16. INTRODUCTION TO DIFFERENTIAL EQUATIONS

What is a differential equation? It is an equation which involves derivatives. Differential
equations are equations which relate the changes in various quantities. The natural world is
filled with dynamic quantities, they depend on time. Often a differential equation will model
how those quantities change with time.

The change need not be just with respect to time, we might consider something which varies as
a result of time and space varying. For example, an electric or magnetic field components are
functions of x,y,z and t. The differential equations which govern the electric and magnetic fields
are known as Maxwell’s Equations, these are partial differential equations (PDEs). In particular
if B =< B,.B,, B. >then
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Another equation you might encounter in physics is the conservative force equation. A force F
is called conservative if there exists a potential function U such that F= —VU. Inparticular,
if the force F =< F., F,, F. >then the potential energy function U must satisfy three PDEs:
. - ou = ou oUu
F=-VU <+— Fr_—%, Fy_—a—y, 2=
We will consider how to solve this sort of equation in calculus Ill. More general PDEs are
treated in part in the differential equations course and beyond that there is an endless supply.
Some mathematicians spend a whole career just studying one special PDE, the wealth of
behavior contained in a simple equation is staggering.

In this course, we study the most basic type of differential equation, the ordinary differential
equation (ODE). An ODE has one independent and one dependent variable. Sometimes we use
“x” for the independent variable, in other situations we use “t” for time. The dependent
variable is usually taken to be “y” but it is also taken to be “x” (but not at the same time that “x”
is the independent variable).

d
1.) d—y =2 +y+sin(zr) independent variable x, dependent variable y
x
d
2.) d—f =2’ +t+3 independent variable ¢, dependent variable x
ds
3.) d_; = se? independent variable 0, dependent variable s

The above are first order differential equations because the highest derivative that appears is
the first derivative. If both the dependent variable and its derivatives appear linearly then the
ODEqn is said to be linear. Equations 1.) and 3.) are linear, but the appearance of x ruins it in
2.). Homogeneous linear DEqns are especially nice since the sum of solutions is again a
solution..




If the highest derivative that appears in the DEqgn is the second derivative then we say the DEgn
is a second order differential equation. If the highest order that appears in the DEgn is n-th
order derivative then the DEqn is said to be an n-th order differential equation. If the
differential equation can be written as a sum of the dependent variable and its derivatives set
to zero without the independent variable appearing on its own then the DEqgn is said to be
homogeneous, otherwise the DEqn is said to be nonhomogeneous. If the differential equation
can be written as a linear combination of the dependent variable and its derivatives such that
the coefficients in the sum are just numbers then it is said to be a constant coefficient DEqgn.

>y d
4.) d—‘z + d—y +y =0 second order, linear, constant coeff., homogeneous
x x
5)9" 4y +t2y =t third order, linear, nonhomogeneous
6.) y™(t) =y n-th order, linear, constant coeff., homogeneous

Ok, our vocabulary lesson is over now. Some examples in this chapter are inspired by
homework problems in the excellent DEgns text by Nagle Saff and Snider.
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16.1. WHAT IS A SOLUTION?

The question that titles this section begs another question; “to what?” We already know what
the solution to an arithmetic problem is, it’s a number. Or what is the solution to most algebra
problems? Also a number, perhaps several. For example, 22 — 52 +6 = (z — 2)(z — 3) =0
has solutions = = 2 and = = 3.

We mean to ask the question now, “what is the solution to a differential equation?”.

e A explicit solution to a differential equation is a function which satisfies the rule of the
differential equation. In other words, it a function which works when substituted into the
differential equation. Symbolically, if the differential equation (*) has the form
F(z,y,y,y",...,y"(x)) = 0then fisa solution of (*) if and only if
F(a, f(z), f'(x), ["(2), ..., f(n)<x)> =0

e An implicit solution is some equation which satisfies the differential equation. Unless
said otherwise when | say solution | mean implicit solution, but we like to find explicit
solutions if possible.

® The general solution allows for all possible initial conditions. Technically speaking, it is
not a function, rather it is a whole family of functions.

It probably helps to see a few examples at this point.

Example 16.1.1

Let f(z) = x*then fisasolutionto % = 2z since L = 2.

