17. SEQUENCES AND SERIES

This chapter diverges wildly from everything we have done up to this point. Now more than
ever it is important that you not miss any lecture. This chapter is much more about logic and
applying theory than algorithmic calculation. For most of you this is not good news. However,
don’t despair. Just take it one day at a time and you’ll get it. It will be easier if you have a good
attitude about it. ( | speak from my own experience )

What is our goal? Our goal in this Chapter as well as the two that follow is to find a robust
approximation scheme for functions. In particular, we will see how to rewrite most functions as
a sort of infinite polynomial. We already took the first step towards this in calculus I, we
replaced a function by its linearization. That is a first-order approximation. Next, you can
replace a function by a quadratic polynomial, this would be a second-order approximation. If
you continue without end you arrive at what is known as a power series. In practice we cannot
go on forever on a computer calculation, however we can keep as many terms as we need to
arrive at the precision that the problem requires. This Chapter is needed to build us up to the
point of understanding how to carefully define a power series.

Historically speaking the idea of a power series approximation goes back several centuries and
developments in calculus and series/sequences have been inextricably linked. Sequences form
very important examples in the study of limits. Analysis ( careful mathematics built from
limiting arguments ) matured historically because it demanded to arrive at a logically consistent
treatment of sequences and series. The better part of the nineteenth century was filled with
correcting minor mistakes in the arguments of Newton and Leibniz. Without getting too
technical, what happened was that the early fathers of calculus used power series arguments
without paying enough attention to what the proper domains should be for the series.

Details and domains matter more when you start getting to the edge of what is known. In the
nineteenth century astronomy gathered observations of the motion of the planets that were
very precise. However, the mathematics of Newton’s Universal Law of Gravitation did not allow
an exact solution. The problem of figuring out how all the planets pull on each other by the
force of gravity is quite complicated. There is the Sun and all the planets, their motions are
coupled. Approximations to the real forces have to be used just to make the mathematics
workable. However, then you have to make sure the mathematical approximation is not
creating error bigger than the error inherent in the measurements themselves. It took a
herculean effort by an army of mathematicians and scientists to show that all the motions of
the planets were explained beautifully by Newton’s Theory. Well everything except for the
perihelion of Mercury. Turns out they calculated correctly, Newton’s theory was wrong. But,
that is a story for another day.

Bottom line, power series are an indispensible tool for mathematical sciences.



17.1. SEQUENCE EXAMPLES

So what is a sequence? (by the way, you should read Stewart section 11.1, it’s cleaner than
these notes on certain points and he has lovely pictures)
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I should emphasize that a sequence is an ordered list of numbers.

Examples 17.1.1 through 17.1.3
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Example 17.1.4 (Fibonacci Sequence)

Sequences naturally occur in computer science. Often those are defined recursively, some loop
generates the next value in the sequence from the last. A recursively defined sequence may not
have a nice global formula like we say in E1, E2, E3. The Fibonacci Sequence is one of the more
famous recursively defined sequences:

flzl, ngl, f3:1+1:2, f4:2+1:3, f5:3+2:5
Generally the patternis f,, = f,,_; + f,_ofor n > 3. To summarize,

{ftoz1 =1{1,1,2,3,5,8,13,21,34,... }



Example 17.1.5 (Silly bonus point example)
I’ll give you a bonus point if you can crack the definition of the following sequence and tell me
the next element beyond those already listed:

{19,8,18,5,11,1,14,4,6,9,15,14, ..}

The next element not listed is fairly well suggested by what is already there, past that | suppose
it could repeat, but in principle there are limitless options. Much like being given graph, we
can’t be certain what happens beyond the given viewing window.

Remark: since a sequence is just a function from N — R it follows we can construct new
sequences from old sequences in many of the same ways as we did for functions. If

{an}52 1, {bn}oo, are sequences then {a, + b,}°°; and {a,b, }22, are also sequences. We can
also multiply a sequence by a number c to obtain a new sequence {c, }°°; = {ca, }22, where
the formula for ¢, is naturally ¢,, = ca,, for each n > 1. In contrast, composition of sequences
almost never would make sense as the output of a sequence is real numbers and the outer
function of the composite would need inputs of natural numbers.

