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n

(b) lim 3—

n—eo gl

!
(¢) lim n_.'

(d) lim —. (Hint: see Exercise 1.3.4(c)).

n—oo 3N

2.1.7 Prove that if lim, e a, = £ > 0, then there exists N € N such that @,, > 0 for all n > N.

2.1.8 » Prove that if lim, e a, = £ # 0, then lim,,—ye “Z:‘ = 1. Is the conclusion still true if £ = 0?

2.1.9 Let {a,} be a sequence of real numbers such that lim,_.a, = 3. Use Definition 2.1.1 to
prove the following

(a) lim3a,—7=2;

n—yeo
1 4
(b) lim a"a+ = §; (Hint: prove first that there is N such that a,, > 1 forn > N.)
n—oo -

2.1.10 Leta, > 0 for all n € N. Prove that if lim,,_;e. @, = £, then lim, 00 /@, = V2.
2.1.11 Prove that the sequence {a,} with a, = sin(n7/2) is divergent.
2.1.12 » Consider a sequence {a, }.

(a) Prove that lim,—ea, = £ if and only if limy_ye asx = £ and limy_yeo appy 1 = £.

(b) Prove that lim, e a, = £ if and only if limy_e a3x = £, limg_yeo a3rr; = £, and
im0 a3g42 = £.

2.1.13 Given a sequence {a, }, define a new sequence {b, } by

_ata+t...tay
= " .

bll

(a) Prove that if lim,_yea, = £, then lim,, 00 b,, = £.

(b) Find a counterexample to show that the converse does not hold in general.

2.2 LIMIT THEOREMS ( LECTURE | O)

We now prove several theorems that facilitate the computation of limits of some sequences in
terms of those of other simpler sequences.

Theorem 2.2.1 Let {a, } and {b,} be sequences of real numbers and let k be a real number. Suppose
{an} converges to a and {b,} converges to b. Then the sequences {a, + b, }, {ka,}, and {a,b,}
converge and

(@) limy—eo(an+bn) =a+b;
(b) lim,—yeo(kay) = ka;
() limy—eo(anb,) = ab;
a, a,

(d) If in addition b 0 and b, # 0 for n € N, then {E—} converges and lim,—;e ™ =

n n

SR
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Proof: (1) Fix any € > 0. Since {a, } converges to a, there exists Ny € N such that
£
lay —a| < 5 foralln > Ny.
Similarly, there exists N, € N such that
£
|by — b < 5 foralln > N,.
Let N = max{N;,N,}. For any n > N, one has

£ £
Han+by) — (a+b)| < lan—al+ |bn—b| < €.

2727
Therefore, lim, e (@, -+ by) = a+b. This proves (a).

(by If k=0, then ka = 0 and ka,, = 0 for all n. The conclusion follows immediately. Suppose
€
next that k # 0. Given € > 0, let N € N be such that |a, —a] < 7l for n > N. Then for n > N,

|ka,, — ka| = |k||a, — a| < e. It follows that limy,—ye.(kay,) = ka as desired. This proves (b).

(¢} Since {a,} is convergent, it follows from Theorem 2.1.7 that it is bounded. Thus, there exists
M > 0 such that

lan] <M foralln e N.
For every n € N, we have the following estimate:

s

lanby — ab| = |ayb, — ayb + anb — ab| < |an||by — b| + |blla, — al. 2.1
AR e

Let € > 0. Since {a,} converges to a, we may choose N; € N such that

la, —a| < 5 for alln > Ny.

£
(jol+1)
Similarly, since {b,} converges to b, we may choose N> € N such that

£
|by — b| < i for alln > N».

Let N = max{N;, N, }. Then, for n > N, it follows from (2.1) that

e Py
|anbn —ab] < Mz + ib!‘z—(m <eforalln 2 N. 2 (16} +) albl

Therefore, limy,..e @y by, = ab. This proves {c).

{cdy Let us first show that
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Since {b, } converges to b, there is N; € N such that

|b,—b| < % forn>Nj.
3|
b and, hence, % < b < 2

|b] 4
—2—< |bn| — 6] < >
H) ~bal y A
\-— TG u,l - V’

It follows (using a triangle inequality) that, for such n, —
For each n > N, we have the following estimate

ol

by b|  |ballb] = 2

‘ 1 1’ |by — D| & 2|bn—b|‘
Now let € > 0. Since lim,,—. b,, = b, there exists N, € N such that

b2
bl < Te for all n > M.

Let N = max{Ny, N2 }. By (2.2), one has

! l’gzli’};j—l<eforaun>1v.
L k=t
1 7
('.Jimf'"‘\““

b, b

It follows that lim, ;e b=

n b
Finally, we can apply part (c) and have
o §
| \‘;\'f e
IRe &W

Q
. an .. 1_a Qo—\- e
hm——hmal—_g. b b.
Rec

n—eo b,
The proof is now complete. [
Lon (

= Example 2.2.1 Consider the sequence {a,} given by
n>" 5
- a(2 3)

. _ 3n*—2n+5
" 1—dn+Tn?
i = 5(o).

Dividing numerator and denominator by n”, we can write
(2.4)

o 3—2/n+5/n?
" 1/n2—4/n+7
Therefore, by the limit theorems above,

lim a, = lim 3-2/n+ 5/"2 _limy 03—
0= 1/'1.2 — 4/’7 7 lim,;_ye0 1/,12 T 4/’1 i, 7

n—eo n—oo
/b, where b > 0. Consider the case where b > 1. In this case, a, > 1
n n-l _
(@cd) 0 (@a-1TE~+n(am)) + 1

limny o0 2/ + limy 5 S/% ; (2.5)

a Example 2.2.2 Let g, =
for every n. By the binomial theorem, (Q | + \)
n—
b:a;z:(ﬂ”—l-}-l)"z l—I—n(a,,—l). &
w ®
This implies b “ (“ \ ) ? 4 “hv‘
- A -
an > |

-1
' b Z G-l >0 Sin

b
0<a,—1<
n
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For each € > 0, choose N > tl— It follows that forn > N,

b—1 _b-1 ()\nzaj’g /b.?\

-— N . A -
" &\w- h—\! \7 - I
Thus, lim, sea, = 1. nI®

In the case where b = 1, it is obvious that a,, = 1 for all n and, hence, lim,eoq, = 1.
IfO<bc ], lete= é and define

lan —l=a,—1<

1
¢ = —.
ayn

P
Xp =

Since ¢ > 1, it has been shown that lim,, . x,, = 1. This implies

Ima, = lim — = 1.
H—y00 R—yoo x"
Exercises

2.2.1 Find the following limits:

14+3n—n°
b) Im .
()nl—rg3n3——2n2+1

2.2.2 Find the following limits:

2.2.3 » Find the following limits if they exist:

(2) limyye(VAZ+n—n).

(b) 1imyyee (V13 +3n% —n).

(c) limyyee (V13 +3n% — /02 +n).
(@ hmn—?w(\/ﬁ‘ f)

(e) limyse(v/n+1—+/n)/n.

2.2.4 Find the following limits.

(a) For |r| < 1and b € R, limy_yeo(b +br+br* + -+ br*).

. 2 2 2
©) Ty (5 53+ 1 ).

2.2.5 Prove or disprove the following statements:



