
17. SEQUENCES AND SERIES 
 

This chapter diverges wildly from everything we have done up to this point. Now more than 

ever it is important that you not miss any lecture. This chapter is much more about logic and 

applying theory than algorithmic calculation. For most of you this is not good news. However, 

don’t despair. Just take it one day at a time and you’ll get it. It will be easier if you have a good 

attitude about it. ( I speak from my own experience ) 

 

What is our goal? Our goal in this Chapter as well as the two that follow is to find a robust 

approximation scheme for functions. In particular, we will see how to rewrite most functions as 

a sort of infinite polynomial. We already took the first step towards  this in calculus I, we 

replaced a function by its linearization. That is a first-order approximation. Next, you can 

replace a function by a quadratic polynomial, this would be a second-order approximation. If 

you continue without end you arrive at what is known as a power series. In practice we cannot 

go on forever on a computer calculation, however we can keep as many terms as we need to 

arrive at the precision that the problem requires. This Chapter is needed to build us up to the 

point of understanding how to carefully define a power series.  

 

Historically speaking the idea of a power series approximation goes back several centuries and 

developments in calculus and series/sequences have been inextricably linked. Sequences form 

very important examples in the study of limits. Analysis ( careful mathematics built from 

limiting arguments ) matured historically because it demanded to arrive at a logically consistent 

treatment of sequences and series. The better part of the nineteenth century was filled with 

correcting minor mistakes in the arguments of Newton and Leibniz. Without getting too 

technical, what happened was that the early fathers of calculus used power series arguments 

without paying enough attention to what the proper domains should be for the series.  

 

Details and domains matter more when you start getting to the edge of what is known. In the 

nineteenth century astronomy gathered observations of the motion of the planets that were 

very precise. However, the mathematics of Newton’s Universal Law of Gravitation did not allow 

an exact solution. The problem of figuring out how all the planets pull on each other by the 

force of gravity is quite complicated. There is the Sun and all the planets, their motions are 

coupled. Approximations to the real forces have to be used just to make the mathematics 

workable. However, then you have to make sure the mathematical approximation is not 

creating error bigger than the error inherent in the measurements themselves. It took a 

herculean effort by an army of mathematicians and scientists to show that all the motions of 

the planets were explained beautifully by Newton’s Theory. Well everything except for the 

perihelion of Mercury. Turns out they calculated correctly, Newton’s theory was wrong. But, 

that is a story for another day.  

 

Bottom line, power series are an indispensible tool for mathematical sciences. 

 



17.1. SEQUENCE EXAMPLES 
 

So what is a sequence? (by the way, you should read Stewart section 11.1, it’s cleaner than 

these notes on certain points and he has lovely pictures) 

 

 
I should emphasize that a sequence is an ordered list of numbers. 

 

Examples 17.1.1 through 17.1.3 

 

 
Example 17.1.4 (Fibonacci Sequence) 

Sequences naturally occur in computer science. Often those are defined recursively, some loop 

generates the next value in the sequence from the last. A recursively defined sequence may not 

have a nice global formula like we say in E1, E2, E3. The Fibonacci Sequence is one of the more 

famous recursively defined sequences: 

 

  

 

Generally the pattern is  for . To summarize, 

 

  

 

 



Example 17.1.5 (Silly bonus point example) 

I’ll give you a bonus point  if you can crack the definition of the following sequence and tell me 

the next element beyond those already listed: 

 

  

 

The next element not listed is fairly well suggested by what is already there, past that I suppose 

it could repeat, but in principle there are limitless options. Much like being given graph, we 

can’t be certain what happens beyond the given viewing window. 

 

Remark: since a sequence is just a function from  it follows we can construct new 

sequences from old sequences in many of the same ways as we did for functions. If 

 are sequences then  and  are also sequences. We can 

also multiply a sequence by a number  to obtain a new sequence  where 

the formula for  is naturally  for each . In contrast, composition of sequences 

almost never would make sense as the output of a sequence is real numbers and the outer 

function of the composite would need inputs of natural numbers. 

