.

Therefore f ′(0) = lim
h→0

f(0 + h)− f(0)

h
lim
h→0

|h|
h

= d.n.e.. Geometrically this is evidenced in our

inability to pick a unique tangent line at the origin. Which should we choose, the positive (purple)
or the negative (green) sloped tangent line?
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Another way the derivative at a point can fail to exist is for the function to have a vertical tangent.
Vertical lines do not have a well-defined slope2.

In-Class Example 3.1.5. The graph of y = 3
√
x has a vertical tangent at (0, 0). Show f ′(0) =∞

We saw in the previous example that a function can be continuous at a point yet fail to be differen-
tiable at that same point. In contrast, if a function is differentiable at a point it must be continuous
at that point. (I defer proof to the end of this section)

Theorem 3.1.6. If f is differentiable at a then f is continuous at a.

If f ′(a) exists for a function f then limx→a f(x) = f(a).

In-Class Example 3.1.7. Identify the points in the graph given in lecture for which f ′(a) d.n.e.

2 that is more a deficiency of our current formalism than anything else. If we adopt a parametric viewpoint
then the difference between horizontal and vertical tangents is washed away and much more general curves are easily
described. We defer discussion of parametric curves until later in the calculus sequence. For now we focus on the
special case of functions and graphs.
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In-Class Example 3.1.8. Let f(x) = 3. Calculate f ′(a).

In-Class Example 3.1.9. Let f(x) = mx+ b. Calculate f ′(a).

In-Class Example 3.1.10. Let f(x) = x3 + x− 2. Calculate f ′(2).
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3.1.1 Caratheodory’s characterization of differentiability

This section was inspired in large part from Bartle and Sherbert’s third edition of Introduction to
Real Analysis. The central point is Caratheodory’s Theorem which gives us an exact method to
relate the function and its tangent line approximation (linearization). It is so simple it is clever.
Consider a function f defined near x = a, we can write for x 6= a

f(x)− f(a) =

[
f(x)− f(a)

x− a

]
(x− a).

If f is differentiable at a then as x → a the difference quotient f(x)−f(a)
x−a tends to f ′(a) and we

arrive at the approximation f(x)− f(a) ≈ f ′(a)(x− a).

Theorem 3.1.11. Caratheodory’s Theorem.

Let f be a function whose domain includes the interval I and let a ∈ I. Then f is differen-
tiable at a iff there exists a function φ : I → R with the following two properties:

(1.) φ is continuous at a, (2.) f(x)− f(a) = φ(x)(x− a) for all x ∈ I

Proof:( ⇒) Suppose f is differentiable at a. Define φ(a) = f ′(a) and set φ(x) = f(x)−f(a)
x−a for

x 6= a. Differentiability of f at a yields:

lim
x→a

f(x)− f(a)

x− a
= f ′(a) ⇒ lim

x→a
φ(x) = φ(a).

thus (1.) is true. Finally, note if x = a then f(x) − f(a) = φ(x)(x − a) as 0 = 0. If x 6= a then

φ(x) = f(x)−f(a)
x−a multiplied by (x− a) gives f(x)− f(a) = φ(x)(x− a). Hence (2.) is true.

( ⇐) Conversely, suppose there exists φ : I → R with properties (1.) and (2.). Note (2.) implies

φ(x) = f(x)−f(a)
x−a for x 6= a hence limx→a

f(x)−f(a)
x−a = limx→a φ(x). However, φ is continuous at a

thus limx→a φ(x) = φ(a). We find f is differentiable at a and f ′(a) = φ(a). 2

Let us prove Theorem 3.1. Suppose f is differentiable at a then there exist φ continuous at x = a
for which f(x) = f(a) + φ(x)(x− a) for x near a. Then, by the usual limit laws,

lim
x→a

f(x) = lim
x→a

[f(a) + φ(x)(x− a)] = f(a) + φ(a)(a− a) = f(a).

Thus f is continuous at x = a. 2.

Caratheodory’s result allows for direct verification of many rules of differential calculus. I’ll offer
proofs for the product rule and chain-rule using Caratheodory.
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3.2 definition of the derivative function

The derivative of a function f is simply the function f ′ which is defined point-wise by the slope of
the tangent line to the function f at the given point.

Definition 3.2.1. derivative as a function.

If a function f is differentiable at each point in U ⊆ R then we define a new function
denoted f ′ which is called the derivative of f . It is defined point-wise by,

f ′(x) = lim
h→0

(
f(x+ h)− f(x)

h

)
We also may use the notation f ′ = df/dx = df

dx . Let U ⊆ R. When a function is has a
derivative f ′ which is continuous on U we say that f ∈ C1(U). If the derivative has a
continuous derivative f ′′ on U then we say f ∈ C2(U). If we can take arbitrarily many
derivatives which are continuous on U then we say that f is a smooth function and we
denote this by f ∈ C∞(U).

The notation df
dx gives one the idea of taking the infinitesimal change dy and dividing by the

infinitesimal change dx. There are times when it is quite useful to think of dy/dx as the quotient of
infinitesimals but that time is not now. For now the symbol dy/dx is simply a notation to implicit
the limiting process we just defined. Geometrically, it is clear that df/dx should give us a function
whose values are the slope of f at each point where such slope is well-defined. The symbol C1(U)
represents a set of functions, each function in this set is said to be continuously differentiable.
There are functions which are differentiable but not continuously differentiable at a given point.

In-Class Example 3.2.2. Suppose f(x) =
√
x. Calculate f ′(x) directly from the definition.
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Example 3.2.3. Suppose f(x) = 1
x2

. Calculate f ′(x) directly from the definition, assume x 6= 0.
By definition,

f ′(x) = lim
h→0

(
f(x+ h)− f(x)

h

)
= lim

h→0

( 1
x+h −

1
x

h

)

= lim
h→0

( x−(x+h)
x(x+h)

h

)
= lim

h→0

(
−h

hx(x+ h)

)
= lim

h→0

(
−1

x(x+ h)

)
=
−1

x2
.

In other notation,
df

dx
=
−1

x2
or

d

dx

[
1

x

]
=
−1

x2
.

Let’s take a moment to appreciate that the formula above allows us to set-up many different tangent
lines for the graph y = 1

x . For example,

f ′(−2) = −1/9 f ′(−1) = −1 f ′(1) = −1 f ′(2) = −1/4

Tell us the slopes of the tangent lines at (−2,−1/2), (−1,−1), (1, 1) and (2, 1/2) respective. We
find tangent lines:

y = −1

2
− 1

9
(x+ 2), y = −1− (x+ 1), y = 1− (x− 1), y =

1

2
− 1

4
(x− 2)

Here’s how they graph:
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3.3 linearity of the derivative and the power rule

These properties are crucial. Happily they’re also way easier than our previous methods! I begin
with linearity, we then work out the power rule for natural number powers.

Proposition 3.3.1.

The derivative d/dx is a linear operator. If c ∈ R and the functions f and g are differentiable
then

d

dx
( cf ) = c

d

dx
( f ) = c

df

dx
d

dx
( f + g ) =

d

dx
( f ) +

d

dx
( g ) =

df

dx
+
dg

dx
.

We also can write f ′(x) = df
dx and

(cf)′(x) = cf ′(x) (f + g)′(x) = f ′(x) + g′(x).

Proof: follows easily from the definition of the derivative. Additivity:

(f + g)′(x) = lim
h→0

(
(f + g)(x+ h)− (f + g)(x)

h

)
= lim

h→0

(
f(x+ h) + g(x+ h)− f(x)− g(x)

h

)
= lim

h→0

(
f(x+ h)− f(x)

h

)
+ lim
h→0

(
g(x+ h)− g(x)

h

)
= f ′(x) + g′(x).

Likewise, homogeneity:

(cf)′(x) = lim
h→0

(
(cf)(x+ h)− (cf)(x)

h

)
= lim

h→0

(
cf(x+ h)− cf(x)

h

)
= c lim

h→0

(
f(x+ h)− f(x)

h

)
= cf ′(x).

While proofs may not excite you, I hope you can see that these are really very simple proofs. We
didn’t do anything except apply the properties of the limit itself ( namely lim(f+g) = lim f+lim g
and lim(cf) = c lim f ) to the definition of the derivative for the functions f and g respective. 2

Rather than stating the power rule from the outset we will examine a number of cases to suggest
the rule. This will help us get more practice with the definition and perhaps a deeper appreciation
for the power rule itself. In each case I will again emphasize the utility of the d/dx notation.
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3.3.1 derivative of a constant

Suppose f(x) = c for all x ∈ R then calculate,

f ′(x) = lim
h→0

(
f(x+ h)− f(x)

h

)
= lim

h→0

(
c− c
h

)
= lim

h→0
(0)

= 0.

In operator notation we may write this result as follows:

d

dx

(
c
)

= 0

Here we think of the operator d
dx acting on a constant function to return the zero function.

3.3.2 derivative of identity function

Let f(x) = x for all x ∈ R,

f ′(x) = lim
h→0

(
f(x+ h)− f(x)

h

)
= lim

h→0

(
x+ h− x

h

)
= lim

h→0

(
h

h

)
= lim

h→0
( 1 )

= 1.

In operator notation we may write this result as follows:

d

dx

(
x
)

= 1

Which also show you that dx
dx = 1 which helps reinforce my claim that thinking of dx as a tiny

increment of x is not totally off base. We ought to have dx cancelling dx. Beware, this sort of
thinking is not without peril.
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3.3.3 derivative of quadratic function

Let f(x) = x2 for all x ∈ R,

f ′(x) = lim
h→0

(
f(x+ h)− f(x)

h

)
= lim

h→0

(
(x+ h)2 − x2

h

)
= lim

h→0

(
x2 + 2xh+ h2 − x2

h

)
= lim

h→0
( 2x+ h )

= 2x.

In operator notation we may write this result as follows:

d

dx

(
x2
)

= 2x

3.3.4 derivative of cubic function

Let f(x) = x2 for all x ∈ R,

f ′(x) = lim
h→0

(
(x+ h)3 − x3

h

)
= lim

h→0

(
x3 + 3x2h+ 3xh2 + h3 − x3

h

)
= lim

h→0
( 3x2 + 3xh+ h2 )

= 3x2.

In operator notation we may write this result as follows:

d

dx

(
x3
)

= 3x2

3.3.5 power rule

We should start to notice a pattern here: the derivative always returns a function with one less
power than we put into the derivative. Let’s list them to ponder the pattern,

(1.) d
dx(1) = d

dx(x0) = 0x0−1 = 0.

(2.) d
dx(x) = d

dx(x1) = 1x1−1 = x.

(3.) d
dx(x2) = 2x2−1 = 2x1 = 2x.
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(4.) d
dx(x3) = 3x3−1 = 3x2.

I bet most of you could guess that d
dx(x4) = 4x3 (and you would be correct). We can summarize:

Proposition 3.3.2. power rule

Suppose n ∈ R then,

d

dx

(
xn
)

= nxn−1.

The proof I give below is for the case that n ∈ N meaning n = 1, 2, 3, . . . (we already proved
n = 0, 1/2 and −1 in previous arguments). We begin by recalling the binomial theorem,

(x+ h)n =
n∑
k=0

(
n

k

)
xn−khk = xn + nxn−1h+

n(n− 1)

2
xn−2h2 + · · ·+ hn.

The symbol
(
n
k

)
≡ n(n−1)(n−2)···(n−k+1)

k(k−1)···3·2·1 is read ”n choose k” due to its application and interpre-
tation in basic counting theory. They are also called the ”binomial coefficients”. There is a neat
construction called Pascal’s triangle which allows you to calculate the binomial coefficients without
use of the formula just stated.

Proof: of power rule for n ∈ N follows from definition and binomial theorem:

d

dx
( xn ) = lim

h→0

(
(x+ h)n − xn

h

)
= lim

h→0

(
xn + nxn−1h+ n(n−1)

2 xn−1h2 + · · ·+ hn − xn

h

)
= lim

h→0
( nxn−1 +

n(n− 1)

2
xn−1h+ · · ·+ hn−1 )

= nxn−1. 2

This proof is no good if n = 1/2 since we have no binomial theorem in that case3. However, we

proved in Example 3.2.2 that d
dx(
√
x) = 1

2
√
x
. In other words, d

dx(x
1
2 ) = 1

2x
1− 1

2 (power rule works).

You should also note we also proved the case n = −1 in Example 3.2.3. In fact, the power rule is
still true in the case that n ∈ R−N 4, we just need another method of proof. I will give the general
proof towards the end of this chapter.

In-Class Example 3.3.3. Using the power rule correctly mostly boils down to you having a good
grasp of laws of exponents.

d

dx
(xx4) =

3We will learn in a later calculus course that the binomial expansion has infinitely many terms when n /∈ N.
4for example, d

dy
(yπ+2) = (π + 2)yπ+1 ≈ 5.142y4.142
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In-Class Example 3.3.4. We can use linearity in conjunction with the power rule for added fun,

d

dx

[
3x3

x
+
√

4x

]
=

Example 3.3.5. Sometimes the independent variable is not ”x”, rather t, or c or even µ

d

dt
( ttt ) =

d

dt
(t3) = 3t2 &

d

dc
(c) = 1 &

d

dµ
(µk) = kµk−1.

Proposition 3.3.6. extended linearity.

If functions f1, f2, . . . , fn are differentiable and c1, c2, . . . cn are constant then

d

dx

[
c1f1 + c2f2 + · · ·+ cnfn

]
= c1

df1
dx

+ c2
df2
dx

+ · · ·+ cn
dfn
dx

Or, using summation notation,

d

dx

[ n∑
k=1

ckfk

]
=

n∑
k=1

ck
dfk
dx

.

Proof: by induction. Left to the curious reader as an exercise.

In-Class Example 3.3.7.

d

dx
(x+ x2 + 3) =

Or, suppose a, b, c ∈ R then

d

dx
( ax2 +

b

3
x3− 1

x
+ c3 ) =

Example 3.3.8. We will find other ways to do this one later, but now algebra is our only hope.

d

dx

[
1√
x

( x−
√
x3 ) + x7

]
=

d

dx
(
√
x− x ) + 7x6 =

1

2
√
x
− 1 + 7x6.

In-Class Example 3.3.9. What is the slope of the line y = mx+ b at the point (xo,mxo + b)?
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In-Class Example 3.3.10. What is the slope of y = f(x) = ax2 + bx+ c at the point (xo, f(xo))?
What is the significance of the point where f ′(xo) = 0 ?

In-Class Example 3.3.11. Let f(x) = 3x7 + 2x2 + 5. Find the equation of the tangent line to
y = f(x) at x = 1.
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3.4 the exponential function

Transcendental numbers cannot be defined in terms of a solution to an algebraic equation. In
contrast, you could say that

√
2 is not a transcendental number since it is a solution to x2 = 2 (

it turns out
√

2 has a finite expansion in terms of continued fractions, it is a quadratic irrational).
Mathematicians have shown that there exist infinitely many transcendental numbers, but there are
precious few that are familiar to us. Probably π = 3.1415 . . . is the most famous. Next in popu-
larity to π we find the number e named in honor of Euler. I can think of at least four seemingly
distinct ways of defining e = 2.718 . . . . We choose a definition which has the advantage of not using
any mathematics beyond what we have so far discussed.

Let f(x) = ax for some a > 0, a 6= 1. Lets calculate the derivative of this exponential function,
we’ll use this calculation to define e in a somewhat indirect manner.

d

dx
( ax ) = lim

h→0

(
ax+h − ax

h

)
= lim

h→0

(
axah − ax

h

)
= lim

h→0

(
ax(ah − 1)

h

)
= ax lim

h→0

(
ah − 1

h

)
We will learn that this limit is finite for any a > 0. Thus the derivative of an exponential function
is proportional to the function itself. We can define a = e to be the case where the derivative is
equal to the function.

Definition 3.4.1. Euler’s number; e.

The number e is the real number such that

lim
h→0

(
eh − 1

h

)
= 1.

It is not at all obvious how to calculate that e = 2.718 . . . directly from this definition. This
definition implicitly defines the number e. Notice that the calculation preceding the definition
simplifies for this very special base; if a = e then

d

dx
( ex ) = ex.

The exponential function f(x) = ex = f ′(x) is a very special function, it has the unique property
that its output is the same as the slope of its tangent line at that point.
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I have pictured a few representative tangents along with y = ex.

By the way, I sometimes use the alternate notation ex = exp(x).

Remark 3.4.2.

In case you are curious and impatient I include a list of all the ways to define the exponential
function and the number e in turn:

1. Define ex to be the function such that d
dx(ex) = ex then the number e would be

defined by the function: ex|x=1 = e1 = e. This is nearly what we did in this section.

2. The following limit is a more direct description of what the value of e is,

e = lim
n→∞

(
1 +

1

n

)n
notice that this limit is type 1∞ and we have yet to discuss the tools to deal with
such limits. Many folks take this as the definition of e, so be warned. It turns out
that l’Hopital’s Rule connects this definition and our definition. This definition arises
naturally in the study of repeated multiplication in continuously compounded interest.

3. The natural logarithm f(x) = ln(x) arises in the study of integration in a very special
role. You could define f−1(x) = ex and then e = f−1(1).

4. The exponential could be defined by ex = 1 + x + 1
2x

2 + 1
3!x

3 + · · · and again we
could just set e = 1 + 1 + 1

2 + 1
3! + · · · , perhaps this is the easiest to find e since with

just the terms listed we get e = 1 + 1 + 0.5 + 0.1̄6 + · · · ≈ 2.66 not too far off the real
value e = 2.71 . . . . This definition probably raises more questions than it answers so
we’ll just leave it at that until we discuss Taylor series.

By the way, the limh→0
ah−1
h is not easily calculated with the methods so far at our disposal. If you

could show me how to calculate this limit by using the definition of e given in this section then I
would probably award you some bonus points.
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3.5 derivatives of sine and cosine

There are a few basic nontrivial limits which we need to derive in order to calculate the derivatives
of sine and cosine. To begin we must establish the following for the radian-based sine function:

lim
x→0

(
sin(x)

x

)
= 1.

Observe that if we can prove limx→0+
sin(x)
x = 1 then the double sided limit follows naturally since

sine is an odd function and

lim
x→0−

sin(x)

x
= lim

x→0−

sin(−x)

−x
= lim

y→0+

sin(y)

y

where in the last step we made the substitution y = −x which naturally changes the left-limit of
x→ 0− to the right limit y → 0+.

Proof: in the diagram below we consider a triangle inscribed in the unit circle (dotted-red) with
angle θ > 0 as pictured. The arclength subtended is given by s = rθ = θ (bold red). Then the
larger triangle has adjacent side-length of one unit thus tan(θ) = opp

adj solves to yield opp = tan(θ).

Continuing, notice that sin(θ) < θ < tan(θ) = sin(θ)
cos(θ) ⇒ 1 < θ

sin(θ) <
1

cos(θ) ⇒ cos(θ) < sin(θ)
θ < 1.

We proved previously that limθ→0+ cos(θ) = 1 and limθ→0+ 1 = 1 hence be the squeeze theorem it

follows that limθ→0+
sin(θ)
θ = 1. 2

I learned the argument above from Dr. Honore Mavinga and it is found in many calculus texts.
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Next we show that, lim
x→0

(
cos(x)− 1

x

)
= 0 . Observe,

lim
x→0

(
cos(x)− 1

x

)
= lim

x→0

(
cos(x)− 1

x
· cos(x) + 1

cos(x) + 1

)
= lim

x→0

(
cos2(x)− 1

x(cos(x) + 1)

)
= lim

x→0

(
− sin2(x)

x(cos(x) + 1)

)
= lim

x→0

(
sin(x)

x

)
· lim
x→0

(
− sin(x)

cos(x) + 1

)
= 1 · − sin(0)

cos(0) + 1
= 0.

We now have all the tools we need to derive the derivatives of sine and cosine. I should mention
that I assume you know the ”adding angles” formulas for sine and cosine:

sin(a± b) = sin(a) cos(b)± sin(b) cos(a) & cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b).

In-Class Example 3.5.1. Show
d

dx
( sinx ) = cosx and

d

dx
( cosx ) = − sinx
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To summarize this section so far it’s pretty simple,

Proposition 3.5.2. derivatives of (radian-based) sine and cosine.

d

dx
( sin(x) ) = cos(x)

d

dx
( cos(x) ) = − sin(x)

The function called ”sine” for degree measure of angles is not the same function as the ”sine” for
radian-measured angle. We can relate them by a simple conversion: sin(θ) = sindegrees(

180θ
π ). For

example, sin(π/2) = sindegrees(90). Even your calculator knows these are different functions, that
is why you have to change modes to clarify if you are using radians or degrees. Let it be understood
that in calculus we always use radian-based sine and cosine.

Let’s examine how this plays out graphically,

I have graphed in red y = f(x) = sin(x) and in green y = f ′(x) = cos(x). Can you see that where
the sine has a horizontal tangent the cosine function is zero? On the other hand whenever sine
crosses the x-axis the cosine function is at either one or minus one. Question, what is the quickest
that sine can possibly change? Notice that the slope of the sine function characterizes how quickly
the sine function is changing.

The graph below has y = g(x) = cos(x) in red and y = g′(x) = − sin(x) in green.

I hope you see how the derivative and the function are related.
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3.6 product rule

It is often claimed by certain students that d
dx(fg) = df

dx
dg
dx but this is almost never the case. Instead,

you should use the product rule.

Proposition 3.6.1. product rule.

Let f and g be differentiable functions then

d

dx
( fg ) =

df

dx
g + f

dg

dx

which can also be written (fg)′ = f ′g + fg′.

Proof I: start with the definition of the derivative,

(fg)′(x) = lim
h→0

(
(fg)(x+ h)− (fg)(x)

h

)
= lim

h→0

(
f(x+ h)g(x+ h)− f(x)g(x)

h

)
= lim

h→0

(
f(x+ h)g(x+ h)− f(x)g(x+ h) + f(x)g(x+ h)− f(x)g(x)

h

)
= lim

h→0

( [
f(x+ h)− f(x)

h

]
· g(x+ h) + f(x) ·

[
g(x+ h)− g(x)

h

] )
= lim

h→0

[
f(x+ h)− f(x)

h

]
· lim
h→0

( g(x+ h) ) + f(x) · lim
h→0

[
g(x+ h)− g(x)

h

]
= f ′(x)g(x) + f(x)g′(x).

In the very last step I used that limh→0 g(x + h) = g(x) which is true since g is a differnentiable
and thus continuous at x. 2

Proof II: Suppose f, g are differentiable at a then there exist φf , φg continuous at x = a such that

f(x) = f(a) + φf (x)(x− a) & g(x) = g(a) + φg(x)(x− a)

for all x near a and limx→a φf (x) = f ′(a) and limx→a φg(x) = g′(a). Calculate,

f(x)g(x) = [f(a) + φf (x)(x− a)] [g(a) + φg(x)(x− a)]

= f(a)g(a) + [φf (x)g(a) + f(a)φg(x) + φf (x)φg(x)(x− a)] (x− a)

Identify φfg(x) = φf (x)g(a) + f(a)φg(x) + φf (x)φg(x)(x− a) is a continuous function at x = a for
which (fg)(x)−(fg)(a) = φfg(x)(x−a). Thus fg is differentiable at a by Caratheodory. Moreover,

lim
x→a

φfg(x) = lim
x→a

[φf (x)g(a) + f(a)φg(x) + φf (x)φg(x)(x− a)] = f ′(a)g(a) + f(a)g′(a). 2
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Example 3.6.2. Lets derive the derivative of x2 a new way,

d

dx
(x2) =

d

dx
(xx) =

dx

dx
x+ x

dx

dx
= 2x.

We derived this fact from the definition before, I think this way is easier. Anyway, I always
recommend knowing more than one way to understand, it helps when doubt ensues.

In-Class Example 3.6.3. Identify f(x) = x and g(x) = ex in applying the product rule,

d

dx
(xex) =

In-Class Example 3.6.4. Identify f(x) = sin(x) and g(x) = cos(x) for the product rule,

d

dx
(sin(x) cos(x)) =

The product rule for three factors can be derived the usual product rule applied twice:

d

dx
(fgh) =

d(fg)

dx
h+ fg

dh

dx

=

(
df

dx
g + f

dg

dx

)
h+ fg

dh

dx

=
df

dx
gh+ f

dg

dx
h+ fg

dh

dx

so the rule for products of three functions follows from the product rule for two functions. You
could likewise derive that (fghj)′ = f ′ghj + fg′hj + fgh′j + fghj′ by the same logic.

Example 3.6.5.

d

dx
(x2 sin(x)ex) =

d(x2)

dx
sin(x)ex + x2

d(sin(x))

dx
ex + x2 sin(x)

d(ex)

dx
= 2x sin(x)ex + x2 cos(x)ex + x2 sin(x)ex.

In-Class Example 3.6.6. You can combine the product rule with linearity,

d

dx
(
√
x+ 3x3ex) =
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3.7 quotient rule

Let Q(x) = f(x)/g(x) then and suppose g(x) 6= 0. Assume for the sake of discussion that Q′(x)
exists. Since f(x) = Q(x)g(x) the product rule provides: f ′ = (Qg)′ = Q′g +Qg′. Solve for Q′,

Q′ =
f ′ −Qg′

g
=
f ′ − f

g g
′

g
=
f ′g − fg′

g2
. (3.4)

The formula above is known as the quotient rule.

Proposition 3.7.1. quotient rule.

Let f and g be differentiable functions with g 6= 0,

d

dx

(
f

g

)
=

df
dxg − f

dg
dx

g2

this is called the quotient rule. In the prime notation,

(
f

g

)′
=
f ′g − fg′

g2
.

Proof: if Q(x) = f(x)/g(x) then we must show Q′(x) exists. Consider the difference quotient

Q(a+ h)−Q(a)

h
=

1

h

[
f(a+ h)

g(a+ h)
− f(a)

g(a)

]
(3.5)

=
1

h

[
f(a+ h)

g(a+ h)
− f(a)

g(a+ h)
+

f(a)

g(a+ h)
− f(a)

g(a)

]
=

1

h

[
(f(a+ h)− f(a))g(a)

g(a+ h)g(a)
+
f(a)(g(a+ h)− g(a))

g(a)g(a+ h)

]
=

[
f(a+ h)− f(a)

h

]
g(a)

g(a+ h)g(a)
+

f(a)

g(a)g(a+ h)

[
g(a+ h)− g(a)

h

]
Notice as h → 0 we have f(a+h)−f(a)

h → f ′(a) and g(a+h)−g(a)
h → g′(a) and f(a + h) → f(a) and

g(a+ h)→ g(a). In view of the difference quotient above we find Q′(a) = f ′(a)g(a)−f(a)g′(a)
g(a)2

. 2

In-Class Example 3.7.2. Show d
dx tanx = sec2 x.
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Example 3.7.3.
d

dx

(
x3

x2 + 7

)
=

3x2(x2 + 7)− x3(2x)

(x2 + 7)2
=
x4 + 21x2

(x2 + 7)2
.

In-Class Example 3.7.4.

d

dx

(
1

3x+ 5

)
=

Example 3.7.5.

d

dx
(sec(x)) =

d

dx

(
1

cos(x)

)
=

d
dx(1) cos(x)− 1 d

dx(cos(x))

cos2(x)
=

sin(x)

cos2(x)
= sec(x) tan(x).

In-Class Example 3.7.6. Show d
dx cscx = − cscx cotx.

Example 3.7.7. the quotient rule is used in conjunction with other rules sometimes, here I use
linearity to start,

d

dx

(
ex +

x+ x2

3− x

)
=

d

dx
(ex) +

d

dx

(
x+ x2

3− x

)
= ex +

d
dx(x+ x2)(3− x)− (x+ x2) d

dx(3− x)

(3− x)2

= ex +
(1 + 2x)(3− x)− (x+ x2)(−1)

(3− x)2

= ex +
3 + 6x− x2

x2 − 6x+ 9
.

The last step was just algebra to make the answer pretty.
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3.8 chain rule

If I were to pick a name for this rule it would be the composite function rule because the ”chain
rule” actually just tells us how to differentiate a composite function. Of all the rules so far this one
probably requires the most practice. So be warned. Also, let me warn you about notation.

f ′(x) =
df

dx
=
df

dx
(x) =

df

dx

∣∣∣∣
x

We have suppressed the (x) up to this point, reason being that it was always the same so we’d get
tired of writing the (x) everywhere. Now we will find that we need to evaluate the derivative at
things other than just (x). For example suppose that f(x) = x2 so we have f ′(x) = 2x then

df

dx
(x3 + 7) =

df

dx

∣∣∣∣
(x3+7)

= 2(x3 + 7)

We substituted x3 + 7 in the place of x. I sometimes avoid the notation df
dx(x) because it might be

confused with multiplication by x. The difference should be clear from the context of the equation.
Sometimes the substitution could be more abstract, again suppose f(x) = x2 so we have f ′(x) = 2x
then

df

dx
(u) =

df

dx

∣∣∣∣
u

= 2u

Proposition 3.8.1. chain rule.

The Chain Rule states that if h = f ◦u is a composite function such that f is differentiable
at u(x) and u is differentiable at x then

d

dx
(f ◦ u) = (f ◦ u)′(x) = f ′(u(x))u′(x)

=
df

dx
(u(x))

du

dx

=
df

dx

∣∣∣∣
u

du

dx

=
df

du

du

dx
.

In words, the derivative of a composite function is the product of the derivative of the
outside function (f) evaluated at the inside function (u) with the derivative of the inside
function.

Please don’t worry too much about all the notation, you are free to just use one that you like
(provided it is correct of course). Anyway, let’s look at an example or two before I give a proof.
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Example 3.8.2. Consider h(x) = (3x+ 7)5 we can identify that this is a composite function with
inside function u(x) = 3x+ 7 and outside function f(x) = x5.

d

dx
(3x+ 7)5 =

df

dx

∣∣∣∣
3x+7

d

dx
(3x+ 7)

= 5x4
∣∣∣∣
3x+7

· 3

= 15(3x+ 7)4

I could also have written my work in the last example as follows,

d

dx
(3x+ 7)5 =

d

dx
(u5) = 5u4

du

dx
= 5(3x+ 7)4 · 3 = 15(3x+ 7)4.

Or you could even suppress the u notation all together and just write

d

dx
(3x+ 7)5 = 5(3x+ 7)4

d

dx
(3x+ 7) = 15(3x+ 7)4.

I just recommend writing at least one middle step, if you try to do it all at once in your head you
are likely to miss something generally speaking.

In-Class Example 3.8.3. Identify u and use the chain-rule to differentiate:

d

dx
(sin(x2)) =

In-Class Example 3.8.4. Identify u and use the chain-rule to differentiate:

d

dx
(exp(3x2 + x)) =
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Proof of the Chain Rule: The proof I give here relies on approximating the function by its tan-
gent line, this is called the linearization of the function. Observe that u′(x) = limh→0(

u(x+h)−u(x)
h )

and we can rewrite the l.h.s. in terms of a matching limit u′(x) = limh→0(
hu′(x)
h ). Thus

lim
h→0

(
u′(x)h

h

)
= lim

h→0

(
u(x+ h)− u(x)

h

)
.

This shows that if h→ 0 then u′(x)h ≈ u(x+ h)− u(x) which says that u(x+ h) ≈ u(x) + u′(x)h .
We can make the same argument to show that f(u+ δ) ≈ f(u) +f ′(u)δ for small δ ( the δ = u′(x)h
which is small in the argument below since u′(x) is finite and h→ 0 ). Consider then,

d

dx
(f ◦ u) = lim

h→0

(
(f ◦ u)(x+ h)− (f ◦ u)(x)

h

)
= lim

h→0

(
f(u(x+ h))− f(u(x))

h

)
= lim

h→0

(
f(u(x) + u′(x)h))− f(u(x))

h

)
= lim

h→0

(
f(u(x)) + u′(x)hf ′(u(x))− f(u(x))

h

)
= lim

h→0

(
u′(x)f ′(u(x))

)
= f ′(u(x))u′(x).

So the proof of the chain rule relies on approximating both the inside and outside function by their
tangent line. I give another statement of the chain-rule as well as a careful proof via Caratheodory
at the conclusion of this section. Let’s get back to the examples.

In-Class Example 3.8.5.

d

dx
(e
√
x) =

In-Class Example 3.8.6. Let a be a constant,

d

dx
(sin(ax)) =
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Example 3.8.7. Let a be a constant,

d

dx
(eax) =

d

dx
(eu) = eu

du

dx
= eax

d

dx
(ax) = aeax

Example 3.8.8. Let a be a constant,

d

dx
(f(ax)) =

d

dx
(f(u)) = f ′(u)

du

dx
= f ′(ax)

d

dx
(ax) = af ′(ax).

I let the function f be arbitrary just to point out the past two examples can be generalized to any
expression of this type. We must have a function which is differentiable at ax in order for the
calculation to hold true.

We will neglect the extra u notation past this point unless it is helpful,

In-Class Example 3.8.9. Let a, b, c be constants,

d

dx

( √
ax2 + bx+ c

)
=

I admit that all the examples up to this point have been fairly mild. The remainder of the section
I give examples which combine the chain rule with itself and the product or quotient rules.

In-Class Example 3.8.10.

d

dx

( √
x2 +

√
x2 + 3

)
=
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Example 3.8.11. Let a, b, c be constants,

d

dx

(
cos(a sin(bx+ c))

)
= − sin(a sin(bx+ c)) · d

dx

(
a sin(bx+ c)

)
= − sin(a sin(bx+ c)) · a cos(bx+ c)

d

dx
(bx+ c)

= −ab sin(a sin(bx+ c)) cos(bx+ c).

We have to work outside in, one step at a time. Both of these examples followed the pattern
(f ◦ g ◦ h)(x) = f(g(h(x))) which has the derivative (f ◦ g ◦ h)′(x) = f ′(g(h(x)))g′(h(x))h′(x). Of
course, in practice I do not try to remember that formula, I just apply the chain rule repeatedly
until the problem boils down to basic derivatives.

In-Class Example 3.8.12.

d

dx
(x3e2x cos(x2)) =

Example 3.8.13.

d

dx
(exx2)3 = 3(exx2)2

d

dx

(
exx2

)
= 3(exx2)2

(
d(ex)

dx
x2 + ex

d(x2)

dx

)
= 3(exx2)2

(
x2ex + 2xex

)
.

The better way to think about this one is that (exx2)3 = e3xx6 then the differentiation is prettier in
my opinion

d

dx
(e3xx6) =

d(e3x)

dx
x6 + e3x

d(x6)

dx
= 3e3xx6 + 6x5e3x.



106 CHAPTER 3. DIFFERENTIAL CALCULUS

Example 3.8.14.

d

dθ

(
sin(3θ)√
θ + 4

)
=

3 cos(3θ)
√
θ + 4− sin(3θ) 1

2
√
θ+4

(
√
θ + 4)2

=
3 cos(3θ)

√
θ + 4

√
θ + 4− sin(3θ)

√
θ+4

2
√
θ+4

(
√
θ + 4)3

=
6(θ + 4) cos(3θ)− sin(3θ)

2(θ + 4)
3
2

.

Example 3.8.15. Observe we can derive the power rule from the product rule.

d

dx
(xn) =

d

dx
(xx · · ·x) =

dx

dx
xn−1 + x

dx

dx
xn−2 + · · ·+ xn−1

dx

dx
= xn−1 + xn−1 + · · ·+ xn−1

= nxn−1.

In-Class Example 3.8.16.

d

dt

(
sin(
√

2t− 1)
)

=

In-Class Example 3.8.17.

d

dt
(t2 cos(sin(t)) =
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In most of the examples we have been able to reduce the answer into some expression involving no
derivatives. This is generally not the case. As the next couple of examples illustrate, we can have
expressions that once differentiated yield a new expressions which still contain derivatives.

Example 3.8.18. Suppose that c and f are functions of t then,

d

dt

(
cf
)

=
dc

dt
f + c

df

dt

Notice that if c is a constant then dc
dt = 0 so in that case we have that d

dt

(
cf
)

= cdfdt .

Example 3.8.19. Suppose that a particle travels on a circle of radius R centered at the origin.
The particle has coordinates (x, y) that satisfy the equation of a circle; x2 + y2 = R2. Moreover,
both x and y are functions of time t. What can we say about dx/dt and dy/dt ?

d

dt

(
x2 + y2

)
= 2x

dx

dt
+ 2y

dy

dt

Notice since the radius R is constant it follows that R2 is also constant thus d
dt(R

2) = 0. Apparently
the derivatives dx/dt and dy/dt must satisfy

2x
dx

dt
+ 2y

dy

dt
= 0

Now this says that dx
dt = −y

x
dy
dt ( for points with x 6= 0 ).

3.8.1 Caratheodory’s Theorem and the chain rule

I have long been disatisfied with the earlier proof of the chain rule in this section from an analysis
perspective.

Theorem 3.8.20. Chain Rule.

Suppose f, g are functions and I, J are intervals such that I ⊆ dom(f) and f(I) ⊆ J ⊆
dom(g). If a ∈ I and f is differentiable at a and g is differentiable at f(a) then g ◦ f is
differentiable at a and (g ◦ f)′(a) = g′(f(a))f ′(a).

Proof: apply Caratheodory’s Theorem twice. Since f is differentiable at a we know there exists
φ such that f(x) − f(a) = φ(x)(x − a) for all x ∈ I and φ(a) = f ′(a). Since g is differentiable
at f(a) we know these exists β such that g(y) − g(f(a)) = β(y)(y − f(a)) for all y ∈ J where
β(f(a)) = g′(f(a)). Suppose x 6= a and calculate:

(g(f(x))− g(f(a))

x− a
=
β(f(x))(f(x)− f(a))

x− a
=
β(f(x))φ(x)(x− a)

x− a
= β(f(x))φ(x).

By Caratheodory’s Theorem we know limx→a β(f(x)) = g′(f(a)) and limx→a φ(x) = f ′(a). There-
fore,

lim
x→a

(g(f(x))− g(f(a))

x− a
= lim

x→a
β(f(x))φ(x) = lim

x→a
β(f(x)) · lim

x→a
φ(x) = g′(f(a))f ′(a). 2
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3.9 higher derivatives

Higher derivatives are defined iteratively.

Definition 3.9.1. the n-th derivative of a function.

Suppose f : dom(f) ⊆ R→ R and U ⊆ dom(f). We define f (0)(x) = f(x) and f (1)(x) = df
dx

for all such x ∈ dom(f) that f ′(x) ∈ R. Furthermore, for each n ∈ N we define f (n+1)(x) =
d
dx [f (n)(x)] for all such x ∈ dom(f) that f (n+1)(x) ∈ R. If f has continuous derivatives

f ′, f ′′, . . . , f (k) on U ⊆ dom(f) then f ∈ Ck(U). If we can take arbitrarily many derivatives
of f and those derivatives are continuous on U ⊆ dom(f) then we say f is smooth. The
set of all smooth functions on U ⊆ R is denoted C∞(U).

Many elementary functions are smooth over large subsets of R.

In-Class Example 3.9.2. Suppose f(x) = x5 + x4 + x3 + x2 + x+ 1. Derivatives of all orders for
f(x).

Geometrically the second derivative of a function is connected to the curvature of the graph. The
third, fourth and higher derivatives also contain geometric information about a function. If we are
given all derivatives of a smooth function it is often possible to recreate the function everywhere
with a formula built using those derivatives. Using the last example, you might notice that

f(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 +

1

6
f ′′′(0)x3 +

1

24
f (4)(0)x4 +

1

120
f (5)(0)x5.

