
19.  TAYLOR SERIES AND TECHNIQUES  
 

Taylor polynomials can be generated for a given function through a certain linear combination of its 

derivatives. The idea is that we can approximate a function by a polynomial, at least locally. In calculus I 

we discussed the tangent line approximation to a function. We found that the linearization of a function 

gives a good approximation for points close to the point of tangency. If we calculate second derivatives 

we can similarly find a quadratic approximation for the function. Third derivatives go to finding a cubic 

approximation about some point. I should emphasize from the outset that a Taylor polynomial is a 

polynomial, it will not be able to exactly represent a function which is not a polynomial. In order to 

exactly represent an analytic function we’ll need to take infinitely many terms, we’ll need a power 

series. 

 

The Taylor series for a function is formed in the same way as a Taylor polynomial. The difference is that 

we never stop adding terms, the Taylor series is formed from an infinite sum of a function’s derivatives 

evaluated at the series’ center. There is a subtle issue here, is it possible to find a series representation 

for a given function? Not always. However, when it is possible we call the function analytic. Many 

functions that arise in applications are analytic. Often functions are analytic on subdomains of their 

entire domain, we need to find different series representations on opposite sides of a vertical 

asymptote. What we learned in the last chapter still holds, there is an interval of convergence, the series 

cannot be convergent on some disconnected domain. But, for a given function we could find a Taylor 

series for each piece of the domain, ignoring certain pathological math examples. 

 

We calculate the power series representations centered about zero for most of the elementary 

functions. From these so-called Maclaurin  series we can build many other examples through 

substitution and series multiplication. 
 

Sections 19.4 and 19.5 are devoted to illustrating the utility of power series in mathematical calculation. 

To summarize, the power series representation allows us to solve the problem as if the function were a 

polynomial. Then we can by-pass otherwise intractable trouble-spots. The down-side is we get a series 

as the answer typically. But, that’s not too bad since a series gives us a way to find an approximation of 

arbitrarily high precision, we just keep as many terms as we need to obtain a the desired precision. We 

discussed that in the last chapter, we apply it here to some real world problems. 
 

Section 19.5 seeks to show how physicists think about power series. Often, some physical approximation 

is in play so only one or two of the terms in the series are needed to describe physics. For example, 

 is actually just the first term in an infinite power series for the relativistic energy. The 

binomial series is particularly important to physics. Finally, I mention a little bit about how the idea of 

series appears in modern physics. Much of high energy particle physics is “perturbative”, this means a 

series is the only description that is known. In other words, modern physics is inherently approximate 

when it comes to many cutting-edge questions. 

 

Remark: these notes are from previous offerings of calculus II. I have better notes on Taylor’s 

Theorem which I prepared for Calculus I of Fall 2010. You should read those in when we get to 

the material on Taylor series. My Section 6.5 has a careful proof of Taylor’s Theorem with 

Lagrange’s form of the remainder. In addition I have detailed error analysis for several 

physically interesting examples which I have inferior treatments of in this chapter. 

 



19.1. TAYLOR POLYNOMIALS 
 

The first two pages of this section provide a derivation of the Taylor polynomials. Once the basic 

formulas are established we apply them to a few simple examples at the end of the section. 
 

N=1. Recall the linearization to  at  is  We 

found this formula on the basis of three assumptions: 
 

  

 

It’s easy to see that  and  hence 

 as I claimed. 

 

N=2. How can we generalize this to find a quadratic polynomial which approximates  

at ? I submit we would like the following conditions to hold: 
 

  

 

We can calculate,  
 

  

 

The formula for  simplifies a bit; . Plug back into : 
 

  

 

I anticipated being able to write , as you can see it worked out.  

 

  

 

 

 



N=3. If you think about it a little you can convince yourself that an n-th order polynomial can 

be written as a sum of powers of . For example, an arbitrary cubic ought to have the 

form: 
 

  

 

Realizing this at the outset will greatly simplify the calculation of the third-order  

approximation to a function. To find the third order approximation to a function we would like 

for the following  condtions to hold: 
 

  

 

The details work out easier with this set-up, 
 

  

 

Therefore, 
 

  

 

These approximations are known as Taylor polynomials. Generally, the n-th Taylor polynomial 

centered at  is found by calculation n-derivatives of the function and evaluating those at 

 and then you assemble the polynomial according to the rule: 

 

  

 

You can check that we have: 

 

  

 



Example 19.1.1 

Let . Calculate the the first four Taylor polynomials centered at . Plot several  

and see how they compare with the actual graph of the exponential. 
 

