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1 Cardinality

My goal for us is to get the big picture about cardinality. In particular I want you to learn the
meaning of the terms "finite”, "demumerable”, "countable” and "infinite”. T want you to gain a
deeper appreciation for the difference between real and rational numbers.

1.1 omne-one correspondence and finite sets

Ll

Definition 1.1 (equivalent sets). Two sets A and B are said to be equivalent iff there exists a
one-one correspondence between them. In the case that there exists a bijection from A to B we say

that A = B.

S

We can easily show that = forms an equivalence relation on the "class” of all sets. Notice we did
not say "set of all sets”. We should avoid the tiresome question: "does the set of all sets contain
itself7”.

Example 1.2 (finite sets). Consider a set A = {1,0,dora}. This is equivalent to the set {1 d}
To prove this construct the mappi

FL) =1, §(9) =2, Feed 23

it is clear this is both one-one and onto {1,2,3}. You might object that these are not the "same”
sets. I agree, but I didn't say they were the same, I said they were equivalent or perhaps il is even
better to say that the sels are in one-one correspondence.

Now I repeat the same idea for an arbitrary finite set which has k things init. Let Ny = {1.2.... k}.
If a set A has k distinct objects in it then it is easy to prove il is equivalent to N = {1,2,.. . k}.
Lable these k objects A = {ay,az,...ar} then there is an obvious bijection,

U(a;) = j for each j € Ny
The mapping W is one-one since for aj,ap € Ny we find ¥(a;) = W(a)) implies j = [ implies a; = .

I claim the mapping ¥ is also onto. Let y € N then by definition of Ny we have y = j for some
JENwithl <j <k Observe that aj € A since 1 < j <k, and ¥(a;) = j.

Given the last example, you can appreciate the following definition of finite.
Definition 1.3 (finite set, cardnality of fnite set). A set S is suid to be finite iff it is empty
S = 0 or in one-one correspondence with Ny for some k € N. Moreover, if S = Ny we define the

cardinality of A to be A=k If S =0 then we define A = 0.

To smnmarize, the cardality of a finite set is the number of clements it contains. The nice thing
about finite sets is that you can just count them. i
cecd (A} = A



1.2 one-one correspondence and infinite sets 1:! prgEcr |<F
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Definition 1.4 (infinite sets). A sel S is infinite if it is not finite. P\ # S

LE'roposition 1.5. A finite set is not equivalent to any of its proper Subsr:t.s&

A proper subset A C B will be missing something since a "proper subset”™ A4 is a subset which is
not the whole set 5. It follows that B must have more elements and consequently A =2 N, and
B = N, where a < b. The contrapositive! of the Proposition above is more interesting.

"_,..—l_l—__ e —
Eropositicm 1.6. A set which is equivalent to one or more of its proper subsels is_infinile.
— —

So if you were counting, there are two nice ways to show a set is infinite. First, you could assume it
was finite and then work towards a contradiction. Second, you could find a bijection from the set
to some proper subset of itself.

Example 1.7 (N is infinite). Observe that the mapping f : N — 2N defined by f(n) = 2n is a
bijection. First, observe
fl@)=Ffy) = 2e=2y = z=y
therefore [ is injective. Next 2N = {2k | 3k € N}. Let y € 2N then there evists k € N such that
y = 2k. Observe that
f(k) =2k =y

thus f is onto 2N. Therefore N = 2N and since 2N is a proper subset of N it follows that N is
i finite.