Let g(z) = xthen gis not a solution to 4 = 2z since 9% = 1 # 2z.
We call f an explicit solution since it has the graph y = 2% and you can see that y is an explicit

function of x, they’re not mixed together.

Example 16.1.2

Let 22 + y2 = 4 this implicitly defines a solution of % = —% since implicit differentiation of the
proposed solution yields 2z + Qy% =0 = j—g = —g—‘; = —%. This is called an implicit

solution because we cannot just solve for ¢ as a single function of . It is only possible to find
an explicit solution locally, this is a circle, the upper and lower pieces are separately explicit
solutions y = v/4 — 22 and y = —+/4 — 2. The implicit solution contains both of these explicit
solutions.



So how do we find solutions? | didn’t mention that yet. You can see that in Example 10.1.1 the
solution could be found by integration.

dy

d
=2r = /—ydx:/Zxdx:xz—FC
dx dx

Select the case C' = O we get f(z) = 2> If you think about it, every time we integrated we
solved a differential equation. Think about it:

/f(x)dx:y <— j—i:f(x)

The general solution is thus analogous to the indefinite integral. In fact, when we solve an n-th

order ODEn it amounts to integrating n-times. It is not surprising then that the general solution
will have n-arbitrary constants of integration. When we solve a first order ODEn we get just one
constant.

Example 16.1.3:
The general solution to % — 2xis y = 2% + C. Geometrically, we have a family of parabolas

which open upward and differ just by a vertical shift.

Example 16.1.4:

The general solution to % =

2=
Example 10.1.2 was just one case. Given the differential equation we would need additional
information in order to select a specific solution.

—2is 2?2 4+ y* = R% Geometrically, we have a family of circles.

Bad News? Solving differential equations is not just integration in general. The differential
equation in Example 10.1.1 was very special. More often than not a given DEgn will not allow us
d

to find an equation of the form 7 = stuff in . Usually the dependent variable and its various

derivatives are all jumbled together at once. We need other tricks to unravel the equation and
find solutions. | suppose there are nearly as many techniques as there are types of DEgns. For
this chapter there will be three main tricks to find general solutions:

* (16.2) Separate variables: % = f(x)g(y) == [g(y)dy = [ f(x)dx.

® (16.4) Use Integrating Factor Technique: put in standard form % + Py =0
Then calculate p = exp( [ pdz), multiply by 4, use reverse product rule, separate and

integrate.

e (16.5) 2" order constant coefficient ODE, find guadratic auxillary equation, solve the
guadratic, write down general solution.



16.2. SEPARATION OF VARIABLES

This section begins with a short proof of the method. In summary, separating variables is u-
substitution. We almost did these last semester, what differs is notation and presentation of
the problem. At the conclusion of this section | have a number of examples which show the
wide and diverse application of first order ODEs. Let’s begin.
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Example 16.2.2
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Example 16.2.4
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Example 16.2.4b (each time, separate then integrate)
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Example 16.2.4c (each time, separate then integrate)
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Example 16.2.5 (I often cover this in calculus 1)
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Remark: Many physics problems boil down to solving some differential equation. Sometimes
it is actually a system of differential equations. You’ve probably heard of Newton’s Second Law;
F = md. This is actually a special case where the mass is constant. The general form of the

Second Law is F' = % where the momentum P = mu'. In the special case m is constant we
find this simplifies to F' = md since 2 = Lmif = m2® = ma. We'll learn the details of such

calculations in calculus Ill, for now (other than this discussion) we have to study one-
dimensional motion because | don’t assume you understand the nuts and bolts of vector math.
Notice that the Second Law is a system of differential equations since if P =< P,, P,, P, >
then

—

- dP dP, dP, dP.
F=— <= Fo By F. >= I7—y* :
dt < Hay Ly, ><dt dt’dt>
dP, dP, dP.

— F,=— F=—"Y F ==

Y dt T c dt

For example, if /' =< 1,t,t> > then we’d have to solve all three differential equations at once
in order to find the momentum: assuming the initial momentum is zero,

dp, _dP, ,_dP.

b= =0 di

Y

1 1
P.=t, P,==t*, P.=={
2 3

This discussion is not part of the required material, | include it in the hopes of giving a better
context to the other examples.



