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5.2 multivariate taylor series

We begin this section with a brief overview of single-variate power series. The results presented
are important as we often use the single-variable results paired with a substitution to generate
interesting multivariate series.

5.2.1 taylor’s polynomial for one-variable

IF:UCR—Ris analytic at z, € U then we can write

% f{nd g
f(:c) = .f('TO) -+ ff(‘l'o)(i" - 330} + :‘]_)ffﬂ(lfa)(l‘. — 17())2 e Z _f___g_‘?_){

n=0

We could write this in terms of the operator D = F?E and the evaluation of t = z,

fl) = |3 L - t)”D"'f(t)] B

=y

I remind the reader that a function is calied entire if it is analytic on all of R, for example 7, cos(x)
and sin(z) are all entire. In particular, you should know that:

em""l—%:z'-é—lw? ‘ -v-~§-1-1'”
- TRt T T Ly
n=0
D
vrerf ) 2 il — (_Z)n 2n
cos(z) =1~ §L + f"lTI T Z (2n)! v
7r=={)
- 1 3 5 = (__1)71 2n+1
sin(e) =z — gt + o 'mg{%wrl)'

cosh(z) =1+ Eﬁ”z + 314 = i 1 2"
‘ Tt Ty (2n)!
n=0
. . ) 1 5 il 5 = 1 mint1
sinh(z) = & + 5o + o "'ﬂ;}(‘znﬂ)!x

The geometric series is often useful, for a,r € R with jr| < 1 if is known

o
1 -7

oe]
a+ar—€-m‘2—i—---m2ar”:

n=0

This generates a whole host of examples, for instance:

1 2, .4 6
1+$2:1-x Rl g

1 ‘
1mI3=1+m3+x5+x9+---
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3
12z

Moreover, the term-by-term integration and differentiation theorems vield additional results in
conjuction with the geometric series:

=281+ 20+ (20 + =t + 2+ 2%+

tan"l(;u) - dz — f}oo:(_l)rLIErzd:t — i (“‘“1)'“ Ignﬁ-] S }_1:3 + }_1:5 4
I+ 22 n+1 3 5
n==0 n=0
In{l — ) / d In(1 — 2)dz / - dx / ;G x"dx EOO _ antl
ey = | Zmi = 2de = e e L -
da l—z — i+ 1

Of course, these are just the basic building blocks. We also can twist things and maeke the student
use algebra,

. L 1.
c“’c+‘2=e“7€”}’=62(1~§~;r+~2*1‘2+"')

or trigonmetric identities,
sin(z) = sin(w — 2+ 2) = sin(z — 2) cos(2) + cos(x — 2) sin(2)

CfaN = =" 2 : (=1 . 2
= sin(z) ~cos(2)n§)m(l -2 +£+5111(2)§W(1w2) .

Feel free to peruse my most recent calenlus 1T materials to see a host of similarly sneaky calculations.

5.2.2 taylor’s multinomial for two-variables

Suppose we wish to find the taylor polynomial centered at (0,0) for f(x,y) = ¢*sin(y). It is as
simple ag this:

1. 1. 1. 1.
flay) = (1+w+§wz+--->(ywgy"+-~> =y+ay+saly - oyt
the resulting expression is called & multinomial since it is a polvnomial in multiple variables. If
all functions f(x,y) could be written as f(z,y) = F(2)G{y) then multiplication of series known
from calculus {1 would often suffice. However, many functions do not possess this very special
form. For example, how should we expand f{z,y) = cos{zy) about (0,0)?. We need to derive the

two-dimensional Taylor’s theorem®.

In previous chapters we have discussed the best linear approximation for a function of several
variables. The next step is the best quadratic approximation. In particular, we seek to find
formulas to fix the constants ¢y, ¢1. €2, €11. €12. €22 as given below:

Flo,y) = o+ ci(x —~ z0) + caly — Yo + c1a(x — 20)? + c12(x — 25) (¥ — Yo) + c22(y — 4a)”

? A more careful proof will be found in most advanced ealcutus texts, it turns out the multivariate expansion follow
from differentiating g == f«# where 7 : B — R has #{t) = {&s + at, yo -+ bf). The single-variable Taylor theorem
applies and we therefore generalize the remainder estimation theorems to higher dimensions. I will not dig deeper into
guestions about the remainder for multivariate taylor expansions in these notes. Intuitively, we have one assumption:
higher order terms arc small near the center of the serles.
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The expression above is a quadratic polynomial in z,y centered at {24, y,). Observe that it is
already clear that f(z,,yo) == co. Take partial derivatives in » and y,
fol@y) = a+ 2c11(z ~ x5) + c12(y — ¥o) fy(il',y) = ¢y + crplw - xo) + 2022(y - Yo)-
Therefore, it is clear that: fo(Te, Yo) = ¢1 and fy (e, ¥o) = cz. Differentiating once more,
frelzy) =201 fwlzy)men  fpley) = 2.

