
16. INTRODUCTION TO DIFFERENTIAL EQUATIONS  
 

What is a differential equation? It is an equation which involves derivatives. Differential 

equations are equations which relate the changes in various quantities. The natural world is 

filled with dynamic quantities, they depend on time. Often a differential equation will model 

how those quantities change with time.  

 

The change need not be just with respect to time, we might consider something which varies as 

a result of time and space varying. For example, an electric or magnetic field components are 

functions of x,y,z and t. The differential equations which govern the electric and magnetic fields 

are known as Maxwell’s Equations, these are partial differential equations (PDEs).  In particular 

if  then 
 

 . 

 

Another equation you might encounter in physics is the conservative force equation. A force  

is called conservative if there exists a potential function  such that .  In particular, 

if the force  then the potential energy function  must satisfy three PDEs: 

 . 

We will consider how to solve this sort of equation in calculus III. More general PDEs are 

treated in part in the differential equations course and beyond that there is an endless supply. 

Some mathematicians spend a whole career just studying one special PDE, the wealth of 

behavior contained in a simple equation is staggering. 

 

In this course, we study the most basic type of differential equation, the ordinary differential 

equation (ODE). An ODE has one independent and one dependent variable. Sometimes we use 

“x” for the independent variable, in other situations we use “t” for time. The dependent 

variable is usually taken to be “y” but it is also taken to be “x” (but not at the same time that “x” 

is the independent variable).  
 

  

 

The above are first order differential equations because the highest derivative that appears is 

the first derivative. If both the dependent variable and its derivatives appear linearly then the 

ODEqn is said to be linear. Equations 1.) and 3.) are linear, but the appearance of  ruins it in 

2.). Homogeneous linear DEqns are especially nice since the sum of solutions is again a 

solution.. 



If the highest derivative that appears in the DEqn is the second derivative then we say the DEqn 

is a second order differential equation. If the highest order that appears in the DEqn is n-th 

order derivative then the DEqn is said to be an n-th order differential equation. If the 

differential equation can be written as a sum of the dependent variable and its derivatives set 

to zero without the independent variable appearing on its own then the DEqn is said to be 

homogeneous, otherwise the DEqn is said to be nonhomogeneous. If the differential equation 

can be written as a linear combination of the dependent variable and its derivatives such that 

the coefficients in the sum are just numbers then it is said to be a constant coefficient DEqn. 

 

 

 

Ok, our vocabulary lesson is over now. Some examples in this chapter are inspired by 

homework problems in the excellent DEqns text by Nagle Saff and Snider. 

 

 
 

  



16.1. WHAT IS A SOLUTION? 
 

The question that titles this section begs another question; “to what?” We already know what 

the solution to an arithmetic problem is, it’s a number. Or what is the solution to most algebra 

problems? Also a number, perhaps several. For example,  

has solutions  and . 

 

We mean to ask the question now, “what is the solution to a differential equation?”. 

 

• A explicit solution to a differential equation is a function which satisfies the rule of the 

differential equation. In other words, it a function which works when substituted into the 

differential equation. Symbolically, if the differential equation (*) has the form 

 then  is a solution of (*) if and only if 

 

 

• An implicit solution is some equation which satisfies the differential equation. Unless 

said otherwise when I say solution I mean implicit solution, but we like to find explicit 

solutions if possible. 

 

• The general solution allows for all possible initial conditions. Technically speaking, it is 

not a function, rather it is a whole family of functions. 

. 

 

It probably helps to see a few examples at this point. 

 

Example 16.1.1 

Let  then  is a solution to  since . 

Let  then  is not a solution to  since . 

We call  an explicit solution since it has the graph  and you can see that  is an explicit 

function of , they’re not mixed together. 

  

Example 16.1.2 

Let  this implicitly defines a solution of  since implicit differentiation of the 

proposed solution yields . This is called an implicit 

solution because we cannot just solve for  as a single function of . It is only possible to find 

an explicit solution locally, this is a circle, the upper and lower pieces are separately explicit 

solutions  and . The implicit solution contains both of these explicit 

solutions. 

