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preface

Before we begin, I should warn you that I assume a few things from the reader. These notes are
intended for someone who has already grappled with the problem of constructing proofs. I assume
you know the difference between = and <. I assume the phrase ”iff” is known to you. I assume
you are ready and willing to do a proof by induction, strong or weak. I assume you know what
R, C, Q, N and Z denote. I assume you know what a subset of a set is. I assume you know how
to prove two sets are equal. I assume you are familar with basic set operations such as union and
intersection. More importantly, I assume you have started to appreciate that mathematics is more
than just calculations. Calculations without context, without theory, are doomed to failure. At a
minimum theory and proper mathematics allows you to communicate analytical concepts to other
like-educated individuals.

Some of the most seemingly basic objects in mathematics are insidiously complex. We’ve been
taught they’re simple since our childhood, but as adults, mathematical adults, we find the actual
definitions of such objects as R or C are rather involved. I will not attempt to provide foundational
arguments to build numbers from basic set theory. I believe it is possible, I think it’s well-thought-
out mathematics, but we take the existence of the real numbers as a given truth for these notes.
We assume that R exists and that the real numbers possess all their usual properties. In fact, 1
assume R, C, Q, N and Z all exist complete with their standard properties. In short, I assume we
have numbers to work with. We leave the rigorization of numbers to a different course.

These notes are offered for the Spring 2015 semester at Liberty University. These are a major
revision of my older linear algebra notes. They reflect the restructuring of the course which I
intend for this semester. In particular, there are three main parts to this course:

(I.) matrix theory
I1.) abstract linear algebra
( g

(ITI1.) applications (actually, we’ll mostly follow Damiano and Little Chapters 4,5 and 6, we just
use Chapter 8 on determinants and §11.7 on the real Jordan form in the Spring 2015
semester)

Each part is paired with a test. Each part is used to bring depth to the part which follows. Just a
bit more advice before I get to the good part. How to study? I have a few points:

e spend several days on the homework. Try it by yourself to begin. Later, compare with your
study group. Leave yourself time to ask questions.

e come to class, take notes, think about what you need to know to solve problems.

e assemble a list of definitions, try to gain an inuitive picture of each concept, be able to give
examples and counter-examples

e learn the notation, a significant part of this course is learning to deal with new notation.

e methods of proof, how do we prove things in linear algebra? There are a few standard proofs,
know them.

e method of computation, I show you tools, learn to use them.



e it’s not impossible. You can do it. Moreover, doing it the right way will make the courses

which follow this easier. Mathematical thinking is something that takes time for most of us
to master. You began the process in Math 200 or 250, now we continue that process.

style guide

I use a few standard conventions throughout these notes. They were prepared with IATEX which
automatically numbers sections and the hyperref package provides links within the pdf copy from
the Table of Contents as well as other references made within the body of the text.

I use color and some boxes to set apart some points for convenient reference. In particular,

1

3

4

definitions are in green.

. remarks are in red.

theorems, propositions, lemmas and corollaries are in blue.

proofs start with a Proof: and are concluded with a [.

However, I do make some definitions within the body of the text. As a rule, I try to put what I
am defining in bold. Doubtless, I have failed to live up to my legalism somewhere. If you keep a
list of these transgressions to give me at the end of the course it would be worthwhile for all involved.

The symbol [J indicates that a proof is complete. The symbol V indicates part of a proof is done,
but it continues.

reading guide

A number of excellent texts have helped me gain deeper insight into linear algebra. Let me discuss
a few of them here.

1.

Damiano and Little’s A Course in Linear Algebra published by Dover. 1 chose this as the
required text in Spring 2015 as it is a well-written book, inexpensive and has solutions in
the back to many exercises. The notation is fairly close to the notation used in these notes.
One noted exception would be my [T], g is replaced with [T]g In fact, the notation of
Damiano and Little is common in other literature I've read in higher math. I also liked the
appearance of some diagrammatics for understanding Jordan forms. The section on minimal
and characteristic polynomials is lucid. I think we will enjoy this book in the last third of

the course.

. Berberian’s Linear Algebra published by Dover. This book is a joy. The exercises are chal-

lenging for this level and there were no solutions in the back of the text. This book is full of
things I would like to cover, but, don’t quite have time to do.

. Takahashi and Inoue’s The Manga Guide to Linear Algebra. Hillarious. Fun. Probably a

better algorithm for Gaussian elimnation than is given in my notes.



10.

11.

12.

13.

. Axler Linear Algebra Done Right. If our course was a bit more pure, I might use this. Very

nicely written. This is an honest to goodness linear algebra text, it is actually just about
the study of linear transformations on vector spaces. Many texts called ”linear algebra” are
really about half-matrix theory. Admittedly, such is the state of our course. But, I have no
regrets, it’s not as if I'm teaching matrix techinques that the students already know before
this course. Ideally, I will openly admit, it would be better to have two courses. First, a
course on matrices and applications. Second, a course like that outlined in this book.

. Hefferon’s Linear Algebra: this text has nice gentle introductions to many topics as well as

an appendix on proof techniques. The emphasis is linear algebra and the matrix topics are
delayed to a later part of the text. Furthermore, the term linear transformation as supplanted
by homomorphism and there are a few other, in my view, non-standard terminologies. All
in all, very strong, but we treat matrix topics much earlier in these notes. Many theorems
in this set of notes were inspired from Hefferon’s excellent text. Also, it should be noted the
solution manual to Hefferon, like the text, is freely available as a pdf.

. Anton and Rorres’ Linear Algebra: Applications Version or Lay’s Linear Algebra, or Larson

and Edwards Linear Algebra, or... standard linear algebra text. Written with non-math
majors in mind. Many theorems in my notes borrowed from these texts.

Insel, Spence and Friedberg’s Elementary Linear Algebra. This text is a little light on appli-
cations in comparison to similar texts, however, the theory of Gaussian elimination and other
basic algorithms are extremely clear. This text focus on column vectors for the most part.

. Insel, Spence and Friedberg’s Linear Algebra. It begins with the definition of a vector space

essentially. Then all the basic and important theorems are given. Theory is well presented in
this text and it has been invaluable to me as I've studied the theory of adjoints, the problem
of simultaneous diagonalization and of course the Jordan and rational cannonical forms.

. Strang’s Linear Algebra. If geometric intuition is what you seek and/or are energized by then

you should read this in paralell to these notes. This text introduces the dot product early
on and gives geometric proofs where most others use an algebraic approach. We’ll take the
algebraic approach whenever possible in this course. We relegate geometry to the place of
motivational side comments. This is due to the lack of prerequisite geometry on the part of
a significant portion of the students who use these notes.

my advanced calculus notes. I review linear algebra and discuss multilinear algebra in some
depth. TI've heard from some students that they understood linear in much greater depth
after the experience of my notes. Ask if interested, 'm always editing these.

Olver and Shakiban Applied Linear Algebra. For serious applications and an introduction to
modeling this text is excellent for an engineering, science or applied math student. This book
is somewhat advanced, but not as sophisticated as those further down this list.

Sadun’s Applied Linear Algebra: The Decoupling Principle this is a second book in linear
algebra. It presents much of the theory in terms of a unifying theme; decoupling. Probably
this book is very useful to the student who wishes deeper understanding of linear system
theory. Includes some Fourier analysis as well as a Chapter on Green’s functions.

Curtis’ Abstract Linear Algebra. Great supplement for a clean presentation of theorems.
Written for math students without apology. His treatment of the wedge product as an abstract
algebraic system is .



14. Roman’s Advanced Linear Algebra. Treats all the usual topics as well as the generalization
to modules. Some infinite dimensional topics are discussed. This has excellent insight into
topics beyond this course.

15. Dummit and Foote Abstract Algebra. Part III contains a good introduction to the theory of
modules. A module is roughly speaking a vector space over a ring. I believe many graduate
programs include this material in their core algebra sequence. If you are interested in going to
math graduate school, studying this book puts you ahead of the game a bit. Understanding
Dummit and Foote by graduation is a nontrivial, but worthwhile, goal.

And now, a picture of Hannah in a shark,

I once told linear algebra that Hannah was them and my test was the shark. A wise student prayed
that they all be shark killers. 1 pray the same for you this semester. I've heard from a certain
student this picture and comment is unsettling. Therefore, I add this to ease the mood:

As you can see, Hannah survived to fight new monsters.
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Chapter 1

foundations

In this chapter we settle some basic notational issues. There are not many examples in this chapter
and the main task the reader is assigned here is to read and learn the definitions and notations.

1.1 sets and multisets

A set is a collection of objects. The set with no elements is called the empty-set and is denoted ().
If we write « € A then this is read "z is an element of A”. In your previous course you learned that
{a,a,b} = {a,b}. In other words, there is no allowance for repeats of the same object. In linear
algebra, we often find it more convenient to use what is known as a multiset. In other instances
we’ll make use of an ordered set or even an ordered mulitset. To summarize:

1. a set is a collection of objects with no repeated elements in the collection.
2. a multiset is a collection of objects. Repeats are possible.

3. an ordered set is a collection of objects with no repeated elements in which the collection
has a specific ordering.

4. an ordered multiset is a collection of objects which has an ordering and possibly has
repeated elements.

Notice, every set is a multiset and every ordered set is an ordered multiset. In the remainder of
this course, we make the slight abuse of langauge and agree to call an ordinary set a set with
no repeated elements and a multiset will simply be called in sequel a set. This simplifies our
langauge and will help us to think betterﬂ

Let us denote sets by capital letters in as much as is possible. Often the lower-case letter of the
same symbol will denote an element; a € A is to mean that the object a is in the set A. We can
abbreviate a; € A and as € A by simply writing a1, as € A, this is a standard notation. The union
of two sets A and B is denoted?] AU B = {z|z € A or € B}. The intersection of two sets is

Lthere is some substructure to describe here, multisets and ordered sets can be constructed from sets. However,
that adds little to our discussion and so I choose to describe multisets, ordered sets and soon Cartesian products
formally. Formally, means I describe there structure without regard to its explicit concrete realization.

Znote that S = {x € R : x meets condition P} = {x € R | = meets condition P}. Some authors use : whereas I
prefer to use | in the set-builder notation.

13



14 CHAPTER 1. FOUNDATIONS

denoted AN B = {z|z € A and v € B}. It sometimes convenient to use unions or intersections of
several sets:

U Uy = {x | there exists a« € A with x € Uy}

acA

ﬂ Uy = {z | for all & € A we have x € U, }
a€cl

we say A is the index set in the definitions above. If A is a finite set then the union/intersection
is said to be a finite union/interection. If A is a countable set then the union/intersection is said
to be a countable union/ interectionﬂ

Suppose A and B are both sets then we say A is a subset of B and write A C B iff a € A implies
a € Bforalla e A. If A C B then we also say B is a superset of A. If A C B then we say
AC B iff A# B and A # (). Recall, for sets A, B we define A = B iff a € A implies a € B for all
a € A and conversely b € B implies b € A for all b € B. This is equivalent to insisting A = B iff
A C B and B C A. Note, if we deal with ordered sets equality is measured by checking that both
sets contain the same elements in the same order. The difference of two sets A and B is denoted
A — B and is defined by A— B ={a€ A| suchthatagéB}ﬂ

A Cartesian product of two sets A, B is the set of ordered pairs (a,b) where a € A and b € B.
We denote,
AxB={(a,b) |a€ A, be B}

Likewise, we define
AxBxC={(a,byc)|ac A be B, ceC}

We make no distinction between A x (B x C) and (A x B) x C. This means we are using the
obvious one-one correspondence (a, (b, c)) <> ((a,b),c). If Ay, Ag,... A, are sets then we define
Ay X Ag X --- X A, to be the set of ordered n-tuples:

[T4i=41 < x Ay ={(a1,...,an) | a; € A; for all i € N}
=1

Notice, I define N = {1,2,...} as the set of natural numbers whereas N,, is the set of natural
numbers upto and including n € N; N, = {1,...,n}. If we take the Cartesian product of a set A
with itself n-times then it is customary to denote the set of all n-tuples from A as A™:

Ax- - x A= A".
N——

n—copies

Real numbers can be constructed from set theory and about a semester of mathematics. We will
accept the following as axioméﬂ

3recall the term countable simply means there exists a bijection to the natural numbers. The cardinality of such
a set is said to be N,

“other texts somtimes use A— B= A\ B

San axiom is a basic belief which cannot be further reduced in the conversation at hand. If you’d like to see a
construction of the real numbers from other math, see Ramanujan and Thomas’ Intermediate Analysis which has
the construction both from the so-called Dedekind cut technique and the Cauchy-class construction. Also, I’ve been
informed, Terry Tao’s Analysis I text has a very readable exposition of the construction from the Cauchy viewpoint.
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Definition 1.1.1. real numbers

The set of real numbers is denoted R and is defined by the following axioms:

AT) one is multiplicative identity; al = a for all a € R.

A8

(A1) addition commutes; a +b = b+ a for all a,b € R.

(A2) addition is associative; (a +b) +c¢=a+ (b+ ¢) for all a,b,c € R.

(A3) zero is additive identity; a +0 =04 a = a for all a € R.

(A4) additive inverses; for each a € R there exists —a € R and a + (—a) = 0.
(A5) multiplication commutes; ab = ba for all a,b € R.

(A6) multiplication is associative; (ab)c = a(bc) for all a,b,c € R.

(A7)

(A8)

multiplicative inverses for nonzero elements;
for each a # 0 € R there exists % € R and a% =l

(A9) distributive properties; a(b+ ¢) = ab+ ac and (a + b)c = ac + bc for all a,b,c € R.
(A10) totally ordered field; for a,b € R:

(i) antisymmetry; if a < b and b < a then a = b.
(ii) transitivity; if a < b and b < ¢ then a < c.
(iii) totality; a <borb<a

(A11) least upper bound property: every nonempty subset of R that has an upper bound,
has a least upper bound. This makes the real numbers complete.