 

Big Picture Comment: the concept of a sequence is much more general than our examples and 

this course portrays. Pretty much anything which can be listed in order forms a sequence. We 

insist that our list be filled with real numbers, but they could just as well be complex numbers, 

matrices, triangles, or clowns. A sequence in a space is a function from  into the space. We 

will deal exclusively with the simple case of real-valued sequences in calculus II. (convergence is 

trickier in spaces other than  ) 

 

17.2. CONVERGENCE OF SEQUENCES 
 

Sequences can converge or diverge but not both. We say a sequence converges to  if as 

we go further out the sequence we get values closer to . If this reminds you of our definition 

of  then good, it is the same thing conceptually. 
 

 
There is the definition and notation in words. Let me be a bit more exact. There is a technical 

formulation of this limit. 

 

 



Technical Definition of Limit of Sequence 

Let  be a sequence then we say  as  iff for each  there exists a  

such that whenever  we find . 

 

For those of you who are keeping score this is verbatim the definition we gave before for 

 as . The only difference is that the sequence is tested at natural numbers 

whereas the function is tested at real numbers. Given this observation the following Theorem is 

quite unsurprising: 

 

 
 

Stewart makes a fairly big deal about this in various examples. He says you cannot apply 

L’Hopital’s Rule to a limit of a sequence. And technically he is correct, but the Theorem above 

shows that it is not wrong to think of extending the domain of the sequence to the real 

numbers. I will allow you to apply the Theorem by saying “I’m extending n to be a continuous 

variable” in the margin when you use L’Hopital’s Rule. This saves some writing. I suppose I 

should mention that limits of sequences also share many of the same properties as limits of 

functions, we assume  in what follows: 

 

 
 

 

 



 

Example 17.2.1 

Find the limit of . I can think of about 4 or so somewhat distinct ways to solve this 

limit. Let’s contrast the methods. 

 

1. Use algebra: 

  

 

2. Use algebra: 

                                  

 

3. Use the largest power wins logic: (I’m fond of this one) 

                                  

 

4. Extending  to be a continuous variable we apply L’Hopital’s Rule to type : 

                                 

 

5. Eyeball it: as  the denominator is huge compared to the numerator, just look at 

n=1000 for example… the answer is zero. 

 

When I am taking a limit as part of a larger problem and it is a simple limit like this one I do tend 

to use 5.) a fair amount. You should only attempt 5.) once you have mastered the other 

options. I do hope you gather an intuition about these things by the time we are done. For 

example, I hope you become fluent in the results below  

 

 
 

 



 

Example 17.2.2 (the picture illustrates how we can extend a sequence to a function) 

 
I know you have missed the squeeze theorem. Good news, its back: 

 

 
 

Example 17.2.6 

 

 



 

 
 

Example 17.2.7 

 

 
 

The example that follows is used often in later sections. 

 

Example 17.2.8 

 
When we study the geometric series this limit will help us stay out of trouble. 

 

 

Increasing and Decrease in Sequences 

 

 
 

 We can study the continuous extension of a sequence if it has a nice formula to extend: 

 

 



 

 
 

Don’t get lost in the technicalities here, it’s really very simple, a bounded sequence will fit 

inside some finite horizontal band if we look at large n. This doesn’t mean is has to have a 

convergent limit. Sine and cosine are bounded but they certainly do not converge. We need 

something more to insure that a bounded sequence will converge. 
 

 

Example 17.2.9  

 

 
 

 

Notice that the sequence in E9 is monotonic because it is decreasing everywhere. Why is it 

decreasing? I recommend the following test: 

 

Decreasing Sequence Test( I use this in Ex. 17.3.14 and 17.3.15  and elsewhere)  

The advice is this: use differentiation to analyze increase/decrease. The steps that follow only 

apply to sequences which have formulas which extend nicely to functions of a continuous real 

variable. I wouldn’t try my advice below for  or  
 

1.) Extend n to be a continuous variable then differentiate with respect to n. 
 

2.) Analyze the derivative is it positive or negative for large n? 

a.) If  for all large n then the sequence is increasing. 

b.) If  for all large n then the sequence is decreasing. 

c.) If   does oscillates between positive and negative values for large n then the 

sequence is not monotonic. 
 



Remark: if a sequence fails to be monotonic we should not conclude that it diverges. See 

Example 17.2.7 for example.  

Example 17.2.10  
 

 
 

 

In-class Exercise 17.2.10b: Stewart gives a squeeze theorem argument to prove the boxed 

assertion. We almost have his proof here, what steps are we missing? Prove the boxed limit. 