  

 

Thus, 
 

  

 

The graph below shows  as the dotted red graph,   is the blue line, 

 is the green quadratic and  is the purple graph of a cubic.  You can see that 

the cubic is the best approximation. 

 
  



Example 19.1.2 

Consider . Let’s calculate several Taylor polynomials centered at  and 

. Graph and compare. 
 

 

 

We can assemble the first few interesting Taylor polynomials centered at one, 
 

 

 

Let’s see how these graphically compare against : 
 

 
 

  is the dotted red graph,   is the blue line,  is the green quadratic 

and  is the purple graph of a cubic. The vertical asymptote is gray. 

Notice the Taylor polynomials are defined at  even though the function is not. 

 



Remark: We could have seen this coming, after all this function is a geometric series, 
 

  

 

The IOC for  is .  It is clear that the approximation cannot extend to the 

asymptote. We can’t approximate something that is not even defined. On the other hand 

perhaps is a bit surprising that we cannot extend the approximation beyond one unit to the left 

of . Remember the IOC is symmetric about the center. 

 

Given the remark we probably can see the Taylor polynomials centered about  from the 

following geometric series,  
 

  

 

We can calculate (relative to ): 
 

  

 

Let’s graph these and see how they compare to the actual graph. I used the same color-code as 

last time, 
 

 
 

Again we only get agreement close to the center point. As we go further away the 

approximation fails. Any agreement for  outside  is coincidental. 



Example 19.1.3 

Let . Find several Taylor polynomials centered about zero. 
 

  

 

It is clear this pattern continues. Given the above we find: 
 

  

 

Let’s see how these polynomials mimic the sine function near zero, 

 
 

The grey-blue graph is . The yellow graph is of . As we add more terms we 

will pick up further cycles of the sine function. We have covered three zeros of the sine function 

fairly well via the ninth Taylor polynomial. I’m curious, how many more terms do we need to 

add to get within 0.1 of the zeros for since at  ? From basic algebra we know we need at 

least a 5-th order polynomial to get 5 zeros. Of course, we can see from what we’ve done so far 

that it takes more than that. I have made a homework problem that let’s you explore this 

question via Mathematica. 



19.2. TAYLOR’S THEOREM 
 

Geometric series tricks allowed us to find power series expansions for a few of the known 

functions but there are still many elementary functions which we have no series representation 

for as of now. Taylor’s Theorem will allow us to generate the power series representation for 

many functions through a relatively simple rule. Before we get to that we need to do a few 

motivating comments. 

 

Suppose a function  has the following power series representation 
 

 

 
 

We call the constants  the coefficients of the series. We call  the center of the series. In 

other words, the series above is centered at  . 

 

In-class Exercise 19.2.1: find the eqn. relating the derivatives of the function evaluated at  

and the coefficients of the series. [ the answer is  for all  ] 

 

Definition of Taylor Series 

We say that  is the Taylor series for  centered at , 

 

  

 

You should recognize that  where  is the n-th order Taylor 

polynomial we defined in the last section.  

 

Comment: Exercise 19.2.1 shows that if a given function has a power series representation then 

it has to be the Taylor series for the function. 

 

Remark: One might question, do all functions have a power series representation? It turns out 

that in general that need not be the case. It is possible to calculate the Taylor Series at some 

point and find that it does not match the actual function near the point. The good news is that 

such examples are fairly hard to come by. If a function has a power series expansion on an 

interval  then the function is said to be analytic on . I should remind you that if we can 

take arbitrarily many continuous derivatives on  then the function is said to be smooth or 

infinitely differentiable. It is always the case that an analytic function is smooth, however the 

converse is not true. There are smooth functions which fail to be analytic at a point. The 

following is probably the most famous example of a smooth yet non-analytic function: 

 

 



Example 19.2.1( example of smooth function which is not analytic )  
 

  

 

Notice this yields a vanishing Taylor series at ; . 

However, you can easily see that the function is nonzero in any open interval about zero. This 

example shows there are functions for which the Taylor series fails to match the function. In 

other words, the Taylor series does not converge to the function.  

 

Definition of analytic: A function  is analytic on  iff  for all  in an 

open interval .  In particular, a function is analytic on  if 
 

 . 