Modulo A11 and some math jargon this should all be old news. An upper bound for a set S C R
is a number M € R such that M > s for all s € S. Similarly a lower bound on S is a number
m € R such that m < s for all s € S. If a set S is bounded above and below then the set is said
to be bounded. For example, the open set (a,b) is bounded above by b and it is bounded below
by a. In contrast, rays such as (0,00) are not bounded above. Closed intervals contain their least
upper bound and greatest lower bound. The bounds for an open interval are outside the set.

We often make use of the following standard sets:

e natural numbers (positive integers); N ={1,2,3,...}.

e natural numbers up to the number n; N, ={1,2,3,...,n—1,n}.
e integers; Z=1{...,—2,-1,0,1,2,...}. Note, Z~o = N.

e non-negative integers; Z>o = {0,1,2,...} = NU{0}.

e negative integers; Z.o = {—1,-2,-3,...} = —N\.

e rational numbers; Q = {% | p,q € Z, q # 0}.
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irrational numbers; J ={z € R | = ¢ Q}.

open interval from a to b; (a,b) = {z]a < x < b}.

half-open interval; (a,b] = {z | a <z <b} or [a,b) = {z | a < x < b}.

closed interval; [a,b] = {z | a < x < b}.

We define R? = {(z,y) | #,y € R}. I refer to R? as "R-two” in conversational mathematics. Like-
wise, "R-three” is defined by R3 = {(z,y, 2) | x,y, 2 € R}. We are ultimately interested in studying
"R-n” where R" = {(z1,22,...,2,) | ; € R fori=1,2,...,n}. In this course if we consider R
it is assumed from the context that m € N.

In terms of cartesian products you can imagine the z-axis as the number line then if we paste
another numberline at each z value the union of all such lines constucts the plane; this is the
picture behind R?2 = R x R. Another interesting cartesian product is the unit-square; [0, 1]? =
[0,1] x [0,1] = {(z,y) |0 <2 <1, 0<y<1}. Sometimes a rectangle in the plane with it’s edges
included can be written as [x1, x2] X [y1, y2]. If we want to remove the edges use (z1,z2) X (y1,y2).

Moving to three dimensions we can construct the unit-cube as [0,1]>. A generic rectangu-
lar solid can sometimes be represented as [z1,z2] X [y1,y2] X [21,22] or if we delete the edges:
(z1,22) X (y1,92) X (21, 22).

1.2 functions

Suppose A and B are sets, we say f : A — B is a function if for each a € A the function f
assigns a single element f(a) € B. Moreover, if f : A — B is a function we say it is a B-valued
function of an A-variable and we say A = dom(f) whereas B = codomain(f). For example,
if f:R? — [0,1] then f is real-valued function of R%2. On the other hand, if f : C — R? then
we’d say f is a vector-valued function of a complex variable. The term mapping will be used
interchangeably with function in these notes. Suppose f: U — V and U C S and V C T then we
may consisely express the same data via the notation f: U C S —V CT.

Definition 1.2.1.

Suppose f: U — V. We define the image of U; under f as follows:
f(Uy) ={y €V | there exists x € Uy with f(z) = y}.
The range of f is f(U). The inverse image of V; under f is defined as follows:
i) ={zeU]| f(z) e N},

The inverse image of a single point in the codomain is called a fiber. Suppose f: U — V.
We say f is surjective or onto V] iff there exists U; C U such that f(U;) = V;. If a function
is onto its codomain then the function is surjective. If f(x1) = f(x2) implies 1 = x5
for all z1,20 € Uy C U then we say f is injective on U; or 1 — 1 on U;. If a function
is injective on its domain then we say the function is injective. If a function is both
injective and surjective then the function is called a bijection or a 1-1 correspondance.
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Example 1.2.2. Suppose f : R? = R and f(x,y) = = for each (z,y) € R2. The function is not
injective since f(1,2) = 1 and f(1,3) = 1 and yet (1,2) # (1,3). Notice that the fibers of f are
sitmply vertical lines:

F @) = {(z,y) € dom(f) | f(z,y) = 2o} = {(z0,9) | y € R} = {wo} xR

Example 1.2.3. Suppose f : R = R and f(z) = Va2 + 1 for each x € R. This function is not
surjective because 0 ¢ f(R). In contrast, if we construct g : R — [1,00) with g(x) = f(x) for each
x € R then can argue that g is surjective. Neither f nor g is injective, the fiber of x, is {—2o, o}
for each x, # 0. At all points except zero these maps are said to be two-to-one. This is an
abbreviation of the observation that two points in the domain map to the same point in the range.

Example 1.2.4. Suppose f : R? — R? and f(z,y,2) = (2% + 42, 2) for each (x,y,z) € R3. You
can easily see that range(f) = [0,00] x R. Suppose R? € [0,00) and z, € R then

FHHR?, 20)}) = S1(R) x {2}

where S1(R) denotes a circle of radius R. This result is a simple consequence of the observation
that f(x,y,z) = (R?, z,) implies 2> + y> = R? and z = 2,.

Function composition is one important way to construct new functions. If f: U -V and g: V —
W then go f : U — W is the composite of g with f. We also create new functions by extending or
restricting domains of given functions. In particular:

Definition 1.2.5.

Let f: U CR®™ - V CR™ be a mapping. If R C U then we define the restriction of f
to R to be the mapping f|g : R — V where f|gr(z) = f(x) for all x € R. If U C S and
V C T then we say a mapping g : S — T is an extension of f iff g, ) = f-

When I say g|iom(s) = f this means that these functions have matching domains and they agree at
each point in that domain; g|gem(s)(z) = f(z) for all z € dom(f). Once a particular subset is chosen
the restriction to that subset is a unique function. Of course there are usually many susbets of
dom(f) so you can imagine many different restictions of a given function. The concept of extension
is more vague, once you pick the enlarged domain and codomain it is not even necessarily the case
that another extension to that same pair of sets will be the same mapping. To obtain uniqueness
for extensions one needs to add more stucture. This is one reason that complex variables are
interesting, there are cases where the structure of the complex theory forces the extension of a
complex-valued function on a one-dimensional subset of C of a complex variable to be unique. This
is very surprising. An even stronger result is available for a special type of function called a linear
transformation. We’ll see that a linear transformation is uniquely defined by its values on a basis.
This means that a linear transformation is uniquely extended from a zero-dimensional subset of a
vector spaceﬂ

Definition 1.2.6.

Let f: U CR"™ - V C R™ be a mapping, if there exists a mapping g : f(U) — U such that
fog=1Idyy) and go f = Idy then g is the inverse mapping of f and we denote g = fL

Stechnically, we don’t know what this word ”dimension” means just yet. Or linear transformation, or vector space,
all in good time...
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If a mapping is injective then it can be shown that the inverse mapping is well defined. We define
f~1(y) = x iff f(x) =y and the value x must be a single value if the function is one-one. When a
function is not one-one then there may be more than one point which maps to a particular point
in the range.

Notice that the inverse image of a set is well-defined even if there is no inverse mapping. Moreover,
it can be shown that the fibers of a mapping are disjoint and their union covers the domain of the

mapping:

f) # fz) = fHyinf =0 U £y} =dom(f).

y € range(f)
This means that the fibers of a mapping partition the domain.

Example 1.2.7. Consider f(x,y) = x? + y? this describes a mapping from R? to R. Observe that
FHR?} = {2® + 9% = R? | (z,y) € R%}. In words, the nonempty fibers of f are concentric circles
about the origin and the origin itself.

Technically, the emptyset is always a fiber. It is the fiber over points in the codomain which are
not found in the range. In the example above, f~!(—o00,0) = (). Perhaps, even from our limited
array of examples, you can begin to appreciate there is a unending array of possible shapes, curves,
volumes and higher-dimensional objects which can appear as fibers. In contrast, as we will prove
later in this course, the inverse image of any linear transformation is essentially[] a line, plane or
n-volume containing the origin.

Definition 1.2.8.

Let f: U CR" - V C R™ be a mapping. A cross section of the fiber partiition is a
subset S C U for which SN f~!{v} contains a single element for every v € f(U).

How do we construct a cross section for a particular mapping? For particular examples the details
of the formula for the mapping usually suggests some obvious choice. However, in general if you
accept the axiom of choice then you can be comforted in the existence of a cross section even in
the case that there are infinitely many fibers for the mapping. In this course, we’ll see later that
the problem of constructing a cross-section for a linear mapping is connected to the problem of
finding a representative for each point in the quotient space of the mapping.

Example 1.2.9. An easy cross-section for f(z,y) = x? + 9% is given by any ray eminating from
the origin. Notice that, if ab # 0 then S = {t(a,b) | t € [0,00)} interects the a circle of radius
R% = t?(a® + b?) at the point (ta,tb)

Proposition 1.2.10.

Let f : U C R" — V C R™ be a mapping. The restriction of f to a cross section S
of U is an injective function. The mapping f : U — f(U) is a surjection. The mapping
fls : S — f(U) is a bijection.

The proposition above tells us that we can take any mapping and cut down the domain and/or
codomain to give the modfied function the structure of an injection, surjection or even a bijection.

"up to an isomorphism which is roughly speaking a change of notation
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Example 1.2.11. Continuing with our evample, f : R?> — R with f(x,y) = z% + 32 is neither
surjective or injective. However, just to make a choice, S = {(t,0) | t € [0,00)} then clearly
f:8 —10,00) defined by f(x,y) = f(x,y) for all (z,y) € S is a bijection.

Definition 1.2.12.

Let f: U CR" = V C R™ be a mapping then we say a mapping ¢ is a local inverse of f
iff there exits S C U such that g = (f|g)~!.

Usually we can find local inverses for functions in calculus. For example, f(z) = sin(x) is not 1-1
therefore it is not invertible. However, it does have a local inverse g(y) = sin~!(y). If we were more

-1
pedantic we wouldn’t write sin™!(y). Instead we would write g(y) = <sin - 7r/2]) (y) since

the inverse sine is actually just a local inverse. To construct a local inverse for some mapping we
must locate some subset of the domain upon which the mapping is injective. Then relative to that
subset we can reverse the mapping. I mention this concept in passing so you may appreciate its
absense from this course. In linear algebra, the existence of a local inverse for a linear transformation
will imply the existence of a global inverse. The case we study in this course is very special. We
provide the bedrock on which other courses form arguments. Calculus linearizes problems locally,
so, to understand local problems we must first understand linear problems. That is our task this
semester, to unravel the structure of linear transformations as deeply as we dare.

1.3 finite sums

In this section we introduce a nice notation for finite sumg¥ of arbitrary size. Most of these
statements are ”"for all n € N” thus proof by mathematical induction is the appropriate proof tool.
I offer a few sample arguments and leave the rest to the reader. Let’s begin by giving a precise
definition for the finite sum Ay + Ag + - + A,:

Definition 1.3.1.

Let A; for i =1,2,...n be objects which allow addition. We recursively define:

n+1 n

Z Ai=App1 + Z A;
Al il

for each n > 1 and 23:1 A; = A

The ”summation notation” or ”sigma” notation allows us to write sums precisely. In > | A; the
index 7 is called the dummy index of summation. One dummy is just a good as the next, it
follows that > i"; A; = >7i" s A;. This relabeling is sometimes called switching dummy variables,
or switching the index of summation from i to j. The terms which are summed in the sum are
called summands. For the sake of specificity I will assume real summands for the remainder of
this section. It should be noted the arguments given here generalize with little to no work for a
wide variety of other spaces where addition and multiplication by numbers is Well—deﬁnedﬂ

8the results of this section apply to objects which allow addition and multiplication by numbers, it is quite general
%in the middle part of this course we learn such spaces are called vector spaces
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Proposition 1.3.2.

Let A;, B; € R for each ¢« € N and suppose ¢ € R then for each n € N,
0 Socn ZA -3
=1
i=1 i=1

Proof: Let’s begin with (1.). Notice the claim is trivially true for n = 1. Inductively assume that
(1.) is true for n € N. Consider, the following calculations are justified either from the recursive
definition of the finite sum or the induction hypothesis:

n+1 n

D (Ai+Bi) =) (Ai+ Bi) + App1 + Buna

1=1 i=1

= <Z A+ Z Bi) + Ant1 + Baga

=1 =1
= (Z Ai) + Aps1 + (Z Bi) + Bni
i=1 i=1
n+1 n+1

=1 i=1

Thus (1.) is true for n + 1 and hence by proof by mathematical induction (PMI) we find (1.) is
true for all n € N. The proof of (2.) is similar. OJ

Proposition 1.3.3.
Let A;, B;j € R for 7,5 € N and suppose ¢ € R then for each n € N,

505
ZZABU —ZA ZBW

=1 j=1

Proof: The proof of (1.) proceeds by induction on n. If n = 1 then there is only one possible term,
namely Bp; and the sums trivially agree. Consider the n = 2 case as we prepare for the induction

step,
2 2 2

> Y Bij = [Bii+ Bis] = [Bi1 + Bia] + [Ba1 + Ba
=1 j=1 i=1

On the other hand,

2
Z Bi;j + Bsj] = [B11 + Ba1] + [Bi1 + Bail.
i—1

]

™
»
I

<
I

—
-
I

—
<.
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The sums in opposite order produce the same terms overall, however the ordering of the terms may
diﬁeﬂ Fortunately, real number-addition commutes.

