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introduction and motivations for these notes

Certainly many excellent texts on differential geometry are available these days. These notes most
closely echo Barrett O’neill’s classic Elementary Differential Geometry revised second edition. I
taught this course once before from O’neil’s text and we found it was very easy to follow, however,
I will diverge from his presentation in several notable ways this summer.

1. I intend to use modern notation for vector fields. I will resist the use of bold characters as I
find it frustrating when doing board work or hand-written homework.

2. I will make some general n-dimensional comments here and there. So, there will be two tracks
in these notes: first, the direct extension of typical American third semester calculus in R3
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(with the scary manifold-theoretic notation) and second, some results and thoughts for the
n-dimensional context.

I hope to borrow some of the wisdom of Wolfgang Kühnel’s Differential Geometry: Curves-Surfaces-
Manifolds. I think the purely three dimensional results are readily acessible to anyone who has
taken third semester calculus. On the other hand, general n-dimensional results probably make
more sense if you’ve had a good exposure to abstract linear algebra.

I do not expect the student has seen advanced calculus before studying these notes. However, on
the other hand, I will defer proofs of certain claims to our course in advanced calculus.



Chapter 1

introduction

These notes largely concern the geometry of curves and surfaces in Rn. I try to use a relatively
modern notation which should allow the interested student a smooth1 transition to further study
of abstract manifold theory. That said, most of what I do in this chapter is merely to dress multi-
variate analysis in a new notation.

In particular, I decided to sacrifice the pedagogy of O’neill’s text in part here; I try to intro-
duce notations which are not transitional in nature. For example, I introduce coordinates with
contravariant indices and we adopt the derivation formulation of tangent vectors early in our
discussion. The tangent bundle and space are openly discussed. However, we do not digress too
far into bundles.

The purpose of this chapter is primarily notational, if you had advanced calculus then it would be
almost entirely a review. However, if you have not had advanced calculus then take some comfort
that most of the missing details here are provided in that course.

1.1 points and vectors

We define Rn = R × R × · · · × R for n = 1, 2, 3, . . . . A point p ∈ Rn has cartesian coordinates
p1, p2, . . . , pn. These are labels, not powers, in our notation. Addition and scalar multiplication
are:

(p+ q)i = pi + qi & (cp)i = cpi

for i ∈ Nn. Notice, in the context of Rn if we take two points p and q then p + q and cp are once
more in Rn. However, if the space we considered was a solid sphere then you might worry that the
sum of two points landed outside. This space Rn is essentially our mathematical universe for the
most part in this course. We study curves, surfaces and manifolds2 and many of the calculations
we make are reasonable since these curves, surfaces and manifolds are sets of points in Rn (often
n = 3 for this course).

Define3 (ei)
j = δij and note p ∈ Rn is formed by a linear combination of this standard basis:

p = (p1, p2, . . . , pn) = p1(1, 0, . . . , 0) + · · ·+ pn(0, . . . , 1) = p1e1 + · · · pnen.
1pun partly intended
2ok, if all goes well, we’ll see some examples of manifolds which are not in Rn, but, for now...
3in case you forgot, δij = 0 if i 6= j and is 1 if i = j.
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Of course, we can either envision p as the point with Cartesian coordinates p1, . . . , pn , or, we can
envision p as a vector eminating from the origin out to the point p. However, this identification
is only reasonably because of the unique role (0, 0, . . . , 0) plays in Rn. When we attach vectors to
points other than the origin we really should take care to denote the attachment explicitly.

Definition 1.1.1. tangent space and the tangent bundle.

We define TpRn = {p}×Rn to be the tangent space to p of Rn. The tangent bundle of
Rn is defined by TRn = ∪p∈Rn{p} × TpRn .

Conceptually, TpRn is the set of vectors attached or based at p and the tangent bundle is the
collection of all such vectors at all points in Rn. By a slight abuse of notation, a typical element of
TpRn has the form (p, v) where p is the point of attachment or base-point and v is the vector
part of (p, v).

The set TpRn is naturally a vector space by:

(p, v) + (p, w) = (p, v + w) & c(p, v) = (p, cv).

Moreover, the dot-product and norm are defined by the usual formulas on the vector part:

(p, v) • (p, w) = v •w & || (p, v) || = ||v|| =
√
v • v.

We say (p, v), (p, w) ∈ TpRn are orthogonal when (p, v) • (p, w) = v •w = 0. Given S ⊆ TpRn
we may form S⊥ = {(p, v) | (p, v) • (p, s) = 0 for all (p, s) ∈ S}. When S is also a subspace of the
tangent space at p we have TpRn = S⊕S⊥. Furthermore, if S plays the role of the tangent space
to some object at the point p then S⊥ is identified as the normal space at p. We see the size of the
normal space varies according to the ambient Rn. For example, a curve C has a one-dimensional
tangent space and the normal space has dimension n − 1. In R2 you have a normal line to C,
in R3 there is a normal plane to C, in R4 there is a normal 3-volume to C. Or, for a surface S
with a two-dimensional tangent plane, we have a normal line for S in R3, or a normal plane for
S in R4. Much of what is special to R3 depends directly on the fact that the normal space to a
line is a plane and the normal space to a plane is a line. This duality is implicitly used in many steps.

If we assign a vector to each point along S ⊆ Rn then we say such assignment is a vector field on S.
A vector field on S naturally corresponds to a function X : S → TR3 such that X(p) ∈ {p}×TpRn
for each p ∈ S. There is a natural mapping π : TRn → Rn defined by π(p, v) = p for all (p, v) ∈ TRn.
Notice, to say X : S → TRn is a vector field on S is to say π(X(p)) = p for each p ∈ S. Or, simply
π ◦X = idS . In the usual langauge of bundles we say X is a section of TRn over S. Again, keeping
with the theme of generality in this section, S could be a curve, surface or higher-dimensional
manifold. In each case, we can use a section of the tangent bundle to encapsulate what it means
to have a vector field on that object.

In these notes, for the sake of matrix calculations, I consider Rn = Rn×1 (column vectors). This
means we can use standard linear algebra when faced with questions about TpRn. We simply
remove the p on (p, v) and apply the usual theory. In the next section we find a new notation for
(p, v) which brings new insight and is standard in modern treatments of manifold theory.
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1.2 on tangent and cotangent spaces and bundles

Before we define the directional derivative on Rn we pause to define coordinate functions.

Definition 1.2.1. coordinate functions

Let xi(p) = pi for i = 1, 2, . . . , n. In n = 3, x(p) = p1, y(p) = p2 and z(p) = p3. In other
words, we reserve notation xi to denote a function from Rn to R defined by xi(p) = pi.

I will try to reserve the notation x, y, z for R3 and x1, . . . , xn for Rn to denote functions. In
contrast, p, q typically denote some fixed, but arbitrary, point. For example:

Example 1.2.2. Define f = 2x1 − 3x4 + (xn)2 then f(p) =
(
2x1 − 3x4 + (xn)2

)
(p) and by the

usual addition of functions f(p) = 2p1 − 3p4 + (pn)2.

Example 1.2.3. Define f = x+ y2 + z3. Observe f(a, b, c) = a+ b2 + c3.

The directional derivative measures the rate of change in a given function f , at a given point p,
in a given direction v. Traditionally, in third-semester American calculus, we assume the given
direction vector is a unit-vector, but, that is merely a convenience of exposition. We make no
such assumption in what follows.

Definition 1.2.4. directional derivative

Suppose f : dom(f) ⊆ Rn → R is a smooth function and p ∈ dom(f). The directional
derivative of f with respect to (p, v) ∈ TpRn is denoted (Df)(v)(p) and defined by:

(Df)(v)(p) = lim
t→0

f(p+ tv)− f(p)

t
.

Notice α(t) = p+ tv is a line which passes through p at t = 0 and has direction vector v. We can
rephrase the definition in terms of a derivative of f composed with the parametrized line α:

(Df)(v)(p) = lim
t→0

(f ◦α)(t)− (f ◦α)(0)

t
= (f ◦α)′(0).

But, we also know the chain-rule for multivariate functions, and as we assume f is smooth we
obtain the following refinement of the directional derivative through partial derivatives of f :

Proposition 1.2.5. directional derivative by partial derivatives.

Suppose f : dom(f) ⊆ Rn → R is a smooth function and p ∈ dom(f). The directional
derivative of (p, v) ∈ TpRn is given by:

(Df)(v)(p) =
n∑
i=1

vi
∂f

∂xi
(p).

Proof: if x1, . . . , xn are functions of t then the chain-rule tells us

d

dt
f(x1, . . . , xn) =

∂f

∂x1

dx1

dt
+ · · ·+ ∂f

∂xn
dxn

dt

However, as xi = pi + tvi we have dxi

dt = vi and the proposition follows. �
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If I am teaching an audience which is scared by limits, then the natural definition to give is simply:

(Df)(v)(p) = (∇f)(p) • v.

In practice, it’s usually easier to use the above formula as opposed to direct calculation of the limit.
But, the limit is important as it shows us the foundational concept; (Df)(v)(p) desribes the rate
of change in f at p in the v direction.

Let x1, . . . , xn denote the Cartesian coordinate functions of Rn then denote

∂

∂xi

∣∣∣∣
p

(f) =
∂f

∂xi
(p)

for each p ∈ Rn. Also, we use ∂
∂xi

∣∣
p

= ∂i|p when there is no danger of confusion. Notice there is a
bijective correspondance:

(p, (v1, . . . , vn)) � v1 ∂

∂x1

∣∣∣∣
p

+ · · ·+ vn
∂

∂xn

∣∣∣∣
p

It is customary to view TpRn as the span of the coordinate derivations:

Definition 1.2.6. tangent space as a set of derivations.

TpRn = {v1∂1|p+ · · ·+ vn∂n|p | (v1, . . . , vn) ∈ Rn}.

Furthermore, the notation (p, v) is often replaced with vp. The beauty of this notation is in part
the following truth: the directional derivative of vp on f is simply given by vp acting on f .

(Df)(vp) = vp[f ].

Let us pause to state a few properties of derivations which should be familiar

Proposition 1.2.7. properties of derivations

If X = v1∂1|p+ · · ·+ vn∂n|p and f, g smooth functions at p and c a constant then

X[fg] = X[f ]g(p) + f(p)X[g], X[f + g] = X[f ] +X[g], X[cf ] = cX[f ].

Proof: these all follow from the form of X and the properties of partial derivatives at a point. �

In another context, you’d likely use the above properties to define a derivation as the properties
make no reference to coordinates.

Vector fields are also naturally covered in this notation: if X is a vector field on S ⊆ Rn then we
have component functions f1, . . . , fn on S for which

X(p) = f1(p)
∂

∂x1

∣∣∣∣
p

+ · · ·+ fn(p)
∂

∂xn

∣∣∣∣
p

for each p ∈ S. However, as this holds for each p we can express X as

X = f1 ∂

∂x1
+ · · ·+ fn

∂

∂xn
.
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Proposition 1.2.8. on the directional derivatives of coordinate functions.

Let xi be the i-th coordinate function on Rn. Then, (Dxi)

(
∂

∂xj

∣∣∣∣
p

)
= δij .

Proof: follows from our reformulation of directional derivatives:

(Dxi)

(
∂

∂xj

∣∣∣∣
p

)
=

∂

∂xj

∣∣∣∣
p

(xi) =
∂xi

∂xj
= δij . �

Traditionally, we replace Dxi with dxi. In particular, let us define:

Definition 1.2.9. coordinate differentials

Define dpx
i(vp) = vp[x

i] for each vp ∈ TpRn and i ∈ Nn.

Since TpRn is a vector space with basis {∂/∂xi|p}ni=1 it is natural to seek out the dual basis for
(TpRn)∗ = {α : TpRn → R | α ∈ L(TpRn,R)}. The dual space (TpRn)∗ is called cotangent space.
Indeed, it should be clear from the discussion above that we already have the dual-basis in hand:

{dpx1, dpx
2, . . . , dpx

n}

is a basis for (TpRn)∗ which is dual to the basis {∂1|p, ∂2|p, · · · ∂n|p} of TpRn. There is also a
cotangent bundle of Rn which is formed by the disjoint union of all the cotangent spaces:

Definition 1.2.10. cotangent space and the cotangent bundle.

Cotangent space at p for Rn is the set of R-valued linear functions on TpRn. The cotangent
bundle of Rn is defined by T ∗Rn = ∪p∈Rn{p} × (TpRn)∗

A section over S of the cotangent bundle gives us an assignment of a covector at p for each p ∈ S.
You might expect we would call such a section a covector field, however, it is customary to call
such an object a differential one-form. A one-form α on S is a covector-valued function on
S for which α(p) ∈ (TpRn)∗ for each p ∈ S. For example, dx1, dx2, . . . , dxn (with the natural
interpretation dxi(p) = dpx

i for all p ∈ Rn) are one-forms on Rn.

It is useful to know how we can isolate the component functions of a vector field or one-form by
evaluation of the appropriate object. Both of these results4 flow from the identities dxi(∂j) = δij
and ∂ix

j = δij . If Y is a vector field on Rn and α is a differential one-form on Rn then

Y = Y 1∂1 + · · ·Y n∂n & α = α1dx
1 + · · ·+ αndx

n

where the functions Y i and αi are given by:

Y i = Y [xi] & αi = α(∂i).

In third semester American calculus we typically use the differential notation in a formal sense. We
are now in the position to expose the deeper reasons for such notation. The total differential is
a differential one-form in our current study.

4you might find these as homework exercises
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Definition 1.2.11. the differential of a real-valued function on Rn

Suppose f : dom(f) ⊆ Rn → R is a smooth function and p ∈ dom(f). The differential of
f at p is denoted dpf . We define dpf ∈ (TpRn)∗ by

dpf(Y ) = Y [f ]

for each Y ∈ TpRn. The assignment p 7→ dpf gives the differential one-form df on Rn.

Of course, df(∂/∂xi) = ∂f
∂xi

hence we find that

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · ·+ ∂f

∂xn
dxn.

Thus, for X ∈ TpRn we arrive at the following formula for the directional derivative of f at p in
the X direction:

(Df)(X)(p) = dpf(X) = X[f ]. (1.1)

If we had a vector field X then df(X) is a function. Likewise, an arbitrary one-form α and a vector
field X can be combined to form a function α(X).

The following properties of the differential are not difficult to prove:

Proposition 1.2.12. on the directional derivatives of coordinate functions.

Suppose f, g are functions from Rn to R and h is a function on R then

(i.) d(fg) = (df)g + f(dg),

(ii.) d(f + g) = df + dg,

(iii.) d(cf) = cdf ,

(iv.) d(h ◦ f) = h′(f)df .

Proof: I leave the first three to the reader. We prove (iv.). Consider h : R → R and f : Rn → R
and recall the chain-rule:

∂

∂xi
[h(f(x))] = h′(f(x))

∂f

∂xi
⇒ d(h ◦ f)(xi) = h′(f(x))

∂f

∂xi
.

Thus, d(h ◦ f) =

n∑
i=1

h′(f(x))
∂f

∂xi
dxi = h′(f(x))

n∑
i=1

∂f

∂xi
dxi = h′(f(x))df. �

Identity (iv.) frees us from our roots.

Example 1.2.13. Let f =
√

(x1)2 + · · ·+ (xn)2 clearly f2 = (x1)2 + · · ·+ (xn)2 and thus d(f2) =
2fdf and d(f2) = 2x1dx1 + · · ·+ 2xndxn thus

df =
x1dx1 + · · ·+ xndxn√

(x1)2 + · · ·+ (xn)2
.



1.3. THE WEDGE PRODUCT AND DIFFERENTIAL FORMS 11

1.3 the wedge product and differential forms

We saw in the last section the directional derivative naturally leads us to define the differential of a
function. In particular, we saw that a function f was converted to a one-form df by the operation d.
To continue this story we need to introduce the wedge product. The wedge product generalizes
the cross product of three dimensional vector algebra. Or, perhaps it would be more accurate to say,
the wedge product allows us a computational device to implement determinants without explicitly
writing determinants. The combination of the wedge product with total differentiation brings us
to the exterior derivative. It is the combination of exterior differentiation and the algebra of the
wedge product which makes for many elegant simplifications in what would otherwise require much
more sophisticated calculations. I will admit, it is probably a bit strange at the beginning, but, if
we stick with it then we’ll gain skills which allow us to do calculus in one of the most general settings.

I’ll define the wedge product formally by it’s properties5. The wedge takes p-form and ”wedges”
it with a q-form to make a (p + q)-form. If we take a sum of terms with k differentials wedged
together then this gives us a k-form. A 0-form is a function. A 1-form is an expression of the form
α =

∑
i αidx

i where αi are functions. A 2-form can be written as β =
∑

i,j
1
2βijdx

i ∧ dxj where

βij are functions. A k-form can be written γ =
∑

i1,...,ik
1
k!γi1,...,ikdx

i1 ∧ · · · ∧ dxik where γi1,...,ik are
functions. The essential properties of the wedge product are as follows:

(i.) ∧ is an associative product; α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.

(ii.) ∧ is anticommutative on differentials; dxi ∧ dxj = −dxj ∧ dxi

(iii.) ∧ has a distributive property; α ∧ (β + γ) = α ∧ β + α ∧ γ.

It’s not much work to show ∧ is anticommutative on arbitary one-forms. If α =
∑

i αidx
i and

β =
∑

j βjdx
j are one forms then, by the above properties:

α ∧ β =

(∑
i

αidx
i

)
∧

∑
j

βjdx
j


=
∑
i

∑
j

αiβjdx
i ∧ dxj

= −
∑
j

∑
i

βjαidx
j ∧ dxi

= −

∑
j

βjdx
j

(∑
i

αidx
i

)
= −β ∧ α.

Up to this point I have indicated our differential forms have coefficients which are functions. If we
were to follow terminology similar to that for vectors then we would rather call differential forms
something like form-fields. However, this is not usually done. Naturally, if we wished to work at a
single point then the functions mentioned above would be traded for sets of constants6.

5there are elegant ways in terms of abstract algebra, or the concrete multilinear mapping discussion you can see
in my advanced calculus notes, here, I just say how it works

6we could discuss the algebra of wedge products of a given vector space V without any discussion of differentials,
but, I mostly keep our focus on the objects we use for the calculational core of this course. The wedge product algebra
would provide another way to capture linear independence. For example, v ∧ w = 0 iff v is linearly dependent on w.
The same holds for a k-fold wedge product. In contrast, determinants worked only for n-vectors in Rn.
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When we take the wedge product we create an object of a new type, hence, it is an exterior
product7; from α a p and β a q form we obtain α ∧ β a p + q form. What’s to stop us from
making p and q infinitely large? It’s tempting to think these go on forever. However, notice,
dxi ∧ dxi = −dxi ∧ dxi implies dxi ∧ dxi = 0. Therefore, the only way to have a nontrivial form
is to build it from the wedge product of distinct differentials. In Rn there are at most n-distinct
differentials. The form dx1∧dx2∧· · ·∧dxn is called the top-form as there is not other form which
beats it by degree. The determinant is linked to this top-form in a natural manner. Let us define
∧ on column vectors in the same fashion as described here for differentials. Then, the determinant
is implicit defined by the wedge product of the columns of the matrix:

Ae1 ∧Ae2 ∧ · · · ∧Aen = det(A)e1 ∧ e2 ∧ · · · ∧ en.

This identity equally well applies if we replace the standard basis with a set of linearly independent
vectors8. For example, if B is invertible then Be1, . . . , Ben are linearly independent and:

ABe1 ∧ABe2 ∧ · · · ∧ABen = det(A)Be1 ∧Be2 ∧ · · · ∧Ben.

But, then

Be1 ∧Be2 ∧ · · · ∧Ben = det(B)e1 ∧ e2 ∧ · · · ∧ en

and we find

ABe1 ∧ABe2 ∧ · · · ∧ABen = det(A)det(B)e1 ∧ e2 ∧ · · · ∧ en

from which we find det(AB) = det(A)det(B). In the case A or B was not invertible the set of
vectors ABe1, ABe2, . . . , ABen is linearly dependent and we can easily argue the wedge product of
such vectors is zero hence det(AB) = 0 in such a case. What’s my point? This is powerful algebra.
If you recall the trouble of proving the product rule of determinants in linear algebra then this
should help you appreciate why the wedge product is worth our time.

The wedge product is graded commutative for forms of homogeneous degree.

Proposition 1.3.1. graded commutativity of the wedge product.

If α is a form built from a sum of terms each with k-differentials, and likewise β is a l-form
then

α ∧ β = (−1)klβ ∧ α

Proof: I’ll take this opportunity to introduce multi-index notation. We write α =
∑

I∈Ik αIdx
I

and β =
∑

J∈Il βJdx
J where dxI = dxi1 ∧ · · · ∧ dxik and dxJ = dxj1 ∧ · · · ∧ dxjl and Ik is the set

of k-tuples of distinctly increasing indices in Nn (assume we’re working in Rn ). Calculate:

α ∧ β =

∑
I∈Ik

αIdx
I

 ∧
∑
J∈Il

βJdx
J

 =
∑
J∈Il

∑
I∈Ik

βJαIεdx
J ∧ dxI ?

7in contrast, a binary operation takes two objects in the set and returns another element in the set. In some sense,
the term ”exterior” is just short-sighted, the wedge product does act within the set of all differential forms over Rn
and does provide an honest binary operation on that larger set of forms of all possible nontrivial degrees

8this seems like an interesting homework question
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where ε = ±1, 0. In particular ε = 0 if any differential is repeated. It is ±1 depending on how
we have to move dxI past dxJ . Consider, as J has l-differentials we generate (−1)l as we shift a
differential through dxJ :

dxi1 ∧ · · · ∧ dxik ∧ dxJ = (−1)ldxi1 ∧ · · · ∧ dxik−1 ∧ dxJ ∧ dxik

= (−1)l(−1)ldxi1 ∧ · · · ∧ dxik−2 ∧ dxJ ∧ dxik−1 ∧ dxik
...

= (−1)l(−1)l · · · (−1)l︸ ︷︷ ︸
k−copies

dxJ ∧ dxi1 ∧ · · · ∧ dxik

But, this means ε = (−1)kl for the nontrivial terms and the identity then follows from ?. �

This means forms of even degree commute with all other forms.

Let us return to differentiation. The exterior derivative of a one-form α =
∑

i αidx
i is defined

by:

dα =
∑
i

dαi ∧ dxi.

where dαi =
∑

j(∂jαi)dx
j for each i. To calculate the exterior derivative we simply take the total

differential of the component functions of the given form and wedge that with the differentials that
come attached to the form at the outset. Let me give a general definition for our reference:

Definition 1.3.2. exterior derivative.

