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preface

Before we begin, I should warn you that I assume a few things from the reader. These notes are
intended for someone who has already grappled with the problem of constructing proofs. I assume
you know the difference between ⇒ and ⇔. I assume the phrase ”iff” is known to you. I assume
you are ready and willing to do a proof by induction, strong or weak. I assume you know what
R, C, Q, N and Z denote. I assume you know what a subset of a set is. I assume you know how
to prove two sets are equal. I assume you are familar with basic set operations such as union and
intersection. More importantly, I assume you have started to appreciate that mathematics is more
than just calculations. Calculations without context, without theory, are doomed to failure. At a
minimum theory and proper mathematics allows you to communicate analytical concepts to other
like-educated individuals.

Some of the most seemingly basic objects in mathematics are insidiously complex. We’ve been
taught they’re simple since our childhood, but as adults, mathematical adults, we find the actual
definitions of such objects as R or C are rather involved. I will not attempt to provide foundational
arguments to build numbers from basic set theory. I believe it is possible, I think it’s well-thought-
out mathematics, but we take the existence of the real numbers as a given truth for these notes.
We assume that R exists and that the real numbers possess all their usual properties. In fact, I
assume R, C, Q, N and Z all exist complete with their standard properties. In short, I assume we
have numbers to work with. We leave the rigorization of numbers to a different course.

These notes are offered for the Spring 2015 semester at Liberty University. These are a major
revision of my older linear algebra notes. They reflect the restructuring of the course which I
intend for this semester. In particular, there are three main parts to this course:

(I.) matrix theory

(II.) abstract linear algebra

(III.) applications (actually, we’ll mostly follow Damiano and Little Chapters 4,5 and 6, we just
use Chapter 8 on determinants and §11.7 on the real Jordan form in the Spring 2015
semester)

Each part is paired with a test. Each part is used to bring depth to the part which follows. Just a
bit more advice before I get to the good part. How to study? I have a few points:

• spend several days on the homework. Try it by yourself to begin. Later, compare with your
study group. Leave yourself time to ask questions.

• come to class, take notes, think about what you need to know to solve problems.

• assemble a list of definitions, try to gain an inuitive picture of each concept, be able to give
examples and counter-examples

• learn the notation, a significant part of this course is learning to deal with new notation.

• methods of proof, how do we prove things in linear algebra? There are a few standard proofs,
know them.

• method of computation, I show you tools, learn to use them.
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• it’s not impossible. You can do it. Moreover, doing it the right way will make the courses
which follow this easier. Mathematical thinking is something that takes time for most of us
to master. You began the process in Math 200 or 250, now we continue that process.

style guide

I use a few standard conventions throughout these notes. They were prepared with LATEX which
automatically numbers sections and the hyperref package provides links within the pdf copy from
the Table of Contents as well as other references made within the body of the text.

I use color and some boxes to set apart some points for convenient reference. In particular,

1. definitions are in green.

2. remarks are in red.

3. theorems, propositions, lemmas and corollaries are in blue.

4. proofs start with a Proof: and are concluded with a �.

However, I do make some definitions within the body of the text. As a rule, I try to put what I
am defining in bold. Doubtless, I have failed to live up to my legalism somewhere. If you keep a
list of these transgressions to give me at the end of the course it would be worthwhile for all involved.

The symbol � indicates that a proof is complete. The symbol O indicates part of a proof is done,
but it continues.

reading guide

A number of excellent texts have helped me gain deeper insight into linear algebra. Let me discuss
a few of them here.

1. Damiano and Little’s A Course in Linear Algebra published by Dover. I chose this as the
required text in Spring 2015 as it is a well-written book, inexpensive and has solutions in
the back to many exercises. The notation is fairly close to the notation used in these notes.
One noted exception would be my [T ]α,β is replaced with [T ]βα. In fact, the notation of
Damiano and Little is common in other literature I’ve read in higher math. I also liked the
appearance of some diagrammatics for understanding Jordan forms. The section on minimal
and characteristic polynomials is lucid. I think we will enjoy this book in the last third of
the course.

2. Berberian’s Linear Algebra published by Dover. This book is a joy. The exercises are chal-
lenging for this level and there were no solutions in the back of the text. This book is full of
things I would like to cover, but, don’t quite have time to do.

3. Takahashi and Inoue’s The Manga Guide to Linear Algebra. Hillarious. Fun. Probably a
better algorithm for Gaussian elimnation than is given in my notes.



4

4. Axler Linear Algebra Done Right. If our course was a bit more pure, I might use this. Very
nicely written. This is an honest to goodness linear algebra text, it is actually just about
the study of linear transformations on vector spaces. Many texts called ”linear algebra” are
really about half-matrix theory. Admittedly, such is the state of our course. But, I have no
regrets, it’s not as if I’m teaching matrix techinques that the students already know before
this course. Ideally, I will openly admit, it would be better to have two courses. First, a
course on matrices and applications. Second, a course like that outlined in this book.

5. Hefferon’s Linear Algebra: this text has nice gentle introductions to many topics as well as
an appendix on proof techniques. The emphasis is linear algebra and the matrix topics are
delayed to a later part of the text. Furthermore, the term linear transformation as supplanted
by homomorphism and there are a few other, in my view, non-standard terminologies. All
in all, very strong, but we treat matrix topics much earlier in these notes. Many theorems
in this set of notes were inspired from Hefferon’s excellent text. Also, it should be noted the
solution manual to Hefferon, like the text, is freely available as a pdf.

6. Anton and Rorres’ Linear Algebra: Applications Version or Lay’s Linear Algebra, or Larson
and Edwards Linear Algebra, or... standard linear algebra text. Written with non-math
majors in mind. Many theorems in my notes borrowed from these texts.

7. Insel, Spence and Friedberg’s Elementary Linear Algebra. This text is a little light on appli-
cations in comparison to similar texts, however, the theory of Gaussian elimination and other
basic algorithms are extremely clear. This text focus on column vectors for the most part.

8. Insel, Spence and Friedberg’s Linear Algebra. It begins with the definition of a vector space
essentially. Then all the basic and important theorems are given. Theory is well presented in
this text and it has been invaluable to me as I’ve studied the theory of adjoints, the problem
of simultaneous diagonalization and of course the Jordan and rational cannonical forms.

9. Strang’s Linear Algebra. If geometric intuition is what you seek and/or are energized by then
you should read this in paralell to these notes. This text introduces the dot product early
on and gives geometric proofs where most others use an algebraic approach. We’ll take the
algebraic approach whenever possible in this course. We relegate geometry to the place of
motivational side comments. This is due to the lack of prerequisite geometry on the part of
a significant portion of the students who use these notes.

10. my advanced calculus notes. I review linear algebra and discuss multilinear algebra in some
depth. I’ve heard from some students that they understood linear in much greater depth
after the experience of my notes. Ask if interested, I’m always editing these.

11. Olver and Shakiban Applied Linear Algebra. For serious applications and an introduction to
modeling this text is excellent for an engineering, science or applied math student. This book
is somewhat advanced, but not as sophisticated as those further down this list.

12. Sadun’s Applied Linear Algebra: The Decoupling Principle this is a second book in linear
algebra. It presents much of the theory in terms of a unifying theme; decoupling. Probably
this book is very useful to the student who wishes deeper understanding of linear system
theory. Includes some Fourier analysis as well as a Chapter on Green’s functions.

13. Curtis’ Abstract Linear Algebra. Great supplement for a clean presentation of theorems.
Written for math students without apology. His treatment of the wedge product as an abstract
algebraic system is .
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14. Roman’s Advanced Linear Algebra. Treats all the usual topics as well as the generalization
to modules. Some infinite dimensional topics are discussed. This has excellent insight into
topics beyond this course.

15. Dummit and Foote Abstract Algebra. Part III contains a good introduction to the theory of
modules. A module is roughly speaking a vector space over a ring. I believe many graduate
programs include this material in their core algebra sequence. If you are interested in going to
math graduate school, studying this book puts you ahead of the game a bit. Understanding
Dummit and Foote by graduation is a nontrivial, but worthwhile, goal.

And now, a picture of Hannah in a shark,

I once told linear algebra that Hannah was them and my test was the shark. A wise student prayed
that they all be shark killers. I pray the same for you this semester. I’ve heard from a certain
student this picture and comment is unsettling. Therefore, I add this to ease the mood:

As you can see, Hannah survived to fight new monsters.
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Chapter 1

foundations

In this chapter we settle some basic notational issues. There are not many examples in this chapter
and the main task the reader is assigned here is to read and learn the definitions and notations.

1.1 sets and multisets

A set is a collection of objects. The set with no elements is called the empty-set and is denoted ∅.
If we write x ∈ A then this is read ”x is an element of A”. In your previous course you learned that
{a, a, b} = {a, b}. In other words, there is no allowance for repeats of the same object. In linear
algebra, we often find it more convenient to use what is known as a multiset. In other instances
we’ll make use of an ordered set or even an ordered mulitset. To summarize:

1. a set is a collection of objects with no repeated elements in the collection.

2. a multiset is a collection of objects. Repeats are possible.

3. an ordered set is a collection of objects with no repeated elements in which the collection
has a specific ordering.

4. an ordered multiset is a collection of objects which has an ordering and possibly has
repeated elements.

Notice, every set is a multiset and every ordered set is an ordered multiset. In the remainder of
this course, we make the slight abuse of langauge and agree to call an ordinary set a set with
no repeated elements and a multiset will simply be called in sequel a set. This simplifies our
langauge and will help us to think better1.

Let us denote sets by capital letters in as much as is possible. Often the lower-case letter of the
same symbol will denote an element; a ∈ A is to mean that the object a is in the set A. We can
abbreviate a1 ∈ A and a2 ∈ A by simply writing a1, a2 ∈ A, this is a standard notation. The union
of two sets A and B is denoted2 A ∪ B = {x|x ∈ A or x ∈ B}. The intersection of two sets is

1there is some substructure to describe here, multisets and ordered sets can be constructed from sets. However,
that adds little to our discussion and so I choose to describe multisets, ordered sets and soon Cartesian products
formally. Formally, means I describe there structure without regard to its explicit concrete realization.

2note that S = {x ∈ R : x meets condition P} = {x ∈ R | x meets condition P}. Some authors use : whereas I
prefer to use | in the set-builder notation.

13
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denoted A ∩ B = {x|x ∈ A and x ∈ B}. It sometimes convenient to use unions or intersections of
several sets: ⋃

α∈Λ

Uα = {x | there exists α ∈ Λ with x ∈ Uα}

⋂
α∈Λ

Uα = {x | for all α ∈ Λ we have x ∈ Uα}

we say Λ is the index set in the definitions above. If Λ is a finite set then the union/intersection
is said to be a finite union/interection. If Λ is a countable set then the union/intersection is said
to be a countable union/interection3.

Suppose A and B are both sets then we say A is a subset of B and write A ⊆ B iff a ∈ A implies
a ∈ B for all a ∈ A. If A ⊆ B then we also say B is a superset of A. If A ⊆ B then we say
A ⊂ B iff A 6= B and A 6= ∅. Recall, for sets A,B we define A = B iff a ∈ A implies a ∈ B for all
a ∈ A and conversely b ∈ B implies b ∈ A for all b ∈ B. This is equivalent to insisting A = B iff
A ⊆ B and B ⊆ A. Note, if we deal with ordered sets equality is measured by checking that both
sets contain the same elements in the same order. The difference of two sets A and B is denoted
A−B and is defined by A−B = {a ∈ A | such that a /∈ B}4.

A Cartesian product of two sets A,B is the set of ordered pairs (a, b) where a ∈ A and b ∈ B.
We denote,

A×B = {(a, b) | a ∈ A, b ∈ B}

Likewise, we define

A×B × C = {(a, b, c) | a ∈ A, b ∈ B, c ∈ C}

We make no distinction between A × (B × C) and (A × B) × C. This means we are using the
obvious one-one correspondence (a, (b, c)) ↔ ((a, b), c). If A1, A2, . . . An are sets then we define
A1 ×A2 × · · · ×An to be the set of ordered n-tuples:

n∏
i=1

Ai = A1 × · · · ×An = {(a1, . . . , an) | ai ∈ Ai for all i ∈ Nn}

Notice, I define N = {1, 2, . . . } as the set of natural numbers whereas Nn is the set of natural
numbers upto and including n ∈ N; Nn = {1, . . . , n}. If we take the Cartesian product of a set A
with itself n-times then it is customary to denote the set of all n-tuples from A as An:

A× · · · ×A︸ ︷︷ ︸
n−copies

= An.

Real numbers can be constructed from set theory and about a semester of mathematics. We will
accept the following as axioms5

3recall the term countable simply means there exists a bijection to the natural numbers. The cardinality of such
a set is said to be ℵo

4other texts somtimes use A−B = A \ B
5an axiom is a basic belief which cannot be further reduced in the conversation at hand. If you’d like to see a

construction of the real numbers from other math, see Ramanujan and Thomas’ Intermediate Analysis which has
the construction both from the so-called Dedekind cut technique and the Cauchy-class construction. Also, I’ve been
informed, Terry Tao’s Analysis I text has a very readable exposition of the construction from the Cauchy viewpoint.
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Definition 1.1.1. real numbers

The set of real numbers is denoted R and is defined by the following axioms:

(A1) addition commutes; a+ b = b+ a for all a, b ∈ R.

(A2) addition is associative; (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R.

(A3) zero is additive identity; a+ 0 = 0 + a = a for all a ∈ R.

(A4) additive inverses; for each a ∈ R there exists −a ∈ R and a+ (−a) = 0.

(A5) multiplication commutes; ab = ba for all a, b ∈ R.

(A6) multiplication is associative; (ab)c = a(bc) for all a, b, c ∈ R.

(A7) one is multiplicative identity; a1 = a for all a ∈ R.

(A8) multiplicative inverses for nonzero elements;
for each a 6= 0 ∈ R there exists 1

a ∈ R and a 1
a = 1.

(A9) distributive properties; a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ R.

(A10) totally ordered field; for a, b ∈ R:

(i) antisymmetry; if a ≤ b and b ≤ a then a = b.

(ii) transitivity; if a ≤ b and b ≤ c then a ≤ c.
(iii) totality; a ≤ b or b ≤ a

(A11) least upper bound property: every nonempty subset of R that has an upper bound,
has a least upper bound. This makes the real numbers complete.

Modulo A11 and some math jargon this should all be old news. An upper bound for a set S ⊆ R
is a number M ∈ R such that M > s for all s ∈ S. Similarly a lower bound on S is a number
m ∈ R such that m < s for all s ∈ S. If a set S is bounded above and below then the set is said
to be bounded. For example, the open set (a, b) is bounded above by b and it is bounded below
by a. In contrast, rays such as (0,∞) are not bounded above. Closed intervals contain their least
upper bound and greatest lower bound. The bounds for an open interval are outside the set.

We often make use of the following standard sets:

• natural numbers (positive integers); N = {1, 2, 3, . . . }.

• natural numbers up to the number n; Nn = {1, 2, 3, . . . , n− 1, n}.

• integers; Z = {. . . ,−2,−1, 0, 1, 2, . . . }. Note, Z>0 = N.

• non-negative integers; Z≥0 = {0, 1, 2, . . . } = N ∪ {0}.

• negative integers; Z<0 = {−1,−2,−3, . . . } = −N.

• rational numbers; Q = {pq | p, q ∈ Z, q 6= 0}.
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• irrational numbers; J = {x ∈ R | x /∈ Q}.

• open interval from a to b; (a, b) = {x|a < x < b}.

• half-open interval; (a, b] = {x | a < x ≤ b} or [a, b) = {x | a ≤ x < b}.

• closed interval; [a, b] = {x | a ≤ x ≤ b}.

We define R2 = {(x, y) | x, y ∈ R}. I refer to R2 as ”R-two” in conversational mathematics. Like-
wise, ”R-three” is defined by R3 = {(x, y, z) | x, y, z ∈ R}. We are ultimately interested in studying
”R-n” where Rn = {(x1, x2, . . . , xn) | xi ∈ R for i = 1, 2, . . . , n}. In this course if we consider Rm
it is assumed from the context that m ∈ N.

In terms of cartesian products you can imagine the x-axis as the number line then if we paste
another numberline at each x value the union of all such lines constucts the plane; this is the
picture behind R2 = R × R. Another interesting cartesian product is the unit-square; [0, 1]2 =
[0, 1]× [0, 1] = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. Sometimes a rectangle in the plane with it’s edges
included can be written as [x1, x2]× [y1, y2]. If we want to remove the edges use (x1, x2)× (y1, y2).

Moving to three dimensions we can construct the unit-cube as [0, 1]3. A generic rectangu-
lar solid can sometimes be represented as [x1, x2] × [y1, y2] × [z1, z2] or if we delete the edges:
(x1, x2)× (y1, y2)× (z1, z2).

1.2 functions

Suppose A and B are sets, we say f : A → B is a function if for each a ∈ A the function f
assigns a single element f(a) ∈ B. Moreover, if f : A → B is a function we say it is a B-valued
function of an A-variable and we say A = dom(f) whereas B = codomain(f). For example,
if f : R2 → [0, 1] then f is real-valued function of R2. On the other hand, if f : C → R2 then
we’d say f is a vector-valued function of a complex variable. The term mapping will be used
interchangeably with function in these notes. Suppose f : U → V and U ⊆ S and V ⊆ T then we
may consisely express the same data via the notation f : U ⊆ S → V ⊆ T .

Definition 1.2.1.

Suppose f : U → V . We define the image of U1 under f as follows:

f(U1) = { y ∈ V | there exists x ∈ U1 with f(x) = y}.

The range of f is f(U). The inverse image of V1 under f is defined as follows:

f−1(V1) = { x ∈ U | f(x) ∈ V1}.

The inverse image of a single point in the codomain is called a fiber. Suppose f : U → V .
We say f is surjective or onto V1 iff there exists U1 ⊆ U such that f(U1) = V1. If a function
is onto its codomain then the function is surjective. If f(x1) = f(x2) implies x1 = x2

for all x1, x2 ∈ U1 ⊆ U then we say f is injective on U1 or 1 − 1 on U1. If a function
is injective on its domain then we say the function is injective. If a function is both
injective and surjective then the function is called a bijection or a 1-1 correspondance.
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Example 1.2.2. Suppose f : R2 → R and f(x, y) = x for each (x, y) ∈ R2. The function is not
injective since f(1, 2) = 1 and f(1, 3) = 1 and yet (1, 2) 6= (1, 3). Notice that the fibers of f are
simply vertical lines:

f−1(xo) = {(x, y) ∈ dom(f) | f(x, y) = xo} = {(xo, y) | y ∈ R} = {xo} × R

Example 1.2.3. Suppose f : R → R and f(x) =
√
x2 + 1 for each x ∈ R. This function is not

surjective because 0 /∈ f(R). In contrast, if we construct g : R → [1,∞) with g(x) = f(x) for each
x ∈ R then can argue that g is surjective. Neither f nor g is injective, the fiber of xo is {−xo, xo}
for each xo 6= 0. At all points except zero these maps are said to be two-to-one. This is an
abbreviation of the observation that two points in the domain map to the same point in the range.

Example 1.2.4. Suppose f : R3 → R2 and f(x, y, z) = (x2 + y2, z) for each (x, y, z) ∈ R3. You
can easily see that range(f) = [0,∞]× R. Suppose R2 ∈ [0,∞) and zo ∈ R then

f−1({(R2, zo)}) = S1(R)× {zo}

where S1(R) denotes a circle of radius R. This result is a simple consequence of the observation
that f(x, y, z) = (R2, zo) implies x2 + y2 = R2 and z = zo.

Function composition is one important way to construct new functions. If f : U → V and g : V →
W then g ◦ f : U →W is the composite of g with f . We also create new functions by extending or
restricting domains of given functions. In particular:

Definition 1.2.5.

Let f : U ⊆ Rn → V ⊆ Rm be a mapping. If R ⊂ U then we define the restriction of f
to R to be the mapping f |R : R → V where f |R(x) = f(x) for all x ∈ R. If U ⊆ S and
V ⊂ T then we say a mapping g : S → T is an extension of f iff g|dom(f) = f .

When I say g|dom(f) = f this means that these functions have matching domains and they agree at
each point in that domain; g|dom(f)(x) = f(x) for all x ∈ dom(f). Once a particular subset is chosen
the restriction to that subset is a unique function. Of course there are usually many susbets of
dom(f) so you can imagine many different restictions of a given function. The concept of extension
is more vague, once you pick the enlarged domain and codomain it is not even necessarily the case
that another extension to that same pair of sets will be the same mapping. To obtain uniqueness
for extensions one needs to add more stucture. This is one reason that complex variables are
interesting, there are cases where the structure of the complex theory forces the extension of a
complex-valued function on a one-dimensional subset of C of a complex variable to be unique. This
is very surprising. An even stronger result is available for a special type of function called a linear
transformation. We’ll see that a linear transformation is uniquely defined by its values on a basis.
This means that a linear transformation is uniquely extended from a zero-dimensional subset of a
vector space6.

Definition 1.2.6.

Let f : U ⊆ Rn → V ⊆ Rm be a mapping, if there exists a mapping g : f(U)→ U such that
f ◦ g = Idf(U) and g ◦ f = IdU then g is the inverse mapping of f and we denote g = f−1.

6technically, we don’t know what this word ”dimension” means just yet. Or linear transformation, or vector space,
all in good time...
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If a mapping is injective then it can be shown that the inverse mapping is well defined. We define
f−1(y) = x iff f(x) = y and the value x must be a single value if the function is one-one. When a
function is not one-one then there may be more than one point which maps to a particular point
in the range.

Notice that the inverse image of a set is well-defined even if there is no inverse mapping. Moreover,
it can be shown that the fibers of a mapping are disjoint and their union covers the domain of the
mapping:

f(y) 6= f(z) ⇒ f−1{y} ∩ f−1{z} = ∅
⋃

y ∈ range(f)

f−1{y} = dom(f).

This means that the fibers of a mapping partition the domain.

Example 1.2.7. Consider f(x, y) = x2 + y2 this describes a mapping from R2 to R. Observe that
f−1{R2} = {x2 + y2 = R2 | (x, y) ∈ R2}. In words, the nonempty fibers of f are concentric circles
about the origin and the origin itself.

Technically, the emptyset is always a fiber. It is the fiber over points in the codomain which are
not found in the range. In the example above, f−1(−∞, 0) = ∅. Perhaps, even from our limited
array of examples, you can begin to appreciate there is a unending array of possible shapes, curves,
volumes and higher-dimensional objects which can appear as fibers. In contrast, as we will prove
later in this course, the inverse image of any linear transformation is essentially7 a line, plane or
n-volume containing the origin.

Definition 1.2.8.

Let f : U ⊆ Rn → V ⊆ Rm be a mapping. A cross section of the fiber partiition is a
subset S ⊆ U for which S ∩ f−1{v} contains a single element for every v ∈ f(U).

How do we construct a cross section for a particular mapping? For particular examples the details
of the formula for the mapping usually suggests some obvious choice. However, in general if you
accept the axiom of choice then you can be comforted in the existence of a cross section even in
the case that there are infinitely many fibers for the mapping. In this course, we’ll see later that
the problem of constructing a cross-section for a linear mapping is connected to the problem of
finding a representative for each point in the quotient space of the mapping.

Example 1.2.9. An easy cross-section for f(x, y) = x2 + y2 is given by any ray eminating from
the origin. Notice that, if ab 6= 0 then S = {t(a, b) | t ∈ [0,∞)} interects the a circle of radius
R2 = t2(a2 + b2) at the point (ta, tb)

Proposition 1.2.10.

Let f : U ⊆ Rn → V ⊆ Rm be a mapping. The restriction of f to a cross section S
of U is an injective function. The mapping f̃ : U → f(U) is a surjection. The mapping
f̃ |S : S → f(U) is a bijection.

The proposition above tells us that we can take any mapping and cut down the domain and/or
codomain to give the modfied function the structure of an injection, surjection or even a bijection.

7up to an isomorphism which is roughly speaking a change of notation
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Example 1.2.11. Continuing with our example, f : R2 → R with f(x, y) = x2 + y2 is neither
surjective or injective. However, just to make a choice, S = {(t, 0) | t ∈ [0,∞)} then clearly
f̃ : S → [0,∞) defined by f̃(x, y) = f(x, y) for all (x, y) ∈ S is a bijection.

Definition 1.2.12.

Let f : U ⊆ Rn → V ⊆ Rm be a mapping then we say a mapping g is a local inverse of f
iff there exits S ⊆ U such that g = (f |S)−1.

Usually we can find local inverses for functions in calculus. For example, f(x) = sin(x) is not 1-1
therefore it is not invertible. However, it does have a local inverse g(y) = sin−1(y). If we were more

pedantic we wouldn’t write sin−1(y). Instead we would write g(y) =

(
sin |[−π/2, π/2]

)−1

(y) since

the inverse sine is actually just a local inverse. To construct a local inverse for some mapping we
must locate some subset of the domain upon which the mapping is injective. Then relative to that
subset we can reverse the mapping. I mention this concept in passing so you may appreciate its
absense from this course. In linear algebra, the existence of a local inverse for a linear transformation
will imply the existence of a global inverse. The case we study in this course is very special. We
provide the bedrock on which other courses form arguments. Calculus linearizes problems locally,
so, to understand local problems we must first understand linear problems. That is our task this
semester, to unravel the structure of linear transformations as deeply as we dare.

1.3 finite sums

In this section we introduce a nice notation for finite sums8 of arbitrary size. Most of these
statements are ”for all n ∈ N” thus proof by mathematical induction is the appropriate proof tool.
I offer a few sample arguments and leave the rest to the reader. Let’s begin by giving a precise
definition for the finite sum A1 +A2 + · · ·+An:

Definition 1.3.1.

Let Ai for i = 1, 2, . . . n be objects which allow addition. We recursively define:

n+1∑
i=1

Ai = An+1 +
n∑
i=1

Ai

for each n ≥ 1 and
∑1

i=1Ai = A1.

The ”summation notation” or ”sigma” notation allows us to write sums precisely. In
∑n

i=1Ai the
index i is called the dummy index of summation. One dummy is just a good as the next, it
follows that

∑n
i=1Ai =

∑n
i=j Aj . This relabeling is sometimes called switching dummy variables,

or switching the index of summation from i to j. The terms which are summed in the sum are
called summands. For the sake of specificity I will assume real summands for the remainder of
this section. It should be noted the arguments given here generalize with little to no work for a
wide variety of other spaces where addition and multiplication by numbers is well-defined9.

8the results of this section apply to objects which allow addition and multiplication by numbers, it is quite general
9in the middle part of this course we learn such spaces are called vector spaces
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Proposition 1.3.2.

Let Ai, Bi ∈ R for each i ∈ N and suppose c ∈ R then for each n ∈ N,

(1.)

n∑
i=1

(Ai +Bi) =

n∑
i=1

Ai +

n∑
i=1

Bi

(2.)

n∑
i=1

cAi = c

n∑
i=1

Ai.

Proof: Let’s begin with (1.). Notice the claim is trivially true for n = 1. Inductively assume that
(1.) is true for n ∈ N. Consider, the following calculations are justified either from the recursive
definition of the finite sum or the induction hypothesis:

n+1∑
i=1

(Ai +Bi) =
n∑
i=1

(Ai +Bi) +An+1 +Bn+1

=

( n∑
i=1

Ai +
n∑
i=1

Bi

)
+An+1 +Bn+1

=

( n∑
i=1

Ai

)
+An+1 +

( n∑
i=1

Bi

)
+Bn+1

=

n+1∑
i=1

Ai +

n+1∑
i=1

Bi.

Thus (1.) is true for n + 1 and hence by proof by mathematical induction (PMI) we find (1.) is
true for all n ∈ N. The proof of (2.) is similar. �

Proposition 1.3.3.

Let Ai, Bij ∈ R for i, j ∈ N and suppose c ∈ R then for each n ∈ N,

(1.)

n∑
i=1

( n∑
j=1

Bij

)
=

n∑
j=1

( n∑
i=1

Bij

)
.

(2.)
n∑
i=1

n∑
j=1

AiBij =
n∑
i=1

Ai

n∑
j=1

Bij

Proof: The proof of (1.) proceeds by induction on n. If n = 1 then there is only one possible term,
namely B11 and the sums trivially agree. Consider the n = 2 case as we prepare for the induction
step,

2∑
i=1

2∑
j=1

Bij =
2∑
i=1

[Bi1 +Bi2] = [B11 +B12] + [B21 +B22]

On the other hand,

2∑
j=1

2∑
i=1

Bij =

2∑
j=1

[B1j +B2j ] = [B11 +B21] + [B11 +B21].
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The sums in opposite order produce the same terms overall, however the ordering of the terms may
differ10. Fortunately, real number-addition commutes.

Assume inductively that (1.) is true for some n > 1. Using the definition of sum throughout and
the induction hypothesis in transitioning from the 3-rd to the 4-th line:

n+1∑
i=1

n+1∑
j=1

Bij =

n+1∑
i=1

[
Bi,n+1 +

n∑
j=1

Bij

]

=
n+1∑
i=1

Bi,n+1 +
n+1∑
i=1

n∑
j=1

Bij

=

n+1∑
i=1

Bi,n+1 +

n∑
j=1

Bn+1,j +

n∑
i=1

n∑
j=1

Bij

=
n+1∑
i=1

Bi,n+1 +
n∑
j=1

Bn+1,j +
n∑
j=1

n∑
i=1

Bij

=
n+1∑
i=1

Bi,n+1 +
n∑
j=1

[
Bn+1,j +

n∑
i=1

Bij

]

=
n+1∑
i=1

Bi,n+1 +
n∑
j=1

n+1∑
i=1

Bij

=
n+1∑
j=1

n+1∑
i=1

Bij

Thus n implies n + 1 for (1.) therefore by proof by mathematical induction we find (1.) is true
for all n ∈ N. In short, we can swap the order of finite sums. The proof of (2.) involves similar
induction arguments. �

From (1.) of the above proposition we find that multiple summations may be listed in any order.
Moreover, a notation which indicates multiple sums is unambiguous:

n∑
i,j=1

Aij =
n∑
i=1

n∑
j=1

Aij .

If we have more than two summations nested the same result holds. Therefore, define:

n∑
i1,...ik=1

Ai1...ik =

n∑
i1=1

· · ·
n∑

ik=1

Ai1...ik .

Remark 1.3.4.

The purpose of this section is primarily notational. I want you to realize what is behind the
notation and it is likely I assign some homework based on utilizing the recursive definition
given here. I usually refer to the results of this section as ” properties of finite sums”.

10reordering terms in the infinite series case can get you into trouble if you don’t have absolute convergence.
Riemann showed a conditionally convergent series can be reordered to force it to converge to any value you might
choose.
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1.4 matrix notation

Matrices can be constructed from set-theoretic arguments in much the same way as Cartesian
Products. I will not pursue those matters in these notes. We will assume that everyone understands
how to construct an array of numbers.

Definition 1.4.1.

An m × n matrix is an array of objects with m rows and n columns. The elements in the
array are called entries or components. If A is an m×n matrix then Aij denotes the object
in the i-th row and the j-th column. The label i is a row index and the index j is a column
index in the preceding sentence. We usually denote A = [Aij ]. The set m × n of matrices
with real number entries is denoted R m×n. The set of m×n matrices with complex entries
is C m×n. Generally, is S is a set then Sm×n is the set of m × n arrays of objects from S.
If a matrix has the same number of rows and columns then it is called a square matrix.

Example 1.4.2. Suppose

A =

[
1 2 3
4 5 6

]
.

We see that A has 2 rows and 3 columns thus A ∈ R2×3. Moreover, A11 = 1, A12 = 2, A13 = 3,
A21 = 4, A22 = 5, and A23 = 6. It’s not usually possible to find a formula for a generic element in
the matrix, but this matrix satisfies Aij = 3(i− 1) + j for all i, j.

In the statement ”for all i, j” it is to be understood that those indices range over their allowed
values. In the preceding example 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3.

Example 1.4.3. Let S be a set of cats. If A ∈ S2×2 then Aij is a cat for all i, j.

Definition 1.4.4.

Two matrices A and B are equal if and only if they have the same size and Aij = Bij for
all i, j.

If you studied vectors before you should identify this is precisely the same rule we used in calculus
III11 Two vectors were equal iff all the components matched. Vectors are just specific cases of
matrices so the similarity is not surprising.

Example 1.4.5. Solve A = B where A =

[
x y
z w

]
and B =

[
x2 3
3y w

]
. Observe, A = B iff the

following four equations are true:

x = x2, y = 3, z = 3y, w = w

We can solve these by algebra. Of course, x2 = x implies x(x− 1) = 0 hence x = 0 or x = 1. The
y equation is easy to solve and thus z = 3(3) = 9. Finally, the only equation for w is w = w hence
there is no restriction on w, it is a free variable. The solution as a set is given by

{(x, 3, 9, w) | x = 0, 1 w ∈ R}.

11I wrote a special subsection to help you see the geometry of vectors if you didn’t get a chance to see it already
in another course.
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Definition 1.4.6.

Let A ∈ R m×n then a submatrix of A is a matrix which is made of some rectangle of elements in
A. Rows and columns are submatrices. In particular,

1. An m×1 submatrix of A is called a column vector of A. The j-th column vector is denoted
colj(A) and (colj(A))i = Aij for 1 ≤ i ≤ m. In other words,

colk(A) =


A1k

A2k
...

Amk

 ⇒ A =


A11 A21 · · · A1n

A21 A22 · · · A2n
...

... · · ·
...

Am1 Am2 · · · Amn

 = [col1(A)|col2(A)| · · · |coln(A)]

2. An 1×n submatrix of A is called a row vector of A. The i-th row vector is denoted rowi(A)
and (rowi(A))j = Aij for 1 ≤ j ≤ n. In other words,

rowk(A) =
[
Ak1 Ak2 · · · Akn

]
⇒ A =


A11 A21 · · · A1n

A21 A22 · · · A2n
...

... · · ·
...

Am1 Am2 · · · Amn

 =


row1(A)

row2(A)
...

rowm(A)



Suppose A ∈ R m×n, note for 1 ≤ j ≤ n we have colj(A) ∈ Rm×1 whereas for 1 ≤ i ≤ m we find
rowi(A) ∈ R1×n. In other words, an m×n matrix has n columns of length m and n rows of length
m.

Example 1.4.7. Suppose A = [ 1 2 3
4 5 6 ]. The columns of A are,

col1(A) =

[
1
4

]
, col2(A) =

[
2
5

]
, col3(A) =

[
3
6

]
.

The rows of A are
row1(A) =

[
1 2 3

]
, row2(A) =

[
4 5 6

]
Definition 1.4.8.

Let A ∈ R m×n then AT ∈ R n×m is called the transpose of A and is defined by (AT )ji =
Aij for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Example 1.4.9. Suppose A = [ 1 2 3
4 5 6 ] then AT =

[
1 4
2 5
3 6

]
. Notice that

row1(A) = col1(AT ), row2(A) = col2(AT )

and
col1(A) = row1(AT ), col2(A) = row2(AT ), col3(A) = row3(AT )

Notice (AT )ij = Aji = 3(j − 1) + i for all i, j; at the level of index calculations we just switch the
indices to create the transpose.

The preceding example shows us that we can quickly create the transpose of a given matrix by
switching rows to columns. The transpose of a row vector is a column vector and vice-versa.
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1.5 vectors

The first subsection in this section is intended to introduce the reader to the concept of geometric
vectors. I show that both vector addition and scalar multiplication naturally flow from intuitive
geometry. Then we abstract those concepts in the second subsection to give concrete definitions of
vector addition and scalar mulitplication in Rn.

1.5.1 geometric preliminaries

The concept of a vector is almost implicit with the advent of Cartesian geometry. Rene Descartes’
great contribution was the realization that geometry had an algebraic description if we make an
identification of points in the plane with pairs of real numbers. This identification is so ubiqitious
it is hard to imagine the plane without imagining pairs of numbers. Euclid had no idea of x or y
coordinates, instead just lines, circles and constructive axioms. Analytic geometry is the study of
geometry as formulated by Descartes. Because numbers are identified with points we are able to
state equations expressing relations between points. For example, if h, k,R ∈ R then the set of all
points (x, y) ∈ R2 which satisfy

(x− h)2 + (y − k)2 = R2

is a circle of radius R centered at (h, k). We can analyze the circle by studying the algebra of the
equation above. In calculus we even saw how implicit differentiation reveals the behaviour of the
tangent lines to the circle.

Very well, what about the points themselves ? What relations if any do arbitrary points in the
plane admit? For one, you probably already know about how to get directed line segments from
points. A common notation in highschool geometry12 is that the line from point P = (Q1, Q2) to

another point Q = (Q1, Q2) is
−−→
PQ where we define:

−−→
PQ = Q− P = (Q1 − P1, Q2 − P2).

A directed line-segment is also called a vector13.

12a dying subject apparently
13however, not every vector in this course is a directed line segment.
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Consider a second line segment going from Q to R = (R1, R2) this gives us the directed line segment

of
−−→
QR = R−Q = (R1−Q1, R2−Q2). What then about the directed line segment from the original

point P to the final point R? How is
−→
PR = R − P = (R1 − P1, R2 − P2) related to

−−→
PQ and

−−→
QR?

Suppose we define addition of points in the same way we defined the subtraction of points:

(V1, V2) + (W1,W2) = (V1 +W1, V2 +W2).

Will this definition be consistent with the geometrically suggested result
−−→
PQ+

−−→
QR =

−→
PR ? Con-

sider,

−−→
PQ+

−−→
QR = (Q1 − P1, Q2 − P2) + (R1 −Q1, R2 −Q2)

= (Q1 − P1 +R1 −Q1, Q2 − P2 +R2 −Q2)

= (R1 − P1, R2 − P2)

=
−→
PR.

We find the addition and subtraction of directed line segments is consistent with the usual tip-tail
addition of vectors in the plane.

What else can we do ? It seems natural to assume that
−−→
PQ +

−−→
PQ = 2

−−→
PQ but what does

multiplication by a number mean for a vector? What definition should we propose? Note if−−→
PQ = (Q1 − P1, Q2 − P2) then

−−→
PQ +

−−→
PQ = 2

−−→
PQ implies 2(

−−→
PQ) = (2(Q1 − P1), 2(Q2 − P2)).

Therefore, we define for c ∈ R,

c(V1, V2) = (cV1, cV2).

This definition is naturally consistent with the definition we made for addition. We can understand
multiplication of a vector by a number as an operation which scales the vector. In other words,
multiplying a vector by a number will change the length of the vector. Multiplication of a vector
by a number is often called scalar multiplication. Scalars are numbers.
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Vectors based at the origin are naturally identified with points: the directed line segment from
Q = (0, 0) to P is naturally identified with the point P .

−−→
QP = (P1, P2)− (0, 0) = (P1, P2).

In other words we can identify the point P = (P1, P2) with the directed line segment from the
origin ~P = (P1, P2). Unless context suggests otherwise vectors in this course are assumed to be
based at the origin.

1.5.2 n-dimensional space

Two dimensional space is R2 = R × R. To obtain n-dimensional space we just take the Cartesian
product of n-copies of R.

Definition 1.5.1.

Let n ∈ N, we define Rn = {(x1, x2, . . . , xn) | xj ∈ R for j = 1, 2, . . . , n}. If v ∈ Rn
then we say v is an n-vector. The numbers in the vector are called the components;
v = (v1, v2, . . . , vn) has j-th component vj .

Notice, a consequence of the definition above and the construction of the Cartesian product14 is
that two vectors v and w are equal iff vj = wj for all j. Equality of two vectors is only true if all
components are found to match. Addition and scalar multiplication are naturally generalized from
the n = 2 case. I use e1 = (1, 0) and e2 = (0, 1) for illustration below:

14see my Math 200 notes or ask me if interested, it’s not entirely trivial
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Definition 1.5.2.

Define functions + : Rn × Rn → Rn and · : R × Rn → Rn by the following rules: for each
v, w ∈ Rn and c ∈ R:

(1.) (v + w)j = vj + wj (2.) (cv)j = cvj

for all j ∈ {1, 2, . . . , n}. The operation + is called vector addition and it takes two
vectors v, w ∈ Rn and produces another vector v+w ∈ Rn. The operation · is called scalar
multiplication and it takes a number c ∈ R and a vector v ∈ Rn and produces another
vector c · v ∈ Rn. Often we simply denote c · v by juxtaposition cv.

If you are a gifted at visualization then perhaps you can add three-dimensional vectors in your
mind. If you’re mind is really unhinged maybe you can even add 4 or 5 dimensional vectors. The
beauty of the definition above is that we have no need of pictures. Instead, algebra will do just
fine. That said, let’s draw another picture, I already showed how we can write a two dimensional
vector as a sum of e1 = (1, 0) and e2 = (0, 1) on the previous page.

Notice these pictures go to show how you can break-down vectors into component vectors which
point in the direction of the coordinate axis. In R3 we have e1 = (1, 0, 0), e2 = (0, 1, 0) and
e3 = (0, 0, 1). Vectors of length15 one which point in the coordinate directions make up what is
called the standard basis16 It is convenient to define special notation to describe the standard
basis in arbitrary dimension. First I define a useful shorthand,

Definition 1.5.3.

The symbol δij =

{
1 , i = j

0 , i 6= j
is called the Kronecker delta.

For example, δ22 = 1 while δ12 = 0.

15the length of vectors is an important concept which we mine in depth later in the course
16for now we use the term ”basis” without meaning, in Chapter 5 we make a great effort to refine the concept.
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Definition 1.5.4.

Let ei ∈ Rn×1 be defined by (ei)j = δij . The size of the vector ei is determined by context.
We call ei the i-th standard basis vector.

Example 1.5.5. Let me expand on what I mean by ”context” in the definition above:
In R we have e1 = (1) = 1 (by convention we drop the brackets in this case)
In R2 we have e1 = (1, 0) and e2 = (0, 1).
In R3 we have e1 = (1, 0, 0) and e2 = (0, 1, 0) and e3 = (0, 0, 1).
In R4 we have e1 = (1, 0, 0, 0) and e2 = (0, 1, 0, 0) and e3 = (0, 0, 1, 0) and e4 = (0, 0, 0, 1).

Example 1.5.6. Any vector in Rn can be written as a sum of these basic vectors. For example,

v = (1, 2, 3) = (1, 0, 0) + (0, 2, 0) + (0, 0, 3)

= 1(1, 0, 0) + 2(0, 1, 0) + 3(0, 0, 1)

= e1 + 2e2 + 3e3.

We say that v is a linear combination of e1, e2 and e3.

The concept of a linear combination is very important.

Definition 1.5.7.

A linear combination of objects A1, A2, . . . , Ak is a sum

c1A1 + c2A2 + · · ·+ ckAk =
k∑
i=1

ciAi

where ci ∈ R for each i.

We will look at linear combinations of vectors, matrices and even functions in this course. If ci ∈ C
then we call it a complex linear combination. The proposition below generalizes the calculation
from Example 1.5.6.

Proposition 1.5.8.

Every vector in Rn is a linear combination of e1, e2, . . . , en.

Proof: Let v = (v1, v2, . . . , vn) ∈ Rn. By the definition of vector addition:

v = (v1, v2, . . . , vn)
= (v1, 0, . . . , 0) + (0, v2, . . . , vn)
= (v1, 0, . . . , 0) + (0, v2, . . . , 0) + · · ·+ (0, 0, . . . , vn)
= (v1, 0 · v1, . . . , 0 · v1) + (0 · v2, v2, . . . , 0 · v2) + · · ·+ (0 · vn, 0 · vn, . . . , vn)

In the last step I rewrote each zero to emphasize that the each entry of the k-th summand has a
vk factor. Continue by applying the definition of scalar multiplication to each vector in the sum
above we find,

v = v1(1, 0, . . . , 0) + v2(0, 1, . . . , 0) + · · ·+ vn(0, 0, . . . , 1)
= v1e1 + v2e2 + · · ·+ vnen.

Therefore, every vector in Rn is a linear combination of e1, e2, . . . , en. For each v ∈ Rn we have
v =

∑n
i=1 vnen. �
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Proposition 1.5.9. the vector properties of Rn.

Suppose n ∈ N. For all x, y, z ∈ Rn and a, b ∈ R,

1. (P1) x+ y = y + x for all x, y ∈ Rn,

2. (P2) (x+ y) + z = x+ (y + z) for all x, y, z ∈ Rn,

3. (P3) there exists 0 ∈ Rn such that x+ 0 = x for all x ∈ Rn,

4. (P4) for each x ∈ Rn there exists −x ∈ Rn such that x+ (−x) = 0,

5. (P5) 1 · x = x for all x ∈ Rn,

6. (P6) (ab) · x = a · (b · x) for all x ∈ Rn and a, b ∈ R,

7. (P7) a · (x+ y) = a · x+ a · y for all x, y ∈ Rn and a ∈ R,

8. (P8) (a+ b) · x = a · x+ b · x for all x ∈ Rn and a, b ∈ R,

9. (P9) If x, y ∈ Rn then x+y is a single element in Rn, (we say Rn is closed with respect
to addition)

10. (P10) If x ∈ Rn and c ∈ R then c · x is a single element in Rn. (we say Rn is closed
with respect to scalar multiplication)

We call 0 in P3 the zero vector and the vector −x is called the additive inverse of x. We
will usually omit the · and instead denote scalar multiplication by juxtaposition; a ·x = ax.

Proof: all the properties follow immediately from the definitions of addition and scalar multipli-
cation in Rn as well as properties of real numbers. Consider,

(x+ y)j = xj + yj = yj + xj︸ ︷︷ ︸
?

= (y + x)j

where ? follows because real number addition commutes. Since the calculation above holds for each
j = 1, 2, . . . , n it follows that x + y = y + x for all x, y ∈ Rn hence P1 is true. Very similarly P2
follows from associativity of real number addition. To prove P3 simply define, as usual, 0j = 0;
The zero vector is the vector with all zero components. Note

(x+ 0)j = xj + 0j = xj + 0 = xj

which holds for all j = 1, 2, . . . , n hence x + 0 = x for all x ∈ Rn. I leave the remainder of the
properties for the reader. �

The preceding proposition will be mirrored in an abstract context later in the course. So, it is
important. On the other hand, we will prove it again in the next chapter in the context of a
subcase of the matrix algebra. I include it here to complete the logic of this chapter.
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1.5.3 concerning notation for vectors

Definition 1.5.10. points are viewed as column vectors in this course.

In principle one can use column vectors for everything or row vectors for everything. I
choose a subtle notation that allows us to use both. On the one hand it is nice to write
vectors as rows since the typesetting is easier. However, once you start talking about matrix
multiplication then it is natural to write the vector to the right of the matrix and we will
soon see that the vector should be written as a column vector for that to be reasonable.
Therefore, we adopt the following convention

(v1, v2, . . . , vn) =


v1

v2
...
vn

 .
If I want to denote a real row vector then we will just write [v1, v2, . . . , vn].

The convention above is by no means universal. Various linear algebra books deal with this nota-
tional dilemma and number of different ways. In the first version of my linear algebra notes I used
R n×1 everywhere just to be relentlessly explicit that we were using column vectors for Rn. The
set of all n× 1 matrices is the set of all column vectors which I denote by R n×1 whereas the set of
all 1×n matrices is the set of all row vectors which we denote by R 1×n. We discuss these matters
in general in next chapter. The following example is merely included to expand on the notation.

Example 1.5.11. Suppose x + y + z = 3, x + y = 2 and x − y − z = −1. This system can be
written as a single vector equation by simply stacking these equations into a column vector: x+ y + z

x+ y
x− y − z

 =

 3
2
−1


Furthermore, we can break up the vector of variables into linear combination where the coefficients
in the sum are the variables x, y, z:

x

 1
1
1

+ y

 1
1
−1

+ z

 1
0
−1

 =

 3
2
−1


Note that the solution to the system is x = 1, y = 1, z = 1.



Chapter 2

Gauss-Jordan elimination

Gauss-Jordan elimination is an optimal method for solving a system of linear equations. Logically
it may be equivalent to methods you are already familar with but the matrix notation is by far
the most efficient method. This is important since throughout this course we will be faced with
the problem of solving linear equations. Additionally, the Gauss-Jordan produces the reduced row
echelon form(rref) of the matrix. Given a particular matrix the rref is unique. This is of particular
use in theoretical applications.

2.1 systems of linear equations

Let me begin with a few examples before I state the general definition.

Example 2.1.1. Consider the following system of 2 equations and 2 unknowns,

x+ y = 2

x− y = 0

Adding equations reveals 2x = 2 hence x = 1. Then substitute that into either equation to deduce
y = 1. Hence the solution (1, 1) is unique

Example 2.1.2. Consider the following system of 2 equations and 2 unknowns,

x+ y = 2

3x+ 3y = 6

We can multiply the second equation by 1/3 to see that it is equivalent to x + y = 2 thus our two
equations are in fact the same equation. There are infinitely many equations of the form (x, y)
where x+ y = 2. In other words, the solutions are (x, 2− x) for all x ∈ R.

Both of the examples thus far were consistent.

Example 2.1.3. Consider the following system of 2 equations and 2 unknowns,

x+ y = 2

x+ y = 3

These equations are inconsistent. Notice substracting the second equation yields that 0 = 1. This
system has no solutions, it is inconsistent

31
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It is remarkable that these three simple examples reveal the general structure of solutions to linear
systems. Either we get a unique solution, infinitely many solutions or no solution at all. For our
examples above, these cases correspond to the possible graphs for a pair of lines in the plane. A
pair of lines may intersect at a point (unique solution), be the same line (infinitely many solutions)
or be paralell (inconsistent).1

Remark 2.1.4.

It is understood in this course that i, j, k, l,m, n, p, q, r, s are in N. I will not belabor this
point. Please ask if in doubt.

Definition 2.1.5. system of m-linear equations in n-unknowns

Let x1, x2, . . . , xn be n variables and suppose bi, Aij ∈ R for 1 ≤ i ≤ m and 1 ≤ j ≤ n then

A11x1 +A12x2 + · · ·+A1nxn = b1

A21x1 +A22x2 + · · ·+A2nxn = b2

...
...

...
...

Am1x1 +Am2x2 + · · ·+Amnxn = bm

is called a system of linear equations. If bi = 0 for 1 ≤ i ≤ m then we say the system
is homogeneous. The solution set is the set of all (x1, x2, . . . , xn) ∈ Rn which satisfy all
the equations in the system simultaneously.

Remark 2.1.6.

We use variables x1, x2, . . . , xn mainly for general theoretical statements. In particular
problems and especially for applications we tend to defer to the notation x, y, z etc...

Definition 2.1.7.

The augmented coefficient matrix is an array of numbers which provides an abbreviated notation
for a system of linear equations.

A11x1 +A12x2 + · · ·+A1nxn = b1
A21x1 +A22x2 + · · ·+A2nxn = b2

...
...

...
...

...
Am1x1 +Am2x2 + · · ·+Amnxn = bm

 abbreviated by


A11 A12 · · · A1n b1
A21 A22 · · · A2n b2

...
...

...
...

...
Am1 Am2 · · · Amn bm

 .

1I used the Graph program to generate these graphs. It makes nice pictures, these are ugly due to user error.
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The vertical bar is optional, I include it to draw attention to the distinction between the matrix of
coefficients Aij and the nonhomogeneous terms bi. Let’s revisit my three simple examples in this
new notation. I illustrate the Gauss-Jordan method for each.

Example 2.1.8. The system x+ y = 2 and x− y = 0 has augmented coefficient matrix:[
1 1 2
1 −1 0

]
r2 − r1 → r2−−−−−−−−→

[
1 1 2
0 −2 −2

]
r2/− 2→ r2−−−−−−−−−→

[
1 1 2
0 1 1

]
r1 − r2 → r1−−−−−−−−→

[
1 0 1
0 1 1

]
The last augmented matrix represents the equations x = 1 and y = 1. Rather than adding and
subtracting equations we added and subtracted rows in the matrix. Incidentally, the last step is
called the backward pass whereas the first couple steps are called the forward pass. Gauss is
credited with figuring out the forward pass then Jordan added the backward pass. Calculators can
accomplish these via the commands ref ( Gauss’ row echelon form ) and rref (Jordan’s reduced
row echelon form). In particular,

ref

[
1 1 2
1 −1 0

]
=

[
1 1 2
0 1 1

]
rref

[
1 1 2
1 −1 0

]
=

[
1 0 1
0 1 1

]
Example 2.1.9. The system x+ y = 2 and 3x+ 3y = 6 has augmented coefficient matrix:[

1 1 2
3 3 6

]
r2 − 3r1 → r2−−−−−−−−−→

[
1 1 2
0 0 0

]
The nonzero row in the last augmented matrix represents the equation x + y = 2. In this case we
cannot make a backwards pass so the ref and rref are the same.

Example 2.1.10. The system x+ y = 3 and x+ y = 2 has augmented coefficient matrix:[
1 1 3
1 1 2

]
r2 − 3r1 → r2−−−−−−−−−→

[
1 1 1
0 0 1

]
The last row indicates that 0x+0y = 1 which means that there is no solution since 0 6= 1. Generally,
when the bottom row of the rref(A|b) is zeros with a 1 in the far right column then the system
Ax = b is inconsistent because there is no solution to the equation.

2.2 Gauss-Jordan algorithm

To begin we need to identify three basic operations we do when solving systems of equations. I’ll
define them for system of 3 equations and 3 unknowns, but it should be obvious this generalizes to
m equations and n unknowns without much thought.
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The following operations are called Elementary Row Operations.

(1.) scaling row 1 by nonzero constant c A11 A12 A13 b1
A21 A22 A23 b2
A31 A32 A33 b3

 cr1 → r1−−−−−→

 cA11 cA12 cA13 cb1
A21 A22 A23 b2
A31 A32 A33 b3


(2.) replace row 1 with the sum of row 1 and row 2 A11 A12 A13 b1

A21 A22 A23 b2
A31 A32 A33 b3

 r1 + r2 → r1−−−−−−−−→

 A11 +A21 A12 +A22 A13 +A23 b1 + b2
A21 A22 A23 b2
A31 A32 A33 b3


(3.) swap rows 1 and 2 A11 A12 A13 b1

A21 A22 A23 b2
A31 A32 A33 b3

 r1 ←→ r2−−−−−−→

 A21 A22 A23 b2
A11 A12 A13 b1
A31 A32 A33 b3


I illustrate how to use these elementary row operations to simplify a given matrix in the example
below. The matrix in the example corresponds to equations x + 2y − 3z = 1, 2x + 4y = 7 and
−x+ 3y + 2z = 0.

Example 2.2.1. Given A =
[

1 2 −3 1
2 4 0 7
−1 3 2 0

]
calculate rref(A).

A =

 1 2 −3 1
2 4 0 7
−1 3 2 0

 r2 − 2r1 → r2−−−−−−−−−→

 1 2 −3 1
0 0 6 5
−1 3 2 0

 r1 + r3 → r3−−−−−−−−→

 1 2 −3 1
0 0 6 5
0 5 −1 1

 r2 ↔ r3−−−−−→

 1 2 −3 1
0 5 −1 1
0 0 6 5

 = ref(A)

that completes the forward pass. We begin the backwards pass,

ref(A) =

 1 2 −3 1
0 5 −1 1
0 0 6 5

 r3 ← 1
6r3

−−−−−−→

 1 2 −3 1
0 5 −1 1
0 0 1 5/6

 r2 + r3 ← r2−−−−−−−−→

 1 2 −3 1
0 5 0 11/6
0 0 1 5/6

 r1 + 3r3 ← r1−−−−−−−−−→

 1 2 0 21/6
0 5 0 11/6
0 0 1 5/6

 1
5r2 ← r2
−−−−−−→

 1 2 0 21/6
0 1 0 11/30
0 0 1 5/6

 r1 − 2r2 ← r1−−−−−−−−−→

 1 0 0 83/30
0 1 0 11/30
0 0 1 5/6

 = rref(A)

Thus, we’ve found the system of equations x+ 2y− 3z = 1, 2x+ 4y = 7 and −x+ 3y+ 2z = 0 has
solution x = 83/30, y = 11/30 and z = 5/6.
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The method used in the example above generalizes to matrices of any size. It turns out that
by making a finite number of the operations (1.),(2.) and (3.) we can reduce the matrix to
the particularly simple format called the ”reduced row echelon form” (I abbreviate this rref most
places). The Gauss-Jordan algorithm tells us which order to make these operations. The following
definition is borrowed from the text Elementary Linear Algebra: A Matrix Approach, 2nd ed. by
Spence, Insel and Friedberg, however you can probably find nearly the same algorithm in dozens
of other texts.

Definition 2.2.2. Gauss-Jordan Algorithm.

Given an m by n matrix A the following sequence of steps is called the Gauss-Jordan algo-
rithm or Gaussian elimination. I define terms such as pivot column and pivot position
as they arise in the algorithm below.

Step 1: Determine the leftmost nonzero column. This is a pivot column and the
topmost position in this column is a pivot position.

Step 2: Perform a row swap to bring a nonzero entry of the pivot column below the
pivot row to the top position in the pivot column ( in the first step there are no rows
above the pivot position, however in future iterations there may be rows above the
pivot position, see 4).

Step 3: Add multiples of the pivot row to create zeros below the pivot position. This is
called ”clearing out the entries below the pivot position”.

Step 4: If there is a nonzero row below the pivot row from (3.) then find the next pivot
postion by looking for the next nonzero column to the right of the previous pivot
column. Then perform steps 1-3 on the new pivot column. When no more nonzero
rows below the pivot row are found then go on to step 5.

Step 5: the leftmost entry in each nonzero row is called the leading entry. Scale the
bottommost nonzero row to make the leading entry 1 and use row additions to clear
out any remaining nonzero entries above the leading entries.

Step 6: If step 5 was performed on the top row then stop, otherwise apply Step 5 to the
next row up the matrix.

Steps (1.)-(4.) are called the forward pass. A matrix produced by a foward pass is called
the reduced echelon form of the matrix and it is denoted ref(A). Steps (5.) and (6.) are
called the backwards pass. The matrix produced by completing Steps (1.)-(6.) is called
the reduced row echelon form of A and it is denoted rref(A).

The ref(A) is not unique because there may be multiple choices for how Step 2 is executed. On
the other hand, it turns out that rref(A) is unique. The proof of uniqueness can be found in
Appendix E of Insel Spence and Friedberg’s elementary linear algebra text. The backwards pass
takes the ambiguity out of the algorithm. Notice the forward pass goes down the matrix while the
backwards pass goes up the matrix.
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Example 2.2.3. Given A =
[

1 −1 1
3 −3 0
2 −2 −3

]
calculate rref(A).

A =

 1 −1 1
3 −3 0
2 −2 −3

 r2 − 3r1 → r2−−−−−−−−−→

 1 −1 1
0 0 −3
2 −2 −3

 r3 − 2r1 → r3−−−−−−−−−→

 1 −1 1
0 0 −3
0 0 −5

 3r3 → r3−−−−−−→
5r2 → r2−−−−−−→

 1 −1 1
0 0 −15
0 0 −15

 r3 − r2 → r3−−−−−−−−→−1
15 r2 → r2
−−−−−−−→

 1 −1 1
0 0 1
0 0 0

 r1 − r2 → r1−−−−−−−−→

 1 −1 0
0 0 1
0 0 0

 = rref(A)

Note it is customary to read multiple row operations from top to bottom if more than one is listed
between two of the matrices. The multiple arrow notation should be used with caution as it has great
potential to confuse. Also, you might notice that I did not strictly-speaking follow Gauss-Jordan in
the operations 3r3 → r3 and 5r2 → r2. It is sometimes convenient to modify the algorithm slightly
in order to avoid fractions.

Example 2.2.4. Find the rref of the matrix A given below:

A =

 1 1 1 1 1
1 −1 1 0 1
−1 0 1 1 1

 r2 − r1 → r2−−−−−−−−→

 1 1 1 1 1
0 −2 0 −1 0
−1 0 1 1 1

 r3 + r1 → r3−−−−−−−−→

 1 1 1 1 1
0 −2 0 −1 0
0 1 2 2 2

 r2 ↔ r3−−−−−→

 1 1 1 1 1
0 1 2 2 2
0 −2 0 −1 0

 r3 + 2r2 → r3−−−−−−−−−→

 1 1 1 1 1
0 1 2 2 2
0 0 4 3 4

 4r1 → r1−−−−−−→
2r2 → r2−−−−−−→

 4 4 4 4 4
0 2 4 4 4
0 0 4 3 4

 r2 − r3 → r2−−−−−−−−→
r1 − r3 → r1−−−−−−−−→

 4 4 0 1 0
0 2 0 1 0
0 0 4 3 4

 r1 − 2r2 → r1−−−−−−−−−→

 4 0 0 0 0
0 2 0 1 0
0 0 4 3 4

 r1/4→ r1−−−−−−→
r2/2→ r2−−−−−−→
r3/4→ r3−−−−−−→ 1 0 0 0 0

0 1 0 1/2 0
0 0 1 3/4 1

 = rref(A)
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Example 2.2.5.