Assume inductively that (1.) is true for some n > 1. Using the definition of sum throughout and
the induction hypothesis in transitioning from the 3-rd to the 4-th line:

n+ln+l n+1 n
Z Z Bij = Z |:Bz',n+1 + Z Bij:|
i=1 j=1 i=1 j=1
n+1 n+l n
= Zan+1 +ZZBU
i=1 j=1
n+1
= Z Bz n+1 + Z Bn+1,] + Z Z Bz]
i=1 1
n+1 "
= Z Bz n+1 + Z Bn+l,] + Z Z Bz]
1=1
n+1 "
= Z Biny1 + Z Bpy1; + ZBij
=1
n+1 n n+l
- Zan—H +ZZBU
7j=11i=1
n+1n+1
=22 By
j=1 i=1

Thus n implies n + 1 for (1.) therefore by proof by mathematical induction we find (1.) is true
for all n € N. In short, we can swap the order of finite sums. The proof of (2.) involves similar
induction arguments. [

From (1.) of the above proposition we find that multiple summations may be listed in any order.
Moreover, a notation which indicates multiple sums is unambiguous:

n

n n
A=) Ay
1

ij=1 i=1 j=
If we have more than two summations nested the same result holds. Therefore, define:

Z Ay iy, = Z Z Aiy iy

i1,...0=1 i1=1 ip=1

Remark 1.3.4.

The purpose of this section is primarily notational. I want you to realize what is behind the
notation and it is likely I assign some homework based on utilizing the recursive definition
given here. I usually refer to the results of this section as ” properties of finite sums”.

Yreordering terms in the infinite series case can get you into trouble if you don’t have absolute convergence.
Riemann showed a conditionally convergent series can be reordered to force it to converge to any value you might
choose.
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1.4 matrix notation

Matrices can be constructed from set-theoretic arguments in much the same way as Cartesian
Products. I will not pursue those matters in these notes. We will assume that everyone understands
how to construct an array of numbers.

Definition 1.4.1.

An m X n matrix is an array of objects with m rows and n columns. The elements in the
array are called entries or components. If A is an m x n matrix then A;; denotes the object
in the i-th row and the j-th column. The label 7 is a row index and the index j is a column
index in the preceding sentence. We usually denote A = [A;;]. The set m x n of matrices
with real number entries is denoted R ™*™. The set of m x n matrices with complex entries
is C ™*™. Generally, is S is a set then S™*" is the set of m x n arrays of objects from S.
If a matrix has the same number of rows and columns then it is called a square matrix.

Example 1.4.2. Suppose
1 2 3
A= [ 4 5 6 } '

We see that A has 2 rows and 3 columns thus A € R**3. Moreover, Aj1 = 1, Ajg = 2, A3 = 3,
Ao =4, Age =5, and Az = 6. It’s not usually possible to find a formula for a generic element in
the matriz, but this matriz satisfies A;j = 3(i — 1) + j for all 4, j.

In the statement ”for all ¢, 5" it is to be understood that those indices range over their allowed
values. In the preceding example 1 <¢ < 2and 1 <35 < 3.

Example 1.4.3. Let S be a set of cats. If A € S**% then A;j is a cat for all i, j.

Definition 1.4.4.

Two matrices A and B are equal if and only if they have the same size and A;; = B;; for
all 7, 7.

If you studied vectors before you should identify this is precisely the same rule we used in calculus
H]E Two vectors were equal iff all the components matched. Vectors are just specific cases of
matrices so the similarity is not surprising.

2
Example 1.4.5. Solve A = B where A = [ i g] } and B = [ v 3) ] Observe, A = B iff the

3y
following four equations are true:

.%':$2, y=3, 2 =3y, w=w
We can solve these by algebra. Of course, % = x implies x(x — 1) =0 hence x =0 or x = 1. The

y equation is easy to solve and thus z = 3(3) = 9. Finally, the only equation for w is w = w hence
there is mo restriction on w, it is a free variable. The solution as a set is given by

{(,3,9,w) | x=0,1 w € R}.

1T wrote a special subsection to help you see the geometry of vectors if you didn’t get a chance to see it already
in another course.
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Definition 1.4.6.

Let A € R ™*" then a submatrix of A is a matrix which is made of some rectangle of elements in
A. Rows and columns are submatrices. In particular,

1. An m x 1 submatrix of A is called a column vector of A. The j-th column vector is denoted
colj(A) and (col;(A)); = A;j for 1 <i < m. In other words,

Alk: All A21 e Aln
Ao Ayt Asy - Aoy

colg(A)=| " F | = a=]| H TF | = [coli (A)|cola(A)] - - - |coln(A)]
Amk Aml Am2 e Amn

2. An 1 xn submatrix of A is called a row vector of A. The i-th row vector is denoted row;(A)
and (row;(A)); = A;; for 1 < j <n. In other words,

A A -0 Ay rowy (A)

A1 Ay oo Aoy rows(A)
rowg(A) = [ Api Az - A | = A= : : : = |7

Am,l Am,? to Am,n TO’lUm(A)

Suppose A € R "™*" note for 1 < j < n we have colj(A) € R™*1 whereas for 1 < i < m we find
row;(A) € R1*". In other words, an m x n matrix has n columns of length m and n rows of length
m.

Example 1.4.7. Suppose A =[}22]. The columns of A are,

coli (A [ ],colg ):[ﬂ,cozg(A):[g].

row(A)=[1 2 3], rowy(Ad)=[4 5 6]

The rows of A are

Definition 1.4.8.

Let A € R ™™ then AT € R ™*™ is called the transpose of A and is defined by (AT);; =
Ajjforalll1 <i<mand1<j<n.

Example 1.4.9. Suppose A = [} 23] then AT = [é %}. Notice that

row (A) = coli (A1), rows(A) = coly(AT)

and

coly(A) = row1 (A1), cola(A) = rows(AT), cols(A) = rows(AT)

Notice (AT);; = Aj; = 3(j — 1) + i for all i, j; at the level of index calculations we just switch the
indices to create the transpose.

The preceding example shows us that we can quickly create the transpose of a given matrix by
switching rows to columns. The transpose of a row vector is a column vector and vice-versa.
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1.5 vectors

The first subsection in this section is intended to introduce the reader to the concept of geometric
vectors. I show that both vector addition and scalar multiplication naturally flow from intuitive
geometry. Then we abstract those concepts in the second subsection to give concrete definitions of
vector addition and scalar mulitplication in R".

1.5.1 geometric preliminaries

The concept of a vector is almost implicit with the advent of Cartesian geometry. Rene Descartes’
great contribution was the realization that geometry had an algebraic description if we make an
identification of points in the plane with pairs of real numbers. This identification is so ubiqgitious
it is hard to imagine the plane without imagining pairs of numbers. Euclid had no idea of z or y
coordinates, instead just lines, circles and constructive axioms. Analytic geometry is the study of
geometry as formulated by Descartes. Because numbers are identified with points we are able to
state equations expressing relations between points. For example, if h, k, R € R then the set of all
points (z,y) € R? which satisfy
(x —h)*+ (y— k)* = R?

is a circle of radius R centered at (h, k). We can analyze the circle by studying the algebra of the
equation above. In calculus we even saw how implicit differentiation reveals the behaviour of the
tangent lines to the circle.

Very well, what about the points themselves 7 What relations if any do arbitrary points in the
plane admit? For one, you probably already know about how to get directed line segments from
points. A common notation in highschool geometryE is that the line from point P = (Q1,Q2) to

another point Q = (Q1, Q2) is ]@ where we define:

PG=Q-P=(Qi—P1,Qs— Py).

A directed line-segment is also called a vector%]

Q=(Qu Q)

P = (P, )

124 dying subject apparently
13however, not every vector in this course is a directed line segment.
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Consider a second line segment going from @ to R = (Ry, R2) this gives us the directed line segment
of 627)2 =R—Q = (R1—Q1,R2—Q2). What then about the directed line segment from the original
point P to the final point R? How is ]ﬁ =R— P = (R; — P, Ry — P,) related to ]@ and Cﬁ?

Suppose we define addition of points in the same way we defined the subtraction of points:

(Vi Vo) + (Wi, W) = (Vi + Wi, Vo + W3). |

Will this definition be consistent with the geometrically suggested result fﬁ + Cﬁ% = P‘})E ? Con-
sider,

@4_@:(Ql_PlaQQ_P2)+(R1—Q1,R2—Q2)
=@ —Pi+R —Q1,Q2— P+ Ry — Q2)
=(R1—P1,Ry— P»)

— PH.

We find the addition and subtraction of directed line segments is consistent with the usual tip-tail
addition of vectors in the plane.

Q?: (R1— Q1. Ry — Qo)

Q=(Q1, Q)

P = (P, P)

What else can we do ? It seems natural to assume that ]@ + ]@ = 2]@ but what does
multiplication by a number mean for a vector? What definition should we propose? Note if

Pﬁ = (Ql — Pl,QQ — Pg) then .@ + f@ = 2@ implies 2(%) = (2(Q1 - Pl),Z(QZ - Pz))
Therefore, we define for ¢ € R,

e(V1, Va) = (cVi,cVh). |

This definition is naturally consistent with the definition we made for addition. We can understand
multiplication of a vector by a number as an operation which scales the vector. In other words,
multiplying a vector by a number will change the length of the vector. Multiplication of a vector
by a number is often called scalar multiplication. Scalars are numbers.
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v
/\f
S Pa
Scalar Muliiplicaiion by
Scalar Mulliplication b (:]7/
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/
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X

Vectors based at the origin are naturally identified with points: the directed line segment from
Q@ = (0,0) to P is naturally identified with the point P.

QP = (P1, Py) — (0,0) = (Py, P»).

In other words we can identify the point P = (P;, P») with the directed line segment from the
origin P = (P, P;). Unless context suggests otherwise vectors in this course are assumed to be
based at the origin.

1.5.2 n-dimensional space

Two dimensional space is R? = R x R. To obtain n-dimensional space we just take the Cartesian
product of n-copies of R.

Definition 1.5.1.

Let n € N, we define R” = {(z1,22,...,25) | z; € R for j = 1,2,...,n}. Ifv € R?
then we say v is an n-vector. The numbers in the vector are called the components;
v = (v1,v2,...,v,) has j-th component v;.

Notice, a consequence of the definition above and the construction of the Cartesian produc@ is
that two vectors v and w are equal iff v; = w; for all j. Equality of two vectors is only true if all
components are found to match. Addition and scalar multiplication are naturally generalized from
the n = 2 case. I use e; = (1,0) and ez = (0,1) for illustration below:

X2

T = vie + vaey

Sl

Va€o

v1€1 X1

1see my Math 200 notes or ask me if interested, it’s not entirely trivial
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Definition 1.5.2.

Define functions + : R” x R® — R” and - : R x R™ — R" by the following rules: for each
v,w € R™ and c € R:

(1) (v+w); =v; +w;j (2.) (ev); =cv;

for all j € {1,2,...,n}. The operation + is called vector addition and it takes two
vectors v, w € R™ and produces another vector v+w € R™. The operation - is called scalar
multiplication and it takes a number ¢ € R and a vector v € R™ and produces another
vector ¢ - v € R™. Often we simply denote ¢ - v by juxtaposition cv.

If you are a gifted at visualization then perhaps you can add three-dimensional vectors in your
mind. If you're mind is really unhinged maybe you can even add 4 or 5 dimensional vectors. The
beauty of the definition above is that we have no need of pictures. Instead, algebra will do just
fine. That said, let’s draw another picture, I already showed how we can write a two dimensional
vector as a sum of e; = (1,0) and es = (0, 1) on the previous page.

X3

U = vi1e; + Vaesy + Uses

<L

U3€3

X2

v1€1

/ V2€2
X1

Notice these pictures go to show how you can break-down vectors into component vectors which
point in the direction of the coordinate axis. In R?® we have e; = (1,0,0), e; = (0,1,0) and
es = (0,0,1). Vectors of lengthlﬂ one which point in the coordinate directions make up what is
called the standard basig % It is convenient to define special notation to describe the standard
basis in arbitrary dimension. First I define a useful shorthand,

Definition 1.5.3.

77/7

1 .
) ‘7 is called the Kronecker delta.
0 ,i#J

The symbol 6;; = {

For example, d20 = 1 while 12 = 0.

15the length of vectors is an important concept which we mine in depth later in the course
16for now we use the term ”basis” without meaning, in Chapter 5 we make a great effort to refine the concept.
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Definition 1.5.4.

Let e; € R™*! be defined by (€i); = di5. The size of the vector e; is determined by context.
We call ¢; the i-th standard basis vector.

Example 1.5.5. Let me expand on what I mean by ”context” in the definition above:

In R we have e; = (1) =1 (by convention we drop the brackets in this case)

In R? we have e; = (1,0) and e3 = (0, 1).

In R? we have e; = (1,0,0) and e3 = (0,1,0) and e3 = (0,0,1).

In R* we have e; = (1,0,0,0) and ex = (0,1,0,0) and e3 = (0,0,1,0) and ey = (0,0,0,1).

Example 1.5.6. Any vector in R™ can be written as a sum of these basic vectors. For example,
=(1,2,3) =(1,0,0) + (0,2,0) + (0,0, 3)
=1(1,0,0) +2(0,1,0) + 3(0,0,1)
= ey + 2e9 + 3es.

We say that v is o linear combination of eq, es and es.

The concept of a linear combination is very important.

Definition 1.5.7.

A linear combination of objects A, Ao, ..., A is a sum
k
c1A1 4+ c0As + -+ LA = Z cA;
i=1
where ¢; € R for each 1.

We will look at linear combinations of vectors, matrices and even functions in this course. If ¢; € C
then we call it a complex linear combination. The proposition below generalizes the calculation
from Example

Proposition 1.5.8.

