
15. GEOMETRY AND COORDINATES 
 

We define . Given  we say that the x-coordinate is  while the y-

coordinate is . We can view the coordinates as mappings from  to : 

 

  

 
 Coordinates take in a point in the plane and output a real number. 

 

Polar coordinates are based on partitioning the plane into circles or rays from the origin. Each point in 

the  plane will be found on a unique circle and ray hence we can label the point by the radius of the 

circle and the angle of the ray. Some ambiguity arises in assigning the angle because there is a natural 

duplicity in the assignment. We can always add an integer multiple of 360 degrees or   radians. This 

means if we are to be open minded about angles then we have to accept there is more than one correct 

answer to a given question. Once the basics of polar coordinates are complete we study parametric 

curves and the calculation of areas and arclength in polar coordinates (currently there are no examples 

or discussion of area or arclength in polars, see Section 11.4 of Stewart for examples, I will probably 

work additional examples in lecture). 

 

Another major topic in geometry is that of conic sections. We review the major equations and the 

geometric definitions which define the ellipse, parabola and hyperbola.  If time permits we may also 

examine the polar form of their equations in lecture (although it is not found in these notes presently) 

 

Finally, I conclude this chapter by exploring the existence of other coordinate systems in the plane. 

Modern calculus texts have little if anything to say about the general concept of coordinates. I try to give 

you some idea of how we invent coordinates in the conclusion of this chapter. By the way,  the concept 

of a coordinate system in physics is a bit more general. I would say that a coordinate system in physics is 

an “observer”. An “observer” is a mapping from  to the space of all coordinates on . At each time 

we get a different coordinate system, the origin for an observer can move. I describe these ideas 

carefully in my ma430 notes. Let me just say for conceptual clarity that our coordinate systems are fixed 

and immovable.  

 

15.1. POLAR COORDINATES 
 

Polar coordinates are denoted . If we wanted polar coordinates to be uniquely defined we 

could insist that  and  . However, we will allow  hence the polar 

coordinates are not uniquely defined. Many different angles will describe the same direction 

from the origin. The radius  is the distance from the origin. The standard angle is 

the angle measured in radians in the counterclockwise direction from the x-axis. This means 

that  . We should draw a picture to better understand these 

equations: 



 
 

You may recall that calculation of the standard angle requires some care.  While it is true that 

 for all points with  it is not true that  in general. In quadrants II 

and III the inverse tangent formula fails. You must think about this. 

 

We can also trade the point  if we extend the values of  to include 

negative values. This identification is not as prevalent in applications. I would tend to avoid it 

unless it was a real convenience (the polar graphing problems do assume that r is possibly 

negative). There are a few homework problems devoted to this correspondence in Stewart. 

 

 
 

 

Fundamental Equations for Polar Coordinates 
 

  

 

The third column requires the most thought. When we convert from Cartesian coordinates to 

polar coordinates we must think about the angle.  We must make sure it corresponds to the 

correct quadrant. You should review the precalculus chapter to refresh your basic 

trigonometry. I will probably lecture some from my Chapter two notes since many people who 

transferred or have AP credit are missing some fundamental background from my Chapter 2. I 

also intend to spend a little time on phasors this semester (at the end of my Chapter 2). 

 

 

 



 

Example 15.1.1 

Find the polar coordinates for the point (1,1). 

  

If tangent is one that means , in quadrant I we find solution . Hence the 

polar coordinates of this point are  

 

Example 15.1.2 

Find the polar coordinates for the point . 

  

The given point is in quadrant II thus we find  . Hence the polar coordinates of 

this point are  

 

Graphing with polar coordinates:  

The goal for rest of this section is to get a feel for how to graph in polar coordinates. We work a 

few purely polar problems. We also try translating a few standard Cartesian graphs. The general 

story is that both polar and Cartesian coordinates have their own respective virtues. Broadly 

speaking, polar coordinates help simplify equations of circles while Cartesian coordinates make 

equations of lines particularly nice.  

 

Example 15.1.3 

Find the equation of the line  in polar coordinates. We simply substitute the 

transformation equations  to obtain: 
 

  

We don’t need to solve for the radius necessarily. I like to solve for it when I can since it’s easy 

to think about constructing the graph. Logically the angle is just as primary. In the same sense it 

is essentially a matter of habit and convenience that we almost always solve for y in the 

Cartesian coordinates. 

 

Remark:  one important strategy to graph polar graphs is to first plot  the radius as a function of 

the standard angle in a separate graph. Then you can use that to create the graph in the xy-

plane. We will examine this approach in lecture, it is not emphasized in these notes . It’s easier 

to see on the white board since it involves drawing one graph and then extrapolating to draw a 

second graph. Examples 7 and 8 of Section 11.3 of Stewart illustrate this approach. My 

approach is primarily algebraic in these notes, but in practice I would advocate a mixture of 

algebraic reasoning and CAS-aided visualization. 