 

 

 



So how do we find solutions? I didn’t mention that yet. You can see that in Example 10.1.1 the 

solution could be found by integration. 

 

  

 

Select the case  we get . If you think about it, every time we integrated we 

solved a differential equation. Think about it: 

 

  

 

The general solution is thus analogous to the indefinite integral. In fact, when we solve an n-th 

order ODEn it amounts to integrating n-times. It is not surprising then that the general solution 

will have n-arbitrary constants of integration. When we solve a first order ODEn we get just one 

constant. 

 

Example 16.1.3: 

The general solution to  is . Geometrically, we have a family of parabolas 

which open upward and differ just by a vertical shift. 

 

Example 16.1.4: 

The general solution to  is . Geometrically, we have a family of circles. 

Example 10.1.2 was just one case. Given the differential equation we would need additional 

information in order to select a specific solution.  

 

Bad News? Solving differential equations is not just integration in general. The differential 

equation in Example 10.1.1 was very special. More often than not a given DEqn will not allow us 

to find an equation of the form  = stuff in . Usually the dependent variable and its various 

derivatives are all jumbled together at once. We need other tricks to unravel the equation and 

find solutions. I suppose there are nearly as many techniques as there are types of DEqns.  For 

this chapter there will be three main tricks to find general solutions: 

 

• (16.2) Separate variables: . 

 

• (16.4) Use Integrating Factor Technique: put in standard form  

Then calculate , multiply by , use reverse product rule, separate and 

integrate. 

 

• (16.5) 2
nd

 order constant coefficient ODE, find quadratic auxillary equation, solve the 

quadratic, write down general solution. 

 



16.2. SEPARATION OF VARIABLES 
 

This section begins with a short proof of the method. In summary, separating variables is u-

substitution. We almost did these last semester, what differs is notation and presentation of 

the problem. At the conclusion of this section I have a number of examples which show the 

wide and diverse application of first order ODEs. Let’s begin. 

 
 

 

Example 16.2.1 
 

 
  



Example 16.2.2 

 
 
Example 16.2.3 

 

 
 



Example 16.2.4 

 

 
 
Example 16.2.4b (each time, separate then integrate) 

 
 

 

 

 



Example 16.2.4c (each time, separate then integrate) 

 
 
Example 16.2.4d  

 
 
Example 16.2.4e 

 
 
Example 16.2.4f 

 



Example 16.2.4g 

 
 
Example 16.2.4h 

 
 

Example 16.2.4i 

 
Example 16.2.4j 

 
Example 16.2.4k 

 



Example 16.2.5 (I often cover this in calculus I) 

 
 

 Remark:  Many physics problems  boil down to solving some differential equation. Sometimes 

it is actually a system of differential equations. You’ve probably heard of Newton’s Second Law; 

. This is actually a special case where the mass is constant. The general form of the 

Second Law is  where the momentum . In the special case  is constant we 

find this simplifies to  since . We’ll learn the details of such 

calculations in calculus III, for now (other than this discussion) we have to study one-

dimensional motion because I don’t assume you understand the nuts and bolts of vector math. 

Notice that the Second Law is a system of differential equations since if  

then 

 

  

 

For example, if  then we’d have to solve all three differential equations at once 

in order to find the momentum: assuming the initial momentum is zero, 

 

  

 

This discussion is not part of the required material, I include it in the hopes of giving a better 

context to the other examples. 

 

 



Example 16.2.6 (an example with variable mass) 

 

 



Orthogonal Trajectories (OT) 
The word “orthogonal” means perpendicular as it applies to Euclidean geometry. To find a 

trajectory (just another word for a curve) which is perpendicular to a given curve  we 

would want a new curve  such that  wherever the curves interect. If the 

given curve  was a solution to a differential equation then the OT must be a solution 

to a different (but related) DEqn. Specifically,  

if   has solution  then  has solutions which are orthogonal to . 

 

Example 16.2.7 

 

 
This shows that orthogonal trajectories to circles are lines through the origin. 