1.3 countably infinite sets ﬁle?h - n°+ y Xﬂ

[Deﬁnition 1.8 (denwmerable). Let S b_e a set, we say S is denumerable iff S = N. The cardnality

of S = N is said to be R,. We denote S =R, iff S = N,

The following is a list of sets with cardnality ¥,.

o 2
N, 2N, 3N, Z, 2Z. Nx N, N [z e R | sin(z) = 0}, {— | ne N} =t 2 »
n
T ———
I don’t find any of the examples above too surprising. These are all manifestly discrete sets. If you
visualize them there is clearly gaps between adjacent values in the sets. In contrast, think about the
rational numbers. Given any two rational numbers we can always find another in between them:
given p/g,m/n € Q we find

1/ ) 1/ pn ;
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g
at the midpoint between p/q and m/n on the number line. It would seem there are more rational
numbers then natural numbers. However, things are not always what they "seem”. Cantor gave a

Yin logie the contrapositive of P implies @ is that not () inplies not P. In symbols, P = @ iff ~ @ =~ P where
we denote the negation of P by ~ P. Here P is the statement 7 a finite set ™ whereas @ is the statement " set is not
equivalent to any of its proper subsets”. So, ~ (@ is that there exists & proper subset for which the set is equivalent
and ~ P is that the set is infinite.

]



net hard to show that f s levertiblie, so card{¥) = card{#Z). Therefore, by the definition, both
B wod & are infinite sots,
Before we investigate snother exsmple. we propose avother definition which will be helplul.

Definition 2.3. We say thot o set X 48 conntable if card(X) £ card(N). When card(X) =

card(M) we say XN s countably infinite. When card(X) = card(N} we have thet X is a finite
sefo If card(X) = card(N), then X s wicountable,

card(M), then theve is an lovertible funetion f B - X So for each 2 ¢ X there s & unigue
n € Nanch that f(n) = x (n exists because fis onto, it s woigue because fis one-to-one). Thng
we can write o == f{n) = u,. In other words, X = {29, 5,00, .. ). Conversely, If we can list off
aset X o= {wg, a1, 00,00 ), then we get o one-to-one funetion f 1 X -» M defined by f{e,) = n,
so that card(X) £ card(M) {with equality it X s infintte).

Now let's consider snothor mapping which may seom even more impossible. Recall that the
rational mnnbers are defined as @ = {p/g | p.g € F and ¢ # 0}, Is it possible that there is a
one-to-one and onto funetion mapping between ™ aned 7 Since M is sparse on the munber line
(i.c., lor any n€ N, there are no natoral numbers beiween noand w4+ 1) and @ s dense (Le., for
any distinet a,& ¢ @, there exists an infinite nwnber of rational munbers botween a aud b)), it
certainly seems improbable that such o mapping may exist. However, lev us look at the figure
below,
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Figure 1: Listin

v off the rational nwnbers,

Here we have a plot of all polnts o the plane with integer coordinates. We start ab the origin
and gpiral eutward as shown above, Notice that the spival hits a sequence of coovdinates wlich
can be likened to fractions: () — . To get the enumeration we desive;, we need o make two
a/0 s not a rasional number, Second, it we

"
have already encountered a corresponding rational number, we skip over that redundait poiut,

additional rules. Fivst, we skip over the r-axis since



bijection between N and postive rational numbers (see the Additional Reading folder, the explicit
map is in my brother’s paper on Types of Infinity. see pages 2-3.). Once you have that it’s not hard
to prove

(e

=K.

Sometimes people say a demunerable set is being "countably infinite”.

— e e
Definition 1.9 (countable). A set S is suid to be countable iff S is finite or denumerable. If «
set S is not countable then it is said to be uncountable.

Be warned that Pete Clark’s articles posted in Additional Reading use Countable in place of Count-
ably Infinite.

1.4 uncountably infinite sets

The title of this section is somewhat superfuous since every uncountable set is necessarily infinite.
Uncountable sets are quite common.

Theorem 1 en anterval (0, 1) is uncountable. l

The proof, basically it stems from the decimal expansion of the real numbers (see the Additional
Reading folder, the explicit map is in my brother’s paper on Types of Infinity, see Theorem 2.5.).

The result above assures us the following definition is worthwhile:

Definition 1.11 (continuum ¢). We define the cardnality of the open interval (0,1) to be c.
B

The proof (0,1) is uncountable is not too easy, but once you have the unit interval it’s easy to get
other subsets of R.

