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— arctanx
© lim 22—
Xtoo ln(1+ -

(d) li_r)n Vxe™™. (Hint: first rewrite as a quotient.)
X—yo0
4.4.4 Prove that the following functions are differentiable at 1 and -1.

e, ifx|<1;

X
@ fx)=41 if x| > 1.

e

arctanx, if x| < 1;
®) fx)=<=

—1
Zsignx+ XT, if [x| > 1.

4.4.5 > Let P(x) be a polynomial. Prove that

lim P(x)e™™ = 0.

X—yoo
4.4.6 » Consider the function

1
e <, ifxz#0;
x) =
f=) {0, if x=0.

Prove that f € C"(R) for every n € N.

LeCTRE QR TAvL oRYy THE 0AEM
4.5 TAYLOR'S THEOREM

In this section, we prove a result that lets us approximate differentiable functions by polynomials.

Theorem 4.5.1 — Taylor’s Theorem. Let n be a positive integer. Suppose f: [a,b] = R is a
function such that f*) is continuous on [a, 5], and £"*1)(x) exists for all x € (a,b). Let X € [a,b].
Then for any x € [a,b] with x # %, there exists a number c in between X and x such that

f(n+1)( )
(n+1)! _
where I\*‘\ TA_.\{»( \70 (_u\l&rtl ok X
Y /\/
n (k) (5 e x).
P =Y D sy e £

(Ny = _n
0=Y (x—x)*. = {(x) + {(g)(x,x}.;_ /F (x}(X—x) - jfi(l(—)(/

Proof: Let x be as in the statement and let us fix x # x. Since x — X # 0, there exists a number A € R

) =B(x)+ D,

(x—x

such that
_ A =\n+ ~ = +1 l
We will now show that (X'- )? )N.‘ 7;\
oet”

3= f(n+l)((:),
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for some ¢ in between x and x.
Consider the function // m
r) 20

ao (0ud" o 9)

(n—l-l)!

n (k) i
g(f)zf(x)—k;ofk!( )(x_)?)k_ (nil)!(x—f)n-l-l:f(x)_f’_’_(ﬁ— (nil)l(x x)n+l 0.
and ,F(_x) ;

g(x) = flx) -

= k! (x—x)k_ (n_|-1)!(x_x)"+l :f(x)—f(x) =0. o ¢

By Rolle’s theorem, there exists ¢ in between X and x such that g’(c) = 0. Taking the derivative of (O (C

g (keeping in mind that x is fixed and the independent variable is ¢) and using the product rule for
derivatives, we have

X
n f(]\) (X) A .———.——C‘_‘“‘

b
1=0

-l

(k 1) k) (¢
ge) = +Z ( ’ ( ) x—c)k-{— (J;c—(l))! (x—c)k_l) +%(x—c)"
— ?(X—C)n— %f(n-i—l)(c)(x_c)n k. (_X "C-)
=0 ' AL

I

This implies A = f*"+1)(c). The proof is now complete. (]

The polynomial P,(x) given in the theorem is called the n-th Taylor polynomial of f at x.

Remark 4.5.2 The conclusion of Taylor’s theorem still holds true if x = X. In this case, c =x = X.

m Example 4.5.1 We will use Taylor’s theorem to estimate the error in approximating the function
f(x) = sinx with it 3rd Taylor polynomial at x = 0 on the interval [—7/2,7/2]. Since f'(x) = cosx,

f"(x) = —sinx and f"’(x) = — cosx, a direct calculation shows that
3
x
P(x)=x— a

More over, for any ¢ € R we have |f(*)(c)| = |sinc| < 1. Therefore, for x € [-7/2,7/2] we get (for

some ¢ between x and 0), \/\/\/

@) 1N
Isinx— Py(x)| = £ (C)|||<”/ < 0.066. RES

Theorem 4.5.3 Let n be an even positive integer. Suppose £ exists and continuous on (a,b). Let
% € (a,b) satisfy

F@=...= "% =0and f*(z) £0.
The following hold:
(q_) ,F(")(;)-;O {.# ‘F hot loced min ot X,
((:) £t (f)( 0 ‘# -F hoy leed wanx ot K/

!
™
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(a) f"(%) > 0if and only if f has a local minimum at %.
(b) ") () < 0if and only if £ has a local maximum at %.

Proof: We will prove (a). Suppose f) (x) > 0. Since f (n) (x) >0and f () is continuous at ¥, there
exists & > 0 such that

™) > 0forallt € B(%8) C (a,b).

Fix any x € B(x; 8). By Taylor’s theorem and the given assumption, there exists ¢ in between ¥ and x
such that

Since n is even and ¢ € B(%; 8), we have f(x) > f(X). Thus, f has a local minimum at ¥.

Now, for the converse, suppose that f has a local minimum at ¥. Then there exists 6 > 0 such
that

f(x) > f(x) for all x € B(%; 6) C (a,b).

Fix a sequence {x;} in (a,b) that converges to X with x; # ¥ for every k. By Taylor’s theorem, there
exists a sequence {cy}, with ¢; between x; and x for each k, such that

e — )",

£
e

fla) = f(%)
Since x; € B(%; §) for sufficiently large k, we have
fo) = f(%)
for such k. It follows that

) (¢
70 = 5 = T - 0

This implies ) (c;) > 0 for such k. Since {c} converges to %, £ (%) = limg_sea f* (cx) > 0.
The proof of (b) is similar. [

s Example 4.5.2 Consider the function f(x) = x*cosx defined on R. Then f'(x) = 2xcosx —x?sinx

and f"(x) = 2cosx — dxsinx — x> cosx. Then f(0) = f(0) = 0 and f”(0) =2 > 0. It follows from
the previous theorem that f has a local minimum at 0. Notice, by the way, that since f(0) =0 and
f(m) <0, 01is not a global minimum.

s Example 4.5.3 Consider the function f(x) = —x®+2x> +x* — 4x® + x> + 2x — 3 defined on R. A
direct calculations shows /(1) = f"(1) = f(1) = f*) (1) = 0 and f®)(1) < 0. It follows from the
previous theorem that f has a local maximum at 1.