 

Question: “How do we test if ?”  

 

Definition of n-th remainder of Taylor series: The n-th partial sum in the Taylor series is 

denoted  (this is the n-th order Taylor polynomial for ). We define  as follows: 

 

  

 

Taylor’s Theorem:  
If  is a smooth function with Taylor polynomials  such that  

where the remainders  have  for all  such that  then the 

function  is analytic on . To reiterate, if the remainder goes to zero on 

 then the Taylor Series converges to  for all , 
 

  

  

We are still faced with a difficult task, how do we show that the remainder  goes to zero 

for particular examples? Fortunately, the following inequality helps. 

  
 

This inequality is easy to apply in the case of sine or cosine. 

 

 



Example 19.2.3  
 

 
 

 

 

 

In-class Exercise 19.2.2 

Do E3 in the case . 

 

 

Example 19.2.4 (assuming that the exponential has a power series representation) 
 

 
 



Remark: We would like to show that the power the exponential function is analytic. To do that 

we should discuss the other version of Taylor’s Theorem (which is a generalization of the mean 

value theorem). Once that is settled, a half-page of inequalities and the squeeze theorem will 

show that the remainder for the exponential function goes to zero independent of the 

argument. You can earn 3 bonus points if you work out these things in reasonable detail. Ask 

me if you are interested, I’ll get you started. 

 

Examples 19.2.5 and 19.2.6 

 

 
 



Example 19.2.7 (multiplying series verses direct-Taylor expanding) 

 

 
 

 

 

 

 



Example 19.2.8 and 19.2.9 

 

 
 

Polynomials provide Taylor series which truncate. There is still something to learn from E9, we 

can use derivatives to center the polynomial about any point we wish. Notice the Taylor series 

revealed . Algebraically that is clear anyway, but it’s always nice to find a new 

angle on algebra. 

 

 

 



Example 19.2.10 

 
 

Summary of known Maclaurin Series 

 
 

Example 19.2.11( note this calculation uses what we already calculated) 

 
Once we have a few of the basic Maclaurin series established the examples built from them via 

substitution are much easier than direct application of Taylor’s Theorem. 



19.3 BINOMIAL SERIES 

 
 

 



Examples 19.3.1 through 19.3.3 and the IOC for various k: 

 

 
 

 

 

 



19.4 NUMERICAL APPLICATIONS OF TAYLOR SERIES 
 

 
 

Example 19.4.1 

 

 
 

 

 

 

 

 



Example 19.4.2 

 

 
 

 

 



19.5 CALCULUS APPLICATIONS OF TAYLOR SERIES. 
Example 19.5.1( using power series to integrate) 

 
 
 

Example 19.5.2( power series solution to integral) 

 
 

 



Example 19.5.3( what’s not right here?) 
 

 
 

Example 19.5.4 

 
 

 

 



Example 19.5.5(power series solution to integral) 

Approximately calculate  to at least 6 correct decimal places. Notice this integral is 

not elementary, however we can find a power series solution: 

 

 
 
( the alternating series error estimation Theorem is quite useful for questions like this one, sadly 

not all series alternate.) 

 

 

 

 

 



19.6 PHYSICAL APPLICATIONS OF TAYLOR SERIES 
 

I sometimes cover E1 in calculus I but it needs repeating here. E2 is a discussion of the electric 

dipole. 
 

 
 

 



Example 19.6.3 ( Special Relativity: Einstein’s famous equation) 
 

 
 

Is called the “non-relativistic” case. Much of special relativity amounts to adding a -factor to 

the classical equations. For example, 
 

  

 

Generally, the proper stage to discuss special relativity is Minkowski space. In Minkowski space, 

time is treated as the fourth dimension. Anyhow, there is much more to say about special 

relativity, lot’s of interesting and relatively easy mathematics. You can peruse my ma430 course 

notes or ask me for things to read. I hope we will be able to offer a course which covers special 

relativity in the physics minor sometime soon. 

 

 

 

 

 

 



On the use of series in pertubative modern physics: 

 

 
 

The type of physics I am sketching above generally falls under what it known as field theory. 

There are many open problems in field theory, yet we know that the most precise equations 

follow from field theoretic models. It’s not crazy to start thinking about field theory as an 

undergraduate. I have some good books if you would like to do an independent study. I’d wager 

you could teach me a few things. 

 
 