Example 15.1.4 

Consider the polar equation . Find the equivalent Cartesian equation: 
 

  

This is a circle of radius two centered at the origin. 

 

Example 15.1.5 

If  then what is the corresponding polar equation? Substitute as usual, 
 

  

 

When the circle is not centered at the origin the equation for the circle in polar coordinates will 

involve the standard angle in a non-trivial manner. 

 

Example 15.1.6 

What is the Cartesian equation that is equivalent to  ? We have two equations: 
 

  

 

We eliminate the radius by dividing the equations above: 

 

  

To be careful I should emphasize this is only valid in quadrant I. The other half of the line goes 

with . In other words, the graph of  is a ray based at the origin. It would be the 

whole line if we allowed for negative radius. 

 

Remark: if we fix the standard angle to be some constant we have seen it gives us a ray from 

the origin. If we set the radius to be some constant we obtain a circle. Contrast this to the 

Cartesian case;  is a vertical line,  is a horizontal line. 

 

In-class Exercise 15.1.7 

Graph . Make a table of values to begin then use an algebraic argument to verify 

your suspicion about the identity of this curve. 

 

Not all polar curves correspond to known Cartesian curves. Sometimes we just have to make a 

table of values and graph by connecting the dots, or Mathematica. 

 

 



In-class Exercise 15.1.8 

Graph .  Consider using a graph in the -plane to generate the graph of the given 

curve in the xy-plane. (Stewart calls the -plane “Cartesian coordinates” , see Fig. 10 or 12 on 

page 679) 

 

I suppose it took all of us a number of examples before we really understood Cartesian 

coordinates. The same is true for other coordinate systems. Your homework explores a few 

more examples that will hopefully help you better understand polar coordinates. 

 

Polar Form of Complex Numbers 
Recall that we learned a complex number  corresponds to the point . What are 

the polar coordinates of that point and how does the imaginary exponential come into play 

here? Observe, 
 

  
 

The calculation above justifies the assertion that a complex number may be put into its polar 

form. In particular we define, 

 

 

 

  

 

Much can be said here, but we leave that discussion for the complex variables course. If this 

interests you I have a book which is quite readable on the subject. Just ask. 

 

In-class Exercise 15.1.10 

Find the polar form of the complex number . Find the polar form of the complex 

number . Find the polar form of the complex number . Graph both  and  in the 

complex plane. How are the points related? 

 

Remark: In electrical engineering complex numbers are used to model the impedance  The 

neat thing is that AC-circuits can be treated as DC-circuits if the voltage source is sinusoidal. 

This is called the Phasor method. In short, resistances give real impedance while capacitors and 

inductors give purely imaginary impedance. The net impedance for a circuit is generally 

complex. 

 

Remark: there is much more to read in my Chapter 2, go read my Section 2.9.  

  

Definition 15.1.9: (Polar Form of Complex Number) Let  the polar form 

of  is  where  and  is the standard angle of . 



15.2: Parametric Curves in Polar Coordinates 
Same idea as we have discussed thus far for Cartesian coordinates, except now we need a 

parametric equation for . 

 

Example 15.2.1: Describe the curve given by the parametric equations  for 

. We can make a table of values to helps graph the curve, 

 

 
 

 

Example 15.2.2: Describe the curve given by the parametric equations  for 

.  This is spiral goes inward, 

 

 
 

 

 

 

 



Example 15.2.3: Describe the curve given by the parametric equations  for 

.  The parametrization covers the pictured regions infinitely many times since it orbits the 

shape again and again and again… 

 

 
 

Remark: it is interesting to study the curves ,  for various natural numbers . 

You’ll find it always gives a flower. When  is odd the number of petals is just . However, 

when  is even the number of petals is . You can verify that in the case   there are four 

petals for the graph of . 

 

I have drawn a few graphs in these notes. It is likely I’ll add pictures in lecture for some of the 

examples without pictures. Pictures help me organize my thoughts for many examples.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

15.3. CONIC SECTIONS 
 

Take a look in Stewart, he has a nice picture of how a cone can be sliced by a plane to give a 

parabola, hyperbola or an ellipse. Let me remind you the basic definitions and canonical 

(standard) formulae for the conic sections. I have saved the task of deriving the formula from 

the geometric definition for homework. Each derivation is a good algebra exercise, and they can 

be found in many text books. 

 

 

 

 

 

 

 

 

 

 

 

Proof: see Stewart.  

 

There are similar equations for parabolas built from a vertical directerix. If you understand this 

equation it is a simple matter to twist it to get the sideways parabola equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof: see Stewart.  

 

 

Definition 15.3.1( Parabola): A parabola is the collection of all points in 

some plane that are equidistant from a given line and point in that plane. 