 

Example 16.2.8 

 



 
Example 16.2.9 

 

 
 

 

 

 

 

 

 

 

 
 



 

Example 16.2.10 (R is resistance, L is inductance) 

 

 
 

  



16.3. EXPONENTIAL GROWTH AND DECAY 

We begin by studying several basic growth and decay examples. Then the logistic equation is 

studied in some depth. 
 

 
 

Example 16.3.1 

 
  

Exponential growth is hard to maintain for large periods of time. If the growth is exponential 

then the population will double for a fixed period of time. This means if we let the population 

grow through 10  doubling periods then the population is increased 1,024 times over. After 20 

doubling periods the population will be increased 1,048,576 times over. After 40 doubling 

periods the population is increased 1,099,511,627,776 times. What does this mean? 

Exponential population growth is not a perfect model. In practice we can only assume it works 

over a finite period of time. The logistic equation is a more sophisticated population growth 

model, it assumes exponential growth for a while but then as the population approaches the 

so-called carrying capacity the growth slows to zero.  

 

 



Comment: Over the past several centuries various carrying capacities have been proposed for 

the human population of earth. Again and again these have been proved incorrect. God has 

always allowed us to find new technologies which circumvent the doomsday scenario which 

was supposed to be inevitable. A model is only as good as its assumptions. The trouble with all 

the models of human population is they fail to acknowledge the fact that the unexpected is to 

be expected.  

 

Radioactive Decay Models 

Radioactive decay is a probabilistic process. The weak force allows certain particles to morph 

into other particles by the release or absorption of a W or Z boson. Details aside, these 

radioactive particles are unstable and the number of particles that decay at any time is 

proportional to the number of unstable particles at that time. This leads to the same 

mathematics as population growth, however, the “growth rate” is negative. 

 

 
 

Comment: Sometimes scientists try to work this backwards. If you know the amount of a 

radioactive material and you know the initial abundance of the substance then you can 

extrapolate backwards and see how old something is. One problem, this assumes we know the 

initial abundance. How do we “know” such a thing? Personally I’m skeptical of what we “know” 

about the unrepeatable past. I have much more trust for thoroughly testable physical laws.  

 

 

 

 

 

 

 

 

 

 



Comment Continued: 

Please don’t misunderstand, radioactive decay is a real observed phenomenon. I think where 

science may get into trouble is where it tries to extend past what can be tested. The same is 

true for creationists. We must be careful to not overstate our case. We have no reason to fear 

science so long as it truly seeks reality. We know the source of reality and we have a meaning 

for our existence. God is glorified whether or not we can “prove” Him. Of course the proof of 

God surrounds us every day. The question is do you accept the proofs He offers? Would it be 

enough that he sent His Son to appear in human form and alter the course of human history? 

He did that, yet the world still denies the existence of God.  

 

I do think we are called to give a defense for the things we believe. However, I’m afraid 

sometimes (myself included) we are tricked into being on the defense about historical science 

which seems to contradict the history in Scripture. Sometimes it may be a better argument to 

simply say that we don’t find the world’s creation myth convincing. I don’t believe that the 

universe created itself replete with physical law, logic and the plethora of beautiful 

mathematics which just happens to mirror nature in unexpected ways.  

 

Truth be told, most of them don’t really find their story convincing either. Why would they, it 

keeps changing. I don’t mean to say our story of creation has not changed at all. Certainly as 

time goes on we may gain a better understanding of the nuts and bolts of the creation process, 

or perhaps not, I am not convinced one way or the other.  

 

What I do know is that God will be at the center of our story no matter how much more 

information we gather about the universe. There is still much flexibility in the creationist’s 

viewpoint. I would much rather be burdened with the supposedly troubling problem of 

assuming the existence of God.  

 

Here is the difference; when we reinterpret our creation story the nature of God does not 

change. He is always good, just, loving, merciful and He keeps his promises without exception. 