For a k-form γ =
∑
i1,...,ik

1

k!
γi1,...,ikdx

i1 ∧ · · · ∧ dxik we define,

dγ =
∑

i1,...,ik,j

1

k!

∂γi1,...,ik
∂xj

dxj ∧ dxi1 ∧ · · · ∧ dxik .

The exterior derivative of the k-form is a (k+1)-form. There is an elegant, coordinate free, manner
in which we can define the exterior derivative. The proof of coordinate independence in our current
notation is involved. But, we leave that for another course. There is a graded-product rule for the
exterior derivative. You can show:

Proposition 1.3.3. graded-Leibniz rule for the wedge product of differential forms.

d(α ∧ β) = (dα) ∧ β + (−1)|α|α ∧ dβ.

where I use |α| to denote the degree of α. In particular, if α is a k-form then |α| = k.

Proof: not too hard. Really much like the one I already provided to prove Proposition 1.3.1. �

In the case α = f and β = g we have two zero-forms and the relation above reduces to the usual
product rule for differentials

d(fg) = (df)g + f(dg)
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If α is a one-form and β is a k-form then

d(α ∧ β) = (dα) ∧ β − α ∧ dβ & d(β ∧ α) = (dβ) ∧ α+ (−1)|β|β ∧ (dα).

It’s possibly a good exercise to check the consistency of the relations above by several applications
of the graded commutativity relation. The identity below is important:

d(dγ) = 0

or, simply d2 = 0 on arbitrary differential forms on Rn. The proof rests primarily on the fact that
partial differentiation with respect to xj and xm commutes for nice functions. Recall,

dγ =
∑

i1,...,ik,j

1

k!

∂γi1,...,ik
∂xj

dxj ∧ dxi1 ∧ · · · ∧ dxik .

Hence, applying the definition of exterior derivative once more:

d(dγ) =
∑

i1,...,ik,j,m

1

k!

∂2γi1,...,ik
∂xm∂xj

dxm ∧ dxj ∧ dxi1 ∧ · · · ∧ dxik = 0

I claim9 the sum works out to zero since the sum has partial derivatives which are symmetric in
j,m summed against dxm ∧ dxj = −dxj ∧ dxm.

The example below might make a little more sense after you read the subsection on three-dimensional
vector calculus written in terms of forms and exterior derivatives. I leave these here as they expand
on the importance of the d2 = 0 identity.

Example 1.3.4. A force ~F is conservative if there exists f such that ~F = −∇φ. In the langauge of
differential forms, this means the one-form ω~F represents a conservative force if ω~F = ω−∇φ = −dφ.
Observe, ω~F = −dφ implies dω~F = −d2φ = 0. As an application, consider ω~F = −ydx+ xdy+ dz,

is ~F conservative ? Calculate:

dω~F = −dy ∧ dx+ dx ∧ dy + d(dz) = 2dx ∧ dy 6= 0

thus ~F is not conservative.

Example 1.3.5. It turns out that Maxwell’s equations can be expressed in terms of the exterior
derivative of the potential one-form A. The one-form contains both the voltage function and the
magnetic vector-potential from which the time-derivative and gradient derive the electric and mag-
netic fields. In spacetime the relation between the potentials and fields is simply F = dA. The
choice of A is far from unique. There is a gauge freedom. In particular, we can add an exterior
derivative function of spacetime λ and create A′ = A + dλ. Note, dA′ = dA + d2λ = dA hence A
and A′ generate the same electric and magnetic fields (which make up the Faraday tensor F )

The identity d2 = 0 essentially captures the necessity of partial derivatives commuting. However,
it does this without explicit reference of coordinates and across forms of arbitrary degree.

9I usually assign this as an advanced calculus homework
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1.3.1 the exterior algebra in three dimensions

Let f, P,Q,R,A,B,C and G be functions on some subset of R3 then

(i.) f is a 0-form

(ii.) α = Pdx+Qdy +Rdz is a 1-form

(iii.) β = Ady ∧ dz +B dz ∧ dx+ C dx ∧ dy is a 2-form

(iv.) γ = Gdx ∧ dy ∧ dz is a 3-form

We would like to connect to the familiar world of vector fields. Therefore, we introduce the work-
form-mapping and the flux-form-mapping.

Definition 1.3.6. work and flux form correspondance

Let ~F = 〈P,Q,R〉 be a vector field on some subset of R3 then we define

ω~F = P dx+Qdy +Rdz & Φ~F = P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy

We recover the cross-product and triple product in terms of wedge products of the above mappings.

Proposition 1.3.7. vector algebra in differential form.

Let ~A, ~B, ~C be vectors in R3 and c ∈ R

(i.) ω ~A ∧ ω ~B = Φ ~A× ~B.

(ii.) ω ~A ∧ ω ~B ∧ ω ~C = ~A • ( ~B × ~C) dx ∧ dy ∧ dz

(iii.) ω ~A ∧ Φ ~B = ( ~A • ~B ) dx ∧ dy ∧ dz.

Proof: left to reader. �

The differential calculus of vector fields involves the gradient, curl and divergence. All three of
these are generated in the framework of the exterior derivative.

Proposition 1.3.8. differential vector calculus in differential form.

Let f, ~F = 〈Fx, Fy, F〉, ~G = 〈Gx, Gy, Gz〉 be differentiable in R3

(i.) df = ω∇f = (∂xf) dx+ (∂yf) dy + (∂zf) dz

(ii.) dω~F = Φ∇×~F = (∂yFz − ∂zFy) dy∧dz+(∂zFx − ∂xFz) dz∧dx+(∂xFy − ∂yFx) dx∧dy,

(iii.) dΦ ~G = (∇ • ~G ) dx ∧ dy ∧ dz = ( ∂xGx + ∂yGy + ∂zGz ) dx ∧ dy ∧ dz

Proof: left to reader. �

It is interesting to note how d2 = 0 recovers several useful vector calculus identities. For example,

d(df) = dω∇f = Φ∇×∇f = 0 ⇒ ∇×∇f = 0.
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or,

d(dω~F ) = dΦ∇×~F = ∇ • (∇× ~F ) dx ∧ dy ∧ dz = 0 ⇒ ∇ • (∇× ~F ) = 0.

The graded Leibniz rule also reveals several interesting product rules. For example,

d(ω ~A ∧ ω ~B) = dω ~A ∧ ω ~B − ω ~A ∧ dω ~B
= Φ∇× ~A ∧ ω ~B − ω ~A ∧ Φ∇× ~B

=
(

(∇× ~A) • ~B − ~A • (∇× ~B)
)
dx ∧ dy ∧ dz.

But, we also know ω ~A ∧ ω ~B = Φ ~A× ~B hence

d(ω ~A ∧ ω ~B) = dΦ ~A× ~B = ∇ • ( ~A× ~B) dx ∧ dy ∧ dz.

Therefore, ∇ • ( ~A× ~B) = (∇× ~A) • ~B− ~A • (∇× ~B). I can derive this with Levi-Civita calculations
without much trouble, but, I wonder, can you ? The point I intend to make here: the wedge product
automatically builds all manner of complicated vector identities into a few simple, generalizable,
algebraic operations. The beauty of differential forms in revealing the true structure of integral
vector calculus is no less shocking. But, I leave it for another time. In fact, I leave many things
for another time here. I merely hope we’ve said enough to make our use of the wedge product and
exterior calculus a bit less bizarre in the remainder of the course.

1.4 paths and curves

If you read O’neill very carefully, you’ll notice he distinguishes between curve and Curve10. I
suppose there are many choices of terms to make here. I think Kühnel’s was clean and nicely
descriptive so I’ll use his terminology as our default.

Definition 1.4.1. parametrized curve and its curve.

A smooth parametrized curve in Rn is a smooth function α : I ⊆ R → Rn where I is an
open interval. The point-set α(I) ⊆ Rn is a smooth curve.

The term ”smooth” could be replaced with a number of other adjectives. For example, we could
talk about continuous or once-differentiable or continuously differentiable or k-times differentiable
curves. In our study of curves in the next chapter we study smooth curves which have non-vanishing
velocity; that is, regular curves. The assumption of smoothness for functions and curves is probably
too greedy for most of our purposes, I merely impose it for the sake of being certain I can take as
many derivatives as we wish. For example, one derivative is all I need for the following:

Definition 1.4.2. velocity of a parametrized curve.

Let α : I ⊆ R→ Rn be a smooth parametrized curve. We define α′(t) ∈ Tα(t)Rn by

α′(t) =
dα1

dt

∂

∂x1

∣∣∣∣
α(t)

+
dα2

dt

∂

∂x2

∣∣∣∣
α(t)

+ · · ·+ dαn

dt

∂

∂xn

∣∣∣∣
α(t)

.

If α′(t) 6= 0 for all t ∈ I then we say α is a regular curve.

10see page 21
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On pages 7-8 of Kühnel discusses why regularity is a good requirement for us to make for the curves
we wish to study. Of course, we could use less structure, but then we’d face pathological examples
such as parametrized curves whose curve fill a rectangle in the plane, or differentiable curves which
have infinitely many corners. The criteria of regularity keeps these odd features outside our study.
From a big-picture perspective, regularity is a full-rank condition since the highest dimension pos-
sible for the tangent space to a curve is one and regularity demands the rank of the tangent space
be everywhere maximal on the curve. We soon discuss similar conditions for mappings in the final
section of this chapter.

The velocity of a parametrized curve is an operator on functions defined near the curve. Consider:

α′(t)[f ] =

(
dα1

dt

∂

∂x1

∣∣∣∣
α(t)

+
dα2

dt

∂

∂x2

∣∣∣∣
α(t)

+ · · ·+ dαn

dt

∂

∂xn

∣∣∣∣
α(t)

)
[f ]

=
dα1

dt

∂f

∂x1
(α(t)) +

dα2

dt

∂f

∂x2
(α(t)) + · · ·+ dαn

dt

∂f

∂xn
(α(t))

=
d

dt
[f(α(t))]

where in the last step we used the chain-rule for f ◦α. The velocity α′(t) acts on f to tell us how
f changes along α at α(t). We record this result for future reference:

Proposition 1.4.3. change of function along curve.

Suppose α is a parametrized curve and f is a smooth function defined near α(t) for some

t ∈ dom(α) then α′(t)[f ] =
d(f ◦α)

dt
.

Example 1.4.4. Let α(t) = p + t(q − p) for a given pair of distinct points p, q ∈ Rn. You should
identify α as the line connecting point p = α(0) and q = α(1). If we define v = q − p then the
velocity of α is given by:

α′(t) = v1 ∂

∂x1

∣∣∣∣
α(t)

+ v2 ∂

∂x2

∣∣∣∣
α(t)

+ · · ·+ vn
∂

∂xn

∣∣∣∣
α(t)

Specializing to n = 2 and v = 〈a, b〉 we have α(t) = (p1 + ta, p2 + tb) and

α′(t) = a
∂

∂x

∣∣∣∣
α(t)

+ b
∂

∂y

∣∣∣∣
α(t)

Let f(x, y) = x2 + y2 then

α′(t)[f ] =

(
a
∂

∂x

∣∣∣∣
α(t)

+ b
∂

∂y

∣∣∣∣
α(t)

)
[x2 + y2] = (2xa+ 2yb)

∣∣
α(t)

= 2(p1 + ta)a+ 2(p2 + tb)b.

As an easy to check case, take p = (0, 0) hence p1 = 0 and p2 = 0 hence α′(t)[f ] = 2t(a2 + b2). For
t > 0 we see f is increasing as we travel away from the origin along the line α(t). But, f is just
the distance from the origin squared so the rate of change is quite reasonable. If we were to impose
a2 + b2 = 1 then t represents the distance from the origin and the result reduces to α′(t)[f ] = 2t
which makes sense as f(α(t)) = (ta)2 + (tb)2 = t2(a2 + b2) = t2.
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Notice that α′(t)[f ] gives the usual third-semester-American calculus directional derivative in the
direction of α′(t) only if we choose a parameter t for which ||α′(t)|| = 1. This choice of parametriza-
tion is known as the arclength or unit-speed parametrization.

Example 1.4.5. Let R,m > 0 be constants and α(t) = (R cos t, R sin t,mt) for t ∈ R. We say α
is a helix with slope m and radius R. Notice α(t) falls on the cylinder x2 + y2 = R2. Of course,
we could define helices around other circular cylinders. The velocity vector field for α is given by:

α′(t) =

(
−R sin t

∂

∂x
+R cos t

∂

∂y
+m

∂

∂z

) ∣∣∣∣
α(t)

Then, f(x, y, z) = x2 + y2 has

α′(t)[f ] = (−2xR sin t+ 2yR cos t)|α(t) = −2R2 cos t sin t+ 2R2 sin t cos t = 0.

This is in good agreement with Proposition 1.4.3 as f(α(t)) = R2 is constant. On the other hand,
g(x, y, z) = z gives α′(t)[g] = m which shows m is proportional to the rate at which the helix rises
in z. To obtain the absolute rate we would need to derive the arclength-parametrization of α.

A given curve has infinitely many parametrizations.

Definition 1.4.6. reparametrization of curve.

Let α : I ⊆ R → Rn be a parametrized curve. If h : J → I is a smooth function on
an open interval J then β = α ◦h : J → Rn is a parametrized curve which we call the
reparametrization of α by h.

The definition above is a bit more general than I usually give in third-semester American calculus
in the sense that the reparametrization need not cover the same curve. It could be that the curve
of the reparametrization is just a subset of the curve of the original parametrized curve. Also, we
did not assume h is injective which means β might not share the same orientation as α.

Proposition 1.4.7. velocity of reparametrized curve

If α is a parametrized curve β = α ◦h is a reparametrization of α by h then

β′(s) =
dh

ds
α′(h(s))

Proof: by definition,

β′(s) =
dβ1

ds

∂

∂x1

∣∣∣∣
β(s)

+
dβ2

ds

∂

∂x2

∣∣∣∣
β(s)

+ · · ·+ dβn

ds

∂

∂xn

∣∣∣∣
β(s)

But, β(s) = α(h(s)) hence dβj

ds = d
dsα

j(h(s)) = dαj

ds (h(s))dhds for each j and we find a factor of dh
ds on

each term which when factored out yields:

β′(s) =
dh

ds

[
d(α ◦h)1

ds

∂

∂x1

∣∣∣∣
α(h(s))

+
d(α ◦h)2

ds

∂

∂x1

∣∣∣∣
α(h(s))

+ · · ·+ d(α ◦h)1

ds

∂

∂xn

∣∣∣∣
α(h(s))

]
the proposition follows immediately as the term in square-brackets is precisely α′(h(s)). �

Honestly, the theorem above is not new. We also had this theorem in multivariate calculus. The
new thing is merely the notation for expressing vectors attached to a point as derivations. I include
the proof here merely to show how we work with such notation.
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Example 1.4.8. Consider the helix defined by R,m > 0 and α(t) = (R cos t, R sin t,mt) for t ∈ R.
The speed of this helix is simply ||α′(t)|| =

√
R2 +m2. Let h(s) = s/

√
R2 +m2 then if β is α

reparametrized by h we calculate by Proposition 1.4.7,

β′(s) =
dh

ds
α′(h(s)) =

1√
R2 +m2

(
−R sinh(s)

∂

∂x
+R cosh(s)

∂

∂y
+m

∂

∂z

) ∣∣∣∣
α(h(s))

Then ||β′(s)|| = 1√
R2+m2

√
R2 +m2 = 1. Let g(x, y, z) = z as in Example 1.4.5 and calculate

β′(s)[g] =
m√

R2 +m2
. If 4t = 2π then the helix goes once around the z-axis. Correspondingly,

4s = 2π
√
R2 +m2 and thus the change in z over a complete cycle is m√

R2+m2
·2π
√
R2 +m2 = 2πm.

Definition 1.4.9. arclength parametrization of regular parametrized curve

If α : I → Rn is a regular parametrized curve and to ∈ I then we define the arclength
function based at to by

s(t) =

∫ t

to

||α′(τ)||dτ

Let h be the inverse function of the arclength function; h(s(t)) = t for all t ∈ I then define
the arclength parameterization of α based at α(to) to be β = α ◦h.

Suppose I is a finite interval. The image of the arclength function is the total arclength of α and
that gives the domain of h in the definition. The arclength parameterization of a regular curve will
share the same orientation as the parameterized curve α. Furthermore, the arclength parametriza-
tion is unique up to the choice of base-point. If we have two different base-points then the arclength
parameterizations just differ by a simple translation: β1(s) = β2(s + so). I invite the reader to
prove11 that ||β′(s)|| = 1.

The nearly unique nature of the arclength parameterization of a parametrized regular smooth
curve makes the arclength parameterization a good candidate for forming definitions. However, in
practice, it may be difficult or even impossible to calculate s(t) in terms of elementary functions.
Moreover, even if we can nicely calculate the arclength function there is still no guarantee a reason-
able formula for h exists. Notice, I don’t cast doubt on the existence of the arclength function or
its inverse, merely the existence of a nice formula. This claim is necessarily nebulous as we have
never defined nice. That said, I know a nice formula when I see one. One attempt at capturing
this idea is given by Risch’s Algorithm (as explained in this Wikipedia article linked here)

1.5 the push-forward or differential of a map

Consider F : dom(F ) ⊆ Rn → Rm. We have F = (F 1, . . . , Fm) where F i : dom(F ) ⊆ R are the
component functions of F . The Jacobian matrix of F is an m × n matrix denoted JF of
partial derivatives of the component functions:

JF =


∂1F

1 ∂2F
1 · · · ∂nF

1

∂1F
2 ∂2F

2 · · · ∂nF
2

...
... · · ·

...
∂1F

m ∂2F
m · · · ∂nF

m


11Notice ds

ds
= 1 is not a complete proof, although, it is evidence our notation is good. See page 53 of O’neill.

http://en.wikipedia.org/wiki/Risch_algorithm
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there are two natural ways to parse the above:

JF = [∂1F |∂2F | · · · |∂nF ] =


∇F 1

∇F 2

...

∇Fm


When a function is differentiable then the Jacobian matrix allows us to approximate the function
by its affinization:

F (a+ h) ≈ L(a+ h) = F (a) + JF (a)h.

In a bit more detail,
F j(a+ h) ≈ Lj(a+ h) = F j(a) + (∇F j)(a) •h

Sometimes we focus on the change in F at x = a denoted 4F we have:

4F j ≈ (∇F j)(a) •h

Of course we recognize this as the directional derivative of F j at a in the h-direction. This dif-
ference between our discussion in § 1.2 and our current context: we have to consider the change
in each component function. But, besides that necessary complication, the story is the same as
for functions from Rn → R. Well, at least from the viewpoint of approximation theory. When we
consider the differential then there is a bit more to say.

The change is not really what we’re after. Rather, we want the infinitesimal change. To be precise,
we wish to describe how tangent vectors in the domain are mapped to tangent vectors in the
domain. In the one-dimensional case, the answer was given by dpf(Xp) = Xp(f). This was a
number, or, if we allow p to vary we obtained a real-valued function df(X). As we consider the
problem of how tangents transform for F : Rn → Rm we need more structure than a number. As a
motivational exercise, we’ll follow O’neill and see how curves are mapped under a mapping like F .
Then, the chain-rule will show us how the tangents to the curves are transformed in kind. Once
that study is complete, we’ll extract the proper definition in terms of the derivation-formulation
of a tangent vector. Forgive me as I revert to third-semester American calculus-style vector
notation as we motivate the push-forward.

Example 1.5.1. Let F (x1, x2) = (x1 + x2, x1 − x2). Consider a parametrized curve α(t) =
(a(t), b(t)). The image of α under F is:

(F ◦α)(t) = F (a(t), b(t)) = (a(t) + b(t), a(t)− b(t))

The velocity vector for α is α′(t) = 〈a′(t), b′(t)〉

(F ◦α)′(t) =
〈
a′(t) + b′(t), a′(t)− b′(t)

〉
=

[
1 1
1 −1

] [
a′(t)
b′(t)

]
of course, the matrix above is just the Jacobian matrix of F . In particular, we see a tangent vector
〈1, 0〉 would be moved to 〈1, 1〉 and the tangent vector 〈0, 1〉 is transported to 〈1,−1〉. The columns of
the Jacobian matrix tell us how the basis tangent vectors are transformed. Here we took for granted
the existence of a cartesian coordinate system in the range. To allow for different dimensions, we
ought to make our observation in a more generalizable fashion: I’ll use e1, e2 for the domain and
f1, f2 for the range:

e1 7→ f1 + f2 & e2 7→ f1 − f2.
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Now, in the derivation notation for tangent vectors, e1 = ∂
∂x1

, e2 = ∂
∂x2

and for cartesian coordinates

(y1, y2) for the range f1 = ∂
∂y1

, f2 = ∂
∂y2

. We have:

∂

∂x1
7→ ∂

∂y1
+

∂

∂y2
&

∂

∂x2
7→ ∂

∂y1
− ∂

∂y2
.

Example 1.5.2. Another example, F (x1, x2) = (ex
1+x2 , sinx2, cosx2). Once more, consider the

curve α = (a, b) hence α′ = 〈a′, b′〉 and

(F ◦α)′ = 〈ea+b(a′ + b′), (cos b)b′, (− sin b)b′〉

We find the tangent 〈a′, b′〉 = 〈1, 0〉 maps to 〈ea+b, 0, 0〉 whereas the tangent 〈a′, b′〉 = 〈0, 1〉 maps
to 〈ea+b, cos b, − sin b〉 with respect to the point α = (a, b) of the curve. The Jacobian of F at (a, b)
is:

JF (a, b) =

 ea+b ea+b

0 cos b
0 − sin b

 .
Following the notation of the last example, but now with (y1, y2, y3) coordinates for the image,

∂

∂x1
7→ ea+b ∂

∂y1
&

∂

∂x2
7→ ea+b ∂

∂y1
+ cos b

∂

∂y2
− sin b

∂

∂y3
.

Notice, yj ◦F = F j is immediate from the definition of cartesian coordinates and component func-
tions. What we really have above is:

∂

∂x1
7→

3∑
j=1

∂(yj ◦F )

∂x1

∂

∂yj
&

∂

∂x2
7→

3∑
j=1

∂(yj ◦F )

∂x2

∂

∂yj

But, even the above is not quite accurate as it does not indicate the true point-dependence. Annoy-
ingly, I must write:

∂

∂x1

∣∣∣∣
p

7→
3∑
j=1

∂(yj ◦F )

∂x1
(p)

∂

∂yj

∣∣∣∣
F (p)

&
∂

∂x2

∣∣∣∣
p

7→
3∑
j=1

∂(yj ◦F )

∂x2
(p)

∂

∂yj

∣∣∣∣
F (p)

Of course, including the point-dependence on the cartesian coordinate derivations in overkill. How-
ever, later when we deal with curved coordinate systems the coordinate derivations will aquire a
point-dependence like r̂ or θ̂ (discussed in my multivariate callculus notes).