Example 1.12. Show (0,1) = (5,8). To do this we want a one-one mapping that takes (0,1) as
its domain and (5,8) as its range. A line segment will do quite nicely. Let f(x) = max + b and fit

the point \
N f0)=5=b () =fm+5=8 flon= (g/ g )

Clearly f(x) = ..%‘L + 5 will provide a bijection of the open intervals. Its not hard to see this
construction works just the same for any open intervel (a,b). Thus the cardnality of any open
interval is c.

There are bijections from the open interval to closed intervals and half-open half-closed intervals
not too mention unions of such things. These mappings are not always as easy to find.

Example 1.13. Show (0,1) = R. First observe that (0,1) = (=5, 3) thus by transitivity of = is
suffices to show that (=3, %) = R. The graph of inverse langent comes to mind, it suggests we use

f(x) =tan™! () -WA:_F— /.,

This mapping has dom(f) = R and range(f) = (=%,%). This can be gleaned from the relation
between a function and its inverse. The verlical asymploles of tangent flip to become horizontal

tangents of the inverse function. Notice that

fla) = f(b) = tan™'(a) =tan™'(h) = a="0

L



by the graph and definition of inverse tangent. Also, ify € (=%, %) then clearly f(tan(y)) = y hence
[ is onto.

If vou can find me an explicit formula showing [a, b) is equivalent to [a, b] it would be worth some
points.

1.5 Cantor’s Theorem and transfinite arithmetic

[ﬁeﬁnition 1.14. Let A and B be sets. Then | : :f_ {Oj ( ﬂ
(1.) A= B iff A= B, otherwise A # B
(2.) ? B iff there exists an injection [ A —= B ‘F — * Xf € W (R)
(3) A<BifA<BandA+# B

e

Notice that the 111chct1cm took A as its domain. The direction is important here, it is not assumed
that f(A4) = B in part (2.). Thus, while we can form an inverse function from range(f) to A
that will not be a bijection from B to A since range(f) may not equal B in general. Transfinite
arithmetic enjoys many of the same rules as ordinary arithmetic, see the papers in Additional
Reading for more if you're interested.

Theorem 1.15 (Cantor’s Theorem). For every set A, A< P(A ] l i (N)

L_é

It then follows that we have an unending string of mfinities:

= N < P(N) < P(P(N)) < P(P(P(N))) < -
C
An obvious question to ask is "where does the continnn ¢ fit into this picture? It can be shown
that ¥, < ¢. To see this, note N, < ¢ since N € R we can restrict the identity function to an

injection from N into R and since R is not equivalent to N we have that ¥, < c.

Theorem 1.16 (Cantor-Schroder-Bernstein Theorem). If ﬁ = E and B < i,. then j = ﬁ}

B

This is a non-trivial Theorem despite it’s hunble appearance. A proof written by my brother is
posted in the Additional Reading folder, Its proof is also in one of Pete Clark’s articles.

Application of Theorem: We can show P(N) < (0,1) and P(N) > (0.1). Thus P(N) = (0.1) = c.

Note to Self: the phrase "we” means students in the sentence above. Turn this into a homework
problem.

Definition 1.17 (trichotomy property of N). If m.n € N then m = n, m=mn, orm < 'n,—)

The following is called the Comparability Thenrem

LThemem 1.18. If A and B are any two sets. then A>B A=1, or A<D A

It turns out that it is impossible to prove this Theorem in the Zermelo Fraenkel set theory unless
we assume the Axiom of Choice is true.




Axiom of Choice: If A is a collection of non-empty sets, then there exists a function F'
( the choice function) from A to Uqe4A4 such that for every A € A we have F(A) € A.

This axiom does lead to some unusual results. For example, the Banach-Tariski paradox which
says that a ball can be cut into pieces and reassembled into two balls such that the total volume is
doubled. (don’t worry these "cuts” are not physically reasonable). Or the weird result that every
subset of R can be reordered such that it has a smallest element.

e ] =
| Theorem 1.19. If there exists a function from a set A onto a set B, then B < A.]