Therefore, fox(Zor%o) = 2€11, foy(Zo,Yo) = €12 and Fuy(@o.vo) = 2¢pa. It follows that we can
construct the best quadratic approximation near {7s,3%.) by the formula below: let Py = (%0, ¥o)

1f(a:,y) = f(Toryo) + L{z — 20,y —~ o) + @z — To Y — Yo) 1

Where, T dencted L{z — o,y — %o) = fallo)(z — za) + FylPo)(y — Yo) and

Q(l — g, Y yo) = %fw:c(ﬁo)(w - wo)z + fm:;(ﬁa)(i - ﬂ:o)(y - yo) + %fyy(ﬁo)(y - yo)z-

Notice that f(F,) + L{x — 26, ¥ = Yo) gives the first-order approximation of f, it is the linearization
of f at §,. We can also write the expansion as

1 1
flzo+ Ry + k) = f(fo) -+ falfo)h -+ fy{lﬁo)k -+ ”é.fw:r(ﬁa)h? + f::y(ﬁa}h'k + gfyy(iﬁ‘a)kz-

Example 5.2.1. Suppose f(x,y) = /1 + 2 +y. Differentiating yields:

1 -
fol,y) = .fy(fl'sy) = 5(1+3:+y) 2,
Differentiate once more,

foaltn) = Fleo) = fuyley) = (142 3)7

Observe that F(0,0) = 1, f.(0,0) = £(0.0) = % and f22{(0,0) = foy(0,0) = fy{(0,0) = =t
Therefore,

1 1
VIt ryml+ @ty - gl +2y+y)

As an application, let’s calculate v1.11. Notice 1.11 = 1-+0.1 + 0.01 so apply the formula with
z=0.1 and y = 0.01,

VITO0I+00l~1+ %{0.1 +0.01) — %{(0.1)2 +2(0.1)(0.01) + (0.01)%)

sz 1+ (0.5)(0.11) — (0.125)(0.01 + 0.002 + 0.0001)
2 1+ (0.5){0.11) — {0.125)(0.0121)

=~ 1+ 0.055 ~ 0.0015125

~ 1+ 0.055 — 0.0015125

~ 1.0534875.

In contrast, my Casio fr-115 ES claims v/1.11 = 1.053565375. If we trust my calculator then we
have correctly caleulated the four correct digits for v1.11. Not too shabby for our trouble.
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Computation of third, fourth or higher order terms reveals the multivariate taylor expansion below.
We denote h = b1 and & = hs,

o™ f (&0, y
ot h, y“"”‘)“zzz anafg O, 0(;3 hashig - b,
ia s 7H

n=0iy=01ip=0 Ty ==l)

Example 5.2.2. Espand f(x,y) = cos(xy} about (0,0). We calculate derivatives,

fz = —ysin{zy) fy = —wsin(xy)

frz = —y* cos(ay) Jay = —sin(zy) — zy cos(zy) Foy = —x° cos(xy)
feex = ¥° sinf{zy) fory = —ycos(zy) — ycos(ry) + zy® sin(zy)
Frgy = —wcos(xy) — 2 cos{ay) + 2y sin(ay) Foyy = 2% sin(ay)

Next, evaluate at x =0 and y = 0 to find f(z,y) = 1+ - to third order in z,y about (0,0). We
can understond why these devivatives are oll zero by approaching the expansion a different roule:
simply expand cosine divectly in the variable {2y),

1 1, 1,45 1
Flasy) =1 =Sy + g+ o= 1= oafy®+ Sty + o
Apparently the given function only has nontrivial derivatives at (0,0) at orders 0,4,8..... We can

deduce that frizzy{0,0) = 0 without further caleulation.

This is actually a very inferesting function, 1 think it defies our analysis in the later portion of this
chapter. The second order part of the expansion reveals nothing about the nature of the critical
point (0,0}. Of course, any student of trigonometry should recognize that f{0,0) = 1 is likely
a local maximum, it’s certainly not a local minimum. The graph reveals that f{0,0) is a local
maxium for f resiricted to certain rays {rom the origin whereas it is constant on several special
directions (the coordinate axes).

Example 5.2.3. Suppose f(x,y} = sin{zy). Once more I'll use the substitution trick. Let u = xy
hence fla,y) =sin{u) =u — %u?’ -+ - and to guadratic 6-th order we find

1
flz,y) =2y - 2 2y 4

It is interesting to compare the graph z = f(x,y) and z = 2y — ~;t,3 3, note how closely they

caorrespond near the origin: the red graph is the approzimating surface = Iy — %:1:33;3 and the
transparent wire-frame is the actual function z = sin(xy}. Roughly, they are within 0.1 uniis o
distance of 1 from the origin. You can see in the right piclure as we zoom away they difference
between the function and the approximation is appreciable.
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Example 5.2.4. Suppose f(z,y) = sin( /22 + 32 ) then in polar coordinates f(r,8) = sin(r). In
this case the natural expansion to use is f(z,y) =71 ~ %}:rg -+ Tzl—@'ﬁ 4+ -+ which is not technically o
multivariate power series in x,y. In foct, \/z% + y* is not even differentiable at (0,0).