From § 1.2 recall that we may write
∂F j

∂xi
(p) = dpF

j

(
∂

∂xi
∣∣
p

)
. Thus, recognizing F j = yj ◦F we

find the result of our last motivating example can be written:

∂

∂xi
∣∣
p
7→

3∑
j=1

dpF
j

(
∂

∂xi
∣∣
p

)
∂

∂yj

∣∣∣∣
F (p)

.

Extending this linearly brings us to see why the next definition is made:
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Definition 1.5.3. differential of a mapping or, the push-forward

Let F : Rn → Rm be a differentiable function at p and suppose X ∈ TpRn and y1, . . . , ym are
Cartesian coordinates such that F j = yj ◦F for each j ∈ Nm then we define the differential
of F at p to be the mapping from TpRn to TF (p)Rm defined by:

dpF (X) =

m∑
j=1

dpF
j (X)

∂

∂yj

∣∣∣∣
F (p)

.

Alternatively, we may denote dpF (X) = F∗p(X). Or, is we wish to think of p as varying
then p 7→ dpF may be denoted F∗ or dF .

It is also useful to view the above in slightly different terms:

dpF (X) =
m∑
j=1

X[F j ]
∂

∂yj

∣∣∣∣
F (p)

.

If we permit the identification of the formula of F with the coordinates in the image, that is we set
F j = yj then the formula simplifies further:

dpF

(
∂

∂xi

∣∣∣∣
p

)
=

m∑
j=1

∂yj

∂xi
∂

∂yj

∣∣∣∣
F (p)

.

Perhaps you saw such a calculation in your multivariate calculus course. For example, the problem
of writing ∂/∂r in terms of derivatives with respect to x, y.

∂

∂r
=
∂x

∂r

∂

∂x
+
∂y

∂r

∂

∂y
= cos θ

∂

∂x
+ sin θ

∂

∂y
.

This is the push-forward of ∂/∂r with respect to the map F (r, θ) = (r cos θ, r sin θ) where the do-
main and range of F are viewed as the same plane. Thus, we observe the push-forward is sometimes
understood as a coordinate change. However, this is a special case as generally the domain and
codomain need not be the same set, or even the same dimension.

The reason F∗ is called the push-forward is that it pushes a vector field in the domain of F to
another vector field in the range of F . Well, not so fast, the previous sentence is only true if F
does not misbehave. For example, if F thrice wraps a circle in the domain around an oval in the
image then we might have several vectors mapped to a given point on the oval. A vector field is an
assignment of one vector to each point, so, F∗(X) would not be a vector field in such a case. On
the other hand, if F is injective locally then we can expect to map vector fields to vector fields by
push-forward of the restriction of F .

In the advanced calculus course we show that local injectivity for a continuously differentiable
function F : Rn → Rm is implied by the injectivity of the differential of the function at a point. In
particular, we define F to be regular at p if the differential dpF is full-rank. If F : Rn → Rm then
dpF has full-rank at p if JF (p) has n-linearly-independent columns. The inverse function theo-
rem states that when F is a continuously differentiable function which is regular at p then there
exist U ⊆ Rn and V ⊆ Rm for which F |U : U → V is invertible with continuously differentiable
inverse. In the case n = m we can check the regularity of F at p by showin detJF (p) 6= 0. This the-
orem is a local result in the sense that it does not imply the invertibilty of F for its whole domain.
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For example, the polar coordinate transformation is locally invertible away from the origin, but,
it always faces the 2π-angle degeneracy if we have a domain which includes a circle around the origin.

The other theorem we need at times from advanced calculus is the implicit function theorem.
If F : Rr ×Rn → Rn is continuously differentiable with n-linearly-independent final columns in JF
at (q, p) then we can find a continuously differentiable function G : Rn → Rr such that q = G(p)
and y = G(x) solves F (x, y) = c for (x, y) near (q, p). I think this is a bit harder to understand.
Let me just give two examples which illustrate a typical use of the theorem to express curves and
surfaces as graphs.

Example 1.5.4. Let F (x, y) = x2 + y2 then F (x, y) = R2 is a circle and

JF =
[

2x 2y
]

we see y 6= 0 implies the last column is nonzero hence we may solve for y near such points. In this
case, G(x) = ±

√
R2 − x2 where we choose ± appropriate to the location of the local solution.

Example 1.5.5. Let F (x, y, z) = cos(x) + y + z2 then

JF =
[
− sin(x) 1 2z

]
this tells me I can solve for z = z(x, y) when z 6= 0, or I can solve for y = y(x, z) anywhere on
F (x, y, z) = c, or I can solve for x = x(y, z) when x 6= nπ for n ∈ Z. Notice we can rearrange
coordinates to put x or y as the last coordinate.

I conclude this section with a few comments which ought to be made somewhere. You can skip
them in the first reading of these notes.

The definition I offer above is actually not the definition given in O’neill. Rather, O’neill defines
F∗p as the mapping which takes tangents at p with velocity v to tangents of F (p + tv) at F (p).
Then he derives from that the result:

F∗(α
′) = β′

where β = F ◦α. In fact, the above result is sometimes used to define the differential. This
definition is elegant and has certain advantages over my coordinate-based definition. The reason
for the different defnitions is simply that we have freedom to view tangent vectors in differential
geometry in several formalisms. To be careful, if I was to use the curve definition, I would use an
equivalence class of curves and write:

dpF ([α′]) = [(F ◦α)′]

You can define an isomorphism between equivalence classes of curves and derivations of smooth
functions at a given point. Then, if you translate O’neill’s curve-based definition through that
isomorphism then you’ll obtain the definition I gave in this section. Both formulations have their
merit and O’neill has a way of using both without being explicit. The explicit nature of what I say
here ruins the art of the presentation. My apologies.
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Remark 1.5.6.

The push-forward causes a notational problem in the one-dimensional case. We defined
dpf(X) = X[f ] for f : dom(f) ⊆ Rn → R and p ∈ dom(f) with X ∈ TpRn. But, if
x1, . . . , xn and t are the coordinates on Rn and R respectively then our definition of the
push-forward implies:

f∗p(X) = X[f ]
∂

∂t

∣∣∣∣
f(p)

But, this formula does not quite match our definition of the differential. The usual remedy

is to identify ∂
∂t

∣∣∣∣
f(p)

with 1. We should keep this convention in mind as we occasionally

need to use it.



Chapter 2

curves and frames

We begin with a brief section on metric and normed spaces. Then we define the essential vector
algebra of dot and cross products. Orthogonality for TpR3 is described. Ideally much of this is a
review for those who have take linear algebra and multivariate calculus. The dot product is used
to select components with respect to orthonormal bases and the cross product is used to create
vectors which are orthogonal to a given pair of vectors.

We define a frame to be a set of vector fields which are orthonormal at each point. We show that
the formulas which derive from a given frame are identical to those which are known for the stan-
dard Cartesian frame. The frame must be positively oriented to maintain the usual cross product.
We study the standard examples of the cylindrical and spherical frames. Arguably all of this ought
to be shown in the standard multivariate calculus course as the use of frames is rather common in
applications of vector calculus.

Curves and the calculus of vector fields along a curve are studied. We explain how the Frenet frame
may be attached to regular nonlinear parametrized curves in R3. We then derive the Frenet Serret
equations which show how the tangent, normal and binormal vector fields evolve along a curve
in response to nontrivial curvature or torsion. We prove a selection of standard theorems about
lines, circles and planar curves. The interested reader may consult Kühnel’s Differential Geometry:
Curves-Surfaces-Manifolds to read about Frenet curves and the theory of multiple curvatures and
many other theorems about curves we will not cover in this chapter.

We lay a foundation of investigation which is continued in further chapters. The covariant derivative
is introduced and its basic properties are derived for R3. Then, the study of the covariant derivative
with respect a frame brings us to consider connection form which generalizes the curvature and
torsion we saw earlier for the Frenet frame. Fortunately, the attitude matrix of a frame allows
us calculate the connection form with a simple synthesis of linear algebra and exterior calculus.
Finally, we introduce coframes consisting of three differential one-forms which are dual to the given
frame of vector fields. We derive by Cartan’s equations of structure by an efficient combination of
matrix notation and exterior calculus. We return to this construction in later chapters, it is given
here mostly to make the connection to the Frenet frame clear to the reader. Moreover, Cartan’s
Structure Equations are found in many contexts beyond this course. Indeed, the so-called tetrad
formulation of general relativity is built over this sort of calculus. I hope this introduction to frames
in R3 is easy to follow and ideally we build some intuition for the method of frames. Note: I begin
to use O’neill’s notation U1, U2, U3 for ∂x, ∂y, ∂z in this chapter.

25
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2.1 on distance in three dimensions

Let me briefly review the concept of distance in R3. If p, q ∈ R3 then recall p • q = p1q1+p2q2+p3q3.
We find the distance from the origin to p is

√
p • p =

√
(p1)2 + (p2)2 + (p3)2. Given a pair of points

p, q we find the distance between the points by calculating the length of the line-segment pq = q−p:

d(p, q) =
√

(q1 − p1)2 + (q2 − p2)2 + (q3 − p3)2.

In fact, R3 paired with d : R3 × R3 → R is a metric space as d satisfies the following properties:

(i.) symmetric: d(p, q) = d(q, p) for all p, q ∈ R3

(ii.) distinct points are at nontrivial distance: d(p, q) = 0 iff p = q.

(iii.) non-negative: d(p, q) ≥ 0 for all p, q ∈ R3

(iv.) triangle inequality: d(p, r) ≤ d(p, q) + d(q, r) for all p, q, r ∈ R3

We say Bε(xo) = {p ∈ R3 | d(p, xo) < ε} is an open ball of radius ε centered at xo. A point p ∈ R3

is an interior point of U ⊆ R3 if p ∈ U and there exists ε > 0 for which Bε(p) ⊆ U . If each point
in U ⊆ R3 is an interior point then we say U is an open set. For example, you can show open
balls are open sets. A set V is said to be a closed set if R3− V is an open set. If we take an open
set U and restrict d to U × U then you can verify that d is also defines metric space structure on
U . However, the concept of an inner product space is not so forgiving.

An1 inner product space is a vector space V paired with an inner product 〈, 〉 : V × V → R
which must satisfy:

(i.) bilinearity: for all x, y, z ∈ V and c ∈ R:

〈cx+ y, z〉 = c〈x, z〉+ 〈y, z〉 and 〈x, cy + z〉 = c〈x, y〉+ 〈x, z〉.

(ii.) symmetric: 〈x, y〉 = 〈y, x〉 for all x, y ∈ V

(iii.) positive definite: 〈x, x〉 ≥ 0 for all x ∈ V and 〈x, x〉 = 0 iff x = 0.

It is simple to verify 〈x, y〉 = x • y defines an inner product on R3. A normed vector space is
similarly defined. We say a real vector space V has norm || · || : V → [0,∞) when the function || · ||
satisfies the following properties:

(i.) positive definite: ||x|| ≥ 0 for all x ∈ V and ||x|| = 0 iff x = 0.

(ii.) for each x ∈ V and c ∈ R, ||cx|| = |c| ||x|| where |c| =
√
c2.

(iii.) triangle inequality: ||x+ y|| ≤ ||x||+ ||y|| for all x, y ∈ V

Notice R3 is a normed linear space with respect to the norm ||x|| =
√
x •x.

Sometimes a normed vector space is called a normed linear space. Sequences can be studied in
normed linear spaces in the usual manner: xn : N→ V is a converges to xo ∈ V if for each ε > 0
there exists N ∈ N for which n > N implies ||xn−xo|| < ε. Likewise, {xn} is a Cauchy sequence

1I assume V is a real vector space in what follows, there are suitable modifications of these to complex and other
contexts, but our focus on the real case here
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if for each ε > 0 there exists N ∈ N for which m,n > N implies ||xm − xn|| < ε. Generally,
any convergence sequence will be a Cauchy sequence. However, to obtain the converse claim that
Cauchy sequences are convergent is only true for complete spaces. Indeed, this is a tautological
claim as the definition of complete is that each Cauchy sequence converges. A complete normed
linear space is called a Banach space. In advanced calculus, I’ll show how we can write a theory
of differential calculus on a finite-dimensional Banach space. The abstract study of metric spaces
is usually seen in real and functional analysis.

This section has focused on different structures which we can study on the point-set R3. In the
remainder of this chapter we mostly focus on the tangent space, or tangent spaces attached along
some object. Tangent space is a vector space and will make great use of the inner-product space
structure described in the section which follows.

2.2 vectors and frames in three dimensions

In this section we exploit the isomorphism from R3 to TpR3 to lift all our favorite vector construc-
tions to the tangent space; essentially the point p is either ignored, or just rides along:

Definition 2.2.1. dot and cross product on TpR3

Let p ∈ R3 and suppose (p, v), (p, w) ∈ TpR3 then we define

(p, v) • (p, w) = v •w & (p, v)× (p, w) = (p, v × w)

Define the Levi-Civita by ε123 = 1 and all other εijk are obtained by assuming that εijk is
completely antisymmetric then we find any repeat of indices causes εijk = 0 and the nontrivial
terms are given by:

1 = ε123 = ε231 = ε312 & − 1 = ε321 = ε213 = ε132

Hence the Levi-Civita symbol allows an elegant formula for the cross product:

v × w =
∑
ijk

εijkv
iwj∂k|p or (v × w)k =

∑
ij

εijkv
iwj

where we assume v, w ∈ TpR3 are expressed as v =
∑3

i=1 v
i ∂
∂xi

∣∣
p

and w =
∑3

j=1w
j ∂
∂xj

∣∣
p
. We also

have a concise formula for the dot-product: once more, for v, w ∈ TpR3 as above

v •w =
3∑
i=1

viwi.

The identity below is shown in O’neill without resorting to tricks. Let me be tricky. First, I invite
the reader to observe

∑
k εijkεklm = δilδjm − δjlδim. With this settled, calculate:

||v × w||2 =
∑
k

(v × w)k(v × w)k =
∑
ijklm

εijkεklmv
iwjvlwm =

∑
ijlm

(δilδjm − δjlδim)viwjvlwm

But,
∑

ijlm δilδjmv
iwjvlwm =

∑
i v
ivi
∑

j w
jwj = (v • v)(w •w). Likewise, we calculate that∑

ijlm δjlδimv
iwjvlwm =

∑
i v
iwi
∑

j w
jvj = (v •w)2. Hence,

||v × w||2 = (v • v)(w •w)− (v •w)2
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Of course, the same identity is exists for TpR3.

In multivariate calculus we defined the length of v to be ||v|| =
√
v • v hence:

Definition 2.2.2. vector norm in TpR3

Let p ∈ R3 and suppose (p, v) ∈ TpR3 where v =
∑3

i=1 v
i ∂
∂xi

∣∣
p
. We define

||(p, v)|| = ||v|| =
√
v • v =

√
(v1)2 + (v2)2 + (v3)2.

The length of a vector is also known as the norm. Let me review what we know about dot and
cross products in R3. We have both triangle and Cauchy-Schwarz inequalities:

||v + w|| ≤ ||v||+ ||w|| & |v •w| ≤ ||v|| ||w||.

The Cauchy-Schwarz inequality allows us to define the angle between non-zero vectors as∣∣∣∣ v •w

||v|| ||w||

∣∣∣∣ ≤ 1

implies the quotient may be identified with cos θ for 0 ≤ θ ≤ π. Geometrically, cos θ = v •w
||v|| ||w||

may also be seen from the law of cosines. Next, recall ||v × w||2 = (v • v)(w •w) − (v •w)2 hence
||v × w|| = ||v||2 ||w||2 sin2 θ as 1 − cos2 θ = sin2 θ. You should recall the direction of v × w was
given by the right-hand-rule. Now, since TpR3 also has the dot and cross products, we know:

(p, v) • (p, w) = ||(p, v)|| ||(p, w)|| cos θ & ||(p, v)× (p, w)|| = ||(p, v)|| ||(p, w)|| | sin θ|.

In truth, we use TpR3 in university physics. It is common place for us to take dot and cross products
of vectors attached to points away from the origin.

Definition 2.2.3. orthogonal vectors TpR3

If (p, v), (p, w) ∈ TpR3 and (p, v) • (p, w) = 0 then we say (p, v) and (p, w) are orthogonal. If
S = {(p, vi) | i = 1, . . . , k} then we say S is an orthogonal set of vectors if (p, vi) • (p, vj) = 0
for all i 6= j. If S is orthogonal and ||(p, vi)|| = 1 for each (p, vi) ∈ S then we say S is an
orthonormal set of vectors in TpR3.

Notice (p, 0) is orthogonal to every vector in TpR3. If we have a set of three orthonormal vectors at
p ∈ R3 then we have a very nice basis for TpR3. Recall basis means the set is a linearly independent
spanning set for the vector space in question. Certainly orthonormality of {v1, v2, v3} ⊆ TpR3

implies linear independence as:

c1v1 + c2v2 + c3v3 = 0 ⇒ c1v1 • vj + c2v2 • vj + c3v3 • vj = 0 • vj = 0

and orthonormality gives vi • vj = δij hence only the j-th term remains to give cj = 0. But, j was
arbitrary hence {v1, v2, v3} is linearly independent. Moreover, as TpR3 is isomorphic to the three
dimensional vector space R3 we find that {v1, v2, v3} is also a spanning set. Then as {v1, v2, v3} is
a spanning set for each X ∈ TpR3 there exist c1, c2, c3 ∈ R for which X = c1v1 + c2v2 + c3v3. But,
taking the dot-product with vj shows cj = X • vj for j = 1, 2, 3 hence we find:

X = (X • v1)v1 + (X • v2)v2 + (X • v3)v3 (2.1)
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In summary, a set of three orthonormal vectors for TpR3 forms an orthonormal basis. Such a
basis is very convenient as it allows calculation of dot-products in the same fashion as the standard
{∂/∂x1|p, ∂/∂x2|p, ∂/∂x3|p} basis. Let us make use of O’neill’s notation U1, U2, U3 in place of
∂/∂x1|p, ∂/∂x2|p, ∂/∂x3|p. Thus, given X,Y ∈ TpR3, we can either expand in the standard basis

X = X1U1 +X2U2 +X3U3 & Y = Y 1U1 + Y 2U2 + Y 3U3

or with respect to the orthonormal basis2 {E1, E2, E3}

X = a1E1 + a2E2 + a3E3 & Y = b1E1 + b2E2 + b3E3

then the dot-product of X and Y in the standard coordinates is X •Y = X1Y 1 + X2Y 2 + X3Y 3.
Likewise, as Ei •Ej = δij we derive

X •Y =
∑
i

aiEi •
∑
j

bjEj

=
∑
i,j

aibjEi •Ej

=
∑
i,j

aibjδij

=
∑
i

aibi = a1b1 + a2b2 + a3b3.

Let us record our result for future reference:

Proposition 2.2.4. dot-product with respect to orthonormal basis.

If E1, E2, E3 is a frame and X = a1E1 + a2E2 + a3E3 and Y = b1E1 + b2E2 + b3E3 then

X •Y = a1b1 + a2b2 + a3b3.

Suppose E1 × E2 = E3. Since E2 × E3 ∈ TpR3 we may expand it in the orthonormal basis
{E1, E2, E3},

E2 × E3 = [E1 • (E2 × E3)]E1 + [E2 • (E2 × E3)]E2 + [E3 • (E2 × E3)]E3

Next, we use A • (B × C) = B • (C ×A) = C • (A×B) to simplify what follows:

E2 × E3 = [E3 • (E1 × E2)]E1 + [E3 • (E2 × E2)]E2 + [E2 • (E3 × E3)]E3

= [E3 •E3]E1

= E1.

A similar calculation shows E3 × E1 = E2. Indeed, there is nothing special about assuming
E1 × E2 = E3 as our starting point. Any one of the following necessitates the remaining pair

E1 × E2 = E3 & E2 × E3 = E1 & E3 × E1 = E2.

provided we know E1, E2, E3 are orthonormal. Concisely, we have Ei × Ej =
∑

k εijkEk. Such
a triple of vectors is sometimes called a right-handed-triple in physics. If X =

∑
i a
iEi and

2you could use any notation you like here, I’ll try to stick with capital E or F for these as to follow O’neill.
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Y =
∑

j b
jEj with respect to a right-handed orthonormal basis then the formula for the X × Y is

the same as for the Cartesian coordinate system:

X × Y =
∑
i

aiEi ×
∑
j

bjEj =
∑
i,j

aibjEi × Ej =
∑
i,j,k

εijka
ibjEk.

Where Ei is in place of Ui and the components ai = X •Ei and bj = Y • ej . If the basis is
orthonormal, but, not right-handed then it turns out that it must be the case that E1×E2 = −E3

and the formula above picks up a minus. Once again, let us record our result for future reference:

Proposition 2.2.5. cross-product with respect to orthonormal basis.

If E1, E2, E3 is a frame with E1 × E2 = E3 and X = a1E1 + a2E2 + a3E3 and Y =
b1E1 + b2E2 + b3E3 then X × Y = (a2b3 − a3b2)E1 + (a3b1 − a1b3)E2 + (a1b2 − a2b1)E3.. If
E1 × E2 = −E3 then X × Y = −(a2b3 − a3b2)E1 − (a3b1 − a1b3)E2 − (a1b2 − a2b1)E3.

In differential geometry, the assignment of such a triple of vectors is known as attaching a frame to
p. Actually, in the larger scheme of things I would tend to call it an orthonormal frame. But, since
all the frames we work with in this course are orthonormal, the omission of ”orthonormal” seems
fair. We will be interested in framing curves and surfaces at each point. A single frame contains 3
vector fields, so, you might wonder why we bother introducing yet another object. The reason will
be clear soon enough; frames are naturally connected to very special matrices. First, a definition:

Definition 2.2.6. frames in R3

If {E1, E2, E3} is an orthonormal basis for TpR3 then we say {E1, E2, E3} is a frame at
p. A frame on S is an single-valued assignment of a frame {E1(p), E2(p), E3(p)} to each
p ∈ S ⊆ R3. A positively oriented frame has E1 × E2 = E3.

Naturally, the coordinate vector fields provide a frame.