Every vector in R is a linear combination of ey, es,. .., ey,.
Proof: Let v = (v1,v,...,v,) € R™. By the definition of vector addition:
v o= (v1,v2,...,0U)
= (v1,0,...,0) 4+ (0,v2,...,vy)
= (v1,0,...,0) 4+ (0,v2,...,0) +---+(0,0,...,vy)

= (v1,0- vl,...,0-01)+(O-vg,vg,...,()-vg)—l—---+(O-Un,()-vn,...,vn)

In the last step I rewrote each zero to emphasize that the each entry of the k-th summand has a
vy factor. Continue by applying the definition of scalar multiplication to each vector in the sum
above we find,
v =v1(1,0,...,0) +v2(0,1,...,0) 4+ -+ +v,(0,0,...,1)
=wvie] + v2e2 + -+ + Upep.

Therefore, every vector in R” is a linear combination of ey, es,...,e,. For each v € R we have
_ n 0
v =2 i 1 Unén.
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Proposition 1.5.9. the vector properties of R™.

Suppose n € N. For all z,y,z € R" and a,b € R,
1. (P) x+y=y+x forall z,y € R,
2. (P2) (x+y)+z=a+ (y+2) forall z,y,z € R",
3. (P3) there exists 0 € R™ such that z + 0 = z for all x € R",
4. (P4) for each z € R" there exists —z € R™ such that = + (—z) = 0,
5. (P5) 1.2 =z for all x € R",
6. (P6) (ab)-x=a-(b-x) for all z € R" and a,b € R,
7. PN a-(x+y)=a-z+a-yforall z,y € R” and a € R,
8. (P8) (a+b)-z=a-x+b-xforall z € R" and a,b € R,
9. (P9) If z,y € R™ then x+y is a single element in R", (we say R" is closed with respect
to addition)
10. (P10) If x € R™ and ¢ € R then ¢ z is a single element in R". (we say R" is closed
with respect to scalar multiplication)
We call 0 in P3 the zero vector and the vector —z is called the additive inverse of x. We
will usually omit the - and instead denote scalar multiplication by juxtaposition; a -z = ax.

Proof: all the properties follow immediately from the definitions of addition and scalar multipli-
cation in R™ as well as properties of real numbers. Consider,

(@+y); =2 +y; =y +2;=(y +2);
~—

*

where x follows because real number addition commutes. Since the calculation above holds for each
7 =1,2,...,n it follows that =z +y = y + x for all =,y € R™ hence P1 is true. Very similarly P2
follows from associativity of real number addition. To prove P3 simply define, as usual, 0; = 0;
The zero vector is the vector with all zero components. Note

(x+0)j:a:j+0j:1:j+0::1:j

which holds for all 7 = 1,2,....,n hence x + 0 = x for all x € R™. I leave the remainder of the
properties for the reader. [

The preceding proposition will be mirrored in an abstract context later in the course. So, it is
important. On the other hand, we will prove it again in the next chapter in the context of a
subcase of the matrix algebra. I include it here to complete the logic of this chapter.
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1.5.3 concerning notation for vectors

Definition 1.5.10. points are viewed as column vectors in this course.

In principle one can use column vectors for everything or row vectors for everything. I
choose a subtle notation that allows us to use both. On the one hand it is nice to write
vectors as rows since the typesetting is easier. However, once you start talking about matrix
multiplication then it is natural to write the vector to the right of the matrix and we will
soon see that the vector should be written as a column vector for that to be reasonable.
Therefore, we adopt the following convention

U1
U2
(Ul,UQ, L 7/Un) -
Un
If T want to denote a real row vector then we will just write [v1,va,. .., vy].

The convention above is by no means universal. Various linear algebra books deal with this nota-
tional dilemma and number of different ways. In the first version of my linear algebra notes I used
R ™*! everywhere just to be relentlessly explicit that we were using column vectors for R™. The
set of all n x 1 matrices is the set of all column vectors which I denote by R "*! whereas the set of
all 1 x n matrices is the set of all row vectors which we denote by R 1. We discuss these matters
in general in next chapter. The following example is merely included to expand on the notation.

Example 1.5.11. Suppose x +y+2 =3, z+y =2 and x —y — z = —1. This system can be
written as a single vector equation by simply stacking these equations into a column vector:

rT+y+z 3
T4y = 2
rT—y—=z —1

Furthermore, we can break up the vector of variables into linear combination where the coefficients
in the sum are the variables x,y, z:

1 1 1 3
z| 1| +y 1 +z| O = 2
1 -1 -1 -1

Note that the solution to the system isx=1,y=1,z=1.
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Gauss-Jordan elimination

Gauss-Jordan elimination is an optimal method for solving a system of linear equations. Logically
it may be equivalent to methods you are already familar with but the matrix notation is by far
the most efficient method. This is important since throughout this course we will be faced with
the problem of solving linear equations. Additionally, the Gauss-Jordan produces the reduced row
echelon form(rref) of the matrix. Given a particular matrix the rref is unique. This is of particular
use in theoretical applications.

2.1 systems of linear equations

Let me begin with a few examples before I state the general definition.
Example 2.1.1. Consider the following system of 2 equations and 2 unknowns,
T+y=2
z—y=0

Adding equations reveals 2x = 2 hence x = 1. Then substitute that into either equation to deduce
y = 1. Hence the solution (1,1) is unique

Example 2.1.2. Consider the following system of 2 equations and 2 unknowns,
T+y=2

3r+3y =26

We can multiply the second equation by 1/3 to see that it is equivalent to x + vy = 2 thus our two
equations are in fact the same equation. There are infinitely many equations of the form (x,y)
where x +y = 2. In other words, the solutions are (x,2 — x) for all x € R.

Both of the examples thus far were consistent.

Example 2.1.3. Consider the following system of 2 equations and 2 unknowns,
z+y=2

z+y=3

These equations are inconsistent. Notice substracting the second equation yields that 0 = 1. This
system has no solutions, it is inconsistent

31
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It is remarkable that these three simple examples reveal the general structure of solutions to linear
systems. Either we get a unique solution, infinitely many solutions or no solution at all. For our
examples above, these cases correspond to the possible graphs for a pair of lines in the plane. A
pair of lines may intersect at a point (unique solution), be the same line (infinitely many solutions)
or be paralell (inconsistent)[l

4
4
4 i
-
i .if; s T
\.
52 i 1
., |
N |
1 .\‘
iy & \“\ N
—— /i\\.'-:_' e T 2y — SRR : .l‘\.\'
/ . I \'\'\ i 1\‘\.\-.

Remark 2.1.4.

It is understood in this course that ¢, 7, k,l, m,n,p,q,r,s are in N. I will not belabor this
point. Please ask if in doubt.

Definition 2.1.5. system of m-linear equations in n-unknowns

Let x1,22,...,2, be n variables and suppose b;, A;; € R for 1 <i <m and 1 < j < n then
Az + Apzg + -+ A, = by

Ag1x1 + Agoxo + -+ + Agpx,, = by

AL A A i) S 988 S b = ik

is called a system of linear equations. If b; = 0 for 1 < ¢ < m then we say the system
is homogeneous. The solution set is the set of all (z1,z2,...,z,) € R™ which satisfy all
the equations in the system simultaneously.

Remark 2.1.6.

We use variables x1,x3,...,x, mainly for general theoretical statements. In particular
problems and especially for applications we tend to defer to the notation z,y, z etc...

Definition 2.1.7.

for a system of linear equations.
Az + Appxa + -+ - + A1pTn = by Ay A - A | b

Aoy + Agoxo + -+ - + Agpx,, = bo A1 Ay oo Agy | b2
o . ) . abbreviated by ) . ) ] )

Apazy = ApaZa - AR Ty — by A Az A b

The augmented coefficient matrix is an array of numbers which provides an abbreviated notation

T used the Graph program to generate these graphs. It makes nice pictures, these are ugly due to user error.
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The vertical bar is optional, I include it to draw attention to the distinction between the matrix of
coefficients A;; and the nonhomogeneous terms b;. Let’s revisit my three simple examples in this
new notation. I illustrate the Gauss-Jordan method for each.

Example 2.1.8. The system x +y = 2 and © —y = 0 has augmented coefficient matriz:

1 12 N 1 1] 2
1 —1]o | 227 1o —o| -2
g | L 1|2 o [ro
7?—72011%011

The last augmented matrix represents the equations x = 1 and y = 1. Rather than adding and
subtracting equations we added and subtracted rows in the matriz. Incidentally, the last step is
called the backward pass whereas the first couple steps are called the forward pass. Gauss is
credited with figuring out the forward pass then Jordan added the backward pass. Calculators can
accomplish these via the commands ref ( Gauss’ row echelon form ) and rref (Jordan’s reduced
row echelon form). In particular,

Aot 2 U)o o

Tl o —1tfo [T o 11 Tl <o) T Lo 11

Example 2.1.9. The system x +1y = 2 and 3x + 3y = 6 has augmented coefficient matriz:
Lof2] o, 112
3316 2217 10 00

The nonzero row in the last augmented matrix represents the equation x +y = 2. In this case we
cannot make a backwards pass so the ref and rref are the same.

Example 2.1.10. The system ¢+ y =3 and x + y = 2 has augmented coefficient matriz:
1 113 3 s 1 1|1
112 | 22T g o)1

The last row indicates that 0x+0y = 1 which means that there is no solution since 0 # 1. Generally,
when the bottom row of the rref(A|b) is zeros with a 1 in the far right column then the system
Ax = b is inconsistent because there is no solution to the equation.

2.2 Gauss-Jordan algorithm

To begin we need to identify three basic operations we do when solving systems of equations. I’ll
define them for system of 3 equations and 3 unknowns, but it should be obvious this generalizes to
m equations and n unknowns without much thought.
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The following operations are called Elementary Row Operations.

(1.) scaling row 1 by nonzero constant c

A A Az | b cAi1 cAip cAiz | chy
Aoy Agp Az | ba | crp — | Agr A Az | bo
Az1 Az Az | b3 Azr Azp Asz | b3

(2.) replace row 1 with the sum of row 1 and row 2

A A Az | by Ay + A1 Ag+ Ay Az + Axz | by + by
Agr Axy Agz | by | r1+12 — r Agi Az Az bo
Az1 Azz Assz | b3 A3z Az As3 b3

(3.) swap rows 1 and 2

A A Az | b Agr Ay Agz | b
Agr Agp Agg | by | 11— r2 A Aig Az | by
Az1 Az Az | b3 Asz1 Az Asz | b3

I illustrate how to use these elementary row operations to simplify a given matrix in the example
below. The matrix in the example corresponds to equations = + 2y — 3z = 1, 2z + 4y = 7 and
—zr+3y+2z=0.

12-31
Example 2.2.1. Given A = [Elé 0 g} calculate rref(A).
1 2 3|1 1 2 3|1
A = 2 4 0|7 7“2—27‘1—)72 0O 0 6 |5 T1+T3—>T§
| -1 3 2 |0 -1 3 210
[1 2 -3|1 1 2 3|1
0 0 6 |5 | r+e r3 0 5 =11 | = ref(4)
| 05 —1|1 00 6|5
that completes the forward pass. We begin the backwards pass,
[1 2 =31 1 2 =31 ]
ref(A) = | 05 1|1 | rse=grs |05 —1| 1 | ratrsen
10 0 6 |5 0 0 1]5/6 ]
1 2 -3] 1 1 2 0]21/6
5 0 [11/6 rt+3rgery | 050 11/6 | 2ro < 1o
|00 1 ]5/6 0 0 1| 5/6
1 2 0] 21/6 1 0 0/83/30
1 0/11/30 r1—2r2<—7°]/ 0 1 0]11/30 | = rref(A)
| 0 0 1| 5/6 0 0 1| 5/6

Thus, we’ve found the system of equations x + 2y —3z =1, 2x +4y =7 and —x + 3y + 2z = 0 has
solution z = 83/30,y = 11/30 and z = 5/6.
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The method used in the example above generalizes to matrices of any size. It turns out that
by making a finite number of the operations (1.),(2.) and (3.) we can reduce the matrix to
the particularly simple format called the "reduced row echelon form” (I abbreviate this rref most
places). The Gauss-Jordan algorithm tells us which order to make these operations. The following
definition is borrowed from the text Elementary Linear Algebra: A Matriz Approach, 2nd ed. by
Spence, Insel and Friedberg, however you can probably find nearly the same algorithm in dozens
of other texts.

Definition 2.2.2. Gauss-Jordan Algorithm.

Given an m by n matrix A the following sequence of steps is called the Gauss-Jordan algo-
rithm or Gaussian elimination. I define terms such as pivot column and pivot position
as they arise in the algorithm below.

Step 1: Determine the leftmost nonzero column. This is a pivot column and the
topmost position in this column is a pivot position.

Step 2: Perform a row swap to bring a nonzero entry of the pivot column below the
pivot row to the top position in the pivot column ( in the first step there are no rows
above the pivot position, however in future iterations there may be rows above the
pivot position, see 4).

Step 3: Add multiples of the pivot row to create zeros below the pivot position. This is
called ”clearing out the entries below the pivot position”.

Step 4: If there is a nonzero row below the pivot row from (3.) then find the next pivot
postion by looking for the next nonzero column to the right of the previous pivot
column. Then perform steps 1-3 on the new pivot column. When no more nonzero
rows below the pivot row are found then go on to step 5.

Step 5: the leftmost entry in each nonzero row is called the leading entry. Scale the
bottommost nonzero row to make the leading entry 1 and use row additions to clear
out any remaining nonzero entries above the leading entries.

Step 6: If step 5 was performed on the top row then stop, otherwise apply Step 5 to the
next row up the matrix.

Steps (1.)-(4.) are called the forward pass. A matrix produced by a foward pass is called
the reduced echelon form of the matrix and it is denoted ref(A). Steps (5.) and (6.) are
called the backwards pass. The matrix produced by completing Steps (1.)-(6.) is called
the reduced row echelon form of A and it is denoted rref(A).