When the world undertakes a scientific revolution the pure naturalist learns that his god was in 

fact a false god, nature is something different. I suppose he can put his faith in the ideal of 

perfectly modeled nature, but does that exist? What are you really trusting in when you put 

your trust in a changing universe? I choose to trust the unchanging God.  

 

 

 

 

 

 

 

 

 

 

 



More on Population Models: 

 

 



 

 
 



 
 



 
 



16.4. INTEGRATING FACTOR METHOD 
 

The integrating factor method assumes that our starting point is a linear first order ODE which 

has been written in the so-called standard form 
 

  

 

We assume that  are continuous functions in the equation above. Notice that we cannot 

just separate variables and integrate. Let’s see how the “integrating factor method” gets 

around the trouble. To start we need to define the integrating factor,  
 

  

 

Now observe that the integrating factor has an interesting derivative, 

  

 

Now multiply the DEqn in standard form by the integrating factor and keep the identity above 

in mind, 
 

  

 

Notice that we can apply the product rule in reverse at this point, 
 

. 

 

What this calculation shows is that the DEqn in standard form becomes separable if we change 

from  to , the term “separable” simply means we can separate and integrate. Integrating 

both sides we find, 
 

  

 

This formula gives a general solution for any first order ODE put in standard form. I don’t want 

you to just use this formula. If you choose to use it then I require you to first prove it. The proof 

we just gave we will repeat again and again, each example follows the same pattern. The great 

advantage of mimicking the proof for each example is that there is a built-in redundancy to the 



calculation. If you just use the formula then there is no double check on your work. It’s time for 

examples! 
 

Example 16.4.1 

 
 

Notice that if we calculated the integrating factor incorrectly then we would not have been able 

to make the reverse product rule work. This is the check and balance of the method, if you are 

paying attention you’d have to make a pair of errors simultaneously to get it wrong. Of course 

it’s always possible to get stuck on an integration, but I hope that will not be your stumbling 

stone here.  

 

Example 16.4.2 

 
 



Example 16.4.3 
 

 
 

Remark: Notice that we need not add a constant upon integrating  in 

. If we did, it would cancel when we divide by  to solve for . On 

the other hand in the final integration (marked by �) we have no such expectation for that 

constant C to be cancelled. It is thus our custom to omit the integration constant when 

calculating the integrating factor. 

 

Example 16.4.4 

 
 



Examples 16.4.5 through 16.4.8 

  

 

                  
 

 

  



Example 16.4.9 and 16.4.10 

 

 

Summary 

1. Put linear first order ODEn into standard form, identify the “P” and “Q”. 

2. Calculate the integrating factor . 

3. Multiply the standard form DEqn by the integrating factor. 

4. Group terms and apply the product rule in reverse. 

5. Integrate both sides, don’t forget to add the constant. 

6. Solve for y. 

7. Apply initial condition if you have one. 
 

You could do 7.) after 5.) instead, for certain problems that is very labor-saving. 

 

Well, it was fun, but there may be a question gnawing away as you follow the recipe. Why? 

Why even think to invent this integrating factor? And who thought to multiply by it and so 

forth? I’m not certain the history of the method, it would be interesting to research for fun. 

There are ways of deriving the integrating factor, but the idea stems from some fairly 

sophisticated geometry. We’d need to understand what a “symmetry” of a differential equation 



is. Then, as I understand it, we could go looking for coordinates which make the standard form 

DEqn separate. There is a rather general method which will help you choose such separating 

coordinates. If we did that general procedure (which has nice geometric motivations) then I 

believe we would actually arrive at a derivation of the integrating factor. All I showed you here 

in this section was that it worked. That is enough of course, but sometimes we want more. I will 

award 10 bonus points if you can work through the argument I sketched above. ( I would help 

get you started, just ask in office hours sometime ) 

 

In-Class Exercise 16.4.11: Suppose  and solve  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16.5. CONSTANT COEFFICIENT 2
ND

 ORDER ODES 
 

And now for the easy part. No, I’m not kidding. Once we get past my proof of why it works 

you’ll see the examples in this section are way easier than the last section. Let me state the 

problem we wish to solve in general: 