Knowledge of the derivatives at zero gives global information about f in the equation above. This
is an interesting pattern which we will explore in more depth later.
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Physically the higher derivatives are also of interest.

Example 3.9.3. Suppose s : R → R is the position of some particle as a function of time t. The
velocity at time t is defined to be (the dot-notation is still prevalent in modern classical mechanics
courses, it dates back to Newton whereas the d/dx notation is due to Leibniz)

v(t) =
ds

dt
= ṡ.

The second derivative with respect to time is called the acceleration at time t and it is defined by

a(t) =
d2s

dt2
= s̈.

Notice we can equivalently state a(t) = dv
dt = v̇. If the particle has mass m then Newton’s Second

Law states that Fnet = ma where Fnet is the total force placed on the mass m. Beyond acceleration
we have the jerk which is the instantaneous rate of change of the acceleration j(t) = da

dt = d3s
dt3

.

In-Class Example 3.9.4. Let s(t) = 3t2 + t3 be the position at time t. Calculate the velocity,
acceleration and jerk for the given position.

Example 3.9.5. How many times is f(x) = x
3
2 differentiable at zero5? Calculate,

f ′(x) =
3

2
x

1
2 , f ′′(x) =

3

4
x
−1
2

Notice that f ′′(0) = 3
4
√
0
/∈ R. The second derivative of f is not defined at zero. We say that f is

differentiable at zero, but f is not twice differentiable at zero. The source of this difficulty is that
f ′ has a vertical tangent at zero.

5In such a case we ask only that the right limit of the difference quotient exists. We define that f ′(0) =

limh→0+
f(0+h)−f(0)

h
in the case 0 ∈ ∂(dom(f))
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On the other hand it is not hard to see that f ∈ C∞(0,∞) since differentiating n-times we’ll find

f (n)(x) = kx
3
2
−n for some constant k. The formula for f (n)(x) is clearly well-defined for x > 0.

Example 3.9.6. Another interesting function which fails to be smooth is f(x) = x|x|. The graph
resembles a cubic function but it is actually a pair of half-parabolas glued at the origin. For x > 0
we have f(x) = x2 and for x < 0 we have f(x) = −x2. It follows that

f ′(x) =

{
2x x ≥ 0

−2x x ≤ 0

In this case f ′(0) = 0 since limh→0−
f(0+h)−f(0)

h = limh→0+
f(0+h)−f(0)

h = 0. Consider the second
derivative,

f ′′(x) =

{
2 x > 0

−2 x < 0
.

In this case f ′′(0) does not exist since limh→0−
f(0+h)−f(0)

h = −2 whereas limh→0+
f(0+h)−f(0)

h = 2.
The source of this difficulty is the kink in the graph of f ′ at zero.

If you want a function which is just k-times differentiable at zero you could use f(x) = xk|x|. Notice
that in all the examples I’ve given thus far if the function was differentiable on some interval then
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the derivative function was also continuous. In other words, you might wonder if the distinction
between differentiable and continuously differentiable is a meaningful distinction. Since I’m posing
this question by now you probably know the answer is yes.

Example 3.9.7. I found this example in Hubbard’s advanced calculus text(see Ex. 1.9.4, pg. 123).
It is a source of endless odd examples, notation and bizarre quotes. Let f(x) = 0 and

f(x) =
x

2
+ x2 sin

1

x

for all x 6= 0. I can be shown that the derivative f ′(0) = 1/2 (hard to see from the green graph !).
Moreover, we can show that f ′(x) exists for all x 6= 0, we can calculate:

f ′(x) =
1

2
+ 2x sin

1

x
− cos

1

x

Notice that dom(f ′) = R. Note then that the tangent line at (0, 0) is y = x/2. You might be tempted
to say then that this function is increasing at a rate of 1/2 for x near zero. But this claim would
be false since you can see that f ′(x) oscillates wildly without end near zero.

We have a tangent line at (0, 0) with positive slope for a function which is not increasing at (0, 0)
(recall that increasing is a concept we must define in a open interval to be careful). This function
has infinitely many critical points in a nbhd. of zero. You couldn’t even draw a sign-chart for the
derivative if you wanted. Continuity of the derivative helps eliminate pathological examples.

This sort of example is likely to occur to mathematicians but not so likely to occur to anyone else.
Usually if a function is differentiable at a point is also continuously differentiable. For functions of
several variables the story is much more involved 6

6Continuity of the derivative function is later replaced with the requirement that the partial derivatives of a
multivariate function are continuously differentiable. It is a fortunate accident of one-dimensional mathematics that
the tangent line is well-defined in the case the derivative is not continuous (and yet exists). For functions of several
variables existence of partial derivatives need not indicate the existence of a tangent space. However, it is still true
that continuous differentiability signals that the tangent plane both exists and well-approximates the mapping near
the point of tangency. I discuss this in more depth in calculus III or advanced calculus.
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3.10 implicit differentiation and derivatives of inverse functions

Up to this point we have primarily dealt with expressions where it is convenient to just differentiate
what we are given directly. We just wrote down our f(x) and proceeded with the tools at our
disposal, namely linearity, the product, quotient and chain rules. For the most part this direct
approach will work, but there are problems which are best met with a slightly indirect approach. We
typically call the thing we want to find y then we’ll differentiate some equation which characterizes
y and usually we get an equation which implicitly yields dy

dx . This technique will reward us with the
formulas for the derivatives of all sorts of inverse functions. Before we get to the inverse functions
let’s start with a few typical implicit derivatives.

Example 3.10.1. Observe that the equation x2 + y3 = ey implicitly defines y as a function of x
(locally). Let’s find dy

dx . Differentiate the given equation on both sides.

d

dx
(x2 + y3) =

d

dx
(ey)

now differentiate and use the chain rule where appropriate,

2x+ 3y2
dy

dx
= ey

dy

dx

Now solve for dy
dx ,

(ey − 3y2)
dy

dx
= 2x ⇒ dy

dx
=

2x

ey − 3y2

Notice that this equation is a little unusual in that the derivative involves both x and y.

In-Class Example 3.10.2. Given xy + sin(x) = exy. Calculate dy
dx .
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Proposition 3.10.3. Method to Calculate Derivative of Inverse Function

To calculate d
dxf
−1(x) given that we already know the derivative of f we can:

(1.) set y = f−1(x),

(2.) solve for x = f(y) and differentiate with respect to x to obtain 1 = df
dy

dy
dx .

(3.) solve for dy
dx and eliminate y as appropriate to the example.

Example 3.10.4. Let y = cos−1(x) we wish to derive d
dx(cos−1(x)). To begin we take the cosine

of both sides of y = cos−1(x) to obtain

cos(y) = cos(cos−1(x)) = x

Now differentiate with respect to x and solve for dy
dx

− sin(y)
dy

dx
= 1 ⇒ dy

dx
=
−1

sin(y)

Now sin2(y) + cos2(y) = 1 thus sin(y) =
√

1− cos2(y) but remember that we found cos(y) = x so
sin(y) =

√
1− x2 thus we find

d

dx

(
cos−1(x)

)
=

−1√
1− x2

.
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In-Class Example 3.10.5. Show
d

dx

(
ln(x)

)
=

1

x
.

In-Class Example 3.10.6. Show
d

dx

(
sin−1(x)

)
=

1√
1− x2

In-Class Example 3.10.7. Show
d

dx
(tan−1(x)) =

1

1 + x2
.
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Example 3.10.8. Let y = sec−1(x) we wish to derive d
dx(sec−1(x)). To begin we take the secant

of both sides of y = sec−1(x) to obtain

sec(y) = sec(sec−1(x)) = x

Now differentiate with respect to x and solve for dy
dx

sec(y) tan(y)
dy

dx
= 1 ⇒ dy

dx
=

1

sec(y) tan(y)

Now tan2(y) + 1 = sec2(y) tells us that tan(y) =
√

sec2(y)− 1. But we know that in this example
sec(y) = x hence tan(y) =

√
x2 − 1. Thus,

d

dx

(
sec−1(x)

)
=

1

x
√
x2 − 1

.

I hope you can see the pattern in the last five examples. To find the derivative of an inverse
function we simply need to know the derivative of the function plus a little algebra. The same tech-
nique would allow us to derive the derivatives of cosh−1(x), sinh−1(x), tanh−1(x), csc−1(x), cot−1(x).
I have not included those in these notes because we have yet to calculate the derivatives of
cosh(x), sinh(x), tanh(x), csc(x), cot(x). Rest assured these functions can be dealt with by the
same techniques we thus far exhibited in these notes. The next examples follow the same general
idea, but the pattern differs a bit.

Example 3.10.9. Suppose that y = ax we have yet to calculate the derivative of this for arbitrary
a > 0 except the one case a = e. Turns out that this one case will dictate what the rest follow.
Take the natural log of both sides to obtain ln(y) = ln(ax) = x ln(a). Now differentiate, by Example
3.10.5,

d

dx

(
ln(y)

)
=

1

y

dy

dx
=

d

dx
(x ln(a)) = ln(a).

Now solve for dy
dx ,

dy

dx
= ln(a)y = ln(a)ax =⇒ d

dx
(ax) = ln(a)ax.

I should mention that I know another method to derive the boxed equation. In fact I prefer the
following method which is based on a useful purely algebraic trick: ax = exp(x ln(a)) so we can
just calculate

d

dx
(ax) =

d

dx
(ex ln(a)) = ex ln(a)

d(x ln(a))

dx
= ex ln(a) ln(a) = ln(a)ax.

but beware the sneaky step, how did I know to insert the exp ◦ ln ? I just did.
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Example 3.10.10. Suppose that y = xx. This is not a function we have encountered before. It is
neither a power nor an exponential function, it’s sort of both. I’ll admit the only place I’ve seen them
is on calculus tests. Anyway to begin we take the natural log of both sides; ln(y) = ln(xx) = x ln(x).
Differentiate w.r.t x,

1

y

dy

dx
= ln(x) + x

1

x
=⇒ dy

dx
= y(ln(x) + 1) =⇒ d

dx
(xx) = (ln(x) + 1)xx.

In-Class Example 3.10.11. Calculate
d

dx
xx sinx

If you have a problem with an unpleasant exponent it sometimes pays off take the logarithm. It
may change the problem to something you can deal with. The process of morphing an unsolvable
problem to one which is solvable through known methods is most of what we do in calculus. We
learn a few basic tools then we spend most of our time trying to twist other problems back to those
simple cases. I have one more basic derivative to address in this section.

Example 3.10.12. Let y = loga(x) we can exponentiate both sides w.r.t. base a which cancels the
loga in the sense aloga(x) = x,

ay = x =⇒ ln(a)ay
dy

dx
= 1 =⇒ dy

dx
=

1

ln(a)ay

But then since ay = x therefore we conclude,

d

dx

(
loga(x)

)
=

1

ln(a)x

Notice in the case a = e we have loge(x) = ln(x) and ln(e) = 1. Therefore, this result agrees with
Example 3.10.5.

At this point I have derived almost every elementary function’s derivative. Those which I have not
calculated so far can certainly be calculated using nothing more than the strategies and methods
advertised thus far.
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3.11 logarithmic differentiation

The idea of logarithmic differentiation is fairly simple. When confronted with a product of bunch
of things one can take the logarithm to convert it to a sum of things. Then you get to differentiate
a sum rather than a product. This is a labor saving device. We pause to note how the chain rule
works for the natural log:

d

dx
ln(u) =

1

u

du

dx
=
du/dx

u

we make use of the identity above throughout what follows.

Example 3.11.1. Find dy
dx via logarithmic differentiation. Let.

y =

(
1

2− x

)
(x+ 32)

1
4 (x2 − 3)4

Take the natural log to begin,

ln(y) = ln(2− x)−1 + ln(x+ 32)
1
4 + ln(x2 − 3)4

= − ln(2− x) +
1

4
ln(x+ 32) + 4 ln(x2 − 3).

We used the properties of the natural log to simplify as best we could before going on to the next
step: differentiate w.r.t. x

1

y

dy

dx
=

1

2− x
+

1

4(x+ 32)
+

4(2x)

x2 − 3

⇒ dy

dx
=

(
1

2− x

)
(x+ 32)

1
4 (x2 − 3)4

(
1

2− x
+

1

4(x+ 32)
+

8x

x2 − 3

)
.

This is much easier than the 3-term product rule for this problem

In-Class Example 3.11.2. Find the derivative of y = xex
2+9
√

3x+ 7 using log. differentiation.
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In-Class Example 3.11.3. Let a, b, c be constants. Differentiate y =

(
1

x− a

)(
1

x− b

)2( 1

x− c

)3

via the technique of logarithmic differentiation

Example 3.11.4. Differentiate y.

y = (x2 + 1)(x− 3)2(x3 + x)3(x− 1)4

Take the natural log to begin,

ln(y) = ln(x2 + 1) + 2 ln(x− 3) + 3 ln(x3 + x) + 4 ln(x− 1)

⇒ 1

y

dy

dx
=

2x

x2 + 1
+

2

x− 3
+

3(3x2 + 1)

x3 + x
+

4

x− 1

⇒ dy

dx
= y

(
2x

x2 + 1
+

2

x− 3
+

3(3x2 + 1)

x3 + x
+

4

x− 1

)
.

Example 3.11.5. Sometimes we might have a to start with, but the same algebraic wisdom applies,

simplify products to sums then differentiate. Find dy
dx for y = ln

(
sin(x)

√
x

x2+3x−2

)
.

y = ln

(
sin(x)

√
x

x2 + 3x− 2

)
= ln(sin(x)) +

1

2
ln(x)− ln(x2 + 3x− 2).

Now differentiate w.r.t. x and we’re done.

dy

dx
=

cos(x)

sin(x)
+

1

2x
− 2x+ 3

x2 + 3x− 2
.
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Example 3.11.6. What about

y = ln((x+ 1)30 + 2)

We cannot simplify this one because we do not have a product inside the natural log. Just differ-
entiate w.r.t x

dy

dx
=

1

(x+ 1)30 + 2

d

dx

(
(x+ 1)30 + 2

)
=

30(x+ 1)29

(x+ 1)30 + 2
.

Knowing what you cannot do is sometimes the more important thing.

I wish there was some nice simple formula to break apart ln(A+B) but as far as I know ln(A+B) =
?, by this I simply mean that there is no simple formula to split it up. On the other hand we have
used ln(AB) = ln(A) + ln(B) together with ln(Ac) = c ln(A).

3.11.1 proof of power rule

Finally we return to the power rule. As we mentioned from the start the power rule d
dx(xn) = nxn−1

holds for all n ∈ R. Now we have the tools to prove it.

Proof: Let y = xn and take the natural log to obtain ln(y) = ln(xn) = n ln(x). Differentiate,

1

y

dy

dx
=
n

x
⇒ dy

dx
=
ny

x
=
nxn

x
= nxn−1.

This proof (in contrast to our earlier proof ) works in the case that n /∈ N. Somehow these curious
little logarithms have circumvented the whole binomial theorem. We conclude that for any n ∈ R

d

dx
(xn) = nxn−1.

Note, if n < 0 and n ∈ Z then f(x) = xn = 1
x−n is a function which has domain R−{0}. The proof

offered above fails for x < 0 since ln(x) is not real in such case. However, for cases of interest such
as n = −2,−3, . . . the argument can be modified. I leave this as an exercise for the reader. 2

Another method to derive rules such as d
dx( 1

xn ) = −n
xn+1 is apply the product rule n-times for the

reciprocal function for which we have already shown d
dx( 1x) = −1

x2
.

Example 3.11.7.
d

dx
( 3
√
x ) =

d

dx
( x1/3 ) = (1/3)x−2/3 =

1

3x2/3
.

Example 3.11.8.
d

dy
(yπ+2) = (π + 2)yπ+1 ≈ 5.142y4.142
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3.12 summary of basic derivatives

I collect all the basic derivatives for future reference.

Finally, let us conclude this chapter with a list of useful rules of differentiation. These in conjunction
with the basic derivatives we listed earlier in this section will allow us to differentiate almost
anything you can imagine. ( this is quite a contrast to integration as we shall shortly discover )
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Beyond these basic properties we have seen in this chapter that the technique of implicit differentia-
tion helps extend these simple rules to cover the inverse functions. It all goes back to the definition
logically speaking, but it is comforting to see that once we have established the derivatives of the
basic functions and these properties we have little need of applying the definition directly. I would
argue this is part of what separates modern (say the last 400 years) mathematics from ancient
mathematics. We have no need to calculate limits by some exhaustive numerical method. Instead,
for a wealth of examples, we can find tangents through what are essentially algebraic calculations.
This is an amazing simplification. However, more recent times have shown computers can model
problems which defy algebraic description. A student of mathematics would be wise to study com-
puter aided solutions. Not so much for the purpose of gaining ease with homework, but rather to
gain skills which many employers seek and need.
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3.13 related rates

Given some algebraic relation that connects different dynamical quantities we can differentiate
implicitly. This relates the rates of change for the various quantities involved. Such problems are
called ”related rates problems”.

Example 3.13.1. Suppose that we know the radius of a spherical hot air balloon is expanding at
a rate of 1 meter per minute due to an inflating fan. At what rate is the volume increasing if the
radius R is at 10 meters ? To begin we need to recall that the volume V is related to the radius R
by the equation V = 4π

3 R
3 for the sphere. Then,

dV

dt
=

d

dt

(
4π

3
R3

)
= 4πR2dR

dt
= 4π(10m)2

m

min
≈ 1200

m3

min
.

In-Class Example 3.13.2. Imagine a circular oil slick which grows uniformly as oil is added by
the EPA. If the EPA adds oil at a rate such that 3 square meters is added every second then how
quickly is the radius of the oil slick increasing when r = 10m?

Solution:

Example 3.13.3. Suppose you add water to a rectangular bathtub at a rate of 5 cubic feet per
minute. If the dimensions of the tub are 5ft by 3ft then how quickly does the water rise?

Solution: We should define the variables; call the volume of water in the tub V and the area of
the base A and the height of water in the tub h. Since the tub is rectangular we have V = Ah where
A = 15ft2. We can relate the time-rate of change of V and h:

dV

dt
= A

dh

dt
⇒ dh

dt
=

1

A

dV

dt
.

We were given dV
dt = 5ft3/min thus

dh

dt
=

1

3

ft

min
.
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In-Class Example 3.13.4. Suppose you add water to a triangular water trough built such that it
has equilateral triangular ends with side length 2ft and a length of 4ft. If the water is added at a
rate of 5 cubic feet per minute then how quickly does the water level rise if the water is at a height
of 1ft from the base? You may assume the trough is set-up on level ground such that the water
level is parallel to the base of the trough.

Solution:

Example 3.13.5. Problem: If the sun travels across the sky over a period of 12 hrs and the
distance to the sun is known to be 93 million miles then how fast is the sun going? Suppose that
the earth is fixed and the sun is traveling in a circle at a constant rate. Also, for convenience you
may neglect the size of the earth relative to your observation.

Solution: The equation relating arclenth to angle θ subtended is s = Rθ. The sun goes from θ = 0
to θ = π in the course of the given 12hr day. Since the rate at which the sun travels is constant
the instantaneous rate of change matches the average rate of change:

dθ

dt
=

∆θ

∆t
=

π

12hrs
.

Differentiating the arclength relation we find ds
dt = d

dt(Rθ) = Rdθ
dt . We were given R = 93, 000, 000

miles thus ds
dt = (93, 000, 000miles) π

12hrs ≈ 24, 300, 000mph.

We know that the perception of the sun travelling across the sky is actually due to the earth
spinning. The speed at which the earth rotates relative to its center is roughly v = 2π(4000miles

24hrs ≈
1050mph (at the equator). The circumference at the equator is about 25,000 miles. In contrast,
the land at the North of South poles rotates at a much slower tangential speed. For this reason the
Earth is actually an oblate spheroid 7 because the equator is spun further away from the center due
to the centripetal force. If you consider the last example you can see why it was easy to give up
on the idea of the earth being at the center and everything else rotating around us. Stars further
away than the sun would have to go even faster. You might wonder how it can be determined the
sun is 93 million miles away. The answer is trigonometry. I’ll leave it at that for here.

7which is basically just a squished sphere
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In-Class Example 3.13.6. If a 10ft ladder slides down a wall without slipping such that the top
of the ladder slides down the wall at 3ft/s then how fast is the base of the ladder sliding away from
the wall when the ladder is 4ft from the wall ?

Solution:

Example 3.13.7. Problem: If a 10ft ladder slides down a parabolic wall (with equation y =
6− x2) without slipping such that the top of the ladder slides down the wall at 1ft/s (dy/dt) then
how fast is the base of the ladder sliding away from the wall when the ladder is at x = 2ft ?

Solution: the problem statement tells us y = 6−x2 thus dy
dt = −2xdxdt thus we may solve for dx/dt:

(I omit units, we agree to work in ft and s)

dx

dt
=
−1

2x

dy

dt
=
−1

4
(−1) = 0.25

Thus, bringing back the units,
dx

dt
= 0.25ft/s.

Remark 3.13.8.

Units are important however, writing explicit units is not always the best approach. A
common technique is to state from the outset which units you intend to use then you may
add them back at the end of the calculation. The answer should have units. To be honest,
the last example is not even well-posed if you are a stickler for units. I cannot write such
an equation as y = 6−x2 unless I assume that x and y are dimensionless. To be careful I’d
need to write something like y = 6ft− ( 1

ft)x
2 if both x, y are written in terms of ft. But,

that equation is uglier than y = 6− x2 so we prefer to write less and just be careful to put
given numerical data into our set of chosen units. We chose [x] = [y] = ft and [t] = s in
the last example (I use [f ] to denote the customary units of f).
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Example 3.13.9. Problem: Imagine two cars begin traveling from a point which we label as the
origin. If car A travels at 30mph along the direction θA = π/6 and if car B travels at 40mph along
the direction θB = 5π/4 then how quickly is the distance s between them increasing at time t? What
is ds/dt at t = 1hr ?

Solution: we should imagine a triangle at time t. One vertex is at the origin and the other two are
at cars A and B respective. The angle at the origin is calculated to be β = θB−θA = 5π/4−π/6 =
(30−4)π/24 = 26π/24. Notice that as the cars travel along the straight lines the triangle gets bigger
and the angles at A and B are changing whereas the angle β is independent of time. We can write
the law of cosines for the angle β, note the opposite side is the distance between A and B which we
labeled s:

s2 = s2A + s2B − 2sAsB cos(β).

Where sA, sB are the distances from the origin to cars A and B respective. Since the cars travel
at constant speed we can relate the distance to the time by the equations sA = 30t and sB = 40t.
Thus,

s2 = 900t2 + 1600t2 − 2400t2 cos(β).

Differentiate with respect to time,

2s
ds

dt
= 1800t+ 3200t− 4800t cos(β).

Note s =
√

900t2 + 1600t2 − 2400t2 cos(β) hence

ds

dt
=

1

2
√

900t2 + 1600t2 − 2400t2 cos(26π/24)

[
1800t+ 3200t− 4800t cos(26π/24)

]
.

To calculate s′(1) we need only evaluate the expression above at t = 1; hence s′(1) = 69.41mph

In-Class Example 3.13.10. Imagine two cars traveling from a point which we label as the origin.
If car A travels at 30mph due east at beginning at noon and if car B travels at 40mph due North
beginning at 1:00 PM then how quickly is the distance s between them increasing at 2:00 PM? ?

Solution:
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There are many examples of related rates. It is likely your homework has additional types of
problems. Keep in mind the general advice:

• identify variables to describe the problem,

• assess what is given and what you are trying to find,

• draw a picture of the generic situation at time t,

• write a model equation which relates the variables,

• differentiate implicitly the model equation and then plug in data given as appropriate and
solve for the requested rate.

Sometimes it is possible to write on of the variables as an explicit function of time, othertimes
we are not given enough information so we must find general relations of which we only know data
at one given instant. The beauty of the method is even when we have incomplete data about
the entire time evolution of a variable there are still strict constraints on the relation of the rates
following from the model equation.



Chapter 4

derivatives and linear approximations

Linearization of a function is the process of approximating a function by a line near some point.
The tangent line is the graph of the linearization. The differential is closely connected with the
linearization. In short, the difference between the concepts is as follows:

1. the linearization is an approximates the function near a given point.

2. the differential approximates the change in the function at a given point.

We examine how to apply linearizations to approximate nonlinear functions. We also consider how
the differential is useful in the analysis of error propagation. Finally, we use derivatives in the
formulation of Newton’s method. This iterative method allows us to use the power of calculus to
find approximate solutions to algebraic or even transcendental equations.

4.1 linearizations

We have already found the linearization of a function a number of times. The idea is to replace
the function by its tangent line at some point. This usually1 provides a good approximation if we
are near to the point. The linearization of a function f at a point a ∈ dom(f) is denoted by Laf or
simply Lf in this course,

Laf (x) ≡ f(a) + f ′(a)(x− a)

The graph of Laf is the tangent line to y = f(x) at (a, f(a)).

Example 4.1.1. Suppose the singularity has occurred and the robot holocaust has cast doubt on
the service of all machines. You need to calculate a squareroot but you can’t trust your calculator.
What to do? Let f(x) =

√
x and use the linearization. Take the number you wish to find the root

for and pick the closest easy root you can find center the linearization. Then the linearization of
the number will give a close estimate of the root you wish to find. For example,

√
4.01. Notice,

1we discuss limitations of the tangent line approximation at the conclusion of this section

127
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4.01 = 4 + 0.01 and we know
√

4 = 2 thus we use a = 4 as the center of the approximation.
Calculate that f ′(x) = 1

2
√
x

hence,

f(x) ≈ L4
f (x) = f(4) + f ′(4)(x− 4) = 2 +

1

4
(x− 4).

Therefore,
√

4.01 ≈ 2 +
4.01− 4

4
= 2 + 0.0025 = 2.0025.

Since Wolfram-alpha is still free and fairly benevolent I believe that in truth

√
4.01 = 2.00249843945007857276972121483226054214864513129159...

As you can easily see we did very well considering the crudeness of our method (in fact the error is
only about 0.0001%). Is a line a parabola? Certainly not. But that is the heart of what I just did.
I said you can replace a curve with a line locally and get good approximations. But, what is ”local”
how far does this linearization give ”good” results? Just for perspective I list a few less accurate
results from this linearization:

√
9 ≈ 2 +

1

4
(9− 4) = 3.25 (8.33% error)

√
16 ≈ 2 +

1

4
(16− 4) = 5 (25% error)

√
25 ≈ 2 +

1

4
(25− 4) = 7.25 (45% error)

Here’s a picture of what just happened.

Many authors would replace x with 4 + h and use g(h) =
√

4 + h in which case the center of the
approximation is naturally taken to be zero thus

√
4 + h ≈ 2 + h

4 . It’s just a matter of notation. In
the same sense your text has more to say about the ”differential”, however if you examine the math-
ematics closely you’ll learn that the differential and the linearization are being used to accomplish
the same goal. I will discuss both just to be safe. In a nutshell, the differential approximates the
change in the function near some base point whereas the linearization approximates the function
itself near the base point. By ”base point” I simply mean the point at which the approximation is
based. In the last example we had base point a = 4.
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In-Class Example 4.1.2. Find the approximate value of ln(3) by calculating Laf (3) for of f(x) =
lnx with base point a = e ∼= 2.71 . . . . Note, ln e = 1.

4.2 differentials and error

The change in the function between a and a+ h is denoted ∆f = f(a+ h)− f(a) and if y = f(x)
then we may likewise state ∆y = f(a + h) − f(a). Likewise, the change in x with respect to
these two points is ∆x = a + h − a = h. The linearization based at a for f is given by Laf (x) =
f(a) + f ′(a)(x − a). If we substitute x = a + h into the formula for the linearization we find
Laf (a + h) = f(a) + f ′(a)h which gives that Laf (a + h) − f(a) = f ′(a)h. If h ≈ 0 then we expect
Laf (a+ h) ≈ f(a+ h) thus it follows that

∆f ≈ f ′(a)h.

The notation is deceptively simple here: ∆f = ∆y, f ′(a) = df
dx(a) and h = ∆x. This gives:

∆y ≈ df

dx
(a)∆x.
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Definition 4.2.1.

Suppose f : U ⊆ R → R then if f has a derivative at a then it also has a differential
dfa : R→ R at a which is a function defined by dfa(h) = hf ′(a).

Notice that the derivative at a point (f ′(a)) is a number whereas the differential at a point (dfa) is
a linear function. The linearization (Laf ) of the function at (a, f(a)) is actually an affine function
which just means it has a graph which is a line with a possibly nonzero y-intercept.

Example 4.2.2. Estimate the uncertainty in the volume of a cubical box if you measure the length
of the side to be 20in± 0.2in. Let x denote the length of the side and V the volume of the box then

V = x3

Thus dV
dx = 3x2. We find,

∆V ≈ dV

dx
(a)∆x.

We are given a = 20in and ∆x = ± 0.2in thus,

∆V ≈ 3(20)2(0.2)in3 = 240in3.

Thus the uncertainty in the volume of the cubical box is approximately ± 240in3

In-Class Example 4.2.3. Estimate the uncertainty in the area enclosed by a circular fence if you
measure the radius of the area to be 3miles± 50ft. Note: one mile has 5280 ft.

It should be mentioned that the total and correct analysis of error propagation is more involved
that this section indicates. If you want to see more you might look at Data Reduction and Error
Analysis for the Physical Sciences by Bevington and Robinson.
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4.3 Newton’s method

In this section we use linearizations to find roots of equations. The idea is actually very simple: we
wish to solve f(x) = 0 for a given differentiable function f

(1.) guess a solution xo and calculate f(xo) and if it is close enough to zero then stop.

(2.) construct Lo(x) = f(xo) + f ′(xo)(x− xo) and solve Lo(x1) = 0 to find solution

x1 = xo − f(xo)/f
′(xo).

(3.) calculate f(x1) and if it is close enough to zero then stop.

(4.) construct L1(x) = f(x1) + f ′(x1)(x− x1) and solve L1(x2) = 0 to find solution

x2 = x1 − f(x1)/f
′(x1).

(5.) calculate f(x2) and if it is close enough to zero then stop.

(6.) construct L2(x) = f(x2) + f ′(x2)(x− x2) and solve L1(x3) = 0 to find solution

x3 = x2 − f(x2)/f
′(x2).

(7.) calculate f(x3) and so forth and so on until you get close enough to consider it a
solution for the purposes of your application.

To summarize: we wish to solve f(x) = 0 then we guess xo to begin then calculate iteratively by
the rule

xn+1 = xn − f(xn)/f ′(xn)

until |f(xn)| < ε where ε is an upper bound on the error you allow for the approximate solution.

Example 4.3.1. Let’s see how to solve the equation e−x
2

= x to within ±0.01. First construct
f(x) = e−x

2−x and note that the problem becomes solving f(x) = 0. Calculate f ′(x) = −2xe−x
2−1.

To begin we guess xo = −0.2. Note f(−0.2) u 1.16. Calculate x1 = xo − f(xo)/f
′(xo) = 1.69. I

have pictured the initial guess xo as well as the first iterate x1 with green diamonds on the x−axis:

You can see that x1 is the x-intercept of the tangent line from xo. Next, we can calculate x2 =
x1 − f(x1)/f

′(x1) = 0.324.
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You can see that x2 is the x-intercept of the tangent line from x1. Next, we can calculate x3 =
x2 − f(x2)/f

′(x2) = 0.686.

You can see that x3 is the x-intercept of the tangent line from x2. Next, we can calculate x4 =
x3 − f(x3)/f

′(x3) = 0.653.

At this point the tangent line so closely follows the function it is difficult to see where the tangent
line based at (x3, f(x3)) crosses the x-axis. We calculate

f(0.653) = e−0.653
2 − 0.653 = −0.00015.

Therefore, to a good approximation, the solution of e−x
2

= x is x = 0.653.

I included the pictures in the preceding example to emphasize the idea of the method. In practice
the graphs are not necessary for the calculation. However, looking at a graph is a good method to
select the initial guess of xo.
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Example 4.3.2. Calculate 3
√

20. Use your imagination, if x = 3
√

20 then x3 = 20. We need to
solve the equation x3 − 20 = 0 in other words, find the zero of f(x) = x3 − 20. We’ll use Newton’s
method with an initial guess of xo = 2.5 since we know that our answer must be somewhere between
2 and 3 since 23 = 8 and 33 = 27. Note f ′(x) = 3x2.

x1 = xo − f(xo)/f
′(xo) = 2.5 + 4.375/18.75 = 2.733

x2 = x1 − f(x1)/f
′(x1) = 2.733− 0.4136/22.41 = 2.715

x3 = x2 − f(x2)/f
′(x2) = 2.715− 0.013/22.11 = 2.714

We calculate that 2.7143 = 19.991 thus 3
√

20 ≈ 2.714.

What if you wanted to calculate log3(7) via Newton’s method? I leave this as an exercise for the
reader. The ideas presented in this section are used by calculators with great success. There are
examples for which Newton’s method fails to find a root, but it’s not hard to modify the naive
algorithm in this section to capture most roots. We’ve seen in our examples that even in less than
10 iterations the method zoomed in on the root. How quickly the method converges to the answer
is important for applications because it determines the number of computer operations we will
have to perform to execute the method. There are a number of useful estimates on the error of a
particular iterate however they are beyond the scope of this course. You might read pages 160-165
of Edwards Advanced Calculus if you’re interested in the pure mathematics of the topic. The goal
of Edwards section is to prove the following theorem:

Proposition 4.3.3. inverse function theorem for one-variable function.

Let f be a continuously differentiable functions on a nbhd of a then if f ′(a) 6= 0 there exists
a δ > 0 such that f is invertible when restricted to (a−δ, a+δ). In other words, if f ′(a) 6= 0
and f ′(x) exists for x near a then f is locally invertible near a.

Proof Sketch: since f ′(a) 6= 0 and f ′ is continuous it follows f ′(x) 6= 0 on some nbhd. of a. Thus
f ′(x) is either positive or negative on this nbhd and thus f is strictly monotonic and may therefore
by inverted. 2

The proof in Edwards is fascinating and constructive. He shows how to find a sequence of
functions which converges to the inverse function. This means he shows how to construct an
inverse function even in cases where you cannot implement the precalculus algorithm to find the
inverse 2. Incidentally, I don’t mean to indicate that this idea is unique to Edward’s text. These
ideas are older and can be found in dozens, if not hundreds, of modern texts on numerical methods.

2 you remember, y = f(x), solve for x then say x = f−1(y). Don’t switch x and y, it’s better to use different
letters for the domain and range of the function since they may well have different physical interpretations and/or
be different sets. We can think of functions of y or functions of x. We are not slaves to notation!
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Chapter 5

geometry and differential calculus

In this modern age it is tempting to neglect a careful study of graphing since we have so much tech-
nological assistance. However, by doing such we would rob ourselves of basic geometric intuition.
In my view there is no substitute for seeing the nuts and bolts of calculus and their application
to graphing. Moreover, the application of this analysis to word problems answers many nontrivial
questions. Given a mathematical model we might wish to know which values of the variable make
it the fastest, tallest, shortest, coolest, cheapest, etc... these sort of questions are easily answered
by the analysis in this chapter.

In Chapter 4 we learned how to differentiate. In Chapter 5 we learned that the basic interpretation
of the derivative at a point is as a linear approximation. In this chapter we learn what a derivative
as a function means. We also analyze the geometric significance of higher derivatives. To complete
the story of graphing we analyze limits at ±∞. We also apply such limits to analyze the asymptotic
behavior of a function thus generalizing the idea of a horizontal asymptote. The asymptotic behav-
ior of a model is sometimes the most interesting case. l’Hopital’s rule is introduced and justified.
Finally, breaking from some calculus-orthodoxy I discuss Taylor’s Theorem1 with Lagrange’s form
of the remainder. It is my opinion that the power of the theorem warrants some discussion at this
time. Taylor’s theorem elucidates and expands the second derivative test. Moreover, the idea of
polynomial approximation is a very important idea to many applications. I show how polynomial
approximations play a special role in physics.

5.1 graphing with derivatives

We would like to develop a strategy to locate where a given function takes its largest positive or
negative values. In an application this tells us the boundaries of what is possible for a given model.
For example, the motion of a spring oscillates between two positions. In other words, we can bound
the motion between those two positions. In contrast, we might study a bridge over which a wind

1note we do not discuss series at this juncture, the totality of that topic waits until calculus II, I simply include
some discussion here in the interest of deeper geometric insight. As a side consequence I also hope this inclusion
strengthens the student for calculus II’s travails

135
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blows with a certain frequency. If the frequency of the wind matches the resonant frequency of the
structure then the oscillation or waving motion of the bridge could build without bound. In that
case a good mathematical model2 of the bridge would reveal motion which is unbounded. The idea
of bounded motion is closely connected with the following:

Definition 5.1.1. absolute extrema.

• f has an absolute maximum of f(c) at c if f(c) ≥ f(x) for all x ∈ dom(f).

• f has an absolute minimum of f(c) at c if f(c) ≤ f(x) for all x ∈ dom(f).

• absolute maximum and minimum values are called the global extrema of f .

In-Class Example 5.1.2. Illustrate the existence or lack thereof of global extrema for several
example functions.

2a good mathematical model is the sort which anticipates these sort of problems before they occur
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Suppose we are given a model plus some additional condition so that we know the model must
have variables whose values are near some given data point. In a case such as that it is interesting
to know what the largest positive or negative values the function takes near the given data point.
Mathematically this is encapsulated by the idea of a local extreme value:

Definition 5.1.3. local extrema.

• A function f has a local maximum of f(c) at c if there exists a connected set J with
c ∈ J and J ⊆ dom(f) such that f(c) ≥ f(x) for all x ∈ J .

• A function f has a local minimum of f(c) at c if there exists a connected set J with
c ∈ J and J ⊆ dom(f) such that f(c) ≤ f(x) for all x ∈ J .

• If f(c) is either a local maximum or a local minimum then we say f(c) is a local
extrema at c.

In-Class Example 5.1.4. illustrate the definition with several graphs.

The following theorem is at the heart of most everything that follows in this chapter.

Proposition 5.1.5. Extreme value theorem.

Suppose that f is a function which is continuous on [a, b] then f attains its absolute maxi-
mum f(c) on [a, b] and its absolute minimum f(d) on [a, b] for some c, d ∈ [a, b].

It’s easy to see why the requirement of continuity is essential. If the function had a vertical asymp-
tote on [a, b] then the function gets arbitrarily large or negative so there is no biggest or most
negative value the function takes on the closed interval. Of course, if we had a vertical asymptote
then the function is not continuous at the asymptote. The proof of this theorem is technical and
beyond the scope of this course. See Apostol pages 150-151 for a nice proof.
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Notice the extreme value theorem does not really tell us how to find extrema. It merely states
they exist somewhere if the given function is continuous. Naturally we would like a way to locate
such points. Given our earlier work with tangent lines it would seem intuitively natural to suppose
those extrema should be found at points where there is either a horizontal tangent or a jump or
kink in the graph. Those graphical features will either make the derivative at the point to be zero
or undefined. We wish to prove this intuition valid. Begin by defining the points of interest:

Definition 5.1.6. critical numbers.