[A|I] =

 1 0 0 1 0 0
2 2 0 0 1 0
4 4 4 0 0 1

 r2 − 2r1 → r2−−−−−−−−−→
r3 − 4r1 → r3−−−−−−−−−→ 1 0 0 1 0 0

0 2 0 −2 1 0
0 4 4 −4 0 1

 r3 − 2r2 → r3−−−−−−−−−→

 1 0 0 1 0 0
0 2 0 −2 1 0
0 0 4 0 −2 1

 r2/2→ r2−−−−−−→
r3/4→ r3−−−−−−→

 1 0 0 1 0 0
0 1 0 −1 1/2 0
0 0 1 0 −1/2 1/4

 = rref [A|I]

Example 2.2.6. easy examples are sometimes disquieting, let r ∈ R,

v =
[

2 −4 2r
]

1
2r1 → r1
−−−−−−→

[
1 −2 r

]
= rref(v)

Example 2.2.7. here’s another next to useless example,

v =

 0
1
3

 r1 ↔ r2−−−−−→

 1
0
3

 r3 − 3r1 → r3−−−−−−−−−→

 1
0
0

 = rref(v)

Example 2.2.8.

A =


1 0 1 0
0 2 0 0
0 0 3 1
3 2 0 0

 r4 − 3r1 → r4−−−−−−−−−→


1 0 1 0
0 2 0 0
0 0 3 1
0 2 −3 0

 r4 − r2 → r4−−−−−−−−→


1 0 1 0
0 2 0 0
0 0 3 1
0 0 −3 0

 r4 + r3 → r4−−−−−−−−→


1 0 1 0
0 2 0 0
0 0 3 1
0 0 0 1

 r3 − r4 → r3−−−−−−−−→


1 0 1 0
0 2 0 0
0 0 3 0
0 0 0 1


r2/2→ r2−−−−−−→
r3/3→ r3−−−−−−→
r1 − r3 → r1−−−−−−−−→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = rref(A)

I should remind you that there are numerous online resources to help you become efficient in your
row reduction. I provide links in Blackboard and on my website.
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Proposition 2.2.9.

If a particular column of a matrix is all zeros then it will be unchanged by the Gaussian
elimination. Additionally, if we know rref(A) = B then rref [A|0] = [B|0] where 0 denotes
one or more columns of zeros.

Proof: adding nonzero multiples of one row to another will result in adding zero to zero in the
column. Likewise, if we multiply a row by a nonzero scalar then the zero column is uneffected.
Finally, if we swap rows then this just interchanges two zeros. Gauss-Jordan elimination is just
a finite sequence of these three basic row operations thus the column of zeros will remain zero as
claimed. �

Example 2.2.10. Use Example 2.2.3 and Proposition 2.2.9 to calculate,

rref


1 0 1 0 0
0 2 0 0 0
0 0 3 1 0
3 2 0 0 0

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


Similarly, use Example 2.2.7 and Proposition 2.2.9 to calculate:

rref

 1 0 0 0
0 0 0 0
3 0 0 0

 =

 1 0 0 0
0 0 0 0
0 0 0 0


I hope these examples suffice. One last advice, you should think of the Gauss-Jordan algorithm
as a sort of road-map. It’s ok to take detours to avoid fractions and such but the end goal should
remain in sight. If you lose sight of that it’s easy to go in circles. Incidentally, I would strongly
recommend you find a way to check your calculations with technology. Mathematica will do any
matrix calculation we learn. TI-85 and higher will do much of what we do with a few exceptions
here and there. There are even websites which will do row operations, I provide a link on the
course website. All of this said, I would remind you that I expect you be able perform Gaussian
elimination correctly and quickly on the test and quizzes without the aid of a graphing calculator
for the remainder of the course. The arithmetic matters. Unless I state otherwise it is expected
you show the details of the Gauss-Jordan elimination in any system you solve in this course.

Theorem 2.2.11.

Let A ∈ Rm×n then if R1 and R2 are both Gauss-Jordan eliminations of A then R1 = R2.
In other words, the reduced row echelon form of a matrix of real numbers is unique.

Proof: The proof of uniqueness can be found in Appendix E of Insel Spence and Friedberg’s
elementary linear algebra text. It is straightforward, but a bit tedious. �
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2.3 classification of solutions

Surprisingly Examples 2.1.8,2.1.9 and 2.1.10 illustrate all the possible types of solutions for a linear
system. In this section I interpret the calculations of the last section as they correspond to solving
systems of equations.

Example 2.3.1. Solve the following system of linear equations if possible,

x+ 2y − 3z = 1
2x+ 4y = 7
−x+ 3y + 2z = 0

We solve by doing Gaussian elimination on the augmented coefficient matrix (see Example 2.2.1
for details of the Gaussian elimination),

rref

 1 2 −3 1
2 4 0 7
−1 3 2 0

 =

 1 0 0 83/30
0 1 0 11/30
0 0 1 5/6

 ⇒ x = 83/30
y = 11/30
z = 5/6

(We used the results of Example 2.2.1).

Remark 2.3.2.

The geometric interpretation of the last example is interesting. The equation of a plane
with normal vector < a, b, c > is ax + by + cz = d. Each of the equations in the system
of Example 2.2.1 has a solution set which is in one-one correspondance with a particular
plane in R3. The intersection of those three planes is the single point (83/30, 11/30, 5/6).

Example 2.3.3. Solve the following system of linear equations if possible,

x− y = 1
3x− 3y = 0
2x− 2y = −3

Gaussian elimination on the augmented coefficient matrix reveals (see Example 2.2.3 for details of
the Gaussian elimination)

rref

 1 −1 1
3 −3 0
2 −2 −3

 =

 1 −1 0
0 0 1
0 0 0


which shows the system has no solutions . The given equations are inconsistent.

Remark 2.3.4.

The geometric interpretation of the last example is also interesting. The equation of a line
in the xy-plane is is ax+ by = c, hence the solution set of a particular equation corresponds
to a line. To have a solution to all three equations at once that would mean that there is
an intersection point which lies on all three lines. In the preceding example there is no such
point.
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Example 2.3.5. Solve the following system of linear equations if possible,

x− y + z = 0
3x− 3y = 0
2x− 2y − 3z = 0

Gaussian elimination on the augmented coefficient matrix reveals (see Example 2.2.10 for details
of the Gaussian elimination)

rref

 1 −1 1 0
3 −3 0 0
2 −2 −3 0

 =

 1 −1 0 0
0 0 1 0
0 0 0 0

 ⇒ x− y = 0
z = 0

The row of zeros indicates that we will not find a unique solution. We have a choice to make, either
x or y can be stated as a function of the other. Typically in linear algebra we will solve for the
variables that correspond to the pivot columns in terms of the non-pivot column variables. In this
problem the pivot columns are the first column which corresponds to the variable x and the third
column which corresponds the variable z. The variables x, z are called basic variables while y is

called a free variable. The solution set is {(y, y, 0) | y ∈ R} ; in other words, x = y, y = y and

z = 0 for all y ∈ R.

You might object to the last example. You might ask why is y the free variable and not x. This is
roughly equivalent to asking the question why is y the dependent variable and x the independent
variable in the usual calculus. However, the roles are reversed. In the preceding example the
variable x depends on y. Physically there may be a reason to distinguish the roles of one variable
over another. There may be a clear cause-effect relationship which the mathematics fails to capture.
For example, velocity of a ball in flight depends on time, but does time depend on the ball’s velocty
? I’m guessing no. So time would seem to play the role of independent variable. However, when
we write equations such as v = vo − gt we can just as well write t = v−vo

−g ; the algebra alone does
not reveal which variable should be taken as ”independent”. Hence, a choice must be made. In the
case of infinitely many solutions, we customarily choose the pivot variables as the ”dependent” or
”basic” variables and the non-pivot variables as the ”free” variables. Sometimes the word parameter
is used instead of variable, it is synonomous.

Example 2.3.6. Solve the following (silly) system of linear equations if possible,

x = 0
0x+ 0y + 0z = 0
3x = 0

Gaussian elimination on the augmented coefficient matrix reveals (see Example 2.2.10 for details
of the Gaussian elimination)

rref

 1 0 0 0
0 0 0 0
3 0 0 0

 =

 1 0 0 0
0 0 0 0
0 0 0 0


we find the solution set is {(0, y, z) | y, z ∈ R} . No restriction is placed on the free variables y

and z.
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Example 2.3.7. Solve the following system of linear equations if possible,

x1 + x2 + x3 + x4 = 1
x1 − x2 + x3 = 1
−x1 + x3 + x4 = 1

Gaussian elimination on the augmented coefficient matrix reveals (see Example 2.2.4 for details of
the Gaussian elimination)

rref

 1 1 1 1 1
1 −1 1 0 1
−1 0 1 1 1

 =

 1 0 0 0 0
0 1 0 1/2 0
0 0 1 3/4 1


We find solutions of the form x1 = 0, x2 = −x4/2, x3 = 1 − 3x4/4 where x4 ∈ R is free. The

solution set is a subset of R4, namely {(0,−2s, 1− 3s, 4s) | s ∈ R} ( I used s = 4x4 to get rid of

the annoying fractions).

Remark 2.3.8.

The geometric interpretation of the last example is difficult to visualize. Equations of the
form a1x1 +a2x2 +a3x3 +a4x4 = b represent volumes in R4, they’re called hyperplanes. The
solution is parametrized by a single free variable, this means it is a line. We deduce that the
three hyperplanes corresponding to the given system intersect along a line. Geometrically
solving two equations and two unknowns isn’t too hard with some graph paper and a little
patience you can find the solution from the intersection of the two lines. When we have more
equations and unknowns the geometric solutions are harder to grasp. Analytic geometry
plays a secondary role in this course so if you have not had calculus III then don’t worry
too much. I should tell you what you need to know in these notes.

Example 2.3.9. Solve the following system of linear equations if possible,

x1 + x4 = 0
2x1 + 2x2 + x5 = 0
4x1 + 4x2 + 4x3 = 1

Gaussian elimination on the augmented coefficient matrix reveals (see Example 2.2.5 for details of
the Gaussian elimination)

rref

 1 0 0 1 0 0
2 2 0 0 1 0
4 4 4 0 0 1

 =

 1 0 0 1 0 0
0 1 0 −1 1/2 0
0 0 1 0 −1/2 1/4


Consequently, x4, x5 are free and solutions are of the form

x1 = −x4

x2 = x4 − 1
2x5

x3 = 1
4 + 1

2x5

for all x4, x5 ∈ R.
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Example 2.3.10. Solve the following system of linear equations if possible,

x1 + x3 = 0
2x2 = 0
3x3 = 1
3x1 + 2x2 = 0

Gaussian elimination on the augmented coefficient matrix reveals (see Example 2.2.8 for details of
the Gaussian elimination)

rref


1 0 1 0
0 2 0 0
0 0 3 1
3 2 0 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Therefore,there are no solutions .

Example 2.3.11. Solve the following system of linear equations if possible,

x1 + x3 = 0
2x2 = 0
3x3 + x4 = 0
3x1 + 2x2 = 0

Gaussian elimination on the augmented coefficient matrix reveals (see Example 2.2.10 for details
of the Gaussian elimination)

rref


1 0 1 0 0
0 2 0 0 0
0 0 3 1 0
3 2 0 0 0

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


Therefore, the unique solution is x1 = x2 = x3 = x4 = 0 . The solution set here is rather small,
it’s {(0, 0, 0, 0)}.
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2.4 applications to curve fitting and circuits

We explore a few fun simple examples in this section. I don’t intend for you to master the outs
and in’s of circuit analysis, those examples are for site-seeing purposes.2.

Example 2.4.1. Find a polynomial P (x) whose graph y = P (x) fits through the points (0,−2.7),
(2,−4.5) and (1, 0.97). We expect a quadratic polynomial will do nicely here: let A,B,C be the
coefficients so P (x) = Ax2 +Bx+ C. Plug in the data,

P (0) = C = −2.7
P (2) = 4A+ 2B + C = −4.5
P (1) = A+B + C = 0.97

⇒


A B C

0 0 1 −2.7
4 2 1 −4.5
1 1 1 0.97


I put in the A,B,C labels just to emphasize the form of the augmented matrix. We can then perform
Gaussian elimination on the matrix ( I omit the details) to solve the system,

rref

 0 0 1 −2.7
4 2 1 −4.5
1 1 1 0.97

 =

 1 0 0 −4.52
0 1 0 8.14
0 0 1 −2.7

 ⇒
A = −4.52
B = 8.14
C = −2.7

The requested polynomial is P (x) = −4.52x2 + 8.14x− 2.7 .

Example 2.4.2. Find which cubic polynomial Q(x) have a graph y = Q(x) which fits through the
points (0,−2.7), (2,−4.5) and (1, 0.97). Let A,B,C,D be the coefficients of Q(x) = Ax3 + Bx2 +
Cx+D. Plug in the data,

Q(0) = D = −2.7
Q(2) = 8A+ 4B + 2C +D = −4.5
Q(1) = A+B + C +D = 0.97

⇒


A B C D

0 0 0 1 −2.7
8 4 2 1 −4.5
1 1 1 1 0.97


I put in the A,B,C,D labels just to emphasize the form of the augmented matrix. We can then
perform Gaussian elimination on the matrix ( I omit the details) to solve the system,

rref

 0 0 0 1 −2.7
8 4 2 1 −4.5
1 1 1 1 0.97

 =

 1 0 −0.5 0 −4.07
0 1 1.5 0 7.69
0 0 0 1 −2.7

 ⇒

A = −4.07 + 0.5C
B = 7.69− 1.5C
C = C
D = −2.7

It turns out there is a whole family of cubic polynomials which will do nicely. For each C ∈ R the

polynomial is QC(x) = (c− 4.07)x3 + (7.69− 1.5C)x2 + Cx− 2.7 fits the given points. We asked

a question and found that it had infinitely many answers. Notice the choice C = 4.07 gets us back
to the last example, in that case QC(x) is not really a cubic polynomial.

Example 2.4.3. Consider the following traffic-flow pattern. The diagram indicates the flow of cars
between the intersections A,B,C,D. Our goal is to analyze the flow and determine the missing
pieces of the puzzle, what are the flow-rates x1, x2, x3. We assume all the given numbers are cars
per hour, but we omit the units to reduce clutter in the equations.

2...well, modulo that homework I asked you to do, but it’s not that hard, even a Sagittarian could do it.
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We model this by one simple principle: conservation of vehicles

A : x1 − x2 − 400 = 0
B : −x1 + 600− 100 + x3 = 0
C : −300 + 100 + 100 + x2 = 0
D : −100 + 100 + x3 = 0

This gives us the augmented-coefficient matrix and Gaussian elimination that follows ( we have to
rearrange the equations to put the constants on the right and the variables on the left before we
translate to matrix form)

rref


1 −1 0 400
−1 0 1 −500
0 1 0 100
0 0 1 0

 =


1 0 0 500
0 1 0 100
0 0 1 0
0 0 0 0


From this we conclude, x3 = 0, x2 = 100, x1 = 500. By the way, this sort of system is called
overdetermined because we have more equations than unknowns. If such a system is consistent
they’re often easy to solve. In truth, the rref business is completely unecessary here. I’m just trying
to illustrate what can happen.

Example 2.4.4. (taken from Lay’s homework, §1.6#7) Alka Seltzer makes fizzy soothing bubbles
through a chemical reaction of the following type:

NaHCO3︸ ︷︷ ︸
sodium bicarbonate

+ H3C6H5O7︸ ︷︷ ︸
citric acid

→ Na3C6H5O7︸ ︷︷ ︸
sodium citrate

+ H2O + CO2︸ ︷︷ ︸
water and carbon dioxide

The reaction above is unbalanced because it lacks weights to describe the relative numbers of
the various molecules involved in a particular reaction. To balance the equation we seek integers
x1, x2, x3, x4, x5 such that the following reaction is balanced.

x1(NaHCO3) + x2(H3C6H5O7) → x3(Na3C6H5O7) + x4(H2O) + x5(CO2)

In a chemical reaction the atoms the enter the reaction must also leave the reaction. Atoms are
neither created nor destroyed in chemical reactions3. It follows that the number of sodium(Na),

3chemistry is based on electronic interactions which do not possess the mechanisms needed for alchemy, transmu-
tation is in fact accomplished in nuclear physics. Ironically, alchemy, while known, is not economical
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hydrogen(H), carbon(C) and oxygen(O) atoms must be conserved in the reaction. Each element
can be represented by a component in a 4-dimensional vector; (Na,H,C,O). Using this notation
the equation to balance the reaction is simply:

x1


1
1
1
3

+ x2


0
8
6
7

 = x3


3
5
6
7

+ x4


0
2
0
1

+ x5


0
0
1
2


In other words, solve

x1 = 3x3

x1 + 8x2 = 5x3 + 2x4

x1 + 6x2 = 6x3 + x5

3x1 + 7x2 = 6x3 + x5

⇒


1 0 −3 0 0 0
1 8 −5 −2 0 0
1 6 −6 0 −1 0
3 7 −6 0 −1 0


After a few row operations we will deduce,

rref


1 0 −3 0 0 0
1 8 −5 −2 0 0
1 6 −6 0 −1 0
3 7 −6 0 −1 0

 =


1 0 0 0 −1 0
0 1 0 0 −1

3 0
0 0 1 0 −1

3 0
0 0 0 1 −1 0


Therefore, x1 = x5, x2 = x5/3, x3 = x5/3 and x4 = x5. Atoms are indivisible (in this context)
hence we need to choose x5 = 3k for k ∈ N to assure integer solutions. The basic reaction follows
from x5 = 3,

3NaHCO3 +H3C6H5O7 → Na3C6H5O7 + 3H2O + 3CO2

Finding integer solutions to chemical reactions is more easily solved by the method I used as an
undergraduate. You guess and check and adjust. Because the solutions are integers it’s not too hard
to work out. That said, if you don’t want to guess then we have a method via Gaussian elimination.
Chemists have more to worry about than just this algebra. If you study reactions carefully then there
are a host of other considerations involving energy transfer and ultimately quantum mechanics.

Example 2.4.5. Let R = 1Ω and V1 = 8V . Determine the voltage VA and currents I1, I2, I3

flowing in the circuit as pictured below:

Conservation of charge implies the sum of currents into a node must equal the sum of the currents
flowing out of the node. We use Ohm’s Law V = IR to set-up the currents, here V should be the
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voltage dropped across the resistor R.

I1 = 2V1−VA
4R Ohm’s Law

I2 = VA
R Ohm’s Law

I3 = V1−VA
4R Ohm’s Law

I2 = I1 + I3 Conservation of Charge at node A

Substitute the first three equations into the fourth to obtain

VA
R = 2V1−VA

4R + V1−VA
4R

Multiply by 4R and we find

4VA = 2V1 − VA + V1 − VA ⇒ 6VA = 3V1 ⇒ VA = V1/2 = 4V.

Substituting back into the Ohm’s Law equations we determine I1 = 16V−4V
4Ω = 3A, I2 = 4V

1Ω = 4A
and I3 = 8V−4V

4Ω = 1A. This obvious checks with I2 = I1 + I3. In practice it’s not always best to
use the full-power of the rref.

2.5 conclusions

We concluded the last section with a rather believable (but tedious to prove) Theorem. We do the
same here,

Theorem 2.5.1.

Given a system of m linear equations and n unknowns the solution set falls into one of the
following cases:

1. the solution set is empty.

2. the solution set has only one element.

3. the solution set is infinite.

Proof: Consider the augmented coefficient matrix [A|b] ∈ Rm×(n+1) for the system (Theorem 2.2.11
assures us it exists and is unique). Calculate rref [A|b]. If rref [A|b] contains a row of zeros with a
1 in the last column then the system is inconsistent and we find no solutions thus the solution set
is empty.

Suppose rref [A|b] does not contain a row of zeros with a 1 in the far right position. Then there are
less than n + 1 pivot columns. Suppose there are n pivot columns, let ci for i = 1, 2, . . .m be the
entries in the rightmost column. We find x1 = c1, x2 = c2, . . . xn = cm.Consequently the solution
set is {(c1, c2, . . . , cm)}.

If rref [A|b] has k < n pivot columns then there are (n+ 1− k)-non-pivot positions. Since the last
column corresponds to b it follows there are (n − k) free variables. But, k < n implies 0 < n − k
hence there is at least one free variable. Therefore there are infinitely many solutions. �
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Theorem 2.5.2.

Suppose that A ∈ R m×n and B ∈ R m×p then the first n columns of rref [A] and rref [A|B]
are identical.

Proof: The forward pass of the elimination proceeds from the leftmost-column to the rightmost-
column. The matrices A and [A|B] have the same n-leftmost columns thus the n-leftmost columns
are identical after the forward pass is complete. The backwards pass acts on column at a time just
clearing out above the pivots. Since the ref(A) and ref [A|B] have identical n-leftmost columns
the backwards pass modifies those columns in the same way. Thus the n-leftmost columns of A
and [A|B] will be identical. �

The theorem below is continued as we work through this course. Eventually, it has about a dozen
seemingly disconnected parts.

Theorem 2.5.3.

Given n-linear equations in n-unknowns Ax = b, a unique solution x exists iff rref [A|b] =
[I|x]. Moreover, if rref [A] 6= I then there is no unique solution to the system of equations.

Proof: If a unique solution x1 = c1, x2 = c2, . . . , xn = cn exists for a given system of equations
Ax = b then we know

Ai1c1 +Ai2c2 + · · ·+Aincn = bi

for each i = 1, 2, . . . , n and this is the only ordered set of constants which provides such a solution.
Suppose that rref [A|b] 6= [I|c]. If rref [A|b] = [I|d] and d 6= c then d is a new solution thus the
solution is not unique, this contradicts the given assumption. Consider, on the other hand, the case
rref [A|b] = [J |f ] where J 6= I. If there is a row where f is nonzero and yet J is zero then the system
is inconsistent. Otherwise, there are infinitely many solutions since J has at least one non-pivot
column as J 6= I. Again, we find contradictions in every case except the claimed result. It follows
if x = c is the unique solution then rref [A|b] = [I|c]. The converse follows essentially the same
argument, if rref [A|b] = [I|c] then clearly Ax = b has solution x = c and if that solution were not
unique then we be able to find a different rref for [A|b] but that contradicts the uniqueness of rref. �

There is much more to say about the meaning of particular patterns in the reduced row echelon
form of the matrix. We will continue to mull over these matters in later portions of the course.
Theorem 2.5.1 provides us the big picture. It is remarkable that two equations and two unknowns
already revealed these patterns.

Incidentally, you might notice that the Gauss-Jordan algorithm did not assume all the structure
of the real numbers. For example, we never needed to use the ordering relations < or >. All we
needed was addition, subtraction and the ability to multiply by the inverse of a nonzero number.
Any field of numbers will likewise work. Theorems 2.5.1 and 2.2.11 also hold for matrices of
rational (Q) or complex (C) numbers. We will encounter problems which require calculation in C.
If you are interested in encryption then calculations over a finite field Zp are necessary. In contrast,
Gausssian elimination does not work for matrices of integers since we do not have fractions to work
with in that context. For a much deeper look at linear algebra, see the Part III of Dummit and
Foote’s third edition of Algebra. In that text, the concept of a module is detailed and an analog for
Gaussian elimination is given where the field is replaced with a ring (good examples of rings are
Zn, Z or the set of R-valued functions on some space. Every good math major should leave their
undergraduate with a command of basic ring theory.
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Chapter 3

algebra of matrices

I decided to devote a chapter of these notes to matrices. Our goal here is to appreciate the richness
of the matrix construction. These arrays of numbers were at first merely a book-keeping device
to manage solutions of many equations and many unknowns. Matrix multiplication, probably first
discovered as it relates to solutions by substitution, now is used without reference to any system
of equations. Such is the life of matrices, these were born from equations, but now they are often
used a langauge of their own. Matrix notation allows us to group many equations into a single
elegant matrix equation. The algebraic identities which matrices can encode are boundless. We
can use matrices to construct C,Zn and a host of things I ought not name here. For example,
any finite dimensional Lie algebra can be realized as a commutator algebra on a set of matrices of
sufficiently large size (Ado’s Theorem). Later in this course, we’ll see how matrices are intimately
connected with linear transformations, a single matrix captures the essence of the action of a linear
transformation on all of space. My point is just this, matrices are interesting on their own. They’re
much more than a box of numbers.

3.1 addition and multiplication by scalars

Definition 3.1.1.

Let A,B ∈ R m×n then A+B ∈ R m×n is defined by (A+B)ij = Aij+Bij for all 1 ≤ i ≤ m,
1 ≤ j ≤ n. If two matrices A,B are not of the same size then there sum is not defined.

Example 3.1.2. Let A = [ 1 2
3 4 ] and B = [ 5 6

7 8 ]. We calculate

A+B =

[
1 2
3 4

]
+

[
5 6
7 8

]
=

[
6 8
10 12

]
.

Definition 3.1.3.

Let A,B ∈ R m×n, c ∈ R then cA ∈ R m×n is defined by (cA)ij = cAij for all 1 ≤ i ≤ m,
1 ≤ j ≤ n. We call the process of multiplying A by a number cmultiplication by a scalar.
We define A−B ∈ R m×n by A−B = A+(−1)B which is equivalent to (A−B)ij = Aij−Bij
for all i, j.

49
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Example 3.1.4. Let A = [ 1 2
3 4 ] and B = [ 5 6

7 8 ]. We calculate

A−B =

[
1 2
3 4

]
−
[

5 6
7 8

]
=

[
−4 −4
−4 −4

]
.

Now multiply A by the scalar 5,

5A = 5

[
1 2
3 4

]
=

[
5 10
15 20

]
Example 3.1.5. Let A,B ∈ R m×n be defined by Aij = 3i+ 5j and Bij = i2 for all i, j. Then we
can calculate (A+B)ij = 3i+ 5j + i2 for all i, j.

Definition 3.1.6.

The zero matrix in R m×n is denoted 0 and defined by 0ij = 0 for all i, j. The additive
inverse of A ∈ R m×n is the matrix −A such that A + (−A) = 0. The components of the
additive inverse matrix are given by (−A)ij = −Aij for all i, j.

The zero matrix joins a long list of other objects which are all denoted by 0. Usually the meaning
of 0 is clear from the context, the size of the zero matrix is chosen as to be consistent with the
equation in which it is found.

Example 3.1.7. Solve the following matrix equation,

0 =

[
x y
z w

]
+

[
−1 −2
−3 −4

]
⇒

[
0 0
0 0

]
=

[
x− 1 y − 2
z − 3 w − 4

]
The definition of matrix equality means this single matrix equation reduces to 4 scalar equations:
0 = x− 1, 0 = y − 2, 0 = z − 3, 0 = w − 4. The solution is x = 1, y = 2, z = 3, w = 4.

Theorem 3.1.8.

If A ∈ R m×n then

1. 0 ·A = 0, (where 0 on the L.H.S. is the number zero)

2. 0A = 0,

3. A+ 0 = 0 +A = A.

Proof: I’ll prove (2.). Let A ∈ R m×n and consider

(0A)ij =
m∑
k=1

0ikAkj =
m∑
k=1

0Akj =
m∑
k=1

0 = 0

for all i, j. Thus 0A = 0. I leave the other parts to the reader, the proofs are similar. �

Matrix addition and scalar multiplication is very natural in general. Let us collect the important
facts for future reference.
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Theorem 3.1.9.

If A,B,C ∈ R m×n and c1, c2 ∈ R then

1. (A+B) + C = A+ (B + C),

2. A+B = B +A,

3. c1(A+B) = c1A+ c2B,

4. (c1 + c2)A = c1A+ c2A,

5. (c1c2)A = c1(c2A),

6. 1A = A,

Proof: Nearly all of these properties are proved by breaking the statement down to components
then appealing to a property of real numbers. I supply proofs of (1.) and (5.) and leave (2.),(3.),
(4.) and (6.) to the reader.

Proof of (1.): assume A,B,C are given as in the statement of the Theorem. Observe that

((A+B) + C)ij = (A+B)ij + Cij defn. of matrix add.
= (Aij +Bij) + Cij defn. of matrix add.
= Aij + (Bij + Cij) assoc. of real numbers
= Aij + (B + C)ij defn. of matrix add.
= (A+ (B + C))ij defn. of matrix add.

for all i, j. Therefore (A+B) + C = A+ (B + C). �

Proof of (5.): assume c1, c2, A are given as in the statement of the Theorem. Observe that

((c1c2)A)ij = (c1c2)Aij defn. scalar multiplication.
= c1(c2Aij) assoc. of real numbers
= (c1(c2A))ij defn. scalar multiplication.

for all i, j. Therefore (c1c2)A = c1(c2A). �

The proofs of the other items are similar, we consider the i, j-th component of the identity and then
apply the definition of the appropriate matrix operation’s definition. This reduces the problem to
a statement about real numbers so we can use the properties of real numbers at the level of
components. After applying the crucial fact about real numbers, we then reverse the steps. Since
the calculation works for arbitrary i, j it follows the the matrix equation holds true. This Theorem
provides a foundation for later work where we may find it convenient to prove a statement without
resorting to a proof by components. Which method of proof is best depends on the question.
However, I can’t see another way of proving most of 3.1.9.

3.2 matrix algebra

This may be the most important section in this chapter. Here we learn how to multiply matrices,
what their basic algebraic properties are and we begin study of matrix inversion.
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Definition 3.2.1.

Let A ∈ R m×n and B ∈ R n×p then the product of A and B is denoted by juxtaposition
AB and AB ∈ R m×p is defined by:

(AB)ij =

n∑
k=1

AikBkj

for each 1 ≤ i ≤ m and 1 ≤ j ≤ p. In the case m = p = 1 the indices i, j are omitted in the
equation since the matrix product is simply a number which needs no index.

This definition is very nice for general proofs and we will need to know it for proofs. However, for
explicit numerical examples, I usually think of matrix multiplication in terms of dot-products.

Definition 3.2.2.

Let v = 〈v1, . . . , vn〉 and w = 〈w1, . . . , wn〉 be n-vectors then the dot-product of v and w
is the number defined below:

v •w = v1w1 + v2w2 + · · ·+ vnwn =
n∑
k=1

vkwk.

There are many things to say about dot-products. The geometric content of this formula is hard
to overstate. We should return to that task in the third part of this course.

Proposition 3.2.3.

Let v, w ∈ Rn then v · w = vTw.

Proof: Since vT is an 1×n matrix and w is an n×1 matrix the definition of matrix multiplication
indicates vTw should be a 1× 1 matrix which is a number. Note in this case the outside indices ij
are absent in the boxed equation so the equation reduces to

vTw = vT 1w1 + vT 2w2 + · · ·+ vT nwn = v1w1 + v2w2 + · · ·+ vnwn = v · w.�

Proposition 3.2.4.

The formula given below is equivalent to the Definition 3.2.1. Let A ∈ R m×n and B ∈ R n×p

then

AB =


row1(A) · col1(B) row1(A) · col2(B) · · · row1(A) · colp(B)
row2(A) · col1(B) row2(A) · col2(B) · · · row2(A) · colp(B)

...
... · · ·

...
rowm(A) · col1(B) rowm(A) · col2(B) · · · rowm(A) · colp(B)


Proof: The formula above claims (AB)ij = rowi(A) · colj(B) for all i, j. Recall that (rowi(A))k =
Aik and (colj(B))k = Bkj thus

(AB)ij =
n∑
k=1

AikBkj =

n∑
k=1

(rowi(A))k(colj(B))k
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Hence, using definition of the dot-product, (AB)ij = rowi(A) · colj(B). This argument holds for
all i, j therefore the Proposition is true. �

Example 3.2.5. Let A =

[
1 2
3 4

]
and v =

[
x
y

]
then we may calculate the product Av as follows:

Av =

[
1 2
3 4

] [
x
y

]
= x

[
1
3

]
+ y

[
2
4

]
=

[
x+ 2y
3x+ 4y

]
.

Notice that the product of an n× k matrix with a k × 1 vector yields another vector of size k × 1.
In the example above we observed the pattern (2× 2)(2× 1)→→ (2× 1).

Example 3.2.6. The product of a 3× 2 and 2× 3 is a 3× 3

 1 0
0 1
0 0

[ 4 5 6
7 8 9

]
=

 [1, 0][4, 7]T [1, 0][5, 8]T [1, 0][6, 9]T

[0, 1][4, 7]T [0, 1][5, 8]T [0, 1][6, 9]T

[0, 0][4, 7]T [0, 0][5, 8]T [0, 0][6, 9]T

 =

 4 5 6
7 8 9
0 0 0


Example 3.2.7. The product of a 3× 1 and 1× 3 is a 3× 3 1

2
3

 [ 4 5 6
]

=

 4 · 1 5 · 1 6 · 1
4 · 2 5 · 2 6 · 2
4 · 3 5 · 3 6 · 3

 =

 4 5 6
8 10 12
12 15 18



Example 3.2.8. Let A =

 1 2 3
4 5 6
7 8 9

 and v =

 1
0
−3

 calculate Av.

Av =

 1 2 3
4 5 6
7 8 9

 1
0
−3

 =

 (1, 2, 3) · (1, 0,−3)
(4, 5, 6) · (1, 0,−3)
(7, 8, 9) · (1, 0,−3)

 =

 −2
−14
−20

 .
Example 3.2.9. Let A = [ 1 2

3 4 ] and B = [ 5 6
7 8 ]. We calculate

AB =

[
1 2
3 4

] [
5 6
7 8

]

=

[
[1, 2][5, 7]T [1, 2][6, 8]T

[3, 4][5, 7]T [3, 4][6, 8]T

]

=

[
5 + 14 6 + 16
15 + 28 18 + 32

]

=

[
19 22
43 50

]
Notice the product of square matrices is square. For numbers a, b ∈ R it we know the product of a
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and b is commutative (ab = ba). Let’s calculate the product of A and B in the opposite order,

BA =

[
5 6
7 8

] [
1 2
3 4

]

=

[
[5, 6][1, 3]T [5, 6][2, 4]T

[7, 8][1, 3]T [7, 8][2, 4]T

]

=

[
5 + 18 10 + 24
7 + 24 14 + 32

]

=

[
23 34
31 46

]
Clearly AB 6= BA thus matrix multiplication is noncommutative or nonabelian.

If the commutator of two square matrices A,B is given by [A,B] = AB − BA. If [A,B] 6= 0
then clearly AB 6= BA. There are many interesting properties of the commutator. It has deep
physical significance in quantum mechanics. It is also the quintessential example of a Lie Bracket.

When we say that matrix multiplication is noncommuative that indicates that the product of two
matrices does not generally commute. However, there are special matrices which commute with
other matrices.

Example 3.2.10. Let I = [ 1 0
0 1 ] and A =

[
a b
c d

]
. We calculate

IA =

[
1 0
0 1

] [
a b
c d

]
=

[
a b
c d

]
Likewise calculate,

AI =

[
a b
c d

] [
1 0
0 1

]
=

[
a b
c d

]
Since the matrix A was arbitrary we conclude that IA = AI for all A ∈ R2×2.

Definition 3.2.11.

The identity matrix in R n×n is the n×n square matrix I which has components Iij = δij .
The notation In is sometimes used if the size of the identity matrix needs emphasis, otherwise
the size of the matrix I is to be understood from the context.

I2 =

[
1 0
0 1

]
I3 =

 1 0 0
0 1 0
0 0 1

 I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


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Proposition 3.2.12.

If X ∈ R n×p then XIp = X and InX = X.

Proof: I omit the p in Ip to reduce clutter below. Consider the i, j component of XI,

(XI)ij =

p∑
k=1

XikIkj defn. matrix multiplication

=

p∑
k=1

Xikδkj defn. of I

= Xij

The last step follows from the fact that all other terms in the sum are made zero by the Kronecker
delta. Finally, observe the calculation above holds for all i, j hence XI = X. The proof of IX = X
is left to the reader. �

Definition 3.2.13.

Let A ∈ R n×n. If there exists B ∈ R n×n such that AB = I and BA = I then we say that
A is invertible and A−1 = B. Invertible matrices are also called nonsingular. If a matrix
has no inverse then it is called a noninvertible or singular matrix.

The power of a matrix is defined in the natural way. Notice we need for A to be square in order
for the product AA to be defined.

Definition 3.2.14.

Let A ∈ R n×n. We define A0 = I, A1 = A and Am = AAm−1 for all m ≥ 1. If A is
invertible then A−p = (A−1)p.

As you would expect, A3 = AA2 = AAA.

Proposition 3.2.15.

Let A,B ∈ R n×n and p, q ∈ N ∪ {0}

1. (Ap)q = Apq.

2. ApAq = Ap+q.

3. If A is invertible, (A−1)−1 = A.

Proof: left to reader. �

You should notice that (AB)p 6= ApBp for matrices. Instead,

(AB)2 = ABAB, (AB)3 = ABABAB, etc...

This means the binomial theorem will not hold for matrices. For example,

(A+B)2 = (A+B)(A+B) = A(A+B) +B(A+B) = AA+AB +BA+BB
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hence (A+B)2 6= A2 +2AB+B2 as the matrix product is not generally commutative. If we have A
and B commute then AB = BA and we can prove that (AB)p = ApBp and the binomial theorem
holds true.

Example 3.2.16. Consider A, v, w from Example 3.6.1.

v + w =

[
5
7

]
+

[
6
8

]
=

[
11
15

]
Using the above we calculate,

A(v + w) =

[
1 2
3 4

] [
11
15

]
=

[
11 + 30
33 + 60

]
=

[
41
93

]
.

In constrast, we can add Av and Aw,

Av +Aw =

[
19
43

]
+

[
22
50

]
=

[
41
93

]
.

Behold, A(v + w) = Av +Aw for this example. It turns out this is true in general.

Properties of matrix multiplication are given in the theorem below. To summarize, matrix math
works as you would expect with the exception that matrix multiplication is not commutative. We
must be careful about the order of letters in matrix expressions.

Theorem 3.2.17.

If A,B,C ∈ R m×n, X,Y ∈ R n×p, Z ∈ R p×q and c1, c2 ∈ R then

1. (AX)Z = A(XZ),

2. (c1A)X = c1(AX) = A(c1X) = (AX)c1,

3. A(X + Y ) = AX +AY ,

4. A(c1X + c2Y ) = c1AX + c2AY ,

5. (A+B)X = AX +BX,

Proof: I leave the proofs of (1.), (2.), (4.) and (5.) to the reader. Proof of (3.): assume A,X, Y
are given as in the statement of the Theorem. Observe that

((A(X + Y ))ij =
∑

k Aik(X + Y )kj defn. matrix multiplication,
=
∑

k Aik(Xkj + Ykj) defn. matrix addition,
=
∑

k(AikXkj +AikYkj) dist. of real numbers,
=
∑

k AikXkj +
∑

k AikYkj) prop. of finite sum,
= (AX)ij + (AY )ij defn. matrix multiplication(× 2),
= (AX +AY )ij defn. matrix addition,

for all i, j. Therefore A(X + Y ) = AX +AY . �

The proofs of the other items are similar, I invite the reader to try to prove them in a style much
like the proof I offer above.
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3.3 all your base are belong to us (ei and Eij that is)

Recall that we defined ei ∈ Rn by (ei)j = δij . We call ei the i-th standard basis vector. We proved
in Proposition 1.5.8 that every vector in Rn is a linear combination of e1, e2, . . . , en. We can define
a standard basis for matrices of arbitrary size in much the same manner.

Definition 3.3.1.

The ij-th standard basis matrix for R m×n is denoted Eij for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
The matrix Eij is zero in all entries except for the (i, j)-th slot where it has a 1. In other
words, we define (Eij)kl = δikδjl.

Proposition 3.3.2.

Every matrix in R m×n is a linear combination of the Eij where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Proof: Let A ∈ R m×n then

A =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

... · · ·
...

Am1 Am2 · · · Amn



= A11


1 0 · · · 0
0 0 · · · 0
...

... · · · 0
0 0 · · · 0

+A12


0 1 · · · 0
0 0 · · · 0
...

... · · · 0
0 0 · · · 0

+ · · ·+Amn


0 0 · · · 0
0 0 · · · 0
...

... · · · 0
0 0 · · · 1


= A11E11 +A12E12 + · · ·+AmnEmn.

The calculation above follows from repeated mn-applications of the definition of matrix addition
and another mn-applications of the definition of scalar multiplication of a matrix. We can restate
the final result in a more precise langauge,

A =

m∑
i=1

n∑
j=1

AijEij .

As we claimed, any matrix can be written as a linear combination of the Eij . �

The term ”basis” has a technical meaning which we will discuss at length in due time. For now,
just think of it as part of the names of ei and Eij . These are the basic building blocks for matrix
theory.

Example 3.3.3. Suppose A ∈ R m×n and ei ∈ Rn is a standard basis vector,

(Aei)j =
n∑
k=1

Ajk(ei)k =
n∑
k=1

Ajkδik = Aji

Thus, [Aei] = coli(A) . We find that multiplication of a matrix A by the standard basis ei yields

the i− th column of A.
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Example 3.3.4. Suppose A ∈ R m×n and ei ∈ Rm×1 is a standard basis vector,

(ei
TA)j =

n∑
k=1

(ei)kAkj =

n∑
k=1

δikAkj = Aij

Thus, [ei
TA] = rowi(A) . We find multiplication of a matrix A by the transpose of standard basis

ei yields the i− th row of A.

Example 3.3.5. Again, suppose ei, ej ∈ Rn are standard basis vectors. The product ei
T ej of the

1× n and n× 1 matrices is just a 1× 1 matrix which is just a number. In particular consider,

ei
T ej =

n∑
k=1

(ei
T )k(ej)k =

n∑
k=1

δikδjk = δij

The product is zero unless the vectors are identical.

Example 3.3.6. Suppose ei ∈ Rm×1 and ej ∈ Rn. The product of the m × 1 matrix ei and the
1× n matrix ej

T is an m× n matrix. In particular,

(eiej
T )kl = (ei

T )k(ej)k = δikδjk = (Eij)kl

Thus we can construct the standard basis matrices by multiplying the standard basis vectors; Eij =
eiej

T .

Example 3.3.7. What about the matrix Eij? What can we say about multiplication by Eij on the
right of an arbitrary matrix? Let A ∈ R m×n and consider,

(AEij)kl =
n∑
p=1

Akp(Eij)pl =
n∑
p=1

Akpδipδjl = Akiδjl

Notice the matrix above has zero entries unless j = l which means that the matrix is mostly zero
except for the j-th column. We can select the j-th column by multiplying the above by ej, using
Examples 3.3.5 and 3.3.3,

(AEijej)k = (Aeiej
T ej)k = (Aeiδjj)k = (Aei)k = (coli(A))k

This means,

AEij =


column j

0 0 · · · A1i · · · 0
0 0 · · · A2i · · · 0
...

... · · ·
... · · ·

...
0 0 · · · Ami · · · 0


Right multiplication of matrix A by Eij moves the i-th column of A to the j-th column of AEij and
all other entries are zero. It turns out that left multiplication by Eij moves the j-th row of A to the
i-th row and sets all other entries to zero.

Example 3.3.8. Let A = [ 1 2
3 4 ] consider multiplication by E12,

AE12 =

[
1 2
3 4

] [
0 1
0 0

]
=

[
0 1

0 3

]
=
[

0 col1(A)
]

Which agrees with our general abstract calculation in the previous example. Next consider,

E12A =

[
0 1
0 0

] [
1 2
3 4

]
=

[
3 4
0 0

]
=

[
row2(A)

0

]
.
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Example 3.3.9. Calculate the product of Eij and Ekl.

(EijEkl)mn =
∑
p

(Eij)mp(Ekl)pn =
∑
p

δimδjpδkpδln = δimδjkδln

For example,
(E12E34)mn = δ1mδ23δ4n = 0.

In order for the product to be nontrivial we must have j = k,

(E12E24)mn = δ1mδ22δ4n = δ1mδ4n = (E14)mn.

We can make the same identification in the general calculation,

(EijEkl)mn = δjk(Eil)mn.

Since the above holds for all m,n,
EijEkl = δjkEil

this is at times a very nice formula to know about.

Remark 3.3.10.

You may find the general examples in this portion of the notes a bit too much to follow. If
that is the case then don’t despair. Focus on mastering the numerical examples to begin
with then come back to this section later. These examples are actually not that hard, you
just have to get used to index calculations. The proofs in these examples are much longer
if written without the benefit of index notation.

Example 3.3.11. Let A ∈ R m×n and suppose ei ∈ Rm×1 and ej ∈ Rn. Consider,

(ei)
TAej =

m∑
k=1

((ei)
T )k(Aej)k =

m∑
k=1

δik(Aej)k = (Aej)i = Aij

This is a useful observation. If we wish to select the (i, j)-entry of the matrix A then we can use
the following simple formula,

Aij = (ei)
TAej

This is analogus to the idea of using dot-products to select particular components of vectors in
analytic geometry; (reverting to calculus III notation for a moment) recall that to find v1 of ~v we
learned that the dot product by î =< 1, 0, 0 > selects the first components v1 = ~v · î. The following
theorem is simply a summary of our results for this section.

Theorem 3.3.12.

Assume A ∈ R m×n and v ∈ Rn and define (Eij)kl = δikδjl and (ei)j = δij as we previously
discussed,

v =
n∑
i=1

vnen A =
m∑
i=1

n∑
j=1

AijEij .

[ei
TA] = rowi(A) [Aei] = coli(A) Aij = (ei)

TAej

EijEkl = δjkEil Eij = eiej
T ei

T ej = δij
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3.3.1 diagonal and triangular matrices have no chance survive

Definition 3.3.13.

Let A ∈ R m×n. If Aij = 0 for all i, j such that i 6= j then A is called a diagonal matrix.
If A has components Aij = 0 for all i, j such that i ≤ j then we call A a upper triangular
matrix. If A has components Aij = 0 for all i, j such that i ≥ j then we call A a lower
triangular matrix.

Example 3.3.14. Let me illustrate a generic example of each case for 3× 3 matrices: A11 0 0
0 A22 0
0 0 A33

  A11 A12 A13

0 A22 A23

0 0 A33

  A11 0 0
A21 A22 0
A31 A32 A33


As you can see the diagonal matrix only has nontrivial entries on the diagonal, and the names
lower triangular and upper triangular are likewise natural.

If an upper triangular matrix has zeros on the diagonal then it is said to be strictly upper
triangular. Likewise, if a lower triangular matrix has zeros on the diagonal then it is said to be
strictly lower triangular. Obviously and matrix can be written as a sum of a diagonal and
strictly upper and strictly lower matrix,

A =
∑
i,j

AijEij

=
∑
i

AiiEii +
∑
i<j

AijEij +
∑
i>j

AijEij

There is an algorithm called LU -factorization which for many matrices A finds a lower triangular
matrix L and an upper triangular matrix U such that A = LU . It is one of several factorization
schemes which is calculationally advantageous for large systems. There are many many ways to
solve a system, but some are faster methods. Algorithmics is the study of which method is optimal.

Proposition 3.3.15.

Let A,B ∈ R n×n.

1. If A,B are upper diagonal then AB is diagonal.

2. If A,B are upper triangular then AB is upper triangular.

3. If A,B are lower triangular then AB is lower triangular.

Proof of (1.): Suppose A and B are diagonal. It follows there exist ai, bj such that A =
∑

i aiEii
and B =

∑
j bjEjj . Calculate,

AB =
∑
i

aiEii
∑
j

bjEjj

=
∑
i

∑
j

aibjEiiEjj

=
∑
i

∑
j

aibjδijEij

=
∑
i

aibiEii
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thus the product matrix AB is also diagonal and we find that the diagonal of the product AB is
just the product of the corresponding diagonals of A and B.

Proof of (2.): Suppose A and B are upper diagonal. It follows there exist Aij , Bij such that
A =

∑
i≤j AijEij and B =

∑
k≤lBklEkl. Calculate,

AB =
∑
i≤j

AijEij
∑
k≤l

BklEkl

=
∑
i≤j

∑
k≤l

AijBklEijEkl

=
∑
i≤j

∑
k≤l

AijBklδjkEil

=
∑
i≤j

∑
j≤l

AijBjlEil

Notice that every term in the sum above has i ≤ j and j ≤ l hence i ≤ l. It follows the prod-
uct is upper triangular since it is a sum of upper triangular matrices. The proof of (3.) is similar. �.

I hope you can appreciate these arguments are superior to component level calculations with explicit
listing of components and · · · . The notations ei and Eij are extremely helpful on many such
questions. Futhermore, a proof captured in the notation of this section will more clearly show
the root cause for the truth of the identity in question. What is easily lost in several pages of
brute-force can be elegantly seen in a couple lines of carefully crafted index calculation.

3.4 elementary matrices

Gauss Jordan elimination consists of three elementary row operations:

(1.) ri + arj → ri, (2.) bri → ri, (3.) ri ↔ rj

Left multiplication by elementary matrices will accomplish the same operation on a matrix.

Definition 3.4.1.

Let [A : ri + arj → ri] denote the matrix produced by replacing row i of matrix A with
rowi(A) + arowj(A). Also define [A : cri → ri] and [A : ri ↔ rj ] in the same way. Let
a, b ∈ R and b 6= 0. The following matrices are called elementary matrices:

Eri+arj→ri = [I : ri + arj → ri]

Ebri→ri = [I : bri → ri]

Eri↔rj = [I : ri ↔ rj ]
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Example 3.4.2. Let A =
[
a b c
1 2 3
u m e

]

Er2+3r1→r2A =

 1 0 0
3 1 0
0 0 1

 a b c
1 2 3
u m e

 =

 a b c
3a+ 1 3b+ 2 3c+ 3
u m e



E7r2→r2A =

 1 0 0
0 7 0
0 0 1

 a b c
1 2 3
u m e

 =

 a b c
7 14 21
u m e



Er2→r3A =

 1 0 0
0 0 1
0 1 0

 a b c
1 2 3
u m e

 =

 a b c
u m e
1 2 3


Proposition 3.4.3.

Let A ∈ R m×n then there exist elementary matrices E1, E2, . . . , Ek
such that rref(A) = E1E2 · · ·EkA.

Proof: Gauss Jordan elimination consists of a sequence of k elementary row operations. Each row
operation can be implemented by multiply the corresponding elementary matrix on the left. The
Theorem follows. �

Example 3.4.4. Just for fun let’s see what happens if we multiply the elementary matrices on the
right instead.

AEr2+3r1→r2 =

 a b c
1 2 3
u m e

 1 0 0
3 1 0
0 0 1

 =

 a+ 3b b c
1 + 6 2 3
u+ 3m m e



AE7r2→r2 =

 a b c
1 2 3
u m e

 1 0 0
0 7 0
0 0 1

 =

 a 7b c
1 14 3
u 7m e



AEr2→r3 =

 a b c
1 2 3
u m e

 1 0 0
0 0 1
0 1 0

 =

 a c b
1 3 2
u e m


Curious, they generate column operations, we might call these elementary column operations. In
our notation the row operations are more important.

3.5 invertible matrices

Proposition 3.5.1.

Elementary matrices are invertible.

Proof: I list the inverse matrix for each below:

(Eri+arj→ri)
−1 = [I : ri − arj → ri]
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(Ebri→ri)
−1 = [I : 1

b ri → ri]

(Eri↔rj )
−1 = [I : rj ↔ ri]

I leave it to the reader to convince themselves that these are indeed inverse matrices. �

Example 3.5.2. Let me illustrate the mechanics of the proof above, Er1+3r2→r1 =
[

1 3 0
0 1 0
0 0 1

]
and

Er1−3r2→r1 =
[

1 −3 0
0 1 0
0 0 1

]
satisfy,

Er1+3r2→r1Er1−3r2→r1 =
[

1 3 0
0 1 0
0 0 1

] [
1 −3 0
0 1 0
0 0 1

]
=
[

1 0 0
0 1 0
0 0 1

]
Likewise,

Er1−3r2→r1Er1+3r2→r1 =
[

1 −3 0
0 1 0
0 0 1

] [
1 3 0
0 1 0
0 0 1

]
=
[

1 0 0
0 1 0
0 0 1

]
Thus, (Er1+3r2→r1)−1 = Er1−3r2→r1 just as we expected.

Theorem 3.5.3.

Let A ∈ R n×n. The solution of Ax = 0 is unique iff A−1 exists.

Proof:( ⇒) Suppose Ax = 0 has a unique solution. Observe A0 = 0 thus the only solution is the
zero solution. Consequently, rref [A|0] = [I|0]. Moreover, by Proposition 3.4.3 there exist elemen-
tary matrices E1, E2, · · · , Ek such that rref [A|0] = E1E2 · · ·Ek[A|0] = [I|0]. Applying the concate-
nation Proposition 3.6.2 we find that [E1E2 · · ·EkA|E1E2 · · ·Ek0] = [I|0] thus E1E2 · · ·EkA = I.

It remains to show that AE1E2 · · ·Ek = I. Multiply E1E2 · · ·EkA = I on the left by E1
−1 followed

by E2
−1 and so forth to obtain

Ek
−1 · · ·E2

−1E1
−1E1E2 · · ·EkA = Ek

−1 · · ·E2
−1E1

−1I

this simplifies to
A = Ek

−1 · · ·E2
−1E1

−1.

Observe that
AE1E2 · · ·Ek = Ek

−1 · · ·E2
−1E1

−1E1E2 · · ·Ek = I.

We identify that A−1 = E1E2 · · ·Ek thus A−1 exists.

(⇐) The converse proof is much easier. Suppose A−1 exists. If Ax = 0 then multiply by A−1 on
the left, A−1Ax = A−10 ⇒ Ix = 0 thus x = 0. �

Proposition 3.5.4.

Let A ∈ R n×n.

1. If BA = I then AB = I.

2. If AB = I then BA = I.

Proof of (1.): Suppose BA = I. If Ax = 0 then BAx = B0 hence Ix = 0. We have shown that
Ax = 0 only has the trivial solution. Therefore, Theorem 3.5.3 shows us that A−1 exists. Multiply
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BA = I on the left by A−1 to find BAA−1 = IA−1 hence B = A−1 and by definition it follows
AB = I.

Proof of (2.): Suppose AB = I. If Bx = 0 then ABx = A0 hence Ix = 0. We have shown that
Bx = 0 only has the trivial solution. Therefore, Theorem 3.5.3 shows us that B−1 exists. Multiply
AB = I on the right by B−1 to find ABB−1 = IB−1 hence A = B−1 and by definition it follows
BA = I. �
Proposition 3.5.4 shows that we don’t need to check both conditions AB = I and BA = I. If either
holds the other condition automatically follows.

Proposition 3.5.5.

If A ∈ R n×n is invertible then its inverse matrix is unique.

Proof: Suppose B,C are inverse matrices of A. It follows that AB = BA = I and AC = CA = I
thus AB = AC. Multiply B on the left of AB = AC to obtain BAB = BAC hence IB = IC ⇒
B = C. �

Example 3.5.6. In the case of a 2× 2 matrix a nice formula to find the inverse is known:[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
It’s not hard to show this formula works,

1
ad−bc

[
a b
c d

] [
d −b
−c a

]
= 1

ad−bc

[
ad− bc −ab+ ab
cd− dc −bc+ da

]
= 1

ad−bc

[
ad− bc 0

0 ad− bc

]
=

[
1 0
0 1

]
How did we know this formula? Can you derive it? To find the formula from first principles you
could suppose there exists a matrix B = [ x y

z w ] such that AB = I. The resulting algebra would lead
you to conclude x = d/t, y = −b/t, z = −c/t, w = a/t where t = ad− bc. I leave this as an exercise
for the reader.

There is a giant assumption made throughout the last example. What is it?

Example 3.5.7. Recall that a counterclockwise rotation by angle θ in the plane can be represented

by a matrix R(θ) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
. The inverse matrix corresponds to a rotation by angle −θ

and (using the even/odd properties for cosine and sine) R(−θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
= R(θ)−1.

Notice that R(0) =

[
1 0
0 1

]
thus R(θ)R(−θ) = R(0) = I. Rotations are very special invertible

matrices, we shall see them again.
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Theorem 3.5.8.

If A,B ∈ R n×n are invertible, X,Y ∈ R m×n, Z,W ∈ R n×m and nonzero c ∈ R then

1. (AB)−1 = B−1A−1,

2. (cA)−1 = 1
cA
−1,

3. XA = Y A implies X = Y ,

4. AZ = AW implies Z = W ,

Proof: To prove (1.) simply notice that

(AB)B−1A−1 = A(BB−1)A−1 = A(I)A−1 = AA−1 = I.

The proof of (2.) follows from the calculation below,

(1
cA
−1)cA = 1

c cA
−1A = A−1A = I.

To prove (3.) assume that XA = Y A and multiply both sides by A−1 on the right to obtain
XAA−1 = Y AA−1 which reveals XI = Y I or simply X = Y . To prove (4.) multiply by A−1 on
the left. �

Remark 3.5.9.

The proofs just given were all matrix arguments. These contrast the component level proofs
needed for 3.1.9. We could give component level proofs for the Theorem above but that is
not necessary and those arguments would only obscure the point. I hope you gain your own
sense of which type of argument is most appropriate as the course progresses.

We have a simple formula to calculate the inverse of a 2 × 2 matrix, but sadly no such simple
formula exists for bigger matrices. There is a nice method to calculate A−1 (if it exists), but we do
not have all the theory in place to discuss it at this juncture.

Proposition 3.5.10.

If A1, A2, . . . , Ak ∈ R n×n are invertible then

(A1A2 · · ·Ak)−1 = A−1
k A−1

k−1 · · ·A
−1
1

Proof: follows from induction on k. In particular, k = 1 is trivial. Assume inductively the
proposition is true for some k with k ≥ 2,

(A1A2 · · ·Ak︸ ︷︷ ︸
B

Ak+1)−1 = (BAk+1)−1 = A−1
k+1B

−1

by Theorem 3.5.10. Applying the induction hypothesis to B yields

(A1A2 · · ·Ak+1)−1 = A−1
k+1A

−1
k · · ·A

−1
1 �.
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3.6 matrix multiplication, again !

In a previous section we proved Proposition 3.2.4 and calculated a number of explicit products.
There are cases where a specific matrix is not given and we need to see patterns at the level of rows
or columns. In this section we find several new ways to decompose a product which are ideal to
reveal such row or column patterns. In some sense, this section is just a special case of the later
section on block-multiplication. However, you could probably just as well say block multiplication
is a simple outgrowth of what we study here. In any event, we need this material to properly
understand the method to calculate A−1 and the final proposition of this section is absolutely
critical to properly understand the structure of the solution set for Ax = b.

Example 3.6.1. The product of a 2× 2 and 2× 1 is a 2× 1. Let A = [ 1 2
3 4 ] and let v = [ 5

7 ],

Av =

[
1 2
3 4

] [
5
7

]
=

[
[1, 2][5, 7]T

[3, 4][5, 7]T

]
=

[
19
43

]
Likewise, define w = [ 6

8 ] and calculate

Aw =

[
1 2
3 4

] [
6
8

]
=

[
[1, 2][6, 8]T

[3, 4][6, 8]T

]
=

[
22
50

]
Something interesting to observe here, recall that in Example 3.2.9 we calculated

AB =

[
1 2
3 4

] [
5 6
7 8

]
=

[
19 22
43 50

]
. But these are the same numbers we just found from the

two matrix-vector products calculated above. We identify that B is just the concatenation of the

vectors v and w; B = [v|w] =

[
5 6
7 8

]
. Observe that:

AB = A[v|w] = [Av|Aw].

The term concatenate is sometimes replaced with the word adjoin. I think of the process as
gluing matrices together. This is an important operation since it allows us to lump together many
solutions into a single matrix of solutions. (I will elaborate on that in detail in a future section)

Proposition 3.6.2.

Let A ∈ R m×n and B ∈ R n×p then we can understand the matrix multiplication of A and
B as the concatenation of several matrix-vector products,

AB = A[col1(B)|col2(B)| · · · |colp(B)] = [Acol1(B)|Acol2(B)| · · · |Acolp(B)]

Proof: see the Problem Set. You should be able to follow the same general strategy as the Proof
of Proposition 3.2.4. Show that the i, j-th entry of the L.H.S. is equal to the matching entry on
the R.H.S. Good hunting. �

There are actually many many different ways to perform the calculation of matrix multiplication.
Proposition 3.6.2 essentially parses the problem into a bunch of (matrix)(column vector) calcula-
tions. You could go the other direction and view AB as a bunch of (row vector)(matrix) products
glued together. In particular,
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Proposition 3.6.3.