 

17.3. SERIES AND CONVERGENCE TESTS 
 

 
 

In-class Exercise 17.3.0: The sequence of partial sums is . Calculate the first 

three or four terms in the sequence of partial sums relative to the sequences 

 

a.) Find the first 4 terms in the sequence of partial sums relative to the sequence 

 for . 

 

b.) Find the first 4 terms in the sequence of partial sums relative to the sequence which 

has  terms  for . 

 

c.) Find the first 4 terms in the sequence of partial sums relative to the sequence which 

has  terms  for . 

 



 

 
 

The question “does the series converge?” is possibly the most challenging question we ask 

calculus students. The majority of this chapter is dedicated to seeing how that question is 

answered by various tests. Before we get to the general tests we consider the nice examples of 

geometric and telescoping series. Many of these actually converge in a way which is easy to 

calculate and discuss. Before we get to that let me just list a few examples without proof. 

 

Examples 17.3.1 through 17.3.3 (we’ll explain E1 and E2 later, E3 is too hard for us) 

 

 
 

It is interesting and for most people a little surprising that E1 diverges while E3 converges. 

Probably E1 is the most important example besides the geometric series.  

 

Geometric Series Test 

 
 



 

Example 17.3.4  (applying the geometric series result) 

 
 

In-class Exercise 17.3.5 (applying the geometric series result) 

Does the series  converge or diverge? If it converges find the value to which it 

converges. 

 

 

Telescoping Series Examples 
 

Examples 17.3.6 (the term “telescoping refers to the nice cancellation below) 

 
The fact that we can just calculate  by brute force is quite unusual in the big scheme of things 

however all the telescoping series work more or less like this example. 

 

Examples  17.3.7 (Telescoping Series) 

 
In-class Exercise 17.3.8:  Show that the series below converges and find its value. 

 

 



N-th Term Test 

 
 

 

In-Class Exercise 17.3.8b: Does  converge or diverge?  
 
 

New from Old Test 

 
Examples 17.3.9 and 17.3.10 ( illustrate New from Old Test) 
 

 



Integral Test 
 

 
 

( this is a weapon of last resort, most of the other tests are less work if they are applicable. What this 

test says is you can trade the given problem for an improper integral, it’s only useful if you can integrate 

the formula for the series) 

 

In-Class Exercise 17.3.11a: (does the given series converge or diverge?) 

 

  

 

 

 



 Example 17.3.11: (integral test example) 
 

 
 

P-series Test 
 

 
 
In-class Exercise: prove the P-series test is true.  

 

Example 17.3.11: (almost p-series test example) 

Does  converge or diverge? Well this one is almost the p=3 

series since . Let’s say the p=3 series converges to L, we know 

L is a real number by the P-series test. Then notice we can add an subtract 1+1/8 in order to see 

how the p=3 series is related to the given series. 
 

 
 

 

Thus , it converges. (it doesn’t matter that we don’t know what L is precisely, we’ll 

tackle the question of how to get a reasonably good approximation of L in a later section. ” 

Converge or diverge?”  is a question of existence) 

  



Alternating Series Test  

 

Example 17.3.13 

 

 
Wow! Look at how slow the harmonic series diverges. I should mention that the alternating 

harmonic series is said to be conditionally convergent. More on that later. 



Example 17.3.14 and 17.3.15 

Notice we have to check for decreasing . If you claim to apply the AST then you must  

mention and/or check that  is both positive and decreasing. How much work is owed to prove 

it is decreasing depends on the formulas. These examples illustrate full-credit solutions. I do 

give partial credit for mildly illogical and/or incomplete proofs. 

 
 

Remark: I might lose a point on E15.  What slight error did I make? E14 in contrast didn’t 

neglect this detail. 



Ratio Test 

 
Notice that the Ratio Test is inconclusive in the case L=1. This is especially important when we 

get to power series. The cases a. and b. determine almost the entire domain for the power 

series, however on the edges of the domain the ratio test returns L=1 so we have to “check the 

endpoints” by one of the other tests. 

 

Examples 17.3.16 and 17.3.17 (Ratio Test) 

 

 
 

In-class Exercise 17.3.17b: find the value to which the series in E17 converges.  