Example 5.2.5. Suppose f(x,y) = sin( 2% + y* ) then in polar coordinates f(r,0) = sin(r?). In
this case the natural expansion to use is f(x,y) = r2 - %TG + 1—%—57‘}'0 4~ which is easily rewritten
as a multivariate power series since 12 = x? +4°%. You use the series to observe that the first, third,
fourth, fifth, seventh, eighth and ninth derivatives of f at (0,0) are zero.

5.2.3 taylor’s multinomial for many-variables

Suppose f : dom(f) € " — R is a function of n-variables. It turns out that the Taylor series
centered at @ = (ay, a2,...,a,) has the form:

n

. 20 T 1 .
FE+hy =335 ﬁ(&-ﬁm 2o Dy FY@) highag by

k=01i1=1 ip==]1 ipu=l

Naturally, we sometimes prefer to write the series expansion about & as an expresssion in F=d+h.
With this substitution we have h = & — @ and h;, = (x — a)i; = @, — a4 thus

T T

F) =330 S 3 (i 0 )@ = ), o) (5 )

k=01y=1ia=1 ip=1

Proof of these claims is found in advanced calenlus. Let me Hlustrate how these formulas work for
n=3.

Example 5.2.6. Suppose f: R? — R let’s unravel the Taylor series centered at (0,0,0) from the
general formula bozed above. Utilize the notation r = 1,y = ¥2 and z = 73 in this example,

3 3
SZ) ZZ Z Z Z %(6i10£2"'ai.;‘-f)(0) Tijq Lig =~ Ly

oo 3
k=01i1=11p=1 ip=1
The terms to order 2 are as follows:
f(& = FO)+ f(0)a + f(0)y + f2(0)=
+%‘( fx;r:(o)l'g + fyy(o)yg + fzz(o)zg'{'

+ Fry(O2y + foz(0)az + fu2{0)yz + fue(0)yz + Fex(O)zx + foy(0) 2y ) o
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Partial derivatives commute for smooth functions hence,

f(i‘) = f(O) + f:z:(o)m + fy(O)y 4 fz(o)zl-l‘

~

linearization

+%( Fan(0)2® + Fyu(O)9” + oz (0)2” + 2L (0)y + 2f2a 00z + 22O}y )*

~

quadratic form Q(z.y,z)

Identify that f(0)+ fz(0)z + fy(0)y + f:(0)z is the linearization of f at the origin and the quadratic
terms are simply the analogue of Q(z,y) = fz2(0)2? + 2fry(0)ay + fuy (0)y? for n = 3.

In the n = 2 case the graph z = f(z,y) is relatively easy to visualize. Intuitively, the lineariization
gives a plane which resembles the graph and then the linearization plus the quadratic form give
some quadratic surface which better models the graph z = f(z,y) neat the point of the expansion.
Something similar is true in n = 3 however visualization is hard since the graph w = f(z,y,2) is a
four-dimensional picture.

Example 5.2.7. Suppose f(z,y,2) = e™*. Find a quadratic approzimation to f near (0,1,2).
Observe:

fo=yze™ [y =z2e™* f, = aye™”
fox = (y2)?e™* Jyu = (az)?e™¥? Far = (2y)%e™*
foy = 2697 + ayze™V® fyz = 2€™V* + 22y2e™V? foz = ye™¥* + ayPzeY?
Evaluating at x =0,y =1 and z = 2,
£012)=2  £0.12)=0 £(0,1,2)=0 X
Fea(0,1,2) =4 [u(0,1,2) =0 (0,13 =0 (4 -1)

fey(0,1,2) =2 £,.(0,1,2) =0  f:(0,1,2) =1 /\ (3‘..&)
Hence, as £(0,1,2) =€ = 1 we find

fl@,y,2) =1+22+22% + 22(y — 1) +22(2 — 2) + - -~ (0, %, 2)

Anoth to calculate this expansion is t k the addi trick, e t gl
nother way to calc expansion is to make use of the adding zero tric e =I+®+J{9*’§‘g9*
flz,y,2) = 2UZEDE24D) — 9 L p(y—141)(2-242) + %[m(y 1+ 1)(z-2+2) 4+

Keeping only terms with two or less of x, (y — 1) and (z — 2) variables,

flz,y,2) =142z +2(y - 1)(2) +2(1)(z - 2) + %mﬁu)?(g)z 4o

Which simplifies once more to f(z,y,2) =1+ 22+ 22(y — 1)+ z(2 — 2) + 222 + - - -.

Example 5.2.8. Suppose f(z,y,z) = ﬁge’”z cos(y3). Find the multivariate series expansion to
quadratic order about the origin. In this case we can just multiply expansions known from calculus
11, no need to do partial derivatives!

1 1
f(:v,y,z)z(1—22+z4+...)(1+w2+§w4+---)(1~§y°+---)
=14+22-224---.