Let A ∈ R m×n and B ∈ R n×p then we can understand the matrix multiplication of A and
B as the concatenation of several matrix-vector products,

AB =


row1(A)
row2(A)
...
rowm(A)

B =


row1(A)B
row2(A)B
...
rowm(A)B

 .

Proof: left to reader, but if you ask I’ll show you. �

There are stranger ways to calculate the product. You can also assemble the product by adding
together a bunch of outer-products of the rows of A with the columns of B. The dot-product of
two vectors is an example of an inner product and we saw v · w = vTw. The outer-product of two
vectors goes the other direction: given v ∈ Rn and w ∈ Rm we find vwT ∈ R n×m.

Proposition 3.6.4. matrix multiplication as sum of outer products.

Let A ∈ R m×n and B ∈ R n×p then

AB = col1(A)row1(B) + col2(A)row2(B) + · · ·+ coln(A)rown(B).

Proof: consider the i, j-th component of AB, by definition we have

(AB)ij =
n∑
k=1

AikBkj = Ai1B1j +Ai2B2j + · · ·+AinBnj

but note that (colk(A)rowk(B))ij = colk(A)irowk(B)j = AikBkj for each k = 1, 2, . . . , n and the
proposition follows. �

A corollary is a result which falls immediately from a given result. Take the case B = v ∈ Rn×1 to
prove the following:

Corollary 3.6.5. matrix-column product is linear combination of columns.

Let A ∈ R m×n and v ∈ Rn then

Av = v1col1(A) + v2col2(A) + · · ·+ vncoln(A).

Some texts use the result above as the foundational definition for matrix multiplication. We took a
different approach in these notes, largely because I wish for students to gain better grasp of index
calculation. If you’d like to know more about the other approach, I can recommend some reading.

3.7 how to calculate the inverse of a matrix

We have not needed to solve more than one problem at a time before, however the problem of cal-
culating an inverse amounts to precisely the problem of simultaneously solving several systems of
equations at once. We thus begin with a bit of theory before attacking the inverse problem head-on.
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3.7.1 concatenation for solving many systems at once

If we wish to solve Ax = b1 and Ax = b2 we use a concatenation trick to do both at once. In
fact, we can do it for k ∈ N problems which share the same coefficient matrix but possibly differing
inhomogeneous terms.

Proposition 3.7.1.

Let A ∈ R m×n. Vectors v1, v2, . . . , vk are solutions of Av = bi for i = 1, 2, . . . k iff V =
[v1|v2| · · · |vk] solves AV = B where B = [b1|b2| · · · |bk].

Proof: Let A ∈ R m×n and suppose Avi = bi for i = 1, 2, . . . k. Let V = [v1|v2| · · · |vk] and use the
concatenation Proposition 3.6.2,

AV = A[v1|v2| · · · |vk] = [Av1|Av2| · · · |Avk] = [b1|b2| · · · |bk] = B.

Conversely, suppose AV = B where V = [v1|v2| · · · |vk] and B = [b1|b2| · · · |bk] then by Proposition
3.6.2 AV = B implies Avi = bi for each i = 1, 2, . . . k. �

Example 3.7.2. Solve the systems given below,

x+ y + z = 1
x− y + z = 0
−x+ z = 1

and
x+ y + z = 1
x− y + z = 1
−x+ z = 1

The systems above share the same coefficient matrix, however b1 = [1, 0, 1]T whereas b2 = [1, 1, 1]T .
We can solve both at once by making an extended augmented coefficient matrix [A|b1|b2]

[A|b1|b2] =

 1 1 1 1 1
1 −1 1 0 1
−1 0 1 1 1

 rref [A|b1|b2] =

 1 0 0 −1/4 0
0 1 0 1/2 0
0 0 1 3/4 1


We use Proposition 3.7.1 to conclude that

x+ y + z = 1
x− y + z = 0
−x+ z = 1

has solution x = −1/4, y = 1/2, z = 3/4

x+ y + z = 1
x− y + z = 1
−x+ z = 1

has solution x = 0, y = 0, z = 1.

3.7.2 the inverse-finding algorithm

PROBLEM: how should we calculate A−1 for a 3× 3 matrix ?

Consider that the Proposition 3.7.1 gives us another way to look at the problem,

AA−1 = I ⇔ A[v1|v2|v3] = I3 = [e1|e2|e3]

Where vi = coli(A
−1) and e1 = [0 0 0]T , e2 = [0 1 0]T , e3 = [0 0 1]T . We observe that the problem

of finding A−1 for a 3× 3 matrix amounts to solving three separate systems:

Av1 = e1, Av2 = e2, Av3 = e3
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when we find the solutions then we can construct A−1 = [v1|v2|v3]. Think about this, if A−1 exists
then it is unique thus the solutions v1, v2, v3 are likewise unique. Consequently, by Theorem 2.5.3,

rref [A|e1] = [I|v1], rref [A|e2] = [I|v2], rref [A|e3] = [I|v3].

Each of the systems above required the same sequence of elementary row operations to cause A 7→ I.
We can just as well do them at the same time in one big matrix calculation:

rref [A|e1|e2|e3] = [I|v1|v2|v3]

While this discuss was done for n = 3 we can just as well do the same for n > 3. This provides
the proof for the first sentence of the theorem below. Theorem 2.5.3 together with the discussion
above proves the second sentence.

Theorem 3.7.3.

If A ∈ R n×n is invertible then rref [A|I] = [I|A−1]. Otherwise, A−1 not invertible iff
rref(A) 6= I iff rref [A|I] 6= [I|B].

This is perhaps the most pragmatic theorem so far stated in these notes. This theorem tells us how
and when we can find an inverse for a square matrix.

Example 3.7.4. Recall that in Example 2.2.5 we worked out the details of

rref

 1 0 0 1 0 0
2 2 0 0 1 0
4 4 4 0 0 1

 =

 1 0 0 1 0 0
0 1 0 −1 1/2 0
0 0 1 0 −1/2 1/4


Thus,  1 0 0

2 2 0
4 4 4

−1

=

 1 0 0
−1 1/2 0
0 −1/2 1/4

 .
Example 3.7.5. I omit the details of the Gaussian elimination,

rref

 1 −1 0 1 0 0
1 0 −1 0 1 0
6 2 3 0 0 1

 =

 1 0 0 −2 −3 −1
0 1 0 −3 −3 −1
0 0 1 −2 −4 −1


Thus,  1 −1 0

1 0 −1
6 2 3

−1

=

 −2 −3 −1
−3 −3 −1
−2 −4 −1

 .
3.7.3 solving systems by inverse matrix

Let us return to the problem we solved via Gauss-Jordan elimination in the previous chapter. If
we wish to solve Av = b for A ∈ Rn×n and b ∈ Rn then we can calculate rref(A|I) to compute
A−1 then the solution is obtained simply by multiplying Av = b on the left by A−1; A−1Av = v
thus v = A−1b. This is a very silly technique from an efficiency perspective. It is much faster to
simply calculate rref(A|b) to find the unique solution. Moreover, when infinitely many solutions
exist, we can still find the solution set from rref(A|b). Thus, the technique we discovered in this
section is not the best method for solving an explicit, given, system. On the other hand, I often
use multiplication by inverse to solve problems which are symbolic.
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3.8 symmetric and antisymmetric matrices

Definition 3.8.1.

Let A ∈ R n×n. We say A is symmetric iff AT = A. We say A is antisymmetric iff
AT = −A.

At the level of components, AT = A gives Aij = Aji for all i, j. Whereas, AT = −A gives Aij = −Aji
for all i, j. I should mention skew-symmetric is another word for antisymmetric. In physics,
second rank (anti)symmetric tensors correspond to (anti)symmetric matrices. In electromagnetism,
the electromagnetic field tensor has components which can be written as an antisymmetric 4 × 4
matrix. In classical mechanics, a solid’s propensity to spin in various directions is described by
the intertia tensor which is symmetric. The energy-momentum tensor from electrodynamics is also
symmetric. Matrices are everywhere if look for them.

Example 3.8.2. Some matrices are symmetric:

I, O, Eii,

[
1 2
2 0

]
Some matrices are antisymmetric:

O,

[
0 2
−2 0

]
Only 0 is both symmetric and antisymmetric (can you prove it?). Many other matrices are neither
symmetric nor antisymmetric:

ei, Ei,i+1,

[
1 2
3 4

]
I assumed n > 1 so that ei is a column vector which is not square.

Proposition 3.8.3.

Let A,B ∈ R n×n and c ∈ R then

1. (AT )T = A

2. (AB)T = BTAT socks-shoes property for transpose of product

3. (cA)T = cAT

4. (A+B)T = AT +BT

5. (AT )−1 = (A−1)T .

Proof: To prove (1.) simply note that ((AT )T )ij = (AT )ji = Aij for all i, j. Proof of (2.) is left to
the reader. Proof of (3.) and (4.) is simple enough,

((A+ cB)T )ij = (A+ cB)ji = Aji + cBji = (AT )ij + ((cB)T )ij

for all i, j. Proof of (5.) is again left to the reader1. �

1I wouldn’t be surprised if I was asked to prove (2.) or (5.) on a quiz or test.



3.8. SYMMETRIC AND ANTISYMMETRIC MATRICES 71

Proposition 3.8.4.

All square matrices are formed by the sum of a symmetric and antisymmetric matrix.

Proof: Let A ∈ R n×n. Utilizing Proposition 3.8.3 we find(
1
2(A+AT )

)T
= 1

2(AT + (AT )T ) = 1
2(AT +A) = 1

2(A+AT )

thus 1
2(A+AT ) is a symmetric matrix. Likewise,(

1
2(A−AT )

)T
= 1

2(AT − (AT )T ) = 1
2(AT −A) = −1

2(A−AT )

thus 1
2(A−AT ) is an antisymmetric matrix. Finally, note the identity below:

A = 1
2(A+AT ) + 1

2(A−AT )

The theorem follows. �

The proof that any function on R is the sum of an even and odd function uses the same trick.

Example 3.8.5. The proof of the Proposition above shows us how to break up the matrix into its
symmetric and antisymmetric pieces:[

1 2
3 4

]
= 1

2

([
1 2
3 4

]
+

[
1 3
2 4

])
+ 1

2

([
1 2
3 4

]
−
[

1 3
2 4

])

=

[
1 5/2

5/2 4

]
+

[
0 −1/2

1/2 0

]
.

Example 3.8.6. What are the symmetric and antisymmetric parts of the standard basis Eij in
R n×n? Here the answer depends on the choice of i, j. Note that (Eij)

T = Eji for all i, j.
Suppose i = j then Eij = Eii is clearly symmetric, thus there is no antisymmetric part.
If i 6= j we use the standard trick,

Eij = 1
2(Eij + Eji) + 1

2(Eij − Eji)

where 1
2(Eij +Eji) is the symmetric part of Eij and 1

2(Eij −Eji) is the antisymmetric part of Eij .

Proposition 3.8.7.

Let A ∈ R m×n then ATA is symmetric.

Proof: Proposition 3.8.3 yields (ATA)T = AT (AT )T = ATA. Thus ATA is symmetric. �

Proposition 3.8.8.

If A is symmetric then Ak is symmetric for all k ∈ N.

Proof: Suppose AT = A. Proceed inductively. Clearly k = 1 holds true since A1 = A. Assume
inductively that Ak is symmetric.

(Ak+1)T = (AAk)T defn. of matrix exponents,
= (Ak)TAT socks-shoes prop. of transpose,
= AkA using inducition hypothesis.
= Ak+1 defn. of matrix exponents,

thus by proof by mathematical induction Ak is symmetric for all k ∈ N. �
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3.9 block matrices

If you look at most undergraduate linear algbera texts they will not bother to even attempt much
of a proof that block-multiplication holds in general. I will foolishly attempt it here. However,
I’m going to cheat a little and employ uber-sneaky physics notation. The Einstein summation
convention states that if an index is repeated then it is assumed to be summed over it’s values.
This means that the letters used for particular indices are reserved. If i, j, k are used to denote
components of a spatial vector then you cannot use them for a spacetime vector at the same time.
A typical notation in physics would be that vj is a vector in xyz-space whereas vµ is a vector in
txyz-spacetime. A spacetime vector could be written as a sum of space components and a time
component; v = vµeµ = v0e0 +v1e1 +v2e2 +v3e3 = v0e0 +vjej . This is not the sort of langauge we
use in mathematics. For us notation is usually not reserved. Anyway, cultural commentary aside, if
we were to use Einstein-type notation in linear algebra then we would likely omit sums as follows:

v =
∑
i

viei −→ v = viei

A =
∑
ij

AijEij −→ A = AijEij

We wish to partition a matrices A and B into 4 parts, use indices M,N which split into subindices
m,µ and n, ν respectively. In this notation there are 4 different types of pairs possible:

A = [AMN ] =

[
Amn Amν
Aµn Aµν

]
B = [BNJ ] =

[
Bnj Bnγ
Bµj Bµγ

]
Then the sum over M,N breaks into 2 cases,

AMNBNJ = AMnBnJ +AMνBνJ

But, then there are 4 different types of M,J pairs,

[AB]mj = AmNBNj = AmnBnj +AmνBνj

[AB]mγ = AmNBNγ = AmnBnγ +AmνBνγ

[AB]µj = AµNBNj = AµnBnj +AµνBνj

[AB]µγ = AµNBNγ = AµnBnγ +AµνBνγ

Let me summarize,[
Amn Amν
Aµn Aµν

] [
Bnj Bnγ
Bµj Bµγ

]
=

[
[Amn][Bnj ] + [Amν ][Bνj ] [Amn][Bnγ ] + [Amν ][Bνγ ]

[Aµn][Bnj ] + [Aµν ][Bνj ] [Aµn][Bnγ ] + [Aµν ][Bνγ ]

]
Let me again summarize, but this time I’ll drop the annoying indices:
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Theorem 3.9.1. block multiplication.

Suppose A ∈ R m×n and B ∈ R n×p such that both A and B are partitioned as follows:

A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
where A11 is an m1 × n1 block, A12 is an m1 × n2 block, A21 is an m2 × n1 block and
A22 is an m2 × n2 block. Likewise, Bnkpk is an nk × pk block for k = 1, 2. We insist that
m1 + m2 = m and n1 + n2 = n. If the partitions are compatible as decribed above then
we may multiply A and B by multiplying the blocks as if they were scalars and we were
computing the product of 2× 2 matrices:[

A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
.

To give a careful proof we’d just need to write out many sums and define the partition with care
from the outset of the proof. In any event, notice that once you have this partition you can apply
it twice to build block-multiplication rules for matrices with more blocks. The basic idea remains
the same: you can parse two matrices into matching partitions then the matrix multiplication
follows a pattern which is as if the blocks were scalars. However, the blocks are not scalars so the
multiplication of the blocks is nonabelian. For example,

AB =

 A11 A12

A21 A22

A31 A32

[ B11 B12

B21 B22

]
=

 A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

A31B11 +A32B21 A31B12 +A32B22

 .
where if the partitions of A and B are compatible it follows that the block-multiplications on the
RHS are all well-defined.

Example 3.9.2. Let R(θ) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
and B(γ) =

[
cosh(γ) sinh(γ)
sinh(γ) cosh(γ)

]
. Furthermore

construct 4× 4 matrices Λ1 and Λ2 as follows:

Λ1 =

[
B(γ1) 0

0 R(θ1)

]
Λ2 =

[
B(γ2) 0

0 R(θ2)

]
Multiply Λ1 and Λ2 via block multiplication:

Λ1Λ2 =

[
B(γ1) 0

0 R(θ1)

] [
B(γ2) 0

0 R(θ2)

]
=

[
B(γ1)B(γ2) + 0 0 + 0

0 + 0 0 +R(θ1)R(θ2)

]
=

[
B(γ1 + γ2) 0

0 R(θ1 + θ2)

]
.

The last calculation is actually a few lines in detail, if you know the adding angles formulas for
cosine, sine, cosh and sinh it’s easy. If θ = 0 and γ 6= 0 then Λ would represent a velocity boost
on spacetime. Since it mixes time and the first coordinate the velocity is along the x-coordinate. On
the other hand, if θ 6= 0 and γ = 0 then Λ gives a rotation in the yz spatial coordinates in space
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time. If both parameters are nonzero then we can say that Λ is a Lorentz transformation on
spacetime. Of course there is more to say here, perhaps we could offer a course in special relativity
if enough students were interested in concert.

Example 3.9.3. Problem: Suppose M is a square matrix with submatrices A,B,C, 0. What

conditions should we insist on for M =

[
A B

0 C

]
to be invertible.

Solution: I propose we partition the potential inverse matrix M−1 =

[
D E

F G

]
. We seek to find

conditions on A,B,C such that there exist D,E, F,G and MM−1 = I. Each block of the equation
MM−1 = I gives us a separate submatrix equation:

MM−1 =

[
A B

0 C

] [
D E

F G

]
=

[
AD +BF AE +BG

0D + CF 0E + CG

]
=

[
I 0

0 I

]
We must solve simultaneously the following:

(1.) AD +BF = I, (2.) AE +BG = 0, (3.) CF = 0, (4.) CG = I

If C−1 exists then G = C−1 from (4.). Moreover, (3.) then yields F = C−10 = 0. Our problem
thus reduces to (1.) and (2.) which after substituting F = 0 and G = C−1 yield

(1.) AD = I, (2.) AE +BC−1 = 0.

Equation (1.) says D = A−1. Finally, let’s solve (2.) for E,

E = −A−1BC−1.

Let’s summarize the calculation we just worked through. IF A,C are invertible then the matrix

M =

[
A B

0 C

]
is invertible with inverse

M−1 =

[
A−1 −A−1BC−1

0 C−1

]
.

Consider the case that M is a 2 × 2 matrix and A,B,C ∈ R. Then the condition of invertibility
reduces to the simple conditions A,C 6= 0 and −A−1BC−1 = −B

AC we find the formula:

M−1 =

[
1
A

−B
AC

0 1
C

]
=

1

AC

[
C −B
0 A

]
.

This is of course the formula for the 2× 2 matrix in this special case where M21 = 0.

Of course the real utility of formulas like those in the last example is that they work for partitions of
arbitrary size. If we can find a block of zeros somewhere in the matrix then we may reduce the size
of the problem. The time for a computer calculation is largely based on some power of the size of
the matrix. For example, if the calculation in question takes n2 steps then parsing the matrix into
3 nonzero blocks which are n/2×n/2 would result in something like [n/2]2 + [n/2]2 + [n/2]2 = 3

4n
2

steps. If the calculation took on order n3 computer operations (flops) then my toy example of 3
blocks would reduce to something like [n/2]3 + [n/2]3 + [n/2]3 = 3

8n
2 flops. A savings of more than

60% of computer time. If the calculation was typically order n4 for an n×n matrix then the saving
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is even more dramatic. If the calculation is a determinant then the cofactor formula depends on
the factorial of the size of the matrix. Try to compare 10!+10! verses say 20!. Hope your calculator
has a big display:

10! = 3628800 ⇒ 10! + 10! = 7257600 or 20! = 2432902008176640000.

Perhaps you can start to appreciate why numerical linear algebra software packages often use al-
gorithms which make use of block matrices to streamline large matrix calculations. If you are very
interested in this sort of topic you might strike up a conversation with Dr. Van Voorhis. I suspect
he knows useful things about this type of mathematical inquiry.

Finally, I would comment that breaking a matrix into blocks is basically the bread and butter of
quantum mechanics. One attempts to find a basis of state vectors which makes the Hamiltonian
into a block-diagonal matrix. Each block corresponds to a certain set of statevectors sharing a
common energy. The goal of representation theory in physics is basically to break down matrices
into blocks with nice physical meanings. On the other hand, abstract algebraists also use blocks
to rip apart a matrix into it’s most basic form. For linear algebraists2, the so-called Jordan form
is full of blocks. Wherever reduction of a linear system into smaller subsystems is of interest there
will be blocks.

3.10 applications

Definition 3.10.1.

Let P ∈ R n×n with Pij ≥ 0 for all i, j. If the sum of the entries in any column of P is one
then we say P is a stochastic matrix.

Example 3.10.2. Stochastic Matrix: A medical researcher3 is studying the spread of a virus in
1000 lab. mice. During any given week it’s estimated that there is an 80% probability that a mouse
will overcome the virus, and during the same week there is an 10% likelyhood a healthy mouse will
become infected. Suppose 100 mice are infected to start, (a.) how many sick next week? (b.) how
many sick in 2 weeks ? (c.) after many many weeks what is the steady state solution?

Ik = infected mice at beginning of week k
Nk = noninfected mice at beginning of week k

P =

[
0.2 0.1
0.8 0.9

]
We can study the evolution of the system through successive weeks by multiply the state-vector
Xk = [Ik, Nk] by the probability transition matrix P given above. Notice we are given that X1 =
[100, 900]T . Calculate then,

X2 =

[
0.2 0.1
0.8 0.9

] [
100
900

]
=

[
110
890

]
After one week there are 110 infected mice Continuing to the next week,

X3 =

[
0.2 0.1
0.8 0.9

] [
110
890

]
=

[
111
889

]
2mostly dead by now sad to say.
3this example and most of the other applied examples in these notes are borrowed from my undergraduate linear

algebra course taught from Larson’s text by Dr. Terry Anderson of Appalachian State University
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After two weeks we have 111 mice infected. What happens as k → ∞? Generally we have Xk =
PXk−1. Note that as k gets large there is little difference between k and k − 1, in the limit they
both tend to infinity. We define the steady-state solution to be X∗ = limk→∞Xk. Taking the limit
of Xk = PXk−1 as k →∞ we obtain the requirement X∗ = PX∗. In other words, the steady state
solution is found from solving (P − I)X∗ = 0. For the example considered here we find,

(P − I)X∗ =

[
−0.8 0.1
0.8 −0.1

] [
u
v

]
= 0 v = 8u X∗ =

[
u
8u

]
However, by conservation of mice, u + v = 1000 hence 9u = 1000 and u = 111.1̄1 thus the steady
state can be shown to be X∗ = [111.1̄1, 888.8̄8]

Example 3.10.3. Diagonal matrices are nice: Suppose that demand for doorknobs halves every
week while the demand for yo-yos it cut to 1/3 of the previous week’s demand every week due to
an amazingly bad advertising campaign4. At the beginning there is demand for 2 doorknobs and 5
yo-yos.

Dk = demand for doorknobs at beginning of week k
Yk = demand for yo-yos at beginning of week k

P =

[
1/2 0
0 1/3

]
We can study the evolution of the system through successive weeks by multiply the state-vector
Xk = [Dk, Yk] by the transition matrix P given above. Notice we are given that X1 = [2, 5]T .
Calculate then,

X2 =

[
1/2 0
0 1/3

] [
2
5

]
=

[
1

5/3

]
Notice that we can actually calculate the k-th state vector as follows:

Xk = P kX1 =

[
1/2 0
0 1/3

]k [
2
5

]
=

[
2−k 0
0 3−k

]k [
2
5

]
=

[
2−k+1

5(3−k)

]
Therefore, assuming this silly model holds for 100 weeks, we can calculate the 100-the step in the
process easily,

X100 = P 100X1 =

[
2−101

5(3−100)

]
Notice that for this example the analogue of X∗ is the zero vector since as k →∞ we find Xk has
components which both go to zero.

Example 3.10.4. Naive encryption: in Example 3.7.5 we found observed that the matrix A has
inverse matrix A−1 where:

A =

 1 −1 0
1 0 −1
6 2 3

 A−1 =

 −2 −3 −1
−3 −3 −1
−2 −4 −1

 .
We use the alphabet code

A = 1, B = 2, C = 3, . . . , Y = 25, Z = 26

4insert your own more interesting set of quantities that doubles/halves or triples during some regular interval of
time
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and a space is encoded by 0. The words are parsed into row vectors of length 3 then we multiply
them by A on the right; [decoded]A = [coded]. Suppose we are given the string, already encoded by
A

[9,−1,−9], [38,−19,−19], [28,−9,−19], [−80, 25, 41], [−64, 21, 31], [−7, 4, 7].

Find the hidden message by undoing the multiplication by A. Simply multiply by A−1 on the right,

[9,−1,−9]A−1, [38,−19,−19]A−1, [28,−9,−19]A−1,

[−80, 25, 41]A−1, [−64, 21, 31]A−1, [−7, 4, 7]A−1

This yields,
[19, 19, 0], [9, 19, 0], [3, 1, 14], [3, 5, 12], [12, 5, 4]

which reads CLASS IS CANCELLED 5.

If you enjoy this feel free to peruse my Math 121 notes, I have additional examples of this naive
encryption. I say it’s naive since real encryption has much greater sophistication by this time.

Example 3.10.5. Complex Numbers: matrices of the form

[
a −b
b a

]
multiply like complex

numbers. For example, consider

[
0 −1
1 0

]
observe

[
0 −1
1 0

] [
0 −1
1 0

]
=

[
−1 0
0 −1

]
= −I

This matrix plays the role of i =
√
−1 where i2 = −1. Consider,[

a −b
b a

] [
x −y
y x

]
=

[
ax− by −(ay + bx)
ay + bx ax− by

]
Recall, (a+ ib)(x+ iy) = ax− by + i(ay + bx). These 2× 2 matrices form a model of the complex
number system.

Many algebraic systems permit a representaion via some matrix model.6

Example 3.10.6. Jacobian matrix of advanced calculus: Matrix multiplication and the com-
position of linear operators is the heart of the chain rule in multivariate calculus. The derivative
of a function f : Rn → Rm at a point p ∈ Rn gives the best linear approximation to f in the sense
that

Lf (p+ h) = f(p) +Dpf(h) u f(p+ h)

if h ∈ Rn is close to the zero vector; the graph of Lf gives the tangent line or plane or hyper-
surface depending on the values of m,n. The so-called Frechet derivative is Dpf , it is a linear
transformation from Rn to Rm. The simplest case is f : R → R where Dpf(h) = f ′(p)h and you
should recognize Lf (p+h) = f(p) + f ′(p)h as the function whose graph is the tangent line, perhaps
Lf (x) = f(p)+f ′(p)(x−p) is easier to see but it’s the same just set p+h = x. Given two functions,
say f : Rn → Rm and g : Rm → Rp then it can be shown that D(g ◦ f) = Dg ◦Df . In turn, the

5Larson’s pg. 100-102 # 22
6Minh Nguyen, Bailu Zhang and Spencer Leslie worked with me to study the calculus over semisimple algebras.

In that work, one important concept is the matrix formulation of the given algebra. I may have an open project
which extends that work, ask if interested
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matrix of D(g ◦ f) is simply obtain by multiplying the matrices of Dg and Df . The matrix of the
Frechet derivative is called the Jacobian matrix. The determinant of the Jacobian matrix plays an
important role in changing variables for multiple integrals. It is likely we would cover this discussion
in some depth in the Advanced Calculus course, while linear algebra is not a pre-req, it sure would
be nice if you had it. Linear is truly foundational for most interesting math.

3.11 conclusions

The theorem that follows here collects the various ideas we have discussed concerning an n × n
matrix and invertibility and solutions of Ax = b.

Theorem 3.11.1.

Let A be a real n× n matrix then the following are equivalent:

(a.) A is invertible,

(b.) rref [A|0] = [I|0] where 0 ∈ Rn,

(c.) Ax = 0 iff x = 0,

(d.) A is the product of elementary matrices,

(e.) there exists B ∈ R n×n such that AB = I,

(f.) there exists B ∈ R n×n such that BA = I,

(g.) rref [A] = I,

(h.) rref [A|b] = [I|x] for an x ∈ Rn,

(i.) Ax = b is consistent for every b ∈ Rn,

(j.) Ax = b has exactly one solution for every b ∈ Rn,

(k.) AT is invertible.

These are in no particular order. If you examine the arguments in this chapter you’ll find we’ve
proved most of this theorem. What did I miss? 7

7teaching moment or me trying to get you to do my job, you be the judge.



Chapter 4

linear independence and spanning

Spanning and Linear Independence (LI) are arguably the most important topics in linear algebra.
In this chapter we discuss spanning and linear independence in the context of Rn. We begin by
developing the necessary matrix result. Then the idea of spanning is explained and a number of
explicit examples are given. We also see how to solve several spanning questions simultaneously.
Then we turn to the question of minimality. How can we reduce the size of the spanning set while
maintaining the span? This requires us to introduce the concept of LI. A fundamental proposition
is proved and we again see how to solve the typical problem with a matrix technique. Next, we
learn how the Column Correspondance Property (CCP) gives efficient solutions to all the questions
we faced in this chapter (and much more later). This current context is however very special, later
in the course we will not be quite as free to use the CCP directly. The problems we face here are
particularly simple. Finally, we draw together results about spanning, LI and matrix invertibility.
This continues a series of theorems we saw in previous chapters.

79
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4.1 matrix notation for systems

Let us begin with a simple example.

Example 4.1.1. Consider the following generic system of two equations and three unknowns,

ax+ by + cz = d
ex+ fy + gz = h

in matrix form this system of equations is Av = b where

Av =

[
a b c
e f g

]
︸ ︷︷ ︸

A

 x
y
z


︸ ︷︷ ︸

v

=

[
(a, b, c) · (x, y, z)
(e, f, g) · (x, y, z)

]
=

[
ax+ by + cz
ex+ fy + gz

]
=

[
d
h

]
︸ ︷︷ ︸

b

Definition 4.1.2.

Let x1, x2, . . . , xk be k variables and suppose bi, Aij ∈ R for 1 ≤ i ≤ k and 1 ≤ j ≤ n. The
system of linear equations

A11x1 +A12x2 + · · ·+A1kxk = b1

A21x1 +A22x2 + · · ·+A2kxk = b2

...
...

...
...

An1x1 +An2x2 + · · ·+Ankxk = bn

has coefficient matrix A, the inhomogeneous term b and augmented coefficient
matrix [A|b] defined below:

A =


A11 A12 · · · A1k

A21 A22 · · · A2k
...

... · · ·
...

An1 An2 · · · Ank

 , b =


b1
b2
...
bm

 , [A|b] =


A11 A12 · · · A1k b1
A21 A22 · · · A2k b2

...
... · · ·

...
...

An1 An2 · · · Ank bn

 .
A vector x ∈ Rk for which Ax = b is called a vector solution to the matrix form of the
system. Also, the solution set is Sol[A|b] = {x ∈ Rk | Ax = b}.

Naturally, solutions x1, x2, . . . , xk to the original system are in 1-1 correspondance with the vector
solutions of the corresponding matrix form of the equation. Moreover, from Chapter 2 we know
Gauss-Jordan elimination on the augmented coefficient matrix is a reliable algorthim to solve any
such system.

Example 4.1.3. We found that the system in Example 2.3.1,

x+ 2y − 3z = 1
2x+ 4y = 7
−x+ 3y + 2z = 0
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has the unique solution x = 83/30, y = 11/30 and z = 5/6. This means the matrix equation Av = b
where

Av =

 1 2 −3
2 4 0
−1 3 2


︸ ︷︷ ︸

A

 x1

x2

x3


︸ ︷︷ ︸

v

=

 1
7
0


︸ ︷︷ ︸

b

has vector solution v =

 83/30
11/30
5/6

 .
Example 4.1.4. We can rewrite the following system of linear equations

x1 + x4 = 0
2x1 + 2x2 + x5 = 0
4x1 + 4x2 + 4x3 = 1

in matrix form this system of equations is Av = b where

Av =

 1 0 0 1 0
2 2 0 0 1
4 4 4 0 0


︸ ︷︷ ︸

A


x1

x2

x3

x4

x5


︸ ︷︷ ︸

v

=

 0
0
1


︸ ︷︷ ︸

b

.

Gaussian elimination on the augmented coefficient matrix reveals (see Example 2.2.5 for details of
the Gaussian elimination)

rref

 1 0 0 1 0 0
2 2 0 0 1 0
4 4 4 0 0 1

 =

 1 0 0 1 0 0
0 1 0 −1 1/2 0
0 0 1 0 −1/2 1/4

 .
Consequently, x4, x5 are free and solutions are of the form

x1 = −x4

x2 = x4 − 1
2x5

x3 = 1
4 + 1

2x5

for all x4, x5 ∈ R. The vector form of the solution is as follows:

v =


−x4

x4 − 1
2x5

1
4 + 1

2x5

x4

x5

 = x4


−1
1
0
1
0

+ x5


0
−1

2
1
2
0
1

+


0
0
1
4
0
0

 .

Remark 4.1.5.

You might ask the question: what is the geometry of the solution set above ? Let S =
Sol[A|b] ⊂ R5, we see S is formed by tracing out all possible linear combinations of the

vectors v1 = (−1, 1, 0, 1, 0) and v2 = (0,−1
2 ,

1
2 , 0, 1) based from the point po = (0, 0, 1

4 , 0, 0).
In other words, this is a two-dimensional plane containing the vectors v1, v2 and the point
po. This plane is placed in a 5-dimensional space, this means that at any point on the plane
you could go in three different directions away from the plane.

We saw in Section 3.6 there are a number of interesting ways to look at matrix multiplication. One
important view was given in Corollary 3.6.5. For example:
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Example 4.1.6. Let A =

[
1 1 1
a b c

]
and v =

 x
y
z

 then we may calculate the product Av as

follows:

Av =

[
1 1 1
a b c

] x
y
z

 = x

[
1
a

]
+ y

[
1
b

]
+ z

[
1
c

]
=

[
x+ y + z
ax+ by + cz

]
.

In general, a Corollary to Corollary 3.6.5 is simply:

Proposition 4.1.7.

If A = [A1|A2| · · · |Ak] ∈ Rn×k and b ∈ Rn then the matrix equation Ax = b has the same
set of solutions as the vector equation

x1A1 + x2A2 + · · ·+ xkAk = b.

Moreover, the solution set is given by Gauss-Jordan reduction of [A1|A2| · · · |Ak|b].

4.2 linear combinations and spanning

Proposition 1.5.8 showed that linear combinations of the standard basis will generate any vector in
Rn. A natural generalization of that question is given below:

PROBLEM: Given vectors v1, v2, . . . , vk and a vector b do there exist constants
c1, c2, . . . , ck such that c1v1 + c2v2 + · · ·+ ckvk = b? If so, how to find c1, . . . , ck ?

We have all the tools we need to solve such problems. Ultimately, the CCP gives us the most
efficient solution, However, I think it is best for us to work our way with less optimal methods
before we learn the fastest method. For now, we just use Proposition 4.1.7 or common sense.

Example 4.2.1. Problem: given that v = (2,−1, 3), w = (1, 1, 1) and b = (4, 1, 5) find values for
x, y such that xv + yw = b (if possible).

Solution: using our column notation we find xv + yw = b gives

x

 2
−1
3

+ y

 1
1
1

 =

 4
1
5

 ⇒

 2x+ y
−x+ y
3x+ y

 =

 4
1
5


We are faced with solving the system of equations 2x + y = 4,−x + y = 1 and 3x + y = 5. As we
discussed in depth last chapter we can efficiently solve this type of problem in general by Gaussian
elimination on the corresponding augmented coefficient matrix. In this problem, you can calculate
that

rref

 2 1 4
−1 1 1
3 1 5

 =

 1 0 1
0 1 2
0 0 0


hence x = 1 and y = 2. Indeed, it is easy to check that v + 2w = b.
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The geometric question which is equivalent to the previous question is as follows: ”is the vector
b found in the plane which contains v and w”? Here’s a picture of the calculation we just performed:

The set of all linear combinations of several vectors in Rn is called the span of those vectors. To
be precise

Definition 4.2.2.

Let S = {v1, v2, . . . , vk} ⊂ Rn be a finite set of n-vectors then span(S) is defined to be the
set of all linear combinations formed from vectors in S:

span{v1, v2, . . . , vk} = {
k∑
i=1

civi | ci ∈ R for i = 1, 2, . . . , k}

If W = span(S) then we say that S is a generating set for W .

If we have one vector then it has a span which could be a line. With two vectors we might generate
a plane. With three vectors we might generate a volume. With four vectors we might generate a
hypervolume or 4-volume. We’ll return to these geometric musings in § 4.3 and explain why I have
used the word ”might” rather than an affirmative ”will” in these claims. For now, we return to the
question of how to decide if a given vector is in the span of another set of vectors.

Example 4.2.3. Problem: Let b1 = (1, 1, 0), b2 = (0, 1, 1) and b3 = (0, 1,−1).
Is1 e3 ∈ span{b1, b2, b3}?

Solution: Find the explicit linear combination of b1, b2, b3 that produces e3. We seek to find
x, y, z ∈ R such that xb1 + yb2 + zb3 = e3,

x

 1
1
0

+ y

 0
1
1

+ z

 0
1
−1

 =

 0
0
1

 ⇒

 x
x+ y + z
y − z

 =

 0
0
1


Following essentially the same arguments as the last example we find this question of solving the
system formed by gluing the given vectors into a matrix and doing row reduction. In particular, we

1challenge: once you understand this example for e3 try answering it for other vectors or for an arbitrary vector
v = (v1, v2, v3). How would you calculate x, y, z ∈ R such that v = xb1 + yb2 + zb3?
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can solve the vector equation above by solving the corresponding system below: 1 0 0 0
1 1 1 0
0 1 −1 1

 r2 − r1 → r2−−−−−−−−→

 1 0 0 0
0 1 1 0
0 1 −1 1

 r3 − r2 → r3−−−−−−−−→ 1 0 0 0
0 1 1 0
0 0 −2 1

 −r3/2→ r3−−−−−−−−→
r2 − r3 → r2−−−−−−−−→
r1 − r3 → r1−−−−−−−−→

 1 0 0 0
0 1 0 1/2
0 0 1 −1/2



Therefore, x = 0, y = 1
2 and z = −1

2 . We find that e3 = 1
2b1 + 1

2b2 −
1
2b3 thus e3 ∈ span{b1, b2, b3}.

The power of the matrix technique is shown in the next example.

Example 4.2.4. Problem: Let b1 = (1, 2, 3, 4), b2 = (0, 1, 0, 1) and b3 = (0, 0, 1, 1).
Is w = (1, 1, 4, 4) ∈ span{b1, b2, b3}?

Solution: Following the same method as the last example we seek to find x1, x2 and x3 such that
x1b1 + x2b2 + x3b3 = w by solving the aug. coeff. matrix as is our custom:

[b1|b2|b3|w] =


1 0 0 1
2 1 0 1
3 0 1 4
4 1 1 4


r2 − 2r1 → r2−−−−−−−−−→
r3 − 3r1 → r3−−−−−−−−−→
r4 − 4r1 → r4−−−−−−−−−→


1 0 0 1
0 1 0 −1
0 0 1 1
0 1 1 0

 r4 − r2 → r4−−−−−−−−→


1 0 0 1
0 1 0 −1
0 0 1 1
0 0 1 1

 r4 − r3 → r4−−−−−−−−→


1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 0

 = rref [b1|b2|b3|w]

We find x1 = 1, x2 = −1, x3 = 1 thus w = b1 − b2 + b3 . Therefore, w ∈ span{b1, b2, b3}.

Pragmatically, if the question is sufficiently simple you may not need to use the augmented coeffi-
cient matrix to solve the question. I use them here to illustrate the method.

Example 4.2.5. Problem: Let b1 = (1, 1, 0) and b2 = (0, 1, 1).
Is e2 ∈ span{b1, b2}?

Solution: Attempt to find the explicit linear combination of b1, b2 that produces e2. We seek to
find x, y ∈ R such that xb1 + yb2 = e3,

x

 1
1
0

+ y

 0
1
1

 =

 0
1
0

 ⇒

 x
x+ y
y

 =

 0
1
0


We don’t really need to consult the augmented matrix to solve this problem. Clearly x = 0 and
y = 0 is found from the first and third components of the vector equation above. But, the second
component yields x+ y = 1 thus 0 + 0 = 1. It follows that this system is inconsistent and we may
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conclude that w /∈ span{b1, b2}. For the sake of curiousity let’s see how the augmented solution
matrix looks in this case: omitting details of the row reduction,

rref

 1 0 0
1 1 1
0 1 0

 =

 1 0 0
0 1 0
0 0 1


note the last row again confirms that this is an inconsistent system.

4.2.1 solving several spanning questions simultaneously

If we are given B = {b1, b2, . . . , bk} ⊂ Rn and T = {w1, w2, . . . , wr} ⊂ Rn and we wish to determine
if T ⊂ span(B) then we can answer the question by examining if [b1|b2| · · · |bk]x = wj has a solution
for each j = 1, 2, . . . r. Or we could make use of Proposition 3.7.1 and solve it in one sweeping
matrix calculation;

rref [b1|b2| · · · |bk|w1|w2| · · · |wr]

If there is a row with zeros in the first k-columns and a nonzero entry in the last r-columns then
this means that at least one vector wk is not in the span of B( moreover, the vector not in the
span corresponds to the nonzero entrie(s)). Otherwise, each vector is in the span of B and we can
read the precise linear combination from the matrix. I will illustrate this in the example that follows.

Example 4.2.6. Let W = span{e1 + e2, e2 + e3, e1 − e3} and suppose T = {e1, e2, e3 − e1}. Is
T ≤W? If not, which vectors in T are not in W? Consider,

[e1 + e1|e2 + e3|e1 − e3||e1|e2|e3 − e1] =

 1 0 1 1 0 −1
1 1 0 0 1 0
0 1 −1 0 0 1

 r2 − r1 → r2−−−−−−−−→

 1 0 1 1 0 −1
0 1 −1 −1 1 1
0 1 −1 0 0 1

 r3 − r2 → r3−−−−−−−−→

 1 0 1 1 0 −1
0 1 −1 −1 1 1
0 0 0 1 −1 0

 r2 + r3 → r2−−−−−−−−→
r1 − r3 → r1−−−−−−−−→ 1 0 1 0 1 −1

0 1 −1 0 0 1
0 0 0 1 −1 0


Let me summarize the calculation:

rref [e1 + e2|e2 + e3||e1 − e3|e1|e2|e3 − e1] =

 1 0 1 0 1 −1
0 1 −1 0 0 1
0 0 0 1 −1 0


We deduce that e1 and e2 are not in W . However, e1 − e3 ∈ W and we can read from the matrix
−(e1 + e2) + (e2 + e3) = e3− e1. I added the double vertical bar for book-keeping purposes, as usual
the vertical bars are just to aid the reader in parsing the matrix.
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4.3 linear independence

In the previous sections we have only considered questions based on a fixed spanning set2. We
asked if b ∈ span{v1, v2, . . . , vn} and we even asked if it was possible for all b. What we haven’t
thought about yet is the following:

PROBLEM: Given vectors v1, v2, . . . , vk and a vector b = c1v1 + c2v2 + · · ·+ ckvk for some
constants cj is it possible that b can be written as a linear combination of some subset of
{v1, v2, . . . , vk}? If so, how should we determine which vectors can be taken away from the
spanning set? How should we decide which vectors to keep and which are redundant?

The span of a set of vectors is simply all possible finite linear combinations of vectors from the set.
If you think about it, we don’t need a particular vector in the generating set if that vector can be
written as a linear combination of other vectors in the generating set. To solve the problem stated
above we need to remove linear dependencies of the generating set.

Definition 4.3.1.

If a vector vk can be written as a linear combination of vectors {v1, v2, . . . , vk−1} then we
say that the vectors {v1, v2, . . . , vk−1, vk} are linearly dependent.
If the vectors {v1, v2, . . . , vk−1, vk} are not linear dependent then they are said to be linearly
independent.

Example 4.3.2. Let v = [1 2 3]T and w = [2 4 6]T . Clearly v, w are linearly dependent since
w = 2v.

I often quote the following proposition as the defintion of linear independence, it is an equivalent
statement and as such can be used as the definition(but not by us, I already made the definition
above). If this was our definition then our definition would become a proposition. Math always
has a certain amount of this sort of ambiguity.

Proposition 4.3.3.

Let v1, v2, . . . , vk ∈ Rn. The set of vectors {v1, v2, . . . , vk} is linearly independent iff

c1v1 + c2v2 + · · ·+ ckvk = 0 ⇒ c1 = c2 = · · · = ck = 0.

Proof: (⇒) Suppose {v1, v2, . . . , vk} is linearly independent. Assume that there exist constants
c1, c2, . . . , ck such that

c1v1 + c2v2 + · · ·+ ckvk = 0

and at least one constant, say cj , is nonzero. Then we can divide by cj to obtain

c1
cj
v1 + c2

cj
v2 + · · ·+ vj + · · ·+ ck

cj
vk = 0

solve for vj , (we mean for v̂j to denote the deletion of vj from the list)

vj = − c1
cj
v1 − c2

cj
v2 − · · · − v̂j − · · · − ck

cj
vk

2sometimes I call it the spanning set, other times the generating set. It turns out that a given space may be
generated in many different ways. This section begins the quest to unravel that puzzle



4.3. LINEAR INDEPENDENCE 87

but this means that vj linearly depends on the other vectors hence {v1, v2, . . . , vk} is linearly de-
pendent. This is a contradiction, therefore cj = 0. Note j was arbitrary so we may conclude cj = 0
for all j. Therefore, c1v1 + c2v2 + · · ·+ ckvk = 0 ⇒ c1 = c2 = · · · = ck = 0.

Proof: (⇐) Assume that

c1v1 + c2v2 + · · ·+ ckvk = 0 ⇒ c1 = c2 = · · · = ck = 0.

If vj = b1v1 + b2v2 + · · · + b̂jvj + · · · + bkvk then b1v1 + b2v2 + · · · + bjvj + · · · + bkvk = 0 where
bj = −1, this is a contradiction. Therefore, for each j, vj is not a linear combination of the other
vectors. Consequently, {v1, v2, . . . , vk} is linearly independent.

Example 4.3.4. Let v = [1 2 3]T and w = [1 0 0]T . Let’s prove these are linearly independent.
Assume that c1v + c2w = 0, this yields

c1

 1
2
3

+ c2

 1
0
0

 =

 0
0
0


thus c1 + c2 = 0 and 2c1 = 0 and 3c1 = 0. We find c1 = c2 = 0 thus v, w are linearly independent.
Alternatively, you could explain why there does not exist any k ∈ R such that v = kw

Think about this, if the set of vectors {v1, v2, . . . , vk} ⊂ Rn is linearly independent then the equation
c1v1 + c2v2 + · · · + ckvk = 0 has the unique solution c1 = 0, c2 = 0, . . . , ck = 0. Notice we can
reformulate the problem as a matrix equation:

c1v1 + c2v2 + · · ·+ ckvk = 0 ⇔ [v1|v2| · · · |vk][c1 c2 · · · ck]T = 0

The matrix [v1|v2| · · · |vk] is an n× k. This is great. We can use the matrix techniques we already
developed to probe for linear independence of a set of vectors.

Proposition 4.3.5.

Let {v1, v2, . . . , vk} be a set of vectors in Rn.

1. If rref [v1|v2| · · · |vk] has less than k pivot columns then the set of vectors
{v1, v2, . . . , vk} is linearly dependent.

2. If rref [v1|v2| · · · |vk] has k pivot columns then the set of vectors {v1, v2, . . . , vk} is
linearly independent.

Proof: Denote V = [v1|v2| · · · |vk] and c = [c1, c2, . . . , ck]
T . If V contains a linearly independent set

of vectors then we must find that V c = 0 implies c = 0. Consider V c = 0, this is equivalent to using
Gaussian elimination on the augmented coefficent matrix [V |0]. We know this system is consistent
since c = 0 is a solution. Thus Theorem 2.5.1 tells us that there is either a unique solution or
infinitely many solutions.

Clearly if the solution is unique then c = 0 is the only solution and hence the implication Av = 0
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implies c = 0 holds true and we find the vectors are linearly independent. We find

rref [v1|v2| · · · |vk] =



1 0 · · · 0
0 1 · · · 0
...

... · · ·
...

0 0 · · · 1
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0


=

[
Ik
0

]

where there are n-rows in the matrix above. If n = k then there would be no zero row.
If there are infinitely many solutions then there will be free variables in the solution of V c = 0. If
we set the free variables to 1 we then find that V c = 0 does not imply c = 0 since at least the free
variables are nonzero. Thus the vectors are linearly dependent in this case, proving (2.). �

Before I get to the examples let me glean one more fairly obvious statement from the proof above:

Corollary 4.3.6.

If {v1, v2, . . . , vk} is a set of vectors in Rn and k > n then the vectors are linearly dependent.

Proof: Proposition 4.3.5 tells us that the set is linearly independent if there are k pivot columns
in [v1| · · · |vk]. However, that is impossible since k > n this means that there will be at least one
column of zeros in rref [v1| · · · |vk]. Therefore the vectors are linearly dependent. �

This Proposition is obvious but useful. We may have at most 2 linearly independent vectors in R2,
3 in R3, 4 in R4, and so forth...

Example 4.3.7. Determine if v1, v2, v3 (given below) are linearly independent or dependent. If the
vectors are linearly dependent show how they depend on each other.

v1 =

 1
1
1

 v2 =

 2
1
0

 v3 =

 3
2
1


We seek to use the Proposition 4.3.5. Consider then,

[v1|v2|v3] =

 1 2 3
1 1 2
1 0 1

 r2 − r1 → r2−−−−−−−−→
r3 − r1 → r3−−−−−−−−→

 1 2 3
0 −1 −1
0 −2 −2

 r1 + 2r2 → r2−−−−−−−−−→
r3 − 2r2 → r3−−−−−−−−−→

 1 0 1
0 −1 −1
0 0 0


Thus we find that,

rref [v1|v2|v3] =

 1 0 1
0 1 1
0 0 0


hence the variable c3 is free in the solution of V c = 0. We find solutions of the form c1 = −c3 and
c2 = −c3. This means that

−c3v1 − c3v2 + c3v3 = 0

for any value of c3. I suggest c3 = 1 is easy to plug in,

−v1 − v2 + v3 = 0 or we could write v3 = v1 + v2

We see clearly that v3 is a linear combination of v1, v2.
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Example 4.3.8. Determine if v1, v2, v3, v4 (given below) are linearly independent or dependent.

v1 =


1
0
0
0

 v2 =


1
1
0
0

 v3 =


1
1
1
0

 v4 =


1
1
1
1


We seek to use the Proposition 4.3.5. Omitting details we find,

rref [v1|v2|v3|v4] = rref


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


In this case no variables are free, the only solution is c1 = 0, c2 = 0, c3 = 0, c4 = 0 hence the set of
vectors {v1, v2, v3, v4} is linearly independent.

Example 4.3.9. Determine if v1, v2, v3 (given below) are linearly independent or dependent. If the
vectors are linearly dependent show how they depend on each other.

v1 =


1
0
0
3

 v2 =


3
1
2
0

 v3 =


2
1
2
−3


We seek to use the Proposition 4.3.5. Consider [v1|v2|v3] =

1 3 2
0 1 1
0 2 2
3 0 −3

 r4 − 3r1 → r4−−−−−−−−−→


1 3 2
0 1 1
0 2 2
0 −9 −9


r1 − 3r2 → r1−−−−−−−−−→
r3 − 2r2 → r3−−−−−−−−−→
r4 + 9r2 → r4−−−−−−−−−→


1 0 −1
0 1 1
0 0 0
0 0 0

 = rref [V ].

Hence the variable c3 is free in the solution of V c = 0. We find solutions of the form c1 = c3 and
c2 = −c3. This means that

c3v1 − c3v2 + c3v3 = 0

for any value of c3. I suggest c3 = 1 is easy to plug in,

v1 − v2 + v3 = 0 or we could write v3 = v2 − v1

We see clearly that v3 is a linear combination of v1, v2.
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Example 4.3.10. Determine if v1, v2, v3, v4 (given below) are linearly independent or dependent.
If the vectors are linearly dependent show how they depend on each other.

v1 =


0
0
1
0

 v2 =


0
1
0
0

 v3 =


0
1
1
0

 v3 =


0
1
2
0


We seek to use the Proposition 4.3.5. Consider [v1|v2|v3|v4] =

0 0 0 0
0 1 1 1
1 1 2 0
0 0 0 0

 r1 ↔ r3−−−−−→


1 1 2 0
0 1 1 1
0 0 0 0
0 0 0 0

 r1 − r2 → r1−−−−−−−−→


1 0 1 −1
0 1 1 1
0 0 0 0
0 0 0 0

 = rref [v1|v2|v3|v4].

Hence the variables c3 and c4 are free in the solution of V c = 0. We find solutions of the form
c1 = −c3 + c4 and c2 = −c3 − c4. This means that

(c4 − c3)v1 − (c3 + c4)v2 + c3v3 + c4v4 = 0

for any value of c3 or c4. I suggest c3 = 1, c4 = 0 is easy to plug in,

−v1 − v2 + v3 = 0 or we could write v3 = v2 + v1

Likewise select c3 = 0, c4 = 1 to find

v1 − v2 + v4 = 0 or we could write v4 = v2 − v1

We find that v3 and v4 are linear combinations of v1 and v2.

Let’s pause to reflect on the geometric meaning of the examples above.

Remark 4.3.11.

For two vectors the term ”linearly dependent” can be taken quite literally: two vectors are
linearly dependent if they point along the same line. For three vectors they are linearly
dependent if they point along the same line or possibly lay in the same plane. When we get
to four vectors we can say they are linearly dependent if they reside in the same volume,
plane or line. I don’t find the geometric method terribly successful for dimensions higher
than two. However, it is neat to think about the geometric meaning of certain calculations
in dimensions higher than 3. We can’t even draw it but we can eulicidate all sorts of
information with the mathematics of linear algebra.
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4.4 The Column Correspondence Property (CCP)

Recall that we used Proposition 4.3.5 in Examples 4.3.7, 4.3.8, 4.3.9 and 4.3.10 to ascertain the
linear independence of certain sets of vectors. If you pay particular attention to those examples
you may have picked up on a pattern. The columns of the rref [v1|v2| · · · |vk] depend on each other
in the same way that the vectors v1, v2, . . . vk depend on each other. These provide examples of the
so-called ”column correspondence property”. In a nutshell, the property says you can read
the linear dependencies right off the rref [v1|v2| · · · |vk].

Proposition 4.4.1. Column Correspondence Property (CCP)

Let A = [col1(A)| · · · |coln(A)] ∈ R m×n and R = rref [A] = [col1(R)| · · · |coln(R)]. There
exist constants c1, c2, . . . ck such that c1col1(A) + c2col2(A) + · · ·+ ckcolk(A) = 0 if and only
if c1col1(R) + c2col2(R) + · · · + ckcolk(R) = 0. If colj(rref [A]) is a linear combination of
other columns of rref [A] then colj(A) is likewise the same linear combination of columns
of A.

We prepare for the proof of the Proposition by establishing a sick3 Lemma.

Lemma 4.4.2.

Let A ∈ R m×n then there exists an invertible matrix E such that coli(rref(A)) = Ecoli(A)
for all i = 1, 2, . . . n.

Proof of Lemma: Recall that there exist elementary matrices E1, E2, . . . Er such that A =
E1E2 · · ·Errref(A) = E−1rref(A) where I have defined E−1 = E1E2 · · ·Ek for convenience. Recall
the concatenation proposition: X[b1|b2| · · · |bk] = [Xb1|Xb2| · · · |Xbk]. We can unravel the Gaussian
elimination in the same way,

EA = E[col1(A)|col2(A)| · · · |coln(A)]

= [Ecol1(A)|Ecol2(A)| · · · |Ecoln(A)]

Observe EA = rref(A) thus coli(rref(A)) = Ecoli(A) for all i. �

Proof of Proposition: Suppose that there exist constants c1, c2, . . . , ck such that c1col1(A) +
c2col2(A) + · · ·+ ckcolk(A) = 0. By the Lemma we know there exists E such that colj(rref(A)) =
Ecolj(A). Multiply linear combination by E to find:

c1Ecol1(A) + c2Ecol2(A) + · · ·+ ckEcolk(A) = 0

which yields
c1col1(rref(A)) + c2col2(rref(A)) + · · ·+ ckcolk(rref(A)) = 0.

Likewise, if we are given a linear combination of columns of rref(A) we can multiply by E−1 to
recover the same linear combination of columns of A. �

3Sorry, is this so 2009 now ?
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Example 4.4.3. I will likely use the abbreviation ”CCP” for column correspondence property. We
could have deduced all the linear dependencies via the CCP in Examples 4.3.7,4.3.9 and 4.3.10. We
found in 4.3.7 that

rref [v1|v2|v3] =

 1 0 1
0 1 1
0 0 0

 .
Obviously col3(R) = col1(R) + col2(R) hence by CCP v3 = v1 + v2.
We found in 4.3.9 that

rref [v1|v2|v3] =


1 0 −1
0 1 1
0 0 0
0 0 0

 .
By inspection, col3(R) = col2(R)− col1(R) hence by CCP v3 = v2 − v1.
We found in 4.3.10 that

rref [v1|v2|v3|v4] =


1 0 1 −1
0 1 1 1
0 0 0 0
0 0 0 0

 .
By inspection, col3(R) = col1(R) + col2(R) hence by CCP v3 = v1 + v2. Likewise by inspection,
col4(R) = col2(R)− col1(R) hence by CCP v4 = v2 − v1.

You should notice that the CCP saves us the trouble of expressing how the constants ci are related.
If we are only interested in how the vectors are related the CCP gets straight to the point quicker.
We should pause and notice another pattern here while were thinking about these things.

Proposition 4.4.4.

The non-pivot columns of a matrix can be written as linear combinations of the pivot
columns and the pivot columns of the matrix are linearly independent.

Proof: Let A be a matrix. Notice the Proposition is clearly true for rref(A). Hence, using Lemma
4.4.2 we find the same is true for the matrix A. �

Proposition 4.4.5.

The rows of a matrix A can be written as linear combinations of the transposes of pivot
columns of AT , and the rows which are transposes of the pivot columns of AT are linearly
independent.

Proof: Let A be a matrix and AT its transpose. Apply Proposition 4.4.1 to AT to find pivot
columns which we denote by colij (A

T ) for j = 1, 2, . . . k. These columns are linearly independent
and they span Col(AT ). Suppose,

c1rowi1(A) + c2rowi2(A) + · · ·+ ckrowik(A) = 0.

Take the transpose of the equation above, use Proposition 3.8.3 to simplify:

c1(rowi1(A))T + c2(rowi2(A))T + · · ·+ ck(rowik(A))T = 0.

Recall (rowj(A))T = colj(A
T ) thus,

c1coli1(AT ) + c2coli2(AT ) + · · ·+ ckcolik(AT ) = 0.
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hence c1 = c2 = · · · = ck = 0 as the pivot columns of AT are linearly independendent. This shows
the corresponding rows of A are likewise linearly independent. The proof that these same rows
span Row(A) is similar. �

4.5 theoretical summary

Let’s pause to think about what we’ve learned about spans in this section. First of all the very
definition of matrix multiplication defined Av to be a linear combination of the columns of A so
clearly Av = b has a solution iff b is a linear combination of the columns in A.

We have seen for a particular matrix A and a given vector b it may or may not be the case that
Av = b has a solution. It turns out that certain special matrices will have a solution for each choice
of b. The theorem below is taken from Lay’s text on page 43. The abbreviation TFAE means
”The Following Are Equivalent”.

Theorem 4.5.1.

Suppose A = [Aij ] ∈ Rk×n then TFAE,

1. Av = b has a solution for each b ∈ Rk

2. each b ∈ Rk is a linear combination of the columns of A

3. columns of A span Rk

4. A has a pivot position in each row.

Proof: the equivalence of (1.) and (2.) is immediate from the definition of matrix multiplication
of a matrix and a vector. Item (3.) says that the set of all linear combinations of the columns of
A is equal to Rk, thus (2.)⇔ (3.). Finally, item (4.) is not just notation.

Suppose (4.) is true. Recall that rref [A] and rref [A|b] have matching columns up to the rightmost
column of rref [A|b] by the Theorem 2.5.2. It follows that rref [A|b] is a consistent system since
we cannot have a row where the first nonzero entry occurs in the last column. But, this result is
independent of b hence we have a solution of Av = b for each possible b ∈ Rk. Hence (4.)⇒ (.1).

Conversely suppose (1.) is true; suppose Av = b has a solution for each b ∈ Rk. If rref [A] has a
row of zeros then we could choose b 6= 0 with a nonzero component in that row and the equation
Av = b would be inconsistent. But that contradicts (1.) hence it must be the case that rref [A] has
no row of zeros hence every row must be a pivot row. We have (1.)⇒ (4.).

In conclusion, (1.)⇔ (2.)⇔ (3.) and (1.)⇔ (4.) hence (4.)⇔ (1.)⇔ (2.)⇔ (3.) �.