The ref(A) is not unique because there may be multiple choices for how Step 2 is executed. On
the other hand, it turns out that rref(A) is unique. The proof of uniqueness can be found in
Appendix E of Insel Spence and Friedberg’s elementary linear algebra text. The backwards pass
takes the ambiguity out of the algorithm. Notice the forward pass goes down the matrix while the
backwards pass goes up the matrix.
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1-1 1
Example 2.2.3. Given A = [% 2 03} calculate rref(A).

[1 -1 1 1 -1 1

A = 3 -3 0 ro —3r1 — T 0 0 -3 | r3—2r—r
2 2 -3 Fle 2 3
[1 -1 1 ] [1 -1 1

3rs =7 rg—T2 T

000 3| =2 o 0 15|
000 -5 27 o 0o -15 527
(1 —1 1 (1 —1 0
0 0 1 T Ty Ty 0 0 1 |=rref(A)
0 0 0 0 0 0

Note it is customary to read multiple row operations from top to bottom if more than one is listed
between two of the matrices. The multiple arrow notation should be used with caution as it has great
potential to confuse. Also, you might notice that I did not strictly-speaking follow Gauss-Jordan in
the operations 3r3 — r3 and bro — 9. It is sometimes convenient to modify the algorithm slightly
in order to avoid fractions.

Example 2.2.4. Find the rref of the matriz A given below:

(1 1 1 1 1] 1 1 1 1 1
A= |1 -1 101 r-rn=r|0 20 -10|rn+trn—r
| -1 0 1 1 1 | -1 0 1 1 1 —
(11 1 1 1] 11 1 1 1
-2 0 -1 0 r2<—>r§ o 1 2 2 2 7“3—1—27"2—>7"§
01 2 2 2| 0 -2 0 -1 0
(11 1 1 1] 4 4 4 4 4
47’1—>7’ 7’2_r3_>r
12 2 ﬁ ., 2 4 4 4 4_1"_)
004 34| 278 00434 12857
(4 4 0 1 0] 100007 M4
002010 n=2pr 02010 r2/2 = 1y
0 0 4 3 4] 00 4 3 4] py/d s
—_
100 0 0
0 1 0 1/2 0 | = rref(A)
00 1 3/4 1
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Example 2.2.5.

37

100 r9 —2r1 > 1
[AlI] = 2 2 0/0 1 0 %_4 -
4 4 400 1| BT
1. 0 0] 1 00 1001 0 O ro/2 — 19
0 2 0l—-2 1 0 r3—2r2—>r§ 02 0}—-2 1 O m
0 4 4|4 0 1 004/0 —21 3 3
10 0] 1 0 0
010/ -1 1/2 0 | = rref[Al]
0010 -1/2 1/4
Example 2.2.6. easy examples are sometimes disquieting, let r € R,
v = [ 2 —4 27“} %r1—>7‘1 [1 -2 r ] = rref(v)
Example 2.2.7. here’s another next to useless example,
0 1 1
v=| 1 L& T 0 r3—3r1—>r§ 0= rref(v)
3 3 0
Example 2.2.8.
1 0 1 0 10 1 0
A = 0200 ry —3r1 — T 02 00 ry—To —T
" oo 31| 2L "4 100 3 1| 2272
| 3 2 00 02 -3 0
1 0 1 0 1010
0.2 00 T4+1r3 —>T 0200 T3 — T4 —T
00 3 1232741003 1| 22772
|00 -3 0 0 00 1
02 00 01 00
3= =
003 0| 379 ||go1o|=rd@
(0000 1] M=M= 1|00 0 1

I should remind you that there are numerous online resources to help you become efficient in your

row reduction. I provide links in Blackboard and on my website.
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Proposition 2.2.9.

If a particular column of a matrix is all zeros then it will be unchanged by the Gaussian
elimination. Additionally, if we know rref(A) = B then rref[A|0] = [B|0] where 0 denotes
one or more columns of zeros.

Proof: adding nonzero multiples of one row to another will result in adding zero to zero in the
column. Likewise, if we multiply a row by a nonzero scalar then the zero column is uneffected.
Finally, if we swap rows then this just interchanges two zeros. Gauss-Jordan elimination is just
a finite sequence of these three basic row operations thus the column of zeros will remain zero as
claimed. [J

Example 2.2.10. Use Ezample and Proposition to calculate,

1 01 010 1 0 0 0]0
f 020040} |01O0O0(0
0 0 3 1jol T ]0oo0 1 0]0
3 2 0 010 0 00 1|0
Similarly, use Example and Proposition to calculate:
1 0 0 O 1 0 0 O
rref1 0 0 0 O|=]00020
3 000 0 0 0 O

I hope these examples suffice. One last advice, you should think of the Gauss-Jordan algorithm
as a sort of road-map. It’s ok to take detours to avoid fractions and such but the end goal should
remain in sight. If you lose sight of that it’s easy to go in circles. Incidentally, I would strongly
recommend you find a way to check your calculations with technology. Mathematica will do any
matrix calculation we learn. TI-85 and higher will do much of what we do with a few exceptions
here and there. There are even websites which will do row operations, I provide a link on the
course website. All of this said, I would remind you that I expect you be able perform Gaussian
elimination correctly and quickly on the test and quizzes without the aid of a graphing calculator
for the remainder of the course. The arithmetic matters. Unless I state otherwise it is expected
you show the details of the Gauss-Jordan elimination in any system you solve in this course.

Theorem 2.2.11.

Let A € R™*" then if Ry and Ry are both Gauss-Jordan eliminations of A then R; = R».
In other words, the reduced row echelon form of a matrix of real numbers is unique.

Proof: The proof of uniqueness can be found in Appendix E of Insel Spence and Friedberg’s
elementary linear algebra text. It is straightforward, but a bit tedious. [
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2.3 classification of solutions

Surprisingly Examples[2.1.8)2.1.9|and [2.1.10|illustrate all the possible types of solutions for a linear
system. In this section I interpret the calculations of the last section as they correspond to solving
systems of equations.

Example 2.3.1. Solve the following system of linear equations if possible,

r+2y—3z=1
2044y =7
—xr+3y+22=0

We solve by doing Gaussian elimination on the augmented coefficient matriz (see Example
for details of the Gaussian elimination),

1 2 -3|1 1 0 0]83/30 x = 83/30
rref | 2 4 0 |7|=]01 0[11/30 | = | y=11/30
~13 210 00 1| 5/6 2=5/6

(We used the results of Example .

Remark 2.3.2.

The geometric interpretation of the last example is interesting. The equation of a plane
with normal vector < a,b,c¢ > is ax + by + cz = d. Each of the equations in the system
of Example has a solution set which is in one-one correspondance with a particular
plane in R3. The intersection of those three planes is the single point (83/30,11/30,5/6).

Example 2.3.3. Solve the following system of linear equations if possible,

r—y=1
3r—3y=20
20 — 2y = -3

Gaussian elimination on the augmented coefficient matriz reveals (see Example for details of
the Gaussian elimination)

1 =11 1 -1 0
rref | 3 =3 0 =10 0 1
2 —-2|-3 0 0 0

which shows the system has . The given equations are inconsistent.

Remark 2.3.4.

The geometric interpretation of the last example is also interesting. The equation of a line
in the zy-plane is is ax 4+ by = ¢, hence the solution set of a particular equation corresponds
to a line. To have a solution to all three equations at once that would mean that there is
an intersection point which lies on all three lines. In the preceding example there is no such
point.
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Example 2.3.5. Solve the following system of linear equations if possible,

r—y+z=0
3r—3y=0
20 — 2y — 32 =0

Gaussian elimination on the augmented coefficient matriz reveals (see Example |2.2.10| for details
of the Gaussian elimination)

1 -1 110 1 -1 0]0 p—
rref |3 =3 0 [0 f=|0 0 10| = |7V
2 —2 -3|0 0 0 0]0 -

The row of zeros indicates that we will not find a unique solution. We have a choice to make, either
x or y can be stated as a function of the other. Typically in linear algebra we will solve for the
variables that correspond to the pivot columns in terms of the non-pivot column variables. In this
problem the pivot columns are the first column which corresponds to the variable x and the third
column which corresponds the variable z. The variables x, z are called basic variables while y is

called a free variable. The solution set is ’ {(y,y,0) | y € R}
z=0 for all y € R.

; in other words, x = y,y = y and

You might object to the last example. You might ask why is y the free variable and not x. This is
roughly equivalent to asking the question why is y the dependent variable and x the independent
variable in the usual calculus. However, the roles are reversed. In the preceding example the
variable x depends on y. Physically there may be a reason to distinguish the roles of one variable
over another. There may be a clear cause-effect relationship which the mathematics fails to capture.
For example, velocity of a ball in flight depends on time, but does time depend on the ball’s velocty
? I'm guessing no. So time would seem to play the role of independent variable. However, when
we write equations such as v = v, — gt we can just as well write t = “:—ZO; the algebra alone does
not reveal which variable should be taken as ”independent”. Hence, a choice must be made. In the
case of infinitely many solutions, we customarily choose the pivot variables as the ”dependent” or
"basic” variables and the non-pivot variables as the ”free” variables. Sometimes the word parameter
is used instead of variable, it is synonomous.

Example 2.3.6. Solve the following (silly) system of linear equations if possible,

x=0
Oxr+0y+0z2=0
3xr=20

Gaussian elimination on the augmented coefficient matriz reveals (see Example |2.2.10 for details
of the Gaussian elimination)

1 0 00 1 0 00
rref | 0 0 0|0 | =1]0 0 00
3 0 010 0 0 0]0

we find the solution set is ’{(O,y,z) | y,z € R} ‘ No restriction is placed on the free variables y

and z.
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Example 2.3.7. Solve the following system of linear equations if possible,

1+ T2+ a3 +as=1
Ty —x9t+x3=1
—r1+r3trs=1

Gaussian elimination on the augmented coefficient matriz reveals (see Example for details of
the Gaussian elimination)

1 1 1)1 1 00 0|0
rref| 1 -1 1 0|1 |=]101 0 1/2|0
-1 0 1)1 0 0 1 3/4|1

We find solutions of the form 1 = 0, x9 = —x4/2, x3 = 1 — 3x4/4 where x4 € R is free. The
{(0,—2s,1 —3s,4s) | s € ]R}‘ ( I used s =4xy4 to get rid of

solution set is a subset of R*, namely

the annoying fractions).

Remark 2.3.8.

The geometric interpretation of the last example is difficult to visualize. Equations of the
form a1x1 +asxs +azxrs+asxs = b represent volumes in R?, they’re called hyperplanes. The
solution is parametrized by a single free variable, this means it is a line. We deduce that the
three hyperplanes corresponding to the given system intersect along a line. Geometrically
solving two equations and two unknowns isn’t too hard with some graph paper and a little
patience you can find the solution from the intersection of the two lines. When we have more
equations and unknowns the geometric solutions are harder to grasp. Analytic geometry
plays a secondary role in this course so if you have not had calculus III then don’t worry
too much. I should tell you what you need to know in these notes.

Example 2.3.9. Solve the following system of linear equations if possible,

1 +2x4=0
201 4+ 220+ 25 =0
Az + 4xo + 43 =1

Gaussian elimination on the augmented coefficient matriz reveals (see Example for details of
the Gaussian elimination)

100 1 0]0 100 1 0 ]o0
rref|2 200 1(0|=]010 -1 1/2] 0
44 40 0|1 001 0 —1/2/1/4

Consequently, x4, x5 are free and solutions are of the form

1 = —X4
1

T2 = T4 — 525
1 1

r3 = Z—F §$5

for all x4, x5 € R.



42 CHAPTER 2. GAUSS-JORDAN ELIMINATION

Example 2.3.10. Solve the following system of linear equations if possible,

1 +x3=0
Q.TQZO
3:U3:1
3r1+ 212 =0

Gaussian elimination on the augmented coefficient matriz reveals (see Example f07" details of
the Gaussian elimination)

1 0 1|0 1 0 0]0
rref 02 0{0p_|1010]0
0 0 3|1 0 0 1|0
3 2 010 0 0 01

Therefore,there are |no solutions|.

Example 2.3.11. Solve the following system of linear equations if possible,

r1+x3=0
2x9 =0
3r3+ x4 =0
3x1+ 220 =0

Gaussian elimination on the augmented coefficient matriz reveals (see Example |2.2.10 for details
of the Gaussian elimination)

101 00 100 00
rref 0200(0f_|01000
003 1|0 0 01 0|0
320 0]0 000 1|0

Therefore, the unique solution is ’xl =29 =1x3 =24 = 0| The solution set here is rather small,
it’s {(0,0,0,0)}.




2.4. APPLICATIONS TO CURVE FITTING AND CIRCUITS 43

2.4 applications to curve fitting and circuits

We explore a few fun simple examples in this section. I don’t intend for you to master the outs
and in’s of circuit analysis, those examples are for site-seeing purposesﬂ

Example 2.4.1. Find a polynomial P(z) whose graph y = P(x) fits through the points (0, —2.7),
(2,—4.5) and (1,0.97). We expect a quadratic polynomial will do nicely here: let A, B,C be the
coefficients so P(x) = Ax? + Bx + C. Plug in the data,

P(0) =C=-27
P(2) =4A+2B+C=—45 =
P(1) =A+B+C=0097

I put in the A, B, C labels just to emphasize the form of the augmented matriz. We can then perform
Gaussian elimination on the matriz ( I omit the details) to solve the system,

0 0 1|-27 1 0 0]—4.52 A= —-4.52
rref | 4 2 1| —-45 | =0 1 0| 814 = B =814
1 1 1]097 0 0 1| =27 C=-27

The requested polynomial is | P(z) = —4.522% + 8.14x — 2.7 |.