Example 16.2.6 (an example with variable mass
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Orthogonal Trajectories (OT)
The word “orthogonal” means perpendicular as it applies to Euclidean geometry. To find a
trajectory (just another word for a curve) which is perpendicular to a given curve y = f(z)we

would want a new curve y = g(z)such that ¢/(z) = ﬁ wherever the curves interect. If the

given curve y = f(x) was a solution to a differential equation then the OT must be a solution
to a different (but related) DEqgn. Specifically,

if % — F(z,y)has solution fthen % = —F(;l,y)

has solutions which are orthogonal to f.
Example 16.2.7
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This shows that orthogonal trajectories to circles are lines through the origin.
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Example 16.2.9
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Example 16.2.10 (R is resistance, L is inductance)
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16.3. EXPONENTIAL GROWTH AND DECAY

We begin by studying several basic growth and decay examples. Then the logistic equation is
studied in some depth.
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Exponential growth is hard to maintain for large periods of time. If the growth is exponential
then the population will double for a fixed period of time. This means if we let the population
grow through 10 doubling periods then the population is increased 1,024 times over. After 20
doubling periods the population will be increased 1,048,576 times over. After 40 doubling
periods the population is increased 1,099,511,627,776 times. What does this mean?
Exponential population growth is not a perfect model. In practice we can only assume it works
over a finite period of time. The logistic equation is a more sophisticated population growth
model, it assumes exponential growth for a while but then as the population approaches the
so-called carrying capacity the growth slows to zero.



Comment: Over the past several centuries various carrying capacities have been proposed for
the human population of earth. Again and again these have been proved incorrect. God has
always allowed us to find new technologies which circumvent the doomsday scenario which
was supposed to be inevitable. A model is only as good as its assumptions. The trouble with all
the models of human population is they fail to acknowledge the fact that the unexpected is to
be expected.

Radioactive Decay Models

Radioactive decay is a probabilistic process. The weak force allows certain particles to morph
into other particles by the release or absorption of a W or Z boson. Details aside, these
radioactive particles are unstable and the number of particles that decay at any time is
proportional to the number of unstable particles at that time. This leads to the same
mathematics as population growth, however, the “growth rate” is negative.
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Comment: Sometimes scientists try to work this backwards. If you know the amount of a
radioactive material and you know the initial abundance of the substance then you can
extrapolate backwards and see how old something is. One problem, this assumes we know the
initial abundance. How do we “know” such a thing? Personally I’'m skeptical of what we “know”
about the unrepeatable past. | have much more trust for thoroughly testable physical laws.



Comment Continued:

Please don’t misunderstand, radioactive decay is a real observed phenomenon. | think where
science may get into trouble is where it tries to extend past what can be tested. The same is
true for creationists. We must be careful to not overstate our case. We have no reason to fear
science so long as it truly seeks reality. We know the source of reality and we have a meaning
for our existence. God is glorified whether or not we can “prove” Him. Of course the proof of
God surrounds us every day. The question is do you accept the proofs He offers? Would it be
enough that he sent His Son to appear in human form and alter the course of human history?
He did that, yet the world still denies the existence of God.

| do think we are called to give a defense for the things we believe. However, I’'m afraid
sometimes (myself included) we are tricked into being on the defense about historical science
which seems to contradict the history in Scripture. Sometimes it may be a better argument to
simply say that we don’t find the world’s creation myth convincing. | don’t believe that the
universe created itself replete with physical law, logic and the plethora of beautiful
mathematics which just happens to mirror nature in unexpected ways.

Truth be told, most of them don’t really find their story convincing either. Why would they, it
keeps changing. | don’t mean to say our story of creation has not changed at all. Certainly as
time goes on we may gain a better understanding of the nuts and bolts of the creation process,
or perhaps not, | am not convinced one way or the other.

What | do know is that God will be at the center of our story no matter how much more
information we gather about the universe. There is still much flexibility in the creationist’s
viewpoint. | would much rather be burdened with the supposedly troubling problem of
assuming the existence of God.

Here is the difference; when we reinterpret our creation story the nature of God does not
change. He is always good, just, loving, merciful and He keeps his promises without exception.
When the world undertakes a scientific revolution the pure naturalist learns that his god was in
fact a false god, nature is something different. | suppose he can put his faith in the ideal of
perfectly modeled nature, but does that exist? What are you really trusting in when you put
your trust in a changing universe? | choose to trust the unchanging God.