In truth this theorem really only scratches the surface. We can say more if the matrix A is square.
But, I leave the fun for a later chapter. This much fun for now should suffice.
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Chapter 5

linear transformations of column
vectors

We study linear transformations of a special type in this chapter. Keeping with the general theme of
Part I. we consider only transformations from Rn to Rm. The first section we study the definition.
Proof that linear transformations take linear objects to linear objects is given. A number of
explicit pictures show how the transformations move points. Then the following section details
basic properties. Surjectivity and injectivity of a transformation are studied. We see how the
standard matrix of the linear transformation reveals the structure of the map. Finally, matrix
multiplication is shown to follow naturally from composition of functions. We conclude with an
application to more general maps.

5.1 a gallery of linear transformations

A function from U ⊂ Rn to V ⊆ Rk is called a mapping or transformation. We could just
use the term ”function”, but these other terms help draw attention to the vectorial nature of the
domain and codomain.

Definition 5.1.1.

Let V = Rn,W = Rk. If a mapping L : V →W satisfies

1. L(x+ y) = L(x) + L(y) for all x, y ∈ V ; this is called additivity.

2. L(cx) = cL(x) for all x ∈ V and c ∈ R; this is called homogeneity.

then we say L is a linear transformation. If n = m then we may say that L is a linear
transformation on Rn.

Example 5.1.2. Let L : R → R be defined by L(x) = mx + b where m, b ∈ R and b 6= 0. This is
often called a linear function in basic courses. However, this is unfortunate terminology as:

L(x+ y) = m(x+ y) + b = mx+ b+my + b− b = L(x) + L(y)− b.

Thus L is not additive hence it is not a linear transformation. It is certainly true that y = L(x)
gives a line with slope m and y-intercept b. An accurate term for L is that it is an affine function.

95
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Example 5.1.3. Let f(x, y) = x2 + y2 define a function from R2 to R. Observe,

f(c(x, y)) = f(cx, cy) = (cx)2 + (cy)2 = c2(x2 + y2) = c2f(x, y).

Clearly f is not homogeneous hence f is not linear.

Example 5.1.4. Suppose f(t, s) = (
√
t, s2 + t) note that f(1, 1) = (1, 2) and f(4, 4) = (2, 20). Note

that (4, 4) = 4(1, 1) thus we should see f(4, 4) = f(4(1, 1)) = 4f(1, 1) but that fails to be true so f
is not a linear transformation.

Now that we have a few examples of how not to be a linear transformation, let’s take a look at
some positive examples.

Example 5.1.5. Let L(x, y) = (x, 2y). This is a mapping from R2 to R2. Notice

L((x, y) + (z, w)) = L(x+ z, y + w) = (x+ z, 2(y + w)) = (x, 2y) + (z, 2w) = L(x, y) + L(z, w)

and
L(c(x, y)) = L(cx, cy) = (cx, 2(cy)) = c(x, 2y) = cL(x, y)

for all (x, y), (z, w) ∈ R2 and c ∈ R. Therefore, L is a linear transformation on R2. Let’s examine
how this function maps the unit square in the domain: suppose (x, y) ∈ [0, 1] × [0, 1]. This means
0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Label the Cartesian coordinates of the range by u, v so L(x, y) =
(x, 2y) = (u, v). We have x = u thus 0 ≤ u ≤ 1. Also, v = 2y hence y = v

2 hence 0 ≤ y ≤ 1 implies
0 ≤ v

2 ≤ 1 or 0 ≤ v ≤ 2.
To summarize: L([0, 1] × [0, 1]) = [0, 1] × [0, 2]. This mapping has stretched out the horizontal
direction.

The method of analysis we used in the preceding example was a little clumsy, but for general map-
pings that is more or less the method of attack. You pick some shapes or curves in the domain
and see what happens under the mapping. For linear mappings there is an easier way. It turns
out that if we map some shape with straight sides then the image will likewise be a shape with flat
sides ( or faces in higher dimensions). Therefore, to find the image we need only map the corners
of the shape then connect the dots. However, I should qualify that it may not be the case the type
of shape is preserved. We could have a rectangle in the domain get squished into a line or point
in the domain. We would like to understand when such squishing will happen and also when a
given mapping will actually cover the whole codomain. For linear mappings there are very satisfy-
ing answers to these questions in terms of the theory we have already discussed in previous chapters.
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Proposition 5.1.6.

If A ∈ R m×n and L : Rn → Rm is defined by L(x) = Ax for each x ∈ Rn then L is a linear
transformation.

Proof: Let A ∈ R m×n and define L : Rn → Rm by L(x) = Ax for each x ∈ Rn. Let x, y ∈ Rn and
c ∈ R,

L(x+ y) = A(x+ y) = Ax+Ay = L(x) + L(y)

and

L(cx) = A(cx) = cAx = cL(x)

thus L is a linear transformation. �

Obviously this gives us a nice way to construct examples. The following proposition is really at the
heart of all the geometry in this section.

Proposition 5.1.7.

Let L = {p + tv | t ∈ [0, 1], p, v ∈ Rn with v 6= 0} define a line segment from p to p + v in
Rn. If T : Rn → Rm is a linear transformation then T (L) is a either a line-segment from
T (p) to T (p+ v) or a point.

Proof: suppose T and L are as in the proposition. Let y ∈ T (L) then by definition there exists
x ∈ L such that T (x) = y. But this implies there exists t ∈ [0, 1] such that x = p + tv so
T (p+ tv) = y. Notice that

y = T (p+ tv) = T (p) + T (tv) = T (p) + tT (v).

which implies y ∈ {T (p) + sT (v) | s ∈ [0, 1]} = L2. Therefore, T (L) ⊆ L2. Conversely, suppose
z ∈ L2 then z = T (p) + sT (v) for some s ∈ [0, 1] but this yields by linearity of T that z = T (p+ sv)
hence z ∈ T (L). Since we have that T (L) ⊆ L2 and L2 ⊆ T (L) it follows that T (L) = L2. Note
that L2 is a line-segment provided that T (v) 6= 0, however if T (v) = 0 then L2 = {T (p)} and the
proposition follows. �

My choice of mapping the unit square has no particular signficance in the examples below. I
merely wanted to keep it simple and draw your eye to the distinction between the examples.
In each example we’ll map the four corners of the square to see where the transformation takes
the unit-square. Those corners are simply (0, 0), (1, 0), (1, 1), (0, 1) as we traverse the square in a
counter-clockwise direction.

Example 5.1.8. Let A =

[
k 0
0 k

]
for some k > 0. Define L(v) = Av for all v ∈ R2. In particular

this means,

L(x, y) = A(x, y) =

[
k 0
0 k

] [
x
y

]
=

[
kx
ky

]
.

We find L(0, 0) = (0, 0), L(1, 0) = (k, 0), L(1, 1) = (k, k), L(0, 1) = (0, k). This mapping is called
a dilation.
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Example 5.1.9. Let A =

[
−1 0

0 −1

]
. Define L(v) = Av for all v ∈ R2. In particular this means,

L(x, y) = A(x, y) =

[
−1 0

0 −1

] [
x
y

]
=

[
−x
−y

]
.

We find L(0, 0) = (0, 0), L(1, 0) = (−1, 0), L(1, 1) = (−1,−1), L(0, 1) = (0,−1). This mapping is
called an inversion.

Example 5.1.10. Let A =

[
1 2
3 4

]
. Define L(v) = Av for all v ∈ R2. In particular this means,

L(x, y) = A(x, y) =

[
1 2
3 4

] [
x
y

]
=

[
x+ 2y
3x+ 4y

]
.

We find L(0, 0) = (0, 0), L(1, 0) = (1, 3), L(1, 1) = (3, 7), L(0, 1) = (2, 4). This mapping shall
remain nameless, it is doubtless a combination of the other named mappings.
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Example 5.1.11. Let A = 1√
2

[
1 −1
1 1

]
. Define L(v) = Av for all v ∈ R2. In particular this

means,

L(x, y) = A(x, y) =
1√
2

[
1 −1
1 1

] [
x
y

]
=

1√
2

[
x− y
x+ y

]
.

We find L(0, 0) = (0, 0), L(1, 0) = 1√
2
(1, 1), L(1, 1) = 1√

2
(0, 2), L(0, 1) = 1√

2
(−1, 1). This mapping

is a rotation by π/4 radians.

Example 5.1.12. Let A =

[
1 −1
1 1

]
. Define L(v) = Av for all v ∈ R2. In particular this means,

L(x, y) = A(x, y) =

[
1 −1
1 1

] [
x
y

]
=

[
x− y
x+ y

]
.

We find L(0, 0) = (0, 0), L(1, 0) = (1, 1), L(1, 1) = (0, 2), L(0, 1) = (−1, 1). This mapping is a
rotation followed by a dilation by k =

√
2.

We will come back to discuss rotations a few more times this semester, you’ll see they give us
interesting and difficult questions later this semester. Also, if you so choose there are a few bonus
applied problems on computer graphics which are built from an understanding of the mathematics
in the next example.

Example 5.1.13. Let A =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. Define L(v) = Av for all v ∈ R2. In particular

this means,

L(x, y) = A(x, y) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]
=

[
x cos(θ)− y sin(θ)
x sin(θ) + y cos(θ)

]
.
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We find L(0, 0) = (0, 0), L(1, 0) = (cos(θ), sin(θ)), L(1, 1) = (cos(θ)−sin(θ), cos(θ)+sin(θ)) L(0, 1) =
(sin(θ), cos(θ)). This mapping is a rotation by θ in the counter-clockwise direction. Of course you
could have derived the matrix A from the picture below.

Example 5.1.14. Let A =

[
1 0
0 1

]
. Define L(v) = Av for all v ∈ R2. In particular this means,

L(x, y) = A(x, y) =

[
1 0
0 1

] [
x
y

]
=

[
x
y

]
.

We find L(0, 0) = (0, 0), L(1, 0) = (1, 0), L(1, 1) = (1, 1), L(0, 1) = (0, 1). This mapping is a
rotation by zero radians, or you could say it is a dilation by a factor of 1, ... usually we call this
the identity mapping because the image is identical to the preimage.

Example 5.1.15. Let A1 =

[
1 0
0 0

]
. Define P1(v) = A1v for all v ∈ R2. In particular this

means,

P1(x, y) = A1(x, y) =

[
1 0
0 0

] [
x
y

]
=

[
x
0

]
.

We find P1(0, 0) = (0, 0), P1(1, 0) = (1, 0), P1(1, 1) = (1, 0), P1(0, 1) = (0, 0). This mapping is a
projection onto the first coordinate.

Let A2 =

[
0 0
0 1

]
. Define L(v) = A2v for all v ∈ R2. In particular this means,

P2(x, y) = A2(x, y) =

[
0 0
0 1

] [
x
y

]
=

[
0
y

]
.
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We find P2(0, 0) = (0, 0), P2(1, 0) = (0, 0), P2(1, 1) = (0, 1), P2(0, 1) = (0, 1). This mapping is
projection onto the second coordinate.
We can picture both of these mappings at once:

Example 5.1.16. Let A =

[
1 1
1 1

]
. Define L(v) = Av for all v ∈ R2. In particular this means,

L(x, y) = A(x, y) =

[
1 1
1 1

] [
x
y

]
=

[
x+ y
x+ y

]
.

We find L(0, 0) = (0, 0), L(1, 0) = (1, 1), L(1, 1) = (2, 2), L(0, 1) = (1, 1). This mapping is not a
projection, but it does collapse the square to a line-segment.

A projection has to have the property that if it is applied twice then you obtain the same image
as if you applied it only once. If you apply the transformation to the image then you’ll obtain a
line-segment from (0, 0) to (4, 4). While it is true the transformation ”projects” the plane to a line
it is not technically a ”projection”.

Remark 5.1.17.

The examples here have focused on linear transformations from R2 to R2. It turns out that
higher dimensional mappings can largely be understood in terms of the geometric operations
we’ve seen in this section.
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Example 5.1.18. Let A =

 0 0
1 0
0 1

. Define L(v) = Av for all v ∈ R2. In particular this means,

L(x, y) = A(x, y) =

 0 0
1 0
0 1

[ x
y

]
=

 0
x
y

 .
We find L(0, 0) = (0, 0, 0), L(1, 0) = (0, 1, 0), L(1, 1) = (0, 1, 1), L(0, 1) = (0, 0, 1). This mapping
moves the xy-plane to the yz-plane. In particular, the horizontal unit square gets mapped to vertical
unit square; L([0, 1]× [0, 1]) = {0} × [0, 1]× [0, 1]. This mapping certainly is not surjective because
no point with x 6= 0 is covered in the range.

Example 5.1.19. Let A =

[
1 1 0
1 1 1

]
. Define L(v) = Av for all v ∈ R3. In particular this

means,

L(x, y, z) = A(x, y, z) =

[
1 1 0
1 1 1

] x
y
z

 =

[
x+ y
x+ y + z

]
.

Let’s study how L maps the unit cube. We have 23 = 8 corners on the unit cube,

L(0, 0, 0) = (0, 0), L(1, 0, 0) = (1, 1), L(1, 1, 0) = (2, 2), L(0, 1, 0) = (1, 1)

L(0, 0, 1) = (0, 1), L(1, 0, 1) = (1, 2), L(1, 1, 1) = (2, 3), L(0, 1, 1) = (1, 2).

This mapping squished the unit cube to a shape in the plane which contains the points (0, 0), (0, 1),
(1, 1), (1, 2), (2, 2), (2, 3). Face by face analysis of the mapping reveals the image is a parallelogram.
This mapping is certainly not injective since two different points get mapped to the same point. In
particular, I have color-coded the mapping of top and base faces as they map to line segments. The
vertical faces map to one of the two parallelograms that comprise the image.
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I have used terms like ”vertical” or ”horizontal” in the standard manner we associate such terms
with three dimensional geometry. Visualization and terminology for higher-dimensional examples is
not as obvious. However, with a little imagination we can still draw pictures to capture important
aspects of mappings.

Example 5.1.20. Let A =

[
1 0 0 0
1 0 0 0

]
. Define L(v) = Av for all v ∈ R4. In particular this

means,

L(x, y, z, t) = A(x, y, z, t) =

[
1 0 0 0
1 0 0 0

]
x
y
z
t

 =

[
x
x

]
.

Let’s study how L maps the unit hypercube [0, 1]4 ⊂ R4. We have 24 = 16 corners on the unit
hypercube, note L(1, a, b, c) = (1, 1) whereas L(0, a, b, c) = (0, 0) for all a, b, c ∈ [0, 1]. Therefore,
the unit hypercube is squished to a line-segment from (0, 0) to (1, 1). This mapping is neither
surjective nor injective. In the picture below the vertical axis represents the y, z, t-directions.

Obviously we have not even begun to appreciate the wealth of possibilities that exist for linear
mappings. Clearly different types of matrices will decribe different types of geometric transforma-
tions from Rn to Rm. On the other hand, square matrices describe mappings from Rn to Rn and
these can be thought of as coordinate transformations. A square matrix may give us a way to
define new coordinates on Rn. We will return to the concept of linear transformations a number of
times in this course. Hopefully you already appreciate that linear algebra is not just about solving
equations. It always comes back to that, but there is more here to ponder.
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5.2 properties of linear transformations

If you are pondering what I am pondering then you probably would like to know if all linear
mappings from Rn to Rm can be reduced to matrix multiplication? We saw that if a map is defined
as a matrix multiplication then it will be linear. A natural question to ask: is the converse true?
Given a linear transformation from Rn to Rm can we write the transformation as multiplication by
a matrix ?

Theorem 5.2.1. fundamental theorem of linear algebra.

L : Rn → Rm is a linear transformation if and only if there exists A ∈ R m×n such that
L(x) = Ax for all x ∈ Rn.

Proof: (⇐) Assume there exists A ∈ R m×n such that L(x) = Ax for all x ∈ Rn. As we argued
before,

L(x+ cy) = A(x+ cy) = Ax+ cAy = L(x) + cL(y)

for all x, y ∈ Rn and c ∈ R hence L is a linear transformation.

(⇒) Assume L : Rn → Rm is a linear transformation. Let ei denote the standard basis in Rn
and let fj denote the standard basis in Rm. If x ∈ Rn then there exist constants xi such that
x = x1e1 + x2e2 + · · ·+ xnen and

L(x) = L(x1e1 + x2e2 + · · ·+ xnen)
= x1L(e1) + x2L(e2) + · · ·+ xnL(en)

where we made use of Proposition 7.2.1. Notice L(ei) ∈ Rm thus there exist constants, say Aij ,
such that

L(ei) = A1if1 +A2if2 + · · ·+Amifm

for each i = 1, 2, . . . , n. Let’s put it all together,

L(x) =

n∑
i=1

xiL(ei)

=

n∑
i=1

xi

m∑
j=1

Ajifj

=
n∑
i=1

m∑
j=1

Ajixifj

= Ax.

Notice that Aji = L(ei)j for 1 ≤ i ≤ n and 1 ≤ j ≤ m hence A ∈ R m×n by its construction. �

The fundamental theorem of linear algebra allows us to make the following definition.
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Definition 5.2.2.

Let L : Rn → Rm be a linear transformation, the matrix A ∈ R m×n such that L(x) = Ax
for all x ∈ Rn is called the standard matrix of L. We denote this by [L] = A or more
compactly, [LA] = A, we say that LA is the linear transformation induced by A. Moreover,
the components of the matrix A are found from Aji = (L(ei)))j .

Example 5.2.3. Given that L([x, y, z]T ) = [x+2y, 3y+4z, 5x+6z]T for [x, y, z]T ∈ R3 find the the
standard matrix of L. We wish to find a 3×3 matrix such that L(v) = Av for all v = [x, y, z]T ∈ R3.
Write L(v) then collect terms with each coordinate in the domain,

L

 x
y
z

 =

 x+ 2y
3y + 4z
5x+ 6z

 = x

 1
0
5

+ y

 2
3
0

+ z

 0
4
6


It’s not hard to see that,

L

 x
y
z

 =

 1 2 0
0 3 4
5 0 6

 x
y
z

 ⇒ A = [L] =

 1 2 0
0 3 4
5 0 6


Notice that the columns in A are just as you’d expect from the proof of theorem 5.2.1. [L] =
[L(e1)|L(e2)|L(e3)]. In future examples I will exploit this observation to save writing.

Example 5.2.4. Suppose that L((t, x, y, z)) = (t+ x+ y + z, z − x, 0, 3t− z), find [L].

L(e1) = L((1, 0, 0, 0)) = (1, 0, 0, 3)
L(e2) = L((0, 1, 0, 0)) = (1,−1, 0, 0)
L(e3) = L((0, 0, 1, 0)) = (1, 0, 0, 0)
L(e4) = L((0, 0, 0, 1)) = (1, 1, 0,−1)

⇒ [L] =


1 1 1 1
0 −1 0 1
0 0 0 0
3 0 0 −1

 .
I invite the reader to check my answer here and see that L(v) = [L]v for all v ∈ R4 as claimed.

Proposition 5.2.5.

Let L : Rn → Rm be a linear transformation,

1. L(0) = 0

2. L(c1v1 +c2v2 + · · · cnvn) = c1L(v1)+c2L(v2)+ · · ·+cnL(vn) for all vi ∈ Rn and ci ∈ R.

Proof: to prove of (1.) let x ∈ Rn and notice that x− x = 0 thus

L(0) = L(x− x) = L(x) + L(−1x) = L(x)− L(x) = 0.

To prove (2.) we use induction on n. Notice the proposition is true for n=1,2 by definition of linear
transformation. Assume inductively L(c1v1 +c2v2 + · · · cnvn) = c1L(v1)+c2L(v2)+ · · ·+cnL(vn) for
all vi ∈ Rn and ci ∈ R where i = 1, 2, . . . , n. Let v1, v2, . . . , vn, vn+1 ∈ Rn and c1, c2, . . . cn, cn+1 ∈ R
and consider, L(c1v1 + c2v2 + · · · cnvn + cn+1vn+1) =

= L(c1v1 + c2v2 + · · · cnvn) + cn+1L(vn+1) by linearity of L
= c1L(v1) + c2L(v2) + · · ·+ cnL(vn) + cn+1L(vn+1) by the induction hypothesis.

Hence the proposition is true for n+ 1 and we conclude by the principle of mathematical induction
that (2.) is true for all n ∈ N. �
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Example 5.2.6. Suppose L : R→ R is defined by L(x) = mx+ b for some constants m, b ∈ R. Is
this a linear transformation on R? Observe:

L(0) = m(0) + b = b

thus L is not a linear transformation if b 6= 0. On the other hand, if b = 0 then L is a linear
transformation. You might contrast this example with Example 5.1.2.

Remark 5.2.7.

A mapping on Rn which has the form T (x) = x + b is called a translation. If we have a
mapping of the form F (x) = Ax + b for some A ∈ R n×n and b ∈ R then we say F is an
affine tranformation on Rn. Technically, in general, the line y = mx+ b is the graph of
an affine function on R. I invite the reader to prove that affine transformations also map
line-segments to line-segments (or points).

Very well, let’s return to the concepts of injective and surjectivity of linear mappings. How do
our theorems of LI and spanning inform us about the behaviour of linear transformations? The
following pair of theorems summarize the situtation nicely.

Theorem 5.2.8. linear map is injective iff only zero maps to zero.

L : Rn → Rm is an injective linear transformation iff the only solution to the equation
L(x) = 0 is x = 0.

Proof: this is a biconditional statement. I’ll prove the converse direction to begin.
( ⇐) Suppose L(x) = 0 iff x = 0 to begin. Let a, b ∈ Rn and suppose L(a) = L(b). By linearity we
have L(a− b) = L(a)− L(b) = 0 hence a− b = 0 therefore a = b and we find L is injective.
(⇒) Suppose L is injective. Suppose L(x) = 0. Note L(0) = 0 by linearity of L but then by 1-1
property we have L(x) = L(0) implies x = 0 hence the unique solution of L(x) = 0 is the zero
solution. �

The theorem above is very important to abstract algebra. It turns out this is also a useful criteria
to determine if a homomorphism is a 1-1 mapping. Linear algebra is a prerequisite of abstract
because linear algebra provides a robust example of what is abstracted in abstract algebra. The
following theorem is special to our context this semester.

Theorem 5.2.9. linear map is injective iff only zero maps to zero.

L : Rn → Rm is a linear transformation with standard matrix [L] then

1. L is 1-1 iff the columns of [L] are linearly independent,

2. L is onto Rm iff the columns of [L] span Rm.

Proof: To prove (1.) use Theorem 7.2.3:

L is 1-1 ⇔
{
L(x) = 0 ⇔ x = 0

}
⇔

{
[L]x = 0 ⇔ x = 0.

}
and the last equation simply states that if a linear combination of columns of L is zero then the
coefficients of that linear equation are zero so (1.) follows.
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To prove (2.) recall that Theorem 4.5.1 stated that if A ∈ R m×n, v ∈ Rn then Av = b is consistent
for all b ∈ Rm iff the columns of A span Rm. To say L is onto Rm means that for each b ∈ Rm
there exists v ∈ Rn such that L(v) = b. But, this is equivalent to saying that [L]v = b is consistent
for each b ∈ Rm so (2.) follows. �

Example 5.2.10. 1. You can verify that the linear mappings in Examples 5.1.8, 5.1.9, 5.1.10,
5.1.11, 5.1.12, 5.1.13 and 5.1.14 wer both 1-1 and onto. You can see the columns of the
tranformation matrices were both LI and spanned R2 in each of these examples.

2. In constrast, Examples 5.1.15 and 5.1.16 were neither 1-1 nor onto. Moreover, the columns
of transformation’s matrix were linearly dependent in each of these cases and they did not
span R2. Instead the span of the columns covered only a particular line in the range.

3. In Example 5.1.18 the mapping is injective and the columns of A were indeed linearly in-
dpendent. However, the columns do not span R3 and as expected the mapping is not onto
R3.

4. In Example 5.1.19 the mapping is not 1-1 and the columns are obviously linearly dependent.
On the other hand, the columns of A do span R2 and the mapping is onto.

5. In Example 5.1.20 the mapping is neither 1-1 nor onto and the columns of the matrix are
neither linearly independent nor do they span R2.

5.3 new linear transformations from old

We can add, subtract and scalar multiply linear transformations. Let us define these:

Definition 5.3.1.

Suppose T : Rn → Rm and S : Rn → Rm are linear transformations then we define
T + S, T − S and cT for any c ∈ R by the rules

(T + S)(x) = T (x) + S(x). (T − S)(x) = T (x)− S(x), (cT )(x) = cT (x)

for all x ∈ Rn.

The following does say something new. Notice I’m talking about adding the transformations them-
selves not the points in the domain or range.

Proposition 5.3.2.

The sum, difference or scalar multiple of a linear transformations from Rn to Rm are once
more a linear transformation from Rn to Rm.

Proof: I’ll be greedy and prove all three at once: let x, y ∈ Rn and c ∈ R,

(T + cS)(x+ by) = T (x+ by) + (cS)(x+ by) defn. of sum of transformations

= T (x+ by) + cS(x+ by) defn. of scalar mult. of transformations

= T (x) + bT (y) + c[S(x) + bS(y)] linearity of S and T

= T (x) + cS(x) + b[T (y) + cS(y)] vector algebra props.

= (T + cS)(x) + b(T + cS)(y) again, defn. of sum and scal. mult. of trans.
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Let c = 1 and b = 1 to see T + S is additive. Let c = 1 and x = 0 to see T + S is homogeneous.
Let c = −1 and b = 1 to see T −S is additive. Let c = −1 and x = 0 to see T −S is homogeneous.
Finally, let T = 0 to see cS is additive (b = 1) and homogeneous (x = 0). �

Proposition 5.3.3.

Suppose T : Rn → Rm and S : Rn → Rm are linear transformations then

(1.) [T + S] = [T ] + [S], (2.) [T − S] = [T ]− [S], (3.) [cS] = c[S].

In words, the standard matrix of the sum, difference or scalar multiple of linear trans-
formations likewise the sum, difference or scalar multiple of the standard matrices of the
respsective linear transformations.

Proof: Note (T + cS)(ej) = T (ej) + cS(ej) hence ((T + cS)(ej))i = (T (ej))i + c(S(ej))i for all i, j
hence [T + cS] = [T ] + c[S]. Set c = 1 to obtain (1.). Set c = −1 to obtain (2.). Finally, set T = 0
to obtain (3.). �

Example 5.3.4. Suppose T (x, y) = (x+ y, x− y) and S(x, y) = (2x, 3y). It’s easy to see that

[T ] =

[
1 1
1 −1

]
and [S] =

[
2 0
0 3

]
⇒ [T + S] = [T ] + [S] =

[
3 1
1 2

]

Therefore, (T + S)(x, y) =

[
3 1
1 2

] [
x
y

]
=

[
3x+ y
x+ 2y

]
= (3x + y, x + 2y). Naturally this is the

same formula that we would obtain through direct addition of the formulas of T and S.

5.3.1 composition and matrix multiplication

In this subsection we see that matrix multiplication is naturally connected to the problem of
composition of linear maps. The definition that follows here is just the usual definition of composite.

Definition 5.3.5.

Suppose T : Rn → Rm and S : Rm → Rp are linear transformations then we define
S ◦T : Rn → Rp by (S ◦T )(x) = S(T (x)) for all x ∈ Rn.

The composite of linear maps is once more a linear map.

Proposition 5.3.6.

Suppose T : Rn → Rp and S : Rp → Rm are linear transformations then we define S ◦T :
Rn → Rm is a linear transformation.

Proof: Let x, y ∈ Rn and c ∈ R,

(S ◦T )(x+ cy) = S(T (x+ cy)) defn. of composite
= S(T (x) + cT (y)) T is linear trans.
= S(T (x)) + cS(T (y)) S is linear trans.
= (S ◦T )(x) + c(S ◦T )(y) defn. of composite

thus S ◦T is a linear transformation. �
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Proposition 5.3.7.

S : Rp → Rn and T : Rn → Rp are linear transformations then S ◦T : Rn → Rm is a linear
transformation with standard matrix [S][T ]; that is, [S ◦T ] = [S][T ].

Proof: Let us denote Rn = span{ei | i = 1, . . . , n} whereas Rp = span{fi | i = 1, . . . , p} and
Rm = span{gi | i = 1, . . . ,m}. To find the matrix of the composite we need only calculate its
action on the standard basis: by definition, [S ◦T ]ij = ((S ◦T )(ej))i, observe

(S ◦T )(ej) = S(T (ej)) : def. of composite

= S([T ]ej) : def. of [T ]

= S(
∑
k

[T ]kjfk) : standard basis {fi} spans Rp

=
∑
k

[T ]kjS(fk) : homogeneity of S

=
∑
k

[T ]kj [S]fk : def. of [S]

=
∑
k

[T ]kj
∑
i

[S]ikgi : standard basis {gi} spans Rm

=
∑
k

∑
i

[S]ik[T ]kjgi : by (2.) of Prop. 1.3.3

=
∑
i

[∑
k

[S]ik[T ]kj

]
gi : by (1.) of Prop. 1.3.3

=
∑
i

([S][T ])ijgi : def. of matrix multiplication

The i-th component of (S ◦T )(ej) is easily seen from the above expression. In particular, we find
[S ◦T ]ij =

∑
k[S]jk[T ]ki and the proof is complete. �

Think about this: matrix multiplication was defined to make the above proposition true.
Perhaps you wondered, why don’t we just multiply matrices some other way? Well, now you have
an answer. If we defined matrix multiplication differently then the result we just proved would not
be true. However, as the course progresses, you’ll see why it is so important that this result be
true. It lies at the heart of many connections between the world of linear transformations and the
world of matrices. It says we can trade composition of linear transformations for multiplication of
matrices.

5.4 applications

Geometry is conveniently described by parametrizations. The number of parameters needed to map
out some object is the dimension of the object. For example, the rule t 7→ ~r(t) describes a curve in
Rn. Of course we have the most experience in the cases ~r =< x, y > or ~r =< x, y, z >, these give
so-called planar curves or space curves respectively. Generally, a mapping from γ : R → S where
S is some space1 is called a path. The point set γ(S) can be identified as a sort of copy of R which
resides in S.

1here S could be a set of matrices or functions or an abstract manifold... the concept of a path is very general
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Next, we can consider mappings from R2 to some space S. In the case S = R3 we use
X(u, v) =< x(u, v), y(u, v), z(u, v) > to parametrize a surface. For example,

X(φ, θ) =< cos(θ) sin(φ), sin(θ) sin(φ), cos(φ) >

parametrizes a sphere if we insist that the angles 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. We call φ and θ
coordinates on the sphere, however, these are not coordinates in the technical sense later defined
in this course. These are so-called curvelinear coordinates. Generally a surface in some space is
sort-of a copy of R2 ( well, to be more precise it resembles some subset of R2).

Past the case of a surface we can talk about volumes which are parametrized by three parameters.
A volume would have to be embedded into some space which had at least 3 dimensions. For the
same reason we can only place a surface in a space with at least 2 dimensions. Perhaps you’d be
interested to learn that in relativity theory one considers the world-volume that a particle traces out
through spacetime, this is a hyper-volume, it’s a 4-dimensional subset of 4-dimensional spacetime.

Let me be a little more technical, if the space we consider is to be a k-dimensional parametric
subspace of S then that means there exists an invertible mapping X : U ⊆ Rk → S ⊆ Rn. It
turns out that for S = Rn where n ≥ k the condition that X be invertible means that the derivative
DpX : TpU → TX(p)S must be an invertible linear mapping at each point p in the parameter space
U . This in turn means that the tangent-vectors to the coordinate curves must come together to
form a linearly independent set. Linear independence is key.

Curvy surfaces and volumes and parametrizations that describe them analytically involve a fair
amount of theory which I have only begun to sketch here. However, if we limit our discussion to
affine subspaces of Rn we can be explicit. Let me go ahead and write the general form for a line,
surface, volume etc... in terms of linearly indpendent vectors ~A, ~B, ~C, . . .

~r(u) = ~ro + u ~A

X(u, v) = ~ro + u ~A+ v ~B

X(u, v, w) = ~ro + u ~A+ v ~B + w~C

I hope you you get the idea.
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In each case the parameters give an invertible map only if the vectors are linearly independent. If
there was some linear dependence then the dimension of the subspace would collapse. For example,

X(u, v) =< 1, 1, 1 > +u < 1, 0, 1 > +v < 2, 0, 2 >

appears to give a plane, but upon further inspection you’ll notice

X(u, v) =< 1 + u+ 2v, 1, 1 + u+ 2v >=< 1, 1, 1 > +(u+ 2v) < 1, 0, 1 >

which reveals this is just a line with direction-vector < 1, 0, 1 > and parameter u+ 2v.
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Chapter 6

vector space

Up to this point the topics we have discussed loosely fit into the category of matrix theory. The
concept of a matrix is milienia old. If I trust my source, and I think I do, the Chinese even had an
analog of Gaussian elimination about 2000 years ago. The modern notation likely stems from the
work of Cauchy in the 19-th century. Cauchy’s prolific work colors much of the notation we still
use. The concept of coordinate geometry as introduced by Descartes and Fermat around 1644 is
what ultimately led to the concept of a vector space.1. Grassmann, Hamilton, and many many oth-
ers worked out volumous work detailing possible transformations on what we now call R2,R3,R4,.
Argand(complex numbers) and Hamilton(quaternions) had more than what we would call a vector
space. They had a linear structure plus some rule for multiplication of vectors. A vector space
with a multiplication is called an algebra in the modern terminology.

Honestly, I think once the concept of the Cartesian plane was discovered the concept of a vector
space almost certainly must follow. That said, it took a while for the definition I state in the
next section to appear. Giuseppe Peano gave the modern definition for a vector space in 18882. In
addition he put forth some of the ideas concerning linear transformations. Peano is also responsible
for the modern notations for intersection and unions of sets3. He made great contributions to proof
by induction and the construction of the natural numbers from basic set theory.

I should mention the work of Hilbert, Lebesque, Fourier, Banach and others were greatly influential
in the formation of infinite dimensional vector spaces. Our focus is on the finite dimensional case.4

Let me summarize what a vector space is before we define it properly. In short, a vector space
over a field F is simply a set which allows you to add its elements and multiply by the numbers in
F. A field is a set with addition and multiplication defined such that every nonzero element has a
multiplicative inverse. Typical examples, F = R,C,Zp where p is prime. I’ll focus on R, but many
of the theorems and definitions we consider readily generalized to arbitrary F.

Vector spaces are found throughout modern mathematics. Moreover, the theory we cover in this
chapter is applicable to a myriad of problems with real world content. This is the beauty of linear
algebra: it simultaneously illustrates the power of application and abstraction in mathematics.

1 Bourbaki 1969, ch. ”Algebre lineaire et algebre multilineaire”, pp. 78-91.
2Peano, Giuseppe (1888),Calcolo Geometrico secondo l′Ausdehnungslehre di H. Grassmann preceduto dalle Oper-

azioni della Logica Deduttiva, Turin
3see Pg 87 of A Transition to Advanced Mathematics: A Survey Course By William Johnston
4this history is flawed, one-sided and far too short. You should read a few more books if you’re interested.
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6.1 definition and examples

Axioms are not derived from a more basic logic. They are the starting point. Their validity is
ultimately judged by their use. However, this definition is naturally motivated by the structure of
vector addition and scalar multiplication in Rn (see Proposition 1.5.9)

Definition 6.1.1.

A vector space V over R is a set V together with a function + : V × V → V called vector
addition and another function · : R × V → V called scalar multiplication. We require
that the operations of vector addition and scalar multiplication satisfy the following 10
axioms: for all x, y, z ∈ V and a, b ∈ R,

1. (A1) x+ y = y + x for all x, y ∈ V ,

2. (A2) (x+ y) + z = x+ (y + z) for all x, y, z ∈ V ,

3. (A3) there exists 0 ∈ V such that x+ 0 = x for all x ∈ V ,

4. (A4) for each x ∈ V there exists −x ∈ V such that x+ (−x) = 0,

5. (A5) 1 · x = x for all x ∈ V ,

6. (A6) (ab) · x = a · (b · x) for all x ∈ V and a, b ∈ R,

7. (A7) a · (x+ y) = a · x+ a · y for all x, y ∈ V and a ∈ R,

8. (A8) (a+ b) · x = a · x+ b · x for all x ∈ V and a, b ∈ R,

9. (A9) If x, y ∈ V then x+ y is a single element in V , (we say V is closed with respect
to addition)

10. (A10) If x ∈ V and c ∈ R then c · x is a single element in V . (we say V is closed with
respect to scalar multiplication)

We call 0 in axiom 3 the zero vector and the vector −x is called the additive inverse of
x. We will sometimes omit the · and instead denote scalar multiplication by juxtaposition;
a · x = ax.

Axioms (9.) and (10.) are admittably redundant given that those automatically follow from the
statements that + : V × V → V and · : R× V → V are functions. I’ve listed them so that you are
less likely to forget they must be checked.

The terminology ”vector” does not necessarily indicate an explicit geometric interpretation in this
general context. Sometimes I’ll insert the word ”abstract” to emphasize this distinction. We’ll see
that matrices, polynomials and functions in general can be thought of as abstract vectors.

Example 6.1.2. R is a vector space if we identify addition of real numbers as the vector addition
and multiplication of real numbers as the scalar multiplication.

The preceding example is very special because we can actually multiply the vectors. Usually we
cannot multiply vectors.

Example 6.1.3. Proposition 1.5.9 shows Rn forms a vector space with respect to the standard
vector addition and scalar multiplication.
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Example 6.1.4. The set of all m × n matrices is denoted R m×n. It forms a vector space with
respect to matrix addition and scalar multiplication as we defined previously. Notice that we cannot
mix matrices of differing sizes since we have no natural way of adding them.

Example 6.1.5. The set of all linear transformations from Rn to Rm is denoted L(Rn,Rm). De-
fine addition and scalar multiplication of the transformations in the natural manner: if S, T ∈
L(Rn,Rm) then for c ∈ R and each v ∈ Rn

(S + T )(v) = S(v) + T (v), (c · T )(v) = cT (v).

we can show S + T ∈ L(Rn,Rm) and c · T ∈ L(Rn,Rm) and the other axioms follow easily.

Example 6.1.6. Let F(R) denote the set of all functions with domain R. Let f, g ∈ F(R) and
suppose c ∈ R, define addition of functions by

(f + g)(x) ≡ f(x) + g(x)

for all x ∈ R. Likewise for f ∈ F(R) and c ∈ R define scalar multiplication of a function by a
constant in the obvious way:

(cf)(x) = cf(x)

for all x ∈ R. In short, we define addition and scalar multiplication by the natural ”point-wise”
rules. Notice we must take functions which share the same domain since otherwise we face difficulty
in choosing the domain for the new function f+g, we can also consider functions sharing a common
domain I ⊂ R and denote that by F(I). These are called function spaces.

Example 6.1.7. Let P2 = {ax2 + bx + c | a, b, c ∈ R}, the set of all polynomials up to quadratic
order. Define addition and scalar multiplication by the usual operations on polynomials. Notice
that if ax2 + bx+ c, dx2 + ex+ f ∈ P2 then

(ax2 + bx+ c) + (dx2 + ex+ f) = (a+ d)x2 + (b+ e)x+ (c+ f) ∈ P2

thus + : P2 × P2 → P2 (it is a binary operation on P2). Similarly,

d(ax2 + bx+ c) = dax2 + dbx+ dc ∈ P2

thus scalar multiplication maps R × P2 → P2 as it ought. Verification of the other 8 axioms is
straightfoward. We denote the set of polynomials of order n or less via Pn = {anxn + · · ·+ a1x +
ao|ai ∈ R}. Naturally, Pn also forms a vector space. Finally, if we take the set of all polynomials
P it forms a vector space. Notice,

P2 ⊂ P3 ⊂ P4 ⊂ · · · ⊂ P

Example 6.1.8. Let V,W be vector spaces over R. The Cartesian product V ×W has a natural
vector space structure inherited from V and W : if (v1, w1), (v2, w2) ∈ V ×W then we define

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2) & c · (v1, w1) = (c · v1, c · w1)

where the vector and scalar operations on the L.H.S. of the above equalities are given from the
vector space structure of V and W . All the axioms of a vector space for V ×W are eaily verified
from the corresponding axioms for V and W .
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The theorem that follows is full of seemingly obvious facts. I show how each of these facts follow
from the vector space axioms.

Theorem 6.1.9.

Let V be a vector space with zero vector 0 and let c ∈ R,

1. 0 · x = 0 for all x ∈ V ,

2. c · 0 = 0 for all c ∈ R,

3. (−1) · x = −x for all x ∈ V ,

4. if cx = 0 then c = 0 or x = 0.

Lemma 6.1.10. Law of Cancellation:

Let a, x, y be vectors in a vector space V . If x+ a = y + a then x = y.

Proof of Lemma: Suppose x+ a = y + a. By A4 there exists −a such that a+ (−a) = 0. Thus
x+a = y+a implies (x+a)+(−a) = (y+a)+(−a). By A2 we find x+(a+(−a)) = y+(a+(−a))
which gives x+0 = y+0. Continuing we use A3 to obtain x+0 = 0 and y+0 = y and consequently
x = y. ∇.

We now seek to prove (1.). Consider:

0 · x+ 0 = 0 · x by A3

= [0(1 + 1)] · x arithmetic in R
= 0 ·

(
(1 + 1) · x

)
by A6

= 0 ·
(
1 · x+ 1 · x

)
by A8

= 0 · (1 · x) + 0 · (1 · x) by A7

= (0(1)) · x+ (0(1)) · x by A6

= 0 · x+ 0 · x arithmetic in R

Finally, apply the cancellation lemma to conclude 0 · x = 0. Note x was arbitrary thus (1.) has
been shown true. ∇

We now prove (2.). Suppose c ∈ R.

c · 0 + 0 = c · 0 by A3

= c · (0 + 0) by A3

= c · 0 + c · 0 by A7

Consquently, by the cancellation lemma we find c · 0 = 0 for all c ∈ R. ∇
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The proof of (3.) is similar. Consider,

1 · x+ 0 = 1 · x by A3

=
(
2 + (−1)

)
· x arithmetic in R

= 2 · x+ (−1) · x by A8

= [1 + 1] · x+ (−1) · x arithmetic in R
=
(
1 · x+ 1 · x

)
+ (−1) · x by A8

= 1 · x+
(
1 · x+ (−1) · x

)
by A2

Applying the cancellation lemma we deduce 0 = 1 · x+ (−1) · x. However, by A5 we know 1 · x = x
and by A3 0 = x + (−x) therefore x + (−x) = x + (−1) · x and by the cancellation lemma we
conclude (−1) · x = −x for all x ∈ V . ∇

To prove (4.) we make use of (1.), (2.) and (3.) as appropriate. Let c ∈ R and x ∈ V and
assume c · x = 0. To begin, suppose c 6= 0 thus 1

c c = 1. Use A10 to multiply c · x = 0 by 1
c hence

1
c · (c · x) = 1

c · 0, call this ?. Consider:

0 =
1

c
· 0 by (2.)

=
1

c
· (c · x) by ?

=

(
1

c
· c
)
· x by A6

= 1 · x arithmetic in R
= x by A5.

Therefore, if c 6= 0 then x = 0. To complete the argument we suppose x 6= 0 and seek to show
c = 0. Suppose c 6= 0 towards a contradiction. By c · x = 0 and (2.),

1

c
· (c · x) =

1

c
· 0 = 0

But, by A6 and 1
c c = 1 and A5 we find

1

c
· (c · x) =

(
1

c
c

)
· x = 1 · x = x

Therefore, x = 0 which clearly contradicts x 6= 0. Therefore, by proof by contradiction, we find
c = 0. It follows that c · x = 0 implies c = 0 or x = 0. �.

Perhaps we should pause to appreciate what was not in the last page or two of proofs. There were
no components, no reference to the standard basis. The arguments offered depended only on the
definition of the vector space itself. This means the truths we derived above are completely general;
they hold for all vector spaces. In what follows past this point we sometimes use Theorem 6.1.9
without explicit reference. That said, I would like you to understand the results of the theorem do
require proof and that is why we have taken some effort here to supply that proof.
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6.2 subspaces

Definition 6.2.1.

Let V be a vector space. If W ⊆ V such that W is a vector space with respect to the
operations of V restricted to W then we say W is a subspace of V and write W ≤ V .

Example 6.2.2. Let V be a vector space. Notice that V ⊆ V and obviously V is a vector space with
respect to its operations. Therefore V ≤ V . Likewise, the set containing the zero vector {0} ≤ V .
Notice that 0 + 0 = 0 and c · 0 = 0 so Axioms 9 and 10 are satisfied. I leave the other axioms to
the reader. The subspaces {0} is called the trivial subspace.

Example 6.2.3. Let L = {(x, y) ∈ R2|ax + by = 0}. Define addition and scalar multiplication
by the natural rules in R2. Note if (x, y), (z, w) ∈ L then (x, y) + (z, w) = (x + z, y + w) and
a(x+ z) + b(y + w) = ax+ by + az + bw = 0 + 0 = 0 hence (x, y) + (z, w) ∈ L. Likewise, if c ∈ R
and (x, y) ∈ L then ax+ by = 0 implies acx+ bcy = 0 thus (cx, cy) = c(x, y) ∈ L. We find that L is
closed under vector addition and scalar multiplication. The other 8 axioms are naturally inherited
from R2. This makes L a subspace of R2.

Example 6.2.4. If V = R3 then

1. {(0, 0, 0)} is a subspace,

2. any line through the origin is a subspace,

3. any plane through the origin is a subspace.

Example 6.2.5. Let W = {(x, y, z) | x+ y + z = 1}. Is this a subspace of R3 with the standard5

vector space structure? The answer is no. There are many reasons,

1. (0, 0, 0) /∈ W thus W has no zero vector, axiom 3 fails. Notice we cannot change the idea of
”zero” for the subspace, if (0, 0, 0) is zero for R3 then it is the only zero for potential subspaces.
Why? Because subspaces inherit their structure from the vector space which contains them.

2. let (u, v, w), (a, b, c) ∈W then u+v+w = 1 and a+b+c = 1, however (u+a, v+b, w+c) /∈W
since (u+ a) + (v + b) + (w + c) = (u+ v + w) + (a+ b+ c) = 1 + 1 = 2.

3. let (u, v, w) ∈ W then notice that 2(u, v, w) = (2u, 2v, 2w). Observe that 2u + 2v + 2w =
2(u + v + w) = 2 hence (2u, 2v, 2w) /∈ W . Thus axiom 10 fails, the subset W is not closed
under scalar multiplication.

Of course, one reason is all it takes.

My focus on the last two axioms is not without reason. Let me explain this obsession.

Theorem 6.2.6.

Let V be a vector space and suppose W ⊂ V with W 6= ∅ then W ≤ V if and only if the
following two conditions hold true

1. if x, y ∈W then x+ y ∈W (W is closed under addition),

2. if x ∈W and c ∈ R then c · x ∈W (W is closed under scalar multiplication).

5yes, there is a non-standard addition which gives this space a vector space structure
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Proof: (⇒)If W ≤ V then W is a vector space with respect to the operations of addition and
scalar multiplication thus (1.) and (2.) hold true.

(⇐) Suppose W is a nonempty set which is closed under vector addition and scalar multiplication
of V . We seek to prove W is a vector space with respect to the operations inherited from V . Let
x, y, z ∈W then x, y, z ∈ V . Use A1 and A2 for V ( which were given to begin with) to find

x+ y = y + x and (x+ y) + z = x+ (y + z).

Thus A1 and A2 hold for W . By (3.) of Theorem 6.1.9 we know that (−1) · x = −x and −x ∈ W
since we know W is closed under scalar multiplication. Consequently, x+ (−x) = 0 ∈ W since W
is closed under addition. It follows A3 is true for W . Then by the arguments just given A4 is true
for W . Let a, b ∈ R and notice that by A5,A6,A7,A8 for V we find

1 · x = x, (ab) · x = a · (b · x), a · (x+ y) = a · x+ a · y, (a+ b) · x = a · x+ b · x.

Thus A5,A6,A7,A8 likewise hold for W . Finally, we assumed closure of addition and scalar mul-
tiplication on W so A9 and A10 are likewise satisfied and we conclude that W is a vector space.
Thus W ≤ V . (if you’re wondering where we needed W nonempty it was to argue that there exists
at least one vector x and consequently the zero vector is in W .) �

Remark 6.2.7.

The application of Theorem 6.2.6 is a four-step process

1. check that W ⊂ V

2. check that 0 ∈W

3. take arbitrary x, y ∈W and show x+ y ∈W

4. take arbitrary x ∈W and c ∈ R and show cx ∈W

Step (2.) is just for convenience, you could just as well find another vector in W . We need
to find at least one to show that W is nonempty. Also, usually we omit comment about
(1.) since it is obvious that one set is a subset of another.

Example 6.2.8. The function space F(R) has many subspaces.

1. continuous functions: C(R)

2. differentiable functions: C1(R)

3. smooth functions: C∞(R)

4. polynomial functions

5. analytic functions

6. solution set of a linear homogeneous ODE with no singular points
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The proof that each of these follows from Theorem 6.2.6. For example, f(x) = x is continuous
therefore C(R) 6= ∅. Moreover, the sum of continuous functions is continuous and a scalar multiple
of a continuous function is continuous. Thus C(R) ≤ F(R). The arguments for (2.),(3.),(4.),(5.)
and (6.) are identical. The solution set example is one of the most important examples for en-
gineering and physics, linear ordinary differential equations. Also, we should note that R can be
replaced with some subset I of real numbers. F(I) likewise has subspaces C(I), C1(I), C∞(I) etc.

Example 6.2.9. The null space of a matrix A ∈ R m×n is a subspace of Rm defined as follows:

Null(A) ≡ {x ∈ Rn | Ax = 0}

Let’s prove Null(A) ≤ Rn. Observe that A0 = 0 hence 0 ∈ Null(A) so the nullspace is nonempty.
Suppose x, y ∈ Null(A) and c ∈ R,

A(x+ cy) = Ax+ cAy = 0 + c(0) = 0

thus x + cy ∈ Null(A). Closure of addtion for Null(A) follows from c = 1 and closure of scalar
multiplication follows from x = 0 in the just completed calculation. �

Sometimes it’s easier to check both scalar multiplication and addition at once. It saves some writ-
ing. If you don’t understand it then don’t use the trick I just used, we should understand our work.

The example that follows here introduces an important point in abstract math. Given a particular
point set, there is often more than one way to define a structure on the set. Therefore, it is important
to view things as more than mere sets. Instead, think about sets paired with a structure.

Example 6.2.10. Let6 Vp be the set of all vectors with base point p ∈ Rn,

Vp = {p+ v | v ∈ Rn}

We define a nonstandard vector addition on Vp, if p+ v, p+ w ∈ Vp and c ∈ R define:

(p+ v) +p (p+ w) = p+ v + w & c ·p (p+ v) = p+ cv.

Clearly +p : Vp × Vp → Vp and ·p : R × Vp → Vp are closed and verification of the other axioms is
straightforward. Observe 0p = p as (p + v) +p (p + 0) = p + v + 0 = p + v hence Op = p + 0 = p.
Mainly, the vector space axioms for Vp follow from the corresponding axioms for Rn. Geometrically,
+p corresponds to the tip-to-tail rule we use in physics to add vectors. Consider Sp defined below:

Sp = {p+ v | v ∈W ≤ Rn}

Notice 0p ∈ Sp as 0 ∈W and 0p = p+ 0. Furthermore, consider p+ v, p+ w ∈ Sp and c ∈ R

(p+ v) +p (p+ w) = p+ (v + w) & c ·p (p+ v) = p+ cv

note v + w, cv ∈ W as W ≤ Rn is closed under addition and scalar multiplication. We find
(p+ v) +p (p+ w), c ·p (p+ v) ∈ Sp thus Sp ≤ Vp by the subspace test Theorem 6.2.6.

6it may be better to use the notation (p, v) for p + v, this has the advantage of making the base-point p explicit
whereas p can be obscured in the more geometrically direct p+ v notation. Another choice is to use vp.
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In the previous example, Sp need not be a subspace with respect to the standard vector addition of
column vectors. However, with the modified addition based at p it is a subspace. We often say the
solution set to Ax = b with b 6= 0 is not a subspace. It should be understood that what is meant
is that the solution set of Ax = b is not a subspace with respect to the usual vector addition. It is
possible to define a different vector addition which gives the solution set of Ax = b a vector space
structure. I’ll let you think about the details.

Example 6.2.11. Let W = {A ∈ R n×n | AT = A}. This is the set of symmetric matrices, it
is nonempty since IT = I (of course there are many other examples, we only need one to show it’s
nonempty). Let A,B ∈W and suppose c ∈ R then

(A+B)T = AT +BT prop. of transpose
= A+B since A,B ∈W

thus A+B ∈W and we find W is closed under addition. Likewise let A ∈W and c ∈ R,

(cA)T = cAT prop. of transpose
= cA since A,B ∈W

thus cA ∈ W and we find W is closed under scalar multiplication. Therefore, by the subspace test
Theorem 6.2.6, W ≤ R n×n.

I invite the reader to modify the example above to show the set of antisymmetric matrices also
forms a subspace of the vector space of square matrices.

Example 6.2.12. Let W = {f ∈ F(R) |
∫ 1
−1 f(x) dx = 0}. Notice the zero function 0(x) = 0 is

in W since
∫ 1
−1 0 dx = 0. Let f, g ∈W , use linearity property of the definite integral to calculate

∫ 1

−1
(f(x) + g(x)) dx =

∫ 1

−1
f(x) dx+

∫ 1

−1
g(x) dx = 0 + 0 = 0

thus f + g ∈W . Likewise, if c ∈ R and f ∈W then∫ 1

−1
cf(x) dx = c

∫ 1

−1
f(x) dx = c(0) = 0

thus cf ∈W and by subspace test Theorem 6.2.6 W ≤ F(R).

Example 6.2.13. Here we continue discussion of the product space introduced in Example 6.1.8.
Suppose V = C and W = P2 then V × W = {(a + ib, cx2 + dx + e) | a, b, c, d, e ∈ R}. Let
U = {(a, b) | a, b ∈ R}. We can easily show U ≤ V × W by the subspace test Theorem 6.2.6
W ≤ F(R). Can you think of other subspaces? Is it possible to have a subspace of V ×W which is
not formed from a pair of subspaces from V and W respective?

Example 6.2.14. Let W be the set of real-valued functions on R for which f(a) = 0 for some fixed
value a ∈ R. If f, g ∈W and c ∈ R then (f + cg)(a) = f(a)+ cg(a) = 0+ c(0) = 0 thus f + cg ∈W .
Observe W is closed under addition by the case c = 1 and W is closed under scalar multiplication
by the case f = 0. Furthermore, f(x) = 0 for all x ∈ R defines the zero function which is in W .
Hence W ≤ F(R) by subspace test Theorem 6.2.6.
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6.3 spanning sets and subspaces

The expression x+cy is a ”linear combination” of x and y. Subspaces must keep linear combinations
of subspace vectors from escaping the subspace. We defined linear combinations in a previous
chapter (see 1.5.7). Can we use linear combinations to form a subspace?

Theorem 6.3.1.

Let V be a vector space which contains vectors v1, v2, . . . , vk then

1. the set of all linear combinations of v1, v2, . . . , vk forms a subspace of V , call it Wo

2. Wo is the smallest subspace of V which contains v1, v2, . . . , vk. Any other subspace
which contains v1, v2, . . . , vk also contains Wo.

Proof: Define Wo = {c1v1 + c2v2 + · · ·+ ckvk | ci ∈ R for i = 1, 2, . . . , k}. Notice 0 · v1 = 0 hence
0 ∈Wo. Suppose that x, y ∈Wo then there exist constants ci and bi such that

x = c1v1 + c2v2 + · · · ckvk y = b1v1 + b2v2 + · · · bkvk

Consider the sum of x and y,

x+ y = c1v1 + c2v2 + · · · ckvk + b1v1 + b2v2 + · · · bkvk
= (c1 + b1)v1 + (c2 + b2)v2 + · · ·+ (ck + bk)vk

thus x+ y ∈Wo for all x, y ∈Wo. Let a ∈ R and observe

ax = a(c1v1 + c2v2 + · · ·+ ckvk) = ac1v1 + ac2v2 + · · ·+ ackvk

thus cx ∈Wo for all x ∈Wo and c ∈ R. Thus by the subspace test theorem we find Wo ≤ V .

To prove (2.) we suppose R is any subspace of V which contains v1, v2, . . . , vk. By defintion R is
closed under scalar multiplication and vector addition thus all linear combinations of v1, v2, . . . , vk
must be in R henceWo ⊆ R. Finally, it is clear that v1, v2, . . . , vk ∈Wo since v1 = 1v1+0v2+· · ·+0vk
and v2 = 0v1 + 1v2 + · · ·+ 0vk and so forth. �

Definition 6.3.2.

Let S = {v1, v2, . . . , vk} be a finite set of vectors in a vector space V then span(S) is defined
to be the set of all linear combinations of S:

span{v1, v2, . . . , vk} = {
k∑
i=1

civi | ci ∈ R for i = 1, 2, . . . , k}

If W = span(S) then we say that S is a generating set for W . We also say S spans W
in this case. Furthermore, if S is an infinite set then span(S) is defined to be all possible
finite linear combinations from S.

In view of Theorem 6.3.1 the definition above is equivalent to defining span(S) to be the smallest
subspace which contains S.

Example 6.3.3. Proposition 1.5.8 explained how Rn was spanned by the standard basis; Rn =
span{ei}ni=1. Likewise, Proposition 3.3.2 showed the m× n matrix units Eij spanned the set of all
m× n matrices; R m×n = span{Eij}ni,j=1.
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Example 6.3.4. Let S = {1, x, x2, . . . , xn} then span(S) = Pn. For example,

span{1, x, x2} = {ax2 + bx+ c | a, b, c ∈ R} = P2

The set of all polynomials is spanned by {1, x, x2, x3, . . . }. We are primarily interested in the span
of finite sets however this case is worth mentioning.

Example 6.3.5. Let W = {[s + t, 2s + t, 3s + t]T | s, t ∈ R}. We can show W is a subspace of
R3×1. What is a generating set of W? Let w ∈W then by definition there exist s, t ∈ R such that

w =

 s+ t
2s+ t
3s+ t

 = s

 1
2
3

+ t

 1
1
1


Thus w ∈ span{[1, 2, 3]T , [1, 1, 1]T } and it follows W ⊆ span{[1, 2, 3]T , [1, 1, 1]T }. Conversely, if
y ∈ span{[1, 2, 3]T , [1, 1, 1]T } then there exist c1, c2 ∈ R such that y = c1[1, 2, 3]T + c2[1, 1, 1]T . But
then y = [c1 + c2, 2c1 + c2, 3c1 + c2]T so it is clear y ∈W , therefore span{[1, 2, 3]T , [1, 1, 1]T } ⊆W .
It follows that W = span{[1, 2, 3]T , [1, 1, 1]T }. Finally, Theorem 6.3.1 gives us W ≤ R3.

The lesson of the last example is that we can show a particular space is a subspace by finding
its generating set. Theorem 6.3.1 tells us that any set generated by a span is a subspace. This
test is only convenient for subspaces which are defined as some sort of span. In that case we can
immediately conclude the subset is in fact a subspace.

Example 6.3.6. Suppose a, b, c ∈ R and a 6= 0. Consider the differential equation ay′′+by′+cy = 0.
There is a theorem in the study of differential equations which states every solution can be written
as a linear combination of a pair of special solutions y1, y2; we say y = c1y1 + c2y2 is the ”general
solution” in the terminology of Math 334. In other words, there exist solutions y1, y2 such that the
solution set S of ay′′ + by′ + cy = 0 is

S = span{y1, y2}.

Since S is a span it is clear that S ≤ F(R).

Example 6.3.7. Suppose L = P (D) where D = d/dx and P is a polynomial with real coefficients.
This makes L a smooth operator on the space of smooth functions. Suppose deg(P ) = n, a the-
orem in differential equations states that there exist solutions y1, y2, . . . , yn of L[y] = 0 such that
every solution of L[y] = 0 can be written in the form y = c1y1 + c2y2 + · · · + cnyn for constants
c1, c2, . . . , cn ∈ R. In other words, the solution set S of L[y] = 0 is formed from a span:

S = span{y1, y2, . . . , yn}.

Notice the last example is a subcase of this example. Simply set L = aD2 + bD + c.

Perhaps the examples above were too abstract for you at this point. Let me give a couple specific
examples in the same vein.