Example 2.2.7. Let p ∈ R3 then E1, E2, E3 given below form a frame at p

E1 =
1√
3

(
∂

∂x

∣∣∣∣
p

+
∂

∂y

∣∣∣∣
p

+
∂

∂z

∣∣∣∣
p

)
, E2 =

1√
2

(
∂

∂x

∣∣∣∣
p

− ∂

∂z

∣∣∣∣
p

)
, E3 =

1√
6

(
∂

∂x

∣∣∣∣
p

− 2
∂

∂y

∣∣∣∣
p

+
∂

∂z

∣∣∣∣
p

)

Example 2.2.8. Observe {∂x, ∂y, ∂z} forms the Cartesian coordinate frame on R3. We some-
times denote this frame by the standard notation {U1, U2, U3}. It is often useful to express a given
frame in terms of the Euclidean frame. For example, the frame of the preceding example is written
as:

E1 = 1√
3

(U1 + U2 + U3) , E2 = 1√
2

(U1 − U3) , E3 = 1√
6

(U1 − 2U2 + U3) .

Example 2.2.9. The cylindrical coordinate frame is given below:

E1 = cos θ U1 + sin θ U2

E2 = − sin θ U1 + cos θ U2

E3 = U3.

I often use the notation E1 = r̂, E2 = θ̂ and E3 = ẑ in multivariate calculus. This frame is very
useful for simplifying calculations with cylindrical symmetry.
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Example 2.2.10. The spherical coordinate frame for the usual spherical coordinates used in
third-semester-American calculus is given below:

E1 = cos θ sinφU1 + sin θ sinφU2 + cosφU3

E2 = cos θ cosφU1 + sin θ cosφU2 − sinφU3

E3 = − sin θ U1 + cos θ U2

I often use the notation E1 = ρ̂, E2 = φ̂ and E3 = θ̂ in multivariate calculus. This frame is very
useful for simplifying calculations with spherical symmetry.

I should warn the readers of O’neill, he uses a different choice of spherical coordinates than we
implicitly use in the example above. In fact, the example is based on the formulas:

x = ρ cos θ sinφ, y = ρ sin θ sinφ, z = ρ cosφ

for 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. These coordinates envision φ being zero on the positive z-axis then
sweeping down to π on the negative z-axis. In contrast, see Figure 2.20 on page 86, O’neill prefers
to work with φ which is zero on the xy-plane then sweeps up or down to ±π/2.

The attitude matrix places Cartesian coordinate vectors of a frame as rows of the matrix. My nat-
ural inclination would be to use the transpose of this, but, what follows is a standard construction.

Definition 2.2.11. attitude of a frame

If {E1, E2, E3} is a frame of TpR3 and

Ei = ai1U1 + ai2U2 + ai3U3

for i = 1, 2, 3. Then define the attitude matrix of the frame by:

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
Notice, Ei = ai1U1 + ai2U2 + ai3U3 implies aij = Ei •Uj . Therefore, the definition above can be
formulated as Aij = Ei •Uj for 1 ≤ i, j ≤ 3. Naturally, we may either consider the attitude matrix
at a point, or, if we wish to allow p to vary then A contains nine functions which describe how the
frame varies with p. We may at times replace A with A(p) to emphasize the point-dependence.

We need to recall the transpose of a matrix is defined by (AT )ij = aji and an orthogonal matrix
is M such that MTM = I where I is the identity matrix.

Theorem 2.2.12. attitude matrix is an orthogonal matrix .

If A = (aij) is an attitude matrix then
3∑

k=1

akiakj = δij . That is, ATA = I.
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Proof: let A be an attitude matrix where Aij = Ei •Uj . Consider,

(ATA)ij =
∑
k

(AT )ikAkj

=
∑
k

akiakj

=
∑
k

(Uk •Ei)(Uk •Ej)

= Ei •Ej

= δij .

Going from the third to fourth line we have identified Ei =
∑

k(Uk •Ei)Uk is the expansion of Ei
in the Cartesian frame hence the next step is the definition of the dot-product. �

Now we return to our frame examples to extract the attitude matrix. In each case, I invite the
reader to verify ATA = I.

Example 2.2.13. Following Example 2.2.7,

E1 = 1√
3

(U1 + U2 + U3) ,

E2 = 1√
2

(U1 − U3) ,

E3 = 1√
6

(U1 − 2U2 + U3)

⇒ A =


1√
3

1√
3

1√
3

1√
2

0 −1√
2

1√
6
−2√

6
1√
6


Example 2.2.14. Following Ex. 2.2.8, the attitude of the Cartesian frame is the identity matrix:

E1 = 1 · U1 + 0 · U2 + 0 · U3,
E2 = 0 · U1 + 1 · U2 + 0 · U3,
E3 = 0 · U1 + 0 · U2 + 1 · U3

⇒ A =

 1 0 0
0 1 0
0 0 1

 .
Example 2.2.15. Following Ex. 2.2.9, the attitude of the cylindrical coordinate frame is:

E1 = cos θ U1 + sin θ U2

E2 = − sin θ U1 + cos θ U2

E3 = U3.
⇒ A =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 .
Example 2.2.16. Following Ex. 2.2.10, the attitude of the spherical coordinate frame is:

E1 = cos θ sinφU1 + sin θ sinφU2 + cosφU3

E2 = cos θ cosφU1 + sin θ cosφU2 − sinφU3

E3 = − sin θ U1 + cos θ U2

⇒ A =

 cos θ sinφ sin θ sinφ cosφ
cos θ cosφ sin θ cosφ − sinφ
− sin θ cos θ 0

 .
From the first pair of examples we see the attitude matrix of a constant frame is likewise constant.
From the latter pair the attitude is variable when the frame is variable. We have much more to say
about this structure in the remainder of this chapter. The next section is about how to differentiate
along a curve, but, then the section after it is all about framing a curve.
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2.3 calculus of vectors fields along curves

To begin, we introduce some standard terminology for vector fields along a curve.

Definition 2.3.1. vector field and Cartesian components:

Let α : I → R3 by a smooth parametrized curve and suppose Y =
∑

i Y
i∂i is a smooth

vector field on the curve then we say Y ∈ X(α). That is, X(α) is the set of all smooth vector
fields on α. The functions Y i : U ⊆ R3 → R are the Cartesian coordinate functions of
Y . The functions Y i ◦α : I → R are the parameterized components of Y along α.

To say Y is smooth is to say it has smooth coordinate functions3.

Example 2.3.2. Let α(t) = (t, t2, t3) for t ∈ R and Y = x2∂x + (y + sin(z))∂z then identify we
have vector field component functions:

Y 1 = x2, Y 2 = 0, Y 3 = y + sin(z)

which give parametrized components on α(t) = (t, t2, t3) of

(Y 1 ◦α)(t) = t2, (Y 2 ◦α)(t) = 0, (Y 3 ◦α)(t) = t2 + sin(t3).

To differentiate Y along the parametrized curve α we simply differentiate its parametrized compo-
nents: as usual, we could use Ui or ∂i in what follows:

Definition 2.3.3. change in a vector field along a parameterized curve:

Let α : I → R3 by a smooth parametrized curve and suppose Y =
∑

i Y
i∂i is a vector field

defined on some open set containing the curve. We define the derivative of Y along α as
follows:

Y ′(t) =
∑
i

d(Y i ◦α)

dt

∂

∂xi

∣∣∣∣
α(t)

∈ Tα(t)R3.

If we have Y (α(t)) = a(t)U1 + b(t)U2 + c(t)U3 then

dY

dt
=
da

dt
U1 +

db

dt
U2 +

dc

dt
U3

where to be clear, the Cartesian frame is at the point α(t).

Example 2.3.4. Continuing Example 2.3.2, the vector field along α is given by

(Y ◦α)(t) = t2U1 +
(
t2 + sin(t3)

)
U3

thus Y ′(t) = 2t U1 + (2t+ 3t2 cos(t3))U3 ∈ T(t,t2,t3)R3.

3this definition, like most we encounter, is improved in deeper study of manifolds
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Proposition 2.3.5. calculus of vector fields on curves.

Let α is a smooth parametrized curve and Y,Z ∈ X(α) and c1, c2 ∈ R,

(i.)
d

dt
(c1Y + c2Z) = c1

dY

dt
+ c2

dZ

dt
,

(ii.)
d

dt
(Y •Z)(α(t)) =

dY

dt
•Z(α(t)) + Y (α(t)) •

dZ

dt
,

(iii.)
d

dt
(Y × Z) =

dY

dt
× Z(α(t)) + Y (α(t))× dZ

dt
.

Proof: if Y ◦α =
∑
i

aiUi and Z ◦α =
∑
i

biUi then (Y •Z) ◦α =
∑
i

aibi thus calculate:

d

dt
(Y •Z) ◦α =

d

dt

∑
i

aibi

=
∑
i

d

dt
(aibi)

=
∑
i

[
dai

dt
bi + ai

dbi

dt

]
=
∑
i

dai

dt
bi +

∑
i

ai
dbi

dt

=
dY

dt
•Z(α(t)) + Y (α(t)) •

dZ

dt
.

Since (Y ×Z) ◦α =
∑
i,j,k

εijka
ibjUk we can prove (3.) in a similar fashion. I leave (1.) to the reader. �

In Chapter 1 we studied how a given parametrized curve naturally generates an associated vector
field which is known as the velocity of the curve. If we differentiate the velocity field along α this
generates the acceleration which is also a vector field along α.

Definition 2.3.6. acceleration of parametrized curve:

Let α : I → R3 by a smooth parametrized curve then define α′′(t) = d
dt (α′(t) ). That is:

α′′(t) =
∑
i

d2(Y i ◦α)

dt2
∂

∂xi

∣∣∣∣
α(t)

∈ Tα(t)R3.

The definitions of acceleration and velocity we give in this section should be recognizable from
multivariate calculus, or university physics. However, the concept of differentiating a vector field
along the curve and fitting the acceleration in the context of that construction is probably new.

Example 2.3.7. Let α(t) = (t, t2, t3) for t ∈ R. Then

α′(t) = U1 + 2t U2 + 3t2 U3 & α′′(t) = 2U2 + 6t U3.

where both α′(t) and α′′(t) are in Tα(t)R3.
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The concept of distant parallelism is fairly easy to grasp in Rn. In particular, we say (p, v) and
(q, w) are distantly parallel if p 6= q and v •w = ||v|| ||w||. That is, for p 6= q, the vectors (p, v) and
(q, w) are distantly parallel if there vector parts are parallel. For example, given a non-intersecting
parametrized curve α, if a vector field Y has Y (α(t)) =

(
c1∂x + c2∂y + c3∂z

)
|α(t) for constants

c1, c2, c3 then Y (α(t1)) and Y (α(t2)) are distantly parallel.

Theorem 2.3.8.

Let α : I → R3 is a smooth parametrized curve,

(i.) α′ = 0 iff α(t) = p for all t ∈ I (that is, α is a point),

(ii.) α′′ = 0 iff α(t) = p+ tv for all t ∈ I (that is, α is a line),

(iii.) Let Y ∈ X(α) then the derivative of Y along α is zero iff Y ◦α = c1U1 + c2U2 + c3U3

for constants c1, c2, c3.

Proof of (1.): if α′ = 0 then for i = 1, 2, 3 we have dαi

dt = 0 for all t ∈ I. We assume I is connected
hence αi(t) = pi for all t ∈ I thus α(t) = p for all t ∈ I. Conversely α(t) = p clearly implies α′ = 0.

Proof of (2.): almost the same as (1.), just have to integrate twice in the forward direction and
clearly α(t) = p+ tv for p, v ∈ R3 has α′′(t) = 0. I leave the details to the reader.

Proof of (3.): let Y ∈ X(α) have constant length along α. Suppose the derivative of Y along

α is zero. That is, suppose d
dt(Y ◦α) = 0. Let (Y ◦α)i = ai then we are given dai

dt = 0 for t ∈ I.

Observe, for i = 1, 2, 3, dai

dt = 0 for all t ∈ I implies ai = ci for some constant ci. Therefore,
Y ◦α = c1U1 + c2U2 + c3U3. Conversely, it is simple to see that Y ◦α = c1U1 + c2U2 + c3U3 for
constants c1, c2, c3 implies d

dt(Y ◦α)(t) = 0 hence Y ′ = 0. �

Given that Y ∈ X(α) has constant length along α we do have the equivalence: Y ′ = 0 iff Y (α(t1))
is distantly parallel to Y (α(t2)). The addition of the assumption of constant length is needed since
it is possible to have vector fields which are parallel along α but have variable length. For example,
take α(t) = (t, t, t) for t ∈ [1, 2] and consider Y = xU1. We have Y (α(t)) = tU1 thus, for any
t ∈ [1, 2] the vector Y (α(t)) is distantly parallel4 to U1. However, Y ′ = U1 6= 0. In short, I argue
part (3.) of Lemma 2.3 on page 56 of O’neill (where no mention of Y ’s length is made) is false
unless we insist Y have constant length.

2.4 Frenet Serret frame of a curve

We have the necessary toys. Finally, let us play. We wish to find a frame along a curve. Lines
are too boring, there is no nice way to pick a direction in the normal plane at a given point. For
α(t) = p+ tv it is easy enough to see α′(t) = (p+ tv, v), but, beyond the direction vector v, how to
we find another characteristic vector for the line? This problem is either too easy or too hard for
us, so, we set it aside and assume in the remainder of this section we have a non-linear,
regular, parametrized curve parametrized by arclength. That is, we have a non-linear,
unit-speed curve. We wish to find a frame along α.

4you might notice distant parallelism is an equivalence relation
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Our goal is to find a frame E1, E2, E3 along α; that is E1, E2, E3 ∈ X(α) for which E1, E2, E3 forms
an orthonormal basis for Tα(t)R3 at each t ∈ dom(α). We’ll start with the velocity of the curve.
Let us denote the unit-tangent field by T = α′(s) then T •T = ||α′(s)|| = 1. Next, we need to
find another vector field along α. Notice T ′ •T + T •T ′ = 0 on α(t) hence T ′ is orthogonal to T
along the curve. However, ||T ′|| is not generally 1 thus we must normalize and define the normal
vector field by N = 1

||T ′||T
′. In fact, geometrically, the change in the tangent vector along the curve

measures how the curve is changing direction. We define:

Definition 2.4.1. curvature of smooth curve.

Suppose α is an arclength-parametrized curve then the curvature of α is given by κ = ||T ′||.

Notice, if α′′ = 0 then T ′ = α′′ = 0 hence κ = 0 for a line. We are primarily interested in the
case κ > 0. Observe, by construction, N •N = 1 and N •T = 0. Finally, we define the binormal
B = T ×N . Clearly, B •T = 0 and B •N = 0 hence ||B|| = ||T ||||N || sin(90o) = 1. Thus T,N,B
forms a positively oriented frame along α known as the Frenet frame of α. The term positively
oriented refers to the fact that the triple T,N,B respects the right-hand-rule as B = T ×N . The
tangent and normal vector fields to the curve both are tangent to the so-called osculating plane.
This makes the binormal a vector which is perpendicular to the osculating plane. That is, the
binormal forms the normal to the osculating plane. We’ll see in the proof of the proposition to
follow that there is a function τ which governs the evolution of B with the curve. That function is
called the torsion. In short, it measures the tendency of the curve to bend off its osculating plane.

Theorem 2.4.2. Frenet Serret Equations.

Let α be a unit-speed, non-linear curve and define T = dα
ds and N = 1

||T ′||
dT
ds and B = T ×N

then there exists a function τ for which:

dT

ds
= κN

dN

ds
= −κT + τ B

dB

ds
= −τN

Proof: begin by noting κ = ||T ′|| hence N = 1
κ
dT
ds hence dT

ds = κN is just the definition of κ. The
other two equations require a bit more effort.

We wish to show T,N,B forms a frame along α. To verify this, observe T •T = ||α′(s)|| = 1 as α
is given to be unit-speed. Differentiate by part (ii.) of Proposition 2.3.5,

T •T = 1 ⇒ T ′ •T + T •T ′ = 2T •T ′ = 0 ⇒ T •

[
T ′

||T ′||

]
= T •N = 0.

By construction, N •N = 1
||T ′||2T

′ •T ′ = 1. By properties of the cross-product, B is orthogonal to

both N and T as B = T ×N . Finally, ||B|| = ||T ×N || = ||T ||||N || sin(90o) = 1 hence B •B = 1.
Sorry to be redundant here, but, to be safe I want all of this here.

Notice, N ′ and B′ are vector fields along α by their construction. It follows we can expand each
of them in terms of the frame T,N,B along α. Moreover, the components with respect to this



2.4. FRENET SERRET FRAME OF A CURVE 37

orthonormal basis are simply given by dot-products. Begin with B′ we have:

B′ = (B′ •T )T + (B′ •N)N + (B′ •B)B ?B

notice B •B = 1 implies B′ •B = 0. Also, B •T = 0 implies

B′ •T +B •T ′ = 0 ⇒ B′ •T = −B •T ′ = −B • (κN) = −κB •N = 0.

We deduce from ?B that B′ = (B′ •N)N . Let τ = −B′ •N and we obtain dB
ds = −τN .

Once more use that T,N,B forms a frame on α and N ′ ∈ X(α),

N ′ = (N ′ •T )T + (N ′ •N)N + (N ′ •B)B ?N

As usual, N •N = 1 implies N ′ •N = 0. On the other hand, N •T = 0 yields,

N ′ •T +N •T ′ = 0 ⇒ N ′ •T = −T ′ •N = −κN •N = −κ.

Whereas, N •B = 0 differentiates to yield:

N ′ •B +N •B′ = 0 ⇒ N ′ •B = −N •B′ = −N • (−τN) = τ.

Therefore, returing to ?N we find dN
dS = −κT + τB. �

This proof is really not that complicated. The boxed equations are immediate once we recognize
T,N,B forms a frame. Then, we just used part (ii.) of Proposition 2.3.5 repeatedly to cut the
components of the boxed equation down to size. We have shown the definition of torsion to follow
is well-posed:

Definition 2.4.3. torsion of smooth curve.

Let α is an arclength-parametrized curve then the torsion of α is given by τ = −N • dB
ds .

Example 2.4.4. Consider the helix defined by R,m > 0 and

α(s) = (R cos(ks), R sin(ks),mks)

for s ∈ R and k = 1/
√
R2 +m2. Calculate,

α′(s) = −kR sin(ks)U1 + kR cos(ks)U2 +mkU3

thus ||α′(s)|| = k
√
R2 +m2 = 1. It follows T = α′. Differentiate α′ to obtain:

T ′(s) = α′′(s) = −k2R cos(ks)U1 − k2R sin(ks)U2

We find ||T ′(s)|| = k2R hence κ = R/(R2 +m2). Note N = − cos(ks)U1 − sin(ks)U2 thus

B = T ×N =
(
−kR sin(ks)U1 + kR cos(ks)U2 +mkU3

)
×
(
− cos(ks)U1 − sin(ks)U2

)
= mk sin(ks)U1 −mk cos(ks)U2 + kRU3.

As a quick check on the calculation, notice B •N = 0 and B •T = 0. Calculate,

dB

ds
=

d

ds
[mk sin(ks)U1 −mk cos(ks)U2 + kRU3]

= mk2 cos(ks)U1 +mk2 sin(ks)U2

Thus dB
ds
•N = −mk2 thus τ = mk2 = m/(m2 +R2).
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The nice thing about the helix example is we see nonzero curvature and torsion. Moreover, we
can see other features in particular limits of the general formulas. For example, if m = 0 then
α(s) = (R cos(ks), R sin(ks), 0) is just a circle and the torsion τ = 0 as B = U3. A circle is a planar
curve and the vanishing torsion reflects this fact. Also, when m = 0 we have κ = 1/R. We find the
curvature is large when R is small.

Generally, if a curve lies in a plane then surely T and N are tangent to the plane. But, then that
gives B is colinear to the normal of the plane which implies B is constant hence τ = 0. Conversely,
if τ = 0 for a curve then we have B is constant along the curve which implies T,N are always
parallel to a plane with B as a normal. So, it seems plausible that a curve is planar iff it has
vanishing torsion. That said, we should be a bit more precise:

Theorem 2.4.5. no torsion, non-linear curves are planar

Let α be a unit-speed, non-linear curve then α is a planar curve iff τ = 0.

Proof ( ⇒ ) : if the parametrized curve α : I → R3 lies on a plane with normal V then and
suppose so ∈ I. Then α(so) is a point on the plane and we have that γ(s) •V = 0 for all s ∈ I
where γ(s) = α(s)− α(so) is the secant line from so to s on the given curve. By the product rule
and the fact that V is constant we have γ′(s) •V = 0 hence T •V = 0 and differentiating again
yields T ′ •V = κN •V = 0 hence N •V = 0 as α is non-linear gives κ > 0. We find V is orthogonal
to both T and N for each s ∈ I hence V is colinear with B at each s ∈ I and as B 6= 0 and V 6= 0
there must exist k 6= 0 for which B = kV . Thus B′ = 0 and we derive τ = −B′ •N = 0.

Proof ( ⇐ ) : suppose τ(s) = 0 for all s ∈ I where so ∈ I and α : I → R3 is a non-linear
regular curve. Notice B′ = −τN = 0 for all s ∈ I hence B(s) = B(so) for all s ∈ I. We expect
that B(so) serves as the normal to the plane in which the curve evolves. Thus define a function
which if identically zero will show that the curve lies in a plane with point α(so) and normal B(so).
Following O’neill5,

f(s) = [α(s)− α(so)] •B(so) ⇒ df

ds
= α′(s) •B(so) = T (s) •B(s) = 0

for all s ∈ I however f(so) = 0 thus f(s) = 0 for all s ∈ I and so we find the curve is planar with
the constant binormal serving as the normal to the plane of motion. �

It is instructive to consider how the curvature and torsion locally approximate the geometry of a
smooth regular unit-speed curve. Taylor’s theorem gives, for some point so in the domain of α,

α(s) ≈ α(so) + sα′(so) +
s2

2
α′′(so) +

s3

6
α′′′(so) + · · · ?