Notice surjectivity suggests that there is at least one thing in the domain to map to each element
in the range B. It could be the case that more than one thing maps to each element in B, but
certainly at least one thing in A maps to a given element in B. If the fibers in A are really "hig”

g

then inequality in the Theorem would become a strict <. s 0 KUTH ;

Remark 1.20. Confession: we used the axiom of choice in Lecture 3 when we constructed S
to create the injective function related an arbitrary function f : A — B. In principle there were
infinitely many fibers, we claimed that there existed a section that cul through the fibers such that
each fiber was intersected just once. The choice function gives us the existence of such a section.
Notice the non-constructive nature of that particular corner of the argument. We have no specific
mechanism to select an element of the fiber. Now for particular ezamples the choice function can be
explicitly constructed and in such a context we wouldn't really insist we were relying on the Aziom
of Choice.

Remark 1.21 (Continuum Hypothesis). The Continuum Hypothesis states that ¢ is the next
transfinite number beyond R,. There is no other infinite set between the rationals and the reals. This
was conjectured by Cantor, but only later did the work of Godel(1930's) and Cohen(1960’s) elucidate
the 1ssue. Godel showed that the Continuwm Hypothesis was undecidable but relatively consistent
in Zermelo Frankael set-theory. Then later Paul Cohen showed that the Continuum Hypothesis was
independent of the Aziom of Choice relative to Zermelo-Frankael set theory modulo the Aziom of
Choice. The Continuum Hypothesis and the Azxiom of Choice continue to be widely belicved since
they are important "big quns”™ for certain crucial steps in hard theorems.

Well, I hope you don’t let this Lecture influence your expectations of my expectations for other
Lectures too much. I have laken a very laid-back altitude aboul proofs here. I will be more careful
generally. This material is more about being "well-rounded” mathematically speaking.

[wg]



Following these rules, we obtain o lst 1,0, =1, —=2,2,1/2,—1/2 ete., so the mapping 0 — 1§,
Py 0, 200 1, ote gives us a funciion hrom M to €. This funetion is one-to-one becanse we skip
over any rational minnber we have alveady scen, and it s oo because every rational tumber
ean be exprossed as o/y for some integers o and y (e, we will eventually see any element of ).
Thoerefore, M oand Q@ are both infinite and card(B) = card{)). This means that € is countable -
although we suggest that you not try doing so. However, if vou did, it 1s no more difficult thar
counting atl the elements in M. We might also note that this way of lsting € unlike the way
we Hst M, has nothing to do with the naturad < ordering of real numbers,

I is now time Lo name (“E-I‘I't,](.ﬁ*”, We eall 1030 Aleph vull or Ry (Ah-‘-!ph iz the Hrst letter of
the Hebrew alphabet), In fact, ¥y Is the smallest cardinality for inBnite scts, 1T we allow A to
denote that algebraie munbers (e, the set of all roots of polynomials with rational coefficients),
wo can state that card{®) = card(E} = card(Z) = card{Q) = card(A) = ¥y, In other words, M,
o, Z. €3, aned A& (as well as many other sets) are all inflode with the same cardinality of 8p.

It would now be quite intuitive to helieve that there is ondy one cardinadity for all infinite
sets, In order to investigate this further, let us define power sets. Given any '-it"l' X, il pt)we-r

set, P(X) is the set of all of the »'a‘ul‘mc*‘l'q of X. For mstance. let X = {a. b, ¢}, Then P(X) =
10, {ah, bt el {a b} taed, {be) {o, b 0} ) where 8 = {1} s the empty set (1o, tho set with no
elewents), A few more (_J\nllll].)ll,‘.h would cpickly verify that, if card(X) = n, then card{P(X)) =
2%, This leads inunediately to Cantor’s fanous theorem.

Theorem 2.4, Let X be any set and let P{X} denote the power sebt of X, Then card(X) <
card(P(X)). In other words, the power set of X is always larger than X ilself?