Example 6.3.8. Consider y′ = y. Or, taking t as the independent variable, dy
dt = y. Separation

of variables (that you are expected to know from calculus II) shows dy
y = dt hence ln |y| = t+ c. It

follows that y = ±ecet. Note y = 0 is also a solution of y′ = y. In total, we find solutions of the
form y = c1e

t. The solution set of this differential equation is a span; S = span{et} ≤ F(R).



126 CHAPTER 6. VECTOR SPACE

Example 6.3.9. Consider y′′−y = 0. I invite the reader to verify that y1 = cosh(t) and y2 = sinh(t)
are solutions. The solution set is S = span{y1, y2} ≤ F(R).

Example 6.3.10. Consider y′′+y = 0. I invite the reader to verify that y1 = cos(t) and y2 = sin(t)
are solutions. The solution set is S = span{y1, y2} ≤ F(R). Physically, this could represent
Newton’s equation for a spring with mass m = 1 and stiffness k = 1, the set of all possible physical
motions forms a linear subspace of function space.

Example 6.3.11. Consider, y′′′ = 0. Integrate both sides to find y′′ = c1. Integrate again to find
y′ = c1t + c2. Integrate once more, y = c1

1
2 t

2 + c2t + c3. The general solution of y′′′ = 0 is a
subspace S of function space:

S = span

{
1

2
t2, t, 1

}
≤ F(R)

Physically, we often consider the situation c1 = −g.

Examples 6.3.8 and 6.3.11 are fair game for test, quizzes etc... they only assume prerequisite
knowledge plus linear algebra. In constrast, I don’t expect you can find y1, y2 as in Examples 6.3.9
and 6.3.10 since the Differential Equations course is not a prerequisite.

Example 6.3.12. Let A ∈ R m×n. Define column space of A as the span of the columns of A:

Col(A) = span{colj(A) | j = 1, 2, . . . , n}

this is clearly a subspace of Rm since each column has as many components as there are rows in A.
We also define row space as the span of the rows:

Row(A) = span{rowi(A) | i = 1, 2, . . . ,m}

this is clearly a subspace of R1×n since it is formed as a span of vectors. Since the columns of AT

are the rows of A and the rows of AT are the columns of A we can conclude that Col(AT ) = Row(A)
and Row(AT ) = Col(A).

I would remind the reader we have the CCP and associated techniques to handle spanning questions
for column vectors. In contrast, the following example requires a direct assault7:

Example 6.3.13. Is E11 ∈ span{E12 + 2E11, E12−E11}? Assume Eij ∈ R2×2 for all i, j. We seek
to find solutions of

E11 = a(E12 + 2E11) + b(E12 − E11)

in explicit matrix form the equation above reads:[
1 0
0 0

]
= a

([
0 1
0 0

]
+

[
2 0
0 0

])
+ b

([
0 1
0 0

]
+

[
−1 0
0 0

])

=

[
2a a
0 0

]
+

[
−b b
0 0

]

=

[
2a− b a+ b

0 0

]
7However, once we have the idea of coordinates ironed out then we can use the CCP tricks on the coordinate

vectors then push back the results to the world of abstract vectors. For now we’ll just confront each question by
brute force. For an example such as this, the method used here is as good as our later methods.
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thus 1 = 2a− b and 0 = a+ b. Substitute a = −b to find 1 = 3a hence a = 1
3 and b = −1

3 . Indeed,

1

3
(E12 + 2E11)− 1

3(E12 − E11) = 2
3E11 + 1

3E11 = E11.

Therefore, E11 ∈ span{E12 + 2E11, E12 − E11}.

Example 6.3.14. Find a generating set for the set of symmetric 2× 2 matrices. That is find a set
S of matrices such that span(S) = {A ∈ R2×2 | AT = A} = W . There are many approaches, but I
find it most natural to begin by studying the condition which defines W . Let A ∈W and note

AT = A & A =

[
a b
c d

]
⇒
[
a c
b d

]
=

[
a b
c d

]
this means we need b = c but we find no particular condition on a or d. Notice A ∈W implies

A =

[
a b
b d

]
= a

[
1 0
0 0

]
+ b

[
0 1
1 0

]
+ d

[
0 0
0 1

]
= aE11 + b(E12 + E21) + dE22

Thus A ∈ W implies A ∈ span{E11, E12 + E21, E22}, hence W ⊆ span{E11, E12 + E21, E22}.
Conversely, if B ∈ span{E11, E12 + E21, E22} then there exist c1, c2, c3 ∈ R such that

B = c1E11 + c2(E12 + E21) + c3E22

but this means

B =

[
c1 c2

c2 c3

]
so B is symmetric and it follows span{E11, E12+E21, E22} ⊆W . Consequently W = span{E11, E12+
E21, E22} and the set {E11, E12 + E21, E22} generates W . This is not unique, there are many
other sets which also generate W . For example, if we took S̄ = {E11, E12 + E21, E22, E11 + E22}
then the span of S̄ would still work out to W .

I could use the lemma below to prove the theorem that follows, however, I thought it wise to leave
the proof of the theorem as it is written so you can compare the methods of argument. Index
techniques save some writing, but, many students need to see the proof of the theorem before the
lemma. So, you might skip past the lemma in your first read.

Lemma 6.3.15.

The linear combination of linear combinations is a linear combination.

Proof: Suppose V is a vector space. Let si =
∑ni

j=1 cijtij where cij ∈ R and tij ∈ V for ni, i ∈ N
with i = 1, 2, . . . , k. Let b1, . . . , bk ∈ R and consider by (2.) of Proposition 1.3.3

k∑
i=1

bisi =

k∑
i=1

bi

 ni∑
j=1

cijtij

 =
k∑
i=1

ni∑
j=1

bicijtij .

Notice, this is a linear combination as bicij ∈ R. �
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Theorem 6.3.16.

If S = {s1, s2, . . . , sk} and T = {t1, t2, . . . , tr} are subsets of a vector space V then span(S) =
span(T ) if and only if every vector in S is a linear combination of vectors in T and every
vector in T is a linear combination of vectors in S.

Proof: (⇒) Assume span(S) = span(T ). If v ∈ S then v ∈ span(S) hence v ∈ span(T ) and it fol-
lows that v is a linear combination of vectors in T . If w ∈ T then w ∈ span(T ) hence w ∈ span(S)
and by definition of the span(S) we find w is a linear combination of vectors in S.

(⇐) Assume every vector in S is a linear combination of vectors in T and every vector in T is a
linear combination of vectors in S. Suppose v ∈ Span(S) then v is a linear combination of vectors
in S, say

v = c1s1 + c2s2 + · · ·+ cksk.

Furthermore, each vector in S is a linear combination of vectors in T by assumption so there exist
constants dij such that

si = di1t1 + di2t2 + · · ·+ dirtr

for each i = 1, 2, . . . , k. Thus,

v = c1s1 + c2s2 + · · ·+ cksk.

= c1(d11t1 + d12t2 + · · ·+ d1rtr) + c2(d21t1 + d22t2 + · · ·+ d2rtr)+
· · ·+ ck(dk1t1 + dk2t2 + · · ·+ dkrtr)

= (c1d11 + c2d21 + · · ·+ ckdk1)t1 + (c1d12 + c2d22 + · · ·+ ckdk2)t2+
· · ·+ (c1d1r + c2d2r + · · ·+ ckdkr)tr

thus v is a linear combination of vectors in T , in other words v ∈ span(T ) and we find span(S) ⊆
span(T ). Notice, we just proved that a linear combination of linear combinations is again a linear
combination. Almost the same argument shows span(T ) ⊆ span(S) hence span(S) = span(T ). �.

6.4 linear independence

We have seen a variety of generating sets in the preceding section. In the last example I noted
that if we added an additional vector E11 +E22 then the same span would be created. The vector
E11 + E22 is redundant since we already had E11 and E22. In particular, E11 + E22 is a linear
combination of E11 and E22 so adding it will not change the span. How can we decide if a vector
is absolutely necessary for a span? In other words, if we want to span a subspace W then how
do we find a minimal spanning set? We want a set of vectors which does not have any linear
dependences. We say such vectors are linearly independent. Let me be precise8:

Definition 6.4.1.

If a vector vk can be written as a linear combination of vectors {v1, v2, . . . , vk−1} then
we say that the vectors {v1, v2, . . . , vk−1, vk} are linearly dependent. If the vectors
{v1, v2, . . . , vk−1, vk} are not linear dependent then they are linearly independent (LI).

8if you have a sense of deja vu here, it is because I uttered many of the same words in the context of Rn. Notice,
in constrast, I now consider the abstract case. We cannot use the CCP directly here
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Example 6.4.2. Let v = cos2(t) and w = 1 + cos(2t). Clearly v, w are linearly dependent since
w = 2v. We should remember from trigonometry cos2(t) = 1

2

(
1 + cos(2t)

)
.

I often quote the following proposition as the definition of linear independence, it is an equivalent
statement and as such can be used as the definition. If this was our definition then our definition
would become a proposition. Math always has a certain amount of this sort of ambiguity.

Proposition 6.4.3.

Let v1, v2, . . . , vk ∈ V a vector space. The set of vectors {v1, v2, . . . , vk} is LI iff

c1v1 + c2v2 + · · ·+ ckvk = 0 ⇒ c1 = c2 = · · · = ck = 0.

Proof: (⇒) Suppose {v1, v2, . . . , vk} is linearly independent. Assume that there exist constants
c1, c2, . . . , ck such that

c1v1 + c2v2 + · · ·+ ckvk = 0

and at least one constant, say cj , is nonzero. Then we can divide by cj to obtain

c1
cj
v1 + c2

cj
v2 + · · ·+ vj + · · ·+ ck

cj
vk = 0

solve for vj , (we mean for v̂j to denote the deletion of vj from the list)

vj = − c1
cj
v1 − c2

cj
v2 − · · · − v̂j − · · · − ck

cj
vk

but this means that vj linearly depends on the other vectors hence {v1, v2, . . . , vk} is linearly de-
pendent. This is a contradiction, therefore cj = 0. Note j was arbitrary so we may conclude cj = 0
for all j. Therefore, c1v1 + c2v2 + · · ·+ ckvk = 0 ⇒ c1 = c2 = · · · = ck = 0.

Proof: (⇐) Assume that

c1v1 + c2v2 + · · ·+ ckvk = 0 ⇒ c1 = c2 = · · · = ck = 0.

If vj = b1v1 + b2v2 + · · · + b̂jvj + · · · + bkvk then b1v1 + b2v2 + · · · + bjvj + · · · + bkvk = 0 where
bj = −1, this is a contradiction. Therefore, for each j, vj is not a linear combination of the other
vectors. Consequently, {v1, v2, . . . , vk} is linearly independent. �

What follows next yet another equivalent definition of linear independence. In short, our ability to
equate coefficients for a given set of objects is interchangeable with the LI of the set of objects.

Proposition 6.4.4.

S is a linearly independent set of vectors iff for all v1, v2, . . . , vk ∈ S,

a1v1 + a2v2 + · · ·+ akvk = b1v1 + b2v2 + · · ·+ bkvk

implies ai = bi for each i = 1, 2, . . . , k. In other words, we can equate coefficients of linearly
indpendent vectors. And, conversely if a set of vectors allows for equating coefficients then
it is linearly independent.

Proof: likely homework problem. �

In retrospect, partial fractions is based on the LI of the basic rational functions. The technique of
equating coefficients only made sense because the set of functions involved was in fact LI.
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Proposition 6.4.5.

If S is a finite set of vectors which contains the zero vector then S is linearly dependent.

Proof: Let {~0, v2, . . . vk} = S and observe that

1~0 + 0v2 + · · ·+ 0vk = 0

Thus c1~0 + c2v2 + · · · + ckvk = 0 does not imply c1 = 0 hence the set of vectors is not linearly
independent. Thus S is linearly dependent. �

Proposition 6.4.6.

Let v and w be nonzero vectors.

v, w are linearly dependent ⇔ ∃k 6= 0 ∈ R such that v = kw.

Proof: Suppose v, w are linearly dependent then there exist constants c1, c2, not all zero, such
that c1v + c2w = 0. Suppose that c1 = 0 then c2w = 0 hence c2 = 0 or w = 0 by (4.) of Theorem
6.1.9. But this is a contradiction since v, w are nonzero and at least one of c1, c2 must be nonzero.
Therefore, c1 6= 0. Likewise, if c2 = 0 we find a similar contradiction. Hence c1, c2 are both nonzero
and we calculate v = (−c2/c1)w, identify that k = −c2/c1. �

Remark 6.4.7.

We should keep in mind that in the abstract context statements such as ”v and w go in
the same direction” or ”u is contained in the plane spanned by v and w” are not statments
about ordinary three dimensional geometry. Moreover, you cannot write that u, v, w ∈ Rn
unless you happen to be working with that rather special vector space. These ”vectors”
could be matrices, polynomials or even operators. All of this said, we will find a way to
correctly think of an abstract vector space V as another version of Rn. We’ll see how V
and Rn correspond, we will not be so careless as to say they are equal.

Given a set of vectors in Rn the question of LI is elegantly answered by the CCP. In examples that
follow in this section we leave the comfort zone and study LI in abstract vector spaces. For now we
only have brute force at our disposal. In other words, I’ll argue directly from the definition without
the aid of the CCP from the outset.

Example 6.4.8. Suppose f(x) = cos(x) and g(x) = sin(x) and define S = {f, g}. Is S linearly
independent with respect to the standard vector space structure on F(R) ? Let c1, c2 ∈ R and
assume that

c1f + c2g = 0.

It follows that c1f(x) + c2g(x) = 0 for each x ∈ R. In particular,

c1 cos(x) + c2 sin(x) = 0

for each x ∈ R. Let x = 0 and we get c1 cos(0) + c2 sin(0) = 0 thus c1 = 0. Likewise, let x = π/2
to obtain c1 cos(π/2) + c2 sin(π/2) = 0 + c2 = 0 hence c2 = 0. We have shown that c1f + c2g = 0
implies c1 = c2 = 0 thus S = {f, g} is a linearly independent set.
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Example 6.4.9. Let fn(t) = tn for n = 0, 1, 2, . . . . Suppose S = {f0, f1, . . . , fn}. Show S is a
linearly independent subset of function space. Assume c0, c1, . . . , cn ∈ R and

c0f0 + c1f1 + c2f2 + · · ·+ cnfn = 0. ?

I usually skip the expression above, but I’m including this extra step to emphasize the distinction
between the function and its formula. The ? equation is a function equation, it implies

c0 + c1t+ c2t
2 + · · ·+ cnt

n = 0 ? ?

for all t ∈ R. Evaluate ?? at t = 0 to obtain c0 = 0. Differentiate ?2 and find

c1 + 2c2t+ · · ·+ ncnt
n−1 = 0 ?3

Evaluate ?3 at t = 0 to obtain c1 = 0. If we continue to differentiate and evaluate we will similarly
obtain c2 = 0, c3 = 0 and so forth all the way up to cn = 0. Therefore, ? implies c0 = c1 = · · · =
cn = 0.

Linear dependence in function space is sometimes a source of confusion for students. The idea of
evaluation doesn’t help in the same way as it just has in the two examples above.

Example 6.4.10. Let f(t) = t − 1 and g(t) = t + t2 is f linearly dependent on g? A common
mistake is to say something like f(1) = 1− 1 = 0 so {f, g} is linearly independent since it contains
zero. Why is this wrong? The reason is that we have confused the value of the function with the
function itself. If f(t) = 0 for all t ∈ R then f is the zero function which is the zero vector in
function space. Many functions will be zero at a point but that doesn’t make them the zero function.
To prove linear dependence we must show that there exists k ∈ R such that f = kg, but this really
means that f(t) = kg(t) for all t ∈ R in the current context. I leave it to the reader to prove that
{f, g} is in fact LI. You can evaluate at t = 1 and t = 0 to obtain equations for c1, c2 which have
a unique solution of c1 = c2 = 0.

Example 6.4.11. Let f(t) = t2 − 1, g(t) = t2 + 1 and h(t) = 4t2. Suppose

c1(t2 − 1) + c2(t2 + 1) + c3(4t2) = 0 ?

A little algebra reveals,
(c1 + c2 + 4c3)t2 − (c1 − c2)1 = 0

Using linear independence of t2 and 1 we find

c1 + c2 + 4c3 = 0 and c1 − c2 = 0

We find infinitely many solutions,

c1 = c2 and c3 = −1

4
(c1 + c2) = −1

2
c2

Therefore, ? allows nontrivial solutions. Take c2 = 1,

1(t2 − 1) + 1(t2 + 1)− 1

2
(4t2) = 0.

We can write one of these functions as a linear combination of the other two,

f = −g +
1

2
h.

Once we get past the formalities of the particular vector space structure it always comes back to
solving systems of linear equations.
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6.5 bases and dimension

We have seen that linear combinations can generate vector spaces. We have also seen that sometimes
we can remove a vector from the generating set and still generate the whole vector space. For
example,

span{e1, e2, e1 + e2} = R2

and we can remove any one of these vector and still span R2,

span{e1, e2} = span{e1, e1 + e2} = span{e2, e1 + e2} = R2

However, if we remove another vector then we will not span R2. A generating set which is just big
enough is called a basis. We can remove vectors which are linearly dependent on the remaining
vectors without changing the span. Therefore, we should expect that a minimal spanning set is
linearly independent.

Definition 6.5.1.

A basis for a vector space V is a set of vectors S such that

1. V = span(S),

2. S is linearly independent.

Example 6.5.2. It is not hard to show that B1 = {e1, e2} and B2 = {e1, e1 + e2} and B3 =
{e2, e1 + e2} are linearly independent sets. Furthermore, each spans R2. Therefore, B1, B2, B3 are
bases for R2. In particular, B1 = {e1, e2} is called the standard basis.

Example 6.5.3. I called {e1, e2, . . . , en} the standard basis of Rn. Since v ∈ Rn can be written as

v =
∑
i

viei

it follows Rn = span{ei | 1 ≤ i ≤ n}. Moreover, linear independence of {ei | 1 ≤ i ≤ n} follows
from a simple calculation:

0 =
∑
i

ciei ⇒ 0 =

[∑
i

ciei

]
k

=
∑
i

ciδik = ck

hence ck = 0 for all k. Thus {ei | 1 ≤ i ≤ n} is a basis for Rn, we continue to call it the standard
basis of Rn. The vectors ei are also called ”unit-vectors”.

Example 6.5.4. Since A ∈ R m×n can be written as

A =
∑
i,j

AijEij

it follows R m×n = span{Eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Moreover, linear independence of
{Eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n} follows from a simple calculation:

0 =
∑
i,j

cijEij ⇒ 0 =

∑
i,j

cijEij


kl

=
∑
i,j

cijδikδjl = ckl

hence ckl = 0 for all k, l. Thus {Eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis for R m×n, we continue to
call it the standard basis of R m×n. The matrices Eij are also called ”unit-matrices”.
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Proposition 6.5.5.

Suppose B = {f1, f2, . . . , fn} is a basis for V . If v ∈ V with v =
∑n

i=1 xifi and v =
∑n

i=1 yifi
for constants xi, yi ∈ R. Then xi = yi for i = 1, 2, . . . , n.

Proof: Suppose v = x1f1 + x2f2 + · · ·+ xnfn and v = y1f1 + y2f2 + · · ·+ ynfn notice that

0 = v − v = (x1f1 + x2f2 + · · ·+ xnfn)− (y1f1 + y2f2 + · · ·+ ynfn)
= (x1 − y1)f1 + (x2 − y2)f2 + · · ·+ (xn − yn)fn

then by LI of the basis vectors we find xi − yi = 0 for each i. Thus xi = yi for all i. �

Notice that both LI and spanning were necessary for the idea of a coordinate vector (defined below)
to make sense.

Definition 6.5.6.

Suppose B = {f1, f2, . . . , fn} is a basis for V . If v ∈ V has

v = v1f1 + v2f2 + · · ·+ vnfn

then [v]B = [v1 v2 · · · vn]T ∈ Rn is called the coordinate vector of v with respect to B.

Technically, the each basis considered in the course is an ”ordered basis”. This means the set of
vectors that forms the basis has an ordering to it. This is more structure than just a plain set since
basic set theory does not distinguish {1, 2} from {2, 1}. I should always say ”we have an ordered
basis” but I will not (and most people do not) say that in this course. Let it be understood that
when we list the vectors in a basis they are listed in order and we cannot change that order without
changing the basis. For example v = (1, 2, 3) has coordinate vector [v]B1 = (1, 2, 3) with respect
to B1 = {e1, e2, e3}. On the other hand, if B2 = {e2, e1, e3} then the coordinate vector of v with
respect to B2 is [v]B2 = (2, 1, 3).

Example 6.5.7. Let β = {E11, E12, E22, E21}. Observe: A =

[
a b
c d

]
= aE11+bE12+dE22+cE21.

Therefore, [A]β = (a, b, d, c).

Example 6.5.8. Consider β = {(t+ 1)2, t+ 1, 1} and calculate the coordinate vector of f(t) = t2

with respect to β. I often use an adding zero trick for such a problem:

f(t) = t2 = (t+ 1− 1)2 = (t+ 1)2 − 2(t+ 1) + 1.

From the expression above we can read that [f(t)]β = (1,−2, 1).

Example 6.5.9. Suppose Av = b has solution v = (1, 2, 3, 4). It follows that A has 4 columns.
Define,

β = {col4(A), col3(A), col2(A), col1(A)}

Given that (1, 2, 3, 4) is a solution of Av = b we know:

col1(A) + 2col2(A) + 3col3(A) + 4col4(A) = b

Given the above, we can deduce [b]β = (4, 3, 2, 1).
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The three examples above were simple enough that not much calculation was needed. Understand-
ing the definition of basis was probably the hardest part. In general, finding the coordinates of a
vector with respect to a given basis is a spanning problem.

Example 6.5.10. Let v =

[
1
3

]
find the coordinates of v relative to B1, B2 and B3 where B1 =

{e1, e2} and B2 = {e1, e1 + e2} and B3 = {e2, e1 + e2}. We’ll begin with the standard basis, (I hope
you could see this without writing it )

v =

[
1
3

]
= 1

[
1
0

]
+ 3

[
0
1

]
= 1e1 + 3e2

thus [v]B1 = [1 3]T . Find coordinates relative to the other two bases is not quite as obvious. Begin
with B2. We wish to find x, y such that

v = xe1 + y(e1 + e2)

we can just use brute-force,

v = e1 + 3e2 = xe1 + y(e1 + e2) = (x+ y)e1 + ye2

using linear independence of the standard basis we find 1 = x + y and y = 3 thus x = 1 − 3 = −2
and we see v = −2e1 + 3(e1 + e2) so [v]B2 = [−2 3]T . This is interesting, the same vector can have
different coordinate vectors relative to distinct bases. Finally, let’s find coordinates relative to B3.
I’ll try to be more clever this time: we wish to find x, y such that

v = xe2 + y(e1 + e2) ⇔
[

1
3

]
=

[
0 1
1 1

] [
x
y

]
We can solve this via the augemented coefficient matrix

rref

[
0 1 1
1 1 3

]
=

[
1 0 2
0 1 1

]
⇔ x = 2, y = 1.

Thus, [v]B3 = [2 1]T . Notice this is precisely the rightmost column in the rref matrix. Perhaps my
approach for B3 is a little like squashing a fly with with a dumptruck. However, once we get to an
example with 4-component vectors you may find the matric technique useful.

Example 6.5.11. Given that B = {b1, b2, b3, b4} = {e1 + e2, e2 + e3, e3 + e4, e4} is a basis for R4

find coordinates for v = [1, 2, 3, 4]T ∈ R4. Given the discussion in the preceding example it is clear
we can find coordinates [x1, x2, x3, x4]T such that v =

∑
i xibi by calculating rref [b1|b2|b3|b4|v] the

rightmost column will be [v]B.

rref


1 0 0 0 1
1 1 0 0 2
0 1 1 0 3
0 0 1 1 4

 =


1 0 0 0 1
0 1 0 0 1
0 0 1 0 2
0 0 0 1 2

 ⇒ [v]B =


1
1
2
2


This calculation should be familar. We discussed it at length in the spanning section.
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Remark 6.5.12.

Curvelinear coordinate systems from calculus III are in a certain sense more general than the
idea of a coordinate system in linear algebra. If we focus our attention on a single point in
space then a curvelinear coordinate system will produce three linearly independent vectors
which are tangent to the coordinate curves. However, if we go to a different point then the
curvelinear coordinate system will produce three different vectors in general. For example,
in spherical coordinates the radial unit vector is eρ =< cos θ sinφ, sin θ sinφ, cosφ > and
you can see that different choices for the angles θ, φ make eρ point in different directions. In
contrast, in this course we work with vector spaces. Our coordinate systems have the same
basis vectors over the whole space. Vector spaces are examples of f lat manifolds since they
allow a single global coordinate system. Vector spaces also allow for curvelinear coordinates
(which are not coordinates in the sense of linear algebra). However the converse is not true;
spaces with nonzero curvature do not allow for global coordinates. I digress, we may have
occassion to discuss these matters more cogently in our Advanced Calculus course (Math
332)(join us)

Definition 6.5.13.

If a vector space V has a basis which consists of a finite number of vectors then we say that
V is finite-dimensional vector space. Otherwise V is said to be infinite-dimensional.
We define the number of elements in a finite set S = {s1, s2, . . . , sk} to be #(S) = k.

Example 6.5.14. Rn,R m×n, Pn are examples of finite-dimensional vector spaces. On the other
hand, F(R), C0(R), C1(R), C∞(R) are infinite-dimensional.

Example 6.5.15. We can prove that S from Example 6.3.14 is linearly independent, thus sym-
metric 2× 2 matrices have a S as a basis

S = {[ 1 0
0 0 ] , [ 0 0

0 1 ] , [ 0 1
1 0 ]}

thus the dimension of the vector space of 2 × 2 symmetric matrices is 3. (notice S̄ from that
example is not a basis because it is linearly dependent). While we’re thinking about this let’s find
the coordinates of A = [ 1 3

3 2 ] with respect to S. Denote [A]S = [x, y, z]T . We calculate,

[ 1 3
3 2 ] = x [ 1 0

0 0 ] + y [ 0 0
0 1 ] + z [ 0 1

1 0 ] ⇒ [A]S =

 1
2
3

 .

6.5.1 how to calculate a basis for a span of row or column vectors

Given some subspace of Rn we would like to know how to find a basis for that space. In particular,
if V = span{v1, v2, . . . , vk} then what is a basis for W? Likewise, given some set of row vectors
W = {w1, w2, . . . wk} ⊂ R1×n how can we select a basis for span(W ). We would like to find answers
to these question since most subspaces are characterized either as spans or solution sets(see the
next section on Null(A)). We already have the tools to answer these questions, we just need to
apply them to the tasks at hand.
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Proposition 6.5.16.

Let W = span{v1, v2, . . . , vk} ⊂ Rn then a basis for W can be obtained by selecting the
vectors that reside in the pivot columns of [v1|v2| · · · |vk].

Proof: this is immediately obvious from Proposition 4.4.1. �

The proposition that follows is also follows immediately from Proposition 4.4.1.

Proposition 6.5.17.

Let A ∈ R m×n the pivot columns of A form a basis for Col(A).

Example 6.5.18. Suppose A is given as below: ( I omit the details of the Gaussian elimination)

A =

 1 2 3 4
2 1 4 1
0 0 0 3

 ⇒ rref [A] =

 1 0 5/3 0
0 1 2/3 0
0 0 0 1

 .
Identify that columns 1,2 and 4 are pivot columns. Moreover,

Col(A) = span{col1(A), col2(A), col4(A)}

In particular we can also read how the second column is a linear combination of the basis vectors.

col3(A) = 5
3col1(A) + 2

3col2(A)

= 5
3 [1, 2, 0]T + 2

3 [2, 1, 0]T

= [5/3, 10/3, 0]T + [4/3, 2/3, 0]T

= [3, 4, 0]T

What if we want a basis for Row(A) which consists of rows in A itself?

Proposition 6.5.19.

Let W = span{w1, w2, . . . , wk} ⊂ R1×n and construct A by concatenating the row vectors
in W into a matrix A:

A =


w1

w2
...

wk


A basis for W is given by the transposes of the pivot columns for AT .

Proof: this is immediately obvious from Proposition 4.4.5. �
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The proposition that follows is also follows immediately from Proposition 4.4.5.

Proposition 6.5.20.

Let A ∈ R m×n the rows which are transposes of the pivot columns of AT form a basis for
Row(A).

Example 6.5.21.

AT =


1 2 0
2 1 0
3 4 0
4 1 3

 ⇒ rref [AT ] =


1 0 0
0 1 0
0 0 1
0 0 0

 .
Notice that each column is a pivot column in AT thus a basis for Row(A) is simply the set of all rows
of A; Row(A) = span{[1, 2, 3, 4], [2, 1, 4, 1], [0, 0, 1, 0]} and the spanning set is linearly independent.

Example 6.5.22.

A =


1 1 1
2 2 2
3 4 0
5 6 2

 ⇒ AT =

 1 2 3 5
1 2 4 6
1 2 0 2

 ⇒ rref [AT ] =

 1 2 0 2
0 0 1 1
0 0 0 0

 .
We deduce that rows 1 and 3 or A form a basis for Row(A). Notice that row2(A) = 2row1(A)
and row4(A) = row3(A) + 2row1(A). We can read linear dependendcies of the rows from the
corresponding linear dependencies of the columns in the rref of the transpose.

The preceding examples are nice, but what should we do if we want to find both a basis for Col(A)
and Row(A) for some given matrix ? Let’s pause to think about how elementary row operations
modify the row and column space of a matrix. In particular, let A be a matrix and let A′ be the
result of performing an elementary row operation on A. It is fairly obvious that

Row(A) = Row(A′).

Think about it. If we swap to rows that just switches the order of the vectors in the span that
makes Row(A). On the other hand if we replace one row with a nontrivial linear combination of
itself and other rows then that will not change the span either. Column space is not so easy though.
Notice that elementary row operations can change the column space. For example,

A =

[
1 1
1 1

]
⇒ rref [A] =

[
1 1
0 0

]
has Col(A) = span{[1, 1]T } whereas Col(rref(A)) = span([1, 0]T ). We cannot hope to use columns
of ref(A) (or rref(A)) for a basis of Col(A). That’s no big problem though because we already
have the CCP-principle which helped us pick out a basis for Col(A). Let’s collect our thoughts:
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Proposition 6.5.23.

Let A ∈ R m×n then a basis for Col(A) is given by the pivot columns in A and a basis for
Row(A) is given by the nonzero rows in ref(A).

This means we can find a basis for Col(A) and Row(A) by performing the forward pass on A. We
need only calculate the ref(A) as the pivot columns are manifest at the end of the forward pass.

Example 6.5.24.

A =

 1 1 1
1 1 1
1 2 3

 r2 − r1 → r2−−−−−−−−→
r3 − r1 → r3−−−−−−−−→

 1 1 1
0 0 0
0 1 2

 r1 ↔ r2−−−−−→

 1 1 1
0 1 2
0 0 0

 = ref [A]

We deduce that {[1, 1, 1], [0, 1, 2]} is a basis for Row(A) whereas {[1, 1, 1]T , [1, 1, 2]T } is a basis for
Col(A). Notice that if I wanted to reveal further linear dependencies of the non-pivot columns
on the pivot columns of A it would be wise to calculate rref [A] by making the backwards pass on
ref [A].  1 1 1

0 1 2
0 0 0

 r1 − r2 → r1−−−−−−−−→

 1 0 −1
0 1 2
0 0 0

 = rref [A]

From which I can read col3(A) = 2col2(A)− col1(A), a fact which is easy to verify.

Example 6.5.25.

A =

 1 2 3 4
1 3 8 10
1 2 4 11

 r2 − r1 → r2−−−−−−−−→
r3 − r1 → r3−−−−−−−−→

 1 2 3 4
0 1 5 6
0 0 1 7

 = ref [A]

We find that Row(A) has basis

{[1, 2, 3, 4], [0, 1, 5, 6], [0, 0, 1, 7]}

and Col(A) has basis { 1
1
1

 ,
 2

3
2

 ,
 3

8
4

}

Proposition 6.5.23 was the guide for both examples above.

6.5.2 calculating basis of a solution set

Often a subspace is described as the solution set of some equation Ax = 0. How do we find a basis
for Null(A)? If we can do that we find a basis for subspaces which are described by some equation.

Proposition 6.5.26.

Let A ∈ R m×n and define W = Null(A). A basis for W is obtained from the solution set
of Ax = 0 by writing the solution as a linear combination where the free variables appear
as coefficients in the vector-sum.
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Proof: x ∈ W implies Ax = 0. Denote x = [x1, x2, . . . , xn]T . Suppose that rref [A] has r-pivot
columns ( we must have 0 ≤ r ≤ n). There will be (m − r)-rows which are zero in rref(A) and
(n− r)-columns which are not pivot columns. The non-pivot columns correspond to free-variables
in the solution. Define p = n − r for convenience. Suppose that xi1 , xi2 , . . . , xip are free whereas
xj1 , xj2 , . . . , xjr are functions of the free variables: in particular they are linear combinations of the
free variables as prescribed by rref [A]. There exist constants bij such that

xj1 = b11xi1 + b12xi2 + · · ·+ b1pxip
xj2 = b21xi1 + b22xi2 + · · ·+ b2pxip
...

... · · ·
...

xjr = br1xi1 + br2xi2 + · · ·+ brpxip

For convenience of notation assume that the free variables are put at the end of the list. We have

x1 = b11xr+1 + b12xr+2 + · · ·+ b1pxn
x2 = b21xr+1 + b22xr+2 + · · ·+ b2pxn
...

... · · ·
...

xr = br1xr+1 + br2xn−p+2 + · · ·+ brpxn

and xj = xj for j = r+ 1, r+ 2, . . . , r+ p = n (those are free, we have no conditions on them, they
can take any value). We find,

x =



x1

x2
...
xr
xr+1

xr+2
...
xn


= xr+1



b11

b21
...
br1
1
0
...
0


+ xr+2



b12

b22
...
br2
0
1
...
0


+ · · ·+ xn



b1p
b2p
...
brp
0
0
...
1


We define the vectors in the sum above as v1, v2, . . . , vp. If any of the vectors, say vj , was linearly
dependent on the others then we would find that the variable xr+j was likewise dependent on the
other free variables. This would contradict the fact that the variable xr+j was free. Consequently
the vectors v1, v2, . . . , vp are linearly independent. Moreover, they span the null-space by virtue of
their construction. �
Didn’t follow the proof above? No problem. See the examples to follow here. These are just the
proof in action for specific cases. We’ve done these sort of calculations in §1.3. We’re just adding
a little more insight here.

Example 6.5.27. Find a basis for the null space of A = [1, 2, 3, 4]. This example requires no
additional calculation except this; Ax = 0 for x = (x1, x2, x3, x4) yields x1 = −2x2−3x3−4x4 thus:

x =


−2x2 − 3x3 − 4x4

x2

x3

x4

 = x2


−2
1
0
0

+ x3


−3
0
1
0

+ x4


−4
0
0
1

 .
Thus, {(−2, 1, 0, 0), (−3, 0, 1, 0), (−4, 0, 0, 1)} forms a basis for Null(A).
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Example 6.5.28. Find a basis for the null space of A given below,

A =

 1 0 0 1 0
2 2 0 0 1
4 4 4 0 0


Gaussian elimination on the augmented coefficient matrix reveals (see Example 2.2.5 for details of
the Gaussian elimination)

rref

 1 0 0 1 0
2 2 0 0 1
4 4 4 0 0

 =

 1 0 0 1 0
0 1 0 −1 1/2
0 0 1 0 −1/2


Denote x = [x1, x2, x3, x4, x5]T in the equation Ax = 0 and identify from the calculation above that
x4 and x5 are free thus solutions are of the form

x1 = −x4

x2 = x4 − 1
2x5

x3 = 1
2x5

x4 = x4

x5 = x5

for all x4, x5 ∈ R. We can write these results in vector form to reveal the basis for Null(A),

x =


−x4

x4 − 1
2x5

1
2x5

x4

x5

 = x4


−1

1
0
1
0

+ x5


0
−1

2
1
2
0
1


It follows that the basis for Null(A) is simply

{
−1

1
0
1
0

 ,


0
−1

2
1
2
0
1


}

Of course, you could multiply the second vector by 2 if you wish to avoid fractions. In fact there is
a great deal of freedom in choosing a basis. We simply show one way to do it.
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Example 6.5.29. Find a basis for the null space of A given below,

A =

 1 1 1 1
1 1 1 1
1 1 1 1


Gaussian elimination on the augmented coefficient matrix reveals:

rref

 1 1 1 1
1 1 1 1
1 1 1 1

 =

 1 1 1 1
0 0 0 0
0 0 0 0


Denote x = [x1, x2, x3, x4]T in the equation Ax = 0 and identify from the calculation above that
x2, x3 and x4 are free thus solutions are of the form

x1 = −x2 − x3 − x4

x2 = x2

x3 = x3

x4 = x4

for all x2, x3, x4 ∈ R. We can write these results in vector form to reveal the basis for Null(A),

x =


−x2 − x3 − x4

x2

x3

x4

 = x2


−1

1
0
0

+ x3


−1

0
1
0

+ x4


−1

0
0
1


It follows that the basis for Null(A) is simply

{
−1

1
0
0

 ,

−1

0
1
0

 ,

−1

0
0
1


}

6.6 theory of dimensions

We prove a number of theorems in the section which show that dimension is a well-defined quantity
for a finite dimensional vector space. Up to this point we have only used the phrase ”finite-
dimensional” to mean that there exists one basis with finitely many vectors. In this section we
prove that if that is the case then all other bases for the vector space must likewise have the same
number of basis vectors. In addition we give several existence theorems which are of great theoret-
ical importance. Finally, we discuss dimensions of column, row and null space of a matrix.

The proposition that follows is the baby version of Proposition 6.6.5. I include this proposition in
the notes because the proof is fun.

Proposition 6.6.1.

Let V be a finite-dimensional vector space and suppose B = {b1, b2, . . . , bn} is any basis of
V ,

1. B ∪ {v} is linearly dependent

2. for any 1 ≤ k ≤ n, B − {bk} does not span V
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Proof of (1.): Since B spans V it follows that v is a linear combination of vectors in B thus
B ∪ {v} is linearly dependent.

Proof of (2.): We argue that bk /∈ span(B − {bk}). Argue by contradiction. Suppose that
bk ∈ span(B − {bk}) then there exist constants c1, c2, . . . , ĉk, cn such that

bk = c1b1 + c2b2 + · · ·+ ĉkbk + · · ·+ cnbn

but this contradicts the linear independence of the basis as

c1b1 + c2b2 + · · · − bk + · · ·+ cnbn = 0

does not imply all the coefficients are zero. Therefore, using proof by contradiction, span(B −
{bk}) 6= V . �

Proposition 6.6.2.

Let V be a finite-dimensional vector space and suppose B = {b1, b2, . . . , bn} is any basis of
V then any other basis for V also has n-elements.

Proof: Suppose B = {b1, b2, . . . , bn} and F = {f1, f2, . . . , fp} are both bases for a vector space V .
Since F is a basis it follows bk ∈ span(F ) for all k so there exist constants cik such that

bk = c1kf1 + c2kf2 + · · ·+ cpkfp

for k = 1, 2, . . . , n. Likewise, since fj ∈ span(B) there exist constants dlj such that

fj = d1jb1 + d2jb2 + · · ·+ dnjbn

for j = 1, 2, . . . , p. Substituting we find

fj = d1jb1 + d2jb2 + · · ·+ dnjbn

= d1j(c11f1 + c21f2 + · · ·+ cp1fp)+
+d2j(c12f1 + c22f2 + · · ·+ cp2fp)+

+ · · ·+ dnj(c1nf1 + c2nf2 + · · ·+ cpnfp)

= (d1jc11 + d2jc12 + · · · dnjc1n)f1

(d1jc21 + d2jc22 + · · · dnjc2n)f2+
+ · · ·+ (d1jcp1 + d2jcp2 + · · · dnjcpn)fp

Suppose j = 1. We deduce, by the linear independence of F , that

d11c11 + d21c12 + · · · dn1c1n = 1

from comparing coefficients of f1, whereas for f2 we find,

d11c21 + d21c22 + · · · dn1c2n = 0

likewise, for fq with q 6= 1,

d11cq1 + d21cq2 + · · · dn1cqn = 0
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Notice we can rewrite all of these as

δq1 = cq1d11 + cq2d21 + · · · cqndn1

Similarly, for arbitrary j we’ll find

δqj = cq1d1j + cq2d2j + · · · cqndnj

If we define C = [cij ] ∈ R p×n and D = [dij ] ∈ R n×p then we can translate the equation above into
the matrix equation that follows:

CD = Ip.

We can just as well argue that
DC = In

The trace of a matrix is the sum of the diagonal entries in the matrix; trace(A) =
∑n

i=1Aii for
A ∈ R n×n. It is not difficult to show that trace(AB) = trace(BA) provided the products AB and
BA are both defined. Moreover, it is also easily seen tr(Ip) = p and tr(Iq) = q. It follows that,

tr(CD) = tr(DC) ⇒ tr(Ip) = tr(Iq) ⇒ p = q.

Since the bases were arbitrary this proves any pair have the same number of vectors. �

Given the preceding proposition the following definition is logical.

Definition 6.6.3.

If V is a finite-dimensional vector space then the dimension of V is the number of vectors
in any basis of V and it is denoted dim(V ).

Example 6.6.4. Let me state the dimensions which follow from the standard bases of Rn and
R m×n respective,

dim(Rn) = n dim(R m×n) = mn

these results follow from counting.

Proposition 6.6.5.

Suppose V is a vector space with dim(V ) = n.

1. If S is a set with more than n vectors then S is linearly dependent.

2. If S is a set with less than n vectors then S does not generate V .

Proof of (1.): Suppose S = {s1, s2, . . . , sm} has m vectors and m > n. Let B = {b1, b2, . . . , bn}
be a basis of V . Consider the corresponding set of coordinate vectors of the vectors in S, we denote

[S]B = {[s1]B, [s2]B, . . . , [sm]B}.

The set [S]B hasm vectors in Rn andm > n therefore by Proposition 4.3.6 we know [S]B is a linearly
dependent set. Therefore at least one, say [sj ]B, vector can be written as a linear combination of
the other vectors in [S]B thus there exist constants ci with (this is a vector equation)

[sj ]B = c1[s1]B + c2[s2]B + · · ·+ ĉj [sj ]B + · · ·+ cm[sm]B
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Also notice that ( introducing a new shorthand B[sj ] which is not technically matrix multiplication
since bi are not column vectors generally, they could be chickens for all we know)

sj = B[sj ] = sj1b1 + sj2b2 + · · ·+ sjnbn

We also know, using the notation ([sj ]B)k = sjk,

sjk = c1s1k + c2s2k + · · ·+ ĉjsjk + · · ·+ cmsmk

for k = 1, 2, . . . , n. Plug these into our sj equation,

sj = (c1s11 + c2s21 + · · ·+ ĉjsj1 + · · ·+ cmsm1)b1+
(c1s12 + c2s22 + · · ·+ ĉjsj2 + · · ·+ cmsm2)b2+

+ · · ·+ (c1s1n + c2s2n + · · ·+ ĉjsjn + · · ·+ cmsmn)bn

= c1(s11b1 + s12b2 + · · ·+ s1nbn)+
c2(s21b1 + s22b2 + · · ·+ s2nbn)+
+ · · ·+ cm(sm1b1 + sm2b2 + · · ·+ smnbn) : excluding cj(· · · )

= c1s1 + c2s2 + · · ·+ ĉjsj + · · ·+ cnsn.

Well this is a very nice result, the same linear combination transfers over to the abstract vectors.
Clearly sj linearly depends on the other vectors in S so S is linearly dependent. The heart of the
proof was Proposition 4.3.6 and the rest was just battling notation.

Proof of (2.): Use the corresponding result for Rn which was given by Proposition 4.3.5. Given
m abstract vectors if we concantenate their coordinate vectors we will find a matrix [S] in R n×m

with m < n and as such there will be some choice of the vector b for which [S]x 6= b. The abstract
vector corresponding to b will not be covered by the span of S. �

Proposition 6.6.6.

Suppose V is a vector space with dim(V ) = n and W ≤ V then there exists a basis for W
and dim(W ) ≤ n.

Proof: If W = {0} then the proposition is true. Suppose W 6= 0 and set S be a finite subset of
W . Apply Proposition 6.6.5 to modify S to a basis βW for W by possibly deleting or adjoining
vectors from W . Again, apply Proposition 6.6.5 to see #(βW ) ≤ n and this completes the proof. �.

The Proposition above is almost an immediate consquence of other theorems and propositions in
these notes, I included it just for the sake of later reference. Anton calls the following proposition
the ”Plus/Minus” Theorem.

Proposition 6.6.7.

Let V be a vector space and suppose S is a nonempty set of vectors in V .

1. If S is linearly independent a nonzero vector v /∈ span(S) then S ∪ {v} is a linearly
independent set.

2. If v ∈ S is a linear combination of other vectors in S then span(S − {v}) = span(S).
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Proof of (1.): Suppose S = {s1, s2, . . . , sk} and consider,

c1s1 + c2s2 + · · ·+ cksk + ck+1v = 0

If ck+1 6= 0 it follows that v is a linear combination of vectors in S but this is impossible so ck+1 = 0.
Then since S is linear independent

c1s1 + c2s2 + · · ·+ cksk = 0 ⇒ c1 = c2 = · · · = ck = 0

thus S ∪ {v} is linearly independent.

Proof of (2.): Suppose v = sj . We are given that there exist constants di such that

sj = d1s1 + · · ·+ d̂jsj + · · ·+ dksk

Let w ∈ span(S) so there exist constants ci such that

w = c1s1 + c2s2 + · · ·+ cjsj + · · ·+ cksk

Now we can substitute the linear combination with di-coefficients for sj ,

w = c1s1 + c2s2 + · · ·+ cj(d1s1 + · · ·+ d̂jsj + + · · ·+ dksk) + · · ·+ cksk

= (c1 + cjd1)s1 + (c2 + cjd2)s2 + · · ·+ ĉjdjsj + · · ·+ (ck + cjdk)sk

thus w is a linear combination of vectors in S, but not v = sj , thus w ∈ span(S−{v}) and we find
span(S) ⊆ span(S − {v}).

Next, suppose y ∈ span(S − {v}) then y is a linear combination of vectors in S − {v} hence y is
a linear combination of vectors in S and we find y ∈ span(S) so span(S − {v}) ⊆ span(S). (this
inclusion is generally true even if v is linearly independent from other vectors in S). We conclude
that span(S) = span(S − {v}). �

Proposition 6.6.8.

Let V be an n-dimensional vector space. A set S with n-vectors is a basis for V if S is
either linearly independent or if span(S) = V .

Proof: Assume S has n-vectors which are linearly independent in a vector space V with dimension
n. Suppose towards a contradiction that S does not span V . Then there exists v ∈ V such that
v /∈ span(S). Then by Proposition 6.6.7 we find V ∪ {v} is linearly independent. But, Proposition
6.6.5 the set V ∪ {v} is linearly dependent. This is a contradiction, thus S spans V and we find D
is a basis.

Assume S has n-vectors which span a vector space V with dimension n. Suppose towards a con-
tradiction that S is not linearly independent V . This means there exists v ∈ S which is a linear
combination of other vectors in S. Therefore, by 6.6.5, S does not span V . This is a contradicts
the assumption span(S) = V therefore S is linearly independent and consequently S is a basis. �



146 CHAPTER 6. VECTOR SPACE

Remark 6.6.9.

Intuitively speaking, linear independence is like injectivity for functions whereas spanning is
like the onto property for functions. Suppose A is a finite set. If a function f : A→ A is 1-1
then it is onto. Also if the function is onto then it is 1-1. The finiteness of A is what blurs the
concepts. For a vector space, we also have a sort of finiteness in play if dim(V ) = n. When
a set with dim(V )-vectors spans (like onto) V then it is automatically linearly independent.
When a set with dim(V )-vectors is linearly independent (like 1-1) V then it automatically
spans V . However, in an infinite dimensional vector space this need not be the case. For
example, d/dx is a surjective linear mapping on R[x] = span{1, x, x2, x3, . . . } however if
f, g ∈ R[x] and df/dx = dg/dx we can only conclude that f = g + c thus d/dx is not
injective on vector space of polynomials in x. Many theorems we discuss do hold in the
infinite dimensional context, but you have to be careful.

Theorem 6.6.10.

Let S be a subset of a finite dimensional vector space V .

1. If span(S) = V but S is not a basis then S can be modified to make a basis by
removing redundant vectors.

2. If S is linearly independent and span(S) 6= V then S can be modified to make a basis
for V by unioning vectors outside span(S).

Proof of (1.): If span(S) = V but S is not a basis we find S is linearly dependent. ( if S is linearly
independent then Proposition 6.6.8 says S is a basis which is a contradiction). Since S is linearly
dependent we can write some v ∈ S as a linear combination of other vectors in S. Furthermore, by
Proposition 6.6.5 span(S) = span(S − {v}). If S − {v} is linearly independent then S − {v} is a
basis. Otherwise S − {v} is linearly dependent and we can remove another vector. Continue until
the resulting set is linearly independent (we know this happens when there are just dim(V )-vectors
in the set so this is not an endless loop)

Proof of (2.): If S is linearly independent but span(S) 6= V then there exists v ∈ V but
v /∈ span(S). Proposition 6.6.7 shows that S ∪ {v} is linearly independent. If span(S ∪ {v}) = V
then S ∪ {v} is a basis. Otherwise there is still some vector outside span(S ∪ {v}) = V and we
can repeat the argument for that vector and so forth until we generate a set which spans V . Again
we know this is not an endless loop because V is finite dimensional and once the set is linearly
independent and contains dim(V ) vectors it must be a basis (see Proposition 6.6.8). �

Remark 6.6.11.

We already saw in the previous sections that we can implement part (1.) of the preceding
proposition in Rn and R1×n through matrix calculations. There are really nice results about
row and column spaces which show us precisely which vectors we need to remove or add
to obtain a basis. I’ll probably ask a homework question which tackels the question in the
abstract. Once you understand the Rn-case you can do the abstract case by lifting the
arguments through the coordinate maps. We’ve already seen this ”lifting” idea come into
play in several proof of Proposition 6.6.5. Part (2.) involves making a choice. How do you
choose a vector outside the span? I leave this question to the reader for the moment.
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Proposition 6.6.12.

If V is a finite-dimensional vector space and W ≤ V then dim(W ) ≤ dim(V ). Moreover, if
dim(V ) = dim(W ) then V = W .

Proof: Let β be a basis for W , if β is also a basis for V then dim(V ) = dim(W ) and V = W =
span(β). Otherwise, if span(β) 6= V , apply Theorem 6.6.10 to extend β to γ a basis for V . �

6.6.1 application to fundamental matrix subspaces

These were defined before, I restate them here along with their dimensions for convenience.

Definition 6.6.13.

Let A ∈ R m×n. We define

1. Col(A) = span{colj(A)|j = 1, 2, . . . , n} and r = rank(A) = dim(Col(A))

2. Row(A) = span{rowi(A)|i = 1, 2, . . . ,m}

3. Null(A) = {x ∈ Rn|Ax = 0} and ν = nullity(A) = dim(Null(A))

Proposition 6.6.14.

Let A ∈ R m×n then dim(Row(A)) = dim(Col(A))

Proof: By Proposition 6.5.17 we know the number of vectors in the basis for Col(A) is the number
of pivot columns in A. Likewise, Proposition 6.5.23 showed the number of vectors in the basis for
Row(A) was the number of nonzero rows in ref(A). But the number of pivot columns is precisely
the number of nonzero rows in ref(A) therefore, dim(Row(A)) = dim(Col(A)). �

Theorem 6.6.15.

Let A ∈ R m×n then n = rank(A) + nullity(A).

Proof: The proof of Proposition 6.5.26 makes is clear that if a m×n matrix A has r-pivot columns
then there will be n− r vectors in the basis of Null(A). It follows that

rank(A) + nullity(A) = r + (n− r) = n. �
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6.7 general theory of linear systems

We’ve seen some rather abstract results thus far in this chapter. I thought it might be helpful
to tie them back to our fundamental problem; how does dimension theory help us understand
the structure of solutions to Ax = b? Let A ∈ R m×n we should notice that Null(A) ≤ Rn is
only possible since homogeneous systems of the form Ax = 0 have the nice property that linear
combinations of solutions is again a solution:

Proposition 6.7.1.

Let Ax = 0 denote a homogeneous linear system of m-equations and n-unknowns. If v1 and
v2 are solutions then any linear combination c1v1 + c2v2 is also a solution of Ax = 0.

Proof: Suppose Av1 = 0 and Av2 = 0. Let c1, c2 ∈ R and recall Theorem 3.2.17,

A(c1v1 + c2v2) = c1Av1 + c2Av2 = c10 + c20 = 0.

Therefore, c1v1 + c2v2 ∈ Sol[A|0]. �

We proved this before, but I thought it might help to see it again.

Proposition 6.7.2.

Let A ∈ R m×n. If v1, v2, . . . , vk are solutions of Av = 0 then V = [v1|v2| · · · |vk] is a
solution matrix of Av = 0 ( V a solution matrix of Av = 0 iff AV = 0)

Proof: Let A ∈ R m×n and suppose Avi = 0 for i = 1, 2, . . . k. Let V = [v1|v2| · · · |vk] and use the
solution concatenation Proposition 3.7.1,

AV = A[v1|v2| · · · |vk] = [Av1|Av2| · · · |Avk] = [0|0| · · · |0] = 0. �

A solution matrix of a linear system is a matrix in which each column is itself a solution.

Proposition 6.7.3.

Let A ∈ R m×n. The system of equations Ax = b is consistent iff b ∈ Col(A).

Proof: Observe,
Ax = b ⇔

∑
i,j Aijxjei = b

⇔
∑

j xj
∑

iAijei = b

⇔
∑

j xjcolj(A) = b

⇔ b ∈ Col(A)

Therefore, the existence of a solution to Ax = b is interchangeable with the statement b ∈ Col(A).
They both amount to saying that b is a linear combination of columns of A. �



6.7. GENERAL THEORY OF LINEAR SYSTEMS 149

Proposition 6.7.4.

Let A ∈ R m×n and suppose the system of equations Ax = b is consistent. We find x ∈ Rn
is a solution of the system if and only if it can be written in the form

x = xh + xp = c1v1 + c2v2 + · · ·+ cνvν + xp

where Axh = 0, {vj}νj=1 are a basis for Null(A), and Axp = b. We call xh the
homogeneous solution and xp is the nonhomogeneous solution.

Proof: Suppose Ax = b is consistent then b ∈ Col(A) therefore there exists xp ∈ Rn such that
Axp = b. Let x be any solution. We have Ax = b thus observe

A(x− xp) = Ax−Axp = Ax− b = 0 ⇒ (x− xp) ∈ Null(A).

Define xh = x− xp it follows that there exist constants ci such that xh = c1v1 + c2v2 + · · ·+ cνvν
since the vectors vi span the null space.

Conversely, suppose x = xp+xh where xh = c1v1 + c2v2 + · · ·+ cνvν ∈ Null(A) then it is clear that

Ax = A(xp + xh) = Axp +Axh = b+ 0 = b

thus x = xp + xh is a solution. �

Example 6.7.5. Consider the system of equations x+ y + z = 1, x+ z = 1. In matrix notation, 1 1 1
1 0 1
0 0 0

 x
y
z

 =

 1
1
0

 ⇒ rref [A|b] = rref

 1 1 1 1
1 0 1 1
0 0 0 0

 =

 1 1 1 1
0 0 0 0
0 0 0 0


It follows that x = 1− y − z is a solution for any choice of y, z ∈ R.

v =

 x
y
z

 =

 1− y − z
y
z

 =

 1
0
0

+ y

 −1
1
0

+ z

 −1
0
1


We recognize that vp = [1, 0, 0]T while vh = y[−1, 1, 0]T + z[−1, 0, 1]T and {[−1, 1, 0]T , [−1, 0, 1]T }
is a basis for the null space of A. We call y, z parameters in the solution.

We will see that null spaces play a central part in the study of eigenvectors in Part III. In fact,
about half of the eigenvector calculation is finding a basis for the null space of a certain matrix. So,
don’t be too disappointed if I don’t have too many examples here. You’ll work dozens of them later.

The following proposition simply summarizes what we just calculated:

Proposition 6.7.6.

Let A ∈ R m×n. If the system of equations Ax = b is consistent then the general solution
has as many parameters as the dim(Null(A)).
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6.7.1 linear algebra in DEqns

A very similar story is told in differential equations. In Math 334 we spend some time unraveling
the solution of L[y] = g where L = P (D) is an n-th order polynomial in the differentiation operator
with constant coefficients. In total we learn that y = c1y1 + c2y2 + · · · + cnyn + yp is the solution
where yj are the homogeneous solutions which satisfy L[yj ] = 0 for each j = 1, 2, . . . , n and, in
contrast, yp is the so-called ”particular solution” which satisfies L[yp] = g. On the one hand, the
results in DEqns are very different because the solutions are functions which live in the infinite-
dimensional function space. However, on the other hand, L[y] = g is a finite dimensional problem
thanks to the fortunate fact that Null(L) = {f ∈ F(R)|L(f) = 0} = span{y1, y2, . . . , yn}. For this
reason there are n-parameters in the general solution which we typically denote by c1, c2, . . . , cn
in the Math 334 course. The particular solution is not found by row reduction on a matrix in
DEqns9. Instead, we either use the annihilator method, power series techniques, or most generally
the method of variation of parameters will calculate yp. The analogy to the linear system Av = b
is striking:

1. Av = b has solution v = c1v1 + c2v2 + · · ·+ ckvn + vp where vj ∈ Null(A) and Avp = b.

2. L[y] = g has solution v = c1y1 + c2y2 + · · ·+ ckyn + yp where yj ∈ Null(L) and L[yp] = b.

The reason the DEqn L[y] = g possesses such an elegant solution stems from the linearity of L. If
you study nonlinear DEqns the structure is not so easily described.

9ok, to be fair you could use coordinate vectors of the next chapter to convert y1, y2, . . . yn to coordinate vectors
and if you worked in a sufficiently large finite dimensional subspace of function space perhaps you could do a row
reduction to find g, but this is not the typical calculation.



Chapter 7

abstract linear transformations

We already studied the structure of linear transformations from Rn to Rm in Chapter 5. In this
chapter we study functions on abstract vector spaces for which the linear structure is preserved.
Linear transformations in the abstract enjoy an interesting array of theorems. We’ll spend consid-
erable energy in detailing these theorems. Furthermore, the set of linear transformations is found
to be a vector space with respect to the natural vector addition on function space. Sets of linear
transformations provide interesting new examples of vector spaces which add to the wealth of ex-
amples we already saw in the previous chapter.

The theorems on dimension also find further illumination in this chapter. We study isomor-
phisms. Roughly speaking, two vector spaces which are isomorphic are just the same set with
different notation in so far as the vector space structure is concerned. Don’t view this sentence as
a license to trade column vectors for matrices or functions. We’re not there yet. You can do that
after this course, once you understand the abuse of language properly. Sort of like how certain
musicians can say forbidden words since they have earned the rights through their life experience.

We also study the problem of coordinate change. Since the choice of basis is not unique the prob-
lem of comparing different pictures of vectors or transformations for abstract vector spaces requires
some effort. We begin by translating our earlier work on coordinate vectors into a mapping-centered
notation. Once you understand the notation properly, we can draw pictures to solve problems. This
idea of diagrammatic argument is an important and valuable technique of modern mathematics.
Modern mathematics is less concerned with equations and more concerned with functions and sets.

Finally, we study the quotient space construction. Any linear transformation induces an isomor-
phism from a particular quotient space formed from the domain of the linear transformation and
the range of the map. This result parallels the first isomorphism theorem of group theory and is
actually replicated across other categories of math1. The problem of quotients and the problem
of direct sum decompositions have interesting connections. We study some of the basics to better
understand both subspaces and the structure of linear transformations.

Just a word on notation before we get started. Please learn my notation.

1in group theory you’ll learn that the quotient group can only be formed by a normal subgroup. Every abelian
group is normal hence the additive group structure of the vector space makes the quotient here well-defined. More
care is required in group theory which faces nonabelian group operations.

151
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7.1 basic terminology

Definition 7.1.1.

Let V,W be vector spaces. If a mapping L : V →W satisfies

1. L(x+ y) = L(x) + L(y) for all x, y ∈ V ; L is additive

2. L(cx) = cL(x) for all x ∈ V and c ∈ R; L is homogeneous

then we say L is a linear transformation. The set of all linear transformations from V to W
is denoted L(V,W ). Also, L(V, V ) = L(V ) and L ∈ L(V ) is called a linear tranformation
on V .