Note α′(so) = T (so) and for our convenience let us denote T (so) = To hence identify first two
terms parametrize the tangent line at α(so) by α(so) + sTo. Next, by the Frenet Serret equation
for T ′ = α′′ we see

α′′(so) = T ′(so) = κ(so)N(so)

5notice that α(s) − α(so) is naturally associated with the directed line-segment in R3 from α(so) to α(s). We
attach that directed line-segment to α(so) as to make the dot-product with B(so) ∈ Tα(so)R

3 reasonable. Since little
is gained by making these identifications explicit in the proof we follow O’neill and most authors and omit comments
such as these in most places (except here I suppose)
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let κ(so) = κo and N(so) = No. Thus ? reads

α(s) ≈ α(so) + sTo +
1

2
s2κoNo +

s3

6
α′′′(so) + · · ·

Torsion contributes to the third derivative term. Let’s see how. Note, α′′ = T ′ = κN thus

α′′′ =
dκ

ds
N + κN ′ =

dκ

ds
N + κ(−κT + τB) = −κ2T +

dκ

ds
N + κτB

thus, to third order in arclength,

α(s) ≈ α(so) +
(
s− 1

6s
3κ2
o

)
To +

(
1
2s

2κo + 1
6s

3κ′o
)
No + 1

6s
3κoτoBo + · · ·

To just second order in s we have motion in a plane spanned by To, No. Suppose we let x, y be the
To, No coordinates respective then if α(so) = 0 we can express

x = s y =
1

2
s2κo ⇒ y =

1

2
κx2.

Thus, the motion follows a parabola with slope κx. We can approximate the motion of the curve at
any point in this fashion. Alternatively, we can fit a circle locally to the curve. The circle which fits
at α(so) is called the osculating circle. The osculating circle has radius 1/κo. In x, y coordinates
as described above, the equation of the osculating circle is:

x2 +

(
y − 1

κo

)2

=
1

κ2
o

.

See the background of http://www.supermath.info/MultivariateCalculus.html for a animated pic-
ture of an osculating circle attached to a rather twisty space curve. Thanks to my brother Bill
for the Maple code. You can read about the osculating sphere in Theorem 2.10 on page 22-23 of
Wolfgang Kühnel’s Differential Geometry: Curves-Surfaces-Manifolds.

Suppose the curvature is constant along some segment of a unit-speed regular curve. If the curvature
is constantly zero then is a part of a line by part (ii.) of Theorem 2.3.8. On the other hand, if
κ(s) = c > 0 for all s in some interval then the osculating circles along the curve share the same
radius and we might hope they are in fact the same circle. As it happens, we also need the curve
to be planar, so the assumption τ = 0 is added below:

Theorem 2.4.6. constant curvature κ 6= 0 curve follows circle of radius 1/κ

Let α be a unit-speed, non-linear curve with constant curvature κ(s) = κo 6= 0 and τ(s) = 0
for all s ∈ I then α(s) follows a circle of radius 1/κo.

Proof 1: Let α be a unit-speed, non-linear curve with constant curvature κ(s) = κo 6= 0 and
τ(s) = 0 for all s ∈ I. Let so ∈ I and denote To, No to be T (s), N(s) with s = so. We expect the
circle which the curve follows has radius R = 1/κo thus C = α(so) + RNo should be the center of
the circle. Points along the circle should be equidistant from C. As τ(s) = 0 we know α(s) falls on
the plane with point α(so) and normal B(so). It follows there are functions a(s), b(s) for which

α(s) = α(so) + a(s)To + b(s)No
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Thus,

α(s)− C = α(so) + a(s)To + b(s)No − [α(so) +RNo]

= a(s)To + (b(s)−R)No

But, α′(s) = a′(s)To + b′(s)No and α′′(s) = a′′(s)To + b′′(s)No. Since α′(s) = T (s) and α′′(s) =
T ′(s) = κ(s)N(s) = κoN(s) we have:

a′′(s)To + b′′(s)No = κoN(s)

differentiating yields

a′′′(s)To + b′′′(s)No = κoN
′(s) = κo(−κT + τB) = −κ2

oT (s)

however, −κ2
oT (s) = −κ2

o[a
′(s)To + b′(s)No] thus the equation above yields

(a′′′ + κ2
oa
′)To + (b′′′ + κ2

ob
′)No = 0

which means a, b are solutions to the following constant coefficient ODEs,

a′′′ + κ2
oa
′ = 0, b′′′ + κ2

ob
′ = 0

Solutions below follow from standard arguments in the introductory DEqns course,

a(t) = c1 + c2 cos(κos) + c3 sin(κos), b(t) = c4 + c5 cos(κos) + c6 sin(κos)

Next, we could apply the initial data implicit within the construction of a(s) and b(s) and seek to
show ||α(s)− C|| = 1/κo. I will stop here as it turns out this proof is needlessly complicated. �

The basic idea of the proof above is often successful. And, sometimes, we have no choice but to
work through a problem in differential equations paired with difficult algebra. But, the proof which
follows is certainly an easier approach. Following O’neill:

Proof 2: Let α be a unit-speed, non-linear curve with constant curvature κ(s) = κo 6= 0 and
τ(s) = 0 for all s ∈ I. Consider, at any point along the curve, the normal vector should point
towards the center C of the conjectured circle. That is, C −RN(s) = α(s) for R = 1/κo. Define

γ(s) = α(s) +RN(s)

differentiating we obtain:

γ′(s) = α′(s) +RN ′(s) = T (s)−RκoT (s) = T (s)− T (s) = 0

therefore γ′(s) = 0 for all s ∈ I. Let so ∈ I and observe γ(so) = α(so) + RN(so) = γ(s) for all
s ∈ I. Thus identify C = α(so) +RN(so) is the fixed center of the circle. Hence α(s)−C = RN(s)
for all s ∈ I and so ||α(s)−C|| = R for all s ∈ I. Therefore, α is on a circle of radius R = 1/κo. �



2.4. FRENET SERRET FRAME OF A CURVE 41

Example 2.4.7. If a curve is on a sphere then it is at least as curved as a great circle on the
sphere. To see this, consider α : I → R3 a unit-speed regular curve on the sphere with center C and
radius R. We are given ||α(s)− C|| = R for all s ∈ I. Of course,

(α− C) • (α− C) = R2

hence, as α′ = T , the product rule and commutativity of the dot-product yield

2T • (α− C) = 0.

Divide by two and differentiating once more,

T ′ • (α− C) + T •T = 0.

But, T ′ = κN and T •T = 1 thus

κN • (α− C) + 1 = 0 ⇒ −1/κ = N • (α− C)

thus, by Cauchy-Schwarz inequality and facts ||N || = 1 and ||α− C|| = R,

1

κ
≤ R

Therefore, κ ≥ 1/R. The smallest curvature possible for a curve on a sphere is the case the curve
is a great circle. A great circle on a sphere of radius R is naturally a circle of radius R and given
our previous work on the helix example we know κ = 1/R for the circle.

2.4.1 the non unit-speed case

Up to this point, we have studied curves with unit-speed. In other words, we have thus far studied
the Frenet Serret theory for arclength parametrized curves. There are curves for which no such pa-
rameterization can be reasonable expressed, yet, relatively simple formulas are known for variable
speed parameterizations.

Consider α : I → R3 a regular smooth parameterized curve. Also, let ᾱ : J → R3 be the
reparametrization of α by the arclength function s : I → J . In particular, α(t) = ᾱ(s(t)) for
each t ∈ I. If we define T̄ , N̄ , B̄, κ̄ and τ̄ as discussed earlier in this section then T,N,B, κ and τ
in the t-domain are defined by reparametrization:

T (t) = T̄ (s(t)), N(t) = N̄(s(t)), B(t) = B̄(s(t)), κ(t) = κ̄(s(t)), τ(t) = τ̄(s(t)).

We denote the speed by v where v = ds
dt = ||α′(t)||. The chain-rule yields:

α′(t) =
d

dt
[ᾱ(s(t))] = ᾱ′(s(t))

ds

dt
= vT̄ (s(t)) ?

likewise,

T ′(t) =
d

dt

[
T̄ (s(t))

]
= T̄ ′(s(t))

ds

dt
= v(t)κ̄(s(t))N̄(s(t)) = v(t)κ(t)N(t).

Thus, the Frenet Serret equation for a non-unit-speed curve is modified to
dT

dt
= vκN . The same

argument applies to the derivative of N and B hence:
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Theorem 2.4.8. Frenet Serret Equations for non-unit speed curves.

Let α be a non-linear regular smooth curve with speed v = ||α′(t)|| and T,N,B, κ and τ as
defined through the unit-speed reparameterization then

dT

dt
= vκN

dN

dt
= −vκT + vτ B

dB

dt
= −vτN

Moreover, κ = 1
v ||T

′|| and τ = − 1
vB
′ •N .

Proof: we discussed how the chain-rule yields the modified Frenet Serret equations. It remains to
prove the formulas for curvature and torsion in the t-domain: note,

||T ′|| = ||vκN || = vκ ⇒ κ =
1

v
||T ′||.

Also, the dot-product of B′ = −vτN by N to obtain B′ •N = −vτN •N thus τ = − 1
vB
′ •N . �

I should emphasize, if you wish to calculate curvature, torsion and the Frenet Serret frame for a
non-unit speed curve then you must take care to add the appropriate speed factors. Let us return
to ? to examine how the speed factor plays into the acceleration:

α′(t) = vT ⇒ α′′(t) =
dv

dt
T + vT ′ =

dv

dt
T + v2κN

Therefore, we find the acceleration vector is orthogonal to the binormal vector. The tangential
component of α′′ is α′′ •T = dv

dt which describes how the curve is speeding up at the given time.
On the other hand, the normal component of α is α′′ •N = κv2. Notice, the radius of curvature R
is related to the curvature by κ = 1/R so we can write the normal component of the acceleration
instead as v2/R. This normal component is directed towards the center of the osculating circle. If
you had university physics then you should recognize the results as the tangential and centripetal

acceleration formulas. Perhaps you recall the use of a =
√
a2
T + a2

N =
√

(dv/dt)2 + v4/R2 to solve

problems such as a car accelerating around a turn while changing its speed.

Proposition 2.4.9. acceleration in terms of curvature and speed

Let α be a non-linear regular smooth curve with speed v = ||α′(t)|| then α′′ = dv
dtT + κv2N

Example 2.4.10. Suppose α(t) = (t, t2, t2). Calculate the Frenet apparatus or at least try.

α′(t) = U1 + 2tU2 + 2tU3 ⇒ v =
√

1 + 8t2 ⇒ T (t) =
U1 + 2tU2 + 2tU3√

1 + 8t2



2.4. FRENET SERRET FRAME OF A CURVE 43

Thus,

T ′(t) =
2U2 + 2U3√

1 + 8t2
− 1

2

U1 + 2tU2 + 2tU3

(
√

1 + 8t2)3
(16t)

=
2(1 + 8t2)(U2 + U3)− 8t(U1 + 2tU2 + 2tU3)

(
√

1 + 8t2)3

=
−8tU1 + 2U2 + 2U3

(
√

1 + 8t2)3

=
2

(
√

1 + 8t2)3

(
−4tU1 + U2 + U3

)
Thus,

κ(t) =
1

v
||T ′(t)|| = 1√

1 + 8t2
2
√

16t2 + 2

(
√

1 + 8t2)3
⇒ κ(t) =

2
√

16t2 + 2

(1 + 8t2)2
.

I leave the calculation of B(t) and the torsion to the reader. Also, I invite the reader to verify that
application of Theorem 2.4.9 to the acceleration of the given curve:

α′′ = 2U2 + 2U3 =
−8t

(
√

1 + 8t2)3
T (t) +

2
√

16t2 + 2

1 + 8t2
N(t)

You can see problems such as the last example are good candidates for CAS assistance. Also, the
theorem below may be helpful. You may have noticed I already assumed we could calculate T (t)
as given below:

Theorem 2.4.11. slick formulas for the Frenet apparatus

Let α be a non-linear regular smooth curve with speed v = ||α′(t)|| and T,N,B, κ and τ as
defined through the unit-speed reparameterization then

T =
α′

||α′||
, B =

α′ × α′′

||α′ × α′′||
, N = B × T,

κ =
||α′ × α′′||
||α′||3

, τ =
(α′ × α′′) •α′′′

||α′ × α′′||2

Proof: see pages 72-73 of O’neill. �

O’neill also give a nice example which showcases how these formulas work on page 73. In addition,
O’neill proves part of the following assertions. I leave these to the reader, but, I thought including
them would be wise. It is likely I prove part of this in lecture.



44 CHAPTER 2. CURVES AND FRAMES

Theorem 2.4.12. curves characterized by curvature and torsion

Let α be a non-linear regular smooth curve then

(i.) κ = 0 iff the curve is part of a straight line

(ii.) τ = 0 iff the curve is a planar curve

(iii.) κ > 0 constant and τ = 0 iff the curve is part of a circle

(iv.) κ > 0 constant and τ > 0 constant iff the curve is part of a circular helix

(v.) τ/κ nonzero and constant iff the curve is part of a cylindrical helx

Proof: (i.) follows from part (ii.) of Theorem 2.3.8, we also proved (ii.) in Theorem 2.4.5, and we
proved (iii.) in Theorem 2.4.6. Parts of the proofs of (iv.) and (v.) can be found in O’neill. �

2.5 covariant derivatives

The covariant derivative of a vector field with respect to another vector field yields a new vector
field which describes the change in a given vector field along the direction of the second field. We
use X(R3) to denote smooth vector fields on R3.

Definition 2.5.1. covariant derivative

Suppose W ∈ X(R3) and v ∈ TpR3. The covariant derivative of W with respect to v at
p is the tangent vector:

(∇vW )(p) = W (p+ tv)′(0) ∈ TpR3.

If V ∈ X(R3) and V (p) = vp then the assignment p → (∇vpW )(p) defines ∇VW ∈ X(R3)
and we say ∇VW is the covariant derivative of W with respect to V .

The covariant derivative above is essentially just a directional derivative, but, the wrinkle is that
W is not just a real-valued function. Since W is a vector field there are 3 components which can
change and the change of W in the v-direction is described by the change of all three components
of W in tandem.

Example 2.5.2. If W (p) = aU1+bU2+cU3 for constants a, b, c ∈ R for all p ∈ R3 then W (p+tv) =
aU1 + bU2 + cU3 hence W ′(p+ tv) = 0 thus (∇vW )(p) = 0 for all p ∈ R3 hence ∇VW = 0 for any
choice of V ∈ X(R3) as the calculation held for arbitrary v at each p.

Example 2.5.3. What about the change of W = x2U1 + yU3 along v = 2U2 +U3 at p = (1, 2, 3) ?
Calculate,

W (p+ tv) = W (1 + 2t, 2, 3 + t) = (1 + 2t)2U1 + (3 + t)U3

thus,
W ′(p+ tv) = 4(1 + 2t)U1 + U3 ⇒ W ′(p+ tv)(0) = 4U1 + U3.

Therefore, (∇vW )(1, 2, 3) = 4U1 + U3.

The definition of the directional derivative in terms of a parametrized line soon gave way to a more
efficient formula in terms of the gradient, the same happens here:
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Proposition 2.5.4. coordinate derivative formula for covariant derivative

Let V,W ∈ X(R3) then ∇VW =
3∑
j=1

V [W j ]Uj .

Proof: let V (p) = v and recall Equation 1.1 to go from line two to line 3,

W ′(p+ tv)(0) =
3∑
j=1

dW j(p+ tv)

dt
(0)Uj

=

3∑
j=1

(DW j)(v)(p)Uj

=
3∑
j=1

v[W j ]Uj

Therefore, as this holds at each p ∈ R3, we conclude ∇VW =
∑3

j=1 V [W j ]Uj . �

To see why I claim the result above has something to do with the gradient we can expand the
formula further into components of V =

∑
i V

iUi where Ui = ∂i in case you forgot. Observe:

∇VW =
3∑
j=1

V [W j ]Uj =
3∑
j=1

3∑
i=1

V i∂i[W
j ]Uj =

3∑
j=1

(
V •∇W j

)
Uj (2.2)

where∇W j = (∂1W
j)U1+(∂2W

j)U2+(∂3W
j)U3. Equation 2.2 implies the following properties: the

covariant derivative ∇VW is additive in both V and W . However, homogeneity of the V -argument
allows for us to extract scalar functions whereas homogeneity of W allows only for constants. Of
course, there is also a product rule tied to the W entry. Let us be precise:

Proposition 2.5.5. properties of the covariant derivative on R3

Let U, V,W ∈ X(R3) then

(i.) ∇U+VW = ∇UW +∇VW

(ii.) ∇V (U +W ) = ∇V U +∇VW

(iii.) ∇fVW = f∇VW for all smooth f : R3 → R

(iv.) ∇V (cW ) = c∇VW for all c ∈ R

(v.) ∇V (fW ) = V [f ]W + f∇VW for all smooth f : R3 → R

(vi.) U [V •W ] = ∇UV •W + V •∇UW
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Proof: for (i.) and (iii.) consider U, V,W ∈ X(R3) and f : R3 → R smooth. Use Equation 2.2

∇U+fVW =

3∑
j=1

(
(U + fV ) •∇W j

)
Uj

=
3∑
j=1

(
U •∇W j + fV •∇W j

)
Uj

=

3∑
j=1

(
U •∇W j

)
Uj + f

3∑
j=1

(
V •∇W j

)
Uj

= ∇UW + f∇VW.

The proof of (ii.) and (iv.) and (v.) is very similar. Consider, U, V,W and f as in the proposition
and use Proposition 2.5.4 subject the observation (U + fW )j = U j + fW j by defn. of vector add.,

∇V (U + fW ) =
3∑
j=1

V [U j + fW j ]Uj

=

3∑
j=1

(
V [Uj ] + V [fW j ]

)
Uj

=
3∑
j=1

(
V [Uj ] + V [f ]W j + fV [W j ]

)
Uj

=

3∑
j=1

V [Uj ]Uj + V [f ]

3∑
j=1

W j Uj + f

3∑
j=1

V [W j ]Uj

= ∇V U + V [f ]W + f∇VW.

I made use of Proposition 1.2.7 in the calculation above. Essentially, that proposition follows almost
directly from the corresponding properties for the coordinate partial derivatives.

Finally, consider the following proof of property (vi.). Let U, V,W ∈ X(R3). Proposition from
Proposition 2.5.4 gives

∇VW =
3∑
j=1

V [W j ]Uj ⇒ (∇VW )i = V [W i]

We calculate by Proposition 1.2.7 once more,

U [V •W ] = U

[
3∑
i=1

V iW i

]

=

3∑
i=1

(
U [V i]W i + V i U [W i]

)
=

3∑
i=1

(
(∇UV )iW i + V i (∇UW )i

)
= (∇UV ) •W + V • (∇UW ). �
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Of course, all the calculations above are to be done at a point p, but, as the identity holds generally
we obtain statements about functions and vector fields. I decided the proofs without explicit points
are easier to follow. Perhaps the same is true for examples: incidentally, it is useful to write the
formula for the covariant derivative in explicit detail for the sake of the example which follows:

∇VW = V [W 1]U1 + V [W 2]U2 + V [W 3]U3.

Example 2.5.6. Let V = xU1 +y2U2 +z3U3 and W = yzU1 +xyU3. Recall our notation U1, U2, U3

masks the fact that these are derivations; U1 = ∂x, U2 = ∂y and U3 = ∂z thus:

V [yz] = x∂x[yz] + y2∂y[yz] + z3∂z[yz] = y2z + z3y.

V [xy] = x∂x[xy] + y2∂y[xy] + z3∂z[xy] = xy + y2x.

Therefore, as W 1 = yz and W 3 = xy we find

∇VW = V [yz]U1 + V [xy]U3 = (y2z + z3y)U1 + (xy + y2x)U3.

Example 2.5.7. Calculate ∇V V . To calculate ∇V V it may be instructive to use property (vi.),

V [V •V ] = (∇V V ) •V + V • (∇V V ).

Thus, as V [f2] = 2fV [f ] for smooth f we have:

(∇V V ) •V =
1

2
V [||V ||2] = ||V ||V [||V ||]

Divide by ||V || to see the component of ∇V V in the V -direction is simply V [||V ||]. As a particular
application of this calculation, notice if the vector field is of constant length then V [||V ||] = 0 which
means that V does not change in the V (p) direction at p.

Finally, a word of caution, the idea of covariant differentiation shown in this section is just the
first chapter in a larger story. More generally, the covariant derivative is tied to something called
a connection on a fiber bundle. Roughly, this extends the idea of distant parallelism to general
spaces. I suppose I should also mention, in General Relativity there is a covariant derivative with
respect to the metric connection which is used define geodesics. General relativity claims particles
following geodesics in the spacetime manifold explains gravity in nature. In any event, for now
we study the covariant derivative in R3. We later study a different covariant derivative associated
with the calculus of a surface. Next, we continue to study the covariant derivative, but, with other
possible non-Cartesian frames in R3.
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2.6 frames and connection forms

The covariant derivative of a vector field in Cartesian coordinate simply involves partial derivatives
of coordinates. In this section we study how to calculate ∇VW with respect to a non-constant
frame for R3. In addition to the derivative terms we saw in the last section there are new terms
corresponding to nontrivial connection coefficients. The connection coefficients of a given frame
then allow us to somewhat indirectly study the geometry of objects to which the frame is naturally
fit. For example, the curvature and torsion played the role of connection coefficients for the curve
to which we fit the T,N,B frame. However, that is not quite the right picture as we intend to fit
frames to surfaces. We will explain in this section that the connection coefficients are naturally iden-
tified with a matrix of one-forms. Ultimately, the exterior calculus of these matrix-valued one-forms

If {E1, E2, E3} is a frame for R3 and V ∈ X(R3) then there exist functions f1, f2, f3 called the
components of V with respect to the frame {E1, E2, E3}

V = f1E1 + f2E2 + f3E3

Orthonormality of the frame shows the component functions are calculated from:

f j = V •Ej

Suppose V,W ∈ X(R3) where V =
∑
f iEi and W =

∑
j g

jEj . Calculate, by Proposition 2.5.5,

∇VW = ∇∑
f iEi

( ∑
j

gjEj
)

=
∑
i,j

f i∇Ei
(
gjEj

)
=
∑
i,j

f i
[
Ei[g

j ]Ej + gj∇Ei(Ej)
]

=
∑
j

V [gj ]Ej︸ ︷︷ ︸
I.

+
∑
i,j

f igj∇Ei(Ej)︸ ︷︷ ︸
II.

Recall, in terms of the Cartesian frame U1, U2, U3 if V =
∑

i V
iUi and W =

∑
jW

jUj then

∇VW =
∑
j

V [W j ]Uj which resembles term (I.). In comparison, there is no type-II. term as should

be expected since Ui is contant hence ∇Ui(Uj) = 0.

Definition 2.6.1. connection forms6

If E1, E2, E3 is a frame for R3 then define ωij(p) ∈ (TpR3)∗ by

ωij(v) = (∇vEi ) •Ej(p)

for each v ∈ TpR3. That is, ωij is a differential one-form on R3 defined by the assignment
p 7→ ωij(p) for each p ∈ R3.