Cantor’s thoorem tells us that for any set X card{(N') < card{P(X)) = card(P{P(X))) < - -
aned g0, i partieudar, card{M) < card(P(M)) < card{P{P(HN))) < -+, Since card(l) = ¥y is
countable infinity, card{F(N}) must an uncountable infinity, This also establishes that there are
infinitely many distinet nfinite cardinalities and that no matter how big our set Is, its power
seb s even larger, What Is truly intriguing - and beyond the scope of this paper — is that some
collections are too large to be setsl There 13 no such thing as the “set of all sets”. Assuming
the existence of such an object leads to a contradiction. We leave it to the interested reader to
mvestigate this further [Halmos, 2011)0 Waitl Did you see it? 10 Ry = card (M) <0 card{P(1)),
then there mast be something larger than ¥y, Let ws now use Cantor's disgonalization arpunent
to show that B is nncountable (e, card{M) < card(R)).

Theovemn 2.5. The seb of real numbers is uneountoble.

Proof; For sake of contradiction, suppose that B is countable, Therefors, every subset of B is
countable and in particular, I = [U, 1} is comntable. This means wo can list the elements of 7
say 1 == fn,a s, .- ).

I.\‘mtn, every u-ml mnher has o declmal expansion. In fact, it has 2 unique decimal expansion
if we do not allow trailing 0's (for example, 12,39 = 12.4). Consider a; € T 50 that O < x; < 1.
Expand a2y (without t:.t.‘z't-lilit'a.g 0'3) mlt‘.l geb wy == Oudlyydyn Lig - - =gl 10 1-{—:1,:;]() """ 24 1410 -3 -:E--- ‘e
where each digit di; £ {0,1,...,9}. Now foeus on the i* n:lur..umﬂ digit of the ™ ntmber m our

th

“The proal ol vem {which we amnil) b5 surprisingly shople amd oses an ingeedons Ssell-relerencing”

trick,



ligt.: -
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ay o= Oy d:;g(r:}',:;;‘;)r‘l;g.l Co
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Define y to be | if% = 0 and y = diy — 1 ovherwize, Then y == OQungeys ... 18 2 renl number
in I ={0,1), We chose y's digita so that it does not end in traiing 9% (this also keeps ns from

Noticoe that y £ o; for eachi i = 12, ... gince y and @ have differing Fth
on the Bat and so our list is incomplete (contradiction), ¢

cdigits. Thus ¢ 18 not,

Another way to extablish that B is uscountable is to show card () = card(P(N)).% This again
shows thal B is strictly larger than M. We call the cardinadity of the real numbers continum
and denote it by card{R) = card(P(N}) = 2%

Again, veeall that Z = {. .., -3, -2, 1,0, 1, 2,3,... } is the set of integers and since we can
list them off: 0, -1,1, -2,2, ~3.3,... wo koow that 7 is countable. As we have scen, £ s also
countable, as we already listed them off. In fact, from our ennmceration of @ we niay have
already anticipated that 2% = Z % Z = {(p,¢) | pg € B} i countable: card(Z7) = card(M), To
show this concretely, plot the elements of Z2 as grid points in the plane and then st them off
by spiraling outward.
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Figure 1: Z° = {(0,0), (1,0), (1, 1. (0, 1), (=L, 1).... } is countable.

Similarly, reealling that N = {0, 1,2, ...}, one can show that £ MY - N defined by f(x, y) =
;5(‘.?:‘3 4 2oy Ay ok 32 b y) Is an nvertible fimction so that card () = card (N).

More gencrally, for non-empty sets X and ¥ owhere at least one is infinite, one can show that
the cardinality of X = ¥ is the same as the maximwm of the cardinalities of X and Y (this is

"Without getting into the details of such a proof, here is the e First, one can fnd an invertible funetion
Beiween B aned the itorval £ = §0,2) so that B and 1 bave the same eacdinnlity. Next, cacl clement of b g /
can be represented inoa binaey cxpanston: b= bpnbe - - = Bad® £ b2 27 e cach binary igit &y being
pither 0 or b Chreale aset B = kg B by = 1} o each element of £ s sasociated with asubset of BLOWith a
littde effort one can show this associntion i ooe-ro-one and onto,