We say c ∈ R is a critical number of a function f if either f ′(c) = 0 or f ′(c) does not
exist. If c ∈ dom(f) is a critical number then (c, f(c)) is a critical point of f .

In-Class Example 5.1.7. Find critical numbers for f(x) = e−x
3

Notice that a critical number need not be in the domain of a given function. For example, f(x) =
1/x has f ′(x) = −1/x2 and thus c = 0 is a critical numbers as f ′(0) does not exist in R. Clearly
0 /∈ dom(f) either. It is usually the case that a vertical asymptote of the function will likewise be
a vertical asymptote of the derivative function.

Proposition 5.1.8. Fermat’s theorem.

If f has a local extreme value of f(c) and f ′(c) exists then f ′(c) = 0.

Proof: suppose f(c) is a local maximum. Then there exists δ1 > 0 such that f(c + h) ≤ f(c)

for all h ∈ Bδ1(0). Furthermore, since f ′(c) ∈ R we have limh→0
f(c+h)−f(c)

h = f ′(c) ∈ R. If

h > 0 and h ∈ Bδ1(0) then f(c + h) − f(c) ≤ 0 hence f(c+h)−f(c)
h ≤ 0. Using the squeeze the-

orem we find f ′(c) = limh→0+
f(c+h)−f(c)

h ≤ limh→0(0) = 0. Likewise, if h < 0 and h ∈ Bδ1(0)

then f(c + h) − f(c) ≤ 0 hence f(c+h)−f(c)
h ≥ 0. Hence, by the squeeze theorem, f ′(c) =

limh→0−
f(c+h)−f(c)

h ≥ limh→0(0) = 0. Consequently, f ′(c) ≤ 0 and f ′(c) ≥ 0 therefore f ′(c) = 0.
The proof in the case that f(c) is a local minimum is similar. 2
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Remember, if f ′(c) does not exist then c is a critical point by definition. Therefore, if f(c) is a
local extrema then c must be a critical point for one of two general reasons:

(1.) f ′(c) exists so Fermat’s theorem proves f ′(c) = 0 so c is a critical point.

(2.) f ′(c) does not exist so by definition c is a critical point.

Sometimes Fermat’s Theorem is simply stated as ”local extrema happen at critical points”. That
said, you canno reverse the sentence. In fact, not every critical point gives a local extreme.

In-Class Example 5.1.9. Discuss f(x) = x3 and g(x) = 3
√
x.

Proposition 5.1.10. Rolle’s theorem.

Suppose that f is a function such that

1. f is continuous on [a, b],

2. f is differentiable on (a, b),

3. f(a) = f(b).

Then there exists c ∈ (a, b) such that f ′(c) = 0.

Proof: If f is a constant function then f ′(x) = 0 for all x ∈ (a, b) so Rolle’s Theorem is true.
Otherwise, suppose f is nonconstant and use the Extreme Value Theorem and Fermat’s Theorem
to prove there exists c ∈ (a, b) such that f ′(c) = 0.

Let’s think about Rolle’s theorem as it applies to the physics of projectile motion. If the height of
a cat is y(t) and it represents a cat thrown up into the air for 3 seconds meaning y(0) = y(3) = 0.
Then v = dy/dt must be zero at some point during the flight of the cat. What goes up must come
down, and before it comes down it has to stop going up.
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In-Class Example 5.1.11. verify Rolle’s theorem for f(x) = sinx on 0 ≤ x ≤ π.

Proposition 5.1.12. Mean Value Theorem (MVT).

Suppose that f is a function such that

1. f is continuous on [a, b],

2. f is differentiable on (a, b),

Then there exists c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a . That is, there exists c ∈ (a, b) such

that f(b)− f(a) = f ′(c)(b− a).

Proof: Suppose f is continuous on [a, b] and differentiable on (a, b). Define function h by the
difference of the secant line from (a, f(a) to (b, f(b)) and f ,

h(x) = f(x)− s(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a)

Observe that h(a) = h(b) = 0 and h is clearly continuous on [a, b] because f is continuous and
besides that the function is constructed from a sum of a polynomial with f . Additionally, it is clear
that h is differentiable on (a, b) since polynomials are differentiable everywhere and f was assumed
to be differentiable on (a, b). Thus Rolle’s Theorem applies to h so there exists a c ∈ (a, b) such
that h′(c) = 0 which yields

h′(c) = f ′(c)− f(b)− f(a)

b− a
= 0 =⇒ f ′(c) =

f(b)− f(a)

b− a
. 2

Physical Significance of the Mean Value Theorem: The term ”mean” could be changed to ”average”.
Apply the MVT to the case that the independent variable is time t and the dependent variable is
position y and we get the simple observation that the average velocity over some time interval is
equal to the instantaneous velocity at some time during that interval of time. For example, if you
go 60 miles in one hour then your average velocity is clearly 60mph. The MVT tells us that some
time during that hour your instantaneous velocity was also 60mph.



5.1. GRAPHING WITH DERIVATIVES 141

In-Class Example 5.1.13. Verify MVT for f(x) = x3 + 1 on [−1, 2].

Proposition 5.1.14. sign of the derivative function f ′ indicates strict increase or decrease of f .

Suppose that f is a function and J is a connected subset of dom(f)

1. if f ′(x) > 0 for all x ∈ J then f is strictly increasing on J

2. if f ′(x) < 0 for all x ∈ J then f is strictly decreasing on J .

Proof: suppose f ′(x) > 0 for all x ∈ J . Let [a, b] ⊆ J and note f is continuous on [a, b] since it
is given to be differentiable on a superset of [a, b]. The MVT applied to f with respect to [a, b]
implies there exists c ∈ [a, b] such that

f(b)− f(a)

b− a
= f ′(c).

Notice that f(b)−f(a) = (b−a)f ′(c) but b−a > 0 and f ′(c) > 0 hence f(b)−f(a) > 0. Therefore,
for each pair a, b ∈ J with a < b we find f(a) < f(b) which means f is strictly increasing on J .
Likewise, if f ′(c) < 0 then almost the same argument applies to show a < b implies f(a) > f(b). 2
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Theorem 5.1.15. derivative zero implies constant function.

If f ′(x) = 0 for each x ∈ (a, b) then f is a constant function on (a, b).

Proof: apply the Mean Value Theorem. We know we can because the derivative exists at each point
on the interval and this implies the function is continuous on the open interval, so it is continuous
on any closed subinterval of (a,b). Let us denote this closed subinterval by J = [ao, bo] ⊂ (a, b). We
have to apply the Mean Value Theorem to J = [ao, bo] because we do not know for certain that the
function is continuous on the endpoints. We find,

0 =
f(bo)− f(ao)

bo − ao
=⇒ f(bo) = f(ao)

But this is for an arbitrary closed subinterval hence the function is constant on (a,b). 2

Caution: we cannot say the function is constant beyond the interval (a, b). It could do many
different things beyond the interval in consideration. Piecewise continuous functions are such
examples, they can be constant on the pieces yet at the points of discontinuity the function can
jump from one constant to another.

In-Class Example 5.1.16. Let f(x) =

√
x2

x
show f ′(x) = 0 for all x 6= 0. Is f constant ?

Theorem 5.1.17. if derivatives of two functions agree then the functions have same shaped graph.

If f ′(x) = g′(x) for each x ∈ (a, b) then f(x) = g(x) + c for some constant c ∈ R.

Proof: Apply Proposition 5.1.15 to h(x) = f(x) − g(x). Notice h′(x) = f ′(x) − g′(x) = 0 hence
h(x) = c and thus c = f(x)− g(x). The proposition follows. 2

Notice that the assumption is that they are equal on an open interval. If we had that the derivatives
of two functions were equal over some set which consisted of disconnected pieces then we could
apply Theorem 5.1.17 to each piece separately then we would need to check that those constants
from different components matched up. (for example if df

dx = dg
dx on (0, 1) ∪ (2, 3) then we could

have that f(x) = g(x) + 1 on (0,1) whereas f(x) = g(x) + 2 on (2, 3)).
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Proposition 5.1.18. sign-charts for derivatives reveal increase and decrease of function.

If f has finitely many critical numbers and f then the intervals of increase and decrease for
f can be determined through the use of a sign-chart for f ′(x). In particular, one draws a
number line with all critical points then labels either (+) or (−) on each subinterval based
on a test point for f ′(x) in the subinterval. The function is either increasing or decreasing
on each subinterval bounded by the critical points.

Proof: since there are finitely many critical points we may partition the real line into a finite
number of disjoint open intervals which are joined at critical numbers. Then we apply Proposition
5.1.14 to each open interval to determine strict increase or decrease. The sign-chart is simply a num-
ber line indicating this analysis in a nice organized fashion. See the next subsection for examples. 2

The sign-chart also applies to the case of countably many critical points which are separated by
finite open intervals. For example f(x) = cos(πx) has f ′(x) = −π sin(πx) and we have infinitely
many critical numbers of the form c = n for n ∈ Z. The concept of the sign-chart does just fine for
an example like f(x) = cos(πx). However, the sign-chart is not helpful for functions which have
dense accumulations of critical points in some nbhd. (see Example 3.9.7 for this bad behavior).

5.1.1 first derivative test

The following theorem naturally follows from the sign-test theorem.

Theorem 5.1.19. sign-charts for derivatives reveal increase and decrease of function.

Suppose f is continuous on an open interval containing a critical number c then

1. if f ′(x) changes signs from positive to negative at c then f(c) is a local maximum.

2. if f ′(x) changes signs from negative to positive at c then f(c) is a local minimum.

3. if f ′(x) does not change signs at c then f(c) is not a local extrema.

In each of the examples that follow in this section we aim to use calculus to analyze the
graph of the function. In particular, we are interesting in locating any local extrema
and the intervals of increase and decrease for the given functions.

Example 5.1.20. Let f(x) = 1
3x

3 + 1
2x

2 − 6x. Find all critical numbers and classify the critical
points as local maximums, minimums or neither. Observe,

f ′(x) = x2 + x− 6 = (x− 2)(x+ 3).

We have two critical numbers, c = 2 and c = −3. Therefore, we set-up the sign-chart as follows:
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Then we test a point somewhere in the interior of each region,

f ′(−4) = (−4− 2)(−2 + 3) = 8 > 0

f ′(0) = (−2)(3) = −6 < 0

f ′(3) = (3− 2)(3 + 3) = 6 > 0

Hence the completed sign-chart,

By the First Derivative Test we conclude,

1. f(−3) = −27/3 + 9/2− 6(−3) = 27/2 is a local maximum.

2. f(2) = 8/3 + 4/2− 6(2) = −22/3 is a local minimum.

Example 5.1.21. Let f(x) = ex+x. Note that f ′(x) = ex+1. This function has no critical points
since the equation ex + 1 = 0 has no solutions. It follows that y = ex + 1 has no local extrema.
However, we can deduce that f(x) is increasing on R since f ′(x) = ex + 1 ≥ 2 for all x ∈ R.

In-Class Example 5.1.22. Let f(x) = x4 − 4x3 − 12x2 + 32x. Find intervals of increase and
decrease. Classify each critical point. Sketch graph. Hint: f ′(1) = 0.
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Example 5.1.23. Let f(x) = x4 − 12x2 − 5. Calculate f ′(x) = 4x3 − 24x = 4x(x2 − 6) =
3x(x+

√
6)(x−

√
6) hence we find critical numbers c = 0,±

√
6. In invite the reader to confirm that

the test points −3,−1, 1, 2 reside between the critical points and f ′(−3) < 0, f ′(−1) > 0, f ′(1) < 0
and f ′(3) > 0 therefore the sign-chart for the derivative function is as follows:

We identify that f is increasing on (−
√

6, 0) ∪ (
√

6,∞) and it f is decreasing on (−∞,−
√

6) ∪
(0,
√

6). By the first derivative test we observe that f(−
√

6) = 36 − 72 − 5 = −41 and f(
√

6) =
36 − 72 − 5 = −41 are local minima whereas f(0) = −5 is a local maximum. The graph can be
deduced from these facts.

Notice I did not even need to find the zeros of the graph to make a good sketch of the curve.

Example 5.1.24. Let f(x) = x
(1+x)2

. By quotient rule

d

dx

x

(1 + x)2
=

1(1 + x)2 − 2(1 + x)x

(1 + x)4
=

1− x
(1 + x)3

Thus the critical points are c = 1 and c = −1. The sign-chart is

Observe that x = −1 is a VA and by the first derivative test f(1) = 1/4 is a local maximum. The
function is increasing on (−1, 1) and it is decreasing on (−∞, 1) ∪ (1,∞)
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Example 5.1.25. Suppose f(x) = ecos(πx). We calculate by chain rule f ′(x) = −π sin(πx)ecos(πx).
Note that the exponential function is nonzero thus f ′(x) = 0 implies sin(πx) = 0, but we recall from
our study of trigonometry that the set of solutions are precisely those x ∈ R such that πx = nπ for
some n ∈ Z. In this example we find infinitely many critical points. In particular, cn = n implies
f ′(cn) = 0. The sign-chart is

For each even integer 2n we apply first derivative test to find f(2n) = e is the global maximum of
f and for each odd integer 2n+ 1 we apply first derivative test to find f(2n+ 1) = 1/e is the global
minimum of f . The graph is sort of like an cosine graph, although it is bounded by 1/e ≤ ecos(πx) ≤ e
and you can see the shape not the same as cosine.

I have pointed out a few maxima (2n, e) with yellow dots and minima (2n− 1, 1e ) with blue dots in
the picture above.
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Example 5.1.26. Suppose f(x) = cos(ex). The chain rule provides f ′(x) = −ex sin(ex). We will
find infinitely many solutions for the critical number criteria f ′(x) = −ex sin(ex) = 0. Note ex 6= 0
for all x ∈ R hence we must have sin(ex) = 0. Consequently we find solutions described implicitly
by ex = nπ for n ∈ Z. Since ex > 0 we have no solutions with n ≤ 0. If n > 0 then we can solve
for x = ln(nπ) = ln(n) + ln(π). Define cn = ln(n) + ln(π), then clearly f ′(cn) = 0 for each n ∈ N.
The critical numbers c1, c2, . . . are not evenly spaced. Instead, as n increases we know the ln(n)
grows slower and slower which means the critical numbers are closer and closer as x → ∞. Note
that −ex sin(ex) changes from + to − if ex = 2nπ whereas −ex sin(ex) changes from − to + if we
cross ex = (2n − 1)π. Therefore, by first derivative test, f(c2n) = 1 is the global maximum which
is attained at x = c2n for n ∈ N and f(c2n−1) = −1 is the global minimum which is attained at
x = c2n−1 for n ∈ N.

The yellow dots are at (c2n, 1) and the blue dots are at (c2n−1, 1) for n = 1, 2, 3, 4, 5.

In-Class Example 5.1.27. Let f(x) = xe−x. Find intervals of increase and decrease. Classify
any critical points. Sketch graph.
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Example 5.1.28. Let f(x) =
√

(x− 1)2 −
√

(x− 2)2. You should recognize3 these are formulas
for the absolute value function y = |x| shifted either one or two units right. We expect there will be
two critical points. Let us verify my conjecture,

f ′(x) =
d

dx

[√
(x− 1)2 −

√
(x− 2)2

]
=

2(x− 1)

2
√

(x− 1)2
− 2(x− 2)

2
√

(x− 2)2

=
(x− 1)

√
(x− 2)2 − (x− 2)

√
(x− 1)2√

(x− 1)2
√

(x− 2)2
.

You might be tempted to just cancel terms in the numerator and conclude f ′(x) = 0 for all x ∈ R.
However, this is not correct. In fact, f ′(1) and f ′(2) do not exist and f ′(x) = 2 for 1 < x < 2. Let
us change notation a bit so the problem becomes clearer, the trouble with this problem is that we
really need to break it into cases to see clearly:

√
(x− 1)2 = |x− 1| =

{
x− 1 if x > 1

1− x if x ≤ 1

√
(x− 2)2 = |x− 2| =

{
x− 2 if x > 2

2− x if x ≤ 2

Therefore,

f(x) = |x− 1| − |x− 2| =


−1 if x ≤ 1

2x− 1 if 1 ≤ x ≤ 2

1 if x ≥ 2

.

It follows that

f ′(x) =


0 if x < 1

2 if 1 < x < 2

0 if x > 2

.

we can show that f is continuous on R however the derivative f ′ is discontinuous at x = 1 and
x = 2. In fact, dom(f ′) = R − {1, 2}. The first derivative test does not apply to this example.
Notice that the set of critical points for f is (−∞, 1] ∪ [2,∞). Since the derivative is constant on
(−∞, 1] and [2,∞) we find the function is constant on those intervals. (we already found this but
I point out that the differential calculus and our previous propositions on constant functions and
derivatives do apply to this case even though the first derivative test is non-applicable.)

3 we could write
√

(x− 1)2 = ±(x−1), however I hope you realize that it is not correct to simply write
√

(x− 1)2 =
x− 1 for generic x. This mistake made many students miss this problem on a previous semester’s test
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5.1.2 concavity and the second derivative test

A function is concave-up on an interval J if the function has the shape of a bowl which is right-side
up over that interval J . A function is concave down on an interval J if the function has the shape
of a bowl which is up-side down over that interval J . In other words, a concave up function stays
below the secant line but a concave down function stays above the secant line.

Definition 5.1.29.

Let f be a function which is twice differentiable on some connected set J ,

1. f is concave up if the derivative of f is decreasing on J (abbreviated CU on J)

2. f is concave down if the derivative of f is increasing on J (abbreviated CD on J)

3. if p ∈ dom(f) is a point such that there exists δ > 0 such that f is concave up(down)
on (p − δ, p) and concave down(up) on (p, p + δ) then we say p or (p, f(p)) is an
inflection point. An inflection point is a point where the concavity changes.

In-Class Example 5.1.30. Illustrate CU and CD and label points of inflection for an example.

In-Class Example 5.1.31. What simple family of graphs is both CU and CD everywhere ?
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Remark 5.1.32.

One easy way to remember which is up and which is down is the following slogan:

concave up: is locally like a u concave down: is locally like a n .

This slogan is useful to help create graphs if you already know the concavity.

Incidentally, the term ”convex” was historically used for concave down and this term is still used
in physics particularly in the study of optics.

Example 5.1.33. If f(x) = x2 then f ′(x) = 2x. Notice that f ′′(x) = 2 > 0 therefore f ′ is an
increasing function on R. It follows that y = x2 is concave up on R.

Notice that the tangents (in green) are under the graph since the function is CU everywhere.

Example 5.1.34. If f(x) = x3 then f ′(x) = 3x2. Notice that f ′′(x) = 6x is positive for x > 0
whereas x < 0 implies f ′′(x) < 0. Therefore, f ′ is increasing on (0,∞) and f ′ is decreasing on
(−∞, 0). It follows that y = x3 is CU on (0,∞) and CD on (−∞, 0). Thus (0, 0) is an inflection
point.

Notice that the tangents (in green) are over the graph where it is CD (x < 0) whereas the tangents
are under the graph where the function is CU (x > 0).
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Theorem 5.1.35. sign-charts for derivatives reveal increase and decrease of function.

Suppose f has continuous f ′′ on (a, b) and f ′(c) = 0 for c ∈ (a, b),

1. if f ′′(x) > 0 for all x ∈ (a, b) then f is concave up on (a, b).

2. if f ′′(x) < 0 for all x ∈ (a, b) then f is concave down on (a, b).

3. if f ′′(c) = 0 then this test is inconclusive.

I emphasize that when the second derivative is zero we might find an inflection point, but it doesn’t
have to be the case. The same is true for critical points. When a critical point is not at a local
max or min it could be an inflection point or it might be something else.

Theorem 5.1.36. Second Derivative Test.

Suppose f has a critical number c such that f ′(c) = 0 and f ′′(x) is exists for x ∈ Bδ(c) for
some δ > 0 then

1. if f ′′(c) > 0 then f(c) is a local minimum at c.

2. if f ′′(c) < 0 then f(c) is a local maximum at c.

3. if f ′′(c) = 0 then this test is inconclusive.

Proof: suppose f ′′(c) > 0 and f ′(c) = 0. Notice that f ′ is continuous on Bδ(c) for some δ > 0 since
f ′′ is defined on that set and differentiability of f ′ implies continuity of f ′. Furthermore, notice
that f ′ is strictly increasing on Bδ(c) therefore f ′ is an injection on Bδ(c). Since f ′(c) = 0 and f ′

is strictly increasing it follows that f ′(x) < 0 for x ∈ Bδ(c) with x < c and f ′(x) > 0 for x ∈ Bδ(c)
with x > c therefore by the First Derivative Test we conclude f(c) is a local minimum. A similar
argument applies to case 2. 2

We will discover another proof for the second derivative test when we discuss Taylor’s Theorem
later in this chapter.

In-Class Example 5.1.37. Let f(x) = x2− 2bx+ c where b, c are constants. Show f(b) is a local
minimum for this function.
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In-Class Example 5.1.38. Suppose f(x) = e−x
2
. Find intervals of concavity and increase and

decrease. Find extremal points and inflection points. Sketch the graph.
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In-Class Example 5.1.39. Suppose f(x) = 3x5 − 20x4 + 40x3. Find intervals of concavity and
increase and decrease. Find extremal points and inflection points. Sketch the graph.
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Example 5.1.40. Suppose f(x) = 1
x+2 + 1

x−2 . If we make a common denominator we find f(x) =
2x
x2−4 . We differentiate (the original given formula),

f ′(x) =
−1

(x+ 2)2
− 1

(x− 2)2
= − 2x2 + 8

(x+ 2)2(x− 2)2

then differentiate again (using the unsimplified f ′(x) as starting point),

f ′(x) =
2

(x+ 2)3
+

2

(x− 2)3
= 2

2x3 + 48x

(x+ 2)3(x− 2)3
=

4x(x2 + 24)

(x+ 2)3(x− 2)3
.

We find critical points c = −2, 2 and points of possible inflection at −2, 0, 2.

We find the function is decreasing on R and of the three possible inflection points only (0, 0) is a
point of inflection, the concavity also changes at x = ±2 but those are VA so we shouldn’t say those
are points of inflection. This rational function has a graph that is CU on (−2, 0) and (2,∞) and it
is CD on (−∞,−2) and (0, 2).

One physical interpretation mathematics found in the previous example is that y = f(x) could be
a graph of the electric potential along the x-axis for two positive point charges placed at x = −2
and x = 2. A divergence in the potential signals the presence of localized charge.
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Example 5.1.41. Suppose f(x) = sec(x) then f ′(x) = sec(x) tan(x) and f ′′(x) = sec2(x) tan(x) +
sec3(x) by the product rule. Let us write these in terms of sine and cosine since we have a complete
and working knowledge of all the zeros for sine and cosine.

f(x) =
1

cos(x)

df

dx
=

sin(x)

cos2(x)

d2f

dx2
=

sin(x) + 1

cos3(x)

It follows that critical points arise from where sin(x) = 0 or where f ′(x) does not exist because
cos(x) = 0; that cn = π

2n for n ∈ Z. We also see that the odd-integer critical points are also
locations of possible concavity change since a vanishing cosine makes f ′′(x) undefined. Note that
sin(x) = −1 has solutions xj = π

2 4j − 1 for j ∈ Z. For example, j = 0 gives sin(−π
2 ) = −1 and

j = 1 gives sin(3π2 ) = −1. These points are included already as a subset of the zeros of cosine. The
concavity can only change at a zero of cosine.

Notice that the local maximum of 1 is attained at x = 2nπ for n ∈ Z whereas a local minimum of 1 is
attained at x = (2n−1)π for n ∈ Z. The fact these are respectively local maximums and minimums
is verified by the second derivative test since f ′′(2nπ) = 1 > 0 and f ′′((2n− 1)π) = −1 < 0 for all
n ∈ Z. Naturally the first derivative test agrees. Both tests are evident from the sign-chart given
above.
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Remark 5.1.42. concerning on case 3 of 2nd Derivative Test

Maybe you are wondering, what is an example of a function which falls into case 3 of the
derivative test? One simple example is a line y = f(x) = mx + b which has f ′(x) = m.
Clearly f and f ′ are continuous everywhere. Notice f ′′(x) = 0 for each x ∈ R. There are
two cases:

1. m = 0, thus f(x) = b and y = b is the maximum and minimum value of the function
at all points.

2. m 6= 0, then f(x) = mx+ b and the function has no extrema with respect to R.

Notice also that g(x) = x4 + 1 and h(x) = x5 + 4 both have critical number c = 0 and
g′′(0) = h′′(0) = 0 however (0, g(0)) is a local minimum whereas (0, h(0)) is an inflection
point. The second derivative is too clumsy to detect the difference. Later in this chapter
we’ll discover that Taylor’s polynomial approximation theorem covers cases like g or h.

5.2 closed interval method

The following theorem details how to actually find the extrema the Extreme Value Theorem indi-
cated exist. If f is continuous on [a, b] then the Extreme Value Theorem says there exist global
extrema with respect to [a, b]. If an extrema are in the interior then it must also be a local extrema
thus by Fermat’s theorem it will occur at a critical number. Otherwise, the extrema are at the
endpoints. Therefore, if we check endpoints and critical points we will find the extrema.

Theorem 5.2.1. closed interval method.

If we are given function f which is continuous on a closed interval [a, b] the we can find the
absolute minimum and maximum values of the function over the interval [a, b] as follows:

1. Locate all critical numbers x = c in (a, b) and calculate f(c).

2. Calculate f(a) and f(b).

3. Compare values from steps 1. and 2. the largest of these values is the absolute
maximum, the smallest (or largest negative) value is the absolute minimum of f on
[a, b].

Example 5.2.2. Let f(x) = sin(x) find absolute extrema of f relative to interval 0 ≤ x ≤ 2π.
Note f ′(x) = cos(x) and cos(x) = 0 has solutions x = π

2 ,
π
2 ∈ [0, 2π].

f(0) = sin(0) = 0, f(π2 ) = sin(π2 ) = 1, f(
3π

2
) = sin(3π2 ) = −1, sin(2π) = 0

Therefore, by closed interval method f(π2 ) = 1 is the maximum and f(3π2 ) = −1 is the minimum of
f(x) = sin(x) on the interval [0, 2π].
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In-Class Example 5.2.3. Let f(x) = (x− 3)(x− 4) find absolute extrema of f on [0, 1].

In-Class Example 5.2.4. Let f(x) = x4 − 2x2 + 3 find absolute extrema of f on [0, 2].
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Example 5.2.5. Let f(x) = e−x sin(x). Find the extreme values of f on [0, 4].

f ′(x) = − sin(x)e−x + cos(x)e−x = (cos(x)− sin(x))e−x.

Solutions of cos(x) = sin(x) are critical points. If you picture the graphs of sine and cosine on the
same plot then the solutions are given from the points of intersection. In particular, c = π

4 + nπ
for n ∈ Z. The critical points in [0, 4] are π

4 and 5π
4 ≈ 3.93. Calculate,

f(π4 ) = e−
π
4 sin(π4 ) ≈ 0.32

f(5π4 ) = e−
5π
4 sin(5π4 ) ≈ −0.0139

f(0) = e0 sin(0) = 0

f(4) = e−4 sin(4) = −0.138

We find f(5π4 ) = −0.0139 is the minimum and f(π4 ) = 0.32 is the maximum of f on the interval
[0, 4]. The graph has blue dots to illustrate the extrema.

I suppose we ought to be happy the last example wasn’t f(x) = e−x sin(11x). That would have
required more calculation.

Physically these are very interesting functions. You should see it again when you study springs
with friction or RLC circuits.
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5.3 optimization

I have preserved the format of these examples from an earlier edition of my notes.

Example 5.3.1.

In-Class Example 5.3.2. Given 400 ft of fencing to build rectangular pen next to lava river. Find
dimensions to maximize area. Note: cows are afraid of lava, so no fence needed on one side.
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Example 5.3.3.
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In-Class Example 5.3.4. The range of a projectile fired on a level field is given by R =
2v2o sin θ cos θ

g
where vo, g are constants. Find the angle which maximizes the range.

In-Class Example 5.3.5. If a projectile is fired with speed vo at angle of inclination θ from initial
height yo then the height of the projectile is given by y = yo+vo sin thetat− 1

2gt
2. Find the maximum

height of the projectile.
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In-Class Example 5.3.6. Find the point on y = 2− x which is closest to (0, 0).

In-Class Example 5.3.7. Find the point on y = 3− x2 which is closest to the point (1, 1). Hint:
4x3 − 6x− 2 = (x+ 1)(2x2 − 2x− 1) = 0.
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5.4 to ±∞ and beyond

The behavior a function for x >> 0 or for x << 0 is captured by the limit4 of the function at ±∞,

Definition 5.4.1. limits at ∞ or −∞.

The limit at ∞ for a function f is L ∈ R if the values f(x) can be made arbitrarily close to
L for inputs x sufficiently large. We write

lim
x→∞

f(x) = L

in this case. To be more precise we should say that limx→∞ f(x) = L iff for each ε > 0
there exists N ∈ R with N > 0 such that if x > N then |f(x)− L| < ε. Likewise,

lim
x→−∞

f(x) = L

iff for each ε > 0 there exists M ∈ R with M < 0 such that if x < M then |f(x)− L| < ε.

Geometrically this definition essentially says that if we pick a band of width 2ε about the line y = L
then for points to the right(or left) of N (or M) the graph y = f(x) fits inside the band. In the
picture below you can see that for any ε > 0 or β > 0 we can find a band about the limiting value
in which the tail of the graph can be fit.

Given the graph above we expect limx→∞ f(x) = L1 and limx→−∞ f(x) = L2.

Example 5.4.2. Let f(x) = 1
x . Calculate the limit of f(x) at ∞. Observe that,

f(10) = 0.1, f(100) = 0.01, f(1000) = 0.001.

We see that the values of the function are getting closer and closer to zero as x gets larger and
larger. This leads us to suspect,

lim
x→∞

1

x
= 0.

4we did discuss the values of the function tending to arbitrarily large positive or negative values with respect to
some finite limit point. I would say those are limits which go to ∞ whereas this section is about limits which are
taken at ±∞. These concepts are not mutually exclusive; limx→∞ e

x =∞.
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In other words, if we divide something nonzero by a very big number then we get something very
small. This sort of limit is not ambiguous, to determine the answer intuitively we either need to
think about a table of values or perhaps a graph.

Or if you want to be rigorous you can argue as follows: Let ε > 0 choose N = 1/ε and observe that
for x > N = 1/ε it follows that 1/x < ε. Consequently, x > N implies |f(x) − 0| = | 1x | = 1

x < ε.
Hence by the precise definition limx→∞

1
x = 0. 2

The limits at −∞ are much the same.

Example 5.4.3. Let f(x) = 1
x . Calculate the limit of f(x) at −∞. Observe that,

f(−10) = −0.1, f(−100) = −0.01, f(−1000) = −0.001.

We see that the values of the function are getting closer and closer to zero as x gets larger and
negative. This leads us to suspect,

lim
x→−∞

1

x
= 0.

In other words, if we divide something nonzero by a very big negative number then we get something
very small and negative. This sort of limit is not ambiguous, to determine the answer intuitively
we either need to think about a table of values or perhaps a graph.

Or if you want to be rigorous you can argue as follows: Let ε > 0 choose M = −1/ε and observe
that for x < M = −1/ε it follows that −1/x < ε. Consequently, x < N implies |f(x)− 0| = | 1x | =
− 1
x < ε. Hence by the precise definition limx→−∞

1
x = 0. 2

Clearly we’d prefer to avoid the picky ε-type arguments if possible. Towards that end I’m offering
proofs for a number of standard results and theorems so that we have justification for later algebraic
or intuitive arguments to solve limits at ±∞. As always it is still important we remember at the
definition is actually precise even if we sometimes allow some amount of intuitive argumentation.

Example 5.4.4. Let f(x) = 1/xn where n > 0. Calculate the limit of f(x) at ∞. Observe that,

f(10) = 1/10n, f(100) = 1/100n, f(1000) = 1/1000n.

We see that the values of the function are getting closer and closer to zero as x gets larger and
larger. This leads us to suspect,

lim
x→∞

1

xn
= 0.

Let ε > 0 choose N = 1/ε
1
n . Suppose x > N = 1/ε

1
n thus 1/x < ε

1
n which implies 1/xn < (ε

1
n )n = ε.

Consider then, if x > N then

|f(x)− 0| = |1/xn| = 1/xn < ε.

Therefore by the precise definition for limits at infinity, limx→∞
1
xn = 0. 2
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The graphical significance of all three examples thus far considered is that the function has a
horizontal asymptote of y = 0 as x→ ±∞.

Definition 5.4.5. horizontal asymptotes.

If limx→∞ f(x) = L then the function f is said to have a horizontal asymptote of y = L
at ∞. If limx→−∞ f(x) = L then the function f is said to have a horizontal asymptote
of y = L at −∞.

In-Class Example 5.4.6. Find horizontal asymptotes of f(x) = tan−1(x).

Vertical asymptotes of the function correspond to horizontal asymptotes for the inverse function5

We can also discuss limits which go to infinity at infinity. It’s just the natural merger of both
definitions but I state it here for completeness.

Definition 5.4.7. infinite limits at infinity.

The limit at ∞ for a function f is ∞ iff for each M > 0 there exists N > 0 such that for
x > N we find f(x) > M . We denote

lim
x→∞

f(x) =∞.

in this case. Likewise, the limit at −∞ for a function f is ∞ iff for each M > 0 there exists
N < 0 such that if x < N then f(x) > M . We denote this by

lim
x→−∞

f(x) =∞.

Similarly, if for each M < 0 there exists N > 0 such that x > N implies f(x) < M we
say limx→−∞ f(x) = −∞. Finally, if for each M < 0 there exists N < 0 such that x < N
implies f(x) < M we say limx→−∞ f(x) = −∞.

5Challenge: what are the horizontal asymptotes of y = tan−1(3x) ?
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Example 5.4.8. I would say that the limit below are not indeterminant. Their values can be
deduced by straightforward analysis from the definition. The formal proof of these claims I leave to
the reader.

lim
x→∞

1

x
= 0 lim

x→−∞

1

x
= 0 lim

x→0+

1

x
=∞ lim

x→0−

1

x
= −∞ lim

x→0

1

x
= dne

lim
x→∞

1

x2
= 0 lim

x→−∞

1

x2
= 0 lim

x→0+

1

x2
=∞ lim

x→0−

1

x2
=∞ lim

x→0

1

x2
=∞

lim
x→∞

1√
x

= 0 lim
x→−∞

1√
x

=? lim
x→0+

1√
x

=∞ lim
x→0−

1√
x

=? lim
x→0

1√
x

= dne

lim
x→∞

√
x =∞ lim

x→−∞

√
x =? lim

x→0+

√
x = 0 lim

x→0−

√
x =? lim

x→0

√
x = dne

lim
x→∞

x2 =∞ lim
x→−∞

x2 =∞ lim
x→0+

x2 = 0 lim
x→0−

x2 = 0 lim
x→0

x2 = 0

lim
x→∞

x3 =∞ lim
x→−∞

x3 = −∞ lim
x→0+

x3 = 0 lim
x→0−

x3 = 0 lim
x→0

x3 = 0.

I have used ”?” instead of d.n.e. in a few places just to make it fit. Those limits are taken at a
limit point which is not in the domain of the function, in some cases not even on the boundary of
the function. If we can’t take values close to the limit point then by default the limit is said to not
exist, in which case we use ”d.n.e.” or ”dne” as a shorthand.

We can also have limits which fail to exist at plus or minus infinity due to oscillation. All of the
functions in the next example fall into that category.

Example 5.4.9. the following limits all involve cyclic functions. They never settle down to one
value for large positive or negative input values so the limits d.n.e.

lim
x→∞

sin(x) = d.n.e. lim
x→∞

cos(x) = d.n.e. lim
x→∞

tan(x) = d.n.e.

lim
x→−∞

sin(x) = d.n.e. lim
x→−∞

cos(x) = d.n.e. lim
x→−∞

tan(x) = d.n.e.

lim
x→∞

csc(x) = d.n.e. lim
x→∞

sec(x) = d.n.e. lim
x→∞

sec(x) = d.n.e.

lim
x→−∞

csc(x) = d.n.e. lim
x→−∞

sec(x) = d.n.e. lim
x→−∞

sec(x) = d.n.e.

Example 5.4.10. The interplay between a function and its inverse is especially enlightening for
ln(x), sin−1(x), cos−1(x). I refer the reader to the earlier chapter on preliminary material if it is
forgotten by now.

lim
x→∞

sin−1(x) = d.n.e. lim
x→∞

cos−1(x) = d.n.e. lim
x→∞

tan−1(x) = π/2

lim
x→−∞

sin−1(x) = d.n.e. lim
x→−∞

cos−1(x) = d.n.e. lim
x→−∞

tan−1(x) = −π/2

lim
x→∞

ex =∞ lim
x→∞

e−x = 0 lim
x→∞

(1/2)x = 0

lim
x→−∞

ex = 0 lim
x→−∞

e−x =∞ lim
x→−∞

(1/2)x =∞
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The domain of sin−1(x) and cos−1(x) will be the range of sine and cosine respectively; that is
dom(sin−1(x)) = [−1, 1] and dom(cos−1(x)) = [−1, 1] so clearly the limits at plus and minus
infinity are not sensible as inverse sine and cosine are not even defined at ±∞. In contrast the
range of the exponential function is all positive real numbers and ln(x) is the inverse function of ex

thus
lim

x→−∞
ln(x) = d.n.e. lim

x→0+
ln(x) = −∞ lim

x→∞
ln(x) =∞

For x < 0 the ln(x) is not real, the middle limit you should have thought about in the earlier
discussion of limits. The last one is true although an uncritical appraisal of the graph y = ln(x)
gives the appearance of a horizontal asymptote, but appearances can be deceiving.

The following lemma connects limits at ±∞ with one-sided limits at zero.

Lemma 5.4.11.

lim
x→∞

f(x) = lim
t→0+

f(1/t) and lim
x→−∞

f(x) = lim
t→0−

f(1/t).

The equalities above apply to the case that the limit exists as well as the cases where the
limits do not exist. We mean for the equality to denote that both limits diverge in the same
manner.

Proof: Let’s begin with the case that limx→∞ f(x) = L ∈ R. Let ε > 0 and note the following
inequalities are equivalent:

0 < M < x ⇔ 0 <
1

x
<

1

M

Therefore, 0 < 1
x <

1
m implies |f(x)− L| < ε which indicates that

lim
1
x
→0+

f(x) = L hence using t = 1/x we find lim
t→0+

f(1/t) = L.

The proof limx→−∞ f(x) = limt→0− f(1/t) ∈ R is similar.

Suppose limx→−∞ f(x) = ∞. It follows that for each N > 0 there exists M < 0 such that x < M
implies f(x) > N . Note that 1

M < 1
x is equivalent with x < M thus 1

M < 1
x < 0 implies f(x) > N .

But the last string of inequalities yields that

lim
1
x
→0−

f(x) =∞ hence using t = 1/x we find lim
t→0−

f(1/t) =∞.