We already saw many examples for the column-vector case V = Rn and W = Rm. I’ll focus on
abstract vector space examples here.

Example 7.1.2. Define L : R m×n → R n×m by L(A) = AT . This is clearly a linear transformation
since

L(cA+B) = (cA+B)T = cAT +BT = cL(A) + L(B)

for all A,B ∈ R m×n and c ∈ R.

Example 7.1.3. Let V,W be a vector spaces and L : V → W defined by L(x) = 0 for all x ∈ V .
This is a linear transformation known as the trivial transformation

L(x+ y) = 0 = 0 + 0 = L(x) + L(y)

and
L(cx) = 0 = c0 = cL(x)

for all c ∈ R and x, y ∈ V .

Example 7.1.4. The identity function on a vector space is also a linear transformation. Let
Id : V → V satisfy L(x) = x for each x ∈ V . Observe that

Id(x+ cy) = x+ cy = x+ c(y) = Id(x) + cId(y)

for allx, y ∈ V and c ∈ R.

Example 7.1.5. Define L : C0(R) → R by L(f) =
∫ 1

0 f(x)dx. Notice that L is well-defined since
all continuous functions are integrable and the value of a definite integral is a number. Furthermore,

L(f + cg) =

∫ 1

0
(f + cg)(x)dx =

∫ 1

0

[
f(x) + cg(x)

]
dx =

∫ 1

0
f(x)dx+ c

∫ 1

0
g(x)dx = L(f) + cL(g)

for all f, g ∈ C0(R( and c ∈ R. The definite integral is a linear transformation.

Example 7.1.6. Let L : C1(R)→ C0(R) be defined by L(f)(x) = f ′(x) for each f ∈ P3. We know
from calculus that

L(f + g)(x) = (f + g)′(x) = f ′(x) + g′(x) = L(f)(x) + L(g)(x)

and
L(cf)(x) = (cf)′(x) = cf ′(x) = cL(f)(x).

The equations above hold for all x ∈ R thus we find function equations L(f + g) = L(f) +L(g) and
L(cf) = cL(f) for all f, g ∈ C1(R) and c ∈ R.

Example 7.1.7. Let a ∈ R. The evaluation mapping φa : F(R) → R is defined by φa(f) = f(a).
This is a linear transformation as (f + cg)(a) = f(a) + cg(a) by definition of function addition and
scalar multiplication.
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7.2 theory of linear transformations

Let us begin by pointing out two important facts which follow without much work from additivity
and homgeneity. We assume V,W are vector spaces over R in the remainder of this section.

Proposition 7.2.1.

Let L : V →W be a linear transformation,

1. L(0) = 0

2. L(c1v1 + c2v2 + · · · cnvn) = c1L(v1) + c2L(v2) + · · ·+ cnL(vn) for all vi ∈ V and ci ∈ R.

Proof: to prove of (1.) let x ∈ V and notice that x− x = 0 thus

L(0) = L(x− x) = L(x) + L(−1x) = L(x)− L(x) = 0.

To prove (2.) we use induction on n. Notice the proposition is true for n=1,2 by definition of linear
transformation. Assume inductively L(c1v1 +c2v2 + · · · cnvn) = c1L(v1)+c2L(v2)+ · · ·+cnL(vn) for
all vi ∈ V and ci ∈ R where i = 1, 2, . . . , n. Let v1, v2, . . . , vn, vn+1 ∈ V and c1, c2, . . . cn, cn+1 ∈ R
and consider, L(c1v1 + c2v2 + · · · cnvn + cn+1vn+1) =

= L(c1v1 + c2v2 + · · · cnvn) + cn+1L(vn+1) by linearity of L
= c1L(v1) + c2L(v2) + · · ·+ cnL(vn) + cn+1L(vn+1) by the induction hypothesis.

Hence the proposition is true for n+ 1 and we conclude by the principle of mathematical induction
that (2.) is true for all n ∈ N. �

Proposition 7.2.2.

Let L : V →W be a linear transformation . If S is linearly dependent then L(S) is linearly
dependent.

Proof: Suppose there exists c1, . . . , ck ∈ R for which v =
∑k

i=1 civi is a linear dependence in S.
Calculate,

L(v) = L

(
k∑
i=1

civi

)
=

k∑
i=1

ciL(vi)

which, noting L(v), L(vi) ∈ L(S) for all i ∈ Nk, shows L(S) has a linear dependence. Therefore,
L(S) is linearly dependent. �

This is very similar to Theorem 5.2.8. Actually, the proof is identical modulo the replacement of
Rn with V and Rm with W .

Theorem 7.2.3. linear map is injective iff only zero maps to zero.

L : V → W is an injective linear transformation iff the only solution to the equation
L(x) = 0 is x = 0.
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Proof: this is a biconditional statement. I’ll prove the converse direction to begin.
( ⇐) Suppose L(x) = 0 iff x = 0 to begin. Let a, b ∈ V and suppose L(a) = L(b). By linearity we
have L(a− b) = L(a)− L(b) = 0 hence a− b = 0 therefore a = b and we find L is injective.

(⇒) Suppose L is injective. Suppose L(x) = 0. Note L(0) = 0 by linearity of L but then by 1-1
property we have L(x) = L(0) implies x = 0 hence the unique solution of L(x) = 0 is the zero
solution. �

The image of a subspace and the inverse image of a subspace are once again subspaces. Well, to
be precise, I’m assuming the function in question is a linear transformation. It is certainly not
true for arbitrary functions. In general, a nonlinear function takes linear spaces and twists them
into all sorts of nonlinear shapes. For example, f(x) = (x, x2) takes the line R and pastes it onto
the parabola y = x2 in the range. We also can observe f−1{(0, 0)} = {0} and yet the mapping
is certainly not injective. The theorems we find for linear functions do not usually generalize to
functions in general2

Theorem 7.2.4.

If L : V →W is a linear transformation

1. and Vo ≤ V then L(Vo) ≤W .

2. and Wo ≤W then L−1(Wo) ≤ V .

Proof: to prove (1.) suppose Vo ≤ V . It follows 0 ∈ Vo and hence L(0) = 0 implies 0 ∈ L(Vo).
Suppose x, y ∈ L(Vo) and c ∈ R. By definition of image, there exist xo, yo ∈ Vo such that L(xo) = x
and L(yo) = y. Consider then, as L is a linear transformation,

L(cxo + yo) = cL(xo) + L(yo)

= cx+ y.

Note cx+ y ∈ Vo as Vo ≤ V . Thus cx+ y ∈ L(Vo) and by the subspace theorem L(Vo) ≤W .

To prove (2.) suppose Wo ≤ W and observe 0 ∈ Wo and L(0) = 0 implies 0 ∈ L−1(Wo). Hence
L−1(Wo) 6= ∅. Suppose c ∈ R and x, y ∈ L−1(Wo), it follows that there exist xo, yo ∈Wo such that
L(x) = xo and L(y) = yo. Observe, using linearity of L,

L(cx+ y) = cL(x) + L(y)

= cxo + yo.

Moreover, cxo+yo ∈Wo as Wo ≤W hence cx+y ∈ L−1(Wo). Therefore, by the subspace theorem,
L−1(Wo) ≤ V . �

2although, perhaps it’s worth noting that in advanced calculus we learn how to linearize a function at a point.
Some of our results here roughly generalize locally through the linearization and what are known as the inverse and
implict function theorems
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The range3 and kernel of a linear transformation tell us much about the operation of T .

Definition 7.2.5.

Let V,W be vector spaces. If a mapping T : V →W is a linear transformation then

1. Ker(T ) = T−1{0}.

2. Range(T ) = T (V ).

Corollary 7.2.6.

If T : V →W is a linear transformation then Range(T ) ≤W and Ker(T ) ≤ V .

Proof: observe V ≤ V and {0} ≤W hence by Theorem 7.2.4 the Corollary holds true. �

For future reference4 since the kernel and range are standard subspaces their dimensions have
special names:

Definition 7.2.7.

Let V,W be vector spaces. If a mapping T : V →W is a linear transformation then

1. dim(Ker(T )) = nullity(T )

2. dim(Range(T )) = rank(T ).

What about LI of sets? If S is a LI subset of V and T ∈ L(V,W ) then is T (S) also LI? The answer
is clearly no in general. Consider the trivial transformation of Example 7.1.3. If we require all LI
sets be mapped to LI sets then it turns out that injectivity is the necessary condition. In fact, this
is a continuation of Theorem 7.2.3

Theorem 7.2.8.

Let L : V →W be linear transformation. The following two conditions are equivalent:

1. S subset of V implies L(S) is LI subset of W for all LI subsets S of V .

2. L is injective

3. Ker(L) = {0}

Proof: Theorem 7.2.3 proves (2.) is equivalent to (3.).

Suppose (1.) is true. Let S ⊂ Ker(L) such that S is LI. Note S is then a LI subset of V hence L(S)
is also LI. But, L(S) = {0} as S ⊂ Ker(L). This is a contradiction, 0 is not in any LI set. Hence

3sometimes called the ”image of T”, in fact our definition can be read as ”the range of T is the image of V under
T”, so the term is quite natural

4I use ”dim” rather than these terms for pedagogical reasons, but eventually, we should use rank and nullity with
meaning
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there does not exist a LI subset of Ker(L) and it follows Ker(L) = {0}. We have shown (1.)⇒ (3.).

Suppose (2.) is true. Let S be a LI subset of V . Let L(v1), . . . , L(vk) ∈ L(S) where, by definition
of L(S) the vectors v1, . . . vk ∈ S. Consider,

c1L(v1) + · · · ckL(vk) = 0

implies by Proposition 7.2.1
L(c1v1 + · · · ckvk) = L(0).

By injectivity of L we obtain,
c1v1 + · · · ckvk = 0

and by LI if S we conclude c1 = 0, . . . , ck = 0. Thus L(S) is LI. Since S was arbitrary we have
shown the implication of (1.) for all LI subset S of V . Therefore, we’ve shown (2.) ⇒ (1.) and the
Theorem follows. �

Thus far in this section we have studied the behaviour of a particular linear transformation. In what
follows, we see how to combine given linear transformations to form new linear transformations.
The definition that follows is very similar to Definition 5.3.1

Definition 7.2.9.

Suppose T : V →W and S : V →W are linear transformations then we define T +S, T −S
and cT for any c ∈ R by the rules

(T + S)(x) = T (x) + S(x). (T − S)(x) = T (x)− S(x), (cT )(x) = cT (x)

for all x ∈ V .

I’ll skip the proof of the proposition below as it is nearly identical to the proof of Proposition 5.3.3.

Proposition 7.2.10.

The sum, difference or scalar multiple of a linear transformations from V to W are once
more a linear transformation from V to W .

Recall that function space of all functions from V to W is naturally a vector space according to the
point-wise addition and scalar multiplication of functions. It follows from the subspace theorem
and the proposition above that:

Proposition 7.2.11.

The set of all linear transformations from V to W forms a vector space with respect to the
natural point-wise addition and scalar multiplication of functions; L(V,W ) ≤ F(V,W ).

Proof: If T, S ∈ L(V,W ) and c ∈ R then T + S, cT ∈ L(V,W ) hence L(V,W ) is closed under
addition and scalar multiplication. Moreover, the trivial function T (x) = 0 for all x ∈ V is clearly in
L(V,W ) hence L(V,W ) 6= ∅ and we conclude by the subspace theorem that L(V,W ) ≤ F(V,W ). �

Function composition in the context of abstract vector spaces is the same as it was in precalculus.
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Definition 7.2.12.

Suppose T : V → U and S : U →W are linear transformations then we define
S ◦T : V →W by (S ◦T )(x) = S(T (x)) for all x ∈ V .

The composite of linear maps is once more a linear map. I’ll forego the proof of the proposition
below as it is identical to that of Proposition 5.3.6.

Proposition 7.2.13.

Suppose T ∈ L(V,U) and S ∈ L(U,W ) then S ◦T ∈ L(V,W ).

A vector space V together with a multiplication m : V ×V → V is called an algebra5. For example,
we saw before that square matrices form an algebra with respect to addition and matrix multipli-
cation. Notice that V = L(W,W ) is likewise naturally an algebra with respect to function addition
and composition. In the section which follows we’ll find the needed techniques to interchange the
matrix and linear transformation formulation. We already found the explicit correspondence for
transformations from Rn to Rm in part I. In our current context a bit more fine print is required
due to the rich variety of basis choice.

The theorem below says the inverse of a linear transformation is also a linear transformation.

Theorem 7.2.14.

Suppose T ∈ L(V,W ) has inverse function S : Range(T )→ V then S ∈ L(Range(T ), V ).

Proof: let W = Range(T ) and suppose T ◦S = IdW and S ◦T = IdV . Suppose x, y ∈ W hence
there exits a, b ∈ V for which T (a) = x and T (b) = y. Also, let c ∈ R. Consider,

S(cx+ y) = S(cT (a) + T (b)).

= S(T (ca+ b)) : by linearity of T

= ca+ b : def. of identity function

= cS(x) + S(y) : note a = S(T (a)) = S(x) and b = S(T (b)) = S(y).

Therefore, S is a linear transformation. �

Another way we can create new linear transformations from a given transformation is by restriction.
Recall that the restriction of a given function is simply a new function where part of the domain
has been removed. Since linear transformations are only defined on vector spaces we naturally are
only permitted restrictions to subspaces of a given vector space.

Definition 7.2.15.

If T : V → W is a linear transformation and U ⊆ V then we define T |U : U → W by
T |U (x) = T (x) for all x ∈ U . We say T |U is the restriction of T to U .

5it is somewhat ironic that all too often we often neglect to define an algebra in our modern algebra courses in
the US eductional system. As students, you ought to demand more. See Dummit and Foote for a precise definition
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Proposition 7.2.16.

If T ∈ L(V,W ) and U ≤ V then T |U ∈ L(U,W ).

Proof: let x, y ∈ U and c ∈ R. Since U ≤ V it follows cx+ y ∈ U thus

T |U (cx+ y) = T (cx+ y) = cT (x) + T (y) = cT |u(x) + T |U (y)

where I use linearity of T for the middle equality and the definition of T |U for the outside equalities.
Therefore, T |U ∈ L(U,W ). �

We can create a linear transformation on an infinity of vectors by prescribing its values on the basis
alone. This is a fantastic result.

Proposition 7.2.17.

Suppose β is a basis for a vector space V and suppose W is also a vector space. Furthermore,
suppose L : β →W is a function. There exists a unique linear extension of L to V .

Proof: to begin, let us understand the final sentence. A linear extension of L to V means a
function T : V → W which is a linear transformation and T |β = L. Uniqueness requires that we
show if T1, T2 are two such extensions then T1 = T2. With that settled, let us begin the actual proof.

Suppose β = {v1, . . . , vn} if x ∈ V then there exist x1, . . . , xn ∈ R for which x =
∑n

i=1 xivi.
Therefore, define T : V →W as follows

T (x) = T

(
n∑
i=1

xivi

)
=

n∑
i=1

xiL(vi).

Clearly T |β = L. I leave proof that T ∈ L(V,W ) to the reader. Suppose T1, T2 are two such
extensions. Consider, x =

∑n
i=1 xivi

T1(x) = T1

(
n∑
i=1

xivi

)
=

n∑
i=1

xiL(vi).

However, the same calculation holds for T2(x) hence T1(x) = T2(x) for all x ∈ V therefore the
extension T is unique. �.

When we make use of the proposition above we typically use it to simplify a definition of a given
linear transformation. In practice, we may define a mapping on a basis then extend linearly.

We conclude this section by initiating our discussion of isomorphism.

Definition 7.2.18.

Vector spaces V and W are isomorphic if there exists an invertible linear transformation
L : V → W . Furthermore, an invertible linear transformation is called an isomorphism.
We write V ≈W if V and W are isomorphic.

Notice that it suffices to check L : V → W is linear and invertible. Linearity of L−1 follows by
Theorem 7.2.14. This is nice as it means we have less work to do when proving some given mapping
is an isomorphism.
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Theorem 7.2.19.

If V ≈W then dim(V ) = dim(W )

Proof: Let L : V →W be an isomorphism. Invertible linear mappings are injective we know that
both L and L−1 must preserve LI of sets. In particular, if β is a basis for V then L(β) must be a LI
set in W . Likewise, if γ is a basis for W then L−1(γ) must be a LI set in V . Recall Theorem 6.6.10
gave that any LI subset of a finite-dimensional vector space could be extended to a basis. It follows
that6 #(β) ≤ #(γ) and #(γ) ≤ #(β) hence #(β) = #(γ). The theorem follows as #(β) = dim(V )
and #(γ) = dim(W ) by definition of dimension. �

This theorem has a converse. We need a proposition before we prove the other half.

Proposition 7.2.20.

If T : V → U and S : U → W are isomorphisms then S ◦T is an isomorphism. Moreover,
≈ is an equivalence relation.

Proof: let T ∈ L(V,U) and S ∈ L(U,W ) be isomorphisms. Recall Proposition 7.2.13 gives us
S ◦T ∈ L(V,W ) so, by Theorem 7.2.14, all that remains is to prove S ◦T is invertible. Observe
that T−1 ◦S−1 serves as the inverse of S ◦T . In particular, calculate:

(S ◦T )(T−1 ◦S−1)(x)) = S(T (T−1(S−1(x)))) = S(S−1(x)) = x.

Thus (S ◦T ) ◦ (T−1 ◦S−1) = IdW . Similarly, (T−1 ◦S−1) ◦ (S ◦T ) = idV . Therefore S ◦T is invert-
ible with inverse T−1 ◦S−1.

The proof that ≈ is an equivalence relation is not difficult. Begin by noting that T = IdV gives an
isomorphism of V to V hence V ≈ V ; that is ≈ is reflexive. Next, if T : V →W is an isomorphism
then T−1 : W → V is also an isomorphism by Theorem 7.2.14 thus V ≈ W implies W ≈ V ; ≈ is
symmetric. Finally, suppose V ≈ U and U ≈ W by T ∈ L(V,U) and S ∈ L(U,W ) isomorphisms.
We proved that S ◦T ∈ L(V,W ) is an isomorphism hence V ≈ W ; that is, ≈ is transitive. There-
fore, ≈ is an equivalence relation on the set of vector spaces of finite dimension. �

I included the comment about finite dimension as some of our theorems fail when the dimension is
infinite. It is certainly not the case that all infinite dimensional vector spaces are isomorphic.

Theorem 7.2.21.

Let V,W be finite dimensional vector spaces. V ≈W iff dim(V ) = dim(W )

Proof: we already proved ⇒ in Theorem 7.2.19. Let us work on the converse. Suppose dim(V ) =
dim(W ). Let β be a basis for V . In particular, denote β = {v1, . . . , vn}. Define Φβ : β → Rn
by Φβ(vi) = ei and extend linearly. But, if γ = {w1, . . . , wn} is the basis for W (we know they
have the same number of elements by our supposition dim(V ) = dim(W )) then we may also define
Φγ : W → Rn by Φγ(wi) = ei and extend linearly. Clearly Φ−1

β and Φ−1
γ exist and are easily

desribed by Φ−1
β (ei) = vi and Φ−1

γ (ei) = wi extended linearly. Therefore, Φβ and Φγ are isomor-
phisms. In particular, we’ve shown V ≈ Rn and W ≈ Rn. By transitivity of ≈ we find V ≈W . �

6here I use the notation that # is the function which counts the number of elements in a finite set
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The proof above leads us naturally to the topic of the next section. In particular, the proof above
contains a sketch of why Φβ is an isomorphism. Please note I give many explicit examples of
isomorphisms in the final section of this chapter. Those can be read at any point, I didn’t include
them here as to maintain a better flow for the theory. That said, you ought to look at them soon
to get a better conceptual grasp.

7.3 matrix of linear transformation

I used the notation [v]β in the last chapter since it was sufficient. Now we need to have better
notation for the coordinate maps so we can articulate the concepts clearly. Throughout this section
we assume V is a vector space with basis β = {v1, . . . , vn}.

Definition 7.3.1.

Let V be a finite dimensional vector space with basis β = {v1, v2, . . . vn}. The coordinate
map Φβ : V → Rn is defined by

Φβ(x1v1 + x2v2 + · · ·+ xnvn) = x1e1 + x2e2 + · · ·+ xnen

for all v = x1v1 + x2v2 + · · ·+ xnvn ∈ V .

We argued in the previous section that Φβ is an invertible, linear transformation from V to Rn. In
other words, Φβ is an isomorphism. It is worthwhile to note the linear extensions of

Φβ(vi) = ei & Φ−1
β (ei) = vi

encapsulate the action of the coordinate map and its inverse. The coordinate map is a machine
which converts an abstract basis to the standard basis.

Example 7.3.2. Let V = R2×2 with basis β = {E11, E12, E21, E22} then

Φβ

([
a b
c d

])
= (a, b, c, d).

Example 7.3.3. Let V = Cn as a real vector space. Let β = {e1, . . . , en, ie1, . . . , ien} be the basis
of this 2n-dimensional vector space over R. Observe v ∈ Cn has v = x + iy where x, y ∈ Rn. In
particular, if a+ ib = a − ib and v̄ = (v̄1, . . . , v̄n) then the identity below shows how to construct
x, y:

v =
1

2
(v + v̄)︸ ︷︷ ︸
Re(v)=x

+
1

2
(v − v̄)︸ ︷︷ ︸

iIm(v)=iy

and it’s easy to verify x̄ = x and ȳ = y hence x, y ∈ Rn as claimed. The coordinate mapping is
simple enough in this notation,

Φβ(x+ iy) = (x, y).

Here we abuse notation slightly. Technically, I ought to write

Φβ(x+ iy) = (x1, . . . , xn, y1, . . . , yn).
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Example 7.3.4. Let V = Pn with β = {1, (x−1), (x−1)2, . . . , (x−1)n}. To find the coordinates of
an n-th order polynomial in standard form f(x) = anx

n + · · ·+ a1x+ ao requires some calculation.
We’ve all taken calculus II so we know Taylor’s Theorem.

f(x) =
∞∑
n=0

f (n)(1)

n!
(x− 1)n

also, clearly the series truncates for the polynomial in question hence,

f(x) = f(1) + f ′(1)(x− 1) + · · ·+ f (n)(1)

n!
(x− 1)n

Therefore,
Φβ(f(x)) =

(
f(1), f ′(1), . . . , f (n)(1)

)
.

Example 7.3.5. Let V = {A =
∑2

i,j=1AijEij | A11 + A22 = 0, A12 ∈ P1, A11, A22, A21 ∈ C}. If
A ∈ V then we can write:

A =

[
a+ ib ct+ d

x+ iy −a− ib

]
A natural choice for basis β is seen

β = {
[

1 0
0 −1

]
,

[
i 0
0 −i

]
,

[
0 t
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
i 0

]
}

The coordinate mapping follows easily in the notation laid out above,

Φβ(A) = (a, b, c, d, x, y).

Now that we have a little experience with coordinates as mappings let us turn to the central problem
of this section: how can we associate a matrix with a given linear transformation T : V → W ?.
It turns out we’ll generally have to choose a basis for V and W in order to answer this question
unambiguously. Therefore, let β once more serve as the basis for V and suppose γ is a basis for W .
We assume #(β),#(γ) <∞ throughout this discussion. The answer to the question is actually in
the diagram below:

V
T // W

Φβ

��
Φγ

��

Rn
L[T ]β,γ

// Rm

The matrix [T ]β,γ induces a linear transformation from Rn to Rm. This means [T ]β,γ ∈ Rm×n. It
is defined by the demand that the diagram above commutes. There are several formulas you can
read into that comment. To express T explicitly as a combination of matrix multiplication and
coordinate maps observe:

T = Φ−1
γ
◦L[T ]β,γ

◦Φβ.
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On the other hand, we could write

L[T ]β,γ = Φγ ◦T ◦Φ−1
β

if we wish to explain how to calculate L[T ]β,γ in terms of the coordinate maps and T directly. To
select the i-th column in [T ]β,γ we simply operate on ei ∈ Rn. This reveals,

coli([T ]β,γ) = Φγ(T (Φ−1
β (ei)))

However, as we mentioned at the outset of this section, Φ−1
β (ei) = vi hence

coli([T ]β,γ) = Φγ(T (vi)) = [T (vi)]γ

where I have reverted to our previous notation for coordinate vectors7. Stringing the columns out,
we find perhaps the nicest way to look at the matrix of an abstract linear transformation:

[T ]β,γ = [[T (v1)]γ | · · · |[T (vn)]γ ]

Each column is a W -coordinate vector which is found in Rm and these are given by the n-basis
vectors which generate V .

Alternatively, the commuting of the diagram yields:

Φγ ◦T = L[T ]β,γ
◦Φβ

If we feed the expression above an arbitrary vector v ∈ V we obtain:

Φγ(T (v)) = L[T ]β,γ (Φβ(v)) ⇒ [T (v)]γ = [T ]β,γ [v]β

In practice, as I work to formulate [T ]β,γ for explicit problems I find the boxed formulas convenient
for calculational purposes. On the other hand, I have used each formula on this page for various
theoretical purposes. Ideally, you’d like to understand these rather than memorize. I hope you are
annoyed I have yet to define [T ]β,γ . Let us pick a definition for specificity of future proofs.

Definition 7.3.6.

Let V be a vector space with basis β = {v1, . . . , vn}. Let W be a vector space with basis
γ = {w1, . . . , wm}. If T : V → W is a linear transformation then we define the matrix of
T with respect to β, γ as [T ]β,γ which is implicitly defined by

L[T ]β,γ = Φγ ◦T ◦Φ−1
β .

The discussion preceding this definition hopefully gives you some idea on what I mean by ”implic-
itly” in the above context. In any event, we pause from our general discussion to illustrate with
some explicit examples.

Example 7.3.7. Let S : V →W with V = W = R2×2 are given bases β = γ = {E11, E12, E21, E22}

and L(A) = A+AT . Let A =

[
a b
c d

]
and calculate,

S(A) =

[
a b
c d

]
+

[
a c
b d

]
=

[
2a b+ c
b+ c 2d

]
7the mapping notation supplements the [v]β notation, I use both going forward in these notes
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Observe,
[A]β = (a, b, c, d) & [S(A)]γ = (2a, b+ c, b+ c, 2d)

Moreover, we need a matrix [S]β,γ such that [S(A)]γ = [S]β,γ [A]β. Tilt head, squint, and see

[S]β,γ =


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2


Example 7.3.8. Let V = P 2×2

1 be the set of 2 × 2 matrices with first order polynomials. Define
T (A(x)) = A(2) where T : V → W and W = R2×2. Let γ = {E11, E12, E21, E22} be the basis for
W . Let β be the basis8 with coordinate mapping

Φβ

([
a+ bx c+ dx

e+ fx g + hx

])
= (a, b, c, d, e, f, g, h).

We calculate for v =

[
a+ bx c+ dx

e+ fx g + hx

]
that

T (v) =

[
a+ 2b c+ 2d

e+ 2f g + 2h

]
Therefore,

[T (v)]γ = (a+ 2b, c+ 2d, e+ 2f, g + 2h)

and as the coordinate vector [v]β = (a, b, c, d, e, f, g, h) the formula [T (v)]γ = [T ]β,γ [v]β indicates

[T ]β,γ =


1 2 0 0 0 0 0 0
0 0 1 2 0 0 0 0
0 0 0 0 1 2 0 0
0 0 0 0 0 0 1 2


Example 7.3.9. Let T : P3 → P3 be the derivative operator; T (f(x)) = f ′(x). Give P3 the basis
β = {1, x, x2, x3}. Calculate,

T (a+ bx+ cx2 + dx3) = b+ 2cx+ 3dx2

Furthermore, note, setting v = a+ bx+ cx2 + dx3

[T (v)]β = (b, 2c, 3d, 0) & [v]β = (a, b, c, d) ⇒ [T ]β,β =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


The results of Proposition 5.3.3 and 5.3.7 naturally generalize to our current context.

8you should be able to find β in view of the coordinate map formula
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Proposition 7.3.10.

Suppose S, T ∈ L(V,W ) where β is a finite basis for V and γ a finite basis for W then

(1.) [T + S]β,γ = [T ]β,γ + [S]β,γ , (2.) [T − S]β,γ = [T ]β,γ − [S]β,γ , (3.) [cS]β,γ = c[S]β,γ .

Proof: the proof follows immediately from the identity below:

Φγ ◦ (T + cS) ◦Φ−1
β = Φγ ◦T ◦Φ−1

β + cΦγ ◦S ◦Φ−1
β .

This identity is true due to the linearity properties of the coordinate mappings. �

The generalization of Proposition 5.3.7 is a bit more interesting.

Proposition 7.3.11.

Let U, V,W be finite-dimensional vector spaces with bases β, γ, δ respectively. If S ∈
L(U,W ) and T ∈ L(V,U) then [S ◦T ]γ,δ = [S]β,δ[T ]γ,β

Proof: Notice that LA ◦LB = LAB since LA(LB(v)) = LA(Bv) = ABv = LAB(v) for all v. Hence,

L[S]β,δ [T ]γ,β = L[S]β,δ
◦L[T ]γ,β :set A = [S]β,δ and B = [T ]γ,β,

= (Φδ ◦S ◦Φ−1
β ) ◦ (Φβ ◦T ◦Φ−1

γ ) :defn. of matrix of linear transformation,

= Φδ ◦ (S ◦T ) ◦Φ−1
γ :properties of function composition,

= L[S ◦T ]γ,δ :defn. of matrix of linear transformation.

The mapping L : Rm×n → L(Rn,Rm) is injective. Thus, [S ◦T ]γ,δ = [S]β,δ[T ]γ,β as we claimed. �

If we apply the result above to a linear transformation on a vector space V where the same basis
is given to the domain and codomain some nice things occur. For example:

Example 7.3.12. Continuing Example 7.3.9. Observe that T 2(f(x)) = T (T (f(x)) = f ′′(x). Thus
if v = a + bx + cx2 + dx3 then T 2 : P3 → P3 has T 2(v) = 2c + 6dx hence [T 2(v)]β = (2c, 6d, 0, 0)

and we find [T 2]β,β =


0 0 2 0
0 0 0 6
0 0 0 0
0 0 0 0

. You can check that [T 2]β,β = [T ]β,β [T ]β,β. Notice, we can

easily see that [T 3]β,β 6= 0 whereas [Tn]β,β = 0 for all n ≥ 4. This makes [T ]β,β a nilpotent matrix
of order 4. We study the structure of nilpotent matrices in Part III of this course.

Example 7.3.13. Let V,W be vector spaces of dimension n. In addition, suppose T : V → W is
a linear transformation with inverse T−1 : W → V . Let V have basis β whereas W has basis γ.
We know that T ◦T−1 = IdW and T−1 ◦T = IdV . Furthermore, I invite the reader to show that
[IdV ]β,β = I ∈ Rn×n where n = dim(V ) and similarly [IdW ]γ,γ = I ∈ Rn×n. Apply Proposition
7.3.11 to find

[T−1 ◦T ]β,β = [T−1]γ,β[T ]β,γ

but, [T−1 ◦T ]β,β = [IdV ]β,β = I thus [T−1]γ,β[T ]β,γ = I and we conclude ([T ]β,γ)−1 = [T−1]γ,β.
Phew, that’s a relief. Wouldn’t it be strange if this weren’t true? Moral of story: the inverse
matrix of the transformation is the matrix of the inverse transformation.
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Lemma 7.3.14.

If Ψ : V →W is an isomorphism and S is a LI set then Ψ(S) is a LI set with #(S) = #Ψ(S).

Proof: If Ψ is an isomorphism then Ψ is injective. By part (3.) of Theorem 7.2.8 we have S
LI implies Ψ(S) is LI. Furthermore, if there is any repeated vector in S then clearly S is linearly
dependent hence the vectors in S must be distinct. The lemma follows. �

Lemma 7.3.15.

Let T : V → W be a linear transformation where dim(V ) = n and dim(W ) = m. Let
Φβ : V → Rn and Φγ : W → Rm be coordinate map isomorphisms. If β, γ are bases for
V,W respective then [T ]β,γ satisfies the following

(1.) Null([T ]β,γ) = Φβ(Ker(T )), (2.) Col([T ]β,γ) = Φγ(Range(T )).

Proof of (1.): Let v ∈ Null([T ]β,γ) then there exists x ∈ V for which v = [x]β. By definition of
nullspace, [T ]β,γ [x]β = 0 hence, applying the identity [T (x)]γ = [T ]β,γ [x]β we obtain [T (x)]γ = 0
which, by injectivity of Φγ , yields T (x) = 0. Thus x ∈ Ker(T ) and it follows that [x]β ∈ Φβ(Ker(T )).
Therefore, Null([T ]β,γ) ⊆ Φβ(Ker(T )).

Conversely, if [x]β ∈ Φβ(Ker(T )) then there exists v ∈ Ker(T ) for which Φβ(v) = [x]β hence, by
injectivity of Φβ, x = v and T (x) = 0. Observe, by linearity of Φγ , [T (x)]γ = 0. Recall once
more, [T (x)]γ = [T ]β,γ [x]β. Hence [T ]β,γ [x]β = 0 and we conclude [x]β ∈ Null([T ]β,γ). Consquently,
Φβ(Ker(T )) ⊆ Null([T ]β,γ).

Thus Φβ(Ker(T )) = Null([T ]β,γ). I leave the proof of (2.) to the reader. �

I should caution that the results above are basis dependendent in the following sense: If β1, β2 are
bases with coordinate maps Φβ1 ,Φβ2 then it is not usually true that Φβ1(Ker(T )) = Φβ2(Ker(T )).
It follows that Null([T ]β1,γ) 6= Null([T ]β2,γ) in general. That said, there is something which is
common to all the nullspaces (and ranges); dimension. The dimension of the nullspace much match
the dimension of the kernel. The dimension of the column space must match the dimension of the
range. This result follows immediately from the two lemmas given above. See Definition 7.2.7 for
rank and nullity of a linear transformation verses Definition 6.6.13 for matrices.

Proposition 7.3.16.

Let T : V →W be a linear transformation of finite dimensional vector spaces with basis β
for V and γ for W then

nullity(T ) = nullity([T ]β,γ) & rank(T ) = rank([T ]β,γ).

You should realize the nullity and rank on the L.H.S. and R.H.S of the above proposition are quite
different quantities in concept. It required some effort on our part to connect them, but, now that
they are connected, perhaps you appreciated the names.
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7.4 coordinate change

Vectors in abstract vector spaces do not generically come with a preferred coordinate system. There
are infinitely many different choices for the basis of a given vector space. Naturally, for specific
examples, we tend to have a pet-basis, but this is merely a consequence of our calculational habits.
We need to find a way to compare coordinate vectors for different choices of basis. Then, the same
ambiguity must be faced by the matrix of a transformation. In some sense, if you understand the
diagrams then you can write all the required formulas for this section. That said, we will cut the
problem for mappings of column vectors a bit more finely. There are nice matrix-theoretic formulas
for Rn that I’d like for you to know when you leave this course9.

7.4.1 coordinate change of abstract vectors

Let V be a vector space with bases β and β̄. Let β = {v1, . . . , vn} whereas β̄ = {v̄1, . . . , v̄n}. Let
x ∈ V then there exist column vectors [x]β = (x1, . . . , xn) and [x]β̄ = (x̄1, . . . , x̄n) ∈ Rn such that

x =

n∑
i=1

xivi & x =

n∑
j=1

x̄iv̄i

Or, in mapping notation, x = Φ−1
β ([x]β) and x = Φ−1

β̄
([x]β̄). Of course x = x hence

Φ−1
β ([x]β) = Φ−1

β̄
([x]β̄).

Operate by Φβ̄ on both sides,

[x]β̄ = Φβ̄(Φ−1
β ([x]β)).

Observe that Φβ̄
◦Φ−1

β : Rn → Rn is a linear transformation, therefore we can calculate its standard
matrix. Let us collect our thoughts:

Proposition 7.4.1.

Using the notation developed in this subsection, if Pβ,β̄ = [Φβ̄
◦Φ−1

β ] then [x]β̄ = Pβ,β̄[x]β.

The diagram below contains the essential truth of the above proposition:

9 I mean, don’t wait until then, nows a perfectly good time to learn them
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Example 7.4.2. Let V = {A ∈ R2×2|A11 + A22 = 0}. Observe β = {E12, E21, E11 − E22} gives a
basis for V . On the other hand, β̄ = {E12+E21, E12−E21, E11−E22} gives another basis. We denote
β = {vi} and β̄ = {v̄i}. Let’s work on finding the change of basis matrix. I can do this directly by
our usual matrix theory. To find column i simply multiply by ei. Or let the transformation act on
ei. The calculations below require a little thinking. I avoid algebra by thinking here.

Φβ̄(Φ−1
β (e1)) = Φβ̄(E12) = Φβ̄

(
1

2
[v̄1 + v̄2]

)
= (1/2, 1/2, 0).

Φβ̄(Φ−1
β (e2)) = Φβ̄(E21) = Φβ̄

(
1

2
[v̄1 − v̄2]

)
= (1/2,−1/2, 0).

Φβ̄(Φ−1
β (e3)) = Φβ̄(E11 − E22) = Φβ̄ (v̄3) = (0, 0, 1).

Admittably, if the bases considered were not so easily related we’d have some calculation to work
through here. That said, we find:

Pβ,β̄ =

 1/2 1/2 0
1/2 −1/2 0
0 0 1


Let’s take it for a ride. Consider A =

[
1 2
3 −1

]
clearly [A]β = (2, 3, 1). Calculate,

Pβ,β̄[A]β =

 1/2 1/2 0
1/2 −1/2 0
0 0 1

 2
3
1

 =

 5/2
−1/2

1

 = [A]β̄

Is this correct? Check,

Φ−1
β̄

(5/2,−1/2, 1) =
5

2
·
[

0 1
1 0

]
− 1

2
·
[

0 1
−1 0

]
+ 1 ·

[
1 0
0 −1

]
=

[
1 2
3 −1

]
= A.

Yep. It works.

It is often the case we face coordinate change for mappings from Rn → Rm. Or, even more special
m = n. The formulas we’ve detailed thus far find streamlined matrix-theoretic forms in that special
context. We turn our attention there now.

7.4.2 coordinate change for column vectors

Let β be a basis for Rn. In contrast to the previous subsection, we have a standard basis with
which we can compare; in particular, the standard basis. Hazzah!10. Let β = {v1, . . . , vn} and
note the matrix of β is simply defined by concatenating the basis into an n× n invertible matrix
[β] = [v1| · · · |vn]. If x ∈ Rn then the coordinate vector [x]β = (y1, . . . , yn) is the column vector such
that

x = [β][x]β = y1v1 + · · · ynvn

here I used ”y” to avoid some other more annoying notation. It is not written in stone, you
could use ([x]β)i in place of yi. Unfortunately, I cannot use xi in place of yi as the notation xi is

10sorry, we visited Medieval Times over vacation and it hasn’t entirely worn off just yet
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already reserved for the Cartesian components of x. Notice, as [β] is invertible we can solve for the
coordinate vector:

[x]β = [β]−1x

If we had another basis β̄ then
[x]β̄ = [β̄]−1x

Naturally, x exists independent of these bases so we find common ground at x:

x = [β][x]β = [β̄][x]β̄

We find the coordinate vectors are related by:

[x]β̄ = [β̄]−1[β][x]β

Let us summarize are findings in the proposition below:

Proposition 7.4.3.

Using the notation developed in this subsection and the last, if Pβ,β̄ = [Φβ̄
◦Φ−1

β ] then
[x]β̄ = Pβ,β̄[x]β and a simple formula to calculate the change of basis matrix is given by

Pβ,β̄ = [β̄]−1[β]. We also note for future convenience: [β̄]Pβ,β̄ = [β]

Example 7.4.4. Let β = {(1, 1), (1,−1)} and γ = {(1, 0), (1, 1)} be bases for R2. Find [v]β and
[v]γ if v = (2, 4). Let me frame the problem, we wish to solve:

v = [β][v]β and v = [γ][v]γ

where I’m using the basis in brackets to denote the matrix formed by concatenating the basis into a
single matrix,

[β] =

[
1 1
1 −1

]
and [γ] =

[
1 1
0 1

]
This is the 2× 2 case so we can calculate the inverse from our handy-dandy formula:

[β]−1 =
1

2

[
1 1
1 −1

]
and [γ]−1 =

[
1 −1
0 1

]
Then multiplication by inverse yields [v]β = [β]−1v and [v]γ = [γ]−1v thus:

[v]β =
1

2

[
1 1
1 −1

] [
2
4

]
=

[
3
−1

]
and [v]γ =

[
1 −1
0 1

] [
2
4

]
=

[
−2

4

]
Let’s verify the relation of [v]γ and [v]β relative to the change of basis matrix. In particular, we
expect that if Pβ,γ = [γ]−1[β] then [v]γ = Pβ,γ [v]β. Calculate,

Pβ,γ = [γ]−1[β] =

[
1 −1
0 1

] [
1 1
1 −1

]
=

[
0 2
1 −1

]
As the last great American president said, trust, but, verify

Pβ,γ [v]β =

[
0 2
1 −1

] [
3
−1

]
=

[
−2

4

]
= [v]γ X

It might be helpful to some to see a picture of just what we have calculated. Finding different
coordinates for a given point (which corresponds to a vector from the origin) is just to prescribe
different zig-zag paths from the origin along basis-directions to get to the point. In the picture below
I illustrate the standard basis path and the β-basis path.
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Now that we’ve seen an example, let’s find [v]β for an arbitrary v = (x, y),

[v]β =
1

2

[
1 1
1 −1

] [
x
y

]
=

[
1
2(x+ y)
1
2(x− y)

]
If we denote [v]β = (x̄, ȳ) then we can understand the calculation above as the relation between the
barred and standard coordinates:

x̄ = 1
2(x+ y) ȳ = 1

2(x− y)

Conversely, we can solve these for x, y to find the inverse transformations:

x = x̄+ ȳ y = x̄− ȳ.

Similar calculations are possible with respect to the γ-basis.

7.4.3 coordinate change of abstract linear transformations

In Definition 7.3.6 we saw that if V is a vector space with basis β = {v1, . . . , vn} and W be a vector
space with basis γ = {w1, . . . , wm}. Then a linear transformation T : V → W has matrix [T ]β,γ
defined implicitly by:

L[T ]β,γ = Φγ ◦T ◦Φ−1
β .

If there was another pair of bases β̄ for V and γ̄ for W then we would likewise have

L[T ]β̄,γ̄
= Φγ̄ ◦T ◦Φ−1

β̄
.

Solving for T relates the matrices with and without bars:

T = Φ−1
γ
◦L[T ]β,γ

◦Φβ = Φ−1
γ̄
◦L[T ]β̄,γ̄

◦Φβ̄.

From which the proposition below follows:
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Proposition 7.4.5.

Using the notation developed in this subsection

[T ]β̄,γ̄ = [Φγ̄ ◦Φ−1
γ ][T ]β,γ [Φβ ◦Φ−1

β̄
].

Moreover, recalling Pβ,β̄ = [Φβ̄
◦Φ−1

β ] we find:

[T ]β̄,γ̄ = Pγ,γ̄ [T ]β,γ(Pβ,β̄)−1.

Note, if there exist invertible matrices P,Q such that B = PAQ then B and A are said to be
matrix congruent. The proposition above indicates that the matrices of a given linear tranfor-
mation11 are congruent. In particular, [T ]β̄,γ̄ is congruent to [T ]β,γ .

The picture below can be used to remember the formulas in the proposition above.

Example 7.4.6. Let V = P2 and W = C. Define a linear transformation T : V → W by
T (f) = f(i). Thus,

T (ax2 + bx+ c) = ai2 + bi+ c = c− a+ ib.

Use coordinate maps given below for β = {x2, x, 1} and γ = {1, i}:

Φβ(ax2 + bx+ c) = (a, b, c) & Φγ(a+ ib) = (a, b).

Observe [T (ax2 + bx+ c)]γ = (c− a, b) hence [T ]β,γ =

[
−1 0 1
0 1 0

]
.

11of finite dimensional vector spaces
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Let us change the bases to

β̄ = {(x− 2)2, (x− 2), 1} & γ̄ = {i, 1}

Calculate, if f(x) = ax2 + bx+ c then f ′(x) = 2ax+ b and f ′′(x) = 2a. Observe, f(2) = 4a+ 2b+ c
and f ′(2) = 4a+ b and f ′′(2) = 2a hence, using the Taylor expansion centered at 2,

f(x) = f(2) + f ′(2)(x− 2) +
1

2
f ′′(2)(x− 2)2

= 4a+ 2b+ c+ (4a+ b)(x− 2) + a(x− 2)2.

Therefore,
Φβ̄(ax2 + bx+ c) = (a, 4a+ b, 4a+ 2b+ c)

But, Φ−1
β (a, b, c) = ax2 + bx+ c. Thus,

Φβ̄(Φ−1
β (a, b, c)) = (a, 4a+ b, 4a+ 2b+ c) ⇒ [Φβ̄

◦Φ−1
β ] =

 1 0 0
4 1 0
4 2 1


Let’s work out this calculation in the other direction (it’s actually easier and what we need in a bit)

Φβ(a(x− 2)2 + b(x− 2) + c) = Φβ(a(x2 − 4x+ 4) + b(x− 2) + c) = (a,−4a+ b, 4a− 2b+ c)

But, Φ−1
β̄

(a, b, c) = a(x− 2)2 + b(x− 2) + c therefore:

Φβ(Φ−1
β̄

(a, b, c)) = (4a− 2b+ c,−4a+ b, a) ⇒ [Φβ ◦Φ−1
β̄

] =

 1 0 0
−4 1 0
4 −2 1


On the other hand, Φγ̄(a+ ib) = (b, a). Of course, a+ ib = Φ−1

γ (a, b) hence Φγ̄(Φ−1
γ (a, b)) = (b, a).

It follows that [Φγ̄ ◦Φ−1
γ ] =

[
0 1
1 0

]
We’ll use the change of basis proposition to find the matrix

w.r.t. β̄ and γ̄

[T ]β̄,γ̄ = [Φγ̄ ◦Φ−1
γ ][T ]β,γ [Φβ ◦Φ−1

β̄
].

=

[
0 1
1 0

] [
−1 0 1
0 1 0

] 1 0 0
−4 1 0
4 −2 1


=

[
0 1 0
−1 0 1

] 1 0 0
−4 1 0
4 −2 1


=

[
−4 1 0
3 −2 1

]
.

Continuing, we can check this by direct calculation of the matrix. Observe

T (a(x− 2)2 + b(x− 2) + c) = a(i− 2)2 + b(i− 2) + c

= a[−1− 4i+ 4] + b(i− 2) + c

= 3a− 2b+ c+ i(−4a+ b)

Thus, [T (a(x− 2)2 + b(x− 2) + c)]γ̄ = (−4a+ b, 3a− 2b+ c) hence [T ]β̄,γ̄ =

[
−4 1 0
3 −2 1

]
. Which

agrees nicely with our previous calculation.
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7.4.4 coordinate change of linear transformations of column vectors

We specialize Proposition 7.4.7 in this subsection in the case that V = Rn and W = Rm. In
particular, the result of Proposition 7.4.3 makes life easy; Pβ,β̄ = [β̄]−1[β] likewise, Pγ,γ̄ = [γ̄]−1[γ]

Proposition 7.4.7.

Using the notation developed in this subsection

[T ]β̄,γ̄ = [γ̄]−1[γ][T ]β,γ [β]−1[β̄].

The standard matrix [T ] is related to the non-standard matrix [T ]β̄,γ̄ by:

[T ]β̄,γ̄ = [γ̄]−1[T ][β̄].

Proof: Proposition 7.4.7 with V = Rn and W = Rm together with the result of Proposition 7.4.3
give us the first equation. The second equation follows from the observation that for standard bases
β and γ we have [β] = In and [γ] = Im. �

Example 7.4.8. Let β̄ = {(1, 0, 1), (0, 1, 1), (4, 3, 1)}. Furthermore, define a linear transformation
T : R3 → R3 by the rule T (x, y, z) = (2x − 2y + 2z, x − z, 2x − 3y + 2z). Find the matrix of T
with respect to the basis β. Note first that the standard basis is read from the rule:

T

(  x
y
z

 ) =

 2x− 2y + 2z
x− z

2x− 3y + 2z

 =

 2 −2 2
1 0 −1
2 −3 2

 x
y
z


Next, use the proposition with β̄ = γ̄ (omitting the details of calculating [β̄]−1)

[β̄]−1[T ][β̄] =

 1/3 −2/3 2/3
−1/2 1/2 1/2

1/6 1/6 −1/6

 2 −2 2
1 0 −1
2 −3 2

 1 0 4
0 1 3
1 1 1


=

 1/3 −2/3 2/3
−1/2 1/2 1/2

1/6 1/6 −1/6

 4 0 4
0 −1 3
4 −1 1


=

 4 0 0
0 −1 0
0 0 1


Therefore, in the β̄-coordinates the linear operator T takes on a particularly simple form. In
particular, if β̄ = {f1, f2, f3} then12

T (x̄, ȳ, z̄) = 4x̄f1 − ȳf2 + z̄f3

This linear transformation acts in a special way in the f1, f2 and f3 directions. The basis we
considered here is called an eigenbasis for T . We study eigenvectors and the associated problem
of diagonalization in Part III.

12some authors just write T , myself included, but, technically T = T ◦ Φ−1
β̄

, so... as I’m being pretty careful
otherwise, it would be bad form to write the prettier, but wrong, T
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7.5 theory of dimensions for maps

In some sense this material is naturally paired with Section 7.2 and Section 6.6. I had to wait until
this point in the presentation because I wanted to tie in some ideas about coordinate change.

This section is yet another encounter with a classification theorem. Previously, we learned that
vector spaces are classified by their dimension; V ≈W iff dim(V ) = dim(W ). In this section, we’ll
find a nice way to lump together many linear transformations as being essentially the same function
with a change of notation. However, the concept of same is a slippery one. In this section, matrix
congruence is the measure of sameness. In contrast, later we study similarity transformations
or orthogonal transformations. The concept that unites these discussions is classification. We
seek a standard representative of an equivalence class. The type of equivalence class depends nat-
urally on what is considered the ”same”. Be careful with this word ”same” it might not mean the
same thing to you.

The theorem below is to linear transformations what Theorem 6.6.15 is for matrices.

Theorem 7.5.1.

Let V,W be vector spaces of finite dimension over R. In particular, suppose dim(V ) = n and
dim(W ) = m. If T : V →W be a linear transformation then

dim(V ) = dim(Ker(T )) + dim(Range(T )).

Proof: I’ll give two proofs. The first is based on coordinates and Theorem 7.2.8 which includes
the result that an injective linear transformation maps LI sets to LI sets.

Proof 1: Let β, γ be bases for V,W respectively. Define A = [T ]β,γ . Observe A ∈ Rm×n. Apply
Theorem 6.6.15 to find

n = dim(Null(A)) + dim(Col(A)).

We found in Lemma 7.3.15 that the basis for Ker(T ) is obtained by mapping the basis βN for
Null([T ]β,γ) to V by Φ−1

β . That is, Φ−1
β (βN ) = βK serves as a basis for Ker(T ) ≤ V . On the other

hand, Lemma 7.3.15 also stated the basis for the column space βC ⊂ Rm is mapped to a basis for
Range(T ) in W . In particular, we define βR = Φ−1

γ (βC) and it serves as a basis for Range(T ) ≤W .
Lemma 7.3.15 also proved #(βN ) = #(βK) and #(βC) = #(βR). Thus,

dim(V ) = n = dim(Null(A)) + dim(Col(A)) = dim(Ker(T )) + dim(Range(T )). �

Proof 2: Note Ker(T ) ≤ V therefore we may select a basis βK = {v1, . . . , vk} for Ker(T ) by
Proposition 6.6.6. By the basis extension theorem (think W = Ker(T ) and apply Theorem 6.6.10)
we can adjoin the set of vectors βnot K = {vk+1, . . . , vn} to make β = βK ∪ βnot K a basis for V .
Suppose x =

∑n
i=1 xivi ∈ V and calculate by linearity of T ,

T (x) =
k∑
i=1

xiT (vi) +
n∑

i=k+1

xiT (vi) =
n∑

i=k+1

xiT (vi),

where v1, . . . , vk ∈ Ker(T ) gives T (v1) = · · · = T (vk) = 0. Observe, it follows that the set of n− k
vectors γ = {T (vk+1), . . . , T (vn)} serves as a spanning set for Range(T ). Moreover, we may argue
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that γ is a LI set: suppose
ck+1T (vk+1) + · · ·+ cnT (vn) = 0

by linearity of T it follows:
T (ck+1vk+1 + · · ·+ cnvn) = 0

hence ck+1vk+1 + · · ·+ cnvn ∈ Ker(T ). However, by construction, βnot K = {vk+1, . . . , vn} are not
in the kernel thus

ck+1vk+1 + · · ·+ cnvn = 0.

Next, as βnot K ⊆ β the LI of β implies the LI of βnot K hence we conclude ck+1 = 0, . . . , cn = 0.
Therefore, γ is a basis for Range(T ). Finally, as dim(V ) = n = n − k + k and dim(Ker(T )) = k
and dim(Range(T )) = n− k we conclude

dim(V ) = dim(Ker(T )) + dim(Range(T )). �

Proof of the theorem that follows below is essentially contained in the proof of Theorem 7.5.1.
However, for the sake of completeness, I include a separate proof.

Theorem 7.5.2.

Let V,W be vector spaces of finite dimension over R. If T : V →W be a linear transformation
with rank(T ) = dim(T (V )) = p. Then, there exist bases β for V and γ for W such that:

[T ]β,γ =

[
Ip 0

0 0

]
where, as is our standard notation, [T (v)]γ = [T ]β,γ [v]β for all v ∈ V .

Proof: Let dim(V ) = n and dim(W ) = m for convenience of exposition. By Theorem 7.5.1) we
have dim(Ker(T )) = n− p. Let {vp+1, . . . , vn} form a basis for Ker(T ) ≤ V . Extend the basis for
Ker(T ) to a basis β = {v1, . . . , vp, vp+1, . . . , vn} for V . Observe, by construction, {T (v1), . . . , T (vp)}
is linearly independent. Define,

w1 = T (v1), . . . , wp = T (vp)

Clearly {w1, . . . , wp} forms a basis for the image T (V ). Next, extend {w1, . . . , wp} to a basis
γ = {w1, . . . , wp, wp+1, . . . , wm} for W . Observe:

[T (vj)]γ = [T ]β,γ [vj ]β = [T ]β,γej = Colj([T ]β,γ)

Furthermore, for j = 1, . . . , p, by construction T (vj) = wj and hence [T (vj)]γ = [wj ]γ = ēj ∈ Rm.
On the other hand, for j = p+ 1, . . . , n we have T (vj) = 0 hence [T (vj)]γ = [0]γ = 0 ∈ Rm. Thus,

[T ]β,γ = [e1| · · · |ep|0| · · · |0]

and it follows that [T ]β,γ =

[
Ip 0

0 0

]
. �.

The claim of the theorem just proved says the following: there exists a choice of coordinates which
makes a given linear transformation a projection onto the range. In terms of matrix congruence,
this theorem reveals the canonical form for matrices which are equivalent under matrix congruence
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A 7→ QAP−1. However, the proof above does not reveal too much about how to find such coordi-
nates. We next investigate a calculational method to find β, γ for which the theorem is realized.

Suppose T ∈ L(V,W ) where dim(V ) = n and dim(W ) = m. Furthermore, suppose β′ =
{v′1, . . . , v

′
n} and γ′ = {w′1, . . . , w

′
m} are bases for V and W respective. We define [T ]β′γ′ as usual:

[T ]β′γ′ = [[T (v
′
1)]γ′ | · · · |[T (v

′
n)]γ′ ]

There exists a product of elementary m×m matrices E1 for which

R1 = rref([T ]β′γ′) = E1[T ]β′γ′

Let p be the number of pivot columns in R1. Observe that the last (m − p) rows in R1 are zero.
Therefore, the last (m−p) columns in RT1 are zero. Gauss-Jordan elimination on R1 is accomplished
by multiplication by E2 which is formed from a product of n× n elementary matrices.

R2 = rref(RT1 ) = E2R
T
1

Notice that the trivial rightmost (m− p) columns stay trivial under the Gauss-Jordan elimination.
Moreover, the nonzero pivot rows in R1 become p-pivot columns in RT1 which reduce to e1, . . . , ep
standard basis vectors in Rn for R2 (the leading ones are moved to the top rows with row-swaps if
necessary). In total, we find: (the subscripts indicate the size of the blocks)

E2R
T
1 = [e1| · · · |ep|0| · · · |0] =

[
Ip 0p×(m−p)
0(n−p)×p 0(n−p)×(m−p)

]
Therefore,

E2(E1[T ]β′γ′)
T =

[
Ip 0p×(m−p)
0(n−p)×p 0(n−p)×(m−p)

]
Transposition of the above equation yields the following:

E1[T ]β′γ′E
T
2 =

[
Ip 0p×(n−p)
0(m−p)×p 0(m−p)×(n−p)

]
If β, γ are bases for V and W respective then we relate the matrix [T ]β,γ to [T ]β′γ′ as follows:

[T ]β,γ = [Φβ′ ◦Φ−1
β ][T ]β′γ′ [Φγ ◦Φ−1

γ′ ].

Therefore, we ought to define β by imposing [Φβ′ ◦Φ−1
β ] = E1 and γ by [Φγ ◦Φ−1

γ′ ] = ET2 . Using

LA(v) = Av notation for E1, E
T
2 ,

LE1 = Φβ′ ◦Φ−1
β & LET2

= Φγ ◦Φγ′

Thus,

Φ−1
β = Φ−1

β′
◦LE1 & Φ−1

γ = Φγ′ ◦L
−1
ET2

and we construct β and γ explicitly by:

β = {(Φ−1
β′
◦LE1)(ej)}nj=1 γ = {(Φγ′ ◦L

−1
ET2

)(ej)}mj=1.
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Note the formulas above merely use the elementary matrices and the given pair of bases. The

discussion of this page shows that β and γ so constructed will give [T ]β,γ =

[
Ip 0

0 0

]
.

Continuing, to implement the calculation outlined in the previous page we would like an efficient
method to calculate E1 and E2. We can to do this much as we did for computation of the inverse.
I illustrate the idea below13:

Example 7.5.3. Let A =


1 3 4
1 4 5
1 0 1
1 2 3

. If we adjoin the identity matrix to right the matrix which

is constructed in the Gauss-Joran elimination is the product of elementary matrices P for which
rref(A) = PA.

rref[A|I4] = rref


1 3 4 1 0 0 0
1 4 5 0 1 0 0
1 0 1 0 0 1 0
1 2 3 1 0 0 1

 =


1 0 1 0 0 1 0
0 1 1 0 0 −1/2 1/2
0 0 0 1 0 1/2 −3/2
0 0 0 0 1 1 −2


We can read P for which rref(A) = PA from the result above, it is simply

P =


0 0 1 0
0 0 −1/2 1/2
1 0 1/2 −3/2
0 1 1 −2

 .
Next, consider row reduction on the transpose of the reduced matrix. This corresponds to column
operations on the reduced matrix.

rref[(rref(A))T |I3] = rref

 1 0 0 0 1 0 0
0 1 0 0 0 1 0
1 1 0 0 0 0 1

 =

 1 0 0 0 0 −1 1
0 1 0 0 0 1 0
0 0 0 0 1 1 −1



Let Q =

 0 −1 1
0 1 0
1 1 −1

 and define R by:

RT = Q[rref(A)]T =

 0 −1 1
0 1 0
1 1 −1

 1 0 0 0
0 1 0 0
1 1 0 0

 =

 1 0 0 0
0 1 0 0
0 0 0 0


Finally, R = (Q[rref(A)]T )T = rref(A)QT hence R = PAQT . In total,

1 0 0
0 1 0

0 0 0
0 0 0

 =


0 0 1 0
0 0 −1/2 1/2
1 0 1/2 −3/2
0 1 1 −2




1 3 4
1 4 5
1 0 1
1 2 3


 0 0 1
−1 1 1
1 0 −1


13see Example 2.7 on page 244 of Hefferon’s Linear Algebra for a slightly different take built on explicit computation

of the product of the elementary matrices needed for the reduction
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There is nothing terribly special about this example. We could follow the same procedure for a
general matrix to find the explicit change of basis matrices which show the matrix congruence of A

to

[
Ip 0
0 0

]
where p = rank(A). From a coordinate change perspective, this means we can always

change coordinates on a linear transformation to make the formula for the transformation a simple
projection onto the first p-coordinates; T (y1, . . . , yp, yp+1, . . . , yn) = (y1, . . . , yp, 0, . . . , 0) ∈ Rm. Of
course, the richness we saw in Section 5.1 is still here, it’s just hidden in the coordinate change. In
Part III we’ll study other problems where different types of coordinate change are allowed. When
there is less freedom to modify domain and codomain coordiantes it turns out the cannonical forms
of the object are greater in variety and structure. Just to jump ahead a bit, if we force m = n and
change coordinates in domain and codomain simultaneously then the real Jordan form captures
a representative of each equivalence class of matrix up to a similarity transformation. On the
other hand, Sylvester’s Law of Inertia reveals the cannonical form for the matrix of a quadratic
form is simply a diagonal matrix with Diag(D) = (−1, . . . ,−1, 1, . . . , 1, 0, . . . , 0). Quadratic forms
are non-linear functions which happen to have an associated matrix. The coordinate change for
the matrix of a quadratic form is quite different than what we’ve studied thus far. In any event,
this is just a foreshadowing comment, we will return to this discussion once we study eigenvectors
and quadratic forms in part III.