Big Picture Comment: the concept of a sequence is much more general than our examples and
this course portrays. Pretty much anything which can be listed in order forms a sequence. We
insist that our list be filled with real numbers, but they could just as well be complex numbers,
matrices, triangles, or clowns. A sequence in a space is a function from N into the space. We
will deal exclusively with the simple case of real-valued sequences in calculus Il. (convergence is
trickier in spaces other than R)

17.2. CONVERGENCE OF SEQUENCES

Sequences can converge or diverge but not both. We say a sequence converges to L € R if as
we go further out the sequence we get values closer to L. If this reminds you of our definition
of lim,_,~, f(z) = L then good, it is the same thing conceptually.
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There is the definition and notation in words. Let me be a bit more exact. There is a technical
formulation of this limit.



Technical Definition of Limit of Sequence
Let {a,} be a sequence then we say a,, — L as n — o iff for each € > O there existsa M € N

such that whenever M < n € N we find |a, — L| < e.

For those of you who are keeping score this is verbatim the definition we gave before for

f(x) = Las x — cc. The only difference is that the sequence is tested at natural numbers
whereas the function is tested at real numbers. Given this observation the following Theorem is
quite unsurprising:
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Stewart makes a fairly big deal about this in various examples. He says you cannot apply
L’'Hopital’s Rule to a limit of a sequence. And technically he is correct, but the Theorem above
shows that it is not wrong to think of extending the domain of the sequence to the real
numbers. | will allow you to apply the Theorem by saying “I’'m extending n to be a continuous
variable” in the margin when you use L’'Hopital’s Rule. This saves some writing. | suppose |
should mention that limits of sequences also share many of the same properties as limits of
functions, we assume A, B € R in what follows:
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Example 17.2.1

Find the limit of a,, = HQES%. | can think of about 4 or so somewhat distinct ways to solve this

limit. Let’s contrast the methods.

1. Use algebra:

. n+3 . 143 0
hm—zhm n5n6:_:0
2. Use algebra:
n-+3 n+3 1

i —————; = 11Imn = —
n—oon?+5n+6 noce (n+3)(n+2) nocon+2

3. Use the largest power wins logic: (I’'m fond of this one)

I n+3 _ n_l 1_0
nl—>rcr>lon2+5n+6 ngglonz—nl_glon—

4. Extending n to be a continuous variable we apply L’Hopital’s Rule to type =:
I n+3 .
11m ————— = 111N —=
n—oonZ4+5m+6 nsco2n+5

5. Eyeballit: as n — oo the denominator is huge compared to the numerator, just look at
n=1000 for example... the answer is zero.

When | am taking a limit as part of a larger problem and it is a simple limit like this one | do tend
to use 5.) a fair amount. You should only attempt 5.) once you have mastered the other
options. | do hope you gather an intuition about these things by the time we are done. For
example, | hope you become fluent in the results below
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Example 17.2.2 (the picture illustrates how we can extend a sequence to a function)
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| know you have missed the squeeze theorem. Good news, its back:
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Example 17.2.6
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Example 17.2.7
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The example that follows is used often in later sections.

Example 17.2.8
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When we study the geometric series this limit will help us stay out of trouble.

Increasing and Decrease in Sequences
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We can study the continuous extension of a sequence if it has a nice formula to extend:
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Don’t get lost in the technicalities here, it’s really very simple, a bounded sequence will fit
inside some finite horizontal band if we look at large n. This doesn’t mean is has to have a
convergent limit. Sine and cosine are bounded but they certainly do not converge. We need
something more to insure that a bounded sequence will converge.

Example 17.2.9
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Notice that the sequence in E9 is monotonic because it is decreasing everywhere. Why is it
decreasing? | recommend the following test:

Decreasing Sequence Test( | use this in Ex. 17.3.14 and 17.3.15 and elsewhere)

The advice is this: use differentiation to analyze increase/decrease. The steps that follow only
apply to sequences which have formulas which extend nicely to functions of a continuous real
variable. | wouldn’t try my advice below for a,, = (—=1)"/nor a,, = 1/n!

1.) Extend n to be a continuous variable then differentiate with respect to n.
2.) Analyze the derivative is it positive or negative for large n?
a.) If da, /dn > 0for all large n then the sequence is increasing.
b.) If da,/dn < 0forall large n then the sequence is decreasing.
c.) If da,, /dn does oscillates between positive and negative values for large n then the
sequence is not monotonic.



Remark: if a sequence fails to be monotonic we should not conclude that it diverges. See
Example 17.2.7 for example.

Example 17.2.10
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In-class Exercise 17.2.10b: Stewart gives a squeeze theorem argument to prove the boxed
assertion. We almost have his proof here, what steps are we missing? Prove the boxed limit.

