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where 0 < ¢ < 1.

(a) Prove that the function is differentiable on R.
(b) Prove that for every o > 0, the function f/ changes its sign on (—¢t, ¢t).

4.1.12 Let f be differentiable at xy € (a,b) and let ¢ be a constant. Prove that

(a) limy,_yeont [f(xo—E- %) —f(xg)] = f'(xp).

f(xo+ch) — f(xo)
h

(b) limyo = cf'(xo).
4.1.13 Let f be differentiable at xp € (a,b) and let ¢ be a constant. Find the limit

e f(xo+ch) — f(xo— ch)
h—0 h

4.1.14 Prove that f: R — R, given by f(x) = |x|?, is in C*(R) but not in C*>(R) (refer to Defini-
tion 4.1.3). (Hint: the key issue is differentiability at 0.)

4.2 THE MEAN VALUE THEOREM

In this section, we focus on the Mean Value Theorem, one of the most important tools of calculus
and one of the most beautiful results of mathematical analysis. The Mean Value Theorem we study
in this section was stated by the French mathematician Augustin Louis Cauchy (1789-1857), which
follows from a simpler version called Rolle’s Theorem.

An important application of differentiation is solving optimization problems. A simple method
for identifying local extrema of a function was found by the French mathematician Pierre de Fermat
(1601-1665). Fermat’s method can also be used to prove Rolle’s Theorem.

We start with some basic definitions of minima and maxima. Recall that fora € R and é > 0,
the sets B(a; 8), By (a; 6), and B_(a; 8) denote the intervals (a — §,a+ &), (a,a+ 8) and (a — §,a),
respectively.

Definition 4.2.1 Let D be a nonempty subset of R and let f: D — R. We say that f has a local (or
relative) minimum at a € D if there exists 6 > 0 such that

f(x) > f(a) for all x € B(a; 6) N D.
Similarly, we say that f has a local (or relative) maximum at a € D if there exists § > 0 such that

f(x) < f(a) for all x € B(a; 6) ND.

In January 1638, Pierre de Fermat described his method for finding maxima and minima in a
letter written to Marin Mersenne (1588-1648) who was considered as “the center of the world of
science and mathematics during the first half of the 1600s.” His method presented in the theorem
below is now known as Fermat’s Rule.

Theorem 4.2.1 — Fermat’s Rule. Let I be an open interval and f: I — R. If f has a local minimum y
or maximum at a € [ and f is differentiable at a, then f'(a) = 0.
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Figure 4.1: Illustration of Fermat’s Rule.
Proof: Suppose f has a local minimum at a. Then there exists § > 0 sufficiently small such that
—_ 7
f(x) > f(a) for all x € B(a; 5). a<X< &*'8 - X-a” 0
Since B4 (a; §) is a subset of B(a; §), we have ((‘A( a+g ) = B,\. (Q.; 5)
WZOforaﬂxeBJr(a;S). (0\*6‘0\\ = @,_(,0‘} 8)
Taking into account the differentiability of f at a yields a- &£ Xae OO X-0 < v
x—a xX—a x—at xX—a
Similarly,
fx) = fla) <O0forallx e B_(a;d). V) /\ZT
x—a
It follows that =
oy — i FO—f@) ()= f(a) r X
f(a)-)lg_)n}l x—a —xl—l)rfrzl— x—a 0. l LN

Therefore, f'(a) = 0. The proof is similar for the case where f has a local maximum at a. [J

Theorem 4.2.2 — Rolle’s Theorem. Let a,b € R with a < b and f: [a,b] — R. Suppose f is
continuous on [a, b] and differentiable on (@,b) with f(a) = f(b). Then there exists ¢ € (a,b) such
that

L Ti

F'(c) =0. (4.3)

Proof: Since f is continuous on the compact set [a, b], by the extreme value theorem (Theorem 3.4.2)
there exist X € [a,b] and X%, € [a,b] such that

f(%1) = min{f(x) : x € [a,b]} and f(%2) = max{f(x) : x € [a,b]}. = W\o.)c(g (Lq(b]))
Then

f(®) < f(x) < f(x) for all x € [a,b)]. (4.4)
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fla) = f(b)

Figure 4.2: Illustration of Rolle’s Theorem.

If x; € (a,b) or %, € (a,b), then f has a local minimum at %; or f has a local maximum at %,. By

Theorem 4.2.1, f/(%) = 0 or f(%)

If both x; and X, are the endpoints of [a,b], then f(%;)
=0 forany ¢ € (a,b). 0

f is a constant function, so f'(c)

=0, and (4.3) holds with ¢ = X; or ¢ = X5.

= f(x,) because f(a)

= f(b). By (4.4),

We are now ready to use Rolle’s Theorem to prove the Mean Value Theorem presented below.

f(b)

f(b) = f(a)
b—ua

Figure 4.3: Illustration of the Mean Value Theorem.