7.6 quotient space

Let us begin with a discussion of how to add sets of vectors. If S, T ⊆ V a vector space over R
then we define S + T as follows:

S + T = {s+ t | s ∈ S, t ∈ T}

In the particular case S = {x} it is customary to write

x+ T = {x+ t |t ∈ T}

we drop the {} around x in this special case. In the case that T = W ≤ V the set of all such
cosets x + W of W has a natural vector space structure induced from V . We now work towards
motivating the definition of the quotient space.

Proposition 7.6.1.

Let V be vector space over R and W ≤ V . Then x+W = y +W iff x− y ∈W .

Proof: Suppose x + W = y + W . If p ∈ x + W then it follows there exists w1 ∈ W for which
p = x + w1. However, as x + W ⊆ y + W we find x + w1 ∈ y + W and thus there exists w2 ∈ W
for which x+ w1 = y + w2. Therefore, y − x = w1 − w2 ∈W as W is a subspace of V .

Conversely, suppose x, y ∈ V and x− y ∈ W . Thus, there exists w ∈ W for which x− y = w and
so for future reference x = y+w or y = x−w. Let p ∈ x+W hence there exists w1 ∈W for which
p = x+ w1. Furthermore, as W is a subspace we know w,w1 ∈ W implies w + w1 ∈ W . Consider
then, p = x + w1 = y + w + w1 ∈ y + W . Therefore, x + W ⊆ y + W . A similar argument shows
y +W ⊆ x+W hence x+W = y +W . �
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Proposition 7.6.2.

Let V be vector space over R and W ≤ V . Then x+W = W iff x ∈W .

Proof: if x+W = W then x+ w ∈ W for some w hence x+ w = w1. But, it follows x = w1 − w
which makes clear that x ∈W as W ≤ V .

Conversely, if x ∈ W then consider p = x + w1 ∈ x + W and note x + w1 ∈ W hence p ∈ W and
we find x+W ⊆W . Likewise, if w ∈W then note w = x+w− x and w− x ∈W thus w ∈ x+W
and we find W ⊆ x+W . Therefore, x+W = W . �

Observe that Proposition 7.6.1 can be reformulated to say x+W is the same as y+W if y = x+w
for some w ∈W . We say that x and y are coset representatives of the same coset iff x+W = y+W .
Suppose x1 +W = x2 +W and y1 +W = y2 +W ; that is, suppose x1, x2 are representatives of the
same coset and suppose y1, y2 are representatives of the same coset.

Proposition 7.6.3.

Let V be vector space over R and W ≤ V . If x1 + W = x2 + W and y1 + W = y2 + W and
c ∈ R then x1 + y1 +W = x2 + y2 +W and cx1 +W = cx2 +W .

Proof: Suppose x1 + W = x2 + W and y1 + W = y2 + W then by Proposition 7.6.1 we find
x2 − x1 = wx and y2 − y2 = wy for some wx, wy ∈W . Consider

(x2 + y2)− (x1 + y1) = x2 − x1 + y2 − y1 = wx + wy.

However, wx, wy ∈ W implies wx + wy ∈ W hence by Proposition 7.6.1 we find x1 + y1 + W =
x2 + y2 +W . I leave proof that cx1 +W = cx2 +W as an exercise to the reader. �

The preceding triple of propositions serves to show that the definitions given below are independent
of the choice of coset representative. That is, while a particular coset represetative is used to make
the definition, the choice is immaterial to the outcome.

Definition 7.6.4.

We define V/W to be the quotient space of V by W . In particular, we define:

V/W = {x+W | x ∈ V }

and for all x+W, y +W ∈ V/W and c ∈ R we define:

(x+W ) + (y +W ) = x+ y +W & c(x+W ) = cx+W.

Note, we have argued thus far that addition and scalar multiplication defined on V/W are well-
defined functions. Let us complete the thought:
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Theorem 7.6.5.

If W ≤ V a vector space over R then V/W is a vector space over R.

Proof: if x+W, y+W ∈ V/W note (x+W ) + (y+W ) and c(x+W ) are single elements of V/W
thus Axioms 9 and 10 of Definition 6.1.1 are true. Axiom 1: by commutativity of addition in V we
obtain commutativity in V/W :

(x+W ) + (y +W ) = x+ y +W = y + x+W = (y +W ) + (x+W ).

Axiom 2: associativity of addition follows from associativity of V ,

(x+W ) + [(y +W ) + (z +W )] = x+W + [(y + z) +W ] defn. of + in V/W

= x+ (y + z) +W defn. of + in V/W

= (x+ y) + z +W associativity of + in V

= [(x+ y) +W ] + (z +W ) defn. of + in V/W

= [(x+W ) + (y +W )] + (z +W ) defn. of + in V/W.

Axiom 3: note that 0+W = W and it follows that W serves as the additive identity in the quotient:

(x+W ) + (0 +W ) = x+ 0 +W = x+W.

Axiom 4: the additive inverse of x+W is simply −x+W as (x+W ) + (−x+W ) = W .
Axiom 5: observe that

1(x+W ) = 1 · x+W = x+W.

I leave verification of Axioms 6,7 and 8 for V/W to the reader. I hope you can see these will easily
transfer of the Axioms 6,7 and 8 for V itself. �

The notation x+W is at times tiresome. An alternative notation is given below:

[x] = x+W

then the vector space operations on V/W are

[x] + [y] = [x+ y] & c[x] = [cx].

Naturally, the disadvantage of this notation is that it hides the particular subspace by which the
quotient is formed. For a given vector space V many different subspaces are typically available and
hence a wide variety of quotients may be constructed.

Example 7.6.6. Suppose V = R3 and W = span{(0, 0, 1)}. Let [(a, b, c)] ∈ V/W note

[(a, b, c)] = {(a, b, z) | z ∈ R}

thus a point in V/W is actually a line in V . The parameters a, b fix the choice of line so we expect
V/W is a two dimensional vector space with basis {[(1, 0, 0)], [(0, 1, 0)]}.

Example 7.6.7. Suppose V = R3 and W = span{(1, 0, 0), (0, 1, 0)}. Let [(a, b, c)] ∈ V/W note

[(a, b, c)] = {(x, y, c) | x, y ∈ R}

thus a point in V/W is actually a plane in V . In this case, each plane is labeled by a single
parameter c so we expect V/W is a one-dimensional vector space with basis {[(0, 0, 1)]}.
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Example 7.6.8. Let V = R[x] and let W = R the set of constant polynomials.

[a0 + a1x+ · · ·+ anx
n] = {c+ a1x+ · · ·+ anx

n | c ∈ R}

Perhaps, more to the point,

[a0 + a1x+ · · ·+ anx
n] = [a1x+ · · ·+ anx

n]

In this quotient space, we identify polynomials which differ by a constant.

We could also form quotients of F(R) or Pn or C∞(R) by R and it would have the same meaning;
if we quotient by constant functions then [f ] = [f + c].

The quotient space construction allows us to modify a given transformation such that its reformula-
tion is injective. For example, consider the problem of inverting the derivative operator D = d/dx.

D(f) = f ′ & D(f + c) = f ′

thus D is not injective. However, if we instead look at the derivative operator on14 a quotient space
of differentiable functions of a connected domain where [f ] = [f + c] then defining D([f ]) = f ′

proves to be injective. Suppose D([f ]) = D([g]) hence f ′ = g′ so f − g = c and [f ] = [g]. We
generalize this example in the next subsection.

7.6.1 the first isomorphism theorem

The style of this section is discussion/discovery. The culmination of the section occurs at the con-
clusion where the totality of the given discussion justifies the so-called first isomorphism theorem.
Many of the arguments given here generalize nicely to the context of abstract group theory. I hope
this discussion seeds your intuition for such future work.

Let T : V → U be a linear transformation and W ≤ V . We have several natural formulas which
we may associate with the quotient V/W . In particular, define π : V → V/W by

π(x) = x+W = [x].

Note that π is clearly a linear transformation and Ker(π) = W as π(x) = 0 + W implies x ∈ W .
Furthermore, we define T : V/W → U by

T (x+W ) = T (x)

for all x+W ∈ V/W . Suppose x+W = y+W . Then y− x ∈W thus x = y+w for some w ∈W .

T (x+W ) = T (x) = T (y + w) = T (y) + T (w) = T (w) + T (y +W ).

Hence T is not a function as it is not single-valued. The presence of the T (w) in the equation
above suggests there may be infinitely many values for which T (x + W ) = T (x). Moreover, the
formula is not independent of the representative for a general subspace W . How can we repair this
result? How can we create a new function on the quotient space from the given linear transforma-
tion T : V → U?

14to be careful, I only modify the domain of the derivative operator here, note the output of D is not an equivalence
class. Furthermore, perhaps a different symbol like D should be used to write D([f ]) = f ′ as D 6= D
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The simple answer15 is to study W = Ker(T ). Note, T (w) = 0 if w ∈ Ker(T ). Hence T :
V/Ker(T )→ U is a function and we can easilt verify it is linear: let [x], [y] ∈ V/Ker(T ) and c ∈ R.
Observe:

T (c[x] + [y]) = T ([cx+ y]) = T (cx+ y) = cT (x) + T (y) = cT ([x]) + T ([y]).

Hence T ∈ L(V/Ker(T ), U). In addition to linearity, T has another exceedingly nice property.
Suppose

T ([x]) = 0 ⇒ T (x) = 0 ⇒ x ∈ Ker(T ) ⇒ [x] = 0.

Therefore, T is injective. Well, this is nice, we almost have an isomorphism. We may lack surjec-
tivity for T .

To obtain an surjection from T : V → U we need to remove points from the codomain which the
map fails to reach. In short, just replace U with T (V ) and T ′ : V → T (V ) is surjective. If
ι : U → T (V ) is the natural projection map ι(x) = x for all x ∈ T (V ) and ι(x) = 0 for x /∈ T (V )
then this allows us to express the formula for T ′ explicitly at the level of maps by T ′ = ι ◦T .
Naturally, if we combine this idea with the injection creating T construction then we’ll obtain a
linear map which is both injective and surjective; we obtain an isomorphism from V/Ker(T ) to
T (V ).

Theorem 7.6.9.

If T : V → U is a linear transformation and W = Ker(T ) then the mapping Ψ : V/W → T (V )
defined by Ψ(x+Ker(T )) = T (x) is an isomorphism. Moreover, Ψ = T ◦π where π : V → V/W
is the natural quotient map defined by π(x) = x+ Ker(T ).

The remaining detail we have to prove is the surjectivity of Ψ. Suppose y ∈ T (v) then by definition
there exists x ∈ V such that T (x) = y. Note that Ψ(x+ Ker(T )) = T (x) = y hence Ψ is surjective
as claimed. This theorem is not really that difficult if we understand the quotient construction and
the freedom we have to define codomains to suit our purposes.

Example 7.6.10. Consider D : P → P defined by D(f(x)) = df/dx. Here I denote P = R[x],the
set of all polynomials with real coefficients. Notice

Ker(D) = {f(x) ∈ P | df/dx = 0} = {f(x) ∈ P | f(x) = c}.

In this case D is already a surjection since we work with all polynomials hence:

Ψ([f(x)]) = f ′(x)

is an isomorphism. Just to reiterate in this case:

Ψ([f(x)]) = Ψ([g(x)]) ⇒ f ′(x) = g′(x) ⇒ f(x) = g(x) + c ⇒ [f(x)] = [g(x)].

Essentially, Ψ is just d/dx on equivalence classes of polynomials. Notice that Ψ−1 : P → P/Ker(D)
is a mapping you have already studied for several months! In particular,

Ψ−1(f(x)) = {F (x) | dF/dx = f(x)}
15you could alternatively swap the codomain U for U/T (W ) which effectively makes T (w) = 0. I’ll leave U alone

for our current discussion, one quotient is enough to start.
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Just to be safe, let’s check that my formula for the inverse is correct:

Ψ−1(Ψ([f(x)]) = Ψ−1(df/dx) = {F (x) | dF/dx = df/dx} = {f(x) + c | c ∈ R} = [f(x)].

Conversely, for f(x) ∈ P ,

Ψ(Ψ−1(f(x)) = Ψ({F (x) | dF/dx = f(x)}) = f(x).

Perhaps if I use a different notation to discuss the preceding example then you will see what is
happening: we usually call Ψ−1(f(x)) =

∫
f(x)dx and Ψ = d/dx then

d

dx

∫
f dx = f &

∫
d

dx
(f + c1) dx = f + c2

In fact, if your calculus instructor was careful, then he should have told you that when we calculate
the indefinite integral of a function the answer is not a function. Rather,

∫
f(x) dx = {g(x) | g′(x) =

f(x)}. However, nobody wants to write a set of functions every time they integrate so we instead
make the custom to write g(x)+c to indicate the non-uniqueness of the answer. Antidifferentiation
of f is finding a specific function F for which F ′(x) = f(x). Indefinite integration of f is the
process of finding the set of all functions

∫
fdx for which d

dx

∫
fdx = f . In any event, I hope you

see that we can claim that differentiation and integration are inverse operations, however, this is in
the understanding that we work on a quotient space of functions where two functions which differ
by a constant are considered the same function. In that context, f + c1 = f + c2.

Example 7.6.11. Consider D : P2 → P2 defined by

D(ax2 + bx+ c) = 2ax+ b

Observe Ψ([ax2 + bx+ c]) = 2ax+ b defines a natural isomorphism from P2/R to P1 where I denote
Ker(D) = R. In other words, when I write the quotient by R I am identifying the set of constant
polynomials with the set of real numbers.

Example 7.6.12. Consider S : Rn×n → Rn×n defined by S(A) = A + AT . Notice that the range
of S(A) is simply symmetric matrices as (S(A))T = (A+AT )T = AT + (AT )T = A+AT = S(A).
Moreover, if AT = A the clearly S(A/2) = A hence S is onto the symmetric matrices. What is the
kernel of S? Suppose S(A) = 0 and note:

A+AT = 0 ⇒ AT = −A.

Thus Ker(S) is the set of antisymmetric matrices. Therefore,

Ψ([A]) = A+AT

is an isomorphism from Rn×n/Ker(S) to the set of symmetric n× n matrices.

Example 7.6.13. This example will be most meaningful for students of differential equations,
however, there is something here for everyone to learn. An n-th order linear differential equation
can be written as L[y] = g. Here y and g are functions on a connected interval I ⊆ R. There is an
existence theorem for such problems which says that any solution can be written as

y = yh + yp
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where L[yh] = 0 and L[yp] = g. The so-called homogeneous solution yh is generally formed from
a linear combination of n-LI fundamental solutions y1, y2, . . . , yn as

yh = c1y1 + c2y2 + · · ·+ cnyn.

Here L[yi] = 0 for i = 1, 2, . . . , n. It follows that Null(L) is n-dimensional and the fundamental
solution set forms a basis for this null-space. On the other hand the particular solution yp can be
formed through a technique known as variation of parameters. Without getting into the techni-
cal details, the point is there is an explicit, although tedious, method to calculate yp once we know
the fundamental solution set and g. Techniques for finding the fundamental solution set vary from
problem to problem. For the constant coefficient case or Cauchy Euler problems it is as simple as
factoring the characteristic polynomial and writing down the homogeneous solutions. Enough about
that, let’s think about this problem in view of quotient spaces.

The differential equation L[y] = g can be instead thought of as a function which takes g as an input
and produces y as an output. Of course, given the infinity of possible homogeneous solutions this
would not really be a function, it’s not single-valued. If we instead associate with the differential
equation a function H : V → V/Null(L) where H(g) = y+Null(L) then the formula can be compactly
written as H(g) = [yp]. For convenience, suppose V = C0(R) then dom(H) = V as variation of
parameters only requires integration of the forcing function g. Thus H−1 : V/Null(L) → V is an
isomorphism. In short, the mathematics I outline here shows us there is a one-one correspondance
between forcing functions and solutions modulo homogeneous terms. Linear differential equations
have this beatiful feature; the net-response of a system L to inputs g1, . . . , gk is nothing more than
the sum of the responses to each forcing term. This is the principal of superposition which makes
linear differential equations comparitively easy to understand.

There are many things to learn about quotient space. A few more are detailed in the next section
and the exercises.

7.7 structure of subspaces

I will begin this section by following an elegant construction16 I found in Morton L. Curtis’ Ab-
stract Linear Algebra pages 28-30. A bit later, I take inspiration from the section on direct sum
decompositions in Jim Hefferon’s Linear Algebra. The results we encounter in this section prove use-
ful in Part III when we study eigenvectors so we best be careful to remember our work here for later.

Recall the construction in Example 6.1.8, this is known as the external direct sum. If V,W are
vector spaces over R then V ×W is given the following vector space structure:

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2) & c(v, w) = (cv, cw).

In the vector space V ×W the vector (0V , 0W ) = 0V×W . Although, usually we just write (0, 0) = 0.
Furthermore, if βV = {v1, . . . , vn} and βW = {w1, . . . , wm} then a basis for V ×W is simply:

β = {(vi, 0)|i ∈ Nn} ∪ {(0, wj)|j ∈ Nm}

16I don’t use his notation that A⊕B = A×B, I reserve A⊕B to denote internal direct sums.
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I invite the reader to check LI of β. To see how β spans, please consider the calculation below:

(x, y) = (x, 0) + (0, y)

= (x1v1 + · · ·+ xnvn, 0) + (0, y1w1 + · · · ymwm)

= x1(v1, 0) + · · ·+ xn(vn, 0) + y1(0, w1) + · · · ym(0, wm)

Thus β is a basis for V ×W and we can count #(β) = n+m hence dim(V ×W ) = dim(V )+dim(W ).

When a given vector space V is isomorphic to A × B where A,B ≤ V then V is said to be the
internal direct sum of A and B. In this case, it is customary to write V = A⊕B.
We study the mapping η as to connect the external and internal direct sum concepts.

Theorem 7.7.1.

Suppose A,B ≤ V . Let η : A×B → V be defined by η(a, b) = a+ b. Then:

(i.) η is linear

(ii.) η is injective iff A ∩B = {0}

(iii.) η is surjective iff span(A ∪B) = V

Proof: (i.) linearity of η follows from the calculation below:

η(c(a, b) + (x, y)) = η((ca+ x, cb+ y)) = ca+ x+ cb+ y = c(a+ b) + x+ y = cη(a, b) + η(x, y).

(ii.) If η is injective and x ∈ A ∩ B then x ∈ A and x ∈ B. Observe η(x, 0) = η(0, x) = x hence
(x, 0) = (0, x) and we conclude x = 0. Thus A∩B ⊆ {0} and clearly {0} ⊆ A∩B thus A∩B = {0}.
Conversely, suppose A ∩ B = {0}. Suppose η(x, y) = 0 then x + y = 0. Thus x ∈ A and y ∈ B
with x = −y hence x, y ∈ A∩B = {0}. We find Ker(η) = {(0, 0)} thus the linear map η is injective.

(iii.) suppose η is surjective. If v ∈ V then there exists (a, b) ∈ A⊕ B for which η(a, b) = v. But,
this is just to say a+b = v hence v ∈ span(A∪B) thus V ⊆ span(A∪B). Clearly span(A∪B) ⊆ V
hence span(A ∪ B) = V . Conversely, suppose span(A ∪ B) = V . If v ∈ V then there exist ai ∈ A
and bj ∈ B for which v =

∑k
i=1 ciai +

∑l
j=1 djbj let a =

∑k
i=1 ciai and b =

∑l
j=1 djbj note a ∈ A

and b ∈ B as A,B are subspaces. Note, η(a, b) = a+ b = v. Hence η is surjective. �

Let us be precise for future reference.

Definition 7.7.2.

If A,B ≤ V and η : A × B → V defined by η(a, b) = a + b is an isomorphism then we say
V is the internal direct sum of A and B and write V = A⊕B.

An alternative definition of internal direct sum is given as follows: if

V = A+B & A ∩B = {0}

then V = A⊕B. If that definition is given then we have no need of the A×B construction since all
the addition takes place inside V . However, I like the definition given since it helps us understand
the relation of internal and external direct sums quite explicitly.
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Proposition 7.7.3.

If V = A⊕B then A ∩B = {0} and A+B = V where A+B = span(A ∪B).

Proof: by definition, η : A × B → V is an isomorphism. Hence η is both injective and surjective
so Theorem 7.7.1 affirms the proposition. �
A convenient notation for spans of a single element v in V a vector space over R is simply vR. I
utilize this notation in the examples below.

Example 7.7.4. The cartesian plane R2 = e1R⊕ e2R.

Example 7.7.5. The complex numbers C = R ⊕ iR. We could discuss how extending i2 = −1
linearly gives this an algebraic structure. We have a whole course in the major to dig into this
example.

Example 7.7.6. The hyperbolic numbers H = R ⊕ jR. We could discuss how extending j2 = 1
linearly gives this an algebraic structure. This is less known, but it naturally describes problems
with some hyperbolic symmetry.

Example 7.7.7. The dual numbers N = R⊕ εR. We could discuss how extending ε2 = 0 linearly
gives this an algebraic structure.

The algebraic comments above are mostly for breadth. We focus on linear algebra17 in these notes.

Proposition 7.7.8.

If V = A⊕B then V/A ≈ B.

Proof: Since V ≈ A×B under η : A×B → V with η(a, b) = a+ b it follows for each v ∈ V there
exists a unique pair (a, b) such that v = a + b. Given this decomposition of each vector in V we
can define a projection onto B as follows: define πB : V → B by πB(a + b) = a. It is clear πB is
linear and Ker(πB) = A thus the first isomorphism theorem gives V/A ≈ B. �

Naturally we should consider extending the discussion to more than two subspaces.

Definition 7.7.9.

If A1, A2, . . . , Ak ≤ V and η : A1 ×A2 × · · · ×Ak → V defined by

η(a1, a2, . . . , ak) = a1 + a2 + · · ·+ ak

is an isomorphism then we say V is the internal direct sum of A1, A2, . . . Ak and write
V = A1 ⊕A2 ⊕ · · · ⊕Ak which may also be denoted V = ⊕ki=1Ai.

The necessary criteria for a given k-tuple of subspaces A1, . . . , Ak ≤ V to form a direct sum
decomposition of V . Naturally, we do need V to be covered by the sum of the subspaces formed by
the span of their union. However, the nature of the isomorphism above above forbids some overlap
between the subspaces. For example, V + V = V but we would not be able to say V ⊕ V = V .
Furthermore, you may be tempted to suppose the criteria for k = 2 suffices if we extend it pair
wise here. But, the example below shows pairwise intersection triviality is also insufficient.

17a vector space paired with a multiplication is called an algebra. The rules i2 = −1, j2 = 1 and ε2 = 0 all serve to
define non-isomorphic algebraic structures on R2. These are isomorphic as vector spaces.
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Example 7.7.10. Let A1 = (1, 1)R and A2 = (1, 0)R and A3 = (1, 1)R. It is not hard to verify
A1 + A2 + A3 = span(A1 ∪ A2 ∪ A3) = R2 and A1 ∩ A2 = A1 ∩ A3 = A2 ∩ A3 = {0}. However,
it is certainly not possible to find an isomorphism of R2 and the three dimensional vector space
A1 ×A2 ×A3.

There are three ways to describe the needed criteria. This essentially Lemma 4.8 of Hefferon’s
Linear Algebra see page 130-131.

Theorem 7.7.11.

Suppose A1, A2, . . . , Ak ≤ V and suppose β1, β2 . . . , βk are bases for A1, A2, . . . , Ak respective.
The following are equivalent:

(i.) V = A1 ⊕A2 ⊕ · · · ⊕Ak

(ii.) each v ∈ V there exist unique vi ∈ Ai such that v = v1 + v2 + · · ·+ vk

(iii.) β1 ∪ β2 ∪ · · · ∪ βk forms a basis for V

(iv.) any finite set {a1, a2, . . . , ak | 0 6= ai ∈ Ai for all i ∈ Nk} is LI.

Proof: see Hefferon for a nice proof of the equivalence of (ii.), (iii.) and (iv.). Let us prove the
equivalence of (i.) and (ii.). Suppose (i.) is true. Let v ∈ V then there exists a unique k-tuple
(v1, v2, . . . , vk) ∈ A1 ×A2 × · · · ×Ak for which

η(v1, v2, . . . , vk) = v1 + v2 + · · ·+ vk = v.

This proves (ii.). Now suppose (ii.) is true. Define η for (i.) by the unique expansion for v =
v1 + v2 + · · ·+ vk we define

η−1(v1 + v2 + · · ·+ vk) = (v1, v2, . . . , vk).

It follows that η(v1, v2, . . . , vk) = v1 + v2 + · · ·+ vk defines an isomorphism from A1×A2× · · ·×Ak
to V . This shows (i.) is true. �

Example 7.7.12. Quaternions. H = R ⊕ iR ⊕ jR ⊕ kR where i2 = j2 = k2 = −1. Our notation
for vectors in most calculus texts has a historical basis in Hamilton’s quarternions.

There is much more to say, but I’ll stop here. I hope the exercises help bring further depth to this
topic. In particular, when V permits a direct sum decomposition this allows us to align the basis
with the decomposition. The result is certain formulas simplify in a very nice way due to a certain
block structure. On a deeper level, there are some simple but elegant things which should be said
about the univerisal principal as it can be seen at work in the first isomorphism theorem.
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7.8 examples of isomorphisms

In your first read of this section, you might just read the examples. I have purposely put the
big-picture and extracurricular commentary outside the text of the examples.

The coodinate map is an isomorphism which allows us to trade the abstract for the concrete.

Example 7.8.1. Let V be a vector space over R with basis β = {f1, . . . , fn} and define Φβ by
Φβ(fj) = ej ∈ Rn extended linearly. In particular,

Φβ(v1f1 + · · ·+ vnfn) = v1e1 + · · ·+ vnen.

This map is a linear bijection and it follows V ≈ Rn.

Example 7.8.2. Suppose V = {A ∈ C2×2 | AT = −A} find an isomorphism to Pn ≤ R[x] for
appropriate n. Note, Aij = −Aji gives A11 = A22 = 0 and A12 = −A21. Thus, A ∈ V has the
form:

A =

[
0 a+ ib

−a− ib 0

]
I propose that Ψ(a+ bx) =

[
0 a+ ib

−a− ib 0

]
provides an isomorphism of P1 to V .

Example 7.8.3. Let V = (C×R)2×2 and W = C2×3. The following is an isomorphism from V to
W :

Ψ

[
(z1, x1) (z2, x2)
(z3, x3) (z4, x4)

]
=

[
z1 z2 z3

z4 x1 + ix2 x3 + ix4

]
Example 7.8.4. Consider V ×W/({0} ×W ) and V . To show these are isomorphic we consider
T (v, w) = v. It is simple to verify that T : V ×W → V is a linear surjection. Moreover, Ker(T ) =
{(0, w) | w ∈W} = {0} ×W . The first isomorphism theorem reveals V ×W/({0} ×W ) ≈ V .

Example 7.8.5. Consider P2(C) = {ax2 + bx + c | a, b, c ∈ C}. Consider the subspace of P2(C)
defined as V = {f(x) ∈ P2(C) | f(i) = 0}. Let’s find an isomorphism to Cn for appropriate n. Let
f(x) = ax2 + bx+ c ∈ V and calculate

f(i) = a(i)2 + bi+ c = −a+ bi+ c = 0 ⇒ c = a− bi

Thus, f(x) = ax2 + bx+ a− bi = a(x2 + 1) + b(x− i). The isomorphism from V to C2 is apparent
from the calculation above. If f(x) ∈ V then we can write f(x) = a(x2 + 1) + b(x− i) and

Ψ(f(x)) = Ψ(a(x2 + 1) + b(x− i)) = (a, b).

The inverse map is also easy to find: Ψ−1(a, b) = a(x2 + 1) + b(x− i)

Example 7.8.6. Consider F(R) the set of all functions on R. Observe, any function can be written
as a sum of an even and odd function:

f(x) =
1

2

(
f(x) + f(−x)

)
+

1

2

(
f(x)− f(−x)

)
Furthermore, if we denote the subspaces of even and odd functions as Feven ≤ F(R) and Fodd ≤
F(R) and note Feven∩Fodd = {0} hence F(R) = Feven⊕Fodd. Consider the projection T : F(R)→
Feven clearly Null(T ) = Fodd hence by the first isomorphism theorem, F(R)/Fodd ≈ Feven.
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Example 7.8.7. Let Ψ(f(x), g(x)) = f(x)+xn+1g(x) note this defines an isomorphism of Pn×Pn
and P2n+1. For example, n = 1,

Ψ((ax+ b, cx+ d)) = ax+ b+ x2(cx+ d) = cx3 + dx2 + ax+ b.

The reason we need 2n+1 is just counting: dim(Pn) = n+1 and dim(Pn×Pn) = 2(n+1). However,
dim(P2n+1) = (2n+ 1) + 1.

Example 7.8.8. Let V = L(Rn,Rm) and W = L(Rm,Rn). Transposition gives us a natural
isomorphism as follows: for each L ∈ V there exists A ∈ Rm×n for which L = LA. However, to
AT ∈ Rn×m there naturally corresponds LAT : Rm → Rn. Since V and W are spaces of functions
an isomorphism is conveniently given in terms A 7→ LA isomorphism of Rm×n and L(Rn,Rm): in
particular Ψ : V →W is given by:

Ψ(LA) = LAT .

To write this isomorphism without the use of the LA notation requires a bit more thought. Take off
your shoes and socks, but them back on, then write what follows. Let S ∈ V and x ∈ Rm,

(Ψ(S))(x) = (xT [S])T = [S]Tx = L[S]T (x).

Since the above holds for all x ∈ Rm it can be written as Ψ(S) = L[S]T .

The interested reader might appreciate the example below shows Theorem 7.5.2 in action.

Example 7.8.9. Let A =

[
1 1 1 1
2 2 3 0

]
find an isomorphism from Null(A) to Col(A). As we

recall, the CCP reveals all, we can easily calculate:

rref(A) =

[
1 1 0 3
0 0 1 −2

]
Null space is x ∈ R4 for which Ax = 0 hence x1 = −x2 − 3x4 and x3 = 2x4 with x2, x4 free. Thus,

x = (−x2 − 3x4, x2, 2x4, x4) = x2(−1, 1, 0, 0) + x4(−3, 0, 2, 1)

and we find βN = {(−1, 1, 0, 0), (−3, 0, 2, 1)} is basis for Null(A). On the other hand βC =
{(1, 2), (1, 3)} forms a basis for the column space by the CCP. Let Ψ : Null(A) → Col(A) be
defined by extending

Ψ((−1, 1, 0, 0)) = (1, 2) & Ψ((−3, 0, 2, 1)) = (1, 3)

linearly. In particular, if x ∈ Null(A) then Ψ(x) = x2(1, 2) + x4(1, 3). Fun fact, with our choice of

basis the matrix [Ψ]βN ,βC =

[
1 0
0 1

]
The interested reader may also note that whenever we form a linear transformation T : V → W
be mapping the j-th β basis element of V to the j-th γ basis element of W this gives a block-
identity matrix in [T ]β,γ . If #(β) = #(γ) then, as in the above example, the matrix of T is simply
[T ]β,γ = I. However, if dim(W ) > dim(V ) then the other blocks of the matrix are zero as by
construction we already mapped all non-trivial parts of V to the first j-dimensions of W . The
remaining dim(W )− j dimensions are untouched by T as we construct it. If T is instead given and
our problem is to find bases for V and W for which the matrix is all zero with a identity matrix
block in the upper left block then we must choose a basis carefully as described in Section 7.5. Let
us return to the considerably easier problem of constructing isomorphisms between given vector
spaces. The simplest advice is just, find a basis for each space and map one to the other. I find
that is a good approach for many problems. Of course, there are other tools, but first the basics.
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Example 7.8.10. Let V = P2 and W = {f(x) ∈ y | f(1) = 0}. By the factor theorem of algebra
we know f(x) ∈ W implies f(x) = (x − 1)g(x) +where g(x) ∈ P2. Define, Ψ(f(x)) = g(x) where
g(x)(x− 1) = f(x). We argue that Ψ is an isomorphism. Note Ψ−1(g(x)) = (x− 1)g(x) and it is
clear that (x− 1)g(x) ∈W moreover, linearity of Ψ−1 is simply seen from the calculation below:

Ψ−1(cg(x) +h(x)) = (x− 1)(cg(x) +h(x)) = c(x− 1)g(x) + (x− 1)g(x) = cΨ−1(g(x)) + Ψ−1(h(x)).

Linearity of Ψ follows by Theorem 7.2.14 as Ψ = (Ψ−1)−1. Thus V ≈W .

You might note that I found a way around using a basis in the last example. Perhaps it is helpful
to see the same example done by the basis mapping technique.

Example 7.8.11. Let V = P2 and W = {f(x) ∈ y | f(1) = 0}. Ignoring the fact we know the
factor theorem, let us find a basis the hard way: if f(x) = ax3 + bx2 + cx+ d ∈W then

f(1) = a+ b+ c+ d = 0

Thus, d = −a− b− c and

f(x) = a(x3 − 1) + b(x2 − 1) + c(x− 1)

We find basis β = {x3 − 1, x2 − 1, x− 1} for W . Define φ : W → P2 by linearly extending:

φ(x3 − 1) = x2, φ(x2 − 1) = x, φ(x− 1) = 1.

In this case, a moments reflection reveals:

φ−1(ax2 + bx+ c) = a(x3 − 1) + b(x2 − 1) + c(x− 1).

Again, these calculations serve to prove W ≈ P2.

It might be interesting to relate the results of Example 7.8.10 and Example 7.8.11. Examing the
formula for Ψ−1(g(x)) = (x − 1)g(x) it is evident that we should factor out (x − 1) from our φ−1

formula to connect to the Ψ−1 formula,

φ−1(ax2 + bx+ c) = a(x− 1)(x2 + x+ 1) + b(x− 1)(x+ 1) + c(x− 1).

= (x− 1)[a(x2 + x+ 1) + b(x+ 1) + c]

= (x− 1)[ax2 + (a+ b)x+ a+ b+ c]

= Ψ−1(ax2 + (a+ b)x+ a+ b+ c).

Evaluating the equation above by Ψ yeilds (Ψ ◦φ−1)(ax2 + bx + c) = ax2 + (a + b)x + a + b + c.
Therefore, if γ = {x2, x, 1} then we may easily deduce

[Ψ ◦φ−1]γ,γ =

 1 0 0
1 1 0
1 1 1

 .
Example 7.8.12. Let V = C and MC the set of matrices of the form:

[
a −b
b a

]
. Observe that

the map Ψ(a+ib) =

[
a −b
b a

]
is a linear transformation with inverse Ψ−1.

([
a −b
b a

])
= a+ib.

Therefore, V and MC are isomorphic as vector spaces.
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Let me continue past the point of linear isomorphism. In the example above, we can show that V
and MC are isomorphic as algebras over R. In particular, notice

(a+ ib)(c+ id) = ac− bd+ i(ad+ bc) &

[
a −b
b a

] [
c −d
d c

]
=

[
ac− bd −(ad+ bc)
ad+ bc ac− bd

]
.

As you can see the pattern of the multiplication is the same. To be precise,

Ψ( (a+ ib)(c+ id)︸ ︷︷ ︸
complex multiplication

) = Ψ(a+ ib)Ψ(c+ id)︸ ︷︷ ︸
matrix multiplication

.

These special 2×2 matrices form a representation of the complex numbers. Incidentally, you can
prove there is no R-algebra isomorphism to the algebras described in Examples 7.7.6 and 7.7.7. In
contrast, R⊕ iR,R⊕ jR and R⊕ εR are all linearly isomorphic. The term isomorphism has wide
application in mathematics. In this course, the unqualified term ”isomorphism” would be more
descriptively termed ”linear-isomorphism”. An isomorphism of R-algebras is a linear isomorphism
which also preserves the multiplication ? of the algebra; Ψ(v ? w) = Ψ(v)Ψ(w). Another related
concept, a non-associative algebra on a vector space which is a generalization of the cross-product
of vectors in R3 is known as18 a Lie Algebra. In short, a Lie Algebra is a vector space paired with
a Lie bracket. A Lie algebra isomorphism is a linear isomorphism which also preserves the Lie
bracket; Ψ([v, w]) = [Ψ(v),Ψ(w)]. Not all isomorphisms are linear isomorphisms. For example, in
abstract algebra you will study isomorphisms of groups which are bijections between groups which
preserves the group multiplication. My point is just this, the idea of isomorphism, our current
endeavor, is one you will see repeated as you continue your study of mathematics. To quote a
certain show: it has happened before, it will happen again.

18it is pronounced ”Lee”, not what Obama does
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Chapter 8

determinants

In this chapter we motivate the determinant of a matrix as a simple criteria to judge the invertibil-
ity of a given square matrix. Once the definition is settled we prove a series of useful proposition
to simplify the computations of determinants. We use the determinant to give an abstraction of
length, area and volume to n-volume1. In addition, the determinant serves to construct Cramer’s
Rule which gives us a formula to solve systems with a unique solution. Then, a formula for the
inverse of a matrix itself is obtained via the transpose of matrix of cofactors rescaled by division of
the determinant. Finally, we pause to again give a long list of equivalent conditions for invertibility
or singularity of an n × n matrix. The determinant finds an important place on that list as there
are many problems one can ask which are shockingly simple to answer with determinants and yet
confound in the other approaches.

I should warn you there are some difficult calculations in this Chapter. However, the good news
is these are primarily to justify the various properties of the determinant. I probably will not
present these in lecture because the method used to prove them is not generally of interest in this
course. Index manipulation and even the elementary matrix arguments are a means to an end in
this chapter. That said, I do hope you read them so you can appreciate the nature of the tool when
you use it. For example, when you solve a problem using det(AB) = det(A)det(B) you should
realize that is a nontrivial algebraic step. That move carries with it the full force of the arguments
we see in this chapter.

8.1 a criteria for invertibility

In this section we study the problem of invertibility and in the process we discover the formulas
for the determinant of 1 × 1, 2 × 2 and 3 × 3 matrices. With that settled, I give a general defini-
tion which applies to arbitrary n and we conclude the section by stating the formulas which are
often used for explicit calculation. Much of this section is an attempt at motivating the definition.
Fortunately, determinants have no feelings, so, if you don’t understand where they come from, you
can still work with them just the same.

We have studied a variety of techniques to ascertain the invertibility of a given matrix. Recall,
if A is an n × n invertible matrix then Ax = b has a unique solution x = A−1b. Alternatively,
rref(A) = I. We now seek some explicit formula in terms of the components of A. Ideally this

1a good slogan for the determinant is just this: the determinant gives the volume. Or more precisely, the
determinant of a matrix is the volume subtended by the convex hull of its columns.
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formula will determine if A is invertible or not.

The base case n = 1 has A = a ∈ R as we identify R1×1 with R. The equation ax = b has solution
x = b/a provided a 6= 0. Thus, the simple criteria in the n = 1 case is merely that a 6= 0 .

The n = 2 case has A =

[
a b
c d

]
. We learned that the formula for the 2× 2 inverse is:

A−1 =
1

ad− bc

[
d −b
−c a

]
.

The necessary and sufficient condition for invertibility here is just that ad − bc 6= 0. That said, it
may be helpful to derive this condition from row reduction. For brevity of discussion2 we assume
a, c 6= 0.

A =

[
a b
c d

]
cr1, ar2−−−−−−→

[
ac bc
ac ad

]
r2 − r1−−−−−→

[
ac bc
0 ad− bc

]
Observe that ad− bc 6= 0 is a necessary condition to reduce the matrix A to the identity.

The n = 3 case has A =

 a d g
b e h
c f i

. I assume here for brevity that a, b, c, d, e, f 6= 0

A =

 a d g
b e h
c f i

 bcr1, acr2, abr3−−−−−−−−−−−−→

 abc dbc gbc
acb ace ach
abc abf abi


r2 − r1, r3 − r1−−−−−−−−−−−−→

 abc dbc gbc
0 c(ae− db) c(ah− gb)
0 b(af − dc) b(ai− gc)


r1/(bc), r2/c, r3/b−−−−−−−−−−−−−−→

 a d g
0 ae− db ah− gb
0 af − dc ai− gc


r2/(ae− db)−−−−−−−−−→

 a d g

0 1 ah−gb
ae−db

0 af − dc ai− gc


r3 − (af − dc)r2−−−−−−−−−−−−−→

 a d g

0 1 ah−gb
ae−db

0 0 ai− gc− (af − dc)ah−gbae−db


(ae− db)r3−−−−−−−−−→

 a d g

0 1 ah−gb
ae−db

0 0 (ai− gc)(ae− db)− (af − dc)(ah− gb)



Apparently, we need (ai− gc)(ae− db)− (af − dc)(ah− gb) 6= 0. Let’s see if we can simplify it,

(ai− gc)(ae− db)− (af − dc)(ah− gb) = a2ie− aidb− gcae+ gcdb− a2fh+ afgb+ dcah− dcgb
= a[aie− idb− gce− afh+ fgb+ dch]

2you could break into further cases if you want a more complete motivating discussion, our current endeavor is to
explain why the determinant formula is natural
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We already assumed a 6= 0 so it is most interesting to require:

aie− idb− gce− afh+ fgb+ dch 6= 0

The condition above would seem to yield invertibility of A. To be careful, the calculation above does
not prove anything about matrices for which the above row operations are forbidden. Technically,
you’d need to examine those cases separately to prove the boxed criteria suffices for invertiblity of
A. We take a different, less direct, approach in this chapter. That said, perhaps this section helps
motivate why we define the following determinants:

det[a] = a,

det

[
a b
c d

]
= ad− bc,

det

 a d g
b e h
c f i

 = aie− idb− gce− afh+ fgb+ dch

If x 6= 0 then −x 6= 0 thus the invertibility criteria alone does not suffice to uniquely determine the
determinant. We’ll see in a later section that the choice of sign has geometric significance. If a set
of n − 1 vectors v1, . . . vn−1 forms a hyperplane in Rn and we consider det[v1| · · · |vn|w] for some
vector w then the determinant is positive if w is one one side of the hyperplane and it is negative
if w is one the other side. If w is on the hyperplane then the determinant is zero. These facts serve
to determine the definition given below.

Before I state the definition, I’ll pause to note a few additional features of the invertibility criteria
we derived thus far. You might notice the formulas we have derived are homogeneous n-th order
polynomials in the components of the matrix. However, they are peculiar in that no component is
repeated. Each component appears at most once in each summand of the formula. Furthermore,
there is a balance between the number of positive and negative signs in the formula and the number
of summands is n! for each case.

The precise definition of the determinant is intrinsically combinatorial. A permutation σ : Nn → Nn
is a bijection. Every permutation can be written as a product of an even or odd composition of
transpositions. The sgn(σ) = 1 if σ is formed from an even product of transpositions. The
sgn(σ) = −1 if σ is formed from an odd product of transpositions. The sum below is over all
possible permutations,

det(A) =
∑
σ

sgn(σ)A1σ(1)A2σ(2) · · ·Anσ(n)

this provides an explicit definition of the determinant. For example, in the n = 2 case we have
σo(x) = x or σ1(1) = 2, σ1(2) = 1. The sum over all permutations has just two terms in the n = 2
case,

det(A) = sgn(σo)A1σo(1)A2σo(2) + sgn(σ1)A1σ1(1)A2σ1(2) = A11A22 −A12A21

In the notation A11 = a,A12 = b, A21 = c, A22 = d the formula above says det(A) = ad− bc.

Pure mathematicians tend to prefer the definition above to the one I am preparing below. I would
argue mine has the advantage of not summing over functions. My sums are simply over integers.
The calculations I make in the proofs in this Chapter may appear difficult to you, but if you gain
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a little more experience with index calculations I think you would find them accessible. I will not
go over them all in lecture. I would recommend you at least read over them.

Definition 8.1.1.

Let εi1i2...in be defined to be the completely antisymmetric symbol in n-indices. We define
ε12...n = 1 then all other values are generated by demanding the interchange of any two
indices is antisymmetric. This is also known as the Levi-Civita symbol. In view of this
notation, we define the determinant of A ∈ Rn×n as follows:

det(A) =
∑

i1,i2,...,in

εi1,i2,...,inA1i1A2i2 · · ·Anin .

Direct implementation of the formula above is straightforward, but, tedious.

Example 8.1.2. I prefer this definition. I can actually calculate it faster, for example the n = 3
case is pretty quick:

det(A) = ε123A11A22A33 + ε231A12A23A31 + ε312A13A21A32

+ε321A13A22A31 + ε213A12A21A33 + ε132A11A23A32

In principle there are 27 terms above but only these 6 are nontrivial because if any index is repeated
the εijk is zero. The only nontrivial terms are ε123 = ε231 = ε312 = 1 and ε321 = ε213 = ε132 = −1.
Thus,

det(A) = A11A22A33 +A12A23A31 +A13A21A32

−A13A22A31 −A12A21A33 −A11A23A32

There is a cute way to remember this formula by crossing diagonals in the matrix twice written.

Cute-tricks aside, we more often find it convenient to use Laplace’s expansion by minor formulae
to actually calculate explicit determinants. I’ll postpone proof of the equivalence with the defintion
until Section 8.3 where you can see the considerable effort which is required to connect the formulas.3

These formulas show you how to calculate determinants of n×n matrices as an alternating sum of
(n− 1)× (n− 1) matrix determinants. I’ll begin with the 2× 2 case,

det

(
a b
c d

)
= ad− bc.

Then the 3× 3 formula is:

det

a b c
d e f
g h i

 = a · det

(
e f
h i

)
− b · det

(
d f
g i

)
+ c · det

(
d e
g h

)
and finally the 4× 4 determinant is given by

det


a b c d
e f g h
i j k l
m n o p

 = a · det

f g h
j k l
n o p

− b · det

 e g h
i k l
m o p

 (8.1)

+ c · det

 e f h
i j l
m n p

− d · det

 e f g
i j k
m n o

 (8.2)

3those are probably the most difficult calculations contained in these notes.
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8.2 determinants and geometry

What do these determinant formulas have to do with geometry? In this section I showcase a
variety of examples, if you have not had Calculus III then please don’t despair. This section is
mostly motivational.

Example 8.2.1. Consider the vectors < l, 0 > and < 0, w >. They make two sides of a rectangle
with length l and width w. Notice

det

[
l 0
0 w

]
= lw.

In contrast,

det

[
0 w
l 0

]
= −lw.

Interestingly this works for parallellograms with sides < a, b > and < c, d > the area is given by
±det

[
a b
c d

]
.

Maybe you can see it better in the diagram below: the point is that triangles T1 and T2 match nicely
but the T3 is included in the red rectangle but is excluded from the green parallelogram. The area
of the red rectangle A1B2 less the area of the blue square A2B1 is precisely the area of the green
parallelogram.
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Perhaps you recall from calculus III that we learned a parallelogram with sides ~A, ~B can be parametrized
by ~r(u, v) = u ~A+ v ~B. We have ~A = (a, b, 0) and ~B = (c, d, 0) if you view the parallelogram from a
three dimensional perspective. Moreover,

~A× ~B = det

 e1 e2 e3

a b 0
c d 0

 = (ad− bc)e3.

The sign of ad − bc indicates the orientation of the paralellogram. If the paralellogram lives in
the xy-plane then it has an up-ward pointing normal if the determinant is positive whereas it has a
downward pointing normal if the determinant is negative.

Example 8.2.2. If we look at a three dimensional box with vectors ~A, ~B, ~C pointing along three
edges with from a common corner then it can be shown that the volume V is given by the determinant

V = ±det

 ~A
~B
~C


Of course it’s easy to see that V = lwh if the sides have length l, width w and height h. However,
this formula is more general than that, it also holds if the vectors lie along a paralell piped. Again
the sign of the determinant has to do with the orientation of the box. If the determinant is positive
then that means that the set of vectors { ~A, ~B, ~C} forms a righted-handed set of vectors. In terms of
calculus III, ~C and ~A× ~B both point off the same side of the plane containing ~A and ~B; the ordering
of the vectors is roughly consistent with the right-hand rule. If the determinant of the three vectors
is negative then they will be consistent with the (inferior and evil) left-hand rule. I say ”roughly”
because ~A× ~B need not be parallel with ~C.

If you study the geometry of cross and dot products it is not too hard to see that V = | ~A · ( ~B× ~C)|.
This formula is easy to reproduce,

det

 A1 A2 A3

B1 B2 B3

C1 C2 C3

 = A1(B2C3 −B3C2) +A2(B1C3 −B3C1) +A3(B1C2 −B2C1)

= ~A · ( ~B × ~C).

If you’d like to know more about the geometry of cross products then you should take calculus III
and read more than the mainstream required calculus text. It is interesting that the determinant
gives formulas for cross products and the so-called ”triple product” above.

Example 8.2.3. To calculate the cross-product of ~A and ~B we can use the heuristic rule

~A× ~B = det

 e1 e2 e3

A1 A2 A3

B1 B2 B3


technically this is not a real ”determinant” because there are vectors in the top row but numbers in
the last two rows.
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I hope the n = 2 and n = 3 cases help motivate the definition which follows.

Definition 8.2.4.

Let v1, v2, . . . , vn be vectors in Rn then the n-volume of the n-piped P with edges
v1, v2, . . . , vn is given by

Vol(P ) = det [v1|v2| · · · |vn] .

Notice the terminology n-volume includes area as the n = 2 case and ordinary spatial volume as
n = 3. Also, as a check on the definition above, if we consider the unit n-cube in Rn it is P = [0, 1]n

and we calculate4:

Vol(P ) = det [e1|e2| · · · |en] = det(I) = 1.

On the other hand, we also learn in a later section that if any column is repeated the determinant
is zero. This matches intuition as you imagine an n-rectangle, if two edges from a common vertex
are colinear than it’s not actually an n-dimensional rectangle so we’d say its n-volume is zero. For
example, a line-segment has zero area, a two-dimensional rectangle has zero 3-volume.

8.3 cofactor expansion for the determinant

The Levi-Civita definition of the determinant of an n× n matrix A is:

det(A) =
∑

i1,i2,...,in

εi1,i2,...,inA1i1A2i2 · · ·Anin .

This is our definition for the determinant. All other facts flow from that source. In some other
texts, the cofactor expansion of the determinant is given as the definition. I already recorded
the standard cofactor expansions for determinants up to order 4 in the first section of this chapter.
The aim of this section is to describe the general cofactor expansions and to prove they give another
equivalent characterization of the determinant.

Definition 8.3.1.

Let A = [Aij ] ∈ R n×n. The minor of Aij is denoted Mij which is defined to be the
determinant of the R(n−1)×(n−1) matrix formed by deleting the i-th column and the j-th
row of A. The (i, j)-th co-factor of A is Cij = (−1)i+jMij .

Theorem 8.3.2.

The determinant of A ∈ R n×n can be calculated from a sum of cofactors either along any
row or column;

1. det(A) = Ai1Ci1 +Ai2Ci2 + · · ·+AinCin (i-th row expansion)

2. det(A) = A1jC1j +A2jC2j + · · ·+AnjCnj (j-th column expansion)

4sorry, putting the cart before the horse here, we learn det(I) = 1 in future section
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Proof: I’ll attempt to sketch a proof of (2.) directly from the general definition. Let’s try to
identify A1i1 with A1j then A2i2 with A2j and so forth, keep in mind that j is a fixed but arbitrary
index, it is not summed over.

det(A) =
∑

i1,i2,...,in

εi1,i2,...,inA1i1A2i2 · · ·Anin

=
∑
i2,...,in

εj,i2,...,inA1jA2i2 · · ·Anin +
∑

i1 6=j,i2,...,in

εi1,i2,...,inA1i1A2i2 · · ·Anin

=
∑
i2,...,in

εj,i2,...,inA1jA2i2 · · ·Anin +
∑

i1 6=j,i3,...,in

εi1,j,...,inA1i1A2j · · ·Anin

+ · · ·+
∑

i1 6=j,i2 6=j,...,in−1 6=j
εi1,i2,...,in−1,jA1i1 · · ·An−1,in−1Anj

+
∑

i1 6=j,...,in 6=j
εi1,...,inA1i1A1i2 · · ·Anin

Consider the summand. If all the indices i1, i2, . . . in 6= j then there must be at least one repeated
index in each list of such indices. Consequently the last sum vanishes since εi1,...,in is zero if any
two indices are repeated. We can pull out A1j from the first sum, then A2j from the second sum,
and so forth until we eventually pull out Anj out of the last sum.

det(A) = A1j

( ∑
i2,...,in

εj,i2,...,inA2i2 · · ·Anin
)

+A2j

( ∑
i1 6=j,...,in

εi1,j,...,inA1i1 · · ·Anin
)

+ · · ·

+Anj

( ∑
i1 6=j,i2 6=j,...,j 6=in−1

εi1,i2,...,jA1i1A2i2 · · ·An−1,in−1

)

The terms appear different, but in fact there is a hidden symmetry. If any index in the summations
above takes the value j then the Levi-Civita symbol with have two j’s and hence those terms are
zero. Consequently we can just as well take all the sums over all values except j. In other words,
each sum is a completely antisymmetric sum of products of n − 1 terms taken from all columns
except j. For example, the first term has an antisymmetrized sum of a product of n− 1 terms not
including column j or row 1.Reordering the indices in the Levi-Civita symbol generates a sign of
(−1)1+j thus the first term is simply A1jC1j . Likewise the next summand is A2jC2j and so forth
until we reach the last term which is AnjCnj . In other words,

det(A) = A1jC1j +A2jC2j + · · ·+AnjCnj

The proof of (1.) is probably similar. We will soon learn that det(AT ) = det(A) thus (2.) =⇒ (1.).
since the j-th row of AT is the j-th columns of A.
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All that remains is to show why det(A) = det(AT ). Recall (AT )ij = Aji for all i, j, thus

det(AT ) =
∑

i1,i2,...,in

εi1,i2,...,in(AT )1i1(AT )2i2 · · · (AT )nin

=
∑

i1,i2,...,in

εi1,i2,...,inAi11Ai22 · · ·Ainn

=
∑

i1,i2,...,in

εi1,i2,...,inA1i1A2i2 · · ·Anin = det(A)

to make the last step one need only see that both sums contain all the same terms just written in
a different order. Let me illustrate explicitly how this works in the n = 3 case,

det(AT ) = ε123A11A22A33 + ε231A21A32A13 + ε312A31A12A23

+ε321A31A22A13 + ε213A21A12A33 + ε132A11A32A23

The I write the entries so the column indices go 1, 2, 3

det(AT ) = ε123A11A22A33 + ε231A13A21A32 + ε312A12A23A31

+ε321A13A22A31 + ε213A12A21A33 + ε132A11A23A32

But, the indices of the Levi-Civita symbol are not in the right order yet. Fortunately, we have
identities such as ε231 = ε312 which allow us to reorder the indices without introducing any new
signs,

det(AT ) = ε123A11A22A33 + ε312A13A21A32 + ε231A12A23A31

+ε321A13A22A31 + ε213A12A21A33 + ε132A11A23A32

But, these are precisely the terms in det(A) just written in a different order (see Example 8.1.2).
Thus det(AT ) = det(A). I leave the details of how to reorder the order n sum to the reader. �

Remark 8.3.3.

Lay’s text circumnavigates many of the difficulties I face in this chapter by using the co-
factor definition as the definition of the determinant. One place you can also find a serious
treatment of determinants is in Linear Algebra by Insel, Spence and Friedberg where you’ll
find the proof of the co-factor expansion is somewhat involved. However, the heart of the
proof involves multilinearity. Multilinearity is practically manifest with our Levi-Civita def-
inition. Anywho, a better definition for the determinant is as follows: the determinant
is the alternating, n-multilinear, real valued map such that det(I) = 1. It can be
shown this uniquely defines the determinant. All these other things like permutations and
the Levi-Civita symbol are just notation.
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Example 8.3.4. I suppose it’s about time for an example. Let

A =

 1 2 3
4 5 6
7 8 9


I usually calculate by expanding across the top row out of habit,

det(A) = 1det

[
5 6
8 9

]
− 2det

[
4 6
7 9

]
+ 3det

[
4 5
7 8

]
= 1(45− 48)− 2(36− 42) + 3(32− 35)

= −3 + 12− 9

= 0.

Now, we could also calculate by expanding along the middle row,

det(A) = −4det

[
2 3
8 9

]
+ 5det

[
1 3
7 9

]
− 6det

[
1 2
7 8

]
= −4(18− 24) + 5(9− 21)− 6(8− 14)

= 24− 60 + 36

= 0.

Many other choices are possible, for example expan along the right column,

det(A) = 3det

[
4 5
7 8

]
− 6det

[
1 2
7 8

]
+ 9det

[
1 2
4 5

]
= 3(32− 35)− 6(8− 14) + 9(5− 8)

= −9 + 36− 27

= 0.

which is best? Certain matrices might have a row or column of zeros, then it’s easiest to ex-
pand along that row or column. Calculation completed, let’s pause to appreciate the geometric
significance in view of Definition 8.2.4. Our calculations show that the parallel piped spanned by
(1, 2, 3), (4, 5, 6), (7, 8, 9) is flat, it’s actually just a two-dimensional parallelogram.

If you are curious about the area of the parallelogram implicit in the example above, you could
calculate the cross-product of the columns and the length of the non-zero results would give you
the area of the parallelogram. See Example 8.2.3 for the formula of the cross-product.
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Example 8.3.5. Let’s look at an example where we can exploit the co-factor expansion to greatly
reduce the difficulty of the calculation. Let

A =


1 2 3 0 4
0 0 5 0 0
6 7 8 0 0
0 9 3 4 0
−1 −2 −3 0 1


Begin by expanding down the 4-th column,

det(A) = (−1)4+4M44 = 4det


1 2 3 4
0 0 5 0
6 7 8 0
−1 −2 −3 1


Next expand along the 2-row of the remaining determinant,

det(A) = (4)(5(−1)2+3M23) = −20det

 1 2 4
6 7 0
−1 −2 1


Finish with the trick for 3× 3 determinants, it helps me to write out 1 2 4 1 2

6 7 0 6 7
−1 −2 1 −1 −2


then calculate the products of the three down diagonals and the three upward diagonals. Subtract
the up-diagonals from the down-diagonals.

det(A) = −20(7 + 0− 48− (−28)− (0)− (12)) = −20(−25) = 500.

It is fun to note this is the 5-volume of the 5-piped region in R5 which has the columns of A as
edges from a common vertex.

I will abstain from further geometric commentary for the most part in what follows. However, one
last comment, it would be interesting to understand the geometric interpretation of the cofactor
expansion. Note that it relates n-volumes to (n− 1)-volumes.

8.4 properties of determinants

In this section we learn the most important properties of the determinant. A sequence of results
born of elementary matrix arguments allows us to confirm that the motivating concept for the
determinant is in fact true for arbitrary order; that is, Propositon 8.4.5 proves det(A) 6= 0 iff A−1

exists. It is important that you appreciate how the results of this section are accumulated through
a series of small steps, each building on the last. However, it is even more important that you learn
how the results of this section can be applies to a variety of matrix problems. Your exercises will
help you in that direction naturally.

The properties given in the proposition below are often useful to greatly reduce the difficulty of a
determinant calculation.



204 CHAPTER 8. DETERMINANTS

Proposition 8.4.1.

Let A ∈ R n×n,

1. det(AT ) = det(A),

2. If there exists j such that rowj(A) = 0 then det(A) = 0,

3. If there exists j such that colj(A) = 0 then det(A) = 0,

4. det[A1|A2| · · · |aAk + bBk| · · ·An] = adet[A1| · · · |Ak| · · · |An]+ bdet[A1| · · · |Bk| · · · |An],

5. det(kA) = kndet(A)

6. if B = {A : rk ↔ rj} then det(B) = −det(A),

7. if B = {A : rk + arj → rk} then det(B) = det(A),

8. if rowi(A) = krowj(A) for i 6= j then det(A) = 0

where I mean to denote rk ↔ rj as the row interchange and rk + arj → rk as a column
addition and I assume k < j.