17.3. SERIES AND CONVERGENCE TESTS
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In-class Exercise 17.3.0: The sequence of partial sums is {sq, s, s3, ... }. Calculate the first
three or four terms in the sequence of partial sums relative to the sequences

a.) Find the first 4 terms in the sequence of partial sums relative to the sequence
a, = +forn > 1.

b.) Find the first 4 terms in the sequence of partial sums relative to the sequence which
has terms g, = =2 for n > 1.

c.) Find the first 4 terms in the sequence of partial sums relative to the sequence which
has terms g, = =2 for n > 1.
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The question “does the series converge?” is possibly the most challenging question we ask
calculus students. The majority of this chapter is dedicated to seeing how that question is
answered by various tests. Before we get to the general tests we consider the nice examples of
geometric and telescoping series. Many of these actually converge in a way which is easy to
calculate and discuss. Before we get to that let me just list a few examples without proof.

Examples 17.3.1 through 17.3.3 (we’ll explain E1 and E2 later, E3 is too hard for us)
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It is interesting and for most people a little surprising that E1 diverges while E3 converges.
Probably E1 is the most important example besides the geometric series.

Geometric Series Test

Geometric Series:
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Example 17.3.4 (applying the geometric series result)
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In-class Exercise 17.3.5 (applying the geometric series result)
Does the series ) 3(2)"e~" converge or diverge? If it converges find the value to which it
converges.

Telescoping Series Examples

Examples 17.3.6 (the term “telescoping refers to the nice cancellation below)
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The fact that we can just calculate s, by brute force is quite unusual in the big scheme of things
however all the telescoping series work more or less like this example.

Examples 17.3.7 (Telescoping Series)
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In-class Exercise 17.3.8: Show that the series below converges and find its value.
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N-th Term Test
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In-Class Exercise 17.3.8b: Does Y~ tan™'(n) converge or diverge?

New from Old Test
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Examples 17.3.9 and 17.3.10 ( illustrate New from Old Test)
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Integral Test
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( this is a weapon of last resort, most of the other tests are less work if they are applicable. What this
test says is you can trade the given problem for an improper integral, it’s only useful if you can integrate

the formula for the series)

In-Class Exercise 17.3.11a: (does the given series converge or diverge?)
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Example 17.3.11: (integral test example)
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P-series Test
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In-class Exercise: prove the P-series test is true.

Example 17.3.11: (almost p-series test example)

_ 1 1 1 1 1 : H H —
Does s = 5= + 7 + 135 + 195 T 533 + - - - converge or diverge? Well this one is almost the p=3
series since Y =1+ %+ 5 + 5 + - Let’s say the p=3 series converges to L, we know
Lis a real number by the P-series test. Then notice we can add an subtract 1+1/8 in order to see
how the p=3 series is related to the given series.

T R I PP
5= 8 8 27 " 64 ~ 7

Thus s = L — 9/8, it converges. (it doesn’t matter that we don’t know what L is precisely, we’ll

tackle the question of how to get a reasonably good approximation of L in a later section. ”
Converge or diverge?” is a question of existence)

oo 1
n=1 n3



Alternating Series Test
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Wow! Look at how slow the harmonic series diverges. | should mention that the alternating
harmonic series is said to be conditionally convergent. More on that later.



Example 17.3.14 and 17.3.15

Notice we have to check for decreasing b,. If you claim to apply the AST then you must

mention and/or check that b, is both positive and decreasing. How much work is owed to prove
it is decreasing depends on the formulas. These examples illustrate full-credit solutions. | do
give partial credit for mildly illogical and/or incomplete proofs.
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Remark: | might lose a point on E15. What slight error did | make? E14 in contrast didn’t
neglect this detail.



Ratio Test
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Notice that the Ratio Test is inconclusive in the case L=1. This is especially important when we
get to power series. The cases a. and b. determine almost the entire domain for the power
series, however on the edges of the domain the ratio test returns L=1 so we have to “check the
endpoints” by one of the other tests.

Examples 17.3.16 and 17.3.17 (Ratio Test)
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In-class Exercise 17.3.17b: find the value to which the series in E17 converges.




Example 17.3.18 technically we are considering a whole bunch of series all at once. Each value

of x gives a different series. It is interesting that each and every value of x yields a convergent
series.
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In-class Exercise 17.3.19 Calculate the following to 3 significant digits, you will need a
calculator.