Example 2.4.2. Find which cubic polynomial Q(z) have a graph y = Q(x) which fits through the
points (0, —2.7), (2,—4.5) and (1,0.97). Let A, B,C, D be the coefficients of Q(x) = Ax3 4+ Bx? +
Cx+ D. Plug in the data,

Q) =D=-27 g 11)—27
Q(2) =8A+4B+2C+D=—-45 = 0 1 '
11

Q1) =A+B+C+D =097

—4.5
0.97

— 00 O
— ol

I put in the A, B,C, D labels just to emphasize the form of the augmented matriz. We can then
perform Gaussian elimination on the matriz ( I omit the details) to solve the system,

A=-4.07+0.5C

0 00 1|-27 1 0 =05 0] —-4.07
1 1 1 1]0.97 0 0 0 1| —2.7 D o7

It turns out there is a whole family of cubic polynomials which will do nicely. For each C € R the
polynomial is | Qc(z) = (¢ — 4.07)z> + (7.69 — 1.5C)x? + Cz — 2.7| fits the given points. We asked
a question and found that it had infinitely many answers. Notice the choice C' = 4.07 gets us back
to the last example, in that case Qc(x) is not really a cubic polynomial.

Example 2.4.3. Consider the following traffic-flow pattern. The diagram indicates the flow of cars
between the intersections A, B,C,D. Our goal is to analyze the flow and determine the missing
pieces of the puzzle, what are the flow-rates x1,xs,x3. We assume all the given numbers are cars
per hour, but we omit the units to reduce clutter in the equations.

2. .well, modulo that homework I asked you to do, but it’s not that hard, even a Sagittarian could do it.
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TraFFie FLow psosT TuredsecTiorl ‘:'\TE;C’D

_"_i::'n"-. A Iu 3
oo o .

- e
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300

We model this by one simple principle: conservation of vehicles

A: x1—29—400=0

B: —x1+600—-100+2z3=0
C: —=300+100+ 100422 =0
D: —-100+100+4+23=0

This gives us the augmented-coefficient matriz and Gaussian elimination that follows ( we have to
rearrange the equations to put the constants on the right and the variables on the left before we
translate to matriz form)

1 -1 0| 400 1 0 01500
rref | 1 0 1]-500 _ 0 1 0)100

0 1 0] 100 00 10

0 0 1 0 0 0 0O

From this we conclude, x3 = 0,29 = 100,21 = 500. By the way, this sort of system is called
overdetermined because we have more equations than unknowns. If such a system is consistent
they’re often easy to solve. In truth, the rref business is completely unecessary here. I'm just trying
to illustrate what can happen.

Example 2.4.4. (taken from Lay’s homework, §1.6#7) Alka Seltzer makes fizzy soothing bubbles
through a chemical reaction of the following type:

NaHCO3 + H3CgH507 — NasCesHs07 + Hs0O + COq
——— —_——— —_— —
sodium bicarbonate citric acid sodium citrate water and carbon dioxide

The reaction above is unbalanced because it lacks weights to describe the relative numbers of
the various molecules tnvolved in a particular reaction. To balance the equation we seek integers
T1,%2,x3, x4, Ts such that the following reaction is balanced.

ml(NaHCOg) + $2(H306H507) — 3:3(N&306H5O7) + 1‘4(H20) + 1‘5(002)

In a chemical reaction the atoms the enter the reaction must also leave the reaction. Atoms are
neither created nor destroyed in chemical reactionﬂ. It follows that the number of sodium(Na),

3chemistry is based on electronic interactions which do not possess the mechanisms needed for alchemy, transmu-
tation is in fact accomplished in nuclear physics. Ironically, alchemy, while known, is not economical



2.4. APPLICATIONS TO CURVE FITTING AND CIRCUITS 45

hydrogen(H), carbon(C) and oxygen(O) atoms must be conserved in the reaction. Each element
can be represented by a component in a 4-dimensional vector; (Na, H,C,0O). Using this notation
the equation to balance the reaction is simply:

1 0 3 0 0
1 n 8| 5 n 2 n 0
21| 2l 6| = 23| g ZH 5| 4
3 7 7 1 2
In other words, solve
T1 = 313 1 0 -3 0 0 0
1 + 8xg = bz + 224 N 18 -5 =2 0 |0
1 + 629 = 623 + x5 1 6 -6 0 —-110
3x1 + Tz = 623 + x5 3 7 -6 0 -—-1/0
After a few row operations we will deduce,
10 -3 0 0 |0 100 0 —-11]0
rref18_5_200—0100_710
16 60 —-1/0[ |0010 F|0
3 7 -6 0 —-1|0 0001 —-1/0

Therefore, x1 = 5,22 = x5/3,x3 = x5/3 and x4 = x5. Atoms are indivisible (in this context)
hence we need to choose x5 = 3k for k € N to assure integer solutions. The basic reaction follows
from x5 = 3,

[3NaHCOs + H3CgH50; — NazCeH;07 + 3Ho0 + 3COs |

Finding integer solutions to chemical reactions is more easily solved by the method I used as an
undergraduate. You guess and check and adjust. Because the solutions are integers it’s not too hard
to work out. That said, if you don’t want to guess then we have a method via Gaussian elimination.
Chemists have more to worry about than just this algebra. If you study reactions carefully then there
are a host of other considerations involving energy transfer and ultimately quantum mechanics.

Example 2.4.5. Let R = 1) and Vi = 8V. Determine the voltage V4 and currents Iy, Is, I3
flowing in the circuit as pictured below:

4R WV

—— 1 |—

R
1%—\]“;-—-———-————-.

b"WU"—‘—-M 1
YR v =

Conservation of charge implies the sum of currents into a node must equal the sum of the currents
flowing out of the node. We use Ohm’s Law V = IR to set-up the currents, here V should be the
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voltage dropped across the resistor R.

L = 2V1RVA Ohm’s Law
I, = V—é“ Ohm’s Law
I3 = V14RVA Ohm’s Law

Iy, =1+ 13 Conservation of Charge at node A

Substitute the first three equations into the fourth to obtain

Va _ 2V1 v1
T 4+

Multiply by 4R and we find

AV p =2V = Va+ Vi —=Vy = 6Va=3V7 = Vai=V/2=4V.

Substituting back into the Ohm’s Law equations we determine I; = M =34, I, = =4A
and I3 = 8V4Q4V = 1A. This obvious checks with Is = I1 + I3. In pmctzce it’s not always best to

use the full-power of the rref.

2.5 conclusions

We concluded the last section with a rather believable (but tedious to prove) Theorem. We do the
same here,

Theorem 2.5.1.

Given a system of m linear equations and n unknowns the solution set falls into one of the
following cases:

1. the solution set is empty.
2. the solution set has only one element.

3. the solution set is infinite.

Proof: Consider the augmented coefficient matrix [A[b] € R™*("+1) for the system (Theorem|2.2.11
assures us it exists and is unique). Calculate rref[A|b]. If rref[A|b] contains a row of zeros with a
1 in the last column then the system is inconsistent and we find no solutions thus the solution set
is empty.

Suppose rref[A]b] does not contain a row of zeros with a 1 in the far right position. Then there are
less than n + 1 pivot columns. Suppose there are n pivot columns, let ¢; for ¢ = 1,2,...m be the
entries in the rightmost column. We find x1 = ¢1,22 = co,...x, = ¢;,.Consequently the solution

set is {(c1,c2,...,cm)}-

If rre f[A|b] has k < n pivot columns then there are (n + 1 — k)-non-pivot positions. Since the last
column corresponds to b it follows there are (n — k) free variables. But, k < n implies 0 < n — k
hence there is at least one free variable. Therefore there are infinitely many solutions. [
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Theorem 2.5.2.

Suppose that A € R "*™ and B € R P then the first n columns of rref[A] and rre f[A|B]
are identical.

Proof: The forward pass of the elimination proceeds from the leftmost-column to the rightmost-
column. The matrices A and [A|B] have the same n-leftmost columns thus the n-leftmost columns
are identical after the forward pass is complete. The backwards pass acts on column at a time just
clearing out above the pivots. Since the ref(A) and ref[A|B] have identical n-leftmost columns
the backwards pass modifies those columns in the same way. Thus the n-leftmost columns of A
and [A|B] will be identical. O

The theorem below is continued as we work through this course. Eventually, it has about a dozen
seemingly disconnected parts.

Theorem 2.5.3.

Given n-linear equations in n-unknowns Az = b, a unique solution z exists iff rref[A|b] =
[I|z]. Moreover, if rref[A] # I then there is no unique solution to the system of equations.

Proof: If a unique solution z1 = ¢1,x9 = co,...,x, = ¢, exists for a given system of equations
Az = b then we know
Ailcl + AiQCQ + -+ Amcn = bi

for each 7 = 1,2,...,n and this is the only ordered set of constants which provides such a solution.
Suppose that rref[A|b] # [I|c]. If rref[A|b] = [I|d] and d # c then d is a new solution thus the
solution is not unique, this contradicts the given assumption. Consider, on the other hand, the case
rref[A|b] = [J|f] where J # I. If there is a row where f is nonzero and yet J is zero then the system
is inconsistent. Otherwise, there are infinitely many solutions since J has at least one non-pivot
column as J # . Again, we find contradictions in every case except the claimed result. It follows
if x = ¢ is the unique solution then rref[A|b] = [I|c]. The converse follows essentially the same
argument, if rref[A|b] = [I|c]| then clearly Az = b has solution z = ¢ and if that solution were not
unique then we be able to find a different rref for [A|b] but that contradicts the uniqueness of rref. [J

There is much more to say about the meaning of particular patterns in the reduced row echelon
form of the matrix. We will continue to mull over these matters in later portions of the course.
Theorem [2.5.1| provides us the big picture. It is remarkable that two equations and two unknowns
already revealed these patterns.

Incidentally, you might notice that the Gauss-Jordan algorithm did not assume all the structure
of the real numbers. For example, we never needed to use the ordering relations < or >. All we
needed was addition, subtraction and the ability to multiply by the inverse of a nonzero number.
Any field of numbers will likewise work. Theorems and also hold for matrices of
rational (Q) or complex (C) numbers. We will encounter problems which require calculation in C.
If you are interested in encryption then calculations over a finite field Z, are necessary. In contrast,
Gausssian elimination does not work for matrices of integers since we do not have fractions to work
with in that context. For a much deeper look at linear algebra, see the Part III of Dummit and
Foote’s third edition of Algebra. In that text, the concept of a module is detailed and an analog for
Gaussian elimination is given where the field is replaced with a ring (good examples of rings are
Z,, 7 or the set of R-valued functions on some space. Every good math major should leave their
undergraduate with a command of basic ring theory.
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Chapter 3

algebra of matrices

I decided to devote a chapter of these notes to matrices. Our goal here is to appreciate the richness
of the matrix construction. These arrays of numbers were at first merely a book-keeping device
to manage solutions of many equations and many unknowns. Matrix multiplication, probably first
discovered as it relates to solutions by substitution, now is used without reference to any system
of equations. Such is the life of matrices, these were born from equations, but now they are often
used a langauge of their own. Matrix notation allows us to group many equations into a single
elegant matrix equation. The algebraic identities which matrices can encode are boundless. We
can use matrices to construct C,Z, and a host of things I ought not name here. For example,
any finite dimensional Lie algebra can be realized as a commutator algebra on a set of matrices of
sufficiently large size (Ado’s Theorem). Later in this course, we’ll see how matrices are intimately
connected with linear transformations, a single matrix captures the essence of the action of a linear
transformation on all of space. My point is just this, matrices are interesting on their own. They're
much more than a box of numbers.

3.1 addition and multiplication by scalars

Definition 3.1.1.

Let A,B € R ™*" then A+ B € R ™*" is defined by (A+B);; = A;j+ Bjj; forall1 <i <m,
1 < j <n. If two matrices A, B are not of the same size then there sum is not defined.

Example 3.1.2. Let A=[13] and B=[3§]. We calculate
1 2 5 6 6 8
A+B‘[3 4]+[7 8]_[10 12]‘

Definition 3.1.3.

Let A,B € R™*" ¢ € R then cA € R"™*" is defined by (cA);j = cA;j for all 1 < i < m,
1 < 7 < n. We call the process of multiplying A by a number ¢ multiplication by a scalar.
We define A—B € R ™*" by A— B = A+(—1)B which is equivalent to (A—B);; = A;; — Bjj
for all 7, j.

49
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Example 3.1.4. Let A=[13] and B =[3§]. We calculate
o[ )
Now multiply A by the scalar 5,
5A:5[§ i]:[ﬁaég]

Example 3.1.5. Let A, B € R ™ " be defined by A;j = 3i + 55 and B;; = i for all i,j. Then we
can calculate (A+ B);j = 3i + 55 +i? for all i, j.

Definition 3.1.6.

The zero matrix in R "*" is denoted 0 and defined by 0;; = 0 for all 7, j. The additive
inverse of A € R ™*™ is the matrix —A such that A+ (—A) = 0. The components of the
additive inverse matrix are given by (—A);; = —A;; for all 4, j.

The zero matrix joins a long list of other objects which are all denoted by 0. Usually the meaning
of 0 is clear from the context, the size of the zero matrix is chosen as to be consistent with the
equation in which it is found.

Example 3.1.7. Solve the following matriz equation,
lroy -1 -2 00| |2-1 y—2
0_[2 w}+{—8 —4] - [0 0] |2-3 w-1

The definition of matriz equality means this single matrix equation reduces to 4 scalar equations:
0=2z—-1,0=y—2,0=2—-3,0=w—4. The solution isx =1,y =2,z =3, w = 4.

Theorem 3.1.8.

If A€ R ™" then
1. 0- A =0, (where 0 on the L.H.S. is the number zero)
2. 04 =0,
3. A+0=0+A4=A

Proof: I'll prove (2.). Let A € R ™*™ and consider

(OApj::§:0M¢n7::§j(uuj::}20::0
k=1

k=1 k=1

for all 7, j. Thus 0A = 0. I leave the other parts to the reader, the proofs are similar. [

Matrix addition and scalar multiplication is very natural in general. Let us collect the important
facts for future reference.
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Theorem 3.1.9.