More on Population Models:
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16.4. INTEGRATING FACTOR METHOD

The integrating factor method assumes that our starting point is a linear first order ODE which
has been written in the so-called standard form

d
d_y + Py = @Q standard form
x

We assume that P, () are continuous functions in the equation above. Notice that we cannot
just separate variables and integrate. Let’s see how the “integrating factor method” gets
around the trouble. To start we need to define the integrating factor,

[L= exp (/ P(z) diL‘)

Now observe that the integrating factor has an interesting derivative,

% _ %Cxp ( / p(@m«)
- (351Jp< / P(@M)% / P(x) da
_ exp( / P(:p)dm) Px)

= uP

Now multiply the DEqgn in standard form by the integrating factor and keep the identity above
in mind,

dy dy dp
po—+ pPy = pQ = p—— 4 -y = pQ
dx dr  dz
Notice that we can apply the product rule in reverse at this point,
dy du d
— - — —_ = d = d .
pot oy =pQ = () =pQ = d(uy) = pQdx

What this calculation shows is that the DEgn in standard form becomes separable if we change
from gy to ny, the term “separable” simply means we can separate and integrate. Integrating
both sides we find,

1
uy:/quaf — y=;/quaf

This formula gives a general solution for any first order ODE put in standard form. | don’t want
you to just use this formula. If you choose to use it then | require you to first prove it. The proof
we just gave we will repeat again and again, each example follows the same pattern. The great
advantage of mimicking the proof for each example is that there is a built-in redundancy to the



calculation. If you just use the formula then there is no double check on your work. It’s time for
examples!

Example 16.4.1
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LE RV = et

xz.

> (Y= x¥c+sinea)]

Notice that if we calculated the integrating factor incorrectly then we would not have been able
to make the reverse product rule work. This is the check and balance of the method, if you are
paying attention you’d have to make a pair of errors simultaneously to get it wrong. Of course
it’s always possible to get stuck on an integration, but | hope that will not be your stumbling
stone here.
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Example 16.4.3

By =™ s dmed B
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d(e™Y) = e 4——) fevese’
X

Tyt €XY = 3™+ ¢ ‘*[ te +Ce7

use < .
{ (dw]dlhzj b'ﬁ e )

Remark: Notice that we need not add a constant upon integrating P(z)in

p(z) = exp( [ P(z)dz). If we did, it would cancel when we divide by /() to solve for 3. On
the other hand in the final integration (marked by *) we have no such expectation for that
constant C to be cancelled. It is thus our custom to omit the integration constant when
calculating the integrating factor.

Example 16.4.4

@ﬁ& ) _ Sﬁmﬂw‘d ..Q:«M‘ ‘ HO
$-=—} Focr] B d-do-(?'~.)_ly= 25+ |

poo = e[ dx) = ep(~Inixt) = opflulkl) =
’ﬂtwﬂﬂ?hva b-a 'ﬁ("l Wfume X B0 x| = X

‘m_}e_‘aﬁ_%,\.a both Sidag ; e for LHS Hhet 3%(‘(?(*))5()( ={(x).
Yy = B(Zwt-)'-(_-)dx = Ax+ x|+ C

IV = 2+ xln) * cx | (x>0)
S A% K weD Sranifor g-’th{a/ /X/-—_—--—X. : '

€
X




Examples 16.4.5 through 16.4.8
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Example 16.4.9 and 16.4.10
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Summary
1. Putlinear first order ODEn into standard form, identify the “P” and “Q”.
Calculate the integrating factor ;1 = dex.
Multiply the standard form DEqn by the integrating factor.
Group terms and apply the product rule in reverse.
Integrate both sides, don’t forget to add the constant.
Solve fory.

NSOU©ARWN

Apply initial condition if you have one.
You could do 7.) after 5.) instead, for certain problems that is very labor-saving.