Proof for other cases are similar and left to the reader. The basic point is that if x → ±∞ then
t = 1

x → 0±. 2

With the little lemma above in mind we see that all the limit theorems transfer over to limits at ±∞
since each such limit is in 1-1 correspondence with a one-sided limit at zero and we already proved
the limit laws for limits at zero. Rather than restating all the limit laws again I will illustrate by
example. In fact, let’s get straight to the fun part: indeterminant limits.
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5.4.1 algebraic techniques for calculating limits at ±∞

Up to this point I have attempted to catalogue the basic results. I’m sure I forgot something
important, but I hope these examples give you enough of a basis to do those limits which are
unambiguous at plus or minus infinity. There is another category of problems where the limits
which are given are not obvious, there is some form of indeterminancy. All the same indeterminant
forms (see defn. 2.3.5 ) arise again and most of the algebraic techniques we used back in section
2.3 will arise again here although perhaps in a slightly altered form.

The good news is that limits at infinity enjoy all the same properties as limits which are taken
at a finite limit point, at least in as much as the properties make sense. Of course we can only
apply the limit properties when the values of the limit are finite. For example,

lim
x→∞

(x− 2x) = lim
x→∞

(x) + lim
x→∞

(−2x) =∞−∞

is not valid because you might be tempted to cancel and find limx→∞(x− 2x) = 0 yet limx→∞(x−
2x) = limx→∞(−x) = −∞ is the correct result. So we should only split limits by the limit laws
when the subsequent limits are finite. That said, I do admit there are certain cases it doesn’t
hurt to apply the limit laws even though the limits are infinite. In particular, suppose c 6= 0, if
lim f = ∞ then lim cf = c lim f = c∞ provided we agree to understand that c∞ = ∞ for c > 0
whereas c∞ = −∞ if c < 0. Such statements are dangerous because the reader may be tempted
to apply laws of arithmetic to expressions involving ∞ and it’s just not that simple. We should
always remember that ∞ is just a notation for a particular limiting process in calculus6

Example 5.4.12. this one is type ∞∞ to begin.

lim
x→∞

(
x+ 3

x− 2

)
= lim

x→∞

( x
x + 3

x
x
x −

2
x

)
divided top and bottom by x

= lim
x→∞

(
1 + 0

1− 0

)
c/x→ 0 as x→∞

= 1.

Example 5.4.13. this one is also of type ∞∞ to begin.

lim
x→∞

(
x3 + 3x− 2

x4 − 2x+ 1

)
= lim

x→∞

( 1
x + 3

x3
− 2

x4

1− 2
x3

+ 1
x4

)
divided top and bottom by x4

= lim
x→∞

(
0 + 0− 0

1− 0 + 0

)
for n = 1, 2, 4, c/xn → 0 as x→∞

= 0.

6in complex variables one can actually add the point at infinity and use the extended complex numbers. In fact,
some authors use a similar idea for calculus, they introduce the so-called extended real numbers or the ”really long
line” of R ∪ {∞} ∪ {−∞}. If this sort of thing seems interesting to you then perhaps you ought to read the text
Elementary Calculus: An Infinitesimal Approach by H. Jerome Keisler
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Example 5.4.14. again, type ∞∞ to begin.

lim
x→−∞

(
x3 + 3x− 2

x2 − x+ 7

)
= lim

x→−∞

(
x+ 3

x −
2
x2

1− 2
x + 7

x2

)
divided top and bottom by x4

= lim
x→−∞

(
x

1

)
for n = 1, 2, c/xn → 0 as x→ −∞

= −∞.

Another way of thinking about this one is to put in very big negative values of x. For example,
when x = −1000 we find

x3 + 3x− 2

x2 − x+ 7
=
−10003 − 3000− 2

10002 + 1000− 2
≈ −10003

10002
= −1000 = x

This sort of reasoning is a good method to try if you are lost as to what algebraic step to apply.
There are problems which no amount of algebra will fix, sometimes considering numerical evidence
is the best way to figure out a limit. However, for some functions −1000 is not big enough, take
f(x) = 1

2x−1000 we find f(−1000) = −1/3. But, you can show f(x) → 0 as x → −∞. To be safer
you should experiment with more than one number, or better yet think.

Example 5.4.15. you guessed it, type ∞∞ to begin.

lim
x→∞

( √
2x4 + 3x− 2

x2 − x+ 7

)
= lim

x→∞

( 1
x2

√
2x4 + 3x− 2

1
x2

(
x2 − x+ 7

) )

= lim
x→∞

( √
2x4+3x−2

x4

1− 1
x + 7

x2

)

= lim
x→∞

( √
2 + 3

x3
− 2

x4

1− 1
x + 7

x2

)
=
√

2.

Example 5.4.16. this has type 0 · ∞ to begin.

lim
x→∞

(
e−x2x

)
= lim

x→∞

(
eln(2

x)e−x
)

sneaky step

= lim
x→∞

(
ex ln(2)e−x

)
= lim

x→∞

(
ex(ln(2)−1)

)
= 0.

In the last step I noticed ln(2)−1 ≈ 0.692−1 < 0 thus the limit amounts to the exponential function
evaluated at ever increasing large negative values which indicates the limit is zero. This example
really belongs in the section with l’Hopital’s Rule, I include it now for novelty only.
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We find that limits of type ∞/∞ can result in many different final answers depending on how the
indeterminancy is resolved. The next example is more general, I think it is healthy to think about
something a little more abstract from time to time. The strategy used is essentially identical to
the strategy employed in several of the preceding examples.

In-Class Example 5.4.17. let P be a polynomial of degree p and let Q be a polynomial of degree q.
This means there exist real coefficients ap, ap−1, . . . , a1, a0 and bq, bq−1, . . . , b1, b0 such that ap 6= 0
and bq 6= 0 where

P (x) = apx
p + · · ·+ a1x+ a0 Q(x) = bqx

q + · · ·+ b1x+ b0

Determine the possible values of lim
x→∞

P (x)

Q(x)
.

In case you forgot, a function f is said to be bounded if there exist m,M ∈ R such that m <
f(x) < M for all x ∈ dom(f).

Example 5.4.18. we can throw away a bounded function in a sum when the other function in the
sum is unbounded, here are two examples of this idea in action:

lim
x→∞

(sin(x) + ex) = lim
x→∞

(ex) =∞

lim
x→−∞

(x+ 2) = lim
x→−∞

(x) = −∞.
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Example 5.4.19. if we take a function f(x) with a known limit of L ∈ R or ±∞ as x → ±∞
then the limit of f(x+ a) for a ∈ R is the same for x→ ±∞. For example,

lim
x→∞

(ex) =∞ =⇒ lim
x→∞

(ex+3) =∞

lim
x→−∞

(
1

x2

)
= 0 =⇒ lim

x→−∞

(
1

(x− 7)2

)
= 0

lim
x→∞

(tan−1(x)) =
π

2
=⇒ lim

x→∞
(tan−1(x+ 2)) =

π

2
.

Example 5.4.20. The Squeeze Theorem applies to limits at ±∞. Suppose we are given a function
f such that

2

π
tan−1(x) ≤ f(x) ≤

√
4x2 + 1

x− 3

for all x ≥ 14, 000, 000, 000, 000 (national debt 2010). We can calculate the limit at ∞ via the
Squeeze Theorem. Observe that

lim
x→∞

(
2

π
tan−1(x)

)
=

2

π
· π

2
= 1

lim
x→∞

( √
4x2 + 1

2x− 3

)
= lim

x→∞

( √
4 + 1/x2

2− 3/x

)
=
√

4/2 = 1.

Therefore, by the Squeeze Theorem, limx→∞ f(x) = 1.

5.5 l’Hopital’s rule

In earlier sections we were able to resolve many indeterminant limits with purely algebraic argu-
ments. You might have noticed we have not really tried to use calculus to help us solve limits
better. In our viewpoint, limits were just something we needed to do in order to carefully define
the derivative. However, we were certainly happy enough once those limits vanished and were re-
placed by a few essentially algebraic rules. Linearity, product, quotient and chain rules all involve
a limiting argument if we consider the technical details. The fact that we can do calculus without
dwelling on those details is in my view why calculus is so beautifully simple.

In this section we will learn about l’Hopital’s Rule which allows us to use calculus to resolve limits
which are indeterminant. We need to have limits of type ∞/∞ or 0/0 in order to apply the rule.
Often we will need to rewrite the given expression in order to change it to either type∞/∞ or 0/0.
We will see that ∞−∞, 1∞,∞0, 00 can all be resolved with the help of l’Hopital’s Rule.

l’Hopital’s Rule says that the limit of an indeterminant quotient of functions should be the same
as the limit of the quotient of the derivatives of those functions. Essentially the idea is to compare
how the numerator changes verses the how the denominator changes. This can be done at a finite
limit point or with limits at ±∞.
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Theorem 5.5.1. l’Hopital’s Rule

Suppose that lim f
g is of type 0

0 or ∞∞ then

lim

(
f

g

)
= lim

(
f ′

g′

)
.

where equality includes all cases including those divergent cases. Note lim is meant to
denote both left, right and double-sided limits at a finite point and also limits at ±∞.

Example 5.5.2. Notice limx→0
sin(x)
x is type 0

0 . Observe that

lim
x→0

sin(x)

x
= lim

x→0

cos(x)

1
L’Hopital with

0

0

= 1.

Remark 5.5.3. notation for l’Hopital’s rule

At the present time I have not found a way to adequately translate my notation for applying
l’Hopital’s rule into LATEX. You should notice my notation in lecture is less cumbersome.

Example 5.5.4. In this example we’ll apply l’Hopital’s rule twice to remove the indeterminancy.

lim
x→∞

x2 + x− 2

x2 + 3
= lim

x→∞

2x+ 1

2x
L’Hopital on type

∞
∞

= lim
x→∞

2

2
L’Hopital on type

∞
∞

= 1.

In-Class Example 5.5.5. Calculate lim
x→∞

ln(x2)
3
√
x

.
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Example 5.5.6.

lim
x→0+

xe
1
x = lim

x→0+

e
1
x

1
x

L’Hopital on type
∞
∞

= lim
x→0+

e
1
x

(−1
x2

)
−1
x2

= lim
x→0+

e
1
x

=∞.

Remark 5.5.7. notation for l’Hopital’s rule

In the preceding example it was not initially possible to apply l’Hopital’s rule. This is a
common trouble in these problems. Often we are faced with type 0 · ∞ in which case we
can either reformulate the quotient to be type 0/0 or type ∞/∞. Which choice is best is
exposed via trial, error and ultimately experience born from mathematical experimentation.

In-Class Example 5.5.8. Calculate lim
x→∞

e−xx2.

Example 5.5.9.

lim
x→∞

x2

ln(x)
= lim

x→∞

2x
1
x

L’Hopital on type
∞
∞

= lim
x→∞

(2x2)

=∞.

Apparently the natural logarithm grows slower than a quadratic function.
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In-Class Example 5.5.10. Calculate lim
θ→0+

(csc(θ)− cot(θ)).

In-Class Example 5.5.11. Calculate lim
x→1

(
1

ln(x)
− 1

x− 1

)
.
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5.5.1 indeterminant powers

We have discussed indeterminant forms of type 0/0, ∞/infty, 0 · ∞ and ∞−∞ in some depth.
There are three more forms to consider.

Definition 5.5.12. forms of indeterminant power.

1. we say lim fg is of ”type 00” iff lim f = 0 and lim g = 0

2. we say lim fg is of ”type ∞0” iff lim f =∞ and lim g = 0

3. we say lim fg is of ”type 1∞” iff lim f = 1 and lim g =∞

We will discover shortly that these forms largely reduce to the problems we previously considered
once we understand a little lemma.

Lemma 5.5.13. the power lemma.

Suppose that f(x) > 0 for points considered in limit,

lim
[
f(x)

]g(x)
= exp

(
lim g(x) ln(f(x))

)
where equality includes all cases including those divergent cases. In particular,

1. if lim[g(x) ln(f(x))] = c ∈ R then lim
[
f(x)

]g(x)
= ec.

2. if lim[g(x) ln(f(x))] =∞ then lim
[
f(x)

]g(x)
=∞.

3. if lim[g(x) ln(f(x))] = −∞ then lim
[
f(x)

]g(x)
= 0.

Note lim is meant to denote both left, right and double-sided limits at a finite point and
also limits at ±∞.

Proof: follows from properties of natural logarithm as well as the continuity of the exponential
function on R:

lim
[
f(x)

]g(x)
= lim

[
exp
(
ln
[
f(x)

]g(x))]
= exp

(
lim ln

[
f(x)

]g(x))
= exp

(
lim g(x) ln(f(x))

)
.

I leave the proof of the divergent cases for the reader. 2

Example 5.5.14. Calculate limx→0+ x
x. We use the power lemma, consider

lim
x→0+

xx = exp( lim
x→0+

(x ln(x))︸ ︷︷ ︸
?

)
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We focus on ?, notice it is of type 0 · ∞ so we use the standard technique to rewrite it as ∞/∞
and apply l’Hopital’s rule

? = lim
x→0+

(x ln(x)) = lim
x→0+

ln(x)
1
x

= lim
x→0+

1
x
−1
x2

= lim
x→0+

(−x) = 0

Hence, we find ? = 0 and returning to our original limit,

lim
x→0+

xx = exp(0) = 1.

Example 5.5.15. Calculate limx→∞ x
1
x . We use the power lemma,

lim
x→∞

x
1
x = exp

[
lim
x→∞

1

x
ln(x)︸ ︷︷ ︸

?

]

We focus on ?, notice it is of type 0 · ∞ so we use the standard technique to rewrite it as ∞/∞
and apply l’Hopital’s rule

? = lim
x→∞

1

x
ln(x) = lim

x→∞

ln(x)

x
= lim

x→∞

1
x

1
= 0.

Hence, we find ? = 0 and returning to our original limit,

lim
x→0+

x
1
x = exp(0) = 1.

In-Class Example 5.5.16. Calculate lim
n→∞

(
1 +

1

n

)nx
.
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5.6 Taylor’s Theorem about polynomial approximation

The idea of a Taylor polynomial is that if we are given a set of initial data f(a), f ′(a), f ′′(a), . . . , f (n)(a)
for some function f(x) then we can approximate the function with an nth-order polynomial which
fits all the given data.

In-Class Example 5.6.1. Let c0, c1, . . . , cn ∈ R be coefficients of

f(x) = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n

where a ∈ R. Find how the coefficients and the derivatives f (k)(x) are linked. Note, f (0) = f .

The above example leads us to define:

Definition 5.6.2. Suppose f has k-derivatives defined at a,

We define Tk(x) the k-th order Taylor approximation of f(x) centered at x = a by

Tk(x) =
k∑
j=0

f (j)(a)

j!
(x−a)j = f(a)+f ′(a)(x−a)+

1

2
f ′′(a)(x−a)2 + · · ·+ 1

k!
f (k)(a)(x−a)k.

When f(x) is itself a polynomial7 then any Taylor polynomial of degree k ≥ deg(f) is literally the
same function as f ; f(x) = Tk(x). However, generally Tk(x) is just an approximation of f(x). If
x ∼= a then f(x) ∼= Tk(x), and we can make the approximation better by either using a larger order
polynomial approximation, or by staying closer to the center of the Taylor expansion. I will soon
illustrate this claim with several examples and Taylor’s Theorem (proved later in this section) gives
a precise bound on the error between f(x) and Tk(x).

7Example 3.9.2 foreshadows this comment
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Suppose f is a function which is smooth at x = a, then:

• constant approximation: T0(x) = f(a)

• linear approximation: T1(x) = f(a) + f ′(a)(x− a)

• quadratic approximation: T2(x) = f(a) + f ′(a)(x− a) + 1
2f
′′(a)(x− a)2

• cubic approximation: T3(x) = f(a) + f ′(a)(x− a) + 1
2f
′′(a)(x− a)2 + 1

6f
′′′(a)(x− a)3.

Notice the linear approximation is simply the tangent line approximation. Quadratic and cubic
approximations are not as familar, but the concept remains the same: take a complicated function
and replace it by a simple function.

Example 5.6.3. Suppose f(x) = ex. Calculate the first few Taylor polynomials centered at a = −1.
Calculate f ′(x) = f ′′(x) = f ′′′(x) = ex and f(−1) = e−1 = 1

e . Hence,

To(x) =
1

e

T1(x) =
1

e
+

1

e
(x+ 1)

T2(x) =
1

e
+

1

e
(x+ 1) +

1

2e
(x+ 1)2

T3(x) =
1

e
+

1

e
(x+ 1) +

1

2e
(x+ 1)2 +

1

6e
(x+ 1)3.

The graph below shows y = ex as the dotted red graph, y = T1(x) is the blue line, y = T2(x) is the
green quadratic and y = T3(x) is the purple graph of a cubic. The cubic is the best approximation.
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Example 5.6.4. Suppose f(x) = 1
x−2 + 1. Calculate the first few Taylor polynomials centered at

a = 1. Observe

f(x) =
1

x− 2
+ 1, f ′(x) =

−1

(x− 2)2
, f ′′(x) =

2

(x− 2)3
, f ′′′(x) =

−6

(x− 2)4

thus f(1) = 0, f ′(1) = −1, f ′′(1) = −2 and f ′′′(1) = −6. Hence,

T1,a=1(x) = −(x− 1)

T2,a=1(x) = −(x− 1) + (x− 1)2

T3,a=1(x) = −(x− 1) + (x− 1)2 − (x− 1)3

Alternatively, for a = 3 calculate f(3) = 2, f ′(3) = −1, f ′′(3) = 2 and f ′′′(1) = −6. Hence,

T1,a=3(x) = 2− (x− 3))

T2,a=3(x) = 2− (x− 3) + (x− 3)2

T3,a=3(x) = 2− (x− 3) + (x− 3)2 − (x− 3)3.

The graph below shows y = 1
x−2 + 1 as the dotted red graph, y = T1(x) are the blue lines, y = T2(x)

are the green quadratics and y = T3(x) are the purple graphs. You can see that the cubic is the best
approximation in both cases. Also, you can see that Tk,a=1 will not give a good approximation to
f(x) to the right of the VA at x = 2 and Tk,a=3 do not well-approximate f(x) to the left of the VA.

In-Class Example 5.6.5. Find the T6(x) with a = 0 for f(x) = coshx centered at a = 0.
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Example 5.6.6. Let f(x) = sin(x). It follows that

f ′(x) = cos(x), f ′′(x) = − sin(x), f ′′′(x) = − cos(x), f (4)(x) = sin(x), f (5)(x) = cos(x)

Hence, f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −1, f (4)(0) = 0, f (5)(0) = 1. Therefore the Taylor
polynomials of orders 1, 3, 5 are

T1(x) = x blue graph

T3(x) = x− 1

6
x3 green graph

T5(x) = x− 1

6
x3 +

1

120
x5 purple graph

The graph below shows the Taylor polynomials calculated above and the next couple orders above.
You can see how each higher order covers more and more of the graph of the sine function.

Taylor polynomials can be generated for a given smooth8 function through a certain linear com-
bination of its derivatives. The idea is that we can approximate a function by a polynomial9, at
least locally. We discussed the tangent line approximation to a function. We found that the lin-
earization of a function gives a good approximation for points close to the point of tangency. If
we calculate second derivatives we can similarly find a quadratic approximation for the function.
Third derivatives go to finding a cubic approximation about some point. I should emphasize from
the outset that a Taylor polynomial is just a polynomial, it will not be able to exactly represent a
function which is not a polynomial. In order to exactly represent an analytic function we’ll need
to take infinitely many terms, we’ll need a power series. We discuss those carefully in calculus II.
Finally, let me show you an example of how Taylor polynomials can be of fundamental importance
in physics.

8for p ∈ R the notation f ∈ C∞(p) means there exists a nbhd. of p ∈ R on which f has infinitely many continuous
derivatives.

9there do exist pathological examples for which all Taylor polynomials at a point vanish even though the function
is nonzero near the point; f(x) = exp(−1/x2) for x 6= 0 and f(0) = 0
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Example 5.6.7. The relativistic energy E of a free particle of rest mass mo is a function of its
velocity v:

E(v) =
moc

2√
1− v2/c2

for −c < v < c where c is the speed of light in the space. We calculate,

dE

dv
=

mov

(1− v2/c2)
3
2

thus v = 0 is a critical number of the energy. Moreover, after a little calculation you can show the
4-th order Taylor polynomial in velocity v for energy E is

E(v) ≈ moc
2 +

1

2
mov

2 +
3mo

8c2
v4

The constant term is the source of the famous equation E = moc
2 and the quadratic term is

precisely the classical kinetic energy. The last term is very small if v ≈ 0. As |v| → c the values
of the last term become more significant and they signal a departure from classical physics. I have
graphed the relativistic kinetic energy K = E −moc

2 (red) as well as the classical kinetic energy
KNewtonian = mo

2 v
2 (green) on a common axis below:

The blue-dotted lines represent v = ±c and if |v| > c the relativistic kinetic energy is not even
defined. However, for v ≈ 0 you can see they are in very good agreement. We have to get past
10% of light speed to even begin to see a difference. In every day physics most speeds are so small
that we cannot see that Newtonian physics fails to correctly model dynamics. I may have assigned
a homework based on the error analysis of the next section which puts a quantitative edge on the
last couple sentences.
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One of the great mysteries of modern science is this fascinating feature of decoupling. How is it
that we are so fortunate that the part of physics which touches one aspect of our existence is
so successfully described. Why isn’t it the case that we need to understand relativity before we
can pose solutions to the problems presented to Newtonian mechanics? Why is physics so nicely
segmented that we can understand just one piece at a time? This is part of the curiosity which leads
physicists to state that the existence of physical law itself is bizarre. If the universe is randomly
generated as is life then how is it that we humble accidents can so aptly describe what surrounds
us. What right have we to understand what we do of nature?

5.6.1 error in Taylor approximations

We’ve seen a few examples of how Taylor’s polynomials will locally mimic a function. Now we
turn to the question of extrema. Think about this, if a function is locally modeled by a Taylor
polynomial centered at a critical point then what does that say about the nature of a critical point?
To be precise we need to know some measure of how far off a given Taylor polynomial is from the
function. This is what Taylor’s theorem tells us. There are many different formulations of Taylor’s
theorem10, the one below is partially due to Lagrange.

Theorem 5.6.8. Taylor’s theorem with Lagrange’s form of the remainder.

If f has k derivatives on a closed interval I with ∂I = {a, b} then

f(b) = Tk(b) +Rk(b) =

k∑
j=0

f (j)(a)

j!
(b− a)j +Rk(b)

where Rk(b) = f(b) − Tk(b) is the k-th remainder. Moreover, there exists c ∈ int(I) such
that

Rk(b) =
f (k+1)(c)

(k + 1)!
(b− a)k+1.

We have essentially proved the first portion of this theorem. It’s straightforward calculation to
show that Tk(x) has the same value, slope, concavity etc... as the function at the point x = a.
What is deep about this theorem is the existence of c. This is a generalization of the mean value
theorem. Suppose that a < b, if we apply the theorem to

f(x) = To(x) +R1(x)

we find Taylor’s theorem proclaims there exists c ∈ (a, b) such that R1(b) = f ′(c)(b− a) and since
To(x) = f(a) we have f(b)−f(a) = f ′(c)(b−a) which is the conclusion of the MVT applied to [a, b].

Proof of Taylor’s Theorem: the proof I give here I found in Real Variables with Basic Metric
Space Topology by Robert B. Ash. Proofs found in other texts are similar but I thought his was

10Chapter 7 of Apostol or Chapter II.6 of Edwards would be good additional readings if you wish to understand
this material in added depth.
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particularly lucid.

Since the k-th derivative is given to exist on I it follows that f (j) is continuous for each j =
1, 2, . . . , k−1 (we are not garaunteed the continuity of the k-th derivative, however it is not needed
in what follows anyway). Assume a < b and define M implicitly by the equation below:

f(b) = f(a) + f ′(a)(b− a) + · · ·+ f (k−1)(a)

(k − 1)!
(b− a)(k−1) +

M(b− a)k

k!
.

Our goal is to produce c ∈ (a, b) such that f (k)(c) = M . Ash suggests replacing a with a variable t
in the equation that defined M . Define g by

g(t) = −f(b) + f(t) + f ′(t)(b− t) + · · ·+ f (k−1)(t)

(k − 1)!
(b− t)(k−1) +

M(b− t)k

k!

for t ∈ [a, b]. Note that g is differentiable on (a, b) and continuous on [a, b] since it is the sum and
difference of likewise differentiable and continuous functions. Moreover, observe

g(b) = −f(b) + f(b) + f ′(b)(b− b) + · · ·+ f (k−1)(t)

(k − 1)!
(b− b)(k−1) +

M(b− b)k

k!
= 0.

On the other hand, the definition of M implies g(a) = 0. Therefore, Rolle’s theorem applies to g,
this means there exists c ∈ (a, b) such that g′(c) = 0. Calculate the derivative of g, the minus signs
stem from the chain rule applied to the b− t terms,

g′(t) =
d

dt

[
−f(b) + f(t)

]
+

d

dt

[
f ′(t)(b− t)

]
+ · · ·+

+
d

dt

[f (k−1)(t)
(k − 1)!

(b− t)(k−1)
]

+
d

dt

[M(b− t)k

k!

]
= f ′(t)− f ′(t) + f ′′(t)(b− t)− 1

2
f ′′(t)2(b− t) + · · ·+

+
f (k)(t)

(k − 1)!
(b− t)(k−1) − f (k−1)(t)

(k − 1)!
k(b− t)(k−2) − Mk(b− t)k−1

k!

=
f (k)(t)

(k − 1)!
(b− t)(k−1) − Mk(b− t)k−1

k!

=
(b− t)(k−1)

(k − 1)!

[
f (k)(t)−M

]
where we used that k

k! = k
k(k−1)! = 1

(k−1)! in the last step. Note that c ∈ (a, b) therefore c 6= b

hence (b − t) 6= 0 hence (b − t)(k−1) 6= 0 hence (b−t)(k−1)

(k−1)! 6= 0. It follows that g′(c) = 0 implies

f (k)(c) −M = 0 which shows M = f (k)(c) for some c ∈ (a, b). The proof for the case b > a is
similar. 2

In total, we see that Taylor’s theorem is more or less a simple consequence of Rolle’s theorem. In
fact, the proof above is not much different than the proof we gave previously for the MVT.
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Corollary 5.6.9. error bound for Tk(x).

If a function f has (k + 1)-continuous derivatives on a closed interval [p, q] with length
l = q − p and |f (k+1)(x)| ≤M for all x ∈ (p, q) then for each a ∈ (p, q)

|Rak(x)| ≤ Mlk+1

(k + 1)!

where f(x) =
∑k

j=0
f (j)(a)
j! (x− a)j +Rak(x).

Proof: At each point a we can either look at [a, x] or [x, a] and apply Taylor’s theorem to obtain

ca ∈ R such that f(x) =
∑k

j=0
f (j)(a)
j! (x− a)j +Rak(x) where Rak(x) = f (k+1)(ca)

(k+1)! (x− a)k+1. Then we

note |f (k+1)(ca)| ≤M and the corollary follows. 2

Consider the criteria for the Second Derivative test. We required that f ′(c) = 0 and f ′′(c) 6= 0 for
a definite conclusion. If f ′′ is continuous at c with f ′′(c) 6= 0 then it is nonzero on some closed
interval I = [c− δ, c+ δ] where δ > 0. If we also are given that f ′′′ is continuous on I then it follows
there exists M > 0 such that |f ′′′(x)| ≤M for all x ∈ I. Observe that

|f(x)− f(c)− 1

2
f ′′(c)(x− c)2| = |1

6
f ′′′(ζx)(x− c)3| ≤ 4Mδ3

3

for all x ∈ [c− δ, c+ δ]. This inequality reveals that we have f(x) ≈ f(c) + 1
2f
′′(c)(x− c)2 as δ → 0.

Therefore, locally the graph of the function resembles a parabola which either opens up or down
at the critical point. If it opens up (f ′′(c) > 0) then f(c) is the local minimum value of f . If it
opens down (f ′′(c) < 0) then f(c) is the local maximum value of f . Of course this is no surprise.

However, notice that we may now quantify the error E2(x) = |f(x) − T2(x)| ≤ 8Mδ3

3 . If we can
choose a bound for f ′′′(x) independent of x then the error is simply bounded just in terms of the

distance from the critical point which we can choose δ = |x−c| and the resulting error is just 4Mδ3

3 .
Usually, M will depend on the distance from c so the choice of δ to limit error is a bit more subtle.
Let me illustrate how this analysis works in an example.
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Example 5.6.10. Suppose f(x) = 6x5 + 15x4 − 10x3 − 30x2 + 2. We can calculate that f ′(x) =
30x4 + 60x3 − 30x2 − 60x therefore clearly (0, 2) is a critical point of f . Moreover, f ′′(x) =
120x3 + 180x2 − 60x− 60 shows f ′′(0) = −60. I aim to show how the quadratic Taylor polynomial
T2(x) = f(2) + f ′(2)x+ 1

2f
′′(2)x2 = 2− 30x2 gives a good approximation for f(x) in the sense that

the maximum error is essentially bounded by the size of Lagrange’s term. Note that

f ′′′(x) = 360x2 + 360x− 60 and f (4)(x) = 720x+ 360

Suppose we seek to approximate on −0.1 < x < 0.1 then for such x we may verify that f (4)(x) >
0 which means f ′′′ is increasing on [−0.1, 0.1] thus f ′′′(−0.1) < f ′′′(x) < f ′′′(0.1) which gives
3.6 − 36 − 60 < f ′′′(x) < 3.6 + 36 − 60 thus −92.4 < f ′′′(x) < −20.4. Therefore, if |x| < 0.1 then

|f ′′′(x)| < 92.4. Using δ = 0.1 we should expect a bound on the error of 4Mδ3

3 = 4(92.4)/3000 =
0.123. I have illustrated the global and local qualities of the Taylor Polynomial centered at zero.
Notice that the error bound was quite generous in this example.
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Example 5.6.11. Here we examine Taylor polynomials for f(x) = sin(x) on the interval (−1, 1)
and second on (−2, 2). In each case we use sufficiently many terms to guarantee an error of less
than ε = 0.1. Notice that f (2k−1)(x) = ± sin(x) whereas f (2k−2)(x) = ± cos(x) for all k ∈ N there-
fore |f (n)(x)| ≤ 1 for all x ∈ R.

If we wish to bound the error to 0.1 on −1 < x < 1 then we to bound the remainder term as follows:
(note −1 < x < 1 implies l = 2 and we just argued M = 1 is a good bound for any k)

|f(x)− Tk(x)| ≤ Mlk+1

(k + 1)!
=

2k+1

(k + 1)!
= Ek ≤ 0.1

At this point I just start plugging various values of k until I find a value smaller than the desired
bound. For this case,

E1 =
22

2!
= 2, E2 =

23

3!
=

4

3
, E3 =

24

4!
=

2

3
, E4 =

25

5!
=

32

120
≈ 0.25, E5 =

26

6!
=

64

720
≈ 0.1

This shows that T4(x) will provide the desired accuracy. But, it just so happens that T3 = T4 in this
case so we find T3(x) = x− 1

6x
3 will suffice. In fact, it fits the ±0.1 tolerance band quite nicely:

If we wish to bound the error to 0.1 on −2 < x < 2 then we to bound the remainder term as follows:
(note −2 < x < 2 implies l = 4 )

|f(x)− Tk(x)| ≤ Mlk+1

(k + 1)!
=

4k+1

(k + 1)!
= Ek ≤ 0.1

At this point I just start plugging various values of k until I find a value smaller than the desired
bound. For this case,

E7 =
48

8!
≈ 1.6, E9 =

410

10!
≈ 0.3, E11 =

212

12!
≈ 0.035



5.6. TAYLOR’S THEOREM ABOUT POLYNOMIAL APPROXIMATION 187

This shows that T10(x) will provide the desired accuracy. But, it just so happens that T9 = T10 in
this case so we find T9(x) = x − 1

6x
3 + 1

120x
5 − 1

5040x
7 + 1

362880x
9 will suffice. In fact, as you can

see below it fits the ±0.1 tolerance band quite nicely well beyond the target interval of −2 < x < 2:

Example 5.6.12. Let’s think about f(x) = sin(x) again. This time, answer the following question:
for what domain −δ < x < δ will f(x) ≈ x to within ±0.01 ? We can use M = 1 and l = 2δ.
Furthermore, T1(x) = T2(x) = x therefore we want

|f(x)− x| ≤ (2δ)3

(3!
=

4δ3

3
≤ 0.1

to hold true for our choice of δ. Hence δ3 ≤ 0.075 which suggests δ ≤ 0.42. Taylor’s theorem thus
shows sin(x) ≈ x to within ±0.01 provided −0.42 < x < 0.42. (0.42 radians translates into about
24 degrees). Here’s a picture of f(x) = sin(x) (in red) and T1(x) = x (in green) as well as the
tolerance band (in grey). You should recognize y = T1(x) as the tangent line.
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Example 5.6.13. Suppose we are faced with the task of calculating
√

4.03 to an accuracy of 5-
decimals. For the purposes of this example assume all calculators are evil. It’s after the robot
holocaust so they can’t be trusted. What to do? We use the Taylor polynomial up to quadratic
order: we have f(x) =

√
x and f ′(x) = 1

2
√
x

and f ′′(x) = −1
4(
√
x)3

. Apply Taylor’s theorem,

√
4.03 = f(4) + f ′(4)(4.03− 4) +

1

2
f ′′(4)(4.03− 4)2 +R

= 2 +
1

4

3

100
− 1

64

9

10000
+R

= 2 + 0.0075− 0.000014062 +R

= 2.007485938 +R

If we bound f ′′′(x) = 3
8(
√
x)5

by M on [4, 4.03] then |R| ≤ M(0.03)3

6 . Clearly f ′′′′(x) = −15
16(
√
x)7

< 0 for

x ∈ [4, 4.03] therefore, f ′′′ is decreasing on [4, 4.03]. It follows f ′′′(4) ≥ f ′′′(x) ≥ f ′′′(4.03). Choose
M = f ′′′(4) = 3

8(32) = 3
256 thus

|R| ≤ (0.03)3

6

3

256
=

27

256

1

10000
≈ 1

100000
= 0.000001.

Therefore,
√

4.03 = 2.007486± 0.000001 . As far as I know my TI-89 is still benevolent so we can

check our answer; the calculator says
√

4.03 = 2.00748598999.

In the last example, we again find that we actually are a whole digit closer to the answer than the
error bound suggests. This seems to be typical. In calculus II we’ll find a better error bound in
the study of power series.

Example 5.6.14. Newton postulated that the gravitational force between masses m and M sepa-
rated by a distance of r is

~F = −GmM
r2

r̂

where r is the distance from the center of mass of M to the center of mass m and G is a constant
which quantifies the strength of gravity. The minus sign means gravity is always attractive in the
direction r̂ which points along the line from M to m. Consider a particular case, M is the mass
of the earth and m is a small mass a distance r from the center of the earth. It is convenient to
write r = R + h where R is the radius of the earth and h is the altitude of m. Here we make
the simplifying assumptions that m is a point mass and M is a spherical mass with a homogeneous
mass distribution. It turns out that means we can idealize M as a point mass at the center of the
earth. All of this said, you may recall that F = mg is the force of gravity in highschool physics
where the force points down. But, this is very different then the inverse square law? How are these
formulas connected? Focus on a particular ray eminating from the center of the earth so the force
depends only on the altitude h. In particular:

F (h) = − GmM

(R+ h)2
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We calculate,

F ′(h) =
2GmM

(R+ h)3

Note that clearly F ′′(h) < 0 hence F ′ is a decreasing function of h therefore if 0 ≤ h ≤ hmax then
F ′(0) ≥ F ′(h) ≥ F ′(hmax) so F ′(0) provides a bound on F ′(h). Calculate that

F (0) = −GmM
R2

and F ′(0) =
2GmM

R3

Taylor’s theorem says that F (h) = F (0) + E and |E| ≤ F ′(0)hmax therefore,

F (h) ≈ −GmM
R2

± 2GmM

R3
h

Note G = 6.673× 10−11Nm
2

kg2
and R = 6.3675× 106m and M = 5.972× 1024kg. You can calculate

that GmM
R2 = 9.83m/s2 which is hopefully familar to some who read this. In contrast, the error term

|E| = 2GmM

R3
h = (3.1× 10−6)mh

If the altitude doesn’t exceed h = 1, 000m then the formula F/m = g approximates the true inverse
square law to within 0.0031m/s2. At h = 10, 000m the error is 0.031m/s2. At h = 100, 000m the
error is around 0.31m/s2. (100,000 meters is about 60 miles, well above most planes flight ceiling).
Taylor’s theorem gives us the mathematical tools we need to quantify such nebulous phrases as
F = mg ”near” the surface of the earth. Mathematically, this is probably the most boring Taylor
polynomial you’ll ever study, it was just the constant term.

Remark 5.6.15. transcendental numbers and a look ahead to calculus II.

Another application of Taylor’s theorem is in calculation of transcendental numbers such
as π or e. See Apostol pg. 285 problem 10 for a method to approximate π to seven
decimals. Or page 281 for the calculation of e to 8 decimal places. On page 282 in Example
2 a proof is offered for the irrationality of e. To be frank, you don’t really understand
what a real number is until you understand the construction and convergence/divergence of
power series. The idea of an unending decimal expansion really has no justification in the
mathematics we have thus far discussed. Fortunately most of you will take calculus II so at
least then you’ll actually learn how to carefully formulate what is required for an unending
sum to be reasonable. The idea of a series provides a careful meaning for a sum of infinitely
many things. We’ll explain why 0.1111... = 1

10 + 1
100 + 1

1000 + · · · is a real number whereas
1
3 + 1

4 + 1
5 + · · · is not. Taylor’s theorem plays an important role in the study of power

series. But, as you hopefully see by now it is also useful for gaining deeper insight into the
geometry and local behavior of functions.
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5.6.2 higher derivative tests

We saw in the previous section that the second derivative test is concretely justified by Taylor’s
theorem with Lagrange’s remainder. The next logical step is the following theorem which is justified
by similar analysis. Basically the point is that if you have all the derivatives zero up to some
particular order, say k− 1, then the function f(x) ≈ Tk(x) provided x is close to the critical point.
Therefore, if k is an even integer then the function is locally-shaped like a parabola whereas if k is
odd then is locally-shaped like a cubic. Hence the following theorem:

Theorem 5.6.16. higher derivative tests.

Suppose f has k continuous derivatives such that f ′(c) = f ′′(c) = · · · = f (k−1)(c) = 0 and
f (k)(c) 6= 0 then

1. if k ∈ 2N and f (k)(c) > 0 then f(c) is a local minimum.

2. if k ∈ 2N and f (k)(c) < 0 then f(c) is a local maximum.

3. if k ∈ 2N+ 1 then f(c) is not an extrema.

The notation k ∈ 2N means that there exists n ∈ N such that k = 2n. Likewise, the notation
k ∈ 2N+ 1 means that there exists n ∈ N such that k = 2n+ 1. In other words, 2N = {2, 4, 6, . . . }
whereas 2N+1 = {3, 5, 7, . . . }. The proof of this theorem is suggested by the examples and general
comments about Taylor polynomials and their remainders. However, if you would like to see an
explicit proof you can consult C.H. Edwards, Jr. Advanced Calculus of Several Variables pages
125-127.

Example 5.6.17. Consider f(x) = x4. We can calculate f ′(x) = 4x3 therefore the only critical
number is c = 0. Note that f ′′(x) = 12x2, f ′′′(x) = 24x, f (4)(x) = 24. It follows that

f ′(0) = f ′′(0) = f ′′′(0) = 0

but f (4)(x) = 24 > 0 therefore, by the higher derivative test, f(0) = 0 is a local minimum of
f(x) = x4. Notice that this example would not have been covered by the second derivative test (but,
the first derivative test would have covered it).