 



Example 17.3.18 technically we are considering a whole bunch of series all at once. Each value 

of x gives a different series. It is interesting that each and every value of x yields a convergent 

series.  

 
 

In-class Exercise 17.3.19 Calculate the following to 3 significant digits, you will need a 

calculator.  

 

 

Identify this number and make a guess what the power series in E18 converges to for an 

arbitrary value for x. (this is with x = 1) 

  

 

 

 

 

 

 

 

 

 

 



COMPARISON TESTS 
 

Compare to what? Well we know a number of basic examples at this point. Let’s  make a list 

and collect our thoughts up to this point.  

 
We also discussed the New from Old Test. The comparison tests allow us to treat examples 

which are similar to those we already analyzed. Roughly speaking, if some given series is a lot 

like one of the ones we have already categorized then the new one will fall into the same 

classification.  We need to be careful about what I mean by “a lot like”.  The direction of the 

inequalities is crucially important in the test below. 
 

The Direct Comparison Test: Let  and  be series with positive terms, 
 

a. If  is convergent and  for all  then  is also convergent. 
 

b. If  is divergent and  for all  then  is also divergent. 
 

 

Example 17.3.21 (Does the series below converge or diverge?) 

  

This is a series with positive terms. We can compare this to the p=2 series which we know 

converges (remember, you proved it). Observe that  for all . Therefore, by the 

Comparison Test we find that  converges. 

 

 

 



Example 17.3.21 (Does the series below converge or diverge?) 
 

 

 
 

This is a series with positive terms. Notice that  for all . This is true because 

 for . If we subtract a positive value from n then the resulting denominator will 

be smaller than n hence the quotient will be bigger. We can compare  to the p=1 series . 

Identify the given series as the  in the test, let  and  for . We 

certainly have that  for all . Therefore,  diverges because it is bigger than 

the p=1 (harmonic) series which is known to diverge (using the Direct Comparison Test) 

 

Remark: there are endless examples that follow for this test. The Direct Comparison Test is 

called the “Direct Comparison Test” because it involves a direct comparison of two series. In 

contrast, the next test compares the two series in the limit. 

 

Limit Comparison Test: Suppose that  and  are series with positive terms. If 
 

 

 
 

where  such that  then either both series converge or both diverge. 

 

Example 17.3.22 (Does the series below converge or diverge?) 
 

 

 
 

This is a series with positive terms. Clearly it is similar to the convergent p=2 series, let’s 

compare the given series with the p=2 series, 
 

 

 
 

Therefore the series  converges by the Limit Comparison Test. 

 

Example 17.3.23 Does  converge or diverge? Compare with p=1 series 
 

 

 



In-class Exercise 17.3.24: Convergence/Divergence overall strategy flowchart 

Below is a flow chart that describes one possible strategy for answering the question “does the 

series converge or diverge?”. Complete this flowchart to include all the tests we have used. Feel 

free to reorder my chart, this is just a rough draft. 

 

 

 
 



Remark: there is also a “Root Test”, we will skip that in this course. If you are curious it’s in your 

text on page 754. It is in most texts, if you’re a math major you ought to at least read over it 

some time. 

 

I have organized all of these topics in this single section because I wanted to emphasize the fact 

that they are part of a larger thought process.  We still have a few loose ends to tie up. The next 

section is by far the most practical section.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17.4. ERROR TESTS 
 

The principle question we seek to answer in this section is: “How far off are we when we use a 

partial sum instead of the complete series ?” It may not be possible to know, but in a few cases 

there are convenient tests. We discuss them here. The “tail” or “n-th remainder” of the series 

 is defined below 
 

  
 

In other words, . We can call  the error in  because it is precisely how far off 

the partial sum  is from the true value .  

 

Integral Test Error Estimation 

 

 
Example 17.4.1

 



Corollary to the Integral Test Error Estimate: 

The following gives us a way to squeeze to the real series. 