Half of the proposition below is a simple consquence of Equation 2.1.

6I was tempted to introduce structure functions Ckij = Ek •∇Ei(Ej), but, I behave. See page 202-203 of
Manifolds, Tensors and Forms: An Introduction for Mathematicians and Physicsts by Renteln if you wish to read
more in that direction. In particular, he relates the structure functions to the Christoffel symbols. This approach
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Proposition 2.6.2. properties of the covariant derivative on R3

Let {E1, E2, E3} be a frame on R3 then ωij = −ωji and ∇VEi =
3∑
j=1

ωij(V )Ej .

Proof: By a slight modification of Example 2.5.7, consider:

V [Ei •Ej ] = (∇VEi) •Ej + Ei • (∇VEj) ⇒ 0 = ωij(V ) + ωji(V )

for all V hence ωij = −ωji. Next, note ωij(V ) = (∇VEi) •Ej is the j-th component of ∇VEi in the

{E1, E2, E3} frame. If W = ∇VEi then W =
∑

j(W •Ej)Ej . Therefore, ∇VEi =
3∑
j=1

ωij(V )Ej . �

It may be useful to express these explicitly:

∇VE1 = ω12(V )E1 + ω13(V )E3

∇VE2 = −ω12(V )E1 + ω23(V )E3

∇VE3 = −ω13(V )E1 − ω23(V )E2

We can arrange the differential forms ωij into a matrix ω

ω =

 0 ω12 ω13

−ω12 0 ω23

−ω13 −ω23 0


This is a matrix of one-forms. Let us pause to develop the theory of matrices of forms over Rn

2.6.1 on matrices of differential forms

O’neill does not write ∧ for A ∧B I write below. But, I’d rather write a few wedges to emphasize
the nature of the calculation. Essentially, the definition below just replaces the ordinary product
of real numbers in the usual matrix algebra with a wedge product of forms.

Definition 2.6.3. exterior algebra and calculus of matrices of forms:

Let Aik be a p-form and Bkj be a q-form for 1 ≤ i ≤ m, 1 ≤ k ≤ r and 1 ≤ j ≤ n then we
say A is an m × r matrix of p-forms and B is a r × n matrix of q-forms. Then we say A
and B are multipliable and define the m× n-matrix of (p+ q)-forms A ∧B by:

(A ∧B)ij =

r∑
k=1

Aik ∧Bkj .

Likewise, we denote the exterior derivative of A by dA which is defined to be the m× r-
matrix of (p+ 1)-forms given by (dA)ik = dAik.

We also denote, A =
∑

i,k AikEik and B =
∑

k,j BkjEkj where (Eij)lm = δilδjm. The standard-
matrix-basis Eij is at times very useful for proofs and general questions. Furthermore, we define
AT in the usual manner; (AT )ij = Aji. Likewise, addition and substraction of forms as well as
multiplication by smooth functions are naturally defined.
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Example 2.6.4. Let A =

[
dx dy
dz z2dy + y2dz

]
and B =

[
dx+ dy 0
z2dy dx+ dz

]
then

A ∧B =

[
dx dy
dz z2dy + y2dz

]
∧
[
dx+ dy 0
z2dy dx+ dz

]
=

[
dx ∧ (dx+ dy) + dy ∧ z2dy dx ∧ 0 + dy ∧ (dx+ dz)

dz ∧ (dx+ dy) + (z2dy + y2dz) ∧ z2dy dz ∧ 0 + (z2dy + y2dz) ∧ (dx+ dz)

]
=

[
dx ∧ dy −dx ∧ dy + dy ∧ dz

dz ∧ dx− dy ∧ dz + y2z2dz ∧ dy z2(dy ∧ dz − dx ∧ dy) + y2dz ∧ dx

]
The last step I included just to illustrate one way to simplify the answer. Also, calculate:

dA =

[
0 0
0 2(y − z)dy ∧ dz

]
& dB =

[
0 0

2zdz ∧ dy 0

]
.

Observe, we can reasonably express these as matrix-valued two-forms; dA = (2(y − z)dy ∧ dz)E22

and dB = (2zdz ∧ dy)E21.

Proposition 2.6.5. product rule for matrices of forms

Let A be a matrix of p-forms andB be a matrix of q-forms and suppose A,B are multipliable
then

d(A ∧B) = dA ∧B + (−1)pA ∧ dB.

Proof: consider,

d(A ∧B)ij = d

(∑
k

Aik ∧Bkj

)
: defn. of A ∧B

=
∑
k

d (Aik ∧Bkj) : additivity of d

=
∑
k

(dAik ∧Bkj + (−1)pAik ∧ dBkj) : by Prop. 1.3.3

= (dA ∧B + (−1)pA ∧ dB)ij

Therefore, as the above holds for all i, j, we conclude d(A ∧B) = dA ∧B + (−1)pA ∧ dB �

Of course, we probably could spend much more time and effort working out general results about
the exterior calculus of forms of matrices. For example, I invite the reader to verify associativity
(A∧B)∧C = A∧ (B∧C). I wil behave and get back on task now. We are mainly interested in the
attitude matrix of Definition 2.2.11. In Theorem 2.2.12 we learned that the attitude matrix is
point-wise orthogonal; ATA = I. A matrix of functions is a matrix of zero-forms and it is included
in the proposition above. Moreover, in this special case we can reasonably omit or include the
wedge. In particular, perhaps it is helpful to write AT ∧A = I. From this we obtain the following:

Proposition 2.6.6. attitude matrix

Let A be the attitude matrix of a given frame then

dAT ∧A = −AT ∧ dA & dA ∧AT = −A ∧ dAT .

Moreover, dA = −A ∧ dAT ∧A.
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Proof: if A is an attitude matrix then ATA = I and AAT = I. But, A and AT are multipliable
matrices of zero-forms hence the product rule for matrices of forms yield

dAT ∧A+AT ∧ dA = dI & dA ∧AT +A ∧ dAT = dI.

Note I is a constant matrix hence dI = 0 and we obtain:

dAT ∧A = −AT ∧ dA & dA ∧AT = −A ∧ dAT .

Finally, multiply dA∧AT = −A∧ dAT by A on the right, I invite the reader to verify dA∧ I = dA
and hence dA = −A ∧ dAT ∧A. �

We could reasonably write dA = −A(dAT )A and (dAT )A = −AT (dA) as A and AT are just
ordinary matrices of functions. I suppose all of this is a bit abstract for the first course, but, the
result we next examine redeems the merit of our discussion. We find that the connection form can
be calculated by mere matrix multiplication and exterior differentiation of the attitude matrix!

Theorem 2.6.7. attitude and the connection form

Let A be the attitude matrix of a given frame then ω = dA ∧AT .

Proof: let E1, E2, E3 be a frame and Aij the components of the attitude matrix:

Ei = Ai1U1 +Ai2U2 +Ai3U3 =

3∑
k=1

AikUk

we defined ωij(V ) = (∇VEi) •Ej for all V ∈ X(R3). Thus,

ωij(V ) = ∇V

(
3∑

k=1

AikUk

)
• Ej

=
3∑

k=1

∇V (AikUk) • Ej

=
3∑

k=1

(V [Aik]Uk +Aik∇V Uk) • Ej

=

3∑
k=1

V [Aik]Uk •

(
3∑
l=1

AjlUl

)

=
3∑

k,l=1

V [Aik]Ajlδkl

=

3∑
k=1

V [Aik]Ajk

= (V [A]AT )ij

To be clear, V [A] is a matrix of functions and (V [A])ij = V [Aij ] = (dAij)(V ) = (dA(V ))ij or,

V [A] =

 V [A11] V [A12] V [A13]
V [A21] V [A22] V [A23]
V [A31] V [A32] V [A33]

 =

 dA11(V ) dA12(V ) dA13(V )
dA21(V ) dA22(V ) dA23(V )
dA31(V ) dA32(V ) dA33(V )

 = dA(V )
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In view of the notation above, we conclude ωij = (dA ∧AT )ij for all i, j hence ω = dA ∧AT . �

I suppose, I should admit, we are definining the evaluation of a matrix of forms on a vector field
in the natural manner; (B(V ))ij = Bij(V ). That is, we evaluate component-wise. It happens that
matrix multiplication by a 0-form matrix can be done before or after the evaluation by V hence
there is no ambiguity in writing dA(V )AT or (dA ∧AT )(V ).

Example 2.6.8. Following Examples 2.2.9 and 2.2.15, the cylindrical coordinate frame has attitude
matrix

A =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 ⇒ dA =

 − sin θdθ cos θdθ 0
− cos θdθ − sin θdθ 0

0 0 0


Therefore,

ω = dA ∧AT =

 − sin θdθ cos θdθ 0
− cos θdθ − sin θdθ 0

0 0 0

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 =

 0 dθ 0
−dθ 0 0

0 0 0


Example 2.6.9. Following Examples 2.2.10 and 2.2.16, the spherical coordinate frame has attitude
matrix

A =

[
cos θ sinφ sin θ sinφ cosφ
cos θ cosφ sin θ cosφ − sinφ
− sin θ cos θ 0

]
& AT =

[
cos θ sinφ cos θ cosφ − sin θ
sin θ sinφ sin θ cosφ cos θ

cosφ − sinφ 0

]

Thus,

dA =

[ − sin θ sinφ cos θ sinφ 0
− sin θ cosφ cos θ cosφ 0
− cos θ − sin θ 0

]
dθ +

[
cos θ cosφ sin θ cosφ − sinφ
− cos θ sinφ − sin θ sinφ − cosφ

0 0 0

]
dφ

Calculate (the product of matrices associated with dθ in dA ∧AT ):[ − sin θ sinφ cos θ sinφ 0
− sin θ cosφ cos θ cosφ 0
− cos θ − sin θ 0

][
cos θ sinφ cos θ cosφ − sin θ
sin θ sinφ sin θ cosφ cos θ

cosφ − sinφ 0

]
=

[
0 0 sinφ
0 0 cosφ

− sinφ − cosφ 0

]

and (the product of matrices associated with dφ in dA ∧AT ):[
cos θ cosφ sin θ cosφ − sinφ
− cos θ sinφ − sin θ sinφ − cosφ

0 0 0

][
cos θ sinφ cos θ cosφ − sin θ
sin θ sinφ sin θ cosφ cos θ

cosφ − sinφ 0

]
=

[
0 1 0
−1 0 0
0 0 0

]

Therefore,

ω = dA ∧AT =

[
0 dφ sinφdθ
−dφ 0 cosφdθ

− sinφdθ − cosφdθ 0

]
.

As much fun as this is, we can do better. See the next section. (see Example 2.7.7 for another
angle on how to do this calculation).
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2.7 coframes and the Structure Equations of Cartan

As we compare a real vector space V and its dual V ∗ it is often interesting to pair a basis β =
{v1, . . . , vn} of V with a dual-basis {v1, . . . , vn} for V ∗. In particular, we required vi(vj) = δij for
all i, j. We now introduce the same construction for frames on R3, but, as this is done for arbitary
p ∈ R3 we have for a given frame of vector fields a coframe of differential one forms.

Definition 2.7.1. coframe on R3:

Suppose {E1, E2, E3} is a frame on R3 then we say a set of differential one-forms θ1, θ2, θ3

on R3 is a coframe if θi(Ej) = δij for all i, j.

Left to my own devices, I’d probably use θi = Ei, but, I’ll try to stick close to O’neill’s notation7.
To say θj is a differential one-form implies linearity θj(cV + W ) = cθj(V ) + θj(W ) thus, for
V =

∑
i f

iEi we have:

θj(V ) = θj(
∑
i

f iEi ) =
∑
i

f iθj(Ei) = f j = Ej •V. (2.3)

Example 2.7.2. The frame U1 = ∂x, U2 = ∂y, U3 = ∂z has coframe θ1 = dx, θ2 = dy, θ3 = dz as

dxi(∂j) = ∂jx
i = δij .

Notice dxj(V ) = dxj(V 1U1 + V 2U2 + V 3U3) = V j. Thus, dxj(V ) = V • Uj.

Proposition 2.7.3. components with respect to frame and coframe

If E1, E2, E3 is a frame with coframe θ1, θ2, θ3 if Y ∈ X(R3) and α ∈ Λ1(R3) then

Y =
3∑
j=1

θj(Y )Ej & α =
3∑
j=1

α(Ej)θ
j .

Proof: since Ej(p) and θj(p) form bases at each p ∈ R3 it follows there must exist functions aj

and bj for j = 1, 2, 3 such that

Y =
3∑
j=1

ajEj & α =
3∑
j=1

bjθ
j

then notice, θi(Y ) = θi

 3∑
j=1

ajEj

 =
3∑
j=1

ajθj(Ej) = ai and α(Ei) =
3∑
j=1

bjθ
j(Ei) = bi. �

The attitude matrix A was defined to be the coefficients Aij for which Ei =
∑

j AijUj . Naturally,
Aij = Ei •Uj by othonormality of the standard Cartesian frame. Now, by Equation 2.3 note:

Aij = Ei •Uj = dxj(Ei)

7not quite the same, I at least insist the index on the coframe be up since it is a dual basis. On that comment,
perhaps I should admit, some authors do replace ωij with ω j

i for the sake of matching index positions.
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Consider, again, by Equation 2.3 for the second equality,

θi =
∑
j

θi(Uj)dx
j =

∑
j

(Ei •Uj)dx
j =

∑
j

Aijdx
j .

Thus we have shown the attitude matrix also shows how coframes are related. Let us record this
result for future reference:

Proposition 2.7.4. attitude of coframe

If E1, E2, E3 is a frame with coframe θ1, θ2, θ3 and U1, U2, U3 is the Cartesian frame with

coframe dx1, dx2, dx3 on R3 then Ei =
∑
j

AijUj ⇔ θi =
∑
j

Aijdx
j .

It is useful to use matrix notation to think about a column of one-forms, we can restate the
proposition above as follows:

θ =

 θ1

θ2

θ3

 & dξ =

 dx1

dx2

dx3

 ⇒ θ = Adξ.

Just to be explicit,

Adξ =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 dx1

dx2

dx3

 =

 A11dx
2 +A12dx

2 +A13dx
3

A21dx
2 +A22dx

2 +A23dx
3

A31dx
2 +A32dx

2 +A33dx
3

 =

 θ1

θ2

θ3

 = θ.

With the above notation settled, we can easily derive Cartan’s Equations of Structure which directly
relate the coframe and connection form through exterior calculus and algebra alone:

Theorem 2.7.5. Cartan’s Structure Equations for R3

If Ei is a frame with coframe θi and ω is the connection form for the given frame then

(i.) dθi =
∑
j

ωij ∧ θj (ii.) dωij =
∑
k

ωik ∧ ωkj .

Proof: structure equation (i.) can be stated as dθ = ω ∧ θ in matrix notation. We derived
ω = dA ∧AT in Theorem 2.6.7. Also, recall A ∧AT = I. Thus consider:

θ = Adξ ⇒ dθ = dA ∧ dξ = dA ∧ATAdξ = ω ∧ θ.

To prove (ii.) begin by noting and structure equation (ii.) is simply dω = ω ∧ ω in the matrix of
forms notation. Propostion 2.6.5 gives us the product rule:

dω = d(dA ∧AT ) = d(dA) ∧AT − dA ∧ dAT = −dA ∧ dAT ?

where the negative sign stems from the fact dA is a matrix of one-forms and d(dA) = 0 for the
reasons we discussed in the previous chapter. Proposition 2.6.6 suggests dAT = −AT (dA)AT hence
replace dAT in ? to obtain:

dω = −dA ∧ dAT = dA ∧AT (dA)AT = (dA ∧AT ) ∧ (dA ∧AT ) = ω ∧ ω

where the next to last step is not entirely necessary, you could do well with less ∧’s. �

The structure equations suggest we can calculate the exterior derivatives of the coframe and con-
nection without differentiation.
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Example 2.7.6. Following Examples 2.2.9, 2.2.15 and 2.6.8 consider for the cylindrical frame:

A =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 & ω =

 0 dθ 0
−dθ 0 0

0 0 0


I can read from A that the coframe and frame are:

θ1 = cos θ dx+ sin θ dy
θ2 = − sin θ dx+ cos θ dy
θ3 = dz.

&
E1 = cos θ U1 + sin θ U2 = ∂r
E2 = − sin θ U1 + cos θ U2 = r∂θ
E3 = U3.

Note x = r cos θ and y = r sin θ imply dx = cos θ dr − r sin θdθ and dy = sin θ dr + r cos θdθ. Thus,

θ1 = cos θ [cos θ dr − r sin θdθ] + sin θ [sin θ dr + r cos θdθ] = dr.

This is good, θ1(E1) = dr(∂r) = 1. Likewise, we can derive θ2 = rdθ and θ3 = dz. Therefore,

ω ∧ θ =

 0 dθ 0
−dθ 0 0

0 0 0

 ∧
 dr
rdθ
dz

 =

 −rdθ ∧ dθ−dθ ∧ dr
0


Of course dθ ∧ dθ = 0 hence (ω ∧ θ)1 = (ω ∧ θ)3 = 0 and (ω ∧ θ)2 = dr ∧ dθ. Naturally,

dθ1 = dθ3 = 0 & dθ2 = d(rdθ) = dr ∧ dθ.

So, we have confirmed the first structure equation of Cartan.

Another use of the structure equations is to derive the connection form from the coframe in a subtle
manner. In the next example I begin with the coframe of the spherical coordinate system following
Examples 2.2.10, 2.2.16 and 2.6.9.

Example 2.7.7. The coframe to the spherical frame introduced in Example 2.2.10 is given by:

θ1 = dρ, θ2 = ρ dφ, θ3 = ρ sinφdθ

Take exterior derivatives:

dθ1 = 0,

dθ2 = dρ ∧ dφ,
dθ3 = sinφdρ ∧ dθ + ρ cosφdφ ∧ dθ.

Hence, the first structure equations yield:

(I.) dθ1 = ω12 ∧ θ2 + ω13 ∧ θ3 = ω12 ∧ (ρ dφ) + ω13 ∧ (ρ sinφdθ) = 0

(II.) dθ2 = −ω12 ∧ θ1 + ω23 ∧ θ3 = −ω12 ∧ dρ+ ω23 ∧ (ρ sinφdθ) = dρ ∧ dφ,
(III.) dθ3 = −ω13 ∧ θ1 − ω23 ∧ θ2 = −ω13 ∧ dρ− ω23 ∧ (ρ dφ) = sinφdρ ∧ dθ + ρ cosφdφ ∧ dθ.

We can see from these equations that:

ω12 = dφ, ω13 = sinφdθ, ω23 = cosφdθ ⇒ ω =

 0 dφ sinφdθ
−dφ 0 cosφdθ

− sinφdθ − cosφdθ 0


If you compare with Example 2.6.9 then you can see we agree.
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Chapter 3

euclidean geometry

The study of euclidean geometry is greatly simplified by the use of analytic geometry. In particular,
R3 provides a model in which the axioms of Euclid are easily realized for lines and points. The ex-
change of axioms for equations and linear algebra is not a fair trade. Certainly the modern student
has a great advantage over those ancients who had mere compass and straightedge constructive
geometry. Since the time of Descartes we have identified euclidean geometry with the study of
points in R2 or R3. We continue this tradition of analytic geometry in this chapter.

Given we take Rn as euclidean space, we begin by defining the distance between points in terms
of the norm and dot product in Rn. We study special functions called isometries which preserve
the distance between points. We show translations and rotations maintain the distance between
points. Reflections also are seen to be isometries. It happens that these examples are exhaustive.
We are able to prove that any isometry which fixes 0 must be an orthgonal transformation. Note,
orthogonal transformations are linear transformations which makes them espcially nice. Then, with
a bit more effort, we show that an abitrary isometry is simply a composite of a translation and
orthogonal transformation which is sometimes called a rigid motion.

With points settled, we move on to vectors. We see that the push forwards of isometries are or-
thogonal transformations on tangent vectors. We note the velocity α′ is naturally transformed
by the push forward for any smooth function, but, for an isometry we get derivatives α′′, α′′′, . . .
preserved under the push forward. For an arbitrary smooth function the higher derivatives would
not transform so simply, but, we don’t investigate that further here1. The generality of this section
is not really needed for following O’neill, but, I take a couple pages to share the theory of Frenet
curves as given in Kühnel. This natural extension to n-dimensions brings us to study curvatures
κ1, . . . , κn−2, κn−1 where the last curvature serves as the torsion. The Frenet Serret equations in
Rn are very similar and we sketch solutions for the constant curvature case.

In the last section we return to work on explicit results for frames and curves in the exclusively
three dimensional case. We show a pair of frames at distinct points can be connected by a unique
isometry. Moreover, the formula for this isometry is simply formulated in terms of the attitudes
of the frames involved. We also show the push forward preserves the dot and cross product. This
allows us to show the Frenet frame, curvature and torsion are nearly preserved by the push forward
of an isometry. The one caveat, the sign of the torsion can be reversed if the isometry is formed by
an isometry which has an orthogonal transformation which is not a pure rotation. We conclude by

1see page 116 of O’neill for an example

57
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defining congruence and we prove that two arclength parametrized curves are congruent if and
only if they share the same curvature and torsion functions.

3.1 isometries of euclidean space

We are primarily interested in three dimensional space, but, as it requires little extra effort and
it actually simplifies some proofs we adopt an n-dimensional view. We use the euclidean distance
function d(p, q) = ||q − p|| where ||v|| =

√
v • v in what follows:

Definition 3.1.1. isometry in Rn:

We say F : Rn → Rn is an isometry of Rn when d(F (p), F (q)) = d(p, q) for all p, q ∈ Rn.

In other words, an isometry of Rn is a function on Rn which preserves distances. The set of all
isometries naturally forms a group2 with respect to the composition of functions.

Proposition 3.1.2. composition of isometries is an isometry:

If F,G are isometries of Rn then F ◦G is an isometry is an isometry of Rn.

Proof: suppose F,G : Rn → Rn such that d(F (p), F (q)) = d(p, q) and d(G(p), G(q)) = d(p, q) for
all p, q ∈ Rn then notice G(p), G(q) ∈ Rn hence:

d((F ◦G)(p), (F ◦G)(q)) = d((F (G(p)), F (G(q))) = d(G(p), G(q)) = d(p, q).

for all p, q ∈ Rn. Thus F ◦G is an isometry of Rn �

There are three examples of isometries which should be familar to the reader:

Example 3.1.3. T is a translation if there exists a ∈ Rn for which T (x) = x+ a for all x ∈ Rn.

d(T (p), T (q)) = ||T (q)− T (p)|| = ||(q + a)− (p+ a)|| = ||q − p|| = d(p, q).