In-Class Example 5.6.18. Consider f(x) = x5. Analyze x = 0 with the higher derivative test.
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Example 5.6.19. Consider f(x) = x3 − x4 + 1. We can calculate f ′(x) = 3x2 − 4x3 = x2(3− 4x)
thus critical numbers are c = 0 and c = 3/4. Note that f ′′(x) = 6x − 12x2, f ′′′(x) = 6 − 24x,
f (4)(x) = −24. It follows that

f ′(0) = f ′′(0) = 0

but f (3)(x) = 6 6= 0 therefore, by the higher derivative test, f(0) = 3 is a not a local extrema
of f(x) = x3 − x4 + 3. Continuing to the other critical point notice f ′(3/4) = 0, f ′′(3/4) =
18/4− 12(3/4)2 = −9/4 thus by the second derivative test f(3/4) is a local maximum.

What is the difference between these critical points geometrically? Notice that y = f ′′(x) =
6x− 12x2 = 6x(1− 2x) is a downward opening parabola with zeros at x = 0 and x = 1/2 therefore
we deduce f ′′(x) < 0 for x < 0 and f ′′(x) > 0 for 0 < x < 1/2. This means that (0, 1) is an
inflection point of y = f(x). For that reason this example could not be covered by the second
derivative test. In contrast, the concavity is downward on a nbhd around c = 3/4.
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Chapter 6

antiderivatives and the area problem

Let me begin by defining the terms in the title:

1. an antiderivative of f is another function F such that F ′ = f .

2. the area problem is: ”find the area of a shape in the plane”

This chapter is concerned with understanding the area problem and then solving it through the
fundamental theorem of calculus(FTC).

We begin by discussing antiderivatives. At first glance it is not at all obvious this has to do with
the area problem. However, antiderivatives do solve a number of interesting physical problems so
we ought to consider them if only for that reason. The beginning of the chapter is devoted to un-
derstanding the type of question which an antiderivative solves as well as how to perform a number
of basic indefinite integrals. Once all of this is accomplished we then turn to the area problem.

To understand the area problem carefully we’ll need to think some about the concepts of finite
sums, sequences and limits of sequences. These concepts are quite natural and we will see that the
theory for these is easily transferred from some of our earlier work. Once the limit of a sequence
and a number of its basic properties are established we then define area and the definite integral.
Finally, the remainder of the chapter is devoted to understanding the fundamental theorem of cal-
culus and how it is applied to solve definite integrals.

I have attempted to be rigorous in this chapter, however, you should understand that there are
superior treatments of integration(Riemann-Stieltjes, Lesbesgue etc..) which cover a greater variety
of functions in a more logically complete fashion. The treatment here is more or less typical of
elementary calculus texts.

193
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6.1 indefinite integration

Don’t worry, the title of this section will make sense later.

6.1.1 why antidifferentiate?

The antiderivative is the opposite of the derivative in the following sense:

Definition 6.1.1. antiderivative.

If f and F are functions such that F ′ = f then we say that F is an antiderivative of f .

Example 6.1.2. Suppose f(x) = x then an antiderivative of f is a function F such that dF
dx = x.

We could try x2 but then d
dx(x2) = 2x has an unwanted factor of 2. What to do? Just adjust our

guess a little: try F (x) = 1
2x

2. Note that d
dx(12x

2) = 1
2
d
dx(x2) = 1

2(2x) = x.

Example 6.1.3. Let k be a constant. Suppose g(t) = ekt then we guess G(t) = 1
ke
kt and note it

works; d
dt(

1
ke
kt) = ekt therefore g(t) = ekt has antiderivative G(t) = 1

ke
kt.

In-Class Example 6.1.4. Suppose h(θ) = cos(θ). What is H(θ) ?

In-Class Example 6.1.5. Suppose g(θ) = sin(θ). What is G(θ) ?

Obviously these guesses are not random. In fact, these are educated guesses. We simply have to
think about how we differentiated before and just try to think backwards. Simple enough for now.
However, we should stop to notice that the antiderivative is far from unique. You can easily check
that F (x) = 1

2x
2 + c1, G(t) = 1

ke
kt + c2 and H(θ) = sin(θ) + c3 are also antiderivatives for any

constants c1, c2, c3 ∈ R.

Proposition 6.1.6. antiderivatives differ by at most a constant.

If f has antiderivatives F1 and F2 then there exists c ∈ R such that F1(x) = F2(x) + c.

Proof: We are given that dF1
dx = f(x) and dF2

dx = f(x) therefore dF1
dx = dF2

dx . Hence, by Proposition
5.1.17 we find F1(x) = F2(x) + c. 2

To understand the significance of this constant we should consider a physical question.
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Example 6.1.7. Suppose that the velocity of a particle at position x is measured to be constant.
In particular, suppose that v(t) = dx

dt and v(t) = 1. The condition v(t) = dx
dt means that x should

be an antiderivative of v. For v(t) = 1 the form of all antiderivatives is easy enough to guess:
x(t) = t+c. The value for c cannot be determined unless we are given additional information about
this particle. For example, if we also knew that at time zero the particle was at x = 3 then we could
fit this initial data to pick a value for c:

x(0) = 0 + c = 3 ⇒ c = 3 ⇒ x(t) = t+ 3 .

In-Class Example 6.1.8. Suppose velocity v(t) = dx
dt = t2 + et. If x(0) = 1 then find x(t).

For a given velocity function each antiderivative gives a possible position function. To determine
the precise position function we need to know both the velocity and some initial position. Often we
are presented with a problem for which we do not know the initial condition so we’d like to have a
mathematical device to leave open all possible initial conditions.

Definition 6.1.9. indefinite integral.

If f has an antiderivative F then the indefinite integral of f is given by:∫
f(x)dx = {G(x) | G′(x) = f(x)} = {F (x) + c|c ∈ R}.

However, we will customarily drop the set-notation and simply write∫
f(x)dx = F (x) + c where F ′(x) = f(x).

The indefinite integral includes all possible antiderivatives for the given function. Technically
the indefinite integral is not a function. Instead, it is a family of functions each of which is an
antiderivative of f .

Example 6.1.10. Consider the constant acceleration problem1; we are given that a = −g where
g = 9.8m/s2 and a = dv

dt . We can take the indefinite integral of the equation:

dv

dt
= −g ⇒ v(t) =

∫
−g dt = −gt+ c1.

1here F = ma is −mg = ma so a = −g but that’s physics, I supply the equation of motion in calculus. You just
have to do the math.
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Furthermore, if v = dy
dt then

dy

dt
= −gt+ c1 ⇒ y(t) =

∫
−gt+ c1 dt = −1

2
gt2 + c1t+ c2.

Therefore, we find the velocity and position are given by formulas

v(t) = c1 − gt y(t) = c2 + c1t−
1

2
gt2.

If we know the initial velocity is vo and the initial position is yo then

v(0) = vo = c1 − 0 ⇒ v(t) = vo − gt

y(0) = yo = c2 − 0− 0 ⇒ y(t) = yo + vot−
1

2
gt2

These formulas were derived by Galileo without the benefit of calculus. Instead, he used experiment
and a healthy skepticism of the philosophical nonsense of Aristotle. The ancient Greek’s theory of
motion said that if something was twice as heavy then it falls twice as fast. This is only true when
the objects compared have air friction clouding the dynamics. The equations above say the objects’
motion is independent of the mass.

Remark 6.1.11. redundant comment (again).

The indefinite integral is a family of antiderivatives:
∫
f(x) = F (x)+c where F ′(x) = f(x).

The following equation shows how indefinite integration is undone by differentiation:

d

dx

∫
f(x) dx = f(x)

the function f is called the integrand and the variable of indefinite integration is x. No-
tice the constant is obliterated by the derivative in the equation above. Leibniz’ notation
intentionally makes you think of cancelling the dx’s as if they were tiny quantities. Newton
called them fluxions. In fact calculus was sometimes called the theory of fluxions in the
early 19-th century. Newton had in mind that dx was the change in x over a tiny time, it
was a fluctuation with respect to a time implicit. We no longer think of calculus in this
way because there are easier ways to think about foundations of calculus. That said, it is
still an intuitive notation and if you are careful not to overextend intuition it is a powerful
mnemonic. For example, the chain rule df

dx = df
du

du
dx . Is the chain rule just from multiplying

by one? No. But, it is a nice way to remember the rule.

A differential equation is an equation which involves derivatives. We have solved a number of
differential equations in this section via the process of indefinite integration. The example that
follows doesn’t quite fit the same pattern. However, I will again solve it by educated guessing2 .

2Actually, the method I use here is rather unusual but the advanced reader will recognize the idea from differential
equations. The easier way of solving this is called separation of a variables, but we discuss that method much later
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Example 6.1.12. A simple model of population growth is that the rate of population growth should
be directly proportional to the size of the population P . This means there exists k ∈ R such that

dP

dt
= kP.

Fortunately, we just did Example 6.1.3 where we observed that∫
ekt dt =

1

k
ekt + c

So we know that one solution is given by P (t) = 1
ke
kt. Change variables by substituting u = ln(P )

so du
dt = 1

P
dP
dt thus dP

dt = P du
dt . Hence we can solve P du

dt = kP or du
dt = k instead. This we can

antidifferentiate to find u(t) = kt+ c1. Thus, ln(P ) = kt+ c1 hence P (t) = ekt+c1 = ec1ekt. If the

initial population is given to be Po then we find P (0) = Po = ec1 thus P (t) = Poe
kt.

The same mathematics govern simple radioactive decay, continuously compounded interest, current
or voltage in an LR or RC circuit and a host of other simplistic models in the natural sciences. Real
human population growth involves many factors beyond just raw population, however for isolated
systems this type of model does well. For example, growth of bacteria in a petri dish.

Remark 6.1.13. why antidifferentiate?

We antidifferentiate to solve simple differential equations. When one variable (say v) is the
instantaneous rate of change of another (say s so v = ds

dt ) then we can reverse the process
of differentiation to discover the formula of s if we are given the formula for v. However,
because constants are lost in differentiation we also need an initial condition if we wish
to uniquely determine the formula for s. I have emphasized the utility of the concept of
antidifferentiation as it applies to physics, but that was just my choice.

Notice, I have yet to even discuss the area problem. We already see that indefinite integration is
an important skill to master. The methods I have employed in this section are ad-hoc. We would
like a more systematic method. I offer organization for guessing in the next section.

6.1.2 properties of indefinite integration

In this section we list all the basic building blocks for indefinite integration. Some of these we
already guessed in specific examples. If you need to see examples you can skip ahead to the section
that follows this one.

Proposition 6.1.14. basic properties of indefinite integration.

Suppose f, g are functions with antiderivatives and c ∈ R then∫
[f(x) + g(x)]dx =

∫
f(x) dx+

∫
g(x) dx

∫
cf(x) dx = c

∫
f(x) dx
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Proof: Suppose
∫
f(x) dx = F (x) + c1 and

∫
g(x) dx = G(x) + c2 note that

d

dx
[F (x) +G(x)] =

d

dx
[F (x)] +

d

dx
[G(x)] = f(x) + g(x)

hence
∫

[f(x) + g(x)]dx = F (x) + G(x) + c3 =
∫
f(x) dx +

∫
g(x) dx where the constant c3 is

understood to be included in either the
∫
f(x) dx or the

∫
g(x) dx integral as a matter of custom.

2

Proposition 6.1.15. power rule for integration. suppose n ∈ R and n 6= −1 then∫
xn dx =

1

n+ 1
xn+1 + c.

Proof: d
dx [ 1

n+1x
n+1] = n+1

n+1x
n+1−1 = xn. Note that n+ 1 6= 0 since n 6= −1. 2

Note that the special case of n = −1 stands alone. You should recall that d
dx ln(x) = 1

x provided

x > 0. In the case x < 0 then by the chain rule applied to the positive case: d
dx ln(−x) = 1

−x(−1) =
1
x . Observe then that for all x 6= 0 we have d

dx ln |x| = 1
x . Therefore the proposition below follows:

Proposition 6.1.16. reciprocal function is special case.∫
1

x
dx = ln |x|+ c.

Note that it is common to move the differential into the numerator of such expressions. We could
just as well have written that

∫
dx
x = ln |x|+c. I leave the proof of the propositions in the remainder

of this section to the reader. They are not difficult.

Proposition 6.1.17. exponential functions. suppose a > 0 and a 6= 1,∫
ax dx =

1

ln(a)
ax + c in particular:

∫
ex dx = ex + c

The exponential function has base a = e and ln(e) = 1 so the formulas are consistent.

Proposition 6.1.18. trigonometric functions.

∫
sin(x) dx = − cos(x) + c

∫
cos(x) dx = sin(x) + c∫

sec2(x) dx = tan(x) + c

∫
sec(x) tan(x) dx = sec(x) + c∫

csc2(x) dx = − cot(x) + c

∫
csc(x) cot(x) dx = − csc(x) + c.
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You might notice that many trigonometric functions are missing. For example, how would you
calculate3

∫
tan(x) dx? We do not have the tools for that integration at this time. For now

we are simply cataloguing the basic antiderivatives that stem from reading basic derivative rules
backwards.

Proposition 6.1.19. hyperbolic functions.

∫
sinh(x) dx = cosh(x) + c

∫
cosh(x) dx = sinh(x) + c

Naturally there are also basic antiderivatives for sech2(x), sech(x)tanh(x), csch2(x) and csch(x)coth(x)
however I omit them for brevity and also as to not antagonize the struggling student at this juncture.

Proposition 6.1.20. special algebraic and rational functions∫
dx

1 + x2
= tan−1(x) + c

∫
dx√

1− x2
= sin−1(x) + c.∫

dx√
x2 − 1

= cosh−1(x) + c

∫
dx√

1 + x2
= sinh−1(x) + c.∫

dx

1− x2
= tanh−1(x) + c.

Recall Example 1.5.8 explored alternate formulas for inverse hyperbolics.

6.1.3 examples of indefinite integration

Example 6.1.21. ∫
dx =

∫
x0dx = x+ c

Example 6.1.22.∫ (√
x+

1
3
√
x

)
dx =

∫
x

1
2dx+

∫
x
−1
3 dx =

2

3
x

3
2 +

3

2
x

2
3 + c

In-Class Example 6.1.23. Calculate

∫ √
13x7dx.

3the answer is ln | sec(x)|+ c if you’re curious and impatient.
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Example 6.1.24. ∫
dx

3x2
=

1

3

∫
x−2dx =

−1

3
x−1 =

−1

3x
+ c

Example 6.1.25. ∫
2xdx

x2
= 2

∫
dx

x
= 2 ln |x|+ c = ln(x2) + c

Note that |x| = ±x thus |x|2 = (±x)2 = x2 so it was logical to drop the absolute value bars after
bringing in the factor of two by the property ln(Ac) = c ln(A).

Example 6.1.26.∫
3ex+2dx = 3

∫
e2exdx = 3e2

∫
exdx = 3e2(ex + c1) = 3ex+2 + c

In-Class Example 6.1.27. Calculate
∫

(2x3 + 3)dx.

In-Class Example 6.1.28. Calculate

∫
2x3 + 3

x
dx.

In-Class Example 6.1.29. Calculate

∫
(x+ 2)2dx.

Example 6.1.30.∫
(2x + 3 cosh(x))dx =

∫
2xdx+ 3

∫
cosh(x)dx =

1

ln(2)
2x + 3 sinh(x) + c
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Example 6.1.31.∫
x2

1 + x2
dx =

∫
1 + x2 − 1

1 + x2
dx =

∫ [
1− 1

1 + x2
]
dx = x− tan−1(x) + c

Example 6.1.32. ∫
sin(x+ 3)dx =

∫ [
sin(x) cos(3) + sin(3) cos(x)

]
dx

= cos(3)

∫
sin(x)dx+ sin(3)

∫
cos(x)dx

= − cos(3)[cos(x) + c1] + sin(3)[sin(x) + c2]

= sin(3) sin(x)− cos(3) cos(x) + c

= − cos(x+ 3) + c

Incidentally, we find a better way to do this later with the technique of u-substitution.

In-Class Example 6.1.33. Calculate

∫
1

cos2(x)
dx.

Example 6.1.34. ∫
dx

x2 + cos2(x) + sin2(x)
=

∫
dx

x2 + 1
= tan−1(x) + c

In-Class Example 6.1.35. Calculate

∫ √
x2 − 1

(x+ 1)(x− 1)
dx.
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6.2 area problem

The area of a general shape in the plane can be approximately calculated by dividing the shape into
a bunch of rectangles or triangles. Since we know how to calculate the area of a rectangle [A = lw]
or a triangle [A = 1

2bh] we simply add together all the areas to get an approximation of the total
area. In the special case that the shape has flat sides then we can find the exact area since any
shape with flat sides can be subdivided into a finite number of triangles. Generally shapes have
curved edges so no finite number of approximating rectangles or triangles will capture the exact
area. Archimedes realized this some two milennia ago in ancient Syracuse. He argued that if you
could find two approximations of the area one larger than the true area and one smaller than the
true area then you can be sure that the exact area is somewhere between those approximations.
By such squeeze-theorem type argumentation he was able to demonstrate that the value of π must
be between 223

71 and 22
7 (in decimals 3.1408 < π u 3.1416 < 3.1429 ). In Apostol’s calculus text he

discusses axioms for area and he uses Archimedes’ squeezing idea to define both area and definite
integrals. Our approach will be less formal and less rigorous.

Our goal in this section is to careful construct a method to calculate the area bounded by a function
on some interval [a, b]. Since the function could take on negative values in the interval we actually
are working on a method to calculate signed area under a graph. Area found beneath the x-axis
is counted negative whereas area above the x-axis is counted positive. Shapes more general than
those described by the graph of a simple function are treated in the next chapter.

6.2.1 sums and sequences in a nutshell

A sequence is function which corresponds uniquely to an ordered list of values. We consider real-
valued sequences but the concept extends to many other objects4.

Definition 6.2.1. sequence of real numbers.

If U ⊆ Z has a smallest member and the property that n ∈ U implies n + 1 ∈ U then a
function f : U → R is a sequence. Moreover, we may denote the sequence by listing its
values

f = {f(u1), f(u2), f(u3), . . . } = {fu1 , fu2 , fu3 , . . . } = {fuj}∞j=1

Typically U = N or U = N ∪ {0} and we study sequences of the form

{aj}∞j=0 = {a0, a1, a2, . . . } {bn}∞n=1 = {b1, b2, b3 . . . }

Example 6.2.2. Sequences may defined by a formula: an = n for all n ∈ N gives

{an}∞n=1 = {1, 2, 3, . . . }.

4sequences of functions, matrices or even spaces are studied in modern mathematics
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Or by an iterative rule: f1 = 1, f2 = 1 then fn = fn−1 + fn−2 for all n ≥ 3 defines the Fibonacci
sequence:

{fn}∞n=1 = {1, 1, 2, 3, 5, 8, 13, 21, . . . }.

Beyond this we can add, subtract and sometimes divide sequences because a sequence is just a
function with a discrete domain.

Definition 6.2.3. finite sum notation.

Suppose aj ∈ R for j ∈ N. Then define:

1∑
j=1

aj = a1

n∑
j=1

aj =
n−1∑
j=1

aj + an

for n ≥ 2. This iterative definition gives us the result that

n∑
j=1

aj = a1 + a2 + · · ·+ an.

The variable j is called the dummy index of summation. Moreover, sums such as

jN∑
j=j1

aj = aj1 + aj2 + · · ·+ ajN︸ ︷︷ ︸
N summands

can be carefully defined by a similar iterative formula.

Example 6.2.4. Sums can give particularly interesting sequences. Consider an =
∑n

j=1 j for
n = 1, 2 . . . .

{an}∞n=1 = {1, 1 + 2, 1 + 2 + 3, 1 + 2 + 3 + 4, . . . } = {1, 3, 6, 10, . . . }.

The greatest mathematician of the 19-th century is generally thought to be Gauss. As a child Gauss
was tasked with computing a100. The story goes that just as soon as the teacher asked for the
children to calculate the sum Gauss wrote the answer 5050 on his slate. How did he know how to
calculate the sum 1 + 2 + 3 + · · ·+ 50 with such ease? Gauss understood that generally

n∑
j=1

j =
n(n+ 1)

2

For example,

a1 =
1(1 + 1)

2
= 1, a2 =

2(2 + 1)

2
= 3, a3 =

3(3 + 1)

2
= 6,

a4 =
4(4 + 1)

2
= 10, . . . , a100 =

(100)(101)

2
= 50(101) = 5050.
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What method of proof is needed to prove results such as this? The method is called ”proof by
mathematical induction”. In short, the idea is this: you prove the result you interested in is true
for n = 1 then you prove that if n is true then n+ 1 is also true for an arbitrary n ∈ N. Let’s see
how this plays out for the preceding example:

Proof of Gauss’ Formula by induction: note that n = 1 is clearly true since a1 = 1. Assume
that

∑n
j=1 j = n(n+1)

2 (?) is valid and consider that, by the recursive definition of the finite sum,

n+1∑
j=1

j =

n∑
j=1

j + n+ 1 =
n(n+ 1)

2︸ ︷︷ ︸
using ?

+n+ 1 =
1

2
(n2 + 3n+ 2) =

([n+ 1])([n+ 1] + 1)

2

which is precisely the claim for n + 1. Therefore, by proof by mathematical induction, Gauss’
formula is true for all n ∈ N. 2

Formulas for simple sums such as
∑

1,
∑
n,
∑
n2,
∑
n3 are also known and can be proven via

induction. Let’s collect these results for future reference:

Proposition 6.2.5. special formulas for finite sums.

n∑
k=1

1 = n,
n∑
k=1

k =
n(n+ 1)

2
,

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
,

n∑
k=1

k3 =
n2(n+ 1)2

4
.

The following results also follow from inductive arguments. These are very useful:

Proposition 6.2.6. finite sum properties. suppose ak, bk, c ∈ R for all k and let n,m ∈ N such
that m < n,

(i.)
n∑
k=1

ak +
n∑
k=1

bk =
n∑
k=1

(ak + bk),

(ii.)

n∑
k=1

cak = c
n∑
k=1

ak,

(iii.)
n∑
k=1

ak =
m∑
k=1

ak +
n∑

k=m+1

ak.

We would like to have sums with n→∞ in the sections that follow. The definition that follows is
essentially the same we gave previously for functions of a continuous variable. The main difference
is that only integers are considered in the limiting process.
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Definition 6.2.7. limit of a sequence.

We say the sequence {an} converges to L ∈ R and denote

lim
n→∞

an = L

iff for each ε > 0 there exists N ∈ N such that for all n > N we find |an − L| < ε

The skills you developed in studying functions of a continuous variable transfer to the study of
sequential limits because of the following fundamental lemma:

Lemma 6.2.8. correspondence of limits of functions on R and sequences.

Suppose {an} is a sequence and f is a function such that f(n) = an for all n ∈ dom({an}).
If limx→∞ f(x) = L ∈ R then limn→∞ an = L.

Proof: assume limx→∞ f(x) = L ∈ R and f(n) = an for all n ∈ N. Let ε > 0 and note that
by the given limit there exists M ∈ R such that |f(x) − L| < ε for all x > M . Choose N to
be the next integer beyond M so N ∈ N and N > M . Suppose that n ∈ N and n > N then
|f(n)− L| = |an − L| < ε. Therefore, limn→∞ an = L. 2

In-Class Example 6.2.9. Calculate lim
n→∞

(e−n + tan−1(n)).

Definition 6.2.10. infinite sum.

∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak.

Given a particular formula for ak it is generally not an easy matter to determine if the limit
above exists. These sums without end are called series. In particular, we define

∑∞
k=1 ak =

a1 +a2 +a3 + · · · to converge iff the limit limn→∞
∑n

k=1 ak converges to a real number. We discuss
a number of various criteria to analyze this question in calculus II. I believe this amount of detail is
sufficient for our purposes in solving the area problem. Our focus will soon shift away from explicit
calculation of these sums.



206 CHAPTER 6. ANTIDERIVATIVES AND THE AREA PROBLEM

6.2.2 left, right and midpoint rules

We aim to calculate the signed-area bounded by y = f(x) for a ≤ x ≤ b. In this section we discuss
three methods to approximate the signed-area. To begin we should settle some standard notation
which we will continue to use for several upcoming sections. Let’s begin with a picture:

Definition 6.2.11. partition of [a, b].

Suppose a < b then [a, b] ⊂ R. Define ∆x = b−a
n for n ∈ N and let xj = a + j∆x for

j = 0, 1, . . . , n. In particular, xo = a and xn = b.

The closed interval [a, b] is a union of n-subintervals of length ∆x. Note that the closed interval
[a, b] = [xo, x1] ∪ [x1, x2] ∪ · · · ∪ [xn−1, xn].

Definition 6.2.12. left endpoint rule (Ln).

Suppose that [a, b] ⊆ dom(f) then we define

Ln =

n−1∑
j=0

f(xj)∆x = [f(x0) + f(x1) + · · ·+ f(xn−1)]∆x.

Example 6.2.13. Let f(x) = x2 and estimate the signed-area bounded by f on [1, 3] by the left-
endpoint rule. To keep things simple I’ll just illustrate the calculation with n = 4. Note ∆x =
3−1
4 = 0.5 thus xo = 1, x1 = 1.5, x2 = 2, x3 = 2.5 and x4 = 3.

L4 = [f(1) + f(1.5) + f(2) + f(2.5)]∆x = [1 + 2.25 + 4 + 6.25](0.5) = 6.75

It’s clear from the picture below that L4 underestimates the true area under the curve.
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Definition 6.2.14. right endpoint rule (Rn).

Suppose that [a, b] ⊆ dom(f) then we define

Rn =
n∑
j=1

f(xj)∆x = [f(x1) + f(x2) + · · ·+ f(xn)]∆x.

Example 6.2.15. Let f(x) = x2 and estimate the signed-area bounded by f on [1, 3] by the right
end-point rule. To keep things simple I’ll just illustrate the calculation with n = 4. Note ∆x =
3−1
4 = 0.5 thus xo = 1, x1 = 1.5, x2 = 2, x3 = 2.5 and x4 = 3.

R4 = [f(1.5) + f(2) + f(2.5) + f(3)]∆x = [2.25 + 4 + 6.25 + 9](0.5) = 10.75

It’s clear from the picture below that R4 overestimates the true area under the curve.

Definition 6.2.16. midpoint rule (Mn).

Suppose that [a, b] ⊆ dom(f) and denote the midpoints by x̄k = 1
2(xk + xk−1) and define

Mn =
n∑
j=1

f(x̄j)∆x = [f(x̄1) + f(x̄2) + · · ·+ f(x̄n)]∆x.
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Example 6.2.17. Let f(x) = x2 and estimate the signed-area bounded by f on [1, 3] by the midpoint
rule. To keep things simple I’ll just illustrate the calculation with n = 4. Note ∆x = 3−1

4 = 0.5
thus x̄1 = 1.25, x̄2 = 1.75, x̄3 = 2.25 and x̄4 = 2.75.

M4 = [f(1.25) + f(1.75) + f(2.25) + f(2.75)]∆x = [1.5625 + 3.0625 + 5.0625 + 7.5625](0.5) = 8.625

Clearly L4 < M4 < R4 and if you study the errors you can see L4 < M4 < A < R4.

Notice that the size of the errors will shrink if we increase n. In particular, it is intuitively obvious
that as n → ∞ we will obtain the precise area bounded by the curve. Moreover, we expect that
the distinction between Ln, Rn and Mn should vanish as n → ∞. Careful proof of this seemingly
obvious claim is beyond the scope of this course.

Example 6.2.18. Let f(x) = x2 and calculate the signed-area bounded by f on [1, 3] by the right
end-point rule. To perform this calculation we need to set up Rn for arbitrary n and then take the
limit as n→∞. Note xk = 1 + k∆x and ∆x = 2/n thus xk = 1 + 2k/n. Calculate,

f(xk) =

(
1 +

2k

n

)2

= 1 +
4k

n
+

4k2

n2

thus,

Rn =

n∑
k=1

f(xk)∆x

=

n∑
k=1

[
1 +

4k

n
+

4k2

n2

]
2

n

=
2

n

n∑
k=1

1 +
8

n2

n∑
k=1

k +
8

n3

n∑
k=1

k2

=
2

n
n+

8

n2
n(n+ 1)

2
+

8

n3
n(n+ 1)(2n+ 1)

6

= 2 + 4

(
1 +

1

n

)
+

8

6

(
2 +

3

n
+

1

n2

)
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Note that 1
n and 1

n2 clearly tend to zero as n→∞ thus

lim
n→∞

Rn = 2 + 4 +
16

6
=

26

3
u 8.6667.

Challenge: show Ln and Mn also have limit 26
3 as n→∞.

Notice that the error in M4 is simply E = 8.6667 − 8.625 = 0.0417 which is within 0.5% of the
true area. I will not attempt to give an quantitative analysis of the error in Ln, Rn or Mn at this
time. Stewart discusses the issue in §8.7. Qualitatively, if the function is monotonic then we should
expect that the area is bounded between Ln and Rn.

The example below illustrates that using rectangles is just a convenience of our exposition.

In-Class Example 6.2.19. Inscribe a regular polygon formed by n-triangles inside a circle of
radius R. Let An be the area of this polygon and calculate limn→∞An.
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6.2.3 Riemann sums and the definite integral

In the last section we claimed that it was intuitively clear that as n → ∞ all the different ap-
proximations of the signed-area converge to the same value. You could construct other rules to
select the height of the rectangles. Riemann’s definition of the definite integral is made to exploit
this freedom in the limit. Again, it should be mentioned that this begs an analytical question
we are unprepared to answer. For now I have to ask you to trust that the following definition is
meaningful. In other words, you have to trust me that it doesn’t matter the details of how the
point in each subinterval is chosen. Intuitively this is reasonable as ∆x→ 0 as n→∞. Therefore,
the subinterval [xj , xj + ∆x] → {xj} so the choice between the left, right and midpoints is lost
in the limit. Actually, special functions which are very discontinuous could cause problems to the
intuitive claim I just made. For that reason we insist that the function below is continuous on [a, b]
in order that we avoid certain pathologies.

Definition 6.2.20. Riemann sum and the definite integral of continuous function on [a, b].

Suppose that f is continuous on [a, b] suppose x∗k ∈ [xk−1, xk] for all k ∈ N such that
1 ≤ k ≤ n then an n-th Riemann sum is defined to be

Rn =

n∑
j=1

f(x∗k)∆x = [f(x∗1) + f(x∗2) + · · ·+ f(x∗n)]∆x.

Notice that no particular restriction is placed on the sample points x∗k. This means a Riemann
sum could be a left, right or midpoint rule. This freedom will be important in the proof of the
Fundamental Theorem of Calculus I offer in a later section.

Definition 6.2.21. definite integrals.

Suppose that f is continuous on [a, b], the definite integral of f from a to b is defined to
be limn→Rn in particular we denote:∫ b

a
f(x) dx = lim

n→
Rn = lim

n→∞

[ n∑
j=1

f(x∗k)∆x

]
.

The function f is called the integrand. The variable x is called the dummy variable of
integration. We say a is the lower bound and b is the upper bound. The symbol dx is
the measure. We also define for a < b∫ a

b
f(x) dx = −

∫ b

a
f(x) dx and

∫ a

a
f(x) dx = 0.

The signed-area bounded by y = f(x) for a ≤ x ≤ b is defined to be
∫ b
a f(x) dx.
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The integral above is known as the Riemann-integral. Other definitions are possible5.

If f is continuous on the intervals (a1, a2), (a2, a3), . . . (ak, ak+1) and each discontinuity is a finite-
jump discontinuity then the definite integral of f on [a1, ak+1] is defined to be the sum of the
integrals: ∫ ak+1

a1

f(x) dx =
k∑
j=1

∫ aj+1

aj

f(x) dx.

Technically this leaves something out since we have only carefully defined integration over a closed
interval and here we need the concept of integration over a half-open or open interval. To be careful
one has the limit of the end points tending to the points of discontinuity. We discuss this further
in Calculus II when we study improper integrals

In the graph of y = f(x) below I have shaded the positive signed-area green and the negative signed-
area blue for the region −4 ≤ x ≤ 3. The total signed-area is calculated by the definite integral
and can also be found from the sum of the three regions: 11.6− 1.3 + 8.7 = 19.0 =

∫ 3
−4 f(x) dx.

Example 6.2.22. Suppose f(x) = sin(x). Set-up the definite integral from [0, π]. We choose
R = Rn for convenience. Note ∆x = π/n and the typical sample point is x∗j = jπ/n. Thus

Rn =
n∑
j=1

sin(x∗j )∆x =
n∑
j=1

sin

(
jπ

n

)
π

n
⇒

∫ π

0
sin(x) dx = lim

n→∞

n∑
j=1

sin

(
jπ

n

)
π

n
.

At this point, most of us would get stuck. In order to calculate the limit above we need to find some
identity to simplify sums such as

sin

(
π

n

)
+ sin

(
2π

n

)
+ · · ·+ sin

(
(n− 1)π

n

)
= ?.

If you figure it out please show me.

5 the Riemann-Stieltjes integral or Lesbesque are generalizations of this the basic Riemann integral. Riemann-
Stieltjes integral might be covered in some undergraduate analysis courses whereas Lesbesque’s measure theory is
typically a graduate analysis topic.
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Symmetry can help integrate. Note that by the symmetry of the sine function it is clear that∫ π
0 sin(x) dx =

∫ 0
−π sin(x) dx and consequently the signed area bounded by y = sin(x) on [−π, π] is

simply zero.

6.2.4 properties of the definite integral

As we just observed a particular Riemann integral can be very difficult to calculate directly even if
the integrand is a relatively simple function. That said, there are a number of intuitive properties
for the definite integral whose proof is easier in general than the preceding specific case.

Proposition 6.2.23. algebraic properties of definite integration.

Suppose f, g are continuous on [a, b] and a < c < b, α ∈ R

(i.)

∫ b

a
[f(x) + g(x)]dx =

∫ b

a
f(x)dx+

∫ b

a
g(x)dx,

(ii.)

∫ b

a
αf(x)dx = α

∫ b

a
f(x)dx,

(iii.)

∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx.
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Proof: since f, g are continuous it follows f + g is likewise continuous hence f, g, f + g are all
bounded on [a, b] and consequently their definite integrals exist (the limit of the Riemann sums
must converge to a real value). Consider then,∫ b

a

[
f(x) + αg(x)

]
dx = lim

n→∞

[ n∑
j=1

[
f(x∗k) + αg(x∗k)

]
∆x

]

= lim
n→∞

[ n∑
j=1

f(x∗k)∆x+ α
n∑
j=1

g(x∗k)∆x

]

= lim
n→∞

[ n∑
j=1

f(x∗k)∆x

]
+ α lim

n→∞

[ n∑
j=1

g(x∗k)∆x

]

=

∫ b

a
f(x) dx+ α

∫ b

a
g(x) dx

We used the linearity properties of finite sums and the linearity properties of sequential limits in
the calculation above. In the case α = 1 we obtain a proof for (i.). In the case g = 0 we obtain a
proof for (ii.).

Proof 1 of (iii.): this is geometrically obvious. Draw a picture, done. 2

Proof 2 of (iii.): The proof of (iii.) will require additional thinking. We need to think about
a partition of [a, b] and split it into two partitions, one for [a, c] and the other for [c, b]. Since
a < c < b the value of c must appear somewhere in the partition:

xo = a < x1 < x2 < · · · < xj ≤ c ≤ xj+1 < · · · < xn = a+ n∆x = b.

for some j < n. Note xk = a + k∆x and ∆x = b−a
n for k = 1, 2, . . . , n. Note that as n → ∞ the

following ratios hold (if xj = c then these are exact, however clearly xj → c as n→∞):

∆x =
b− a
n

=
c− a
j

=
b− c
n− j

these simply express the fact that the partition of [a, b] has equal length in each region. In what
follows the xj is the particular point in each partition of [a, b] close to the midpoint c:∫ b

a
f(x) dx = lim

n→∞

[ n∑
k=1

f(x∗k)∆x

]

= lim
n→∞

[ j∑
k=1

f(x∗k)∆x+
n∑

k=j+1

f(x∗k)∆x

]

= lim
j→∞

[ j∑
k=1

f(z∗k)
c− a
j

]
+ lim
p→∞

[ p∑
l=1

f(y∗l )
b− c
p

]
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where z∗k = x∗k and y∗l = x∗l+j for j ≈ n c−ab−a and we have replaced the limit of n → ∞ with that of

p = n − j → ∞ which is reasonable since j ≈ n c−ab−a gives n − j ≈ n − n c−ab−a = n b−a−c+ab−a = n b−cb−a
hence n→∞ implies n− j →∞ as b > c and b > a by assumption. Likewise, we replaced n→∞
with j → ∞ for the first sum. This substitution is again justified since c > a and b > a thus
j ≈ n c−ab−a suggests n→∞ implies j →∞. Finally, denote ∆y = c−a

j and ∆z = b−c
p to obtain

∫ b

a
f(x) dx = lim

j→∞

[ j∑
k=1

f(z∗k)∆z

]
+ lim
p→∞

[ p∑
l=1

f(y∗l )∆y

]

=

∫ c

a
f(z) dz +

∫ b

c
f(y) dy

=

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

This concludes the proof of (iii.). 2

It’s interesting that what is intuitively obvious is not necessarily so intuitive to prove. Another
example of this pattern is the Jordan curve lemma from complex variables. Basically the lemma
simply states that you can divide the plane into two regions, one inside the curve and one outside
the curve. The proof isn’t typically offered until the graduate course on topology. It’s actually a
technically challenging thing to prove precisely. This is one of the reasons that rigor is so important
to mathematics: what is intuitive maybe be wrong. Historically, appeal to intuition has trapped
us for centuries with wrong ideas. However, without intuition we’d probably not advance much
either. My personal belief is that for good mathematics to progress we need many different types
of mathematicians working in concert. We need visionaries to forge ahead sometimes without proof
and we also need careful analytical types to make sure the visionaries are not just going in circles.
In this modern age it is no longer feasible to expect all major progress be made by people like
Gauss who both propose the idea and provide the proof at levels of rigor sufficient to convince the
whole mathematical community. In any event, whether you are a math major or not, I hope this
course helps you understand what mathematics is about. By now you should be convinced it’s not
just about secret formulas and operations on equations.

Proposition 6.2.24. inequalities of definite integration.

Suppose f, g are continuous on [a, b] and m,M ∈ R,

(i.) if f(x) ≥ 0 for all x ∈ [a, b] then

∫ b

a
f(x)dx ≥ 0,

(ii.) if f(x) ≥ g(x) for all x ∈ [a, b] then

∫ b

a
f(x)dx ≥

∫ b

a
g(x)dx,

(iii.) if m ≤ f(x) ≤M for all x ∈ [a, b] then m(b− a) ≤
∫ b

a
f(x)dx ≤M(b− a).
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Proof: since f, g are continuous we can be sure that the limits defining the definite integrals exist.
We need the existence of the limits in order to apply the limit laws in the arguments that follow.
Begin with (i.), assume f(x) ≥ 0 and partition [a, b] as usual a = xo, b = xn and xk = a + ∆x.
Sample points x∗k are chosen from each subinterval [xk−1, xk]. Consider, for any particular n ∈ N
it is clear that:

f(x∗k) ≥ 0 and ∆x =
b− a
n

> 0 ⇒
n∑
k=1

f(x∗k)∆x ≥ 0

Consequently, Rn =
∑n

k=1 f(x∗k)∆x ≥ 0 for all n ∈ N hence by comparison property for sequential
limits, limn→∞Rn ≥ limn→∞(0) = 0 and (i.) follows immediately.