Theorem 4.2.3 — Mean Value Theorem. Leta,b € R witha < b and f: [a,b] — R. Suppose f
is continuous on [a,b] and differentiable on (a,b). Then there exists ¢ € (a,b) such that

£le) = &;%@ (4.5)
Proof: The linear function whose graph goes through (a, f(a)) and (b, (b)) is (b 4(0)
g0 =TI Do) 1) U

o Gke)

/ v = 9 (x)

t
[N
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h(x) = f(x) —glx) = f(x) ~ ﬂb—l);—z—g—@(x~a) + f(a)| forx € [a,b].

such that 4'(¢) = 0. Since

K = £ - =L,
it follows that
fo- 1021

Thus, (4.5) holds. I

= Example 4.2.1 We show that |sinx| < |x| for all x € R.
Let f(x) = sinx for all x € R. Then f’(x) = cosx. Now, fixx € R, x > 0. By the Mean Value
Theorem applied to f on the interval [0,x], there exists ¢ € (0,x) such that

sinx —sin0
—————— =CO0SC.
x=0
| sinx| . :
Therefore, arE = |cosc|. Since |cosc| < 1 we conclude |sinx| < |x| for all x > 0. Next suppose

x < 0. Another application of the Mean Value Theorem shows there exists ¢ € (x,0) such that

sin0 —sinx cosc
0—x '
. |sinx| _ . .
Then, again, = |cosc| < 1. It follows that |sinx| < |x| for x < 0. Since equality holds for
x

x =0, we conclude that |sinx| < |x| forallx € R.
s Example 4.2.2 We show that /1 +4x < (5+2x)/3 forall x> 2.
Let f(x) = +/1+4x for all x > 2. Then
4 2

FO = m ™ Jine

Now, fix x € R such that x > 2. We apply the Mean Value Theorem to f on the interval [2,x]. Then,
since f(2) = 3, there exists ¢ € (2,x) such that

S P fo)—fe = £alb-0)

Since f'(2) =2/3 and f'(c) < f'(2) for ¢ > 2 we conclude that b =%

\/1+4x—3<§(x—2). Q.= b

Rearranging terms provides the desired inequality.
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A more general result which follows directly from the Mean Value Theorem is known as Cauchy’s
Theorem.

Theorem 4.2.4 — Cauchy’s Theorem. Let a,b € R with a < b. Suppose f and g are continuous
on [a,b] and differentiable on (@, b). Then there exists ¢ € (a,b) such that

[f(0) = f(@)lg'(c) = [g(b) — g(a))f(©)- (4.6)

Proof: Define

h(x) = [f(b) — f(a)lg(x) — [g(b) — g(a)lf (x) for x € [a, b].
Then h(a) = f(b)g(a) — f(a)g(b) = h(b), and h satisfies the assumptions of Theorem 4.2.2. Thus,
there exists ¢ € (a,b) such that #'(c) = 0. Since

K (x) = [f(b) - f(a)lg'(x) — [¢(b) — g(a)]f' (),
this implies (4.6). O

The following theorem shows that the derivative of a differentiable function on [a, b] satisfies the
intermediate value property although the derivative function is not assumed to be continuous. To
give the theorem in its greatest generality, we introduce a couple of definitions.

Definition 4.2.2 Leta,b € R,a < b, and f: [a,b] — R. If the limit
o f0 (@)

x—a+ xX—a

exists, we say that f has a right derivative at a and write

fx) ~fla)

! — 1-
=i e
If the limit
x—b~ x—>b

exists, we say that f has a left derivative at b and write

S=10)

f-(b)= lim ==

We will say that f is differentiable on [a, b] if f'(x) exists for each x € (a,b) and, in addition, both

K‘f_k(a ) and f (b) exist. ~

Theorem 4.2.5 — Intermediate Value Theorem for Derivatives. Let a,b € R with a < b. Sup-
pose f is differentiable on [a,b] and

Fila) <A < f.(b).

Then there exists ¢ € (a,b) such that

fie)=




slope. 3
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1< A3

qce (a,b).
ot £l =A

Figure 4.4: Right derivative.

Proof: Define the function g: [a,b] — R by

83 = £(x) - A Sf;(q <N< £°(b)

Then g is differentiable on [a, b] and
{ _ ( _
g (a) <0< g (b). PVix)y = £ I
Thus,

( x)—g(a
), (0=1im 5 <o

It follows that there exists §; > 0 such that
g(x) < g(a) for all x € (a,a+ 61) N[a, b].
Similarly, there exists & > 0 such that
g(x) < g(b) forallx € (b— 6,,b)N[a,b].

Since g is continuous on [a, b], it attains its minimum at a point ¢ € [a,b]. From the observations
above, it follows that ¢ € (a,b). This implies g’(c) = 0 or, equivalently, that f'(c) = A. O

Remark 4.2.6 The same conclusion follows if 7 (a) > A > f.(b).
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Exercises
4.2.1 > Let f and g be differentiable at xo. Suppose f(xo) = g(x¢) and
f(x) < glx) forallx e R.

Prove that f'(xg) = g'(x0).

4.2.2 Prove the following inequalities using the Mean Value Theorem.

(a) vi+x< 1+%xforx>0.
(b) €' > 1+x, for x > 0. (Assume known that the derivative of &' is itself.)

—1
(c) i <Inx <x—1, forx > 1. (Assume known that the derivative of Inx is 1/x.)
x

4.2.3 # Prove that |sin(x) —sin(y)| < |x—y| for all x,y € R.

4.2.4 > Let n be a positive integer and let a, b € R for k = 1,...,n. Prove that the equation
n
x+ Z (agsinkx + bycoskx) =0
k=1

has a solution on (-7, ).

4.2.5 - Let f and g be differentiable functions on [a,b]. Suppose g(x) # 0 and g'(x) # 0 for all
x € [a,b]. Prove that there exists ¢ € (a,b) such that

f(a) f(b)' 1 | fle) &le)

1
g(b)—g(a) | gla) &) | gc)| fic) &)

where the bars denote determinants of the two-by-two matrices.

4.2.6 >Let n be a fixed positive integer.
(a) Suppose ay,az,...,a, satisfy

a a
a1+_g+...+~'l:().
2 n

Prove that the equation
ap +agx+a3x2 4. +anxrz—l -0

has a solution in (0, 1).

(b) Suppose ag, ay,...,a, satisfy

H
Yy =0
&2k 1