The given line is called the directerix  and  the point called the focus. It is 

assumed that the focus is not a point on the directerix. The perpendicular 

to the directerix which intersects the focus is called the axis of the 

parabola. The vertex is at the intersection of the axis and the parabola. 

Definition 15.3.2( Ellipse): An ellipse is the collection of all points in some 

plane for which the sum of the distances to a pair of fixed points is 

constant. Each of the points (which must be in the plane) is called a focus of 

the ellipse.  The line through the focus points intersects the ellipse at its 

vertices. The major axis is the line segment which connects the vertices. 

The minor axis is a line segment which is a perpendicular bisector of the 

major axis with endpoints on the ellipse. 

Theorem 15.3.2: Let . Define an ellipse in the xy-plane with foci 

 by taking the collection of all points which have the sum of 

distance from  and  the distance from  equal to . Given these 

assumptions, there exists  such that  and . 

Moreover, the equation of such an ellipse is 
 

. 

 

Theorem 15.3.1: The parabola in the xy-plane with focus  and 

directerix  is the set of all points satisfying the equation . 



Again it is not hard to mimic the proof for the case that the foci lie at  and the sum of the 

distances is . That yields  with  and which is an ellipse with 

vertices . ( compare my notation with Stewart, I keep   in the same location)  I usually 

just think of an ellipse at the locus of points satisfying  
 

 

 

Different values for  give different types of ellipses. For instance,  yields a special 

ellipse which we call a circle. It is nice that we broke it down into the horizontal and vertical 

ellipse cases so that the proof of Theorem 14.1.2 doesn’t involve cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof: see homework. 

 

Remark: the Theorem’s given in this section provide standard equations which we identify with 

the ellipse, parabola or hyperbola. These basic graphs can be shifted and/or rotated and the 

resulting graph will still be the same shape. 

 

I have provided several examples in the solved homework problems. However, this should 

really just be a review. I don’t expect that all of you have gone through the steps that connect 

the geometric definition of the conic sections with the equations that more usefully define 

them. I may go over the proof of one of these in lecture since I doubt many of you have actually 

seen these proved. Unfortunately education is more and more victim to SOL-tests and as a 

consequence so many of you have been cheated the proper treatment of most topics. 

 

Incidentally, there are also equations for ellipses, parabolas and hyperbolas that are rotated in 

the xy-plane. In linear algebra we develop tools to systematically analyze such questions. If 

you’re curious just ask I’ll tell you where to look. 

 

  

Theorem 15.2.3:  If a hyperbola with foci  and  is formed from the 

collection of points for which the difference between the distance to  and 

the distance to   is the constant value   then there exists a  such 

that  and the hyperbola consists of points satisfying the equation 

 
 

 

Definition 15.2.3( Hyperbola): A hyperbola is the collection of all points in some 

plane for which the difference between the distances to a pair of fixed points is 

constant. Each of the points (which must be in the plane) is called a focus of the 

hyperbola.  The line connecting the foci intersects the hyperbola at the vertices 

of the hyperbola. 



15.4. ROTATED COORDINATES 
 

If we want new coordinates  which are rotated an angle  in the counter clockwise 

direction relative to the standard  coordinates then we’ll want 

 

  

 

Let’s check to see if the positive part of the -axis is at angle  in the xy-coordinates. The 

equation of the -axis is simply  so by the definition of the rotated coordinate boxed 

above we have, 
 

  
 

Thus the point  on the -axis has .  

 

 

Example 15.4.1 

Let’s rotate by , since  and  we have the rather simple 

transformation laws: 

  

 

Now let’s see what the parabola  looks like to the rotated coordinates. To answer such a 

question we simply substitute as follows: 
 

  
 

Thus in the rotated coordinate system the parabola is a side-ways parabola. 

 

 

In-class Exercise 15.4.2 

Find the equation of the circle  in rotated coordinates. You will get the same 

equation for any value of . Please calculate it for an arbitrary . 

 

  



Inverse Transformations 

We can relate the rotated coordinates to the xy-coordinates as follows: 
 

 

 

Example 15.4.3 

Let’s explore the case . We find, 
 

  

Or, in other words, 

 

  

 

Now, we might wonder what does a standard parabola in the rotated coordinates 

look like in the xy-coordinates? Let’s transform  into xy-coordinates: 
 

  

 

Remark: Does the boxed equation look like a parabola to you? It is. This is the beauty of rotated 

coordinates, reverse this example, start with the boxed equation and ask the question what 

system of coordinates makes the equation simple? We would need to spend some time to get 

good at answering that sort of question. My goal here is just to alert you to the fact that rotated 

coordinates are worth entertaining for difficult questions. Essentially the idea is this: if the 

given problem looks like a standard problem just rotated a bit then use rotated coordinates to 

simplify the problem. Use rotated coordinates to reveal the true nature of the problem. 