To prove (ii.) construct h(x) = f(x) − g(x) and note f(x) ≥ g(x) for all x ∈ [a, b] implies h(x) =
f(x)− g(x) ≥ 0 for all x ∈ [a, b]. We apply (i.) to the clearly continuous function h and obtain:∫ b

a
h(x)dx ≥ 0 ⇒

∫ b

a

[
f(x)− g(x)

]
dx ≥ 0 ⇒

∫ b

a
f(x)dx−

∫ b

a
g(x)dx ≥ 0

and (ii.) clearly follows.

Proof of (iii.) follows from observing that if f is bounded by m ≤ f(x) ≤M for all x ∈ [a, b] then
m ≤ f(x∗k) ≤M for each x∗k ∈ [a, b]. Hence,

n∑
k=1

m ≤
n∑
k=1

f(x∗k) ≤
n∑
k=1

M.

But m,M ∈ R so the summations on the edges are easy:

mn ≤
n∑
k=1

f(x∗k) ≤Mn.

Finally, we can multiply by ∆x = b−a
n to obtain

mn
b− a
n
≤

n∑
k=1

f(x∗k)∆x ≤Mn
b− a
n

⇒ m(b− a) ≤
n∑
k=1

f(x∗k)∆x ≤M(b− a).

Apply the sequential limit squeeze theorem and take the limit as n→∞ to find

m(b− a) ≤ lim
n→∞

[ n∑
k=1

f(x∗k)∆x

]
≤M(b− a)

This proves (iii.). 2

One easy fact to glean from the proof of (iii.) is the following:
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Corollary 6.2.25. integral of a constant. Let m ∈ R,

∫ b

a
mdx = m(b− a).

Given that the definite integral was constructed to calculate area this result should not be surprising.
Note 0 ≤ y ≤ m for a ≤ x ≤ b describes a rectangle of width b− a and height m.

6.3 fundamental theorem of calculus

In the preceding section we detailed a careful procedure for calculating the signed area between
y = f(x) and y = 0 for a ≤ x ≤ b. Unless the function happened to be very simple or enjoyed some
obvious symmetry it was difficult to actually calculate the area. We can write the limits but we
typically have no way of simplifying the sum to evaluate the limit. In this section we will prove the
Fundamental Theorem of Calculus (FTC) which amazingly shows us how to calculate signed-areas
without explicit simplification of the Riemann sum or evaluation of the limit. I begin by studying
area functions. I show how the FTC part I is seen naturally for both the rectangular and triangular
area functions. These two simple cases are discussed to help motivate why we would even expect to
find such a thing as the FTC. Then we regurgitate the standard arguments found in almost every
elementary calculus text these days to prove ”FTC part I” and ”FTC part II”. Finally, I offer a
constructive proof of FTC part II and I argue why FTC part I follows intuitively.

6.3.1 area functions and FTC part I

In that discussion the endpoints a and b were given and fixed in place. We now shift gears a bit.
We study area functions in this section. The idea of an area function is simply this: if we are
given a function f then we can define an area function for f once we pick some base point a. Then
A(x) will be defined to be the signed-area bounded by y = f(t) for a ≤ t ≤ x. I use t in the place
of x since we wish to use x in a less general sense in the pictures that follow here.

Definition 6.3.1. area function.

Given f and a point a we define the area function of f relative to a as follows:

A(x) =

∫ x

a
f(t) dt.

We say that A(x) is the signed-area bounded by f on [a, x].

We would like to look for patterns about area functions. We’ve seen already that direct calculation
is difficult. However, we know two examples from geometry where the area is easily calculated
without need of calculus.
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Area function of rectangle: let f(t) = c then the area bounded between t = 0 and t = x is
simply length (x) times height (c). By geometry we have that A(x) =

∫ x
0 c dt = cx, see the picture

below:

If we positioned the rectangle at a ≤ t ≤ x then length becomes (x− a) and the height is still (c).
Therefore, by geometry, A(x) =

∫ x
a c dt = c(x− a) = cx− ca. Again, see the picture below where I

have pictured a particular x but I have graphed y = A(t) for many t besides x. You can imagine
other choices of x and you should find the area function agrees with the area under the curve.
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Area function of triangle: I begin with a triangle formed at the origin with the t-axis and the
line y = mt and t = x. For a particular x, we have base length x and height y = mx thus the area
of the triangle is given by geometry: A(x) =

∫ x
0 mtdt = 1

2mx
2. I picture the function (y = mt in

red) as well as the area function (y = 1
2mt

2 in green) in the picture below:

We calculate the area bounded by y = mt for a ≤ t ≤ x by subtracting the area of the small
triangle from 0 ≤ t ≤ a from the area of the larger triangle 0 ≤ t ≤ x as pictured below. Thus from
geometry we find A(x) =

∫ x
a mtdt = 1

2mx
2 − 1

2ma
2.

The area under a parabola could also be calculate without use of further theory. We could work
out from the special summation formulas that the area function for y = t2 for a ≤ t ≤ x is given
by A(x) =

∫ x
a t

2 dt = 1
3x

3 − 1
3a

3. I suspect this is beyond the scope of constructive geometry
(compass/straight-edge and paper). We should notice a pattern:
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1. A(x) =
∫ x
a c dt = cx has dA

dx = c.

2. A(x) =
∫ x
a mtdt = 1

2mx
2 has dA

dx = mx.

3. A(x) =
∫ x
a t

2 dt = 1
3x

3 has dA
dx = x2.

We suspect that if A(x) =
∫ x
a f(t) dt then dA

dx = f(x). Let’s examine an intuitive graphical argument
for why this is true for an arbitrary function:

Formally, dA = A(x+ dx)−A(x) = f(x)dx hence dA/dx = f(x). This proof made sense to you (if
it did) because you believe in Leibniz’ notation. We should offer a rigorous proof since this is one
of the most important theorems in all of calculus.

Theorem 6.3.2. Fundamental Theorems of Calculus part I (FTC I).

Suppose f is continuous on [a, b] and x ∈ [a, b] then,

d

dx

∫ x

a
f(t) dt = f(x).

Proof: let A(x) =
∫ x
a f(t) dt and note that

A(x+ h) =

∫ x+h

a
f(t) dt =

∫ x

a
f(t) dt+

∫ x+h

x
f(t) dt = A(x) +

∫ x+h

x
f(t) dt

Therefore, the difference quotient for the area function is simply as follows:

A(x+ h)−A(x)

h
=

1

h

∫ x+h

x
f(t) dt
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However, note that by continuity of f we can find bounds for f on J = [x, x + h] (if h > 0)
or J = [x + h, x] (if h < 0). By the extreme value theorem, there exist u, v ∈ J such that
f(u) ≤ f(x) ≤ f(v) for all x ∈ J . Therefore, if h > 0, we can apply the inequality properties of
definite integrals and find

(x+ h− x)f(u) ≤
∫ x+h

x
f(t) dt ≤ (x+ h− x)f(v) ⇒ f(u) ≤ 1

h

∫ x+h

x
f(t) dt ≤ f(v)

If h < 0 then dividing by h reverses the inequalities hence f(v) ≤ 1
h

∫ x+h
x f(t) dt ≤ f(u). Finally,

observe that limh→0 u = x and limh→0 v = x. Therefore, by continuity of f , limh→0 f(u) = f(x)

and limh→0 f(v) = f(x). Remember, f(u) ≤ 1
h

∫ x+h
x f(t) dt ≤ f(v) and apply the squeeze theorem

to deduce:

lim
h→0

1

h

∫ x+h

x
f(t) dt = f(x)

Consequently,

lim
h→0

A(x+ h)−A(x)

h
= f(x)

Which, by definition of the derivative for A, gives dA
dx = f(x). 2

The FTC part I is hardly a solution to the area problem. It’s just a curious formula. The FTC
part II takes this curious formula and makes it useful. It is true there are a few functions defined
as area functions hence the differentiation in the FTC I is physically interesting. For example, the
Fresnel function can be defined in terms of an integral with a variable bound.

Remark 6.3.3. a method to derive antiderivatives without guessing.

Notice that the FTC I also gives us a method to calculate antiderivatives without guessing.
But, I can only derive a few very simple antiderivatives. For example, here is a derivation
of the antiderivative of f(x) = 3. I calculate that

∫
3 dx = 3x+ c without guessing:
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6.3.2 FTC part II, the standard arguments

The fact that d
dx

∫ x
a f(t) dt = f(x) is just half of what we observed in our examination of the

rectangular and triangular area functions. If the area was measured away from the origin on some
region a ≤ t ≤ x then we can observe another pattern: the area was given by the difference
of the antiderivative of the integrand at the end points

1.
∫ x
a c dt = cx− ca

2.
∫ x
a mtdt = 1

2mx
2 − 1

2ma
2

This suggests the following theorem may be true:

Theorem 6.3.4. Fundamental Theorems of Calculus part II (FTC II).

Suppose f is continuous on [a, b] and has antiderivative F then∫ b

a
f(x) dx = F (b)− F (a).

Proof: consider the area function based at a: A(x) =
∫ x
a f(t) dt. The FTC I says that A is an

antiderivative of f . Since F is given to be another antiderivative we know that F ′(x) = A′(x) = f(x)
which means F and A differ by at most a constant c ∈ R: F (x) = A(x) + c. Since F and A are
differentiable on [a, b] it follows they are also continuous on [a, b] hence,

F (a) = lim
x→a+

F (x) = lim
x→a+

[A(x) + c] = A(a) + c =

∫ a

a
f(t) dt+ c = c

and

F (b) = lim
x→b−

F (x) = lim
x→b−

[A(x) + c] = A(b) + c =

∫ b

a
f(t) dt+ c.

Hence, F (b) − F (a) =
∫ b
a f(t) dt + c − c =

∫ b
a f(t) dt. Of course, t is just the dummy variable of

integration so we can change it to x at this point to complete the proof of the FTC part II. 2

In-Class Example 6.3.5. Calculate the integral
∫ π
0 sin(x) dx (recall Example 6.2.22 humbled us

in our foolish quest for direct calculation)
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Definition 6.3.6. evaluation notation.

We define the symbols below to denote evaluation of an expression:

F (x)

∣∣∣∣b
a

= F (b)− F (a)

In this notation the FTC part II is written as follows:

∫ b

a
f(x) dx = F (x)

∣∣∣∣b
a

= F (b)−F (a).

6.3.3 FTC part II an intuitive constructive proof

Let me restate the theorem to begin:

FTC II: Suppose f is continuous on [a, b] and has antiderivative F then∫ b

a
f(x) dx = F (b)− F (a).

Proof: We seek to calculate
∫ b
a f(x) dx. Use the usual partition for the n-th Riemann sum of f on

[a, b]; xo = a, x1 = a + ∆x, . . . , xn = b where ∆x = b−a
n . Suppose that f has an antiderivative F

on [a, b]. Recall the Mean Value Theorem for y = F (x) on the interval [xo, x1] tells us that there
exists x∗1 ∈ [xo, x1] such that

F ′(x∗1) =
F (x1)− F (xo)

x1 − xo
=
F (x1)− F (xo)

∆x

Notice that this tells us that F ′(x∗1)∆x = F (x1) − F (xo). But, F ′(x) = f(x) so we have found
that f(x∗1)∆x = F (x1) − F (xo). In other words, the area under y = f(x) for xo ≤ x ≤ x1 is well
approximated by the difference in the antiderivative at the endpoints. Thus we choose the sample
points for the n-th Riemann sum by applying the MVT on each subinterval to select x∗j such that
f(x∗j )∆x = F (xj)− F (xj−1). With this construction in mind calculate:∫ b

a
f(x) dx = lim

n→∞

( n∑
j=1

f(x∗j )∆x

)

= lim
n→∞

( n∑
j=1

[
F (xj)− F (xj−1)

])
= lim

n→∞

(
F (x1)− F (xo) + F (x2)− F (x1) + · · ·+ F (xn)− F (xn−1)

)
= lim

n→∞

(
F (xn)− F (xo)

)
= lim

n→∞

(
F (b)− F (a)

)
= F (b)− F (a).2
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This result clearly extends to piecewise continuous functions which have only finite jump disconti-
nuities. We can apply the FTC to each piece and take the sum of those results. This Theorem is
amazing. We can calculate the area under a curve based on the values of the antiderivative at the
endpoints. Think about that, if a = 1 and b = 3 then

∫ 3
1 f(x) dx depends only on F (3) and F (1).

Doesn’t it seem intuitively likely that what value f(2) takes should matter as well? Why don’t we
have to care about F (2) ? The values of the function at x = 2 certainly went into the calculation
of the area, if we calculate a left sum we would need to take values of the function between the
endpoints. The cancellation that occurs in the proof is the root of why my naive intuition is bogus.

Next, let me show you how to derive FTC I from FTC II 6. We have just proved that∫ b

a
f(t) dt = F (b)− F (a).

Suppose b = x and consider differentiating with respect to x,

d

dx

∫ x

a
f(t) dt =

d

dx
[F (x)− F (a)] =

dF

dx
= f(x).

thus we obtain FTC I simply by differentiating FTC II. Moreover, we can obtain a more general
result without doing much extra work:

Theorem 6.3.7. differentiation of integral with variable bounds. (FTC III for fun)

Suppose u, v are differentiable functions of x and f is continuous where it is integrated,

d

dx

∫ v(x)

u(x)
f(t) dt = f(v(x))

dv

dx
− f(u(x))

du

dx
.

Proof: let f have antiderivative F and apply FTC II at each x to obtain:∫ v(x)

u(x)
f(t) dt = F (v(x))− F (u(x))

now differentiate with respect to x and apply the chain-rule,

d

dx

∫ v(x)

u(x)
f(t) dt =

dF

dx
(u(x))

dv

dx
− dF

du
(u(x))

du

dx

But, dF
dx = f(x) hence d

dx

∫ v(x)
u(x) f(t) dt = f(u(x)) dvdx − f(u(x))dudx . 2

The examples based on FTC III are embarrassingly simple once you understand what’s happening.

6note I didn’t need to use FTC I in the argument for the FTC II in this section, instead I needed only assume
that there existed an antiderivative for the given integrand
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Example 6.3.8.

d

dx

∫ x

3
cos(
√
t) dt = cos(

√
x)
d(
√
x)

dx
− cos(

√
3)
d(3)

dx
= cos(

√
x)

1

2
√
x
.

Example 6.3.9.

d

dx

∫ x3

ex
tanh(t2) dt = tanh((x3)2)

d(x3)

dx
− tanh((ex)2)

d(ex)

dx
= 3x2 tanh(x6)− ex tanh(e2x).

Example 6.3.10. The function Si is defined by Si(x) =
∫ x
0

sin(t)
t dt for x 6= 0 and Si(0) = 0. This

function arises in Electrical Engineering in the study of optics.

d

dx
(Si(x)) =

d

dx

∫ x

0

sin(t)

t
dt =

sin(x)

x
.

In-Class Example 6.3.11. Calculate
d

dx

∫ x2+3

sin(x)

√
t dt.

In-Class Example 6.3.12. Suppose f is continuous on R. It follows that f has an antiderivative

hence the FTC III applies. Calculate
d

dx

∫ −x
x2

f(u) du.
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6.4 definite integration

Example 6.4.1. ∫ 9

1

dx√
5x

=
1√
5

∫ 9

1

dx√
x

=
2
√
x√
5

∣∣∣∣9
1

=
2
√

9√
5
− 2
√

1√
5

=
4√
5
.

In-Class Example 6.4.2.∫ 1

0
2x dx =

In-Class Example 6.4.3. Let a, b be constants,∫ b

a
sinh(t) dt =

In-Class Example 6.4.4.∫ −2
−4

dx

x
=

Example 6.4.5. Let n > 0 and consider,∫ ln(n+1)

ln(n)
ex dx = eln(n+1) − eln(n) = n+ 1− n = 1.

This is an interesting result. I’ve graphed a few examples of it below. Notice how as n increases the
distance between ln(n) and ln(n+ 1) decreases, yet the exponential increases such that the bounded
area still works out to one-unit.
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6.4.1 area vs. signed-area

Example 6.4.6. Calculate the signed-area bounded by y = 3x2 − 3x− 6 for 0 ≤ x ≤ 2.∫ 2

0
(3x2 − 3x− 6)dx = (x3 − 3

2
x2 − 6x)

∣∣∣∣2
0

= 8− 3

2
(4)− 12 = 8− 18 = −10.

Here’s an illustration of the calculation (the blue part):

The green area is calculated by∫ 4

2
(3x2 − 3x− 6)dx = (x3 − 3

2
x2 − 6x)

∣∣∣∣4
2

= (64− 3

2
(16)− 24) + 10 = 64− 48 + 10 = 26.

Example 6.4.7. If we wanted to calculate the area bounded by y = f(x) = 3x2− 3x− 6 and y = 0
for 0 ≤ x ≤ 4 then we need to also count negative-signed-area as positive. This is nicely summarized
by stating we should integrate the absolute value of the function to obtain the area bounded between
the function and the x-axis. Generally analyzing an absolute value of a function takes some work,
but given the previous example it is clear how to break up the positive and negative cases:∫ 4

0
|3x2 − 3x− 6|dx =

∫ 2

0
|3x2 − 3x− 6|dx+

∫ 4

2
|3x2 − 3x− 6|dx

=

∫ 2

0
[−(3x2 − 3x− 6)]dx+

∫ 4

2
(3x2 − 3x− 6)dx

= 10 + 26

= 36.

Here’s a picture of the function we just integrated. You can see how the absolute value flips the
negative part of the original function up above the x-axis.
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Remark 6.4.8. absolute values and areas.

To calculate the area bounded by y = f(x) for a ≤ x ≤ b we may calculate

Area =

∫ b

a
|f(x)| dx.

Example 6.4.9. Calculate the area bounded by y = cos(x) on 0 ≤ x ≤ 5π
2 .∫ 3π

0
| cos(x)|dx =

∫ π
2

0
cos(x)dx−

∫ 3π
2

π
2

cos(x)dx+

∫ 5π
2

3π
2

cos(x)dx

= sin(x)

∣∣∣∣π2
0

− sin(x)

∣∣∣∣ 3π2
π
2

+ sin(x)

∣∣∣∣ 5π2
3π
2

= sin
(π

2

)
− sin(0)− sin

(
3π

2

)
+ sin

(π
2

)
+ sin

(
5π

2

)
− sin

(
3π

2

)
= 5.

In-Class Example 6.4.10. Calculate the area bounded by f(x) =

{
x2 0 ≤ x ≤ 1

−ex x > 1
over the

interval [0, ln 4].
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6.4.2 average of a function

To calculate the average of finitely many things we can just add all the items together then divide
by the number of items. If you draw a bar chart and find the area of all the bars and then divide
by the number of bars then that gives the average. A function f(x) takes on infinitely many values
on a closed interval so we cannot just add the values, however, we can calculate the area and divide
by the length. This is the continuous extension of the averaging concept:

Definition 6.4.11. average of a function over a closed interval.

The average value of f on [a, b] is defined by

favg =
1

b− a

∫ b

a
f(x) dx.

In-Class Example 6.4.12. Suppose f(x) = 4x3. Find the average of f on [0, 2].

Example 6.4.13. Suppose f(x) = sin(x). Find the average of f on [0, 2π].

favg =
1

2π

∫ 2π

0
sin(x) dx =

−1

2π
cos(x)

∣∣∣∣2π
0

= 0.

Example 6.4.14. In the case of constant acceleration a = −g we calculated that v(t) = vo − gt
where vo, g were constants. Let’s calculate the average velocity over some time interval [t1, t2],

vavg =
1

t2 − t1

∫ t2

t1

(vo − gt) dt

=
1

t2 − t1
[vot−

g

2
t2]

∣∣∣∣t2
t1

=
1

t2 − t1

[
vo(t2 − t1)−

g

2

(
t22 − t21

)]
=

1

t2 − t1

[
vot2 −

g

2
t22 − vot1 +

g

2
t21

]
=
y(t2)− y(t1)

t2 − t1
where I have used a little imagination and a recollection that y(t) = yo + vot − g

2 t
2. The result is

comforting, we find the average velocity is the average of the average velocity function.
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There is a better way to calculate the last example. It will provide the first example of the next
subsection.

6.4.3 net-change theorem

Combining FTC I and FTC II we find a very useful result: the net-change theorem.

Theorem 6.4.15. net change theorem.∫ b

a

df

dt
dt = f(b)− f(a).

Example 6.4.16. Let v(t) be the instantaneous velocity where v(t) = dy
dt then we can calculate the

average velocity over some time interval [t1, t2],

vavg =
1

t2 − t1

∫ t2

t1

v(t) dt

=
1

t2 − t1

∫ t2

t1

dy

dt
dt

=
1

t2 − t1
(
y(t2)− y(t1)

)
=
y(t2)− y(t1)

t2 − t1
.

Notice we didn’t even need to know the details of the velocity function.

In-Class Example 6.4.17. Suppose water flows into a tank at a rate dm
dt = 3 + t2 for time

0 ≤ t ≤ 1. Find the net mass of water transferred into the tank during the interval [0, 1].
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6.5 u-substitution

The integrations we have done up to this point have been elementary. Basically all we have used
is linearity of integration and our basic knowledge of differentiation. We made educated guesses as
to what the antiderivative was for a certain class of rather special functions. Integration requires
that you look ahead to the answer before you get there. For example,

∫
sin(x) dx. To reason this

out we think about our basic derivatives, we note that the derivative of cos(x) gives − sin(x) so we
need to multiply our guess by -1 to fix it. We conclude that

∫
sin(x) dx = − cos(x) + c. The logic

of this is essentially educated guessing. You might be a little concerned at this point. Is that all
we can do? Just guess? Well, no. There is more. But, those basic guesses remain, They form the
basis for all elementary integration theory.

The new idea we look at in this section is called ”u-substitution”. It amounts to the reverse
chain rule. The goal of a properly posed u-substitution is to change the given integral to a new
integral which is elementary. Typically we go from an integration in x which seems incalculable to
a new integration in u which is elementary. For the most part we will make direct substitutions,
these have the form u = g(x) for some function g however, this is not strictly speaking the only
sort of substitution that can be made. Implicitly defined substitutions such as x = f(θ) play a
critical role in many interesting integrals, we will deal with those more subtle integrations in a later
chapter when we discuss trigonometric substitution.

Finally, I should emphasize that when we do a u-substitution we must be careful to convert
each and every part of the integral to the new variable. This includes both the integrand(f(x))
and the measure(dx) in an indefinite integral

∫
f(x) dx. Or the integrand(f(x)), measure(dx) and

upper and lower bounds a, b in a definite integral
∫ b
a f(x) dx. I will provide a proof of the method

at the conclusion of the section for a change of pace. Examples first this time.

6.5.1 u-substitution in indefinite integrals

Example 6.5.1.∫
xex

2
dx =

∫
xeu

du

2x
let u = x2,

du

dx
= 2x and dx =

du

2x

=
1

2

∫
eudu see how all the x’s cancelled, this has to happen.

=
1

2
eu + c not done yet.

=
1

2
ex

2
+ c differentiate to check if in doubt.

In-Class Example 6.5.2. Let a, b be constants. If a 6= 0 then,∫
(ax+ b)13dx
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Example 6.5.3.∫
5
x
3 dx =

∫
5u(3du) let u =

x

3
,
du

dx
=

1

3
and dx = 3du

=
3

ln(5)
5u + c

=
3

ln(5)
5
x
3 + c.

In-Class Example 6.5.4.∫
tan(x)dx

Example 6.5.5.∫
2x

1 + x2
dx =

∫
du

u
let u = 1 + x2,

du

dx
= 2x and 2xdx = du

= ln(|u|) + c

= ln(1 + x2) + c.

Notice that x2 + 1 > 0 for all x ∈ R thus |x2 + 1| = x2 + 1. We should only drop the absolute value
bars if we have good reason.

In-Class Example 6.5.6.∫
3
√

1− 3xdx
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Example 6.5.7.∫
dx

x+ b
=

∫
du

u
let u = x+ b thus du = dx

= ln |u|+ c

= ln |x+ b|+ c.

Example 6.5.8. suppose x > 0.∫
x2dx√
x2 − x4

=

∫
x2dx

x
√

1− x2

=

∫
xdx√
1− x2

=

∫
−du
2
√
u

let u = 1− x2 thus −du/2 = xdx

=
−1

2
2
√
u+ c

= −
√

1− x2 + c.

In-Class Example 6.5.9. Suppose x > 0, calculate:∫
ln(x)dx

x

Example 6.5.10.∫
sin(3θ)dθ =

∫
sin(u)

du

3
let u = 3θ thus dθ =

du

3

=
−1

3
cos(u) + c

=
−1

3
cos(3θ) + c.
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In-Class Example 6.5.11.∫
sin−1(z)√

1− z2
dz

Example 6.5.12.∫
t cos(t2 + π)dt =

1

2

∫
cos(u)du let u = t2 + π thus tdt =

du

2

=
1

2
sin(u) + c

=
1

2
sin(t2 + π) + c.

The example below generalizes to allow integration of any odd power of sine or cosine.

In-Class Example 6.5.13.∫
sin3(x)dx
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Example 6.5.14. suppose a 6= 0∫
dx

x2 + a2
=

1

a2

∫
dx

x2

a2
+ 1

=
1

a2

∫
adu

u2 + 1
let u =

x

a
thus adu = dx

=
1

a
tan−1(u) + c

=
1

a
tan−1

[
x

a

]
+ c.

In-Class Example 6.5.15.∫
xdx

x2 + 6x+ 13

Example 6.5.16. suppose a 6= 0∫
cos(aex + 3)exdx =

1

a

∫
cos(u)du let u = aex + 3 thus du/a = exdx

=
1

a
sin(u) + c

=
1

a
sin(aex + 3) + c.
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Example 6.5.17.∫
sin2(θ)dθ =

∫
1

2

[
1− sin2(θ)

]
dθ by trigonmetry.

=
1

2

∫
dθ − 1

2

∫
cos(2θ)dθ

=
θ

2
− 1

4
sin(2θ) + c.

In the preceding example I omitted a u-substitution because it was fairly obvious.

In-Class Example 6.5.18.∫
cos2(θ)dθ =

Example 6.5.19.∫
4 sinh2(x)dx = 4

∫ [
1

2

(
ex − e−x

)]2
dx by definition of sinh(x).

=

∫ [
(ex)2 − 2exe−x + (e−x)2

]
dx

=

∫ [
e2x − 2 + e−2x

]
dx

=

∫
e2xdx− 2

∫
dx+

∫
e−2xdx

=
1

2

∫
e2xd(2x)− 2x− 1

2

∫
e−2xd(−2x)

=
1

2
e2x − 2x− 1

2
e−2x + c.

= sinh(2x)− 2x+ c.

Interesting, if you trust my calculation then we may deduce

4 sinh2(x) =
d

dx
[sinh(2x)− 2x] = 2 cosh(2x)− 2

thus sinh2(x) = 1
2 [cosh(2x)− 1].
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6.5.2 u-substitution in definite integrals

There are two ways to do these. I expect you understand both methods.

1. Find the antiderivative via u-substitution and then use the FTC to evaluate in terms of the
given upper and lower bounds in x. (see Example 6.5.20 below)

2. Do the u-substitution and change the bounds all at once, this means you will use the FTC
and evaluate the upper and lower bounds in u. (see Example 6.5.21 below)

I will deduct points if you write things like a definite integral is equal to an indefinite integral (
just leave off the bounds during the u-substitution). The notation is not decorative, it is necessary
and important to use correct notation.

Example 6.5.20. We previously calculated that
∫
t cos(t2 + π)dt = 1

2 sin(t2 + π) + c. We can use
this together with the FTC to calculate the following definite integral:

∫ √π
2

0
t cos(t2 + π)dt =

1

2
sin(t2 + π)

∣∣∣∣
√

π
2

0

=
1

2
sin(π2 + π)− 1

2
sin(π)

=
−1

2
.

This illustrates method (1.) we find the antiderivative off to the side then calculate the integral
using the FTC in the x-variable. Well, the t-variable here. This is a two-step process. In the next
example I’ll work the same integral using method (2.). In contrast, that is a one-step process but
the extra step is that you need to change the bounds in that scheme. Generally, some problems
are easier with both methods. Also, sometimes you may be faced with an abstract question which
demands you understand method 2.).

Example 6.5.21.

∫ √π
2

0
t cos(t2 + π)dt =

1

2

∫ 3π
2

π
cos(u)du let u = t2 + π thus tdt =

du

2

=
1

2
sin(u)

∣∣∣∣ 3π2
π

also u
(
π
2

)
=

3π

2
and u(0) = π

=
1

2
sin(3π2 )− 1

2
sin(π)

=
−1

2
.
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Example 6.5.22.∫ 9π2

4π2

sin(
√
x)dx√
x

=

∫ 3π

2π
sin(u)(2du) let u =

√
x thus 2du =

dx√
x

= −2 cos(u)

∣∣∣∣3π
2π

also u(9π2) =
√

9π2 = 3π and u(4π2) =
√

4π2 = 2π

= −2 cos(3π) + 2 cos(2π)

= 4.

6.5.3 theory of u-substitution

In the past 20 examples we’ve seen how the technique of u-substitution works. To summarize, you
take an integrand and measure in terms of x (say g(f(x))dx) and propose a new variable u = f(x)
for some function f . Then we differentiate du

dx = f ′(x) and solve for dx = du
f ′(x) which gives us∫

g(f(x)) dx =

∫
g(u)

du

f ′(x)

and if our choice of u is well thought out then the expression g(u)
f ′(x) can be simplified into a nice

elementary integrable function h(u) (meaning
∫
h(u) du was on our list of elementary integrals). In

a nutshell, that is what we did in each example. Let’s me raise a couple questions to criticize the
method:

1. what in the world do I mean by dx = du
f ′(x) ? This sort of division is not rigorous.

2. what if f ′(x) = 0? Especially if we were doing an integration with bounds, is it permissible
to have a point in the domain of integration where the substitution seems to indicate division
by zero?

Question (1.) is not too hard to answer. Let me propose the formal result as a theorem.

Theorem 6.5.23. change of variables in integration.

Suppose g is continuous on the connected interval J with endpoints f(a) and f(b) and f is
differentiable on a, b then

1. [∫
g(u) du

]∣∣∣∣
u=f(x)

=

∫
g(f(x))

df

dx
dx

2. ∫ f(b)

f(a)
g(u) du =

∫ b

a
g(f(x))

df

dx
dx.
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Proof: Note that g continuous indicates the existence of an antiderivative G on J . Let u = f(x)
and apply the chain-rule to differentiate G(u),

d

dx
[G(u)] = G′(u)

du

dx
= g(u)

df

dx
= g(f(x))

df

dx

At this stage we have already proved the indefinite integral substitution rule:

G(f(x)) =

[∫
g(u) du

]∣∣∣∣
u=f(x)

=

∫
g(f(x))

df

dx
dx = H(x) + c.

Use the result above and FTC II to see why (2.) is true:∫ b

a
g(f(x))

df

dx
dx = H(b)−H(a) = G(f(b))−G(f(a)) =

∫ f(b)

f(a)
g(u) du.2

I assumed continuity for simplicity of argument. One could prove a more general result for piecewise
continuous functions. Furthermore, note we never really divided by f ′(x) thus f ′(x) = 0 does not
rule out the applicability of this theorem.

Example 6.5.24. Consider the following problem: calculate∫ 2π

0
esin(x) cos(x) dx.

In this case we should identify u = f(x) = sin(x) and g(u) = eu. Clearly the hypotheses of the
theorem above are met. Moreover, f(0) = sin(0) = 0 and f(2π) = sin(2π) = 0 hence∫ 2π

0
esin(x) cos(x) dx =

∫ 2π

0
esin(x)

d(sin(x))

dx
dx =

∫ 0

0
eu du = 0.

For whatever reason, using the notation above seems unnatural to most people so we instead think
about substituting formulas with u into the integrand. Same calculation, but this time with our
usual approach:∫ 2π

0
esin(x) cos(x) dx =

∫ 0

0
eu cos(x)

du

cos(x)
let u = sin(x) thus dx =

du

cos(x)

=

∫ 0

0
eu du also u(0) = sin(0) and u(2π) = sin(2π).

= 0.

The apparent division by zero was just a sloppy way of communicating application of the theorem
for variable change.

This phenomenon of the bounds collapsing to a point will only occur if du
dx = 0 somewhere along

a ≤ x ≤ b. Otherwise, du
dx 6= 0 hence u is strictly monotonic on [a, b] hence either u(a) < u(b) or

u(b) > u(a).
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6.6 integrals of trigonometric functions

In this section we return to the problem of integrating trigonometric functions. The tools used here
are a combination of basic u-substitution, judiciously chosen trigonometric identities7.

Example 6.6.1. ∫
sin4(x)dx =

∫ [
sin2(x)

]2
dx

=

∫ [
1

2

(
1− cos(2x)

)]2
dx

=
1

4

∫ [
1− 2 cos(2x) + cos2(2x)

]
dx

=
x

4
− 1

4
sin(2x) +

1

8

∫
(1 + cos(4x))dx

=
x

4
− 1

4
sin(2x) +

x

8
+

1

32
sin(4x) + c

=
3x

8
− 1

4
sin(2x) +

1

32
sin(4x) + c.

It is important to remember tan2(x) + 1 = sec2(x) and
∫

sec2(x)dx = tan(x) + c in the examples
that follow.

Example 6.6.2. ∫
tan2(x)dx =

∫
(sec2(x)− 1)dx

= tan(x)− x+ c.

Example 6.6.3. We let u = tan(x) so du = sec2(x)dx,∫
sec2(x) tan2(x)dx =

∫
u2du

=
1

3
u3 + c

=
1

3
tan3(x) + c.

7next semester you will learn to extend this section a bit by the method of Integration By Parts (IBP)
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In-Class Example 6.6.4. Calculate

∫
tan4(x)dx

The notation used in the third line of the calculation above is a slick implicit notation for indicating
a u = tan(x) substitution. Every so often I make use of this notation. In any event, you should
be able to integrals of expressions like

∫
sec6(x)dx or

∫
cot2(x)dx or

∫
cot2(x) csc2(x)dx using

arguments paralelling the previous triple of examples. I’ll leave integrals of odd powers of secant
to Calculus II since those integrals are a pain.

Remark 6.6.5.

See Section 7.2 for an account of how to use and derive trigonometric identities. If you
invest a little time to understand how the complex exponential function eix = cosx+ i sinx
encodes both sine and cosine together in a unified object subject to the expected laws of
exponents eixeiy = eix+iy then you can derive trig. identities. The trouble of remembering
dozens of identities is replaced with the trouble of remembering:

sinx =
1

2i
(eix − e−ix) and cosx =

1

2
(eix + e−ix)

Alternatively, you can memorize the adding angle formulas and derive most everything from
that pair of identities. In some sense these approaches are just alternate notations for the
same underlying structure. Naturally, using these formulas without justification is no more
logical than utilizing the adding angles formulas without deriving them. Options aside, these
formulas are correct, meaningful and have been worthwhile to science and mathematics for
a couple centuries.

We keep in mind that the adding angles formula for cosine is cos(θ + β) = cos θ cosβ − sin θ sinβ

whereas the adding angles formula for sine is sin(θ + β) = sin θ cosβ + cos θ sinβ . Together these

adding angles formulas for sine and cosine yield another for tangent; tan(θ + β) =
tan θ + tanβ

1− tan θ tanβ
.

Finally the product identities for sine and cosine are also very useful and for most of us far from
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obvious;

cos(ax) cos(bx) =
1

2
cos[(a+ b)x] +

1

2
cos[(a− b)x]

and

sin(ax) sin(bx) =
1

2
cos[(a− b)x]− 1

2
cos[(a+ b)x]

and

cos(ax) sin(bx) =
1

2
sin[(a+ b)x] +

1

2
sin[(a− b)x] .

The product formulas are very important to the study of constructive and destructive inteference
in waves. They explain where beats come from among other things. Also, it is worth mentioning
that if you remember one of these carefully then you can get others from differentiating. Try
differentiating sin(a+ x) to derive the adding angles formula for cos(a+ x).

Example 6.6.6. ∫
cos(3x) sin(5x)dx =

∫ [
1

2
sin(8x) +

1

2
sin(−2x)

]
dx

=
1

2

∫
sin(8x)dx− 1

2

∫
sin(2x)dx

=
−1

16
cos(8x)− 1

4
cos(2x) + c.

In-Class Example 6.6.7. Calculate

∫
cos(3x) cos(5x)dx.

Example 6.6.8. ∫
sin(3x) sin(5x)dx =

∫ [
1

2
cos(8x)− 1

2
cos(−2x)

]
dx

=
1

2

∫
cos(8x)dx− 1

2

∫
cos(2x)dx

=
1

16
sin(8x)− 1

4
sin(2x) + c.

What about
∫

sin(x) cos(3x) cos(6x)dx? How would you attack such a problem?
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Example 6.6.9. Here we use the adding angles identity for tangent followed by a u = cos(4x)
substitution. ∫

tan(x) + tan(3x)

1− tan(x) tan(3x)
dx =

∫
tan(4x)dx

=

∫
sin(4x)

cos(4x)
dx

=

∫
−du
4u

=
−1

4
ln | cos(4x)|+ c.

Finally, I would just comment that there are many integrations of the hyperbolic trigonometric
functions which follow arguments paralell to those given in this section.

6.7 area bounded by curves

Examples to be given in lecture.
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7.1 analytical geometry

The difference between analytic geometry and the formal geometry of Euclid is that analytic ge-
ometry is based primarily on numbers and algebra whereas the method of Euclid involves mainly
straight-edge and compass constructions. Analytic geometry is far more useful. As a concrete
example, it is impossible to trisect an angle in general using constructive methods however, in
analytic geometry trisecting an angle is as easy as dividing by three and using your handy-dandy
protractor. Of course the history and beauty of Euclidean geometry ought not be neglected, you’ll
see the beauty in a course on modern geometry. Also, abstract algebra has much to say about the
non-existence of certain constructions in Euclidean geometry.

The geometry of the plane is easily described by various operations on the set R2 = R × R =
{(x, y) | x, y ∈ R}. If p = (a, b) ∈ R2 then we say that the x-coordinate of p is a and the
y-coordinate of p is b. Typically we call the y direction the vertical and the x direction the
horizontal. If we are given two points, say p = (a1, a2) and q = (b1, b2) then the distance between
them is given by the distance formula

d(p, q) =
√

(b1 − a1)2 + (b2 − a2)2

Notice the distance to the origin to a point p = (x, y) is given by d(p, 0) =
√
x2 + y2, you can

appreciate the similarity to the distance in the one-dimensional case where d(x, 0) = |x| =
√
x2.

We can also calculate the midpoint of p, q ∈ R2 by simply calculating their average; m = 1
2(p+ q).