 

 � 

 

We call a,b,c the coefficients. Let me begin by considering a very special example, it will help 

me explain what we should expect generally, 

 

Example 16.5.1 Find the general solution of , let  be the independent variable so that 

the notation . Consider then that we can integrate twice to solve this one. We just 

need to apply the FTC twice: 

 

  

 

We can see that our general solution is actually built from two fundamental solutions. In 

particular if we define  the general solution is a linear combination of these 

two basic building blocks: . An example is not proof, but it turns out this is 

always the case, we will find every constant coefficient 2
nd

 order ODE has a general solution 

which is the linear combination of two fundamental solutions. 

 

Claim: � has a general solution of the form  where  are themselves 

solutions to � called the fundamental solutions. 

 

Our goal now is to find a procedure to locate these two functions. What guess can we make 

that includes many possibilities? One thing that comes to mind is . This is a fairly 

general guess if we allow the constant  to be a complex number. For example, 

 

  

 



Thus if the solutions we are looking for are sines, cosines or exponentials then we ought to find 

them with the general guess . 

Lemma: If  and then . 

 

Proof: In the case that  our life is easy, we just use the ordinary chain rule and that’s it. 

The reason I have made this lemma is to discuss what happens when  for . 

Let us see how the differentiation works in the complex case, 

 

  

 

As you can see in the calculation above the reason the Lemma holds true is a fortunate interplay 

between the ordinary chain rule for real-valued functions and the product rule.  

 

Remark: Consider the vector-valued function of a real variable .  We can differentiate 

such a vector with respect to its real variable. The differentiation is done component-wise: 

 If we wrote that two-dimensional vector in 

complex notation  we would differentiate as follows: 

 

  

 

This should be strictly understood as component-wise differentiation of a two-vector. However, 

it works like you would expect it to if you were not trying to be careful.  That’s the beauty here, 

you could write  and not even notice you were exiting the realm of real-valued 

functions of a real variable. Calculus for complex-valued functions of a real variable is 

deceptively simple. Now, when you take complex variables you will also discuss complex-valued 

functions of a complex variable. Those have all sorts of properties quite foreign to their real 

counterparts. You’ll see. (obviously this remark is not part of the required content of calculus 

II, I include it for breadth and context) 

 

 

 



Claim: There is at least one possibly complex-valued solution to � ( ) having 

the form . 

 

Proof: use the Lemma to see   and . Substitute into�: 

 

 ☺ 

 

You can verify that  thus in order for our solution to work we must have that the 

constant  is a solution to the quadratic equation ☺. We always get two solutions to the 

quadratic equation, although in one special case those solutions might be the same. So we 

always get at least one solution and the Claim is true. The ☺ equation is called the auxillary or 

characteristic equation. I like to call it the characteristic equation because it characterizes the 

type of solution we get for the problem.  

 

Complex-Valued Solution contains two real solutions: 

Our goal was to solve � and what we implicitly mean by that in this course is to find real-

valued solutions. Sometimes our guess yields a complex-valued solution,  but this is no big deal 

since the following calculation shows that if  is a complex-valued solution 

then  and  are real-valued solutions. 

 

  

 

This is good news, now all we need to do in the case that  is complex is to break our solution 

into it’s real and imaginary parts. Let    with    then  

 thus 

 

  

 

We find two real solutions in the complex case;  and . 

 

Missing Case: there is just one case our discussion has failed to cover in general, it is the case 

that the solution to ☺ is repeated. From our experience with Example 16.4.1 we could have 

anticipated this, there is no way to get  from our guess . The remedy is simple, 

just multiply our guess by  and see if it works. For example, if  twice then the 

fundamental solutions will be  and , these are solutions to the differential 

equation . I’ve assigned you a homework problem that proves  is a 

solution in the case that  is a repeated root. (it’s not hard, I just think you should do it because 

it will help you understand a little more about what is actually being said in this section) 



The Recipe: if we wish to solve  then we solve the characteristic 

equation  . This is just a quadratic equation, we can always solve it either by 

factoring or via the quadratic equation. There are three things that can happen, here is what to 

do for each case: 