If A,B,C € R™*™ and ¢1,cs € R then
1. (A+B)+C=A+(B+0O),
9. A+ B=B+ A,
3. ci(A+ B)=c1A+ 2B,
4. (e1 +c2)A=c1A+ A,
5. (c1c2)A = c1(c24),
6. 1A= A,

Proof: Nearly all of these properties are proved by breaking the statement down to components
then appealing to a property of real numbers. I supply proofs of (1.) and (5.) and leave (2.),(3.),
(4.) and (6.) to the reader.

Proof of (1.): assume A, B, C are given as in the statement of the Theorem. Observe that

(A+B)+C)ij =(A+B)i; +Cjj defn. of matrix add.
= (A” + Bij) + Cij defn. of matrix add.
= Aj; + (B;j + Cy5) assoc. of real numbers
=Ajj +(B+C);;  defn. of matrix add.
=(A+(B+C));;  defn. of matrix add.

for all 4, j. Therefore (A+B)+C=A+(B+C). O

Proof of (5.): assume ¢, c2, A are given as in the statement of the Theorem. Observe that

((c1e2)A)ij = (c102)Aij defn. scalar multiplication.
= c1(c24;j) assoc. of real numbers
= (c1(c2A))i; defn. scalar multiplication.

for all 4, j. Therefore (ci1c2)A = c1(c2A). O

The proofs of the other items are similar, we consider the 7, j-th component of the identity and then
apply the definition of the appropriate matrix operation’s definition. This reduces the problem to
a statement about real numbers so we can use the properties of real numbers at the level of
components. After applying the crucial fact about real numbers, we then reverse the steps. Since
the calculation works for arbitrary i, j it follows the the matrix equation holds true. This Theorem
provides a foundation for later work where we may find it convenient to prove a statement without
resorting to a proof by components. Which method of proof is best depends on the question.
However, I can’t see another way of proving most of

3.2 matrix algebra

This may be the most important section in this chapter. Here we learn how to multiply matrices,
what their basic algebraic properties are and we begin study of matrix inversion.
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Definition 3.2.1.

Let A € R™*™ and B € R "*P then the product of A and B is denoted by juxtaposition
AB and AB € R ™*? ig defined by:

(AB);; = Z AirBy;
k=1

foreach 1 <7 <mand 1 < j < p. In the case m = p = 1 the indices 7, j are omitted in the
equation since the matrix product is simply a number which needs no index.

This definition is very nice for general proofs and we will need to know it for proofs. However, for
explicit numerical examples, I usually think of matrix multiplication in terms of dot-products.

Definition 3.2.2.

Let v = (v1,...,v,) and w = (w1, ..., w,) be n-vectors then the dot-product of v and w
is the number defined below:

n
U‘w:U1w1+7}2'LU2+"'+Unwn: E Vi Wy
[l

There are many things to say about dot-products. The geometric content of this formula is hard
to overstate. We should return to that task in the third part of this course.

Proposition 3.2.3.

Let v,w € R” then v - w = v w.

Proof: Since v” is an 1 x n matrix and w is an n x 1 matrix the definition of matrix multiplication

indicates vTw should be a 1 x 1 matrix which is a number. Note in this case the outside indices ij
are absent in the boxed equation so the equation reduces to

T T T T
vIw =0 qwy + v owy + -+ U W, = V1w + vawg + -+ -+ vpw, = 0 - w.

Proposition 3.2.4.

The formula given below is equivalent to the Definition Let A€ R™*" and B € R "*P
then

rowi(A) - coly(B) rowi(A)-cola(B) --- rowi(A)- coly(B)
AR rows(A) - coli(B)  rows(A) - cola(B) -+ rows(A) - coly(B)

rowm(A)‘-coll(B) rowm(A)'-colg(B) Towm(A).-colp(B)

Proof: The formula above claims (AB);; = row;(A) - col;(B) for all i, j. Recall that (row;(A)); =
Ay, and (col;(B))y = By thus

n

(AB)ij = > AyByj = > _(row;(A))(col;(B))x

k=1 k=1
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Hence, using definition of the dot-product, (AB);; = row;(A) - colj(B). This argument holds for
all 7, j therefore the Proposition is true. [J

Example 3.2.5. Let A = [ L2 ] andv = [ 5 } then we may calculate the product Av as follows:

3 4

|12 T | 1 2| | z+2
S E M H R M e
Notice that the product of an n X k matrix with a k x 1 vector yields another vector of size k x 1.

In the example above we observed the pattern (2 x 2)(2 x 1) —»— (2 x 1).

Example 3.2.6. The product of a 3 X2 and2x 3 is a3 x 3

L0lry 56 [1,0)[4, 7" [1,0](5,8]" [1,0]6,9]" 45 6
01 [7 3 9]2 0,1[4,77 [0,1/5,8" [0,1][6,9" | =|7 8 9
00 [0,0][4,7]" [0,0][5,8]" [0,0][6,9]" 000

Example 3.2.7. The product of a 3 x1 and 1 x 3 is a3 x3

1 4-1 5-1 6-1 4 5 6

2[4 5 6]=(4-252 6-2|=]| 8 10 12

3 4-3 5-3 6-3 12 15 18
12 3 1

Example 3.2.8. Let A= 4 5 6 | andv= 0 calculate Av.

789 -3

12 3 1 (1,2,3)-(1,0,-3) —2

Av=1|4 5 6 0 | =] (45,6)-(1,0,-3) | = | —14

789 -3 (7,8,9) - (1,0,-3) —20

Example 3.2.9. Let A=[}3] and B=[2§]. We calculate

1 2 5 6
4B T3 4“7 8]

25,77 [1,2)06,8])"
| BB T 346,87
[ 54+14 6416

| 15+ 28 18+32}

(19 22
| 43 50

Notice the product of square matrices is square. For numbers a,b € R it we know the product of a
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and b is commutative (ab = ba). Let’s

BA

Clearly AB # BA thus matriz multipli
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calculate the product of A and B in the opposite order,

1321
|

(5 6
|78

1 2
3 4

7,8][2,4]"

|

4

]

9

[ 5+18 10+ 24
| 7T+24 14432

|

cation is noncommutative or nonabelian.

(23 34
| 31 46

If the commutator of two square matrices A, B is given by [A,B] = AB — BA. If [A,B] # 0
then clearly AB # BA. There are many interesting properties of the commutator. It has deep
physical significance in quantum mechanics. It is also the quintessential example of a Lie Bracket.

When we say that matrix multiplication is noncommuative that indicates that the product of two

matrices does not generally commute.
other matrices.

However, there are special matrices which commute with

Example 3.2.10. Let I = [} 9] and A= [2Y]. We calculate

1A=

Likewise calculate,

Al =

1 0 ab-_ a b ]
0 1]|lc d] |c d)]
a b][1 0] [a b]
c d||[0 1] |cd

Since the matriz A was arbitrary we conclude that IA = AI for all A € R?*2,

Definition 3.2.11.

10

0 1 Iy

S

The identity matrix in R "*™ is the n X n square matrix I which has components I;; = 9;;.
The notation I, is sometimes used if the size of the identity matrix needs emphasis, otherwise
the size of the matrix I is to be understood from the context.

Iy

1
0
0

S = O
— o O
oS o O =
S O = O
o = O O
= o O O
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Proposition 3.2.12.

If X € R™P then XI, = X and [, X = X.

Proof: I omit the p in I, to reduce clutter below. Consider the 7,5 component of X1,
p
(X1)i; = Z Xkl defn. matrix multiplication
k=
p
k=

1

XikOk;j defn. of 1
1
J

>

1

The last step follows from the fact that all other terms in the sum are made zero by the Kronecker
delta. Finally, observe the calculation above holds for all 4, j hence X1 = X. The proof of /X = X
is left to the reader. [J

Definition 3.2.13.

Let A € R ™*™ 1If there exists B € R "*" such that AB = I and BA = [ then we say that
A is invertible and A~! = B. Invertible matrices are also called nonsingular. If a matrix
has no inverse then it is called a noninvertible or singular matrix.

The power of a matrix is defined in the natural way. Notice we need for A to be square in order
for the product AA to be defined.

Definition 3.2.14.

Let A € R™". We define A% = I, A’ = A and A™ = AA™ ! forall m > 1. If A is
invertible then AP = (A~1)P.

As you would expect, A3 = AA? = AAA.

Proposition 3.2.15.

Let A, B € R ™" and p,q € NU {0}
1. (AP)7 = APY,
2. APAY = APTY,
3. If A is invertible, (A~1)~! = A.

Proof: left to reader. [
You should notice that (AB)P # APBP for matrices. Instead,
(AB)? = ABAB, (AB)> = ABABAB, etc...

This means the binomial theorem will not hold for matrices. For example,

(A+B?*=(A+B)(A+B)=A(A+B)+B(A+ B)=AA+ AB+ BA+ BB
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hence (A+ B)? # A% +2AB+ B? as the matrix product is not generally commutative. If we have A
and B commute then AB = BA and we can prove that (AB)? = APBP and the binomial theorem
holds true.

Example 3.2.16. Consider A,v,w from Ezample|3.6.1].

G 5 n 6| |11
vTYE 8] |15
Using the above we calculate,

C[1 2)[11] [11+30] [4
A(Hw)_[:a 4“15]_[33%0]_[93]'
In constrast, we can add Av and Aw,
19 22 41
Av+Aw—[43]+[50}—[93].

Behold, A(v+ w) = Av + Aw for this example. It turns out this is true in general.

Properties of matrix multiplication are given in the theorem below. To summarize, matrix math
works as you would expect with the exception that matrix multiplication is not commutative. We
must be careful about the order of letters in matrix expressions.

Theorem 3.2.17.

IfABCER™" XY €R™P ZcRP< and ¢, cy € R then
1. (AX)Z =A(X2),
2. (ad)X =c1(AX) = A(aX) = (AX)c,
3. A(X+Y)=AX + AY,

W

. A(ClX + CZY) =cAX + CQAY,
5. (A+ B)X = AX + BX,

Proof: I leave the proofs of (1.), (2.), (4.) and (5.) to the reader. Proof of (3.): assume A, X,Y
are given as in the statement of the Theorem. Observe that

(AX+Y))ij =2 Ain(X+Y); defn. matrix multiplication,
= Air(Xpj + Vi) defn. matrix addition,
= > 1 (A Xk + AikYi;) dist. of real numbers,
=> 1 AieXpj + D, AirYrj)  prop. of finite sum,
= (AX)ij + (AY); defn. matrix multiplication(x 2),
= (AX + AY);; defn. matrix addition,

for all 4, 7. Therefore A(X +Y)=AX + AY. O

The proofs of the other items are similar, I invite the reader to try to prove them in a style much
like the proof I offer above.
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3.3 all your base are belong to us (¢; and E;; that is)

Recall that we defined e; € R™ by (e;); = d;;. We call e; the i-th standard basis vector. We proved
in Proposition that every vector in R” is a linear combination of e, es, ..., e,. We can define
a standard basis for matrices of arbitrary size in much the same manner.

Definition 3.3.1.

The ij-th standard basis matrix for R ™*" is denoted E;; for 1 <i<mand 1< j <n.
The matrix E;; is zero in all entries except for the (7, j)-th slot where it has a 1. In other
words, we define (Ejj)i = 0;x0ji.

Proposition 3.3.2.

Every matrix in R ™*™ is a linear combination of the F;; where 1 <i <m and 1 < j <n.

Proof: Let A € R ™*"™ then

A A - Agy
Aoy Az - Ay,
A = . ) }

Aml Am2 e Amn
1 0 0 0 1 0 0o 0 - 0
0 0 0 0 0 0 0 0 - 0
Do 0 Do 0 Do 0
0 0 0 0 0 0 0 0 1

=AnEn+AEn+ -+ ApnEpn.

The calculation above follows from repeated mn-applications of the definition of matrix addition
and another mn-applications of the definition of scalar multiplication of a matrix. We can restate
the final result in a more precise langauge,

m n
A=>""AyE;.
i=1 j=1
As we claimed, any matrix can be written as a linear combination of the Ej;;. [
The term ”basis” has a technical meaning which we will discuss at length in due time. For now,

just think of it as part of the names of e; and Ej;;. These are the basic building blocks for matrix
theory.

Example 3.3.3. Suppose A € R ™*™ and e; € R™ is a standard basis vector,

(Aei)j =Y Aj(eik =Y Ajdu, = Aji
k=1 k=1

Thus, |[Ae;] = col;(A) ‘ We find that multiplication of a matriz A by the standard basis e; yields
the i — th column of A.
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Example 3.3.4. Suppose A € R ™" and e; € R™*! is a standard basis vector,

n

(e:"A); = (ei)pAr; = ZamAkj = Ay

k=1 k=1

Thus, | [e;T A] = row;(A) |. We find multiplication of a matriz A by the transpose of standard basis
e; yields the i —th row of A.

Example 3.3.5. Again, suppose e;,e; € R" are standard basis vectors. The product eiTej of the
1 xn andn X 1 matrices is just a 1 X 1 matriz which is just a number. In particular consider,

n

eilej = Z(eiT)k(ej)k = Z Oik0jk = 0ij

k=1 k=1
The product is zero unless the vectors are identical.

Example 3.3.6. Suppose e; € R™*! and ej € R". The product of the m x 1 matriz e; and the
1 X n matriz ejT s an m X n matriz. In particular,

(eie; m = (&7 )i(ej)k = 0iwdji = (Eij)m
Thus we can construct the standard basis matrices by multiplying the standard basis vectors; F;; =
T
eiej .