Well, it was fun, but there may be a question gnawing away as you follow the recipe. Why?
Why even think to invent this integrating factor? And who thought to multiply by it and so
forth? I’'m not certain the history of the method, it would be interesting to research for fun.
There are ways of deriving the integrating factor, but the idea stems from some fairly
sophisticated geometry. We’d need to understand what a “symmetry” of a differential equation



is. Then, as | understand it, we could go looking for coordinates which make the standard form
DEqgn separate. There is a rather general method which will help you choose such separating
coordinates. If we did that general procedure (which has nice geometric motivations) then |
believe we would actually arrive at a derivation of the integrating factor. All | showed you here
in this section was that it worked. That is enough of course, but sometimes we want more. | will
award 10 bonus points if you can work through the argument | sketched above. ( | would help
get you started, just ask in office hours sometime )

d
In-Class Exercise 16.4.11: Suppose = > 0 and solve :pd—y —xy =2° + 1.
X




16.5. CONSTANT COEFFICIENT 2" ORDER ODES

And now for the easy part. No, I’'m not kidding. Once we get past my proof of why it works
you’ll see the examples in this section are way easier than the last section. Let me state the
problem we wish to solve in general:

ay’ +by +cy =0, with a,b,c € R is a 2"-order constant coefficient ODE. |6

We call a,b,c the coefficients. Let me begin by considering a very special example, it will help
me explain what we should expect generally,

Example 16.5.1 Find the general solution of 3/ = 0, let z be the independent variable so that
2

the notation ¢ = %. Consider then that we can integrate twice to solve this one. We just

need to apply the FTC twice:

d?y d (dy
— = — = [ 0d
dx? 0 / dx (dx)dx / v

d1

MMH

— frfera

We can see that our general solution is actually built from two fundamental solutions. In
particular if we define y; = x and 1y, = 1 the general solution is a linear combination of these
two basic building blocks: y = c1y1 + c2y2. An example is not proof, but it turns out this is
always the case, we will find every constant coefficient 2" order ODE has a general solution
which is the linear combination of two fundamental solutions.

Claim: " has a general solution of the form y = ¢1y1 + c2y» where y4, y» are themselves
solutions to & called the fundamental solutions.

Our goal now is to find a procedure to locate these two functions. What guess can we make
that includes many possibilities? One thing that comes to mind is y = ¢*. This is a fairly
general guess if we allow the constant A to be a complex humber. For example,

A=141i "7 = ¢e(cos(z) + isin(z))
A=2i e*'" = cos(2x)
A= =1



Thus if the solutions we are looking for are sines, cosines or exponentials then we ought to find
them with the general guess y = e**.
Lemma: If \ € Cand then L (M) = \e.

Proof: In the case that A € R our life is easy, we just use the ordinary chain rule and that’s it.
The reason | have made this lemma is to discuss what happens when A\ = .+ i3 for o, f € R.
Let us see how the differentiation works in the complex case,

d A\x _ d ax+ifx
() =g ()

d
= (ew [cos(Bz) + isin(ﬁ@})

(o) )

= ae™ cos(Bx) — Be™” sin(Bx) + i [ae™ sin(Br) + Be™ cos(Bz)]
= [(()f +if3) cos(Bz) + (icv — B) sin(Bz)]

e [(a+if) cos(Bz) + i(o + if) sin(fx)]
= (a+1)e™ [COS(BJL + len(ﬁvz)]

= e

As you can see in the calculation above the reason the Lemma holds true is a fortunate interplay
between the ordinary chain rule for real-valued functions and the product rule.

Remark: Consider the vector-valued function of a real variable @(t) =< t,t* >. We can differentiate

such a vector with respect to its real variable. The differentiation is done component-wise:
= 4 (<12 >) =< L(t), £(t?) >=< 1,2t > .If we wrote that two-dimensional vector in

complex notation ¥ = t + it> we would differentiate as follows:

s d(f+ t) = d
a’ =

d 2
p —(t) +i—(t7) = 1 +i(2t)

dt

This should be strictly understood as component-wise differentiation of a two-vector. However,
it works like you would expect it to if you were not trying to be careful. That’s the beauty here,
you could write %e“ = \e*® and not even notice you were exiting the realm of real-valued

functions of a real variable. Calculus for complex-valued functions of a real variable is
deceptively simple. Now, when you take complex variables you will also discuss complex-valued
functions of a complex variable. Those have all sorts of properties quite foreign to their real
counterparts. You'll see. (obviously this remark is not part of the required content of calculus
I, I include it for breadth and context)