 

1. If  has two distinct real solutions  then the general solution is  

 

 

2. If  has repeated  real solutions  then the general solution 

is  

 

3. If  has complex solutions  such that  then the general 

solution is  

 
In all three cases this is as far as we can go without more data. If we are given initial conditions 

then we can find values for  that will fit those conditions. THE END 

 

Example 16.5.2 (find the general solution of y’’ + 13y’ - 14y=0, y’ = dy/dx ) 

 

  

 

 
Example 16.5.3 (find the general solution of y’’ + 9y = 0, y’ = dy/dt ) 

 

  

 

In the preceding example I identified that  and . This made the exponentials equal 

to one, so I didn’t bother writing them. This is a special case of the complex case. It is especially 

interesting physically. It’s the simple harmonic oscillator which is a spring w/o friction. I don’t 

need the quadratic equation for cases like this. However, for algebra as in the next example I 

say the quadratic equation is the best way to go. 



Examples 16.5.4 through 16.5.7 

 
 

E7 is also very special, and we should be careful not to confuse it with case 2. of the Recipe. The 

roots 4 and -4 are certainly distinct, they just have equal magnitudes. Also we should be careful 

not to confuse this with the very similar problem  which has solution 

. It is worth knowing that the solution to E7 can be equivalently 

written as 

 

  

 

Each of these solutions is equally general. One of your homework problems asks you to show 

these are in fact just the same solution. (It’s not hard, you just need to remember the definition 

of cosh and sinh.) Similar comments apply to the case where the solution is pure imaginary. We 

can write  as  for appropriately chosen  

(amplitude) and  (phase). I’ve asked a Collected Homework concerning that formula as well, it 

follows easily from a trig. Identity. 



Examples 16.5.8 through 16.5.13 (we find general solution in each example) 

 
 

  



Examples 16.5.13 and 16.5.14 

We find solution to initial value problem in each example. This means that after we deduce the 

form of the general solution we still need to find  that fit the intial conditions. 

 

 
 
Examples 16.5.15 through 16.5.17 ( all complex roots) 

 

 
 

 



Examples 16.5.18 and 16.5.19 (both complex roots) 

 
 

Examples 16.5.20  ( complex root with initial conditions given) 

 

 
 

Well I hope there enough examples in this section for you. I hope you enjoyed this section, part 

of the reason I included it is that it is both useful and easy. I figure you’d rather be tested on 

this and separation of variables. Comparatively speaking these sort of 2
nd

 order ODEs are much 

easier than the 1
st

 order ODEs which require non-trivial integration. We just do algebra here.  

 

I should mention that � covers many physically interesting examples: frictionless springs, 

springs with friction, circuits with inductance and capacitance (LC-circuits), circuits with 

inductance and capacitance and resitance (RLC-circuits) ,… If we add a forcing term to � and 

study solutions to  then we can cover a great multitude of physically 

interesting examples. I don’t wish to cover them here, but I hope we’ve done enough here 

you’ll be well-equipt to handle them if they come up in a science or engineering course. If you 

would like to see some explicit examples of these applications they’re posted in my NCSU 

calculus II notes( I’ll send you a link if you ask). 

 

 



Finally, I have in mind a 10 point bonus project. I’m not certain this one has a solution. I would 

like to derive case 2 as a twist of Example 16.5.1. I’ll explain further if you ask. I should warn 

you, I’ve tried to see it for a number of hours to no avail. Attempt only if you want a challenge. 

 

Well, that is all for now, we’ll leave the task of solving differential equations to the differential 

equation course. Just dipped our feet in the pond here. Time permitting we may dabble in 

solving DEqns via power series techniques in a few weeks. If you want to see that for certain 

make a point of asking me ahead of time. Thanks. 

 

One other thing missing from these notes are pictures of direction fields for these differential 

equations. You should learn how to plot these in a CAS. I may assign a problem to encourage 

you in that task. 

 

 

 

 

 

 

 

 

 