It is also interesting to note the group theoretic properties of the set of all translations on Rn.
Suppose we denote3 the set of all translations by T then if T, S ∈ T then T ◦S ∈ T and if
T (x) = x+a then T−1(x) = x−a and we see T−1 ∈ T . Finally, Id(x) = x+ 0 thus identify Id ∈ T
and we see T forms a group with respect to composition of functions. The action of translations
on Rn is transitive. In particular, if p, q ∈ Rn then there exists T ∈ T for which T (p) = q. To see
this is true just observe T (x) = x+ a with a = q − p has T (p) = q and clearly T ∈ T .

Example 3.1.4. R is a orthogonal transformation if R is a linear transformation for which
[R]T [R] = I where [R] denotes the standard matrix of R : Rn → Rn. A typical example in R3 is
given by the rotation about the z-axis:

[R] =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 .
which has det([R]) = 1 or the reflection S(x) = −x which has det([S]) = −1.

2the proof of closure under inverse and existence of identity are implicitly covered later in this section.
3I actually am unaware of any standard notation
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Generally, R is a rotation if it is an orthogonal transformation for which det[R] = 1. We define
O(n) = {M ∈ Rn×n | MTM = I}. Observe, M ∈ O(n) has

det(MTM) = det(I) ⇒ det(MT )det(M) = det(M)2 = 1 ⇒ det(M) = ±1.

The set of orthogonal matrices O(n) has both rotations (det(M) = 1) and reflections (det(M) =
−1). The set of all rotation matrices is called the special orthogonal group of matrices (denoted
SO(n)). Both SO(n) and O(n) form groups with respect to matrix multiplication. Just as in the
case of translations, we can prove the composition of orthogonal transformations is an orthogonal
transformations and each orthogonal transformations has an inverse transformation which is also
a orthogonal transformation. Indeed, [Id] = I and IT I = I hence the identity is an orthogonal
transformation. Orthogonal transformations form a group with respect to function composition.
However, orthogonal transformations do not act transitively on Rn. Indeed, if R is an orthogonal
transformation then ||R(p)|| = ||p|| hence R maps spheres to spheres. We can prove the group of
orthogonal transformations acts transitively on a sphere centered at the origin in Rn. In the next
section we’ll see that the push-forward of an orthogonal transformation sends a frame to a frame
and the push-forward of a rotation sends a positively oriented frame to a positively oriented frame4

To prove orthogonal transformations are isometries, consider:

d(R(p), R(q))2 = ||R(q)−R(p)||2 definition of d

= ||R(q − p)||2 linearity of R

= ||[R](q − p)||2 definition of [R]

= ([R](q − p))T [R](q − p) identity ||v||2 = vT v.

= (q − p)T [R]T [R](q − p) socks-shoes (AB)T = BTAT

= (q − p)T (q − p) defn. of orthogonal trans.

= ||q − p||2 identity ||v||2 = vT v.

= d(p, q)2 definition of distance.

But, as distance is non-negative, it follows d(R(p), R(q)) = d(p, q) for all p, q ∈ Rn hence every
orthogonal transformation is an isometry.

We know that there are isometries which are not orthogonal transformations since translations are
not generally orthogonal transformations. In fact, translations are not generally linear transfor-
mations. Consider T : Rn → Rn with T (x) = x+ a. Observe,

T (0) = 0 + a = a

only for a = 0 do we obtain T (0) = 0 which is essential for a linear transformation. Indeed, a = 0
is the one special case that a translation is an orthogonal transformation. It turns out, an isometry
F for which F (0) = 0 is an orthogonal transformation. In summary:

Theorem 3.1.5. an isometry fixing 0 is an orthogonal transformation.

Let F : Rn → Rn with F (0) = 0 then F is an isometry iff F is an orthogonal transformation.

4a frame is positively oriented if it has an attitude matrix which is SO(n)-valued
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Proof: the converse direction of the theorem was already shown in Example 3.1.4 as, by definition,
orthogonal transformation F is linear hence F (0) = 0.

Let us suppose F is an isometry for which F (0) = 0. Notice d(F (p), F (0)) = d(p, 0) implies
d(F (p), 0) = d(p, 0) which gives ||F (p)|| = ||p|| for all p ∈ Rn. Since ||F (p)|| = ||p|| it follows p 6= 0
implies F (p) 6= 0. Therefore, F is not identically zero. Furthermore, we can show the image of F
includes an orthogonal set of n nontrivial vectors. Consider the standard basis of Rn, (ei)

j = δij .
Observe F (ei) •F (ej) = ei • ej = δij . Thus {F (e1), F (e2), . . . , F (en)} is an orthogonal basis for Rn.

Let p, q ∈ Rn and note:

d(F (p), F (q))2 = ||F (q)− F (p)||2

= (F (q)− F (p)) • (F (q)− F (p))

= F (q) •F (q)− 2F (p) •F (q) + F (p) •F (p)

= ||F (q)||2 − 2F (p) •F (q) + ||F (p)||2 ?

likewise,
d(p, q)2 = ||q − p||2 = ||q||2 − 2p • q + ||p||2 ?2 .

Therefore, as d(F (p), F (q)) = d(p, q), we compare ? and ?2 and use ||F (p)|| = ||p|| and ||F (q)|| =
||q|| to derive F (p) •F (q) = p • q for all p, q ∈ Rn. We seek to show F is a linear transformation:
suppose x, y, z ∈ Rn and c ∈ R,

F (cx+ y) •F (z) = (cx+ y) • z = cx • z + y • z = cF (x) •F (z) + F (y) •F (z)

thus
F (cx+ y) •F (z)− cF (x) •F (z)− F (y) •F (z) = 0.

By algebra of the dot product,[
F (cx+ y)− cF (x)− F (y)

]
•F (z) = 0.

But, if we take z = ei for i = 1, 2, . . . , n then the equation above shows the vector F (cx + y) −
cF (x)− F (y) is zero in the F (ei)-direction for i = 1, 2, . . . , n hence F (cx+ y)− cF (x)− F (y) = 0.
Therefore, F (cx+ y) = cF (x) + F (y) for all x, y ∈ Rn and c ∈ R. Finally, as F is linear, the linear
algebra gives a matrix R for which F (x) = Rx for all x ∈ Rn and it follows

yT Iz = y • z = F (y) •F (z) = (Ry) • (Rz) = yTRTRz

hence RTR = I and we conclude F is an orthogonal transformation. �

If we drop the requirement that F (0) = 0 for an isometry then the possibilities are still quite
limited. It turns out that every isometry of Rn is simply a composition of a translation and an
orthogonal transformation.

Theorem 3.1.6. an isometries are generated by translations and orthgonal transformations

Every isometry F : Rn → Rn can be written uniquely as F = T ◦R where T is a translation
and R is an orthogonal transformation. That is, there exists M ∈ O(n) and a ∈ Rn such
that F (x) = Mx+ a for each x ∈ Rn.
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Proof: first, we should note that if F = T ◦R for R an orthogonal transformation and T (x) = x+a
then, as we have already shown translations and rotations are isometries, Proposition 3.1.2 shows
F is an isometry.

Conversely, suppose F : Rn → Rn is an isometry. Let G(x) = F (x) − F (0). Notice G is an
isometry since it is the composition of F and the translation by −F (0). Furthermore, note
G(0) = F (0) − F (0) = 0 thus G is an orthogonal transformation by Theorem 3.1.5. Hence
F (x) = G(x) + F (0) and we identify F = T ◦G where G is an orthogonal transformation and
T (x) = x + F (0). It follows, F (x) = Mx + a for M = [G] ∈ O(n) and a = F (0). To prove
uniqueness, suppose F (x) = Nx+ b for some N ∈ O(n) and b ∈ Rn. Consider, Mx+ a = Nx+ b
for all x ∈ Rn. Set x = 0 to see a = b. Likewise, setting x = ej we obtain the Mej = Nej hence
colj(M) = colj(N) for j = 1, . . . , n hence M = N . �

Finally, I ought to mention, the set of all isometries for Rn forms a group. This is known as the
group of rigid motions as it includes only those transformations which maintain the shape of rigid
objects5. These euclidean motions take squares to squares, triangles to triangles, and so forth.
The preservation of the dot-product between vectors means the angle between vectors is maintain
in the image of a rigid motion. Moreover, the lengths of vectors are also maintained. A rigid motion
just reflects and or rotates then translates a given shape. We consider how the push-forward of an
isometry treats vectors in the next section.

3.2 how isometries act on vectors

Let us begin by examining how the velocity of a curve is naturally transformed under the push
foward of an arbitrary smooth map on Rn. If α : I → Rn is a smooth parametrized curve then we

defined the velocity by α′(t) =
n∑
i=1

dαi

dt

∂

∂xi

∣∣∣∣
α(t)

. Generally, if F : Rn → Rn is a smooth mapping

then F ◦α defines a curve in the image of F and we have the chain rule:

(F ◦α)′(t) =

n∑
i=1

d(F ◦α)i

dt

∂

∂xi

∣∣∣∣
F (α(t))

=

n∑
i,j=1

∂F j

∂xi
dαi

dt

∂

∂xi

∣∣∣∣
α(t)

= dα(t)F (α′(t))

where we identified push forward of α′(t) by dα(t)F in the last equality. In summary:

Theorem 3.2.1. the push foward of the velocity is the velocity of the image curve.

If F : Rn → Rn is a smooth map and α : I → Rn is a parametrized smooth curve then

F∗(α
′(t)) = (F ◦α)′(t)

We should allow a bit of notation here as to avoid too much writing. The tangent space TpRn
has the natural basis ∂i|p for i = 1, 2, . . . , n. Likewise TF (p)Rn has the natural basis ∂i|F (p) for
i = 1, 2, . . . , n. The vector X with components Xi is transformed to the vector F∗(X) with

components
∑

j
∂F j

∂xi
Xj . Identify this is just the usual matrix-colum product and consequently,

with the identifications just set out understood, the Theorem above is written:

F∗(X) = JFX. (3.1)

5there is a matrix version of this group of euclidean motions which I will probably show in homework
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Where (JF )ij = ∂F j

∂xi
in the usual linear algebra index notation.

If F is an isometry of Rn then F (x) = Rx+ a for all x ∈ Rn for some R ∈ O(n) and a ∈ Rn. Note,

F i(x) =
n∑
j=1

Rijx
j + ai ⇒ ∂F i

∂xk
=

n∑
j=1

∂

∂xk
[
Rijx

j
]

+
∂

∂xk
[
ai
]

=
n∑
j=1

Rij
∂xj

∂xk
= Rij .

The calculation above shows the Jacobian matrix of an isometry is simply the orthogonal matrix
for the orthogonal transformation of the isometry. Thus, in view of Equation 3.1 we find:

F∗(v) = Rv (3.2)

where to be more carefull, F∗(p, v) = (F (p), Rv). Let me cease this ritual of notation and say some-
thing interesting: Theorem 3.2.1 applied to an isometry gives us the result that the push forward
of a k-jet6 is the k-jet of the image curve under the isometry.

Recall we defined α′′ for a parametrized curve in R3. We define the k-th derivative of α in Rn in
the same fashion:

α(k)(t) =

n∑
i=1

dkαi

dtk
∂

∂xi

∣∣∣∣
α(t)

=

(
α(t),

〈
dkα1

dtk
, . . . ,

dkαn

dtk

〉)
.

Thus, α′′ = (α′)′ and generally α(k) = (α(k−1))′ for k ∈ N where we use Defn. 2.3.3 to differentiate
the velocity vector fields of velocity, acceleration and so forth along α.

Theorem 3.2.2. natural transfer of k-jet by isometry of Rn.

Suppose an isometry F : Rn → Rn is written as F (x) = Rx+ a for a ∈ Rn and R ∈ O(n).
Also, suppose α : I → Rn is a smooth parametrized curve. Then: for k ∈ N,

F∗(α
′) = (F ◦α)′, F∗(α

′′) = (F ◦α)′′, . . . , F∗(α
(k)) = (F ◦α)(k).

Moreover, the magnitude of α(i) angle between α(i) and α(j) is preserved under F∗.

||F∗(α(i)(t))|| = ||α(i)(t)|| & F∗(α
(i)(t)) •F∗(α

(j)(t)) = α(i)(t) •α(j)(t)

for each t ∈ I and i, j = 1, 2, . . . , n.

Proof: in Definition 2.3.6 Use Equation 3.2 and set v = α(k)(t)

F∗(α
(k)(t)) = Rα(k)(t)

for k ∈ N. On the other hand the image curve F ◦α has:

(F ◦α)(t) = Rα(t) + a ⇒ (F ◦α)(k)(t) = Rα(k)(t) = F∗(α
(k)(t)).

Omitting the t-dependence,

F∗(α
(k)) = Rα(k)

6see page 12 of Kühnel for a related concept of the k-th order contact of two curves. The k-jet of a curve can be
identified with an equivalence class of curves whose initial k derivatives align at the given point
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Hence angles between derivatives and their magnitudes of α are preserved under the push-forward
of an isometry since orthogonal matrices preserve the dot product and hence the norm and angles. �

Specialize to n = 3 for a moment. Given a nonlinear regular curve α we defined T,N,B along α.
Moreover, T,N,B are all derived from dot and cross products of α′ and α′′ hence the curvature
and torsion of α and F ◦α will match perfectly provided we preserve the cross-product7. It turns
out that forces us to require the isometry has det(R) = 1.

We should also pause to consider the significance of Theorem 3.2.2 to Newtonian Mechanics. The
central equation of mechanics is Fnet = ma. Of course, this equation is made with respect to
a particular coordinate system. If we change to another coordinate system which is related to
the first by an isometry then the acceleration naturally transforms. Of course, the story is a bit
more complicated since the coordinate systems in physics also can move. We could think about the
T,N,B frame moving with the curve. Indeed, many of the annoyning gifs on my webpage are based
on this idea. But, the isometries we’ve studied in this chapter have no time dependence. That said,
allowing the coordinate systems to move just introduces an additional constant velocity motion
in addition to the isometries we primarily study here. If you’d like to read a somewhat formal
treatment of Newtonian Mechanics then you might enjoy Chapter 6 of my notes from Math 430
which I taught as a graduate student at NCSU. I describe something called a Euclidean Structure
which gives a natural mathematical setting to describe the concept of an observer and a moving
frame of reference. Then in Chapter 7 of those notes I describe a Minkowski Structure which does
the same for Special Relativity8. I don’t think I’ll cover it, but I should mention Kühnel treats
curves in Minkowski space and the low-dimensional geometry of curves and surfaces in manifolds
with Lorentzian geometry is still quite active.

3.2.1 Frenet curves in Rn

Let me pause from our general development to introduce the theory of Frenet curves from Chapter
2 of Wolfgang Kühnel’s Differential Geometry : Curves-Surfaces-Manifolds. Here we find a gener-
alization of the T,N,B construction for n-dimensional space and the results we have proved thus
far for push fowards of isometries will go to prove that a Frenet curve and its isometric image have
all same curvatures and the same torsion if the isometry is comprised of a rotation and translation.

Definition 3.2.3. frame in Rn:

If E1, . . . , En ∈ X(Rn) are orthonormal vector fields then we say {E1, . . . , En} is a frame
of Rn. If Ei =

∑
j AijEj then A is the attitude matrix of the frame. Frames for which

det(A) = 1 are called positively oriented frames and frames with det(A) = −1 are said
to be negatively oriented.

In Rn we use determinant to play the role the cross-product played in R3. If we have n − 1
orthonormal vectors E1, . . . , En−1 then the vector En =

∑
j(En)jUj will be defined by

(En)j = det [E1| . . . |En−1|Uj ] . (3.3)

In the construction of the Frenet frame described below the first (n − 1) vectors in the frame are
generated by the Gram-Schmidt algorithm applied the linearly independent derivatives and higher

7I think this is quite plausible, but we will prove it later, see Theorem 3.3.4
8I should be clear, these notes closely parallel a presentation of Math 430 I enjoyed as an undergraduate from

R.O. Fulp and certainly the main mathematical ideas are his and the mistakes are most likely mine.

http://www.supermath.info/ma430.pdf
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derivatives of the curve to (n − 1)-th order. The remaining vector can be generated from the
generalized cross product I described in Equation 3.3.

Definition 3.2.4. Frenet curve in Rn:

Suppose α : I ⊆ R→ Rn is a regular arclength parametrized curve. We say α is a Frenet
curve if α′, α′′, . . . , α(n−1) are linearly independent. Furthermore, a set of n-vector fields
E1, E2, . . . , En is a Frenet frame of α if the following three conditions are met:

(i.) E1, E2, . . . , En are orthonormal and positively oriented,

(ii.) for each k = 1, 2, . . . , n− 1 we have span{E1, . . . , Ek} = span{α′, . . . , α(k)}

(iii.) α(k) •Ek > 0 for k = 1, . . . , n− 1.

The condition of linear independence in n = 3 simply amounts to the assumption α′′ 6= 0. In other
words, a regular non-linear arclength-parametrized curve is a Frenet curve and you can verify that
T,N,B frame is a Frenet frame. The Frenet Serret equations also have a generalization to Frenet
curves in Rn. In particular:

Theorem 3.2.5. Frenet Serret equations in Rn.

Let α be a Frenet curve and E1, E2, . . . , En a Frenet frame then there exist non-negative
curvature functions κi = E′i •Ei+1 for i = 1, 2, . . . , n− 2 and torsion κn−1 = E′n−1

•En
for which the following differential equations hold true:


E′1
E′2
...
E′n−1

E′n

 =



0 κ1 0 · · · 0 0

−κ1 0 κ2
. . .

. . .
...

... −κ2 0
. . .

. . .
...

...
. . .

. . .
. . . 0 κn−1

0 0 · · · · · · −κn−1 0




E1

E2
...
En−1

En



Proof: is found on page 27 of Kühnel. It is similar to the proof we gave for the n = 3 case. �

Notice, by Theorem 3.2.2, if we are given an isometry F then we may push a Frenet frame E1, . . . , En
to α at α(so) to another Frenet frame F∗(E1), . . . , F∗(En) at F (α(so)) for the curve F ◦α. Notice

det(F∗(E1)| · · · |F∗(En)) = det(RE1| · · · |REn) = det(R[E1| · · · |En]) = det(R)det(E1| · · · |En)
(3.4)

thus we need det(R) = 1 to give the F∗(Ei) frame a positive orientation. It turns out that
det(R) = −1 causes the torsion to reverse sign. However, the lower curvatures are preserved
under the push forward of an arbitrary isometry of Rn since they are defined just in terms of
dot-products of the pushed-forward frame which all agree with the initial frame9. The torsion is
special in that it involves the determinant.

One interesting case is that κn−1 = 0 for the curve. If the curve satisfies this vanishing torsion
requirement then En serves as normal vector to the hyperplane in which the curve is found. This is
a natural generalization of the τ = 0 implies planar motion in n = 3. Another interesting example
is seen in the lower dimensional case:

9See Lemma 2.14 of page 28 of Kühnel for a detailed argument.
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Example 3.2.6. Suppose we have a Frenet curve in R2. It suffices to have a regular curve; that is
α : I → R2 with α′(s) 6= 0 for all s ∈ I. If E1, E2 is defined by:

E1(s) = α′(s) = a(s)U1 + b(s)U2 & E2(s) = −b(s)U1 + a(s)U2

where the unit-speed assumption means the functions a, b must satisfy a2 + b2 = 1. We define
curvature κ = ||E′1|| which gives:

κ =
√

(a′)2 + (b′)2

For example, α(s) = (R cos(s/R), R sin(s/R)) gives α′(s) = − sin(s/R)U1 + cos(s/R)U2 = E1 thus

E′1 = − cos(s/R)
R U1 − sin(s/R)

R U2 ⇒ κ = 1
R .

The reverse question is also very interesting. In particular, given a set of curvature functions and a
torsion function when can we find a Frenet curve which takes the given functions as its curvature
and torsion?

Theorem 3.2.7. on solving Frenet Serret equations in Rn.

Suppose we are given (n − 1) smooth functions κi : (a, b) → R for which κi(s) ≥ 0 for
s ∈ (a, b) and i = 1, 2, . . . , n− 2. Also, suppose a point qo and a frame v1, . . . vn ∈ TqoRn is
given. Let so ∈ (a, b). There exists a unique Frenet curve α for which α(s0) = qo and the
curve has Frenet frame E1, . . . , En for which Ei(so) = vi for i = 1, . . . , n and κi = E′i •Ei+1

for i = 1, . . . , n− 1.

Proof: a slightly improved version of the above theorem as well as the proof is found on page 28
of of Kühnel. Ultimately this theorem, like so many others, rests on the existence and uniqueness
theorem for solutions of systems of ordinary differential equations. �

We found in Example 3.2.6 that a circle has constant curvature which is reciprocal to its radius.
The example which follows investigates the reverse question:

Example 3.2.8. Find the arclength parametrized curve in R2 for which κ(s) = 1/R for all s. We
seek to solve:

E′1 = κE2, E′2 = −κE1

Differentiate the first equation and subsitute the second equation to obtain:

E′′1 = −κ2E1

This gives10 E1 = cos(κs)C1 +sin(κs)C2 for constant vectors C1, C2. Next, by E2 = 1
κE
′
1 we derive:

E2 = − sin(κs)C1 + cos(κs)C2

Finally, the curve itself is found from integrating α′(s) = E1(s):

α(s) = αo +
1

κ
sin(κs)C1 −

1

κ
cos(κs)C2.

Of course, the constant vectors C1, C2 must be specified such that ||E1|| = 1 and ||E2|| = 1. Observe,

||α(s)− αo|| =
1

κ
|| sin(κs)C1 − cos(κs)C2|| =

1

κ
|| − E2|| = R.

Just as we hoped, this is a circle of radius R = 1/κ centered at αo.