Claim: There is at least one possibly complex-valued solution to & ( ay” + by’ + cy = 0) having

the form y = e*,

Proof: use the Lemma to see 1 = \e™ = \yand 13" = \2e* = \2y. Substitute into *:

aXNy+bAy+cy=0 = (aN+bA+c)y=0 = |a\N >+ +c=0O

You can verify that e\* = 0 thus in order for our solution to work we must have that the
constant \ is a solution to the quadratic equation ©. We always get two solutions to the
quadratic equation, although in one special case those solutions might be the same. So we
always get at least one solution and the Claim is true. The @ equation is called the auxillary or
characteristic equation. | like to call it the characteristic equation because it characterizes the
type of solution we get for the problem.

Complex-Valued Solution contains two real solutions:

Our goal was to solve 6 and what we implicitly mean by that in this course is to find real-
valued solutions. Sometimes our guess yields a complex-valued solution, but this is no big deal
since the following calculation shows that if y = Re(y) + i/m(y)is a complex-valued solution
then y; = Re(y)and y, = I'm(y) are real-valued solutions.

ay”" +by' +cy=0
—>  a[Re(y) + i]m(y)}// + b[Re(y) + i]m(y)}/ + c[Re(y) +ilm(y)] =0
= aRe(y)” +bRe(y) + cRe(y) +i[alm(y)" + bIm(y) + cIm(y)] =0
—  ay] +by; +cy1 =0 and ayy + byy + ¢y =0

This is good news, now all we need to do in the case that A is complex is to break our solution
into it’s real and imaginary parts. Let A = o+ with «,3 € R then
M = e cos(fx) + e sin(Bz) thus

Re(e™) = ™ cos(fz) and Im(e™) = e sin(fz)
We find two real solutions in the complex case; y; = e** cos(fz)and y, = e sin(fSx).

Missing Case: there is just one case our discussion has failed to cover in general, it is the case
that the solution to © is repeated. From our experience with Example 16.4.1 we could have
anticipated this, there is no way to get y; = « from our guess y = ¢*. The remedy is simple,
just multiply our guess by = and see if it works. For example, if A = 3 twice then the
fundamental solutions will be y; = e3* and Yo = ze3® these are solutions to the differential
equation " — 6y’ 4+ 9y = 0. I've assigned you a homework problem that proves ze'* is a
solution in the case that A is a repeated root. (it’s not hard, I just think you should do it because
it will help you understand a little more about what is actually being said in this section)



The Recipe: if we wish to solve ay” + by’ + cy = 0 then we solve the characteristic
equation aA? + b\ + ¢ = 0. This is just a quadratic equation, we can always solve it either by
factoring or via the quadratic equation. There are three things that can happen, here is what to
do for each case:

1. If a)® + b\ + ¢ = 0 has two distinct real solutions a; # «» then the general solution is

‘ Yy = 1™ 4+ e ‘

2. If a\?> + b\ + ¢ = 0 has repeated real solutions o; = a, = « then the general solution

is ‘ Yy = c1e™" + cowe™” ‘

3. If a\? + b\ + ¢ = 0 has complex solutions « % i3 such that o, 3 € R then the general
solutionis | y = ¢1e™* cos(fx) + c2e™* sin(fx)

In all three cases this is as far as we can go without more data. If we are given initial conditions
then we can find values for ¢y, ¢, that will fit those conditions. THE END

Example 16.5.2 (find the general solution of y’’ + 13y’ - 14y=0, y’ = dy/dx )

given differential equation: y' + 13y — 14y =0
corresponding characteristic eqn: M4 13A+14=0
factor: (M +14)A-1)=0
find solutions: M=—14 =1
Recipe case 1.) says general solution is: |y = cie™ ™ + coe”

Example 16.5.3 (find the general solution of y”’ + 9y = 0, y’ = dy/dt )

given differential equation: y' 4+ 9y =0
corresponding characteristic eqn: NM+9=0
solve for \?: M =-9
find solutions: A=4+V-9=43i

Recipe case 2.) says general solution is: |y = ¢; cos(3t) + ¢ sin(3t)

In the preceding example | identified that &« = 0 and 3 = 3. This made the exponentials equal
to one, so | didn’t bother writing them. This is a special case of the complex case. It is especially
interesting physically. It’s the simple harmonic oscillator which is a spring w/o friction. | don’t
need the quadratic equation for cases like this. However, for algebra as in the next example |
say the quadratic equation is the best way to go.