Sometimes our initial choice of coordinates is poor, we create problems for ourselves simply 

through a wrong choice of coordinates. If we use coordinates which respect the symmetry of a 

given problem then the mathematics tends to fall into place much easier. Just contrast the 

boxed equation with . This principle becomes very important in calculus III, we must 

choose coordinates which are best for the problem. Otherwise we can make simple problems 

needlessly difficult. 

  

 

 

 

 



15.5. OTHER COORDINATE SYSTEMS 
This section looks at a variety of non-standard coordinate systems.  

 

HYPERBOLICALLY ROTATED COORDINATES 
 

We can define hyperbolic coordinates as follows: for some , 
 

  

 

Notice that the hyperbolas  have the same form in the hyperbolically rotated 

coordinates, 
 

  

 

Circles have the same form of equation in the xy and rotated -coordinates. With hyperbolic 

coordinates the form of the equation of a hyperbola is maintained for the hyperbolically 

rotated coordinates. 

 

TRANSLATED COORDINATES 
 

Translated coordinates are defined as follows: let  
 

. 

 
The origin  is at the point .  Sometimes it’s nice to combine these with 

other coordinate transformations. For example, 

 

 

 

These coordinates allow us to take something like a shifted and rotated parabola in the xy-

coordinate system and morph it into a standard parabola at the origin in the transformed 

coordinate picture. 

 



SKEW-LINEAR COORDINATES 
 

Translated coordinates are defined as follows: let  
 

. 

 

We require that . That requirement is needed to insure the coordinates cover the 

whole plane. 

 

In-class Exercise 15.5.1: Find conditions on  such that: 
 

 . 

What system of coordinates are a special case of skew-linear coordinates? 

 

HYPERBOLIC  COORDINATES 
 

Hyperbolic coordinates will have hyperbolas playing the same role that circles played for polar 

coordinates.  

  

 

Which can be inverted to reveal that: 
 

  

 

for . In these coordinates we find that  corresponds to the hyperbolas 

. On the other hand, if we look at  then we find 

 

  

 
The points along this curve are at constant hyperbolic angle . You can verify that the boxed 

equation is an orthogonal trajectory of the hyperbolas just as the rays from the origin are 

orthogonal trajectories to the circles centered about the origin. 

 

Remark: I don’t expect you understand each and every type of coordinate system I’ve 

introduced in this Chapter. Certainly, you are expected to understand the polar coordinates in 

some depth, but these other examples were by in large an attempt on my part to expand your 

concept of what a coordinate system can be. There is a geometric supposition that flows 

throughout. The plane exists independent of the coordinates that describe it. We have seen 

there are many ways to put coordinates on a plane. 

 



Coordinate Maps on a Surface (a window on higher math) 
 

In abstract manifold theory we find it necessary to refine our concept of a coordinate mapping 

to fit the following rather technical prescription. The coordinates discussed in this chapter don’t 

quite make the grade. We realize certain coordinates are not one-one. There are multiple 

values of the coordinate which map to the same point on the surface. Also, we have not even 

begun to worry about smoothness. We need tools from calculus III to tackle that question and 

even then this topic is a bit beyond calculus III. 

 

Let  be a surface. In fact, let  be a two-dimensional manifold. What this means is that there 

is a family of open sets  for  which cover . For each one of these 

open sets  there exists a one-one mapping  which is called a 

coordinate map. These coordinate maps must be compatible. This means 

 

  

 

is a smooth mapping on . 

 

The following picture illustrates the concept: (notation not consistent, in the picture below the 

“x” and “y” are coordinate maps and  is the smooth transition function) 

 

 
 
Question: what are the coordinates of the origin in polar coordinates? I’ll take the easy part, clearly . The 

ambiguity enters when we try to ascertain the value of  at the origin. The standard angle is undefined at the 

origin. This is not due to a genuine divergence. Rather, we call this sort of problem a coordinate defect. These are 

not generally avoidable. In manifold theory there is a precise and rather exacting definition of a “coordinate map”. 

At a minimum a coordinate map needs to be one-one everywhere. In order to cover most spaces it is necessary to 

use several coordinate maps such that they paste together in a nice way. Fortunately all of that fussy manifold 

theory  is not needed for calculations over  or . We can calculate without worrying too much about these 

coordinate defects. In contrast, when the integrand has a vertical asymptote we must approach the asymptote via 

a limit and many times the integral will diverge as a result. Anyhow, this issue is more or less ignored in much of 

Stewart and my notes for that matter. I do think coordinate defects can lead to the wrong answer for a calculation, 

but I don’t have a convincing example to make us worry. If this paragraph doesn’t make any sense to you don’t 

sweat it, I’m thinking out loud here at the moment. 

 