[ee]

Zl

n!
n=0

Identify this number and make a guess what the power series in E18 converges to for an
arbitrary value for x. (this is with x = 1)



COMPARISON TESTS

Compare to what? Well we know a number of basic examples at this point. Let’s make a list
and collect our thoughts up to this point.
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We also discussed the New from Old Test. The comparison tests allow us to treat examples
which are similar to those we already analyzed. Roughly speaking, if some given series is a lot
like one of the ones we have already categorized then the new one will fall into the same
classification. We need to be careful about what | mean by “a lot like”. The direction of the
inequalities is crucially important in the test below.

The Direct Comparison Test: Let ) a, and ) b, be series with positive terms,

a. If > b, is convergentand a,, < b, forall nthen )" a, is also convergent.

b. If Y b, isdivergentand a, > b, forall nthen > a,is also divergent.

Example 17.3.21 (Does the series below converge or diverge?)

= 1
S =
Z n2 + 3
n=1
This is a series with positive terms. We can compare this to the p=2 series which we know

converges (remember, you proved it). Observe that - > n++3 for all n > 1. Therefore, by the

Comparison Test we find that s converges.



Example 17.3.21 (Does the series below converge or diverge?)

- 1
=1 _—
i +;n—ln(n)

This is a series with positive terms. Notice that L>

for all n > 2. This is true because

’ (1)
In(n) > 0for n > 1. If we subtract a positive value from n then the resulting denominator will

be smaller than n hence the quotient will be bigger. We can compare s to the p=1 series .

Identify the given series as the ) a,, in the test, let a; = 1and ¢, = — =T for n > 2. We
certainly have that a,, > 0,, = %for all n > 1. Therefore, sdiverges because it is bigger than

the p=1 (harmonic) series which is known to diverge (using the Direct Comparison Test)
Remark: there are endless examples that follow for this test. The Direct Comparison Test is
called the “Direct Comparison Test” because it involves a direct comparison of two series. In

contrast, the next test compares the two series in the limit.

Limit Comparison Test: Suppose that > a, and >_ b, are series with positive terms. If

where ¢ € R such that ¢ > 0 then either both series converge or both diverge.

Example 17.3.22 (Does the series below converge or diverge?)

1

= tan~!(n)
5= Z 2
n=1

This is a series with positive terms. Clearly it is similar to the convergent p=2 series, let’s
compare the given series with the p=2 series,

tan—!(n)

= lim tan"'(n) =

) T
lim . —
n

n—o0

Therefore the series s converges by the Limit Comparison Test.

oo

Example 17.3.23 Does s = > >~ - converge or diverge? Compare with p=1 series
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In-class Exercise 17.3.24: Convergence/Divergence overall strateqy flowchart

Below is a flow chart that describes one possible strategy for answering the question “does the
series converge or diverge?”. Complete this flowchart to include all the tests we have used. Feel
free to reorder my chart, this is just a rough draft.
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Remark: there is also a “Root Test”, we will skip that in this course. If you are curious it’s in your
text on page 754. It is in most texts, if you’re a math major you ought to at least read over it
some time.

| have organized all of these topics in this single section because | wanted to emphasize the fact
that they are part of a larger thought process. We still have a few loose ends to tie up. The next
section is by far the most practical section.



17.4. ERROR TESTS

The principle question we seek to answer in this section is: “How far off are we when we use a
partial sum instead of the complete series ?” It may not be possible to know, but in a few cases
there are convenient tests. We discuss them here. The “tail” or “n-th remainder” of the series
s =Y. a,isdefined below

n=1

ans_sn:a'n+l+an+2+"'

In other words, s = s, + R,,.. We can call R,, the errorin s, because it is precisely how far off
the partial sum s, is from the true value s.

Integral Test Error Estimation
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Corollary to the Integral Test Error Estimate:
The following gives us a way to squeeze to the real series.