Examples 16.5.4 through 16.5.7
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E7 is also very special, and we should be careful not to confuse it with case 2. of the Recipe. The
roots 4 and -4 are certainly distinct, they just have equal magnitudes. Also we should be careful
not to confuse this with the very similar problem 1" 4+ 16¢) = 0 which has solution

1 = ¢ cos(4x) + ¢ sin(4x). It is worth knowing that the solution to E7 can be equivalently

written as

1) = Acosh(4z) + Bsinh(4x) or ¢ = C cosh(4x + D)

Each of these solutions is equally general. One of your homework problems asks you to show
these are in fact just the same solution. (It’s not hard, you just need to remember the definition
of cosh and sinh.) Similar comments apply to the case where the solution is pure imaginary. We
can write 1) = ¢y cos(4x) + e sin(4x) as 1 = A cos(4a + ¢) for appropriately chosen A
(amplitude) and ¢ (phase). I've asked a Collected Homework concerning that formula as well, it
follows easily from a trig. Identity.



Examples 16.5.8 through 16.5.13 (we find general solution in each example)
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Examples 16.5.13 and 16.5.14
We find solution to initial value problem in each example. This means that after we deduce the

form of the general solution we still need to find ¢;, ¢, that fit the intial conditions.

<'§'(f.:’_ﬂ? S Yeutz=wn  wilh Yr=3 sl Y =1, H

‘2= 202+1) =06 A RO Rum<d 2 )"=-1:';1»'-(“,(«_:“’)f

usueg [f Yl(e) = C +(,e°= 2 . -
Jﬁj Yte) = -c"ae«'” =] =®G=T> ¢ C=2-¢ =2,

Fhws IV= 3-—9—x}

(g‘ﬁ?#k?) Y'—-6y's 9y =0

AP-61+4 =@-3 =0 ~ 2, =2, =3,
Y= e™ +eoxe™ =
Y= 30 o (e 3x ™)

using {Y (o) = (g"ﬂ = >

(F(gc,lu_e;*’ 1 f&fm - l"ew-hdur,)

wens, }
g Y1) = 3¢+ ¢ = 6+¢ = 25 ebscz-zs—-w.__
—— »& = /:3 -
E': 98 ¢ %XE;K—J :
Examples 16.5.15 through 16.5.17 ( all complex roots)
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Examples 16.5.18 and 16.5.19 (both complex roots)
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Examples 16.5.20 ( complex root with initial conditions given)
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Well | hope there enough examples in this section for you. | hope you enjoyed this section, part
of the reason | included it is that it is both useful and easy. | figure you’d rather be tested on
this and separation of variables. Comparatively speaking these sort of 2" order ODEs are much
easier than the 1* order ODEs which require non-trivial integration. We just do algebra here.

| should mention that " covers many physically interesting examples: frictionless springs,
springs with friction, circuits with inductance and capacitance (LC-circuits), circuits with
inductance and capacitance and resitance (RLC-circuits) ,... If we add a forcing term to 6 and
study solutions to ay” + by’ + cy = F(t) then we can cover a great multitude of physically
interesting examples. | don’t wish to cover them here, but | hope we’ve done enough here
you’ll be well-equipt to handle them if they come up in a science or engineering course. If you
would like to see some explicit examples of these applications they’re posted in my NCSU
calculus Il notes( I'll send you a link if you ask).



Finally, I have in mind a 10 point bonus project. I’'m not certain this one has a solution. | would
like to derive case 2 as a twist of Example 16.5.1. I'll explain further if you ask. | should warn
you, I've tried to see it for a number of hours to no avail. Attempt only if you want a challenge.

Well, that is all for now, we’ll leave the task of solving differential equations to the differential
equation course. Just dipped our feet in the pond here. Time permitting we may dabble in
solving DEgns via power series techniques in a few weeks. If you want to see that for certain
make a point of asking me ahead of time. Thanks.

One other thing missing from these notes are pictures of direction fields for these differential
equations. You should learn how to plot these in a CAS. | may assign a problem to encourage
you in that task.