We define addition of points in the natural manner: if p = (p1, p2) and q = (q1, q2) then p + q =
(p1+q1, p2+q2) and multiplying by 1

2 is likewise defined to mean 1
2(p+q) =

(
1
2(p1+q1),

1
2(p2+q2)

)

The angle between two rays or line segments is often of interest. The sine, cosine and tangent
functions are key tools in such analysis. A right triangle is one which has a right-angle at one
corner (a right angle is measured to be 90 degrees or π/2 radians.) I have provided a quick reminder
of how sine, cosine and tangent are defined in for a right triangle in the diagram above. I should
also mention a little about the theory of conic sections. If you study the curves formed by cutting
a double-cone by a plane then you find the possibilities include points, lines, parabolas, ellipse and
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hyperbolas. I created this picture with the Tikz package in LATEX. Thanks to Mark Wibrow for
posting code which I found at this website.

Parabola

Circle
Hyperbola

In fact, there are geometric definitions which are at times important to know:

(1.) a line is the collection of all points in the plane equidistant from a pair of distinct focal points.

(2.) a parabola is the collection of all points in the plane equidistant from a given line and focal
point.

(3.) a ellipse is the collection of all points in the plane for which the sum of the distance from
one focal point and the distance from a second focal point is held constant.

(4.) a hyperbola is the collection of all points in the plane for which the difference of the distance
from one focal point and the distance from a second focal point is held constant.

Even more important, there are algebraic definitions in the special cases that the focal points
or lines fall on a line parallel to the coordinate axes.

(1.) a line through (x1, y1) and (x2, y2) is the set of all (x, y) for which:

(x− x2)(y − y1) = (x− x1)(y − y2)

If x1 = x2 then the line is vertical and has equation x = x1. Otherwise, the slope of the line
is given by m = y2−y1

x2−x1 and the equation of the line in point-slope form is y = y1 +m(x−x1).
If y = mx+ b then the equation of the line is in slope-intercept form.

(2.) If A 6= 0, then a v
¯
ertical parabola with vertex (h, k) is the solution of y = A(x−h)2 +k. Note

A > 0 gives an upward opening parabola and A < 0 gives a downward opening parabola.
Likewise, for B 6= 0 we obtain a horizontal parabola with vertex (h, k) as the solution set
of x = h + B(y − k)2. If B > 0 the horizontal parabola is right-opening whereas if B < 0
the parabola is left-opening.

(3.) Let a, b > 0 then the solution set of (x−h)2
a2

+ (y−k)2
a2

= 1 is an ellipse centered at (h, k).

https://tex.stackexchange.com/questions/344422/3d-form-will-be-how-to-draw-this-picture
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(4.) Let a, b > 0 then the solution set of (x−h)2
a2
− (y−k)2

a2
= ±1 is an hyperbola centered at (h, k)

with slant asymptotes y = k ± b
a(x− h)

Only the definition of line given above is general. Parabolas, hyperbolas and ellipse can have more
complicated equations than the ones given above. The complication comes from rotating the curves.
Still, it is possible to give one overarching equation to rule them all and in the algebra bind them:

Definition 7.1.1. Given constants A,B,C,D,E, F the solution set of

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

is a conic section. We say the conic section is degenerate if it is a line or a point.

Please see this Desmos demonstration to see how varying the constants A,B,C,D,E, F produces
all the conic sections. To properly unwind this precious equation we need the linear algebra of
eigenvectors and the real spectral theorem. However, I believe detailed analysis of the rotated
case can also be found in the excellent and far from lazy calculus text by Howard Anton1. This
concludes our short tour of analytic geometry. We will find occasion to use these tools throughout
this course. If you want to read more from a calculus II level perspective, you might take a look at
this little article I wrote on how to parametrize such curves.

7.2 trigonometry

In this section I try to present most if not all the useful trigonometric identities for calculus. It is
not too hard to prove that the law of cosines follows from the Pythagorean Theorem: if A,B,C
are the lengths of the sides of a triangle with angle θ opposite C then

C2 = A2 +B2 − 2AB cos θ

Note that when θ = π
2 we recover the usual identity C2 = A2 + B2. The law of cosines applies to

arbitrary triangles whereas the Pythagorean theorem only applies to right-triangles.

1Anton puts most books these days to shame

https://www.desmos.com/calculator/x0jekpanf7
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With a little trouble and ingenuity you can use the Law of cosines applied to certain pictures to
deduce the fundamental identities which I refer to as the adding angles identities

cos(θ + β) = cos θ cosβ − sin θ sinβ

sin(θ + β) = sin θ cosβ + cos θ sinβ

With these two identities we can derive most anything we want. The examples that follow are in
no particular order. I only use the adding angle identities and the definitions of tangent plus a
little algebra.

Example 7.2.1.

tan(θ + β) =
sin(θ + β)

cos(θ + β)

=
sin θ cosβ + cos θ sinβ

cos θ cosβ − sin θ sinβ

=

sin θ cosβ
cos θ cosβ + cos θ sinβ

cos θ cosβ

cos θ cosβ
cos θ cosβ −

sin θ sinβ
cos θ cosβ

⇒ tan(θ + β) =
tan θ + tanβ

1− tan θ tanβ

While we are on this example, note if θ = β then we find

tan(2θ) =
2 tan θ

1− tan2 θ

Example 7.2.2. The case θ = β gives interesting formulas for sine and cosine,

cos(θ + θ) = cos θ cos θ − sin θ sin θ ⇒ cos(2θ) = cos2 θ − sin2 θ.

Likewise,

sin(θ + θ) = sin θ cos θ + cos θ sin θ ⇒ sin(2θ) = 2 sin θ cos θ.

Since cos2 θ + sin2 θ = 1 thus sin2 θ = 1− cos2 θ it follows that cos(2θ) = 2 cos2 θ − 1 hence

cos2 θ =
1

2

(
1 + cos(2θ)

)

Similarly we can solve for sin2 θ to obtain,

sin2 θ =
1

2

(
1− cos(2θ)

)
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7.3 complex numbers and trigonometry

Naturally, we can continue in the fashion of the previous section to derive a great variety of trigono-
metric identities. However, there is something somewhat unsatisfying about this method. The
calculation is indirect. Suppose we wanted to simplify the expression sin(θ) cos(4θ). How would we
do it? To be fair, there are identities for sin(θ) sin(β), cos(θ) cos(β) and sin(θ) cos(β) so we could
just look those up and go from there. But, is there a better way to remember all these facts? Is
there some elegant formula which encapsulates all these trigonometric identities and reduces these
problems to little more than algebra? In fact, yes. However, it comes at the price of understanding
a bit of basic complex variables. I would argue that this is a worthy price since most students need
to learn more about complex numbers anyway.

We usually denote a complex numbers a + ib for a, b ∈ R. Alternatively, perhaps you’ve see the
notation a + b

√
−1. But, what is a complex number2? In terms of the axioms of real numbers

we can prove
√
−1 /∈ R. What then is this odd quantity of

√
−1? Gauss gave an answer to this

question in terms of explicitly real mathematics. Gauss showed how to build complex numbers from
real numbers. In particular, he said complex numbers could be identified with pairs of real numbers
that enjoy a certain rather beautiful multiplication; C = R2 where (a, b)∗ (c, d) = (ac− bd, ad+ bc).
This is usually denoted

(a+ ib)(c+ id) = ac+ iad+ ibc+ i2bd = ac− bd+ i(ad+ bc)

Where we denoted i = (0, 1) hence i2 = (0, 1) ∗ (0, 1) = −(1, 0) and since (1, 0) ∗ (a, b) = (a, b) we
denote (1, 0) = 1 hence the relation i2 = −1. In fact, that was the whole reason to define this funny
multiplication ∗, Gauss wanted a formal system to construct a number with the property i2 = −1.
This number i was termed ”imaginary” since it didn’t fall into the category of the real numbers,
it has different properties. In truth, imaginary numbers are just as real in the philosophical sense
as real numbers. In any event, we should remember (a, b) = a+ ib guides our visualization of C as
the xy-plane R2.

Complex numbers can be added, subtracted, multiplied and divided just the same as real numbers.
Geometrically the multiplication of complex numbers is very interesting. When we multiply complex
numbers z and w the length of zw is found to be the product of the lengths of z and w. In
addition, the standard angle of zw is the sum of the standard angles of z and w respective. This
tight correspondence between geometry and algebra is part of what makes complex numbers so
incredible useful. Here is a picture of my claim:

2the answer I give here is just one of several popular constructions. We could also build complex numbers from
2 × 2 matrices or a rather abstract construction called a ”field extension”. This is the construction most accessible
at this point in your education



7.3. COMPLEX NUMBERS AND TRIGONOMETRY 249

Continuing, each complex number have a real and imaginary part,

Re(a, b) = Re(a+ ib) = a Im(a, b) = Im(a+ ib) = b

In general if z ∈ C then z = Re(z) + iIm(z). It should be emphasized that Re(z), Im(z) ∈ R so
there is a natural correspondence between complex numbers and the Cartesian Plane R2; I use this
correspondence when I write (x, y) = x + iy. This plane is called the complex plane. The x-axis
is called the real-axis, the y-axis is called the imaginary-axis. Sometimes also called an Argand
diagram,

Suppose x, y ∈ R in what follows. Every complex number z = x + iy has a complex-conjugate
z̄ = x − iy. In the complex plane the mapping z → z̄ is a reflection across the x-axis. We define
the modulus or length of a complex number as follows:

|x+ iy| =
√
x2 + y2 .

Notice z = x + iy and z̄ = x − iy have zz̄ = (x + iy)(x − iy) = x2 + y2 thus |z| =
√
zz̄. However,

you can also verify zw = zw and it follows easily that |zw| = |z||w|. This algebra verifies my earlier
assertion that the length |zw| of zw is the product of the lengths |z| and |w|.

7.3.1 the complex exponential

It is likely you will motivate this formula in the complex variables course. Ultimately there are many
ways to understand the definition given below is the only definition which is natural, however most
of those explanations involve calculus. That said, we can understand the necessity of the definition
from a purely algebraic/geometric viewpoint: if the exponential function is to be defined on the
complex plane then
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1. any complex exponential function should restrict to the real exponential function
on the real axis in C.

2. rotations in the plane transform a point (x, y) to a new point (x cos θ−y sin θ, x sin θ+
y cos θ) and in complex notation that factors to (x+iy)(cos θ+i sin θ). If we rotated
again by angle β then the point would be transformed to (x + iy)(cos(θ + β) +
i sin(θ + β)). This means the transformation is like the real exponential function
which also has eaeb = ea+b.

These two ingredients go together to suggest the following definition ( of course, definitions don’t
have to be motivated, I’m just trying to give you some idea of how you could derive such a rule).

Definition 7.3.1. complex exponential function.

We define exp : C→ C by the following formula:

exp(z) = exp(Re(z) + iIm(z)) = eRe(z)
[
cos(Im(z)) + i sin(Im(z))

]
.

We can show that this definition yields the following desirable properties:

1. eRe(z) = Re(exp(z))

2. exp(iIm(z)) = cos(Im(z)) + i sin(Im(z))

3. exp(0) = 1

4. exp(z + w) = exp(z)exp(w)

5. exp(−z) = 1
exp(z)

6. exp(z) 6= 0 for all z ∈ C

Here eRe(z) denotes the plain-old real exponential function which we will investigate in depth as
this course progresses. Essentially, the second condition says that the complex exponential func-
tion must reproduce the real exponential function when the input is a complex number with zero
imaginary part. The proof of (1.) is simple, just note cos(0) = 1 and sin(0) = 0 hence (2.) follows.
Condition 2.) is called Euler’s identity. The proof of (2.) is simple as well, just notice e0 = 1
then observe that the definition reduces to Euler’s identity. Again, the proof of (3.) is simple,
e0 = e0+i0 = e0(cos(0) + i sin(0)) = 1.
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Let’s examine the proof of 4.). Suppose that z = x+iy and w = a+ib where x, y, a, b ∈ R. Observe:

exp(z + w) = exp(x+ iy + a+ ib)

= exp(x+ a+ i(y + b))

= ex+a
(
cos(y + b) + i sin(y + b)

)
defn. of complex exp.

= ex+a
(
cos y cos b− sin y sin b+ i[sin y cos b+ sin b cos y]

)
adding angles formulas

= ex+a
(
cos y + i sin y

)(
cos b+ i sin b

)
algebra

= exea
(
cos y + i sin y

)(
cos b+ i sin b

)
law of exponents

= ex+iyea+ib defn. of complex exp.

= exp(z)exp(w).

To prove (5.) we can make use of (3.) and (4.),

exp(z)exp(−z) = exp(z − z) = exp(0) = 1 ⇒ exp(−z) =
1

exp(z)
.

Note that the equation above implies that exp(z) 6= 0 for all z ∈ C so we have proof for (6.). I will
use the notation ez = exp(z) from this point onward3

7.3.2 polar form of a complex number

We argued that sine and cosine are defined in Quadrants II,III and IV in order to extend right
triangle geometry from Quadrant I in the natural way. In other words, sine and cosine are defined
to force the polar coordinate formulas to be valid4

x = r cos θ y = r sin θ

To make connection with complex numbers unambiguously let’s suppose we have r =
√
x2 + y2 and

0 ≤ θ ≤ 2π. Consider a complex number z = x+ iy, convert it to polar coordinates by substituting
the polar coordinate transformations above:

z = x+ iy = r cos θ + ir sin θ = r(cos θ + i sin θ) = reiθ.

Definition 7.3.2. polar form of complex number.

3 I have emphasized the ways in which the complex exponential is similar to the real exponential, but be warned
there is much more to say. For example, exp(z+2nπi) = exp(z) because the sine and cosine functions are 2π-periodic.
But, this means that the exponential is not 1-1 and consequently one cannot solve the equation ez = ew uniquely.
This introduces all sorts of ambiguities into the study of complex equations. Given ez = ew, you cannot conclude that
z = w, however you can conclude that there exists n ∈ Z and z = w + 2nπi. In the complex variables course you’ll
discuss local inverses of the complex exponential function, instead of just one natural logarithm there are infinitely
many to use.

4my viewpoint, it doesn’t have to be yours, there are lots of ways to think about sine and cosine
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Suppose the Cartesian form of a complex number z is given z = x+ iy then the polar form
of the complex number is z = rexp(iθ) where r =

√
x2 + y2 and θ is the standard angle of

(x, y) measured counterclockwise from the positive real axis.

Example 7.3.3. Let z = 2 + 2i then r =
√

4 + 4 =
√

8 whereas tan θ = y
x = 2

2 = 1 hence θ = π
4 .

The polar form is z =
√

8 exp
(
iπ4
)
.

Example 7.3.4. Let z = 2 + 2i and multiply by exp(iβ). We found the polar form of z in the last
example is z =

√
8 exp

(
iπ4
)
.

zw =
√

8 exp
(
iπ4
)
exp(iβ) =

√
8 exp

[
i(π4 + β)

]
Multiplication of a complex number z by exp(iβ) rotates z by an angle of β in the counterclockwise
direction.

In electrical engineering complex numbers are used to represent the impedance of some circuit.
Inductance and capacitance are give a complex resistance which depends on the frequency of the
current present in the circuit. This phasor method allows you to solve alternating current problems
as if they were direct current. Beware, j =

√
−1 in their formalism because i is used for current. If

I was a electrical engineering major then I would make it a point to take linear algebra and complex
variables and differential equations as soon as possible. It would help you to see past the math and
focus on the engineering5.

7.3.3 the algebra of sine and cosine

Euler’s identity is beautiful on its own, but the following formulas are the most of the reason
I’m bothering to type up these notes. Simply add and subtract eiθ = cos θ + i sin θ and e−iθ =
cos θ − i sin θ to obtain,

cos θ =
1

2

(
eiθ + e−iθ

)
sin θ =

1

2i

(
eiθ − e−iθ

)
.

5of course, given all that you might as well add a math major so you have more options later in life.
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Example 7.3.5. Suppose you want to derive a nice formula for the square of cosine. Just plug in
the boxed formula and use the laws of exponents we proved for the complex exponential:

cos2 θ =

[
1

2

(
eiθ + e−iθ

)]2
=

1

4

(
eiθeiθ + 2eiθe−iθ + e−iθe−iθ

)
=

1

4

(
e2iθ + 2 + e−2iθ

)
=

1

2
+

1

2

1

2

(
e2iθ + e−2iθ

)
=

1

2
+

1

2
cos 2θ

=
1

2

(
1 + cos 2θ

)
.

Example 7.3.6. Suppose you want to derive a nice formula for the square of sine. Just plug in
the boxed formula and use the laws of exponents we proved for the complex exponential:

sin2 θ =

[
1

2i

(
eiθ − e−iθ

)]2
=
−1

4

(
eiθeiθ − 2eiθe−iθ + e−iθe−iθ

)
=
−1

4

(
e2iθ − 2 + e−2iθ

)
=

1

2
− 1

2

1

2

(
e2iθ + e−2iθ

)
=

1

2
− 1

2
cos 2θ

=
1

2

(
1− cos 2θ

)
.

The identities above you should have memorized anyway, but I don’t have to memorize them since
I can derive them in a pinch. In contrast, the next example is not one for which I could typically
quote the answer off the top of my head:

Example 7.3.7. Same method again. Covert given functions to imaginary exponentials and do
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algebra until you see sines and cosines again. Simple as that.

cos(x) sin(4x) =
1

2

(
eix + e−ix

)
1

2i

(
e4ix − e−4ix

)
=

1

4i

(
e5ix − e−3ix + e3ix − e−5ix

)
=

1

2

[
1

2i

(
e5ix − e−5ix

)
+

1

2i

(
e3ix − e−3ix

)]
=

1

2
sin(5x) +

1

2
sin(3x)

You could calculate identities for cos(ax) cos(bx), sin(ax) sin(bx) by much the same calculation and
you’d find a sum of cosines for each:

cos(ax) cos(bx) =
1

2
cos[(a+ b)x] +

1

2
cos[(a− b)x]

sin(ax) sin(bx) =
1

2
cos[(a− b)x]− 1

2
cos[(a+ b)x]

On the other hand, generally cos(ax) sin(bx) yields a sum of sines,

cos(ax) sin(bx) =
1

2
sin[(a+ b)x] +

1

2
sin[(a− b)x]

Naturally, we could also apply the method to calculate formulas for higher powers or products of
sine and cosine. Just for a flavor:

Example 7.3.8.

cos3 θ =

[
1

2

(
eiθ + e−iθ

)]3
=

1

8

(
e3iθ + 3eiθ + 3e−iθ + e−3iθ

)
=

3

4
sin(θ) +

1

4
sin(3θ).

DeMoivres’ theorem in complex notation is simply (eiθ)n = einθ. When you unfold this into sines
and cosines the result is amazing:

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

You can try plugging in n = 2 or n = 3 and you’ll find yet more identities which are less than
obvious from other approaches.
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7.3.4 superposition of waves and the method of phasors

Sinusoidal waves on a string have the form y = A sin(kx − ωt) + φ). This wave has amplitude A,
wave number k, angular frequency ω and phase φ. If we have two such waves on a string or some
other medium then they combine to create a new wave.

I made a few examples in Desmos to explore interference. click here to explore what is pictured
below. The graph above has y = sin (ωt+ φ1) as the red-dotted curve and y = sin (ωt+ φ2) as
the green-dots curve. The sum y = sin (ωt+ φ1) + sin (ωt+ φ2) is the purple curve. I illustrate
superposition in several cases below:

The picture above illustrates destructive interference. In all the cases above we are adding
waves with the same frequency, only the phase differs.

The mathematics of a simple case is encapsulated in the following trigonometric identity:

sin(a) + sin(b) = 2 sin

(
a+ b

2

)
cos

(
a− b

2

)
This formula explains what we saw above and it also leads to the phenomenon of beats. When we
add two waves with different frequencies the result is the sine and cosine terms oscillate at different
rates. The sine is high frequency whereas the cosine is low frequency if we set a = ω1t and b = ω2t
where ω1 > ω2. Note a+b = (ω1+ω2)t whereas a−b = (ω1−ω2)t. We can think of the cosine term
as a slowly varying amplitude. I plot y = ± cos(ω1−ω2)t in the blue dots and y = sinω1t+ sinω2t
as the red curve. The plot below has ω1 = 5 and ω2 = 4.5.

https://www.desmos.com/calculator/fdwxwl8zab


256 CHAPTER 7. APPENDIX

See this Desmos demonstration to adjust or animate difference cases for ω1, ω2 in the plot above.

7.3.5 standing waves

Suppose we have two waves of equal amplitude (A1 = A2 = A), frequency (ω) and wavenumber (k)
traveling in opposite directions, y1 travels right and y2 travels left,

y1 = A1 sin
[
kx− ωt+ φ1

]
and y2 = A2 sin

[
kx+ ωt+ φ2

]
Consider the superposition of these waves,

y1 + y2 = A sin
[
kx− ωt+ φ1

]
+A sin

[
kx+ ωt+ φ2

]
= 2A sin

[
(kx− ωt+ φ1) + (kx+ ωt+ φ2)

2

]
cos

[
(kx− ωt+ φ1)− (kx+ ωt+ φ2)

2

]
= 2A sin

[
kx+

φ1 + φ2
2

]
cos

[
φ1 − φ2

2
− ωt

]
= 2A sin

[
kx+

φ1 + φ2
2

]
cos

[
ωt− φ1 − φ2

2

]

This is a standing wave with amplitude 2A. The shape of the wave is given by the sine factor
then as time evolves the second factor oscillates between −1 and 1. Perhaps you’ve see such a
pattern, if you fix a rope to a wall then swing the free end you can set up two waves, one created
by your waving, the other created by the reflection of your wave off the wall. The net result is
the appearance of a wave that stands still. A standing wave. Similar mathematics applies to the
patterns of pressure variation in pipe organs. Again a addition of sines or cosines will describe how
the notes combine within the instrument.

Problem: find the amplitude and phase of y1 + y2 given that y1 = A1 sin(kx + φ1) and
y2 = A2 sin(kx+ φ2). Also, derive a similar result for cosine.

Solution: Define ỹ1 = A1e
i(kx+φ1) and ỹ2 = A2e

i(kx+φ2). Notice that these complex functions
contain both the sine and cosine functions we wish to add: in particular

y1 = Im(ỹ1) = A1 sin(kx+ φ1), y2 = Im(ỹ2) = A2 sin(kx+ φ2)

https://www.desmos.com/calculator/z388n8unpa
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The real parts will give us cosines instead. We can calculate the sum of the sine functions by
instead adding the corresponding complex functions,

ỹ1 + ỹ2 = A1e
i(kx+φ1) +A2e

i(kx+φ2)

= A1e
ikxeiφ1 +A2e

ikxeiφ2

= [A1e
iφ1 +A2e

iφ2 ]eikx

= Aeiγeikx (A and γ from picture)

= Aei[kx+γ]

= A cos[kx+ γ] + iA sin[kx+ γ]

As is often the case with complex variables we solved two real problems at once. Equating the real
and imaginary parts of the equation above yields

A1 sin(kx+ φ1) +A2 sin(kx+ φ2) = A sin[kx+ γ]

A1 cos(kx+ φ1) +A2 cos(kx+ φ2) = A cos[kx+ γ]

where γ is implicitly defined by

tan γ =
A1 sin(φ1) +A2 sin(φ2)

A1 cos(φ1) +A2 cos(φ2)
.

And A is defined by

A =
√

[A1 cos(φ1) +A2 cos(φ2)]2 + [A1 sin(φ1) +A2 sin(φ2)]2

I’ve drawn the picture in quadrants I and II but the argument is general.
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If you had highschool physics you should recognize the construction above as the so-called ”tip-2-
tail” method of vector addition. Have no fear, it’s just trigonometry. Moreover, it is no hard to see
the calculation above easily generalizes to three or more vectors.

Finally, I would just mention that sines and cosines are important even though most waves are not
sinusoidal. Typically waves come in finite packets and their precise mathematical account requires
much more sophisticated terminology. The Fourier decomposition breaks down a waveform into a
sum of sines or cosines. Most digital formats of music are based on transforming the music into its
Fourier equivalent then devising clever methods to compress this data. In contrast, compression
of visual data is better accomplished with something called wavelets. The popular jpg-format is
based on wavelets.
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7.4 functions

The term function is about a third of a milennia old. It was first used by Leibniz in about 1700.
More recently the term function has gained a rigorous and precise meaning. To say f is a function
from A to B means that for each a ∈ A the function f assigns a particular element b ∈ B. We
denote this by saying that f(a) = b or we can equivalently denote a 7→ f(a).

Definition 7.4.1. function

We say f is a function from A to B if f(a) ∈ B for each a ∈ A and the value f(a) is a
single value. We denote f : A → B in this case and we say that A = domain(f) and B
= codomain(f). Furthermore, we say that f is an B-valued function of A. If A = B
then we may say that f is a function on A. If A ⊆ R then f is said to be a function of a
real variable. If B ⊆ R then f is said to be a real-valued function. If B ⊂ C then f
is said to be a complex-valued function.

7.4.1 local inverses

It does seem geometrically obvious that if the restriction of a function passes the horizontal line
test with respect to a connected set then the same function ought to be either strictly decreasing
or strictly increasing on that set.

Proposition 7.4.2. strictly monotonic functions are injective.

If f is either strictly increasing or strictly decreasing on U ⊆ R then f is injective on U .

Proof: assume that f is strictly increasing on U then for all x, y ∈ U such that x < y we have that
f(x) < f(y). Let a, b ∈ U and suppose f(a) = f(b) ( we seek to show a = b since that proves that f
is injective on U). If a = b then we’re done. Suppose that a < b then f(a) < f(b) which contradicts
f(a) = f(b). Likewise, if b < a then f(b) < f(a) which contradicts f(a) = f(b). Therefore, since
otherwise we find a contradiction, the only possibility is that a = b. Thus f is 1-1 on U . If f is
decreasing then the proof is similar. 2

I would like to offer a converse to this proposition. If a function is 1− 1 then it is either increasing

or decreasing, however, there are counter-examples. For example, f(x) =


x 0 ≤ x ≤ 1,

−x 1 < x ≤ 2

x 2 < x ≤ 3

is

injective but is neither increasing nor decreasing on [0, 3]. Here is a graph of this funny function:
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If we wish to obtain a converse to the proposition then we will need to add additional hypothesis
to avoid the counter-examples like the one offered above.

Proposition 7.4.3. inverse functions also increase or decrease.

Suppose f : U → V is either strictly increasing or strictly decreasing on U ⊆ R then
f−1 : V → U is likewise either strictly increasing or decreasing on V .

Proof: suppose f : U → V is strictly increasing with inverse f−1 : V → U . Suppose a, b ∈ V such
that a < b and suppose f−1(a) = x and f−1(b) = y. There exist three possibilities:

1. f−1(a) = f−1(b) which implies f(f−1(a)) = f(f−1(b)) thus a = b which contradicts our
assumption a < b.

2. f−1(a) > f−1(b) which implies f(f−1(a)) > f(f−1(b)) thus a > b which contradicts our
assumption a < b.

3. f−1(a) < f−1(b) which implies f(f−1(a)) < f(f−1(b)) thus a < b which is without contradic-
tion of our assumption a < b.

Therefore, we find for all a, b ∈ V , if a < b then f−1(a) < f−1(b) which proves f−1 is strictly
increasing. The proof for the strictly decreasing case is similar. 2

We now examine a number of examples to elaborate on the concept of a local inverse. We should
see the propositions above made manifest in each case.

Example 7.4.4. Consider f(x) = x2 with dom(f) = [−1, 1]. We can argue algebraically that this
function is not one-one since f(a) = f(b) gives a2 = b2 which implies a = ±b (we needed a = b to
obtain injectivity). Or observe that it fails the horizontal line test:
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In contrast, the same formula with reduced domain [−1, 0] or [0, 1] will pass the horizontal line test,

So then what is the formula for the inverse functions? We need,

(i.) f−1(f(x)) = f−1(x2) = x (ii.) f(f−1(x)) = (f−1(x))2 = x

Notice that (ii.) gives f−1(x) = ±
√
x. Then substituting into (i.) yields: ±

√
x2 = x. But, recall

that
√
x2 = |x| so we can see that the two solutions are,

1. If x ≥ 0 then
√
x2 = x so we choose the + solution; f−1(x) =

√
x

2. If x ≤ 0 then
√
x2 = −x so we choose the - solution; f−1(x) = −

√
x

We find that the inverse of f(x) = x2 on [0, 1] is f−1(x) =
√
x and the inverse of f(x) = x2 on

[−1, 0] is f−1(x) = −
√
x. Notice that the graphs of inverses (blue) are symmetric about the line (

green ).

Example 7.4.5. Let f(x) = cos(x). Recall the graph of the cosine function is:

note that f cannot have a global inverse since it is not 1-1. However, if we reduce the domain to
[0, π] we obtain a 1-1 function on that interval. I have graphed the local inverse in blue , and you
can see that the inverse is the reflection of the graph of cosine about the line y = x ( green ).
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It should be understood that when we speak of inverse cosine we actually refer the local inverse for
cosine on the interval [0, π]. The domain of inverse cosine is [−1, 1] and the range is [0, π]. In
principle one could construct other inverses for cosine based on other intervals, the choice of is
simply one of convention.

Example 7.4.6. Let f(x) = sin(x) with dom(f) = R . This is not 1-1 because sine oscillates
just like cosine. However, if we reduce the domain to [−π/2, π/2] we obtain a 1-1 function on that
interval (red ), so we can find an inverse function( blue ),

and you can see that the inverse is the reflection of the graph of sine about the line (green). The
domain of inverse sine is [−1, 1] and the range is [−π/2, π/2]. In principle one could construct other
inverses for sine based on other intervals, the choice of [−π/2, π/2] is simply one of convention.

Example 7.4.7. Let f(x) = tan(x) with dom(f) = R − {nπ + π/2 | n ∈ Z}. This is not 1-1
because tangent function oscillates just like sine and cosine. However, if we reduce the domain to
(−π/2, π/2) we obtain a 1-1 function on that interval (red ), so we can find an inverse function(
blue ),
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and you can see that the inverse is the reflection of the graph of tangent about the line y = x
(green ). The domain of inverse tangent is (−∞,∞) and the range is (−π/2, π/2). I have added
the vertical asymptotes of tangent in cyan at x = ±π

2 you can see that the inverse tangent has
horizontal asymptotes at y = ±π

2 . This illustrates a general pattern, vertical asymptotes for a
function will morph into horizontal asymptotes for the inverse function. This helps us understand
the limit of tan−1(x) is as x→∞ (it’s π/2).

By now you should have noticed that we can construct the inverse function’s graph by reflection
about the line y = x (assuming that the function is 1-1 on the interval of interest ). I actually use
this fact to construct certain graphs.

You can draw the graph y = ex (red) then draw the line y = x (green) and a bunch of perpendicular
bisectors (cyan ) then the graph of the inverse function y = ln(x) follows. If we travel one unit
from the red graph to the green line along the cyan line then the corresponding point on the blue
graph is one unit further past the green line. That is the green line should intersect the cyan line
at the midpoint between the intersection points of the red and blue graphs. Now, I should warn
you that this advice is given for graphs with horizontal and vertical directions given the same scale.
The cyan lines and the green line would take a different slant if x-axis and y-axis used a different
scale.
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7.5 limit proofs

Theorem 7.5.1. two-sided limit holds if and only if both left and right limits hold.

Let f be a function with interior limit point a. Let L ∈ R,

lim
x→a

f(x) = L ⇔
{

lim
x→a+

f(x) = L and lim
x→a−

f(x) = L

}

Proof: to prove ⇔ we must show both ⇒ and ⇐.

(⇒) Begin by assuming limx→a f(x) = L then for each ε > 0 there exists δ > 0 such that
0 < |x − a| < δ implies |f(x) − L| < ε. Note for each ε > 0 that if 0 < x − a < δ it follows
0 < |x − a| < δ so |f(x) − L| < ε hence limx→a+ f(x) = L. Likewise, note for each ε > 0 that if
−δ < x− a < 0 it follows 0 < |x− a| < δ so |f(x)− L| < ε hence limx→a− f(x) = L.

(⇐) We assume that both limx→a+ f(x) = L and limx→a− f(x) = L. Let ε > 0 and choose
δ = min(δ+, δ−) where we use the givens to choose δ+, δ− > 0 such that

1. 0 < x− a < δ+ implies |f(x)− L| < ε,

2. −δ− < x− a < 0 implies |f(x)− L| < ε

Therefore, if x ∈ R such that 0 < |x − a| < δ ≤ δ+, δ− then either 0 < x − a < δ < δ+ or
−δ− < −δ < x− a < 0 so by (1.) or (2.) it follows |f(x)− L| < ε. Therefore, the two-sided limit
exists and f(x)→ L as x→ a. 2.

Half the reason I include this proof is to get the math majors thinking about how to unfold the
logic of the symbol ⇔.

Limits work out well until mathematicians do weird stuff. For example, the function below has
domain R hence every point is a limit point for the function, yet, there is not even one point where
the limit exists.

Example 7.5.2. The Dirichlet function; f(x) =

{
1 if x ∈ Q
0 if x ∈ J = R−Q

. The best I can do to

the limit of the resolution is as follows:
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This function misbehaves! Think about f(x) → L as x → 0. Should we expect that L = 1 or
L = −1? No matter how close you get to x = 0 there are both rational and irrational numbers
closer to x = 0.

7.5.1 proofs from the definition

Example 7.5.3. Problem: prove lim
x→2

(3x+ 2) = 8 via the εδ-definition of the limit.

Preparatory calculations: We need to show that |x − 2| < δ implies |f(x) − L| < ε for f(x) =
3x+ 2 and L = 8 and a particular choice of δ. Consider then

|f(x)− L| = |3x+ 2− 8| = |3x− 6| = |3(x− 2)| = 3|x− 2| < 3δ = ε.

So, we should choose δ = ε/3 since ε > 0 it is clear that δ = ε/3 > 0. In view of these calculations
we are ready to state the proof.

Proof: Let ε > 0 and choose δ = ε/3. Suppose x ∈ R such that 0 < |x − 2| < δ. Observe
that

|3x+ 2− 8| = |3(x− 2)| = 3|x− 2| < 3δ = ε.

Thus 0 < |x − 2| < δ implies |3x + 2 − 8| < ε and it follows by the definition of the limit
that lim

x→2
(3x+ 2) = 8. 2

Students sometimes ask me which part is the answer. My answer is that the whole proof is the
answer. It is important that it contains all the proper logical statements put in the logical order.
Basically, a “proof” is simply a complete explanation of why some statement is true. I will admit
there is ambiguity as to what constitutes a “complete” proof in general.

Example 7.5.4. Problem: prove lim
x→3

(2− x) = −1 via the εδ-definition of the limit.

Preparatory calculations: We need to show that |x−3| < δ implies |f(x)−L| < ε for f(x) = 2−x
and L = −1 and a particular choice of δ. Consider then

|f(x)− L| = |2− x− (−1)| = | − x+ 3| = | − 1(x− 3)| = |x− 3| < δ = ε.

So, we should choose δ = ε.

Proof: Let ε > 0 and choose δ = ε. Suppose x ∈ R such that 0 < |x− 3| < δ. Observe that

|2− x− (−1)| = | − x+ 3)| = |x− 3| < δ = ε.

Thus 0 < |x− 3| < δ implies |2− x− (−1)| < ε and it follows by the definition of the limit
that lim

x→3
(2− x) = −1. 2
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Example 7.5.5. Problem: prove lim
x→0

(x2) = 0 via the εδ-definition of the limit.

Preparatory calculations: We need to show that |x−0| < δ implies |f(x)−L| < ε for f(x) = x2

and L = 0 and a particular choice of δ. Consider then

|f(x)− L| = |x2 − 0| = |x|2 < δ2 = ε.

So, we should choose δ =
√
ε. Since ε > 0 we can be assured that the squareroot gives δ > 0.

Proof: Let ε > 0 and choose δ =
√
ε. Suppose x ∈ R such that 0 < |x − 0| < δ. Observe

that
|x2 − 0| = |x|2 < (

√
ε)2 = ε.

Thus 0 < |x − 0| < δ implies |x2 − 0| < ε and it follows by the definition of the limit that
limx→0(x

2) = 0. 2

Example 7.5.6. Problem: prove lim
x→3

(x2) = 9 via the εδ-definition of the limit.

Preparatory calculations: We need to show that |x−3| < δ implies |f(x)−L| < ε for f(x) = x2

and L = 9 and a particular choice of δ. Consider then

|f(x)− L| = |x2 − 9| = |(x− 3)(x+ 3)| < δ|x+ 3|

Ok, so |x + 3| is annoying. But, have no fear, we control the δ. Note that 0 < |x − 3| < δ gives
3− δ < x < 3 + δ so 6− δ < x+ 3 < 6 + δ. Suppose δ < 1 then we certainly have that 5 < x+ 3 < 7
which gives −7 < 5 < x + 3 < 7 so |x + 3| < 7 which is very nice because, given our assumption
δ < 1 we find:

|f(x)− L| =< δ|x+ 3| < 7δ.

now the choice should be clear, we use δ = ε/7. However, we do need that ε/7 < 1, remember we
don’t control ε, all we know is that ε > 0. The solution is simple, to be careful about the possibility of
large ε we choose δ = min(ε/7, 1). If δ = 1 then we still find |x+ 3| ≤ 7 and so |f(x)−L| ≤ 7δ < ε
provide that δ = min(ε/7, 1) so we knew δ < ε/7 hence 7δ < ε.

Proof: Let ε > 0 and choose δ = min(ε/7, 1). Suppose x ∈ R such that 0 < |x − 3| < δ.
Observe that δ ≤ 1 thus 0 < |x − 3| < δ ≤ 1 yields −1 ≤ x − 3 ≤ 1 from which it follows
5 < x+ 3 ≤ 7 hence −7 < x+ 3 ≤ 7 so |x+ 3| ≤ 7. Therefore,

|x2 − 9| = |(x− 3)(x+ 3)| = |x− 3||x+ 3| < δ|x+ 3| < 7δ

Moreover, as δ ≤ ε/7 we have 7δ ≤ ε. Thus, 0 < |x− 3| < δ implies that |x2 − 9| < ε and
it follows by the definition of the limit that lim

x→3
(x2) = 9. 2

Sometimes we are called upon to calculate a limit which has an arbitrary limit point. In the
example below the limit point is denoted by “a”. We must make arguments which hold for all
possible values of a since no particular restriction on a is offered.
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Example 7.5.7. Problem: prove lim
x→a

(3x+ 2) = 3a+ 2 via the εδ-definition of the limit.

Preparatory calculations: We need to show that |x− a| < δ implies |f(x)− L| < ε for f(x) =
3x+ 2 and L = 3a+ 2 and a particular choice of δ. Consider then

|f(x)− L| = |3x+ 2− (3a+ 2)| = |3(x− a)| = 3|x− a| < 3δ = ε.

So, we should choose δ = ε/3 since ε > 0 it is clear that δ = ε/3 > 0. In view of these calculations
we are ready to state the proof.

Proof: Let ε > 0 and choose δ = ε/3. Suppose x ∈ R such that 0 < |x − a| < δ. Observe
that

|3x+ 2− (3a+ 2)| = |3(x− a)| = 3|x− a| < 3δ = ε.