Example 3.3.7. What about the matriz E;; 7 What can we say about multiplication by E;; on the
right of an arbitrary matriz? Let A € R ™*™ and consider,

n
(AEij)p = ZAkp ii)pl = ZAkp5ip5jl = Apidji
p=1
Notice the matriz above has zero entries unless 3 = | which means that the matriz is mostly zero

except for the j-th column. We can select the j-th column by multiplying the above by e;, using
Examples|5.3.5 and|5.5.5,

(AEjje;)i = (Aeie;" ej) = (Aeidjj) = (Aey)y, = (coli(A))x

This means,

column j
00 Ay - 0
AE;; = 00 --- Aoy e 0
(00 --- A e 0

Right multiplication of matriz A by E;; moves the i-th column of A to the j-th column of AE;; and
all other entries are zero. It turns out that left multiplication by E;; moves the j-th row of A to the
i-th row and sets all other entries to zero.

Example 3.3.8. Let A = [} 3] consider multiplication by Eis,

4= [ 2 2] [0 )2 18] o e

Which agrees with our general abstract calculation in the previous example. Next consider,

roa= [0 ][4 2] 3 4] - [ ).
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Example 3.3.9. Calculate the product of E;j and Ej;.

(Eij Exl)mn = Z(Eij>mp(Ekl)pn = Z 0im0pOkpOin = Oimdjk0in
p p

For example,
(E12E34)mn = 01m02304n = 0.
In order for the product to be nontrivial we must have j = k,
(E12E24)mn = 61m02204n = 61m04n = (E14)mn-
We can make the same identification in the general calculation,
(Eij Ext)mn = 0k (Ei)mn-

Since the above holds for all m,n,

’ EijEy = 0k Ey

this is at times a very nice formula to know about.

Remark 3.3.10.

You may find the general examples in this portion of the notes a bit too much to follow. If
that is the case then don’t despair. Focus on mastering the numerical examples to begin
with then come back to this section later. These examples are actually not that hard, you
just have to get used to index calculations. The proofs in these examples are much longer
if written without the benefit of index notation.

Example 3.3.11. Let A € R ™" and suppose e; € R™1 and e; € R". Consider,

m

(e:)"Aej = () r(Aej)k = Y in(Aej)k = (Aey); = Ajj
k=1 k=1

Aij = ()" Aey

Theorem 3.3.12.

Assume A € R ™" and v € R" and define (Ej;)r = ;10 and (e;); = d;; as we previously

discussed,
n m n
(U= Zvnen A= Z Z Al]EZ_]
i=1

i=1 j=1

[e;T A] = row;(A) [Ae;] = col;(A) Aij = (e;)T Ae;

T T
EijEr = 0 Ey Ei; = eie; ;" ej = 0;j

99

This is a useful observation. If we wish to select the (i,7)-entry of the matriz A then we can use
the following simple formula,

This is analogus to the idea of using dot-products to select particular components of vectors in
analytic geometry; (reverting to calculus III notation for a moment) recall that to find vy of ¥ we
learned that the dot product by ¢ =< 1,0,0 > selects the first components v; = #-4. The following
theorem is simply a summary of our results for this section.
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3.3.1 diagonal and triangular matrices have no chance survive

Definition 3.3.13.

Let Ae R ™" If A;; = 0 for all 4, j such that ¢ # j then A is called a diagonal matrix.
If A has components A;; = 0 for all 4, j such that ¢ < j then we call A a upper triangular
matrix. If A has components A;; = 0 for all 4, j such that ¢ > j then we call A a lower
triangular matrix.

Example 3.3.14. Let me illustrate a generic example of each case for 3 X 3 matrices:

A 0 0 A A Ais A 0 0
0 Axpn 0 0 Ay A Ay A 0
0 0 Ass 0 0 Ass Az1 Az Ass

As you can see the diagonal matrixz only has nontrivial entries on the diagonal, and the names
lower triangular and upper triangular are likewise natural.

If an upper triangular matrix has zeros on the diagonal then it is said to be strictly upper
triangular. Likewise, if a lower triangular matrix has zeros on the diagonal then it is said to be
strictly lower triangular. Obviously and matrix can be written as a sum of a diagonal and
strictly upper and strictly lower matrix,

A=Y AyE;
1,

= Z AiiEii + Z Ay Eij + Z AijEij
i i<j i>j
There is an algorithm called LU-factorization which for many matrices A finds a lower triangular
matrix L and an upper triangular matrix U such that A = LU. It is one of several factorization
schemes which is calculationally advantageous for large systems. There are many many ways to
solve a system, but some are faster methods. Algorithmics is the study of which method is optimal.

Proposition 3.3.15.
Let A,B € R "*".

1. If A, B are upper diagonal then AB is diagonal.
2. If A, B are upper triangular then AB is upper triangular.

3. If A, B are lower triangular then AB is lower triangular.

Proof of (1.): Suppose A and B are diagonal. It follows there exist a;,b; such that A =", a;Ej;
and B =}, b;Ej;. Calculate,

AB=> a;E; y bEj;
i j
= Z Z aib; By Ejj
= Z zj: a;bjdi; Eij
% i
= ZajblEzz
7
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thus the product matrix AB is also diagonal and we find that the diagonal of the product AB is
just the product of the corresponding diagonals of A and B.

Proof of (2.): Suppose A and B are upper diagonal. It follows there exist A;;, B;; such that
A= Zigj AijEij and B = 3, o) By Eyy. Calculate,

AB = Z Aij Eyj Z By Eyi

i<j K<l

=> Y Ai;ByE;;Ey
i<j k<l

=> "> Ai;BudirEq
i<j k<l

=D D AyBjiBu
1<y j<I

Notice that every term in the sum above has ¢ < j and j < [ hence ¢ < [. It follows the prod-
uct is upper triangular since it is a sum of upper triangular matrices. The proof of (3.) is similar. .

I hope you can appreciate these arguments are superior to component level calculations with explicit
listing of components and ---. The notations e; and Fj;; are extremely helpful on many such
questions. Futhermore, a proof captured in the notation of this section will more clearly show
the root cause for the truth of the identity in question. What is easily lost in several pages of
brute-force can be elegantly seen in a couple lines of carefully crafted index calculation.

3.4 elementary matrices

Gauss Jordan elimination consists of three elementary row operations:
(1.) m +ary — 1, (2.) bri — ry, (3.) 1 <1
Left multiplication by elementary matrices will accomplish the same operation on a matrix.

Definition 3.4.1.

Let [A: r; + ar; — r;] denote the matrix produced by replacing row i of matrix A with
row;(A) + arow;(A). Also define [A : c¢r; — 7] and [A : r; <> 7;] in the same way. Let
a,b € R and b # 0. The following matrices are called elementary matrices:

ET;“F(J,T]'*)TZ‘ = [I Ty +ar; — Ti}

Bt s, = L bry = 1]

E7'i<—>7']' = U A o g Tj]
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Example 3.4.2. Let A = [(f 127 5]
u m e
(1 0 07 [a b ¢ [« b c
ErigriordA =13 1 1 2 3|=1|3a+1 3b+2 3¢c+3
L0 0O 1| [lu m e|] | m e
1 0 07T b ¢ ] [« b ¢
Erryr, A = 70 1 2 3|=|7 14 21
L0 0 1| [u m e | v m e
(1 0 07 [a b c] [0 b ¢
E., A =10 01 1 2 =|lu m e
| 0 1 lLu m e | | 1 2 3
Proposition 3.4.3.
Let A € R ™*™ then there exist elementary matrices F1, Fo, ..., Ej

such that rref(A) = E1Es - - - EA.

Proof: Gauss Jordan elimination consists of a sequence of k elementary row operations. Each row
operation can be implemented by multiply the corresponding elementary matrix on the left. The
Theorem follows. [

Example 3.4.4. Just for fun let’s see what happens if we multiply the elementary matrices on the
right instead.

b ¢ 1 0 0 [ a+3b0 b ¢
AE  43m—r, = | 1 2 1 0| = 1+6 2 3
v m e | |0 0 1] | u+3m m e
[ b ¢ [1 0 0] [ a 70 ¢
AE7r, s, =1 2 7 =1 14
v m e | |0 0 1] L u Tm e
[ a b ¢ [1 0 0] [a ¢ b
AE,, s, =1 2 3 00 1|={(13 2
lu m e | [0 1 0| lu e m

Curious, they generate column operations, we might call these elementary column operations. In
our notation the row operations are more important.

3.5 invertible matrices

Proposition 3.5.1.

‘Elementary matrices are invertible.

Proof: I list the inverse matrix for each below:

-1 . . . .
Erivarisr) "=[: 7, —
(Britarj—r;) I : 7 —ar; — 1)
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(Bprysr)) =1+ i = 7]
(En-ewj)_l =[I: rj < ry

I leave it to the reader to convince themselves that these are indeed inverse matrices. [

Example 3.5.2. Let me illustrate the mechanics of the proof above, Ey y3r,—sr, = [é

oW
[ =J=]

] and
1-30 .
B _3rgmr, = [0 1 0} satisfy,
001
1307 [1-30
E E, _ :[010][010}:[
r1+3ro—ri1&r1—3ra—ry 001 00 1
Likewise,

B e Ty = i
_ = 1010 ==
r1—3ro—r1«r1+3ra—ry 001 001 00

Thus, (Ery43ry—sr) " = Ep_3pysr, just as we expected.

Theorem 3.5.3.

Let A € R X", The solution of Az = 0 is unique iff A~! exists.

Proof:( =) Suppose Az = 0 has a unique solution. Observe A0 = 0 thus the only solution is the
zero solution. Consequently, rref[A|0] = [I|0]. Moreover, by Proposition there exist elemen-
tary matrices E1, Ea, - -+ , Ej such that rref[A|0] = E1Esy - - - E[A|0] = [I]0]. Applying the concate-
nation Proposition we find that [E1FEy - - ExA|E1Es - - - E;0] = [I]0] thus E1Ey - - ExA = 1.

It remains to show that AF 1 Fs - - Ey, = 1. Multiply F1FEs - - Ex A = I on the left by E; ! followed
by E>~! and so forth to obtain

Ekfl L. EQilElilElEQ . EkA — Ekil . E2*1E171]

this simplifies to
A=F,' - BB L

Observe that
AE\Ey- Ep=E, ' - Ey 'Ey 'E1Ey- - Ep = 1.

We identify that A=! = E1Ey--- Ej, thus A1 exists.

(<) The converse proof is much easier. Suppose A~! exists. If Az = 0 then multiply by A~! on
the left, A='Ax = A0 = Iz =0thus z =0. O

Proposition 3.5.4.

Let A € R ™*™,
1. If BA=1 then AB = 1.
2. If AB =1 then BA=1.

Proof of (1.): Suppose BA = I. If Az = 0 then BAz = B0 hence Ix = 0. We have shown that
Az = 0 only has the trivial solution. Therefore, Theorem m shows us that A~! exists. Multiply
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BA = I on the left by A~ to find BAA™! = TA™! hence B = A~! and by definition it follows
AB = 1.

Proof of (2.): Suppose AB = I. If Bz = 0 then ABx = A0 hence Iz = 0. We have shown that
Bz = 0 only has the trivial solution. Therefore, Theorem shows us that B~! exists. Multiply
AB = I on the right by B~! to find ABB~! = IB~! hence A = B~! and by definition it follows
BA=1.0

Proposition [3.5.4 shows that we don’t need to check both conditions AB = I and BA = I. If either
holds the other condition automatically follows.

Proposition 3.5.5.

’If A e R ™" jg invertible then its inverse matrix is unique.

Proof: Suppose B, are inverse matrices of A. It follows that AB = BA=1and AC=CA=1
thus AB = AC. Multiply B on the left of AB = AC to obtain BAB = BAC hence IB = IC =
B=C. 0O

Example 3.5.6. In the case of a 2 X 2 matriz a nice formula to find the inverse is known:

a b0 1 d —b
c d Cad—bc| —¢ a
It’s not hard to show this formula works,
1 a b d —-b| ad —bc —ab+ ab
ad=bc | ¢ —c a | wdbc| cd—dc —be+da
1 ad — be 0 10
~ ad—be 0 ad—bc | |0 1

How did we know this formula? Can you derive it? To find the formula from first principles you
could suppose there exists a matrix B = [% ¥ ] such that AB = I. The resulting algebra would lead
you to conclude x = d/t,y = —b/t,z = —c/t,w = a/t where t = ad — bc. I leave this as an exercise
for the reader.

There is a giant assumption made throughout the last example. What is it?

Example 3.5.7. Recall that a counterclockwise rotation by angle 0 in the plane can be represented

‘ | cos(8) sin(6) ‘ : . _

by a matriz R(0) = [_ sin(0) cos(0)|" The inverse matriz corresponds to a rotation by angle —0
. ‘ . . oy _ |cos(f)  —sin(0)] _ _1

and (using the even/odd properties for cosine and sine) R(—0) = [sin(&) cos(0) | = R(O)".

Notice that R(0) = [(1) ﬂ thus R(6)R(—6) = R(0) = I. Rotations are very special invertible

matrices, we shall see them again.
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Theorem 3.5.8.

If A, B € R ™ ™ are invertible, X, Y €¢ R ™*" Z W € R ™™ and nonzero ¢ € R then
1. (AB)"'=B71A 1
—1 _ 14-1
2. (CA) = EA 5

3. XA=YAimplies X =Y,
4. AZ = AW implies Z = W,

Proof: To prove (1.) simply notice that
(ABYB'A™' = ABB YA ' =AN)A =447 =T
The proof of (2.) follows from the calculation below,

(LA YeA=Llea T A=ATA=T.

Cc

To prove (3.) assume that XA = Y A and multiply both sides by A~! on the right to obtain
XAA™! = YAA™! which reveals XI = YT or simply X =Y. To prove (4.) multiply by A~! on
the le