10in terms of the usual ODEs course, think of E1 = yU1 + zU2 thus E′′1 + κ2E1 = 0 yields y′′ + κ2y = 0 and
z′′ + κ2z = 0. Then the usual techniques yield y = C11 cosκs + C12 sinκs and z = C21 cosκs + C22 sinκs hence
combining those we obtain my claimed vector solution with C1 = (C11, C12) and C2 = (C21, C22)
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If you’ve studied constant coefficient ordinary differential equations then it should be clear we can
solve the constant curvature case in arbitrary dimension. In n = 2 we obtain a circle. In n = 3 we
could derive a helix generally. In n = 4 let’s see what happens:

Example 3.2.9. Suppose κ1, κ2, τ are constants. Solve the Frenet Serret equations11 for the frame
E1, E2, E3, E4 which gives constant curvatures κ1, κ2, τ :

E′1
E′2
E′3
E′4

 =


0 κ1 0 0
−κ1 0 κ2 0

0 −κ2 0 τ
0 0 −τ 0



E1

E2

E3

E4


Direct calculation as in the n = 2 example is fairly challenging here. Instead, look at the system
above as E′ = ME and use the matrix exponential exp(sM) to solve the system. We need only find
eigenvalues and eigenvectors to extract solutions from the matrix exponential. Consider,

det(xI −M) = det


x −κ1 0 0
κ1 x −κ2 0
0 κ2 x −τ
0 0 τ x

 = xdet

 x −κ2 0
κ2 x −τ
0 τ x

+ κ1det

 κ1 −κ2 0
0 x −τ
0 τ x

 .
Then,

det

 x −κ2 0
κ2 x −τ
0 τ x

 = x[x2 + τ2 + κ2
2] & det

 κ1 −κ2 0
0 x −τ
0 τ x

 = κ1(x2 + τ2).

Thus,

det(xI −M) = x2[x2 + τ2 + κ2
2] + κ2

1(x2 + τ2) = x4 + (τ2 + κ2
2 + κ2

1)x2 + κ2
1τ

2.

The reader will trust that the formulas for the solutions of the above equation is cumbersome. Let
us agree the solution comes in a pair of complex zeros, x = ±iγ and x = ±iβ. Notice trace(M) = 0
is consistent with this claim and we also expect γ2β2 = κ1τ

2 = det(M). Details aside, the solution
has the form: for constant vectors C1, C2, C3, C4,

E1 = cos(γs)C1 + sin(γs)C2 + cos(βs)C3 + sin(βs)C4

from which we can derive α(s) by integration and E2, E3, E4 by the Frenet Serret equations. See
page 32 of Kühnel for more on how the curvatures are explicitly related to the coefficients of the
solution. Apparently, these can give curves which wind around some torus in four dimensional
space.

I should mention, the remainder of Chapter 2 in Kühnel discusses other topics I will not probably
touch in these notes. Particularly interesting is the treatment of curves in three dimensional
Minkowski space. Some of the material on total curvature we will return to much later as we
study the Gauss Bonnet Theorem.

11This is an interesting differential equation. Technically, it has 16 ODEs, but, they are arranged such that we can
solve it as if the frame fields were just ordinary real-valued variables.
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3.3 on frames and congruence in three dimensions

Much of what is done in this section for Rn, but, I resist the temptation and simply work in R3.

We saw after Example 3.1.3 that translations act transitively on R3. Something similar is true for
isometries and frames in R3; suppose we have a pair of frames E1, E2, E3 and F1, F2, F3 at p. We
can find an orthogonal transformation Φ which transfers E to F . We seek Φ for which

Φ∗(E1) = F1, Φ∗(E2) = F2, Φ∗(E3) = F3.

If the matrix of Φ∗ is R then

R[E1] = [F1], R[E2] = [F2], R[E3] = [F3]

where Ei = Ai1U1 + Ai2U2 + Ai3U3 for i = 1, 2, 3 implies [Ei] = [Ai1, Ai2, Ai3]T . Likewise, Fi =
Bi1U1 +Bi2U2 +Bi3U3. Concatenate the three equations above into a single equation to obtain:

RAT = BT ⇒ R = BTA.

Since the attitude matrices A,B exist for a given pair of frames at p it follows that Φ(x) = BTAx
defines the desired isometry which pushes the E-frame to the F -frame. With this calculation in
hand, the theorem below is easy to prove:

Theorem 3.3.1. transfer of frame by isometry.

Let E1, E2, E3 ∈ TpR3 be a frame at p with attitude A and F1, F2, F3 ∈ TqR3 be a frame at
q with attitude B then there exists an isometry Φ : R3 → R3 for which Φ(p) = q and

Φ∗(E1) = F1, Φ∗(E2) = F2, Φ∗(E3) = F3.

Proof: let R = BTA and define Φ(x) = Rx+q−Rp for all x ∈ R3. Observe Φ(p) = Rp+q−Rp = q
as desired. Furthermore, as ATA = I we find R = BTA implies RAT = BT . But, this shows the
matrix R maps each row of A to the corresponding row of B. Hence the push-forward with matrix
R maps vectors with coordinates formed by rows of A to new vectors with coordinates formed by
rows of B. But, Ei has coordinates in [rowi(A)]T and Fi has coordinates in [rowi(B)]T thus

Φ∗(Ei) = Fi

where Ei is at p and Fi is at Φ(p) = q. �
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Let me unpack the proof above in gory detail:

Φ∗(Ei) = Φ∗
( ∑

j

AijUj(p)
)

defn. of attitude A

=
∑
j

AijΦ∗
(
Uj
)

property of push forward

=
∑
j

Aij
∑
k,l

∂Φk

∂xl
(Uj)

lUk(Φ(p)) defn. of push forward

=
∑
j,k

Aij
∂Φk

∂xj
Uk(q) (Uj)

l = Uj [x
l] = δjl

=
∑
j,k

AijR
k
jUk(q) took ∂j of Φ(x) = Rx+ q −Rp

=
∑
j,k

Rkj(A
T )jiUk(q) defn. of transpose

=
∑
k

(RAT )kiUk(q) defn. of transpose

=
∑
k

(RAT )TikUk(q) defn. of transpose

=
∑
k

BikUk(q) as (RAT )T = (BT )T = B.

= Fi defn. of the attitude B

The nice thing about the theorem is we can calculate the isometry simply by taking the appropriate
product of attitude matrices.

Example 3.3.2. Consider the frame and attitude matrix at p = (1, 1, 1) given below:

E1 = 1√
2
U1 + 1√

2
U2

E2 = 1√
2
U1 − 1√

2
U2

E3 = U3

⇒ A =


1√
2

1√
2

0
1√
2
−1√

2
0

0 0 1


Likewise at q = (−1,−2,−3) another frame and corresponding attitude are given:

E1 = 1√
3

(U1 + U2 + U3) ,

E2 = 1√
2

(U1 − U3) ,

E3 = 1√
6

(U1 − 2U2 + U3)

⇒ B =


1√
3

1√
3

1√
3

1√
2

0 −1√
2

1√
6
−2√

6
1√
6


Calculate R = BTA,

R =


1√
3

1√
2

1√
6

1√
3

0 −2√
6

1√
3
−1√

2
1√
6




1√
2

1√
2

0
1√
2
−1√

2
0

0 0 1

 =


1√
6

+ 1
2

1√
6
− 1

2
1√
6

1√
6

1√
6

−2√
6

1√
6
− 1

2
1√
6

+ 1
2

1√
6


Consequently,

Rp =


1√
6

+ 1
2

1√
6
− 1

2
1√
6

1√
6

1√
6

−2√
6

1√
6
− 1

2
1√
6

+ 1
2

1√
6


 1

1
1

 =


3√
6

0
3√
6
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Thus, using Φ(x) = Rx+ q −Rp we have:

Φ(x, y, z) =


1√
6

+ 1
2

1√
6
− 1

2
1√
6

1√
6

1√
6

−2√
6

1√
6
− 1

2
1√
6

+ 1
2

1√
6


 x
y
z

−
 1 + 3√

6

2
3 + 3√

6

 .
I invite the reader to verify that Φ∗ pushes the E-frame to the F -frame as claimed. It is easy to
check that the product of the transpose of i-th row of A with R yields the transpose of the i-th row
of B hence Φ∗(Ei) = Fi for i = 1, 2, 3.

Let us return to the discussion we initiated with Equation 3.4.

Theorem 3.3.3. isometries and push forward of vector products in R3

Suppose F : R3 → R3 is an isometry and V,W ∈ X(R3) then

F∗(V ) •F∗(W ) = V •W & F∗(V )× F∗(W ) = det(F∗)F∗(V ×W ).

Proof: following12 Equation 3.2 suppose the orthogonal matrix for F is R,

F∗(V ) •F∗(W ) = (RV ) • (RW )

= (RV )T (RW )

= V TRTRW = V TW = V •W.

Likewise,
F∗(V )× F∗(W ) = (RV )× (RW )

Notice, RTR = I and F∗(U1), F∗(U2), F∗(U3) forms a frame thus as F∗(Uj) = RUj ,

(F∗(V )× F∗(W )) •Uj = ((RV )× (RW )) •Uj = det
[
RV |RW |Uj

]
Note RTR = I allows

[
RV |RW |RRTUj

]
= R

[
V |W |RTUj

]
hence

det
[
RV |RW |Uj

]
= det(R)det

[
V |W |RTUj

]
and as det(F∗) = det(R) we find

(F∗(V )× F∗(W )) •Uj = det(F∗)det
[
V |W |RTUj

]
= det(F∗)(V ×W ) •RTUj

Thus, as (V ×W ) •RTUj = R(V ×W ) •Uj = F∗(V ×W ) •Uj for each j = 1, 2, 3 we derive:

F∗(V )× F∗(W ) = det(F∗)F∗(V ×W ). �

The proof given above equally well applies to vector fields along some curve. You may recall from
Theorem 3.2.2 we already know dot product is preserved between vector fields α′, α′′, . . . along α
when pushed forward to the curve F ◦α where F is an isometry. Also, notice det(F∗) = R forces
det(F∗) = ±1 since RTR = I implies det(R) = ±1. It follows that only the isometries built from
rotations (det(R) = 1) preserve the full Frenet apparatus for a non-linear regular curve.

12the matrix products below are products of the coordinate vectors with respect to U1, U2, U3



70 CHAPTER 3. EUCLIDEAN GEOMETRY

Theorem 3.3.4. Frenet apparatus of curve’s isometric image

Let α be a nonlinear arclength parametrized regular curve with Frenet frame T,N,B and
curvature κ and torsion τ . Suppose F : R3 → R3 is an isometry and define ᾱ = F ◦α.
If T ,N,B and κ̄ and τ̄ form the Frenet apparatus for ᾱ then

T = F∗(T ), N = F∗(N), B = det(F∗)F∗(B), κ̄ = κ, τ̄ = det(F∗)τ.

Proof: the unit tangents for α and ᾱ are defined as T (s) = α′(s) and T (s) = ᾱ′(s) = (F ◦α)′(s).
In Theorem 3.2.2 we learned F∗(α

′) = (F ◦α)′ thus T (s) = F∗(T ).

The Frenet normal for α and ᾱ are defined by N(s) = 1
κα
′′ and N(s) = 1

κ̄ ᾱ
′′ where κ = ||α′′||

and κ̄ = ||ᾱ′′||. However, as ᾱ′′ = (F ◦α)′′ and Theorem 3.2.2 provides F∗(α
′′) = (F ◦α)′′ and

||F∗(α′′)|| = ||α′′|| thus ||α′′|| = ||(F ◦α)′′|| = ||ᾱ′′|| we derive κ = κ̄ and:

F∗(N) = F∗

(
1

||α′′||
α′′
)

=
1

||α′′||
F∗(α

′′) =
1

||(F ◦α)′′||
(F ◦α)′′ = N.

The binormal of α and ᾱ are defined as B = T ×N and B = T ×N . Therefore, by Theorem 3.3.3,

F∗(B) = F∗(T ×N) = det(F∗)F∗(T )× F∗(N) = det(F∗)T ×N = det(F∗)B.

The torsions of α and ᾱ are defined by τ = −B′ •N and τ̄ = −B′ •N . Apply Theorem 3.3.3,

B′ •N = F∗(B
′) •F∗(N)

I invite the reader to prove the small lemma F∗(B
′) = det(F∗)B

′
from which we find:

B′ •N = F∗(B
′) •F∗(N) = det(F∗)B

′
•N

Therefore, τ = det(F∗)τ̄ . �

The theorem above shows we can maintain the curvature and torsion of a curve when we transform
the curve by rotation and translation.

Example 3.3.5. Suppose α(s) = (R cos(s/
√
R2 +m2), R sin(s/

√
R2 +m2),ms/

√
R2 +m2). Let

θ = s/
√
R2 +m2. Consider F (x, y, z) = (y, x, z). This is a simple isometry which has det(F∗) =

−1. Consider
ᾱ(s) = (F ◦α)(s) = (R sin(θ), R cos(θ),mθ)

then we calculate,

T =
1√

R2 +m2
[R cos θ U1 −R sin θ U2 +mU3] & N = − sin θ U1 − cos θ U2

Thus, B = T ×N yields

B =
1√

R2 +m2
[m cos θ U1 −m sin θ U2 −RU3]

Differentiate, note θ′ = 1/
√
R2 +m2 hence by chain rule:

B
′
=

1

R2 +m2
[−m sin θ U1 −m cos θ U2] ⇒ τ̄ = −B′ •N =

−m
m2 +R2

.
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Notice that the torsion of ᾱ is the negative of that which we found in Example 2.4.4. The helix
ᾱ follows a left-hand-rule whereas the original helix α winds in a right-handed fashion. Swapping
sine and cosine amounts to changing from a clockwise to a counter-clockwise winding as viewed
from the positive z-axis. If you consider the T ×N verses T ×N geometrically it is easy to see B
points up whereas B points down relative to the positive z-axis. But, both α and ᾱ have a positive
z-velocity hence the curve bends up off the osculating plane in the α case but, it bends down off the
osculating plane in the ᾱ case.

Following O’neill, we define two curves to be congruent if they have the same speed and shape.
This is concisely given by:

Definition 3.3.6. congruence of parametrized curves

We say two parametrized curves α : I → R3 and β : I → R3 are congruent if there exists
an isometry F for which β = F ◦α.

Since isometries generally have rather complicated formulas this allows us to twist given standard
examples into nearly unrecognizable forms:

Example 3.3.7. Consider the parametrized curve:

β(t) =
(
c1R cos t+ c2R sin t+ c3mt− 1 + 3/

√
6,

c3R cos t+ c3R sin t− 2c3mt− 2,

c2R cos t+ c1R sin t+ c3mt− 3− 3/
√

6
)

where c1 = 1/
√

6 + 1/2, c2 = 1/
√

6− 1/2 and c3 = 1/
√

6. In fact, this is just the helix with radius
R and slope m. To see this simply x = R cos t, y = R sin t and z = mt into the isometry

F (x, y, z) =


1√
6

+ 1
2

1√
6
− 1

2
1√
6

1√
6

1√
6

−2√
6

1√
6
− 1

2
1√
6

+ 1
2

1√
6


 x
y
z

−
 1 + 3√

6

2
3 + 3√

6

 .
as to obtain β(t) by calculating F (α(t)).

You can see identifying standard curves simply by their formulas is generally a formidable task.

Definition 3.3.8. parallel curves

We say two parametrized curves α : I → R3 and β : I → R3 are parallel if there exists
p ∈ R3 for which β(t) = α(t) + p for all t ∈ I.

Part (i.) of Theorem 2.3.8 told us γ′(t) = 0 for all t ∈ I iff γ(t) = p for all t ∈ I. If we study
γ(t) = β(t)− α(t) then the proposition below follows naturally from Theorem 2.3.8.

Proposition 3.3.9.

Parametrized curves α, β : I → R3 are parallel if and only if α′(t) = β′(t) for all t ∈ I.
Moreover, if α and β are parallel and there exists to for which α(to) = β(to) then α = β.

Proof: suppose α, β : I → R3 are parallel hence β(t) = α(t) + p for all t ∈ I. Differentiate to

see β′(t) = α′(t) for all t ∈ I. Conversely, suppose β′(t) = α′(t) for all t ∈ I. Thus dαi

dt = dβi

dt for
i = 1, 2, 3. Integrate with respect to t to obtain αi(t) = βi(t) + pi for i = 1, 2, 3 where pi ∈ R is
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a constant. Thus, α(t) = β(t) + p for each t ∈ I. Finally, suppose α, β : I → R3 are parallel with
α(to) = β(to). But, β(t) = α(t) + p also implies β(to) = α(to) + p hence α(to) = α(to) + p thus
p = 0 and we conclude β = α. �

This definition of parallel covers more than just lines. The usual theorems for parallel lines in
euclidean space clearly do not apply:

Example 3.3.10. If α(t) = (R cos t, R sin t, 0) and β(t) = (a + R cos t, b + R sin t, c) then β(t) =
α(t) + (a, b, c). These are parallel circles. If c = 0 and a, b are sufficiently small, these parallel
circles can be distinct and yet intersect.

Finally we come to the central result of this Chapter. Equivalence of curvature and torsion provides
equivalence of curves. Here we think of two arclength parametrized curves as equivalent if they
are congruent. You can show that congruence is an equivalence relation. So, another way to
understand the theorem which follows is that the curvature and torsion functions serve as labels
for the equivalence class of unit-speed curves related by rigid motions.

Theorem 3.3.11. curves classified by curvature and torsion in R3

Arclength parametrized curves α, ᾱ : I → R3 are congruent iff κ̄ = κ and τ̄ = ±τ .

Proof: Theorem 3.3.4 shows congruent curves have the same curvature and torsion modulo a sign.
It remains to prove the converse direction. Suppose α, ᾱ : I → R3 are arclength parametrized
curves for which κ̄ = κ and τ̄ = ±τ . Suppose so ∈ I and τ̄ = τ define F to be the unique isometry
which pushes the Frenet frame of α at α(so) to the Frenet frame of ᾱ at ᾱ(so):

T o = F∗(To), No = F∗(No), Bo = F∗(Bo), F (α(so)) = ᾱ(so) ? (so)

where To = T (so) etc. Notice, I only claim initially that F∗ matches the Frenet frames at s = so. We
know this is possible by Theorem 3.3.1. Apply Theorem 3.3.4 to show F∗(T ), F∗(N), F∗(B) solve
the Frenet Serret equations with κ and τ coefficients. Therefore, we have Frenet Serret equations
for the F ◦α Frenet frame and the ᾱ Frenet frame: let me set κ̄ = κ and τ̄ = τ for our future
calculational convenience:

F∗(T )′ = κF∗(N)
F∗(N)′ = −κF∗(T ) + τ F∗(B)
F∗(B)′ = −τF∗(N)

&

T
′
= κN

N
′
= −κT + τ B

B
′
= −τN

(3.5)

We wish to show F ◦α = ᾱ. Notice, as (F ◦α)′ = F∗(T ) and ᾱ′ = T to show F ◦α and ᾱ are
parallel we must show F∗(T ) and T have the same vector parts. But, this is nicely captured by the
dot-product F∗(T ) •T = 1 since both ||F∗(T )|| = ||T || = 1. Moreover, we know F∗(T (so)) = T (so)
by construction of F hence we simply need to show that the function g(s) = F∗(T (s)) •T (s) has
constant value of 1. It turns out that is not directly successful, so, we instead follow O’neill13 and
involve the entire Frenet frames. Set

f(s) = F∗(T (s)) •T (s) + F∗(N(s)) •N(s) + F∗(B(s)) •B(s)

Omit the s-dependence and differentiate:

f ′ = F∗(T )′ •T + F∗(T ) •T
′
+ F∗(N)′ •N + F∗(N) •N

′
+ F∗(B)′ •B + F∗(B) •B

′

13beware, my ᾱ is his β on page 122-123
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Subtitute Equation 3.5 to obtain:

f ′ =κF∗(N) •T + F∗(T ) •κN +
(
−κF∗(T ) + τ F∗(B)

)
•N

+ F∗(N) •
(
−κT + τ B

)
+−τF∗(N) •B + F∗(B) •

(
−τN

)
= 0

But, f(so) = F∗(T (so)) •T (so) + F∗(N(so)) •N(so) + F∗(B(so)) •B(so) = 3 thus all three dot-
products must be identically 1 and we find that F ◦α and ᾱ are parallel with (F ◦α)(so) = ᾱ(so)
thus, by Proposition 3.3.9, we conclude F ◦α = ᾱ. Hence α and ᾱ are congruent in the case τ̄ = τ .
I leave the τ̄ = −τ case to the reader. �

This theorem easily generalizes to the case of non-unit speed. The derivation just includes a few
extra speed factors. The Proposition below exhibits the power of the theorem towards questions of
classification:

Proposition 3.3.12.

If α be an arclength parametrized curve then α has constant κ, τ iff α is a helix.

Proof: In Example 2.4.4 we introduced the standard helix defined by R,m > 0 and

α(s) = (R cos(ks), R sin(ks),mks)

for s ∈ R and k = 1/
√
R2 +m2. We calculated:

κ =
R

R2 +m2
& τ =

m

R2 +m2

If F is an isometry then F ◦α is also a helix and by Theorem 3.3.4 the non-standard helix also
has κ = R

R2+m2 and τ = ±m
R2+m2 . Conversely, suppose α is an arclength parametrized curve with

constant κ and τ . Observe, if we set values for R and m as

R =
κ

κ2 + τ2
, & m =

τ

κ2 + τ2

then

R

R2 +m2
=

κ
κ2+τ2

κ2

(κ2+τ2)2
+ τ2

(κ2+τ2)2

= κ &
m

R2 +m2
=

τ
κ2+τ2

κ2

(κ2+τ2)2
+ τ2

(κ2+τ2)2

= τ.

Hence, by Theorem 3.3.11 the curve α with constant κ and τ is congruent to the helix with
R = κ

κ2+τ2
and m = τ

κ2+τ2
since the helix and α have the same curvature and torsion. �

Also, the reader may enjoy Example 5.4 on page 124 of O’neill which explicitly shows how a pair of
helices with opposite-signed torsion are connected by an isometry with an orthogonal matrix with
determinant −1.

The result below is needed for Theorem 9.2 on page 316-317 of O’neill where this result is critical
to prove something about the isometry of surfaces. The proof is placed here since the technique is
very much reminiscent of proof given for Theorem 3.3.11. Notice, the frames in the theorem below
are not assumed to be Frenet frames. The assignment of the frame along the curve could be made
by some other set of rules.
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Theorem 3.3.13. curve congruence for arbitrary frames

Suppose α, β : I → R3 are parametrized curves. Also, let E1, E2, E3 be a frame field along
α and F1, F2, F3 a frame field along β. If the two conditions below hold true then α and β
are congruent. For 1 ≤ i, j ≤ 3,

(1.) α′ •Ei = β′ •Fi & (2.) E′i •Ej = F ′i •Fj .

In particular, in the case these conditions are met, the isometry G for which β = G ◦α is
defined by any to ∈ I where we construct G∗(Ei(α(to))) = Fi(β(to)) for i = 1, 2, 3.

Proof: see page 126 of O’neill. �
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