) =
S, + S-Fwd.x = s < Sn+§n4’-wdx

N |
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Alternating Series Error Test
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In-class Exercise 17.4.4: Calculate the alternating harmonic series to 4 significant digits. Identify
the number you find. Make an educated guess on what the actual value of the alternating
harmonic series 1 — 2 + 1 — 1 + - - - (your scientific calculator should help)
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Principle of Least Astonishment Test (PLA)

Ignoring mathematical rigor for a moment let me speak pragmatically. For most examples if
terms in the series are getting smaller and smaller then you can just study the digits in the
partial sums. When a digit settles down and is no longer effected by additional terms being
summed then you can with reasonable certainty assume that digit is correct. Of course you
need to keep rounding in mind, and when | say “reasonable” | do not mean mathematical
certainty. Sometimes mathematical certainty is not an option. In such cases you may be forced
to this sort of heuristic reasoning.

s10 = 1.234544
s = 1.234703
S19 = 1.234769
S13 = 1.234774
s14 = 1.234770

Given the data above | would wager that s = 1.2347 for certain. If | wanted more digits I'd
want to calculate more to be on the safe side. That’s a judgment call on my part.

Of course, | could be wrong, without any additional info it is entirely possible that the next term
violates the pattern. It could be that s15 = 42. This kind of random divergence from the pattern
above is insured by the various tests earlier in this section. In practice, we may not even have a
formula from which the series is being generated. The series could come from some
experimental measurement. We then just have to take it on faith that the pattern continues.
Often a mathematical pattern is assumed even though there is no physical derivation of the
pattern. These sort of models in physics are termed “phenomenological”. Usually physicists are
discontent with such models, one would like to explain why a certain equation describes a



certain situation. One early instance of this was Kepler’s Laws. He gave a formula describing the
motion of planets. However, Kepler gave no reason as to why this formula ought to apply. One
of the great triumphs of Newtonian mechanics was to derive Kepler’s Laws as a consequence
of Newton’s Laws of motion and Newton’s Universal Law of Gravitation.

This story continues to play out today. Some scientists will find a pattern, then later other
scientists will give a reason for the pattern. At the base of it all a nagging question remains; why
is there physical law at all? If the universe is random then why does it have such rich and
beautiful physical law? There are other answers, but | believe the most logical answer to this
question is the obvious one. The universe was created by an orderly being. God built the
universe in such a way that not only could we enjoy the beauty of the cosmos at any level of
detail. From our everyday experience, to the atomic level, to the subatomic level, it’s not
random, it’s design.

17.5. CONDITIONAL AND ABSOLUTE CONVERGENCE

Absolute convergence is stricter than convergence. We say a series Z a,, converges absolutely
iff the series > |a, | converges. If the series ) a,, converges and the series ) |a, | diverges
then > a, is defined to be conditionally convergent.

— (—1)"! — 1
Z ) =In(2) but, Z — = oo s conditionally convergent
n=1 n n=1 n
0 —1)"— 1 7T2
= Z 5— converges and Z 5 = — ¢ absolutely convergent
— n —n 6

Notice the absolute value just kills the sign generating term (—1)” ! = 41 in both of the
examples above. Intuitively we should think of a conditionally convergent series as a series
which almost diverges, it’s right on the edge. On the other hand, absolutely convergent series
are in no such danger.

Basically, conditionally convergent series converge because of some fortunate cancellation. If
we rearrange the terms in the series the rearranged series can converge to something
different! Let me illustrate the danger of rearranging terms in a series which is not absolutely
convergent. For example,

0=1-1
—1-141-1

=1 —141—14--1—1+---
1411414 =141+
=14+0+0+--0+---

=1

Oops. Obviously the claimed equality above was not valid. How can we avoid such problems?



Rearrangement Lemma: If a series converges absolutely then any rearrangement of the series
will converge to the same value.

Contrast this to the striking result due to Riemann,
Riemann’s Observation: A conditionally convergent series can be rearranged so that it

converges to any real number. In other words, rearranging an conditionally convergent series
alters the result.

Look at Egns. 6,7, and 8 of page 755. These show that you can rearrange the terms in the
alternating harmonic series to make the rearranged series converge to 2 In(2). | find it a bit

disturbing, but it is exactly this sort of subtlety that show us why we must be careful with series
calculations.

Remark: The Ratio Test actually gives us that the series converges absolutely when L < 1.

Apology: | am a novice on the matters discussed in this part of the course. If you would like to
see a more sophisticated and breathtakingly deep set of notes on this material then | suggest
you browse through

http://kr.cs.ait.ac.th/~radok/math/mat6/startdiall.htm

These are notes from a text by Courant. | peruse these and feel humbled by my abject
ignorance. Bonus points certainly can be earned if you teach me something from those notes. If
you’ve got the gumption, ask me we’ll find a mutually agreeable example for you to dig into. By
the way, http://kr.cs.ait.ac.th/~radok/math/mat/startall.htm has even more on all sorts of
mathematics and physics.