 

 
 

Example 17.4.2 

 

 
 

Alternating Series Error Test 
 

 
 

In-class Exercise 17.4.4: Calculate the alternating harmonic series to 4 significant digits. Identify 

the number you find. Make an educated guess on what the actual value of the alternating 

harmonic series   (your scientific calculator should help) 

 

 

 



Example 17.4.3 

 
Principle of Least Astonishment Test (PLA) 
 

Ignoring mathematical rigor for a moment let me speak pragmatically. For most examples if 

terms in the series are getting smaller and smaller then you can just study the digits in the 

partial sums. When a digit settles down and is no longer effected by additional terms being 

summed then you can with reasonable certainty assume that digit is correct. Of course you 

need to keep rounding in mind, and when I say “reasonable” I do not mean mathematical 

certainty. Sometimes mathematical certainty is not an option. In such cases you may be forced 

to this sort of heuristic reasoning.  

 

  

 

Given the data above I would wager that  for certain. If I wanted more digits I’d 

want to calculate more to be on the safe side. That’s a judgment call on my part.  

 

Of course, I could be wrong, without any additional info it is entirely possible that the next term 

violates the pattern. It could be that . This kind of random divergence from the pattern 

above is insured by the various tests earlier in this section. In practice, we may not even have a 

formula from which the series is being generated. The series could come from some 

experimental measurement. We then just have to take it on faith that the pattern continues.  

Often a mathematical pattern is assumed even though there is no physical derivation of the 

pattern. These sort of models in physics are termed “phenomenological”.  Usually physicists are 

discontent with such models, one would like to explain why a certain equation describes a 



certain situation. One early instance of this was Kepler’s Laws. He gave a formula describing the 

motion of planets. However, Kepler gave no reason as to why this formula ought to apply. One 

of the great triumphs of Newtonian mechanics was to derive Kepler’s Laws  as a consequence 

of Newton’s Laws of motion and Newton’s Universal Law of Gravitation. 
 

This story continues to play out today. Some scientists will find a pattern, then later other 

scientists will give a reason for the pattern. At the base of it all a nagging question remains; why 

is there physical law at all? If the universe is random then why does it have such rich and 

beautiful physical law?  There are other answers, but I believe the most logical answer to this 

question is the obvious one. The universe was created by an orderly being.  God built the 

universe in such a way that not only could we enjoy the beauty of the cosmos at any level of 

detail. From our everyday experience, to the atomic level, to the subatomic level, it’s not 

random, it’s design. 

 

17.5. CONDITIONAL AND ABSOLUTE CONVERGENCE 
 

Absolute convergence is stricter than convergence. We say a series  converges absolutely 

iff the series  converges. If the series  converges and the series  diverges 

then  is defined to be conditionally convergent. 

 

  

 

Notice the absolute value just kills the sign generating term  in both of the 

examples above. Intuitively we should think of a conditionally convergent series as a series 

which almost diverges, it’s right on the edge. On the other hand, absolutely convergent series 

are in no such danger.  
 

Basically, conditionally convergent series converge because of some fortunate cancellation. If 

we rearrange the terms in the series the rearranged series can converge to something 

different! Let me illustrate the danger of rearranging terms in a series which is not absolutely 

convergent. For example, 

 

  

 

Oops. Obviously the claimed equality above was not valid. How can we avoid such problems?  



 

Rearrangement Lemma: If a series converges absolutely then any rearrangement of the series 

will converge to the same value. 

 

Contrast this to the striking result due to Riemann, 

 

Riemann’s Observation: A conditionally convergent series can be rearranged so that it 

converges to any real number. In other words, rearranging an conditionally convergent series 

alters the result. 

 

Look at Eqns. 6,7, and 8 of page 755. These show that you can rearrange the terms in the 

alternating harmonic series to make the rearranged series converge to . I find it a bit 

disturbing, but it is exactly this sort of subtlety that show us why we must be careful with series 

calculations. 

 

Remark: The Ratio Test actually gives us that the series converges absolutely when .   

 

Apology: I am a novice on the matters discussed in this part of the course. If you would like to 

see a more sophisticated and breathtakingly deep set of notes on this material then I suggest 

you browse through 
 

http://kr.cs.ait.ac.th/~radok/math/mat6/startdiall.htm 
 

These are notes from a text by Courant. I peruse these and feel humbled by my abject 

ignorance. Bonus points certainly can be earned if you teach me something from those notes. If 

you’ve got the gumption, ask me we’ll find a mutually agreeable example for you to dig into. By 

the way,  http://kr.cs.ait.ac.th/~radok/math/mat/startall.htm has even more on all sorts of 

mathematics and physics. 