Thus 0 < |x− a| < δ implies |3x+ 2− (3a+ 2)| < ε and it follows by the definition of the
limit that lim

x→a
(3x+ 2) = 3a+ 2. 2

Example 7.5.8. Problem: prove lim
x→1+

(
√
x− 1) = 0 via the εδ-definition of the limit.

Preparatory calculations: We need to show that 1 < x < 1 + δ implies |f(x) − L| < ε for
f(x) =

√
x− 1 and L = 0 and a particular choice of δ. Consider then

|f(x)− L| = |
√
x− 1− 0| = |

√
x− 1| =

√
|x− 1|.

where we used 1 < x < 1 + δ to deduce 0 < x− 1 hence |x− 1| = x− 1. We should choose δ = ε2.

Proof: Let ε > 0 and choose δ = ε2. Suppose x ∈ R such that 0 < x− 1 < δ. Observe that

|
√
x− 1| =

√
|x− 1| <

√
δ =
√
ε2 = ε.

Thus 0 < x − 1 < δ implies |
√
x− 1| < ε and it follows by the definition of the right-sided

limit that lim
x→1+

√
x− 1 = 0. 2

Notice f(x) =
√
x− 1 has dom(f) = [1,∞) and x = 1 is the boundary point of the domain. The

two-sided limit is not defined at one because the function is not real-valued for x < 1.

Example 7.5.9. Problem: prove limx→0
1
x /∈ R via the εδ-definition of the limit.

Preparatory calculations: think about it. What do we need to show to show it is impossible for
any real number to be the limit of 1

x as x→ 0?. By the proposition we just proved it would suffice
to show that the right-limit failed to exist no matter what our choice of L is. Let’s proceed from
that angle. We want to show that limx→0+

1
x cannot be a real number. The natural thing to try here

is contradiction, we suppose that there does exist L ∈ R such that limx→0+
1
x = L and then we hunt

for something insane. Once we find the insanity we see that believing in the existence of L ∈ R
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is madness so we can safely assume L /∈ R. This is the outline of the logic. Let’s get into the details:

Proof: assume that L ∈ R such that 1
x → L as x → 0+. This means that for each ε > 0

there exists δ > 0 such that 0 < x < δ implies
∣∣ 1
x − L

∣∣ < ε. We seek a contradiction,
suppose ε = L and let δ > 0 be some number such that all x ∈ R satisfying 0 < x < δ force∣∣ 1
x − L

∣∣ < ε. Define xo = min
(

1
2(L+ε) ,

δ
2

)
thus xo ≤ 1

2(L+ε) and xo < δ. Clearly 0 < xo < δ

so it follows that

−ε < 1

xo
− L < ε

and as ε = L we add ε to find 0 < 1
xo
< 2ε. On the other hand, we have constructed xo

to satisfy the inequality xo ≤ 1
2(L+ε) = 1

4ε thus 1
xo
≥ 4ε. But, this is a contradiction since

we cannot have both 1
xo
< 2ε and 1

xo
≥ 4ε. Therefore, be proof by contradiction, there does

not exist such an L ∈ R and we conclude that the limx→0+
1
x does not exist, hence limx→0

1
x

does not exist. These limits diverge. 2

If you’re wondering how I thought of the argument in the last example then perhaps the following
picture will help you understand why I chose xo as I did. In fact, the picture is what I used to
think of the proof. Pictures are often helpful, you ought not forget that graphing can be a powerful
tool for analysis.

Example 7.5.10. Problem: prove limx→0+
1
x =∞..

Preparatory calculations: we need to find δ such that M > 1
x for all x ∈ R such that 0 < x < δ.

Note M > 1
x implies 1

M < x. Looks like δ = 1
2M will do nicely.

Proof: suppose M > 0 and let δ = 1
2M . If 0 < x < δ = 1

2M then 1
x > 2M > M . Therefore,

for each M > 0 there exists δ > 0 such that 1
x > M whenever 0 < x < δ. It follows by

definition that limx→0+
1
x =∞. 2
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We learned in Example 7.5.9 this limit does not exist in R. Now we have shown that it actually
diverges to ∞. Notice that ∞ /∈ R, rather, ∞ is simply a notation to indicate a function has a
particular behavior at a point.

Remark 7.5.11. Another concept of infinity is discussed in the study of cardnality. Intuitively
speaking the cardnality of a set describes the size of the set. For example, S = {1, 2, 3} has cardnality
3. The natural numbers have cardnality ℵo which is infinite. Then the real numbers are even larger,
the cardnality of R is called the continuum c. Some authors denote the continuum by c = ℵ1 and it
does make sense to say that ℵo < c. However, the idea that the continuum is the next infinity past
ℵo is called the continuum hypothesis.

7.6 limit laws

We assume a ∈ R and f, g are functions with limit point a throughout this section unless otherwise
explicitly stated. Let us begin by proving a limit has a single value.

Proposition 7.6.1. limit is unique.

If lim
x→a

f(x) = L1 and lim
x→a

f(x) = L1 then L1 = L2.

Proof: let ε > 0. Suppose lim
x→a

f(x) = L1 and lim
x→a

f(x) = L1. Choose δ1 > 0 for which 0 <

|x− a| < δ1 implies |f(x)− L1| < ε/2. Likewise, choose δ2 > 0 for which 0 < |x− a| < δ2 implies
|f(x)− L2| < ε/2. Let δ = min(δ1, δ2) and suppose 0 < |x− a| < δ ≤ δ1, δ2 hence

|L1 − L2| = |L1 − f(x) + f(x)− L2| (7.1)

≤ |L1 − f(x)|+ |f(x)− L2|
= |f(x)− L1|+ |f(x)− L2|
< ε/2 + ε/2 = ε.

Thus |L1 − L2| < ε for arbitary ε > 0 and that implies |L1 − L2| = 0 hence L1 = L2|. 2

Very similar arguments can be used to show right and left limits which exist in R are unique. It
is very amusing that the proof of Proposition 7.6.4 rests on nearly the same calculation as the
uniqueness result above.

Proposition 7.6.2. limit of identity function.

lim
x→a

x = a.

Proof: Fix a ∈ R. Let f(x) = x for all x ∈ R. Let ε > 0 and choose δ = ε. If 0 < |x− a| < δ then
|f(x)− a| = |x− a| < ε thus limx→a f(x) = a which is to say limx→a x = a. 2
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Proposition 7.6.3. limit of constant function.

lim
x→a

c = c.

Proof: Fix a ∈ R and define f(x) = c for all x ∈ R. Suppose ε > 0 and choose δ = 42. If x ∈ R
with 0 < |x − a| < 42 then |f(x) − c| = |c − c| = 0 < ε thus limx→a f(x) = c by the definition of
the limit. Thus limx→a c = c. 2

Proposition 7.6.4. additivity of the limit.

Suppose limx→a f(x) = Lf ∈ R and limx→a g(x) = Lg ∈ R then

lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x).

Proof: we are given that lim
x→a

f(x) = Lf and lim
x→a

g(x) = Lg. Let ε > 0 and choose δf > 0 such that

0 < |x− a| < δf implies |f(x)−Lf | < ε
2 . Likewise, choose δg > 0 for which 0 < |x− a| < δg implies

|g(x) − Lg| < ε
2 . Let δ = min(δf , δg) then δ ≤ δf and δ ≤ δg. Suppose x ∈ R and 0 < |x − a| < δ

then |f(x)− Lf | < ε
2 and |g(x)− Lg| < ε

2 . Consider that

|f(x) + g(x)− (Lf + Lg)| = |f(x)− Lf + g(x)− Lg| (7.2)

≤ |f(x)− Lf |+ |g(x)− Lg|
< ε/2 + ε/2 = ε.

Therefore, by the definition of the limit, lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x). 2.

Proposition 7.6.5. homogeneity of the limit.

Suppose c ∈ R and limx→a f(x) = L ∈ R then lim
x→a

cf(x) = c lim
x→a

f(x).

Proof: Suppose c ∈ R and limx→a f(x) = L ∈ R. Let ε > 0. If c 6= 0 then choose δ > 0 for which
0 < |x− a| < δ implies |f(x)− L| < ε

|c| . Observe

|cf(x)− cL| = |c||f(x)− L| < |c| ε
|c|

= ε (7.3)

If c = 0 then |cf(x) − cL| = 0 < ε for all x ∈ dom(f). Thus, by the definition of the limit,
lim
x→a

cf(x) = c lim
x→a

f(x). 2

I often collectively refer to the previous two theorems as the linearity of the limit. In calculus we
will learn that most major constructions obey the linearity rules. We can also extend the rules to
give the limit law for a finite linear combination of convergent functions.
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Proposition 7.6.6. limit of linear combination of convergent functions.

Suppose a ∈ R and fi(x)→ Li ∈ R as x→ a for i = 1, 2, . . . , n. Then,

lim
x→a

(c1f1(x) + c2f2(x) + · · ·+ cnfn(x)) = c1 lim
x→a

f1(x) + c2 lim
x→a

f2(x) + · · ·+ cn lim
x→a

fn(x).

Proof: Suppose fi(x)→ Li ∈ R as x→ a for i = 1, 2, . . . , n. We claim

lim
x→a

(c1f1(x) + c2f2(x) + · · ·+ cnfn(x)) = c1 lim
x→a

f1(x) + c2 lim
x→a

f2(x) + · · ·+ cn lim
x→a

fn(x)

for all n ∈ N. We will prove this claim by induction on n. Notice the claim is true for n = 1 since
Proposition 7.6.5 provides that lim

x→a
(c1f1(x)) = c1 lim

x→a
f1(x). Inductively suppose the claim is true

for some n ∈ N. Consider the linear combination of n+ 1 functions,

lim
x→a

(
c1f1(x) + c2f2(x) + · · ·+ cnfn(x) + cn+1fn+1(x)

)
=

= lim
x→a

(
c1f1(x) + c2f2(x) + · · ·+ cnfn(x)

)
+ lim
x→a

(
cn+1fn+1(x)

)
(7.4)

= c1 lim
x→a

f1(x) + c2 lim
x→a

f2(x) + · · ·+ cn lim
x→a

fn(x) + cn+1 lim
x→a

fn+1(x) (7.5)

We used Proposition 7.6.4 for Equation 7.4 and we applied the induction hypothesis and Proposition
7.6.5 for Equation 7.5. Thus we have shown the claim holds for n + 1 and it follows the result is
true for all n ∈ N by induction on n. 2

Proposition 7.6.7. limit of product is product of limits.

If limx→a f(x) = Lf ∈ R and limx→a g(x) = Lg ∈ R then

lim
x→a

[f(x)g(x)] =
(

lim
x→a

f(x)
)(

lim
x→a

g(x)
)
.

Preparing for Proof: Consider that we wish to find δ > 0 that forces x ∈ Bδ(a)o to satisfy

|f(x)g(x)− LfLg| < ε (7.6)

we have control over |f(x)−Lf | and |g(x)−Lg|. If we can somehow factor these out then we have
something to work with. Add and subtract Lfg(x) towards that goal:

|f(x)g(x)− LfLg| = |f(x)g(x)− Lfg(x) + Lfg(x)− LfLg| (7.7)

≤ |f(x)− Lf ||g(x)|+ |Lf ||g(x)− Lg|

Proof: let ε > 0 and suppose f(x)→ Lf and g(x)→ Lg as x→ a. Observe we may select positive
constants δ1, δ2 and δ3 for which:

(i.) 0 < |x− a| < δ1 implies |f(x)− Lf | <
ε

2(1 + |Lg|)
,
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(ii.) 0 < |x− a| < δ2 implies |g(x)− Lg| <
ε

2(1 + |Lf |)
,

(iii.) 0 < |x− a| < δ3 implies |g(x)− Lg| < 1.

Observe, from (iii.) we also have the bound below:

|g(x)| = |g(x)− Lg + Lg| ≤ |g(x)− Lg|+ |Lg| < 1 + |Lg| (7.8)

Let δ = min(δ1, δ2, δ3) and suppose 0 < |x − a| < δ thus (i.), (ii.) and (iii.) hold true and
|g(x)| < 1 + |Lg|. Thus calculate:

|f(x)g(x)− LfLg| = |f(x)g(x)− Lfg(x) + Lfg(x)− LfLg| (7.9)

≤ |f(x)− Lf ||g(x)|+ |Lf ||g(x)− Lg|

≤ ε

2(1 + |Lg|)
(1 + |Lg|) + |Lf |

ε

2(1 + |Lf |)
< ε

where the last inequality stems from the observation that |Lf |/(1 + |Lf |) < 1. Therefore, we have
shown f(x)g(x)→ LfLg as x→ a and this completes the proof. 2

The proof given above is fairly standard. I found the argument in this Wikibook.

Proposition 7.6.8. power function limit ( for powers n ∈ N).

Let a ∈ R and n ∈ N ∪ {0}, limx→a x
n = an.

Proof: is by induction on n. Observe n = 0 is true by Proposition 7.6.3. Inductively suppose
lim
x→a

xn = an for some n ∈ N. Consider the (n+ 1) case,

lim
x→a

xn+1 = lim
x→a

xnx =

(
lim
x→a

xn
)(

lim
x→a

x

)
= ana = an+1

where I used the Proposition 7.6.7 based on the induction hypothesis and Proposition 7.6.2. We
find the statement true for n implies it is likewise true for n + 1 hence the theorem is true for all
n ∈ N by proof by mathematical induction. 2

Proposition 7.6.9. polynomial function limit.

Suppose cn, . . . , c1, c0 ∈ R and p(x) = cnx
n + · · ·+ c1x+ c0 then lim

x→a
p(x) = p(a).

Proof: by Proposition 7.6.8 we note fi(x) = xi has lim
x→a

fi(x) = ai for i = 0, 1, 2, . . . , n. Changing

numbering slightly on Proposition 7.6.6 with fi(x) = xi for i = 0, 1, . . . , n we obtain:

lim
x→a

(cnx
n + · · ·+ c1x+ c0) = cna

n + · · ·+ c1a+ c0 = p(a). 2

https://en.wikibooks.org/wiki/Calculus/Proofs_of_Some_Basic_Limit_Rules
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Proposition 7.6.10. limit of composite. Suppose f has limit point a and g has limit point L1,

If lim
x→a

f(x) = L1 and lim
y→L1

g(y) = L2 then limx→a g(f(x)) = L2.

Proof: let ε > 0. Since limy→L1 g(y) = L2 we may choose δg > 0 such that 0 < |y−L1| < δg implies
|g(y)−L2| < ε. Likewise, since lim

x→a
f(x) = L1 we may select δf > 0 for which 0 < |x−a| < δf implies

|f(x)−L1| < δg. Suppose 0 < |x− a| < δf and let y = f(x) then |y−L1| = |f(x)−L1| < δg hence
|g(y)−L2| < ε. Thus |g(f(x))−L2| < ε. Therefore, by definition of limit, limx→a g(f(x)) = L2. 2

This proposition can be written without use of L1 and L2 but the statement is a bit clunky:

lim
x→a

[g(f(x))] = lim
y→limx→a f(x)

[g(y)] . (7.10)

Notice the proof and application of the composite limit rule both rest on the substitution y = f(x).
When we make the subsitution of y = f(x) we have to swap f(x) for y as we trade g(f(x)) for
g(y). Likewise, we exchange x→ a for the corresponding limit in y of y → limx→a f(x).

Proposition 7.6.11. reciprocal function limit.

If a 6= 0 then limx→a
1
x = 1

a .

Proof: Suppose a > 0. Let ε > 0 and choose δ = min
(
a
2 ,

a2ε
2

)
> 0. Observe δ ≤ a/2 then

|x− a| < δ ≤ a
2 implies −a

2 < x− a hence a
2 < x = |x|. Therefore, 1

|x| <
2
a . Consequently, if x ∈ R

with 0 < |x− a| < δ we find:∣∣∣∣1x − 1

a

∣∣∣∣ =

∣∣∣∣a− xax

∣∣∣∣ =
|x− a|
a|x|

<
2|x− a|
a2

<
2

a2
δ ≤ 2

a2
a2ε

2
= ε. (7.11)

Thus, by the definition of the limit, lim
x→a

1

x
=

1

a
. The proof in the case a < 0 is similar and we leave

it as an exercise for the reader. 2

Proposition 7.6.12. limit of quotient is quotient of limits.

Suppose limx→a f(x) = Lf ∈ R and limx→a g(x) = Lg ∈ R with Lg 6= 0 then

lim
x→a

f(x)

g(x)
=

limx→a f(x)

limx→a g(x)
.

Proof: Let h(y) = 1
y and note Proposition 7.6.11 provides limy→Lg h(y) = 1

Lg
since Lg 6= 0.

Furthermore, by Proposition 7.6.10 we find the limit of the composite function h(g(x)) = 1
g(x) is

given by limy→Lg h(y) = 1
Lg

. Proposition 7.6.7 completes the proof since:

lim
x→a

f(x)

g(x)
= lim

x→a

[
f(x) · 1

g(x)

]
=
(

lim
x→a

f(x)
)(

lim
x→a

1

g(x)

)
= Lf ·

1

Lg
=

limx→a f(x)

limx→a g(x)
. 2
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Beyond these rules you will find a number of other ”limit laws” in various texts. In one way or
another they boil down to proving a particular function has a natural limit then you combine that
data together with the composite limit law. So, to complete our catalog of basic limit math we
ought to calculate limits of the elementary functions.

Proposition 7.6.13. limit of square root function.

If a > 0 then limx→a
√
x =
√
a. In addition, limx→0+

√
x = 0.

Proof: Notice the following algebraic identity for a > 0,

∣∣√x−√a∣∣ =
|
√
x−
√
a||
√
x+
√
a|

|
√
x+
√
a|

=
|(
√
x−
√
a)(
√
x+
√
a)|

|
√
x+
√
a|

=
|x− a|
|
√
x+
√
a|

(7.12)

Let ε > 0 and choose δ = ε
√
a > 0. If 0 < |x− a| < δ = ε

√
a then following Equation 7.12 we find

∣∣√x−√a∣∣ =
|x− a|
|
√
x+
√
a|
<
|x− a|√

a
<
ε
√
a√
a

= ε.

Therefore, by the definition of the limit we find limx→a
√
x =
√
a. We leave the proof of limx→0+

√
x =

0 to the reader 2

Notice the proof for limx→0+
√
x = 0 will be similar to that given in Exercise 7.5.8. We could

continue on to show limx→a n
√
x = n

√
x for n = 3, 4, 5, . . . , but the algebraic difficulty is nontrivial

and we will soon find a more efficient way to calculate such limits. As such we content ourselves to
merely prove the limit law for the square root for the time being. That said, if we had a proof that
limx→a n

√
x = n

√
x for n = 3, 4, 5, . . . then we could use Proposition 7.6.8 and Proposition 7.6.10 for

x > 0 since xm/n = ( n
√
x)
m

.

Proposition 7.6.14. rational power limit ( power function with power m/n for m,n ∈ N).

Let a ∈ R with a > 0 and n ∈ N, limx→a x
m
n = a

m
n .

Notice that fractional powers are problematic for negative numbers. If you agree that 1
3 = 1

2
2
3

then you should ask yourself what domain would you assign f(x) = x
1
3 ? What about g(x) = x

1
2

2
3 ?

What about h(x) = (
√
x)

2
3 ? I would argue that dom(f) = R whereas dom(h) = [0,∞). But, the

only difference between these formulas is that I applied the exponent law ast = (as)t. My point?
Laws of exponents presuppose a positive base a. In fact, h and f are different functions because
the ”law” I used was incorrect for the base considered. Another good example of laws of exponents
breaking down is the following:

−1 =
√
−1
√
−1 =

√
(−1)(−1) =

√
1 = 1

oops. Exponential functions for negative bases are meaningful from the viewpoint of complex vari-
ables, however it comes at the cost of losing the function property. For example, (−1)

1
2 = {i,−i}
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where i is the imaginary unit classically denoted
√
−1 = i. Enough about that, I’m just trying to

make you aware of some boundaries in our thinking about exponents. Hopefully you’ll get a chance
to take a good course in complex analysis to unwrap the mysteries of complex arithmetic.

I suppose I should mention that we can calculate the (2k+ 1)-th root of any real number. In other
words, f(x) = 2k+1

√
x has dom(f) = R for any k ∈ N. Cube roots of negative numbers are defined

to be real in this course without trouble. For example, 3
√
−27 = −3 since (−3)3 = −27. It turns

out the limit works just fine for such functions in the negative case. For a < 0 we could prove:

lim
x→a

2k+1
√
x = 2k+1

√
a. (7.13)

From this point we could go on and prove dozens of propositions about limits of your favorite
algebraic functions. Let me summarize:

Theorem 7.6.15. algebraic functions have nice limits.

Let f(x) be defined by a finite number of algebraic operations (possibly including addition,
multiplication, division, taking integer or fractional roots) then lim

x→a
f(x) = f(a).

I think we’ve seen enough detail in this direction so we now turn to limits of sine and cosine.

Proposition 7.6.16. limits of sine and cosine.

Let a ∈ R, limx→a sin(x) = sin(a) and limx→a cos(x) = cos(a).

Proof: We begin by proving limits for sine and cosine at a = 0. We note it can be shown geomet-
rically that for 0 < x ≤ π/2 we have | sinx| ≤ |x| and | cosx− 1| ≤ |x|.

Let ε > 0 and choose δ = min(ε, π/4). Suppose that x ∈ R such that 0 < |x − 0| < δ. Since
δ ≤ π/4 < π/2 we have | sinx− 0| = | sinx| < |x| < δ ≤ ε. Thus lim

x→0
sinx = 0 = sin 0.

Let ε > 0 and choose δ = min(ε, π/4). Suppose that x ∈ R such that 0 < |x − 0| < δ. Since
δ ≤ π/4 < π/2 we have | cosx− 1| < |x| < δ ≤ ε. Thus lim

x→0
cosx = 1 = cos 0.

Lemma 7.6.17. substitution of limiting variable.

If either one of the following limits exist then so does the other and

lim
x→a

f(x) = lim
h→0

f(a+ h).

Proof of lemma: Suppose lim
x→a

f(x) = L ∈ R. Let ε > 0 choose δ > 0 such that 0 < |x − a| < δ

implies |f(x) − L| < ε. Let h = x − a then x = a + h and 0 < |h| < δ implies |f(a + h) − L| < ε.
Thus limh→0 f(a+ h) = L by the definition of the limit.
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Next, suppose limh→0 f(a + h) = L ∈ R. Let ε > 0 and choose δ > 0 such that 0 < |h| < δ
implies |f(a + h) − L| < ε. Let x = a + h then h = x − a. If 0 < |x − a| = |h| < δ then
|f(a+ h)− L| = |f(x)− L| < ε. Therefore, lim

x→a
f(x) = L. 6 O

Apply the Lemma and recall the trigonometric formula for adding angles in cosine,

lim
x→a

cos(x) = lim
h→0

cos(a+ h)

= lim
h→0

cos(a) cos(h)− sin(a) sin(h)

= cos(a) lim
h→0

cos(h)− sin(a) lim
h→0

sin(h)

= cos(a).

I leave the proof that limx→a sin(x) = sin(a) as an exercise for the reader. This completes the proof
of proposition 7.6.16. 2

It should be fairly clear that we can calculate limits of tangent, cotangent, cosecant and secant
since we have a quotient rule for limits and we know the limits for sine and cosine. I leave working
out such limits as an elementary exercise for the reader.

Proposition 7.6.18. limit of exponential function.

Let b > 0, limx→a b
x = ba.

Proof: We begin by proving limx→0 2x = 1. Let ε > 0 and choose δ = log2(1 + ε). Note that
1 + ε > 1 hence log2(1 + ε) > 0. Suppose that x ∈ R such that 0 < |x| < δ, it follows that

− log2(1 + ε) = log2

(
1

1 + ε

)
< x < log2(1 + ε)

but surely7 x < y implies 2x < 2y thus

1

1 + ε
< 2x < 1 + ε

subtracting one from each inequality yields,

1

1 + ε
− 1 < 2x − 1 < ε

Note that 1
1+ε − 1 = − ε

1+ε > −ε thus −ε < 2x − 1 < ε which is equivalent to |2x − 1| < ε. Hence,
0 < |x| < δ implies |2x − 1| < ε. Therefore, limx→0 2x = 1.

6the upside-down triangle indicates the proof of the lemma is complete however the proposition’s proof is still
unfinished. I should mention, this Lemma equally well applies for other limiting behavior, if either one has limit ±∞
then do does the other and if either limit fails to exist then so goes the other. Please forgive me for omitting the
proof of those assertions.

7admitably there is a gap here, I invite the reader to supply a proof
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To cover other bases than 2 we can use the identity bx = 2log2(b
x) = 2log2(b)x for any b > 0. Since

logb(2) is a constant we can deduce that log2(b)x→ 0 as x→ 0. Moreover, using the composition
of limits proposition we find that bx = 2log2(b)x → 1 as x→ 0. Thus, limx→0 b

x = 1.

The laws of exponents complete the proof for limit points other than zero:

lim
h→0

(ba+h) = lim
h→0

(babh) = ba lim
h→0

bh = ba.

Then by Lemma 7.6.17, limx→a(b
x) = ba. 2

The use of 2x was simply a choice on my part. We could just as well have used the identity
xp = 3x log3(p) to drive the proof. We defer limits of inverse functions such as logarithms and
inverse trigonometric functions as they require some sophisticated ideas we have not yet explored.

7.7 squeeze theorem

There are limits not easily solved through algebraic trickery. Sometimes the ”Squeeze” or ”Sand-
wich” Theorem allows us to calculate the limit.

Proposition 7.7.1. squeeze theorem8.

Let f(x) ≤ g(x) ≤ h(x) for all x near a then we find that the limits at a follow the same
ordering,

lim
x→a

f(x) ≤ lim
x→a

g(x) ≤ lim
x→a

h(x).

Moreover, if limx→a f(x) = limx→a h(x) = L ∈ R then limx→a f(x) = L.

Proof: Suppose f(x) ≤ g(x) for all x ∈ Bδ1(a)o for some δ1 > 0 and also suppose limx→a f(x) =
Lf ∈ R and limx→a g(x) = Lg ∈ R. We wish to prove that Lf ≤ Lg. Suppose otherwise towards a
contradiction. That is, suppose Lf > Lg. Note that limx→a[g(x)−f(x)] = Lg−Lf by the linearity
of the limit. It follows that for ε = 1

2(Lf −Lg) > 0 there exists δ2 > 0 such that x ∈ Bδ2(a)o implies
|g(x)− f(x)− (Lg − Lf )| < ε = 1

2(Lf − Lg). Expanding this inequality we have

−1

2
(Lf − Lg) < g(x)− f(x)− (Lg − Lf ) <

1

2
(Lf − Lg)

adding Lg − Lf yields,

−3

2
(Lf − Lg) < g(x)− f(x) < −1

2
(Lf − Lg) < 0.

Thus, f(x) > g(x) for all x ∈ Bδ2(a)o. But, f(x) ≤ g(x) for all x ∈ Bδ1(a)o so we find a contradic-
tion for each x ∈ Bδ(a) where δ = min(δ1, δ2). Hence Lf ≤ Lg. The same proof can be applied to

8this theorem can also be stated for x → ±∞ or x → a± provided the inequality holds for appropriate values
where the limit is taken
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g and h thus the first part of the theorem follows.

Next, we suppose that limx→a f(x) = limx→a h(x) = L ∈ R and f(x) ≤ g(x) ≤ h(x) for all
x ∈ Bδ1(a) for some δ1 > 0. We seek to show that limx→a f(x) = L. Let ε > 0 and choose δ2 > 0
such that |f(x) − L| < ε and |h(x) − L| < ε for all x ∈ Bδ(a)o. We are free to choose such a
δ2 > 0 because the limits of f and h are given at x = a. Choose δ = min(δ1, δ2) and note that if
x ∈ Bδ(a)o then f(x) ≤ g(x) ≤ h(x) hence,

f(x)− L ≤ g(x)− L ≤ h(x)− L

but |f(x)− L| < ε and |h(x)− L| < ε imply −ε < f(x)− L and h(x)− L < ε thus

−ε < f(x)− L ≤ g(x)− L ≤ h(x)− L < ε.

Therefore, for each ε > 0 there exists δ > 0 such that x ∈ Bδ(a)o implies |g(x) − L| < ε so
limx→a g(x) = L. 2

7.8 continuity theorems

Theorem 7.8.1. Each function below is continuous on its domain:

1.) Polynomial functions,

2.) Rational functions,

3.) Algebraic functions,

4.) Trigonmetric functions and their reciprocal functions.

5.) Exponential functions,

6.) Hyperbolic trigonmetric functions and their reciprocal functions.

Proof: We have already done most of the work in Section 7.6. Proposition 7.6.9gives continuity
of polynomials; if p(x) is a polynomial then limx→a p(x) = p(a). Likewise, if f(x) = p(x)

q(x) for

polynomials p(x), q(x) and if q(a) 6= 0 then we note by the limit law for quotients:

lim
x→a

p(x)

q(x)
=

limx→a p(x)

limx→a q(x)
=
p(a)

q(a)
(7.14)

thus rational functions are continuous. Arguments supporting the continuity of algebraic functions
are given in the discussion summarized by Theorem 7.6.15. Continuity of sine and cosine is given by
Proposition 7.6.16 and continuity of tangent was shown in Example ??. Continuity of cotx = 1

tanx ,
cscx = 1

sinx and secx = 1
cosx follow from the quotient rule for limits and the known limits for

tangent, sine and cosine. Continuity of exponential functions is given by Proposition 7.6.18. Finally,
recall hyperbolic functions are defined in terms of exponential functions;

coshx =
1

2

(
ex + e−x

)
& sinhx =

1

2

(
ex − e−x

)
. (7.15)
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Furthermore, tanhx = sinhx
coshx = ex−e−x

ex+e−x . Proposition 7.6.18 gives limx→a e
x = ea. Note e−x = 1

ex

thus by the quotient rule for limits limx→a e
−x = 1

limx→a ex
= 1

ea = e−a. Use Proposition 7.6.6 to
calculate

lim
x→a

coshx = lim
x→a

1

2

(
ex + e−x

)
=

1

2

(
ea + e−a

)
= cosh a, (7.16)

lim
x→a

sinhx = lim
x→a

1

2

(
ex − e−x

)
=

1

2

(
ea − e−a

)
= sinh a. (7.17)

Continuity of tanhx = sinhx
coshx and sechx = 1

coshx on R follow from the result above and the obser-
vation coshx 6= 0 for all x ∈ R. Note sinhx = 0 if and only if x = 0 thus the limits above for cosh
and sinh serve to establish continuity of cothx = coshx

sinhx and cschx = 1
sinhx on R− {0}. 2

7.9 proof of intermediate value theorem

Proposition 7.9.1.

Let f be continuous at c such that f(c) 6= 0 then there exists δ > 0 such that either f(x) > 0
or f(x) < 0 for all x ∈ (c− δ, c+ δ).

Proof: we are given that limx→c f(x) = f(a) 6= 0.

1.) Assume that f(a) > 0. Choose ε = f(a)
2 and use existence of the limit limx→c f(x) = f(a) to

select δ > 0 such that 0 < |x−c| < δ implies |f(x)−f(a)| < f(a)
2 hence −f(a)

2 < f(x)−f(a) < f(a)
2 .

Adding f(a) across the inequality yields 0 < f(a)
2 < f(x) < 3f(a)

2 .

2.) If f(a) < 0 then we can choose ε = −f(a)
2 > 0 and select δ > 0 such that 0 < |x−c| < δ implies

|f(x)− f(a)| < −f(a)
2 hence f(a)

2 < f(x)− f(a) < −f(a)
2 . It follows that 3f(a)

2 < f(x) < f(a)
2 < 0.

The proposition follows. 2

Bolzano understood there was a gap in the arguments of the founders of calculus. Often, theorems
like those stated in this section would merely be claimed without proof. The work of Bolzano and
others like him ultimately gave rise to the careful rigorous study of the real numbers and more
generally the study of real analysis 9

Proposition 7.9.1 is clearly extended to sets which have boundary points. If we know a function
is continuous on [a, b) and f(a) 6= 0 then we can find δ > 0 such that f([a, a + δ)) > 0. ( This is
needed in the proof below in the special case that c = a and a similar comment applies to c = b.)

9the Bolzano-Weierstrauss theorem is one of the central theorems of real analysis, in 1817 Bolzano used it to
prove the IVT. It states every bounded sequence contains a convergent subsequence. Sequences can also be used to
formulate limits and continuity. Sequential convergence is dealt with properly in undergraduate real analysis.
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Theorem 7.9.2. Bolzano’s theorem

Let f be continuous on [a.b] such that f(a)f(b) < 0 then there exists c ∈ (a, b) such that
f(c) = 0.

Proof: suppose f(a) < f(b) then f(a)f(b) < 0 implies f(a) < 0 and f(b) > 0. We can use axiom
A11 for the heart of this proof. Our goal is to find a nonempty subset S ⊆ R which has an upper
bound. Axiom A11 will then provides the existence of the least upper bound. We should like to
construct a set which has the property desired in this theorem. Define S = {x ∈ [a, b] | f(x) < 0}.
Notice that a ∈ S since f(a) < 0 thus S 6= ∅. Moreover, it is clear that x ≤ b for all x ∈ S thus S
is bounded above. Axiom A11 states that there exists a least upper bound c ∈ S. To say c is the
least upper bound means that any other upperbound of S is larger than c.

We now seek to show that f(c) = 0. Consider that there exist three possibilities:

1. if f(c) < 0 then the continuous function f has f(c) 6= 0 so by prop. 7.9.1 there exists δ > 0
such that x ∈ (c − δ, c + δ) ∩ [a, b] implies f(x) < 0. However, this implies there is a value
x ∈ [c, c + δ) such that f(x) < 0 and x > c which means x is in S and is larger than the
upper bound c. Therefore, c is not an upper bound of S. Obviously this is a contradiction
therefore f(c) ≮ 0.

2. if f(c) > 0 then the continuous function f has f(c) 6= 0 so by prop. 7.9.1 there exists δ > 0
such that x ∈ (c − δ, c + δ) ∩ [a, b] implies f(x) > 0. However, this implies that all values
x ∈ (c− δ, c] have f(x) > 0 and thus x /∈ S which means x = c− δ/2 < c is an upper bound
of S which is smaller than the least upper bound c. Therefore, c is not the least upper bound
of S. Obviously this is a contradiction therefore f(c) ≯ 0.

3. if f(c) = 0 then no contradiction is found. The theorem follows. 2

My proof here essentially follows the argument in calculus, Volume 1 by Apostol10 However I
suspect this argument in one form or another can be found in many serious calculus texts. With
Bolzano’s theorem settled we can prove the IVT without much difficulty.

(IVT): Suppose that f is continuous on an interval [a, b] with f(a) 6= f(b) and let N be
a number such that N is between f(a) and f(b) then there exists c ∈ (a, b) such that
f(c) = N .

Proof: let N be as described above and define g(x) = f(x)−N . Note that g is clearly continuous.
Suppose that f(a) < f(b) then we must have f(a) < N < f(b) which gives f(a)−N ≤ 0 ≤ f(b)−N
hence g(a) < 0 < g(b). Applying Bolzano’s theorem to g gives c ∈ (a, b) such that g(c) = 0. But,
g(c) = f(c)−N = 0 therefore f(c) = N . If f(a) > f(b) then a similar argument applies. 2.

10calculus Volumes 1 and 2 are a worthy resource for any math major, I highly recomend reading them as a follow-
up to calculus. Those volumes capture a time when we were much more serious about math at the undergraduate
level. Much of the rest of the world still uses Apostol for the text in the university calculus course. International
editions of the text are inexpensive and a pdf is freely available online.
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7.10 inverse function theorem

It would be wise to read Section 7.4.1 to review what we can say about inverse functions with
algebraic techniques. In this section we bring additional arguments anchored in the theory of
continuous functions. In particular, the Intermediate Value Theorem is central to the proof of the
inverse function theorem for continuous functions.

Proposition 7.10.1. continuous injections are strictly monotonic.

If S ⊆ R is connected and f : S → T is continuous then f is one-to-one if and only if f is
either strictly increasing or strictly decreasing on S.

Proof: Assume S is a connected subset of R and f : S → T is a continuous function. I assume S
is an interval as introduced in Definition 1.3.2. Connected subsets of R are either intervals or sets
containing a single point {p}. I will assume S 6= {p} in the interest of being interesting.

(⇒) If f is either strictly increasing or decreasing then Proposition 7.4.2 proves f is one-to-one.

(⇐) Conversely, suppose f : S → T is one-to-one. We seek to show that f is either increasing
or decreasing. Suppose f is strictly increasing on the connected subsets Uj ⊆ S for j = 1, 2, . . . .
Likewise, suppose f is strictly decreasing on connected subsets Vk ⊆ S for k = 1, 2, . . . . The union
of sets Uj and Vk for all j, k should yield S. Of particular interest are the points which are on the
edge between Uj and Vk. Suppose that U, V are two subsets such that U ∩ V = {zo} and U is
to the left of V on the number line. I continue to use the notation U indicates strictly increasing
and V strict decrease of f . We can show that f is not one-to-one if there exists such a point. We
choose sets small enough such that [wo, zo] ⊂ U whereas [zo, qo] ⊂ V . By construction wo < zo and
as f increases on U it follows that f(wo) < f(zo). By the continuity of f the intermediate value
theorem yields [f(wo), f(zo)] ⊆ f [wo, zo]. Likewise, by construction zo < qo and as f decreases on
V it follows f(zo) > f(qo). Again, by the continuity of f the intermediate value theorem yields
[f(qo), f(zo)] ⊆ f [zo, qo]. Suppose that p ∈ [f(wo), f(zo)] ∩ [f(qo), f(zo)] such that p 6= f(zo) then
we have both p < f(zo) and p > f(zo) which is a contradiction. It follows that we either have
disjoint intervals of increase and decrease or we have just one interval of strict increase or decrease.
Our assumption that U is connected rules out the possibility of disjoint subsets whose union cover
the whole set. Therefore, f is either strictly increasing or strictly decreasing. 2

Theorem 7.10.2. invertible continuous function have continuous inverses.

Suppose S, T ⊆ R and S is connected. If f : S → T is continuous with inverse f−1 : T → S
then f−1 is continuous.

Proof: we seek to show f−1 is continuous at yo ∈ T . Let ε > 0 and suppose xo = f−1(yo), choose
δ = min

[
f(xo)− f(xo − ε), f(xo + ε)− f(xo)

]
and suppose 0 < |y − yo| < δ. Note that

y < yo + δ ≤ f(xo) + [f(xo + ε)− f(xo)] = f(xo + ε)
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Then on the other side,

y > yo − δ ≥ f(xo)− [f(xo − ε)− f(xo)] = f(xo − ε)

Putting together the inequalities above yields f(xo − ε) < y < f(xo + ε). Since f is continuous
and invertible it follows from the previous proposition (and ultimately the IVT) that f−1 and f
are either strictly increasing or strictly decreasing on S. Suppose f−1 is strictly increasing then:

xo − ε < f−1(y) < xo + ε ⇒ |f−1(y)− xo| < ε ⇒ |f−1(y)− f−1(yo)| < ε.

If f−1 is strictly decreasing then we again find that 0 < |y − yo| < δ implies |f−1(y) − yo| < ε.
Therefore, limy→yo f

−1(y) = f−1(yo) for each yo ∈ T hence f−1 is continuous. 2
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