Proof: we already proved (1.) in the proof of the cofactor expansion Theorem 8.3.2. The proof of
(2.) and (3.) follows immediately from the cofactor expansion if we expand along the zero row or
column. The proof of (4.) is not hard given our Levi-Civita defintion, let

C = [A1|A2| · · · |aAk + bBk| · · · |An]

Calculate from the definition,

det(C) =
∑

i1,i2,...,in

εi1,i2,...,inC1i1 · · ·Ckik · · ·Cnin

=
∑

i1,i2,...,in

εi1,i2,...,inA1i1 · · · (aAkik + bBkik) · · ·Anin

= a

( ∑
i1,i2,...,in

εi1,i2,...,inA1i1 · · ·Akik · · ·Anin
)

+ b

( ∑
i1,i2,...,in

εi1,i2,...,inA1i1 · · ·Bkik · · ·Anin
)

= a det[A1|A2| · · · |Ak| · · · |An] + b det[A1|A2| · · · |Bk| · · · |An].

by the way,the property above is called multilinearity. The proof of (5.) is similar,

det(kA) =
∑

i1,i2,...,in

εi1,i2,...,inkA1i1kA2i2 · · · kAnin

= kn
∑

i1,i2,...,in

εi1,i2,...,inA1i1A2i2 · · ·Anin

= kn det(A)
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Let B be as in (6.), this means that colk(B) = colj(A) and vice-versa,

det(B) =
∑

i1,i2,...,in

εi1,...,ik,...,ij ,...,inA1i1 · · ·Ajik · · ·Akij · · ·Anin

=
∑

i1,i2,...,in

−εi1,...,ij ,...,ik,...,inA1i1 · · ·Ajik · · ·Akij · · ·Anin

= −det(A)

where the minus sign came from interchanging the indices ij and ik.

To prove (7.) let us define B as in the Proposition: let rowk(B) = rowk(A) + arowj(A) and
rowi(B) = rowi(A) for i 6= k. This means that Bkl = Akl + aAjl and Bil = Ail for each l.
Consequently,

det(B) =
∑

i1,i2,...,in

εi1,...,ik,...,inA1i1 · · · (Akik + aAjik) · · ·Anin

=
∑

i1,i2,...,in

εi1,...,inA1i1 · · ·Akik · · ·Anin

+ a

( ∑
i1,i2,...,in

εi1,...,ij ,...,ik,...,inA1i1 · · ·Aj,ij · · ·Ajik · · ·Anin
)

=
∑

i1,i2,...,in

εi1,...,inA1i1 · · ·Akik · · ·Anin

= det(A).

The term in parenthesis vanishes because it has the sum of an antisymmetric tensor in ij , ik against
a symmetric tensor in ij , ik. Here is the pattern, suppose Sij = Sji and Tij = −Tji for all i, j then
consider ∑

i

∑
j

SijTij =
∑
j

∑
i

SjiTji switched indices

=
∑
j

∑
i

−SijTij used sym. and antisym.

= −
∑
i

∑
j

SijTij interchanged sums.

thus we have
∑
SijTij = −

∑
SijTij which indicates the sum is zero. We can use the same argu-

ment on the pair of indices ij , ik in the expression since AjijAjik is symmetric in ij , ik whereas the
Levi-Civita symbol is antisymmetric in ij , ik.

We get (8.) as an easy consequence of (2.) and (7.), just subtract one row from the other so that
we get a row of zeros. �
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Proposition 8.4.2.

The determinant of a diagonal matrix is the product of the diagonal entries.

Proof: Use multilinearity on each row,

det


d1 0 · · · 0
0 d2 · · · 0
...

... · · ·
...

0 0 · · · dn

 = d1 det


1 0 · · · 0
0 d2 · · · 0
...

... · · ·
...

0 0 · · · dn

 = · · · = d1d2 · · · dndet


1 0 · · · 0
0 1 · · · 0
...

... · · ·
...

0 0 · · · 1


Thus det(D) = d1d2 · · · dn as claimed. �

Proposition 8.4.3.

Let L be a lower triangular square matric and U be an upper triangular square matrix.

1. det(L) = L11L22 · · ·Lnn

2. det(U) = U11U22 · · ·Unn

Proof: I’ll illustrate the proof of (2.) for the 3× 3 case. We use the co-factor expansion across the
first column of the matrix to begin,

det

 U11 U12 U13

0 U22 U23

0 0 U33

 = A11det

[
U22 U23

0 U33

]
= U11U22U33

The proof of the n× n case is essentially the same. For (1.) use the co-factor expansion across the
top row of L, to get det(L) = L11C11. Not the submatrix for calculating C11 is again has a row of
zeros across the top. We calculate C11 = L22C22. This continues all the way down the diagonal.
We find det(L) = L11L22 · · ·Lnn. �

Proposition 8.4.4.

Let A ∈ R n×n and k 6= 0 ∈ R,

1. det(Eri↔rj ) = −1,

2. det(Ekri→ri) = k,

3. det(Eri+brj→ri) = 1,

4. for any square matrix B and elementary matrix E, det(EB) = det(E)det(B)

5. if E1, E2, . . . , Ek are elementary then det(E1E2 · · ·Ek) = det(E1)det(E2) · · · det(Ek)

Proof: Proposition 8.7.2 shows us that det(I) = 1 since I−1 = I (there are many easier ways to
show that). Note then that Eri↔rj is a row-swap of the identity matrix thus by Proposition 8.4.1
we find det(Eri↔rj ) = −1. To prove (2.) we use multilinearity from Proposition 8.4.1. For (3.) we
use multilinearity again to show that:

det(Eri+brj→ri) = det(I) + bdet(Eij)
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Again det(I) = 1 and since the unit matrix Eij has a row of zeros we know by Proposition 8.4.1
det(Eij) = 0.

To prove (5.) we use Proposition 8.4.1 multiple times in the arguments below. Let B ∈ R n×n

and suppose E is an elementary matrix. If E is multiplication of a row by k then det(E) = k
from (2.). Also EB is the matrix B with some row multiplied by k. Use multilinearity to see that
det(EB) = kdet(B). Thus det(EB) = det(E)det(B). If E is a row interchange then EB is B with a
row swap thus det(EB) = −det(B) and det(E) = −1 thus we again find det(EB) = det(E)det(B).
Finally, if E is a row addition then EB is B with a row addition and det(EB) = det(B) and
det(E) = 1 hence det(EB) = det(E)det(B). Notice that (6.) follows by repeated application of
(5.). �

Proposition 8.4.5.

A square matrix A is invertible iff det(A) 6= 0.

Proof: recall there exist elementary matrices E1, E2, . . . , Ek such that rref(A) = E1E2 · · ·EkA.
Thus det(rref(A)) = det(E1)det(E2) · · · det(Ek)det(A). Either det(rref(A)) = 0 and det(A) = 0
or they are both nonzero.

Suppose A is invertible. Then Ax = 0 has a unique solution and thus rref(A) = I hence
det(rref(A)) = 1 6= 0 implying det(A) 6= 0.

Conversely, suppose det(A) 6= 0, then det(rref(A)) 6= 0. But this means that rref(A) does not
have a row of zeros. It follows rref(A) = I. Therefore A−1 = E1E2 · · ·Ek. �

Proposition 8.4.6.

If A,B ∈ R n×n then det(AB) = det(A)det(B).

Proof: If either A or B is not invertible then the reduced row echelon form of the nonivert-
ible matrix will have a row of zeros hence det(A)det(B) = 0. Without loss of generality, assume
A is not invertible. Note rref(A) = E1E2 · · ·EkA hence E3

−1E2
−1E1

−1rref(A)B = AB. No-
tice that rref(A)B will have at least one row of zeros since rref(A) has a row of zeros. Thus
det(E3

−1E2
−1E1

−1rref(A)B) = det(E3
−1E2

−1E1
−1)det(rref(A)B) = 0.

Suppose that both A and B are invertible. Then there exist elementary matrices such that A =
E1 · · ·Ep and B = Ep+1 · · ·Ep+q thus

det(AB) = det(E1 · · ·EpEp+1 · · ·Ep+q)
= det(E1 · · ·Ep)det(Ep+1 · · ·Ep+q)
= det(A)det(B).

We made repeated use of (6.) in Proposition 8.4.4. �

Proposition 8.4.7.

If A ∈ R n×n is invertible then det(A−1) = 1
det(A) .
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Proof: If A is invertible then there exists A−1 ∈ R n×n such that AA−1 = I. Apply Proposition
8.4.6 to see that

det(AA−1) = det(A)det(A−1) = det(I) ⇒ det(A)det(A−1) = 1.

Thus, det(A−1) = 1/det(A) �

Many of the properties we used to prove det(AB) = det(A)det(B) are easy to derive if you were
simply given the assumption det(AB) = det(A)det(B). When you look at what went into the proof
of Proposition 8.4.6 it’s not surprising that det(AB) = det(A)det(B) is a powerful formula to know.

Proposition 8.4.8.

If A is block-diagonal with square blocks A1, A2, . . . , Ak then

det(A) = det(A1)det(A2) · · · det(Ak).

Proof: for a 2 × 2 matrix this is clearly true since a block diagonal matrix is simply a diagonal
matrix. In the 3 × 3 nondiagonal case we have a 2 × 2 block A1 paired with a single diagonal
entry A2. Simply apply the cofactor expansion on the row of the diagonal entry to find that
det(A) = A2det(A1) = det(A2)det(A1). For a 4 × 4 we have more cases but similar arguments
apply. I leave the general proof to the reader. �

Example 8.4.9. If M =

[
A 0

0 B

]
is a block matrix where A,B are square blocks then det(M) =

det(A)det(B).

8.5 examples of determinants

In the preceding section we saw the derivation of determinant properties requires some effort.
Thankfully, the use of the properties to solve problems typically takes much less effort.

Example 8.5.1. Notice that row 2 is twice row 1,

det

 1 2 3
2 4 6
7 8 9

 = 0.

Example 8.5.2. To calculate this one we make a single column swap to get a diagonal matrix.
The determinant of a diagonal matrix is the product of the diagonals, thus:

det



0 6 0 0 0 0
8 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 = −det



6 0 0 0 0 0
0 8 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 = 48.
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Example 8.5.3. I choose the the column/row for the co-factor expansion to make life easy each
time:

det


0 1 0 2
13 71 5 π
0 3 0 4
−2 e 0 G

 = −5det

 0 1 2
0 3 4
−2 e G


= −5(−2)det

[
1 2
3 4

]
= 10(4− 6)

= −20.

Example 8.5.4. Find the values of λ such that the matrix A− λI is singular given that

A =


1 0 2 3
1 0 0 0
0 0 2 0
0 0 0 3


The matrix A− λI is singular iff det(A− λI) = 0,

det(A− λI) = det


1− λ 0 2 3

1 −λ 0 0
0 0 2− λ 0
0 0 0 3− λ


= (3− λ)det

 1− λ 0 2
1 λ 0
0 0 2− λ


= (3− λ)(2− λ)det

[
1− λ 0

1 λ

]
= (3− λ)(2− λ)(1− λ)(−λ)

= λ(λ− 1)(λ− 2)(λ− 3)

Thus we need λ = 0, 1, 2 or 3 in order that A − λI be a noninvertible matrix. These values are
called the eigenvalues of A. We will have much more to say about that later.

Example 8.5.5. Suppose we are given the LU-factorization of a particular matrix (borrowed from
the text by Spence, Insel and Friedberg see Example 2 on pg. 154-155.)

A =

 1 −1 2
3 −1 7
2 −4 5

 =

 1 0 0
3 1 0
2 −1 1

 1 −1 2
0 2 1
0 0 2

 = LU

The LU-factorization is pretty easy to find, we do not study it directly in these notes5. It is an
important topic if you delve into serious numerical work where you need to write your own code
and so forth. Note that L,U are triangular so we can calculate the determinant with ease:

det(A) = det(L)det(U) = 1 · 1 · 1 · 1 · 2 · 2 = 4.

5there are many additional techniques of matrix theory concerning various special ways to factor a matrix. I can
recommend some reading past this course if you are interested.
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From a numerical perspective, the LU-factorization is a superior method for calculating det(A) as
compared to the co-factor expansion. It has much better ”convergence” properties. Incidentally,
you might read Insel Spence and Friedberg’s Elementary Linear Algebra for more discussion of
algorithmics.

Example 8.5.6. Recall that the columns in A are linearly independent iff Ax = 0 has only the
x = 0 solution. We also found that the existence of A−1 was equivalent to that claim in the case A
was square since Ax = 0 implies A−1Ax = A−10 = 0 hence x = 0. In Proposition 8.4.5 we proved
det(A) 6= 0 iff A−1 exists. Thus the following check for A ∈ R n×n is nice to know:

columns of A are linearly independent ⇔ det(A) 6= 0.

Observe that this criteria is only useful if we wish to examine the linear independence of preciely
n-vectors in Rn. For example, (1, 1, 1), (1, 0, 1), (2, 1, 2) ∈ R3 have

det

 1 1 2
1 0 1
1 1 2

 = 0.

Therefore, {(1, 1, 1), (1, 0, 1), (2, 1, 2)} form a linearly dependent set of vectors.

A natural curiousity, what about less than n-vectors? Is there some formula for that? Is there
some formula we can plug say k-vectors into to ascertain the LI of those k-vectors? The answer is
given by the wedge product. In short, if v1 ∧ v2 ∧ · · · ∧ vk 6= 0 then {v1, v2, . . . , vk} is LI. This
ties in with determinants at order k = n by the beautiful formula: for n-vectors in Rn,

v1 ∧ v2 ∧ · · · ∧ vn = det[v1|v2| · · · |vn]e1 ∧ e2 ∧ · · · ∧ en.

The wedge product is an algebraic structure which can be built over any finite dimensional vector
space. The external direct sum of all possible wedge products of vectors in V gives Ω(V ) the 2dim(V )-
dimensional exterior algebra of V . For example, V = R2 has Ω(V ) = span{1, e1, e2, e1 ∧ e2}. If
you’d like to know more about this algebra and how it extends and clarifies calculus III to calculus
on n-dimensional space then you might read my advanced calculus Lecture notes. Another nice
place to read more about these things from a purely linear-algebraic perspective is the text Abstract
Linear Algebra by Morton L. Curtis.

8.6 Cramer’s Rule

The numerical methods crowd seem to think this is a loathsome brute. It is an incredibly clumsy
way to calculate the solution of a system of equations Ax = b. Moreover, Cramer’s rule fails in the
case det(A) = 0 so it’s not nearly as general as our other methods. However, it does help calculate
the variation of parameters formulas in differential equations so it is still of theoretical interest at a
minimum. Students sometimes like it because it gives you a formula to find the solution. Students
sometimes incorrectly jump to the conclusion that a formula is easier than say a method. It is
certainly wrong here, the method of Gaussian elimination beats Cramer’s rule by just about every
objective criteria in so far as concrete numerical examples are concerned.
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Proposition 8.6.1.

If Ax = b is a linear system of equations with x = [x1 x2 · · · xn]T and A ∈ R n×n such that
det(A) 6= 0 then we find solutions

x1 =
det(A1)

det(A)
, x2 =

det(A2)

det(A)
, . . . , xn =

det(An)

det(A)

where we define Ak to be the n× n matrix obtained by replacing the k-th column of A by
the inhomogeneous term b.

Proof: Since det(A) 6= 0 we know that Ax = b has a unique solution. Suppose xj =
det(Aj)
det(A) where

Aj = [col1(A)| · · · |colj−1(A)|b|colj+1(A)| · · · |coln(A)]. We seek to show x = [xj ] is a solution to
Ax = b. Notice that the n-vector equations

Ae1 = col1(A), . . . , Aej−1 = colj−1(A), Aej+1 = colj+1(A), . . . , Aen = coln(A), Ax = b

can be summarized as a single matrix equation:

A[e1| . . . |ej−1|x|ej+1| · · · |en] = [col1(A)| · · · |colj−1(A)|b|colj+1(A)| · · · |coln(A)]︸ ︷︷ ︸
this is precisely Aj

= Aj

Notice that if we expand on the j-th column it’s obvious that

det[e1| . . . |ej−1|x|ej+1| · · · |en] = xj

Returning to our matrix equation, take the determinant of both sides and use that the product of
the determinants is the determinant of the product to obtain:

det(A)xj = det(Aj)

Since det(A) 6= 0 it follows that xj =
det(Aj)
det(A) for all j. �

This is the proof that is given in Lay’s text. The construction of the matrix equation is not really
an obvious step in my estimation. Whoever came up with this proof originally realized that he
would need to use the determinant product identity to overcome the subtlety in the proof. Once
you realize that then it’s natural to look for that matrix equation. This is a clever proof6

Example 8.6.2. Solve Ax = b given that

A =

[
1 3
2 8

]
b =

[
1
5

]
where x = [x1 x2]T . Apply Cramer’s rule, note det(A) = 2,

x1 =
1

2
det

[
1 3
5 8

]
=

1

2
(8− 15) =

−7

2
.

and,

x2 =
1

2
det

[
1 1
2 5

]
=

1

2
(5− 2) =

3

2
.

The original system of equations would be x1 + 3x2 = 1 and 2x1 + 8x2 = 5. As a quick check we
can substitute in our answers x1 = −7/2 and x2 = 3/2 and see if they work.

6as seen from my humble vantage point naturally
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Please note: the following two examples are for breadth of exposition.

Example 8.6.3. An nonhomogeneous system of linear, constant coefficient ordinary differential
equations can be written as a matrix differential equation:

dx

dt
= Ax+ f

It turns out we’ll be able to solve the homogeneous system dx/dt = Ax via something called the
matrix exponential. Long story short, we’ll find n-solutions which we can concatenate into one big
matrix solution X. To solve the given nonhomogeneous problem one makes the ansatz that x = Xv
is a solution for some yet unknown vector of functions. Then calculus leads to the problem of solving

X
dv

dt
= f

where X is matrix of functions, dv/dt and f are vectors of functions. X is invertible so we expect
to find a unique solution dv/dt. Cramer’s rule says,(

dv

dt

)
i

=
1

det(X)
det[~x1| · · · |g| · · · |~xn] =

Wi[f ]

det(X)
defining Wi in the obvious way

For each i we integrate the equation above,

vi(t) =

∫
Wi[f ]dt

det(X)
.

The general solution is thus,

x = Xv = X

[∫
Wi[f ]dt

det(X)

]
.

The first component of this formula justifies n-th order variation of parameters. For example in
the n = 2 case you may have learned that yp = y1v1 + y2v2 solves ay′′ + by′ + cy = g if

v1 =

∫
−gy2dt

a(y1y′2 − y2y′1)
v2 =

∫
gy1dt

a(y1y′2 − y2y′1)

These come from the general result above. Notice that these formulas need y1y
′
2 − y2y

′
1 6= 0. This

is precisely the Wronskian W [y1, y2] = y1y
′
2 − y2y

′
1 of the fundamental solutions y1, y2. It turns

out that the Wronskian is nonzero for fundamental solutions thus the formulas above are entirely
general.

The example that follows is borrowed from my 2013 Advanced Calculus notes. Here I used Cramer’s
Rule to solve for differentials of the dependent variables.

Example 8.6.4. Suppose x+y+z+w = 3 and x2−2xyz+w3 = 5. Calculate partial derivatives
of z and w with respect to the independent variables x, y. Solution: we begin by calculation
of the differentials of both equations:

dx+ dy + dz + dw = 0
(2x− 2yz)dx− 2xzdy − 2xydz + 3w2dw = 0

We can solve for (dz, dw). In this calculation we can treat the differentials as formal variables.

dz + dw = −dx− dy
−2xydz + 3w2dw = −(2x− 2yz)dx+ 2xzdy
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I find matrix notation is often helpful,[
1 1
−2xy 3w2

] [
dz
dw

]
=

[
−dx− dy

−(2x− 2yz)dx+ 2xzdy

]
Use Cramer’s rule, multiplication by inverse, substitution, adding/subtracting equations etc... what-
ever technique of solving linear equations you prefer. Our goal is to solve for dz and dw in terms
of dx and dy. I’ll use Cramer’s rule this time:

dz =

det

[
−dx− dy 1

−(2x− 2yz)dx+ 2xzdy 3w2

]
det

[
1 1
−2xy 3w2

] =
3w2(−dx− dy) + (2x− 2yz)dx− 2xzdy

3w2 + 2xy

Collecting terms,

dz =

(
−3w2 + 2x− 2yz

3w2 + 2xy

)
dx+

(
−3w2 − 2xz

3w2 + 2xy

)
dy

From the expression above we can read various implicit derivatives,(
∂z

∂x

)
y

=
−3w2 + 2x− 2yz

3w2 + 2xy
&

(
∂z

∂y

)
x

=
−3w2 − 2xz

3w2 + 2xy

The notation above indicates that z is understood to be a function of independent variables x, y.(
∂z
∂x

)
y

means we take the derivative of z with respect to x while holding y fixed. The appearance

of the dependent variable w can be removed by using the equations G(x, y, z, w) = (3, 5). Similar
ambiguities exist for implicit differentiation in calculus I. Apply Cramer’s rule once more to solve
for dw:

dw =

det

[
1 −dx− dy
−2xy −(2x− 2yz)dx+ 2xzdy

]
det

[
1 1
−2xy 3w2

] =
−(2x− 2yz)dx+ 2xzdy − 2xy(dx+ dy)

3w2 + 2xy

Collecting terms,

dw =

(
−2x+ 2yz − 2xy

3w2 + 2xy

)
dx+

(
2xzdy − 2xydy

3w2 + 2xy

)
dy

We can read the following from the differential above:(
∂w

∂x

)
y

=
−2x+ 2yz − 2xy

3w2 + 2xy
&

(
∂w

∂y

)
x

=
2xzdy − 2xydy

3w2 + 2xy
.
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8.7 adjoint matrix

In this section we derive a general formula for the inverse of an n× n matrix. We already saw this
formula in the 2×2 case and I work it out for the 3×3 case later in this section. As with Cramer’s
Rule, the results of this section are not to replace our earlier row-reduction based algoriths. Instead,
these simply give us another tool, another view to answer questions concerning inverses.

Definition 8.7.1.

Let A ∈ R n×n the the matrix of cofactors is called the adjoint of A. It is denoted adj(A)
and is defined by and adj(A)ij = Cij where Cij is the (i, j)-th cofactor.

I’ll keep it simple here, lets look at the 2× 2 case:

A =

[
a b
c d

]
has cofactors C11 = (−1)1+1det(d) = d, C12 = (−1)1+2det(c) = −c, C21 = (−1)2+1det(b) = −b and
C22 = (−1)2+2det(a) = a. Collecting these results,

adj(A) =

[
d −c
−b a

]
This is interesting. Recall we found a formula for the inverse of A (if it exists). The formula was

A−1 =
1

ad− bc

[
d −b
−c a

]
Notice that det(A) = ad− bc thus in the 2×2 case the relation between the inverse and the adjoint
is rather simple:

A−1 =
1

det(A)
adj(A)T

In fact, this is true for all n,

Proposition 8.7.2.

If A ∈ Rn×n is invertible then A−1 = 1
det(A)adj(A)T .

Proof I: Calculate the product of A and adj(A)T ,

Aadj(A)T =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

... · · ·
...

An1 An2 · · · Ann



C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

... · · ·
...

C1n C2n · · · Cnn


The (i, j)-th component of the product above is

(Aadj(A)T )ij = Ai1Cj1 +Ai2Cj2 + · · ·+AinCjn.

Suppose that i = j then the sum above is precisely the i-th row co-factor expansion for det(A):

(Aadj(A)T )ij = Ai1Ci1 +Ai2Ci2 + · · ·+AinCin = det(A)
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If i 6= j then the sum vanishes. I leave the details to the reader7 �

Proof II: To find the inverse of A we need only apply Cramer’s rule to solve the equations implicit
within AA−1 = I. Let A−1 = [v1|v2| · · · |vn] we need to solve

Av1 = e1, Av2 = e2, . . . Avn = en

Cramer’s rule gives us (v1)j =
C1j

det(A) where C1j = (−1)1+jMij is the cofactor formed from deleting
the first row and j-th column. Apply Cramer’s rule to deduce the j-component of the i-th column
in the inverse (vi)j =

Cij
det(A) . Therefore, coli(A

−1)j = (A−1)ji =
Cij

det(A) . By definition adj(A) = [Cij ]

hence adj(A)Tij = Cji and it follows that A−1 = 1
det(A)adj(A)T . �

Example 8.7.3. Let’s calculate the general formula for the inverse of a 3 × 3 matrix. Assume it
exists for the time being. ( the criteria for the inverse existing is staring us in the face everywhere
here). Let

A =

 a b c
d e f
g h i


Calculate the cofactors,

C11 = det
[
e f
h i

]
= ei− fh,

C12 = −det
[
d f
g i

]
= fg − di,

C13 = det
[
d e
g h

]
= dh− eg,

C21 = −det
[
b c
h i

]
= ch− bi,

C22 = det [ a cg i ] = ai− cg,

C23 = −det
[
a b
g h

]
= bg − ah,

C31 = det
[
b c
e f

]
= bf − ce,

C32 = −det [ a cd f ] = cd− af,

C33 = det
[
a b
d e

]
= ae− bd.

Hence the transpose of the adjoint is

adj(A)T =

 ei− fh fg − di dh− eg
ch− bi ai− cg bg − ah
bf − ce cd− af ae− bd


7I don’t have an easy proof that these terms cancel for i 6= j. It’s simply to verify for the n = 2 or n = 3 cases

but the reason appears to be a combinatorial cancellation. If you can provide a concrete and readable proof for the
general case it would definitely earn you some points.
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Thus, using the A−1 = det(A)adj(A)T

 a b c
d e f
g h i

−1

=
1

aei+ bfg + cdh− gec− hfa− idb

 ei− fh ch− bi bf − ce
fg − di ai− cg cd− af
dh− eg bg − ah ae− bd


You should notice that are previous method for finding A−1 is far superior to this method. It required
much less calculation. Let’s check my formula in the case A = 3I, this means a = e = i = 3 and
the others are zero.

I−1 =
1

27

 9 0 0

0 9 0

0 0 9

 =
1

3
I

This checks, (3I)(1
3I) = 3

3II = I. I do not recommend that you memorize this formula to calculate
inverses for 3× 3 matrices.

8.8 applications

The determinant is a convenient mnemonic to create expressions which are antisymmetric. The key
property is that if we switch a row or column it creates a minus sign. This means that if any two
rows are repeated then the determinant is zero. Notice this is why the cross product of two vectors
is naturally phrased in terms of a determinant. The antisymmetry of the determinant insures the
formula for the cross-product will have the desired antisymmetry. In this section we examine a few
more applications for the determinant.

Example 8.8.1. The Pauli’s exclusion principle in quantum mechanics states that the wave func-
tion of a system of fermions is antisymmetric. Given N -electron wavefunctions χ1, χ2, . . . , χN the
following is known as the Slater Determinant

Ψ(~r1, ~r2, . . . , ~rN ) = det


χ1(~r1) χ2(~r1) · · · χN (~r1)
χ1(~r2) χ2(~r2) · · · χN (~r2)
...

... · · ·
...

χ1(~rN ) χ2(~rN ) · · · χN (~rN )


Notice that Ψ(~r1, ~r1, . . . , ~rN ) = 0 and generally if any two of the position vectors ~ri = ~rj then the
total wavefunction Ψ = 0. In quantum mechanics the wavefunction’s modulus squared gives the
probability density of finding the system in a particular circumstance. In this example, the fact that
any repeated entry gives zero means that no two electrons can share the same position. This is
characteristic of particles with half-integer spin, such particles are called fermions. In contrast,
bosons are particles with integer spin and they can occupy the same space. For example, light is
made of photons which have spin 1 and in a laser one finds many waves of light traveling in the
same space.
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Example 8.8.2. This is an example of a Vandermonde determinant. Note the following curious
formula:

det

 1 x1 y1

1 x2 y2

1 x y

 = 0

Let’s reduce this by row-operations8 1 x1 y1

1 x2 y2

1 x y

 r2 − r1 → r2−−−−−−−−→
r3 − r1 → r3−−−−−−−−→

 1 x1 y1

0 x2 − x1 y2 − y1

0 x− x1 y − y1


Notice that the row operations above could be implemented by multiply on the left by Er2−r1→r2 and
Er3−r1→r3. These are invertible matrices and thus det(Er2−r1→r2) = k1 and det(Er3−r1→r3) = k2

for some pair of nonzero constants k1, k2. If X is the given matrix and Y is the reduced matrix
above then Y = Er3−r1→r3Er2−r1→r2X thus,

0 = det

 1 x1 y1

1 x2 y2

1 x y

 = k1k2det

 1 x1 y1

0 x2 − x1 y2 − y1

0 x− x1 y − y1


= k1k2

[
(x2 − x1)(y − y1)− (y2 − y1)(x− x1)

]
Divide by k1k2 and rearrange to find:

(x2 − x1)(y − y1) = (y2 − y1)(x− x1) ⇒ y = y1 +

(
y2 − y1

x2 − x1

)
(x− x1)

The boxed equation is the famous two-point formula for a line.

Example 8.8.3. There are many twists on the previous example. Here’s one to differential equa-
tions. Suppose you want a second order linear ODE L[y] = for which a given pair of functions
y1, y2 are solutions. A simple way to express the desired equation is L[y] = 0 where

L[y] = det

 y y′ y′′

y1 y′1 y′′1
y2 y′2 y′′2


Observe L[y1] = 0 and L[y2] = 0 are immediately clear as setting y = y1 or y = y2 gives a repeated
row.

Example 8.8.4. Let us consider a linear transformation T ([x, y]T ) = [2x, x + y]T . Furthermore,
let’s see how a rectangle R with corners (0, 0), (3, 0), (3, 1), (0, 1). Since this linear transformation is
invertible ( I invite you to prove that ) it follows that the image of a line is again a line. Therefore,
if we find the image of the corners under the mapping T then we can just connect the dots in the
image to see what T (R) resembles. Our goal here is to see what a linear transformation does to a
rectangle.

T ([0, 0]T ) = [0, 0]T

T ([3, 0]T ) = [6, 3]T

T ([3, 1]T ) = [6, 4]T

T ([0, 1]T ) = [0, 1]T

8of course we could calculate it straight from the co-factor expansion, I merely wish to illustrate how we can use
row operations to simplify a determinant
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As you can see from the picture we have a paralellogram with base 6 and height 1 thus Area(T (R)) =
6. In constrast, Area(R) = 3. You can calculate that det(T ) = 2. Curious, Area(T (R)) =
det(T )Area(R). This can be derived in general, it’s not too hard given our definition of n-volume
and the wonderful identities we’ve learned for matrix multiplication and determinants.

The examples that follow illustrate how determinants arise in the study of infinitesimal areas and
volumes in multivariate calculus.

Example 8.8.5. The infinitesimal area element for polar coordinate is calculated from the Jacobian:

dS = det

[
r sin(θ) −r cos(θ)
cos(θ) sin(θ)

]
drdθ = (r sin2(θ) + r cos2(θ))drdθ = rdrdθ

Example 8.8.6. The infinitesimal volume element for cylindrical coordinate is calculated from the
Jacobian:

dV = det

 r sin(θ) −r cos(θ) 0
cos(θ) sin(θ) 0

0 0 1

 drdθdz = (r sin2(θ) + r cos2(θ))drdθdz = rdrdθdz

Jacobians are needed to change variables in multiple integrals. The Jacobian9 is a determinant
which measures how a tiny volume is rescaled under a change of coordinates. Each row in the
matrix making up the Jacobian is a tangent vector which points along the direction in which a
coordinate increases when the other two coordinates are fixed.

9see pages 206-208 of Spence Insel and Friedberg or perhaps my advanced calculus notes where I develop differ-
entiation from a linear algebraic viewpoint.
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8.9 similarity and determinants for linear transformations

Thus far this chapter has been mainly matrix theoretic. However, the determinant is also defined
and of interest for abstract linear transformations. Suppose V is an n-dimensional vector space
over R and consider T : V → V a linear transformation. If β, γ are finite bases for V then we can
calculate [T ]β,β and [T ]γ,γ . Note these are both n × n matrices as the domain and codomain are
both n-dimensional. Furthermore, applying Proposition 7.4.7 we have:

[T ]γ,γ = [Φγ ◦Φ−1
β ][T ]β,β [Φβ ◦Φ−1

γ ]

If we set P = [Φβ ◦Φ−1
γ ] then the equation above simply reduces to:

[T ]γ,γ = P−1[T ]β,βP.

I’ve mentioned this concept in passing before, but for future reference we should give a precise
definition:

Definition 8.9.1.

Let A,B ∈ Rn×n then we say A and B are similar matrices if there exists P ∈ Rn×n such
that B = P−1AP .

In invite the reader to verify that matrix similarity is an equivalence relation. Furthermore, you
might contrast this idea of sameness with that of matrix congruence. To say A,B are matrix
congruent it sufficed to find P,Q such that B = P−1AQ. Here P ∈ Rm×m and Q ∈ Rn×n and we
needed only that A,B ∈ Rm×n. Matrix congruence was defined for rectangular matrices whereas
similarity is only for square matrices. The idea is this, two congruent matrices represent the same
linear transformation T : V → W . There is some choice of bases for V and W which change
the formula of T from A to B or vice-versa. Moreover, Theorem 7.5.2 revealed the cannonical
form relative to matrix congruence classes was simply an identity matrix as big as the rank of the
transformation padded with zeros. To understand the difference between congruence and similarity
it is important to notice that congruence is based on adjusting both the basis in the domain and
separately the basis in the codomain. In contrast, similarity is is related to changing the basis
in the domain and codomain in the same exact fashion. This means it is a stronger condition for
two matrices to be similar. The analog for Theorem 7.5.2 is what is known as the real Jordan
form and it provides the concluding thought of this course. The criteria which will guide us to find
the Jordan form is simply this: any two similar matrices should have the exact same Jordan form.
With a few conventional choices made, this gives us a cannonical representative of each equivalence
class of similar matrices. It is worthwhile to note the following:

Proposition 8.9.2.

Let A,B,C ∈ R n×n.

1. A is similar to A.

2. If A is similar to B then B is similar to A.

3. If A is similar to B and B is similar to C then A similar to C.

4. If A and B are similar then det(A) = det(B)

5. If A and B are similar then tr(A) = tr(B)

6. If A and B are similar then rank(A) = rank(B) and nullity(A) = nullity(B)
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Given the proposition above we can make the following definitions without ambiguity.

Definition 8.9.3.

Let T : V → V be a linear transformation on a finite-dimensional vector space V and let β
be any basis of V ,

1. det(T ) = det([T ]β,β).

2. tr(T ) = tr([T ]β,β)

3. rank(T ) = rank([T ]β,β).

Example 8.9.4. Consider D : P2×P2 defined by D[f(x)] = df/dx note that D[ax2+bx+c] = 2ax+b
implies that in the β = {x2, x, 1} coordinates we find:

[D]β,β =

 0 0 0
2 0 0
0 1 0

 .
Thus det(D) = 0.

Example 8.9.5. Consider L : R2×2 → R2×2 defined by L(A) = AT . Observe:

L(E11) = E11, L(E12) = E21, L(E21) = E12, L(E122) = E22.

Therefore, if β = {E11, E12, E21, E22} then

[L]β,β =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
Swapping columns 2 and 3 brings [L]β,β to the identity matrix. Hence, det(L) = −1.

Example 8.9.6. Consider L : R3×3 → R3×3 defined by L(A) = AT

L(E11) = E11, L(E22) = E22, L(E33) = E33

these explain the first three columns in [L]β,β. Next,

L(E12) = E21, L(E13) = E31, L(E21) = E12, L(E23) = E32, L(E31) = E13, L(E32) = E23.

Let us order β so the diagonals come first: β = {E11, E22, E33, E12, E21, E23, E32, E13, E31}. Thus,

[L]β,β =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0


.

Three column swaps modify the above to the identity. Thus, det(L) = −1.



8.10. CONCLUSIONS 221

8.10 conclusions

The theorem which follows collects ideas somewhat comprehensively for our course thus far.

Theorem 8.10.1.

Let A be a real n× n matrix then the following are equivalent:

(a.) A is invertible,

(b.) rref [A|0] = [I|0] where 0 ∈ Rn,

(c.) Ax = 0 iff x = 0,

(d.) A is the product of elementary matrices,

(e.) there exists B ∈ R n×n such that AB = I,

(f.) there exists B ∈ R n×n such that BA = I,

(g.) rref [A] = I,

(h.) rref [A|b] = [I|x] for an x ∈ Rn,

(i.) Ax = b is consistent for every b ∈ Rn,

(j.) Ax = b has exactly one solution for every b ∈ Rn,

(k.) AT is invertible,

(l.) det(A) 6= 0,

(m.) Cramer’s rule yields solution of Ax = b for every b ∈ Rn.

(n.) Col(A) = R n×1,

(o.) Row(A) = R 1×n,

(p.) rank(A) = n,

(q.) Null(A) = {0},

(r.) ν = 0 for A where ν = dim(Null(A)),

(s.) the columns of A are linearly independent,

(t.) the rows of A are linearly independent,

This list is continued on the next page.
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Let A be a real n× n matrix then the following are equivalent:

(u.) the induced linear operator LA is onto; LA(Rn) = Rn.

(v.) the induced linear operator LA is 1-1

(w.) the induced linear operator LA is an isomorphism.

(x.) the kernel of the induced linear operator is trivial; ker(LA) = {0}.

We should pay special attention to the fact that the above comments hold only for a square matrix.
If we consider a rectangular matrix then the connection between the concepts in the theorem are
governed by the dimension formulas we discovered in Part II.

Next, the list of equivalent statements for a singular n× n matrix:

Theorem 8.10.2.

Let A be a real n× n matrix then the following are equivalent:

(a.) A is not invertible,

(b.) Ax = 0 has at least one nontrivial solution.,

(c.) there exists b ∈ Rn such that Ax = b is inconsistent,

(d.) det(A) = 0,

(e.) Null(A) 6= {0},

(f.) there are 1 ≤ ν = dim(Null(A)) parameters in the general solution to Ax = 0,

(g.) the induced linear operator LA is not onto; LA(Rn) 6= Rn.

(h.) the induced linear operator LA is not 1-1

(i.) the induced linear operator LA is not an isomorphism.

(j.) the kernel of the induced linear operator is nontrivial; ker(LA) 6= {0}.

It turns out this theorem is also useful. We shall see it is fundamental to the theory of eigenvectors.



Chapter 9

euclidean geometry

The concept of a geometry is very old. Philosophers in the nineteenth century failed miserably in
their analysis of geometry and the physical world. They became mired in the popular misconception
that mathematics must be physical. They argued that because 3 dimensional Eulcidean geometry
was the only geometry familar to everyday experience it must surely follow that a geometry which
differs from Euclidean geometry must be nonsensical. However, why should physical intuition factor
into the argument? We understand now that geometry is a mathematical construct, not a physical
one. There are many possible geometries. On the other hand, it would seem the geometry of space
and time probably takes just one form. We are tempted by this misconception every time we ask
”but what is this math really”. That question is usually wrong-headed. A better question is ”is
this math logically consistent” and if so what physical systems is it known to model.

The modern view of geometry is stated in the langauge of manifolds, fiber bundles,algebraic ge-
ometry and perhaps even more fantastic structures. There is currently great debate as to how we
should model the true intrinsic geometry of the universe. Branes, strings, quivers, noncommutative
geometry, twistors, ... this list is endless. However, at the base of all these things we must begin
by understanding what the geometry of a flat space entails.

Vector spaces are flat manifolds. They possess a global coordinate system once a basis is chosen.
Up to this point we have only cared about algebraic conditions of linear independence and span-
ning. There is more structure we can assume. We can ask what is the length of a vector? Or, given
two vectors we might want to know what is the angle bewtween those vectors? Or when are two
vectors orthogonal?

If we desire we can also insist that the basis consist of vectors which are orthogonal which means
”perpendicular” in a generalized sense. A geometry is a vector space plus an idea of orthogonality
and length. The concepts of orthogonality and length are encoded by an inner-product. Inner-
products are symmetric, positive definite, bilinear forms, they’re like a dot-product. Once we have
a particular geometry in mind then we often restrict the choice of bases to only those bases which
preserve the length of vectors.

The mathematics of orthogonality is exhibited by the dot-products and vectors in calculus III.
However, it turns out the concept of an inner-product allows us to extend the idea or perpendicu-
lar to abstract vectors such as functions. This means we can even ask interesting questions such
as ”how close is one function to another” or ”what is the closest function to a set of functions”.

223
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Least-squares curve fitting is based on this geometry.

This chapter begins by defining dot-products and the norm (a.k.a. length) of a vector in Rn. Then
we discuss orthogonality, the Gram Schmidt algorithm, orthogonal complements and finally the
application to the problem of least square analysis. The chapter concludes with a consideration of
the similar, but abstract, concept of an inner product space. We look at how least squares gener-
alizes to that context and we see how Fourier analysis naturally flows from our finite dimensional
discussions of orthogonality. 1

Let me digress from linear algebra for a little while. In physics it is customary to only allow coordi-
nates which fit the physics. In classical mechanics one often works with intertial frames which are
related by a rigid motion. Certain quantities are the same in all intertial frames, notably force. This
means Newtons laws have the same form in all intertial frames. The geometry of special relativity
is 4 dimensional. In special relativity, one considers coordinates which preserve Einstein’s three
axioms. Allowed coordinates are related to other coordinates by Lorentz transformations. These
Lorentz transformations include rotations and velocity boosts. These transformations are designed
to make the speed of a light ray invariant in all frames. For a linear algebraist the vector space is
the starting point and then coordinates are something we add on later. Physics, in contrast, tends
to start with coordinates and if the author is kind he might warn you which transformations are
allowed.

What coordinate transformations are allowed actually tells you what kind of physics you are dealing
with. This is an interesting and nearly universal feature of modern physics. The allowed transfor-
mations form what is known to physicsists as a ”group” ( however, strictly speaking these groups
do not always have the strict structure that mathematicians insist upon for a group). In special
relativity the group of interest is the Poincaire group. In quantum mechanics you use unitary
groups because unitary transformations preserve probabilities. In supersymmetric physics you use
the super Poincaire group because it is the group of transformations on superspace which preserves
supersymmetry. In general relativity you allow general coordinate transformations which are locally
lorentzian because all coordinate systems are physical provided they respect special relativity in a
certain approximation. In solid state physics there is something called the renormilzation group
which plays a central role in physical predictions of field-theoretic models. My point? Transfor-
mations of coordinates are important if you care about physics. We study the basic case of vector
spaces in this course. If you are interested in the more sophisticated topics just ask, I can show
you where to start reading.

We begin by developing all the important properties of norms and dot-products in the standard
euclidean geometry of Rn. Then we discuss the theory of orthogonal projections. This brings
us a calculational method to find a complementary subspace for W ≤ Rn. In particular, W⊥

complements W meaning that W ⊕W⊥ = Rn. This geometry yields a perhaps surprising result
on finding approximate solutions to inconsistent systems. We devote several sections to explaining
the calculational scheme of least squares data fitting. Then we abstract to inner product spaces.
The definition of length and norm is modified or invented, yet the techniques we developed for Rn
still apply. An initiation to Fourier analysis is given. Finally, we conclude with a technical section
on the so-called QR-factorization of an orthogonal matrix.

1we ignore analytical issues of convergence since we have only in mind a Fourier approximation, not the infinite
series
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9.1 Euclidean geometry of Rn

The dot-product is a mapping from Rn × Rn to R. We take in a pair of vectors and output a real
number. We have used it throughout the course for the inner workings of matrix-multiplication.
Now we study the geometry which the dot-product naturally induces for Rn. We attempt a complete
discussion here so the generalization to inner products later in this chapter is simple to envision.

Definition 9.1.1.

Let x, y ∈ Rn we define x • y ∈ R by

x • y = xT y = x1y1 + x2y2 + · · ·xnyn

Example 9.1.2. Let v = (1, 2, 3, 4, 5) and w = (6, 7, 8, 9, 10)

v •w = 6 + 14 + 24 + 36 + 50 = 130

The dot-product can be used to define the length of a vector and the angle between two vectors.

Definition 9.1.3.

The length or norm of x ∈ Rn is a real number which is defined by ||x|| =
√
x •x.

Furthermore, let x, y be nonzero vectors in Rn we define the angle θ between x and y by
cos−1

[ x • y
||x|| ||y||

]
. R together with these defintions of length and angle forms a Euclidean

Geometry.

The picture below helps us understand why the definition above is a natural formula for vector
length.Notice the Pythagorean theorem in two dimensions yields the same theorem in three dimen-
sions provided our coordinate axes are set at right-angles to one another.

Technically, before we make this definition we should make sure that the formulas given above even
make sense. I have not shown that x •x is nonnegative and how do we know that the inverse cosine
is well-defined? The first proposition below shows the norm of x is well-defined and establishes
several foundational properties of the dot-product.
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Proposition 9.1.4.

Suppose x, y, z ∈ Rn and c ∈ R then

1. x • y = y •x

2. x • (y + z) = x • y + x • z

3. c(x • y) = (cx) • y = x • (cy)

4. x •x ≥ 0 and x •x = 0 iff x = 0

Proof: the proof of (1.) is easy, x • y =
∑n

i=1 xiyi =
∑n

i=1 yixi = y •x. Likewise,

x • (y + z) =
n∑
i=1

xi(y + z)i =
n∑
i=1

(xiyi + xizi) =
n∑
i=1

xiyi +
n∑
i=1

xizi = x • y + x • z

proves (2.) and since

c

n∑
i=1

xiyi =

n∑
i=1

cxiyi =

n∑
i=1

(cx)iyi =

n∑
i=1

xi(cy)i

we find c(x • y) = (cx) • y = x • (cy). Continuting to (4.) notice that x •x = x1
2 +x2

2 +· · ·+xn2 thus
x •x is the sum of squares and it must be nonnegative. Suppose x = 0 then x •x = xTx = 0T 0 = 0.
Conversely, suppose x •x = 0. Suppose x 6= 0 then we find a contradiction since it would have a
nonzero component which implies x1

2 + x2
2 + · · ·+ xn

2 6= 0. This completes the proof of (4.). �

The formula cos−1
[ x • y
||x|| ||y||

]
is harder to justify. The inequality that we need for it to be reasonable

is
∣∣ x • y
||x|| ||y||

∣∣ ≤ 1, otherwise we would not have a number in the dom(cos−1) = range(cos) = [−1, 1].

An equivalent inequality is |x • y| ≤ ||x|| ||y|| which is known as the Cauchy-Schwarz inequality.

Proposition 9.1.5.

If x, y ∈ Rn then |x • y| ≤ ||x|| ||y||

Proof: I’ve looked in a few linear algebra texts and I must say the proof given in Spence, Insel and
Friedberg is probably the most efficient and clear. Other texts typically run up against a quadratic
inequality in some part of their proof (for example the linear algebra texts by Apostle, Larson&
Edwards, Anton & Rorres to name a few). That is somehow hidden in the proof that follows: let
x, y ∈ Rn. If either x = 0 or y = 0 then the inequality is clearly true. Suppose then that both x
and y are nonzero vectors. It follows that ||x||, ||y|| 6= 0 and we can define vectors of unit-length;
x̂ = x

||x|| and ŷ = y
||y|| . Notice that x̂ • x̂ = x

||x|| •
x
||x|| = 1

||x||2 x̂ •x = x •x
x •x = 1 and likewise ŷ • ŷ = 1.

Consider,

0 ≤ ||x̂± ŷ||2 = (x̂± ŷ) • (x̂± ŷ)

= x̂ • x̂± 2(x̂ • ŷ) + ŷ • ŷ

= 2± 2(x̂ • ŷ)

⇒ −2 ≤ ±2(x̂ • ŷ)

⇒ ±x̂ • ŷ ≤ 1

⇒ |x̂ • ŷ| ≤ 1
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Therefore, noting that x = ||x||x̂ and y = ||y||ŷ,

|x • y| = | ||x||x̂ • ||y||ŷ | = ||x|| ||y|| |x̂ • ŷ| ≤ ||x|| ||y||.

The use of unit vectors is what distinguishes this proof from the others I’ve found. �

Remark 9.1.6.

The dot-product is but one of many geometries for Rn. We will explore generalizations of
the dot-product in a later section. However, in this section we will work exclusively with the
standard dot-product on Rn. Generally, unless explicitly indicated otherwise, we assume
Euclidean geometry for Rn.

Example 9.1.7. Let v = (1, 2, 3, 4, 5) and w = (6, 7, 8, 9, 10) find the angle between these vectors
and calculate the unit vectors in the same directions as v and w. Recall that, v •w = 6 + 14 + 24 +
36 + 50 = 130. Furthermore,

||v|| =
√

12 + 22 + 32 + 42 + 52 =
√

1 + 4 + 9 + 16 + 25 =
√

55

||w|| =
√

62 + 72 + 82 + 92 + 102 =
√

36 + 49 + 64 + 81 + 100 =
√

330

We find unit vectors via the standard trick, you just take the given vector and multiply it by the
reciprocal of its length. This is called normalizing the vector,

v̂ = 1√
55

(1, 2, 3, 4, 5) ŵ = 1√
330

(6, 7, 8, 9, 10)

The angle is calculated from the definition of angle,

θ = cos−1

(
130√

55
√

330

)
= 15.21o

It’s good we have this definition, 5-dimensional protractors are very expensive.

Proposition 9.1.8.

Let x, y ∈ Rn and suppose c ∈ R then

1. ||cx|| = |c| ||x||

2. ||x+ y|| ≤ ||x||+ ||y||

Proof: let x ∈ Rn and c ∈ R then calculate,

||cx||2 = (cx) • (cx) = c2x •x = c2||x||2

Since ||cx|| ≥ 0 the squareroot yields ||cx|| =
√
c2||x|| and

√
c2 = |c| thus ||cx|| = |c|||x||. Item (2.)

is called the triangle inequality for reasons that will be clear when we later discuss the distance
function. Let x, y ∈ Rn,

||x+ y||2 = |(x+ y) • (x+ y)| defn. of norm

= |x • (x+ y) + y • (x+ y)| prop. of dot-product

= |x •x+ x • y + y •x+ y • y| prop. of dot-product

= | ||x||2 + 2x • y + ||y||2 | prop. of dot-product

≤ ||x||2 + 2|x • y|+ ||y||2 triangle ineq. for R
≤ ||x||2 + 2||x|| ||y||+ ||y||2 Cauchy-Schwarz ineq.

≤ (||x||+ ||y||)2 algebra
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Notice that both ||x + y|| and ||x|| + ||y|| are nonnegative by (4.) of Proposition 9.1.4 hence the
inequality above yields ||x+ y|| ≤ ||x||+ ||y||. �

Definition 9.1.9.

The distance between a ∈ Rn and b ∈ Rn is defined to be d(a, b) ≡ ||b− a||.

If we draw a picture this definition is very natural. Here we are thinking of the points a, b as vectors
from the origin then b − a is the vector which points from a to b (this is algebraically clear since
a+ (b− a) = b). Then the distance between the points is the length of the vector that points from
one point to the other. If you plug in two dimensional vectors you should recognize the distance
formula from middle school math:

d((x1, y1), (x2, y2)) =
√

(x2 − x1)2 + (y2 − y1)2

Set a = (x1, y1) and b = (x2, y2) to see how d(a, b) =
√

(x2 − x1)2 + (y2 − y1)2.

Actually, to be honest, the picture above is not for just n = 2. It indicates the truth which is
that the distance formula d(a, b) = ||b− a|| expresses the distance between points in n-dimensional
space. Moreover, the n-dimensional distance function has nice properties:

Proposition 9.1.10.

Let d : Rn × Rn → R be the distance function then

1. d(x, y) = d(y, x)

2. d(x, y) ≥ 0

3. d(x, x) = 0

4. d(x, y) + d(y, z) ≥ d(x, z)

Proof: I leave the proof of (1.), (2.) and (3.) to the reader. Item (4.) is also known as the
triangle inequality. Think of the points x, y, z as being the vertices of a triangle, this inequality
says the sum of the lengths of two sides cannot be smaller than the length of the remaining side.
Let x, y, z ∈ Rn and note by the triangle inequality for || • ||,

d(x, z) = ||z − x|| = ||z − y + y − x|| ≤ ||z − y||+ ||y − x|| = d(y, z) + d(x, y). �

We study the 2 and 3 dimensional case in some depth in calculus III. Differential calculus helps
to unravel the geometry of graphs and level functions and surfaces. In constrast, our objects of
interest are linear so calculus is not a necessary ingredient.
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9.2 orthogonality in Rn

Two vectors are orthogonal if the vectors point in mutually exclusive directions. We saw in calculus
III the dot-product allowed us to pick apart vectors into pieces. The same is true in n-dimensions:
we can take a vector an disassemble it into component vectors which are orthogonal.

Definition 9.2.1.

Let v, w ∈ Rn then we say v and w are orthogonal iff v •w = 0.

Example 9.2.2. Let v = [1, 2, 3]T describe the set of all vectors which are orthogonal to v. Let
r = [x, y, z]T be an arbitrary vector and consider the orthogonality condition:

0 = v • r = [1, 2, 3][x, y, z]T = x+ 2y + 3z = 0.

If you’ve studied 3 dimensional Cartesian geometry you should recognize this as the equation of a
plane through the origin with normal vector < 1, 2, 3 >.

Proposition 9.2.3. Pythagorean Theorem in n-dimensions

If x, y ∈ Rn are orthogonal vectors then ||x||2 + ||y||2 = ||x+ y||2.

Proof: Calculuate ||x+ y||2 from the dot-product,

||x+ y||2 = (x+ y) • (x+ y) = x •x+ x • y + y •x+ y • y = ||x||2 + ||y||2. �

Proposition 9.2.4.

The zero vector is orthogonal to all other vectors in Rn.

Proof: let x ∈ Rn note 2(0) = 0 thus 0 •x = 2(0) •x = 2(0 •x) which implies 0 •x = 0. �

Definition 9.2.5.

A set S of vectors in Rn is orthogonal iff every pair of vectors in the set is orthogonal. If
S is orthogonal and all vectors in S have length one then we say S is orthonormal.

Example 9.2.6. Let u = (1, 1, 0), v = (1,−1, 0) and w = (0, 0, 1). We calculate

u • v = 0, u •w, v •w = 0

thus S = {u, v, w} is an orthogonal set. However, it is not orthonormal since ||u|| =
√

2. It is easy
to create an orthonormal set, we just normalize the vectors; T = {û, v̂, ŵ} meaning,

T =
{

1√
2
(1, 1, 0), 1√

2
(1,−1, 0), (0, 0, 1)

}
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Proposition 9.2.7. Extended Pythagorean Theorem in n-dimensions

If x1, x2, . . . xk are orthogonal then

||x1||2 + ||x2||2 + · · ·+ ||xk||2 = ||x1 + x2 + · · ·+ xk||2

Proof: we can prove the second statement by applying the Pythagorean Theorem for two vectors
repeatedly, starting with

||x1 + (x2 + · · ·+ xk)||2 = ||x1||2 + ||x2 + · · ·+ xk||2

but then we can apply the Pythagorean Theorem to the rightmost term

||x2 + (x3 + · · ·+ xk)||2 = ||x2||2 + ||x3 + · · ·+ xk||2.

Continuing in this fashion until we obtain the Pythagorean Theorem for k-orthogonal vectors. �

I have illustrated the proof above in the case of three dimensions and k-dimensions, however my
k-dimensional diagram takes a little imagination. Another thing to think about: given v = v1e1 +
v2e2 + · · ·+ vnen if ei are orthonormal then ||v||2 = v2

1 + v2
2 + · · ·+ v2

n. Therefore, if we use a basis
which is orthonormal then we obtain the standard formula for length of a vector with respect to
the coordinates. If we were to use a basis of vectors which were not orthogonal or normalized then
the formula for the length of a vector in terms of the coordinates could look quite different.

Example 9.2.8. Use the basis {v1 = [1, 1]T , v2 = [2, 0]T } for R 2×1. Notice that {v1, v2} is not
orthogonal or normal. Given x, y ∈ R we wish to find a, b ∈ R such that r = [x, y]T = av1 + bv2,
this amounts to the matrix calculation:

rref [v1|v2|r] = rref

[
1 2 x
1 0 y

]
=

[
1 0 y
0 1 1

2(x− y)

]
Thus a = y and b = 1

2(x− y). Let’s check my answer,

av1 + bv2 = y[1, 1]T + 1
2(x− y)[2, 0]T = [y + x− y, y + 0]T = [x, y]T .
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Furthermore, solving for x, y in terms of a, b yields x = 2b+ a and y = a. Therefore, ||[x, y]T ||2 =
x2 + y2 is modified to

||av1 + bv2||2 = (2b+ a)2 + a2 6= ||av1||2 + ||bv2||2.

If we use a basis which is not orthonormal then we should take care not to assume formulas given
for the standard basis equally well apply. However, if we trade the standard basis for a new basis
which is orthogonal then we have less to worry about. The Pythagorean Theorem only applies in
the orthogonal case. For two normalized, but possibly non-orthogonal, vectors we can replace the
Pythagorean Theorem with a generalization of the Law of Cosines in Rn.

||av1 + bv2||2 = a2 + b2 + 2ab cos θ

where v1 · v2 = cos θ. ( I leave the proof to the reader )

Proposition 9.2.9.

If S = {v1, v2, . . . , vk} ⊂ Rn is an orthogonal set of nonzero vectors then S is linearly
independent.

Proof: suppose c1, c2, . . . , ck ∈ R such that

c1v1 + c2v2 + · · · ckvk = 0

Take the dot-product of both sides with respect to vj ∈ S,

c1v1 • vj + c2v2 • vj + · · ·+ ckvk • vj = 0 • vj = 0

Notice all terms in the sum above vanish by orthogonality except for one term and we are left with
cjvj • vj = 0. However, vj 6= 0 thus vj • vj 6= 0 and it follows we can divide by the nonzero scalar
vj • vj leaving cj = 0. But j was arbitrary hence c1 = c2 = · · · = ck = 0 and hence S is linearly
independent. �

The converse of the proposition above is false. Given a linearly indepdent set of vectors it is not
necessarily true that set is also orthogonal. However, we can modify any linearly independent set
of vectors to obtain a linearly indepedent set. The procedure for this modification is known as the
Gram-Schmidt orthogonalization. It is based on a generalization of the idea the vector projection
from calculus III. Let me remind you: we found the projection operator to be a useful construction
in calculus III. The projection operation allowed us to select the vector component of one vector
that pointed in the direction of another given vector. We used this to find the distance from a
point to a plane.
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Definition 9.2.10.

Let ~A 6= 0, ~B be vectors then we define

Proj ~A( ~B) = ( ~B • Â)Â

where Â = 1
||A||A. Moreover, the length of Proj ~A( ~B) is called the component of ~B in the

~A-direction and is denoted Comp ~A( ~B) = ||Proj ~A( ~B)||. Finally, the orthogonal comple-

ment is defined by Orth ~A( ~B) = ~B − Proj ~A( ~B).

Example 9.2.11. Suppose ~A = 〈2, 2, 1〉 and ~B = 〈2, 4, 6〉 notice that we can also express the
projection opertation by Proj ~A( ~B) = ( ~B • Â)Â = 1

|| ~A||2
( ~B • ~A) ~A thus

Proj ~A( ~B) = 1
9(〈2, 4, 6〉 • 〈2, 2, 1〉)〈2, 2, 1〉 = 4+8+6

9 〈2, 2, 1〉 = 〈4, 4, 2〉

The length of the projection vector gives Comp ~A( ~B) =
√

16 + 16 + 4 = 6. One application of this
algebra is to calculate the distance from the plane 2x + 2y + z = 0 to the point (2, 4, 6). The
”distance” from a plane to a point is defined to be the shortest distance. It’s geometrically clear
that the shortest path from the plane is found along the normal to the plane. If you draw a picture
its not hard to see that (2, 4, 6)− Proj ~A( ~B) = 〈2, 4, 6〉 − 〈4, 4, 2〉 = (−2, 0, 4) is the closest point to
(2, 4, 6) that lies on the plane 2x + 2y + z = 0. Moreover the distance from the plane to the point
is just 6.
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Example 9.2.12. We studied ~A = 〈2, 2, 1〉 and ~B = 〈2, 4, 6〉 in the preceding example. We found
that notice that Proj ~A( ~B) = 〈4, 4, 2〉. The projection of ~B onto ~A is the part of ~B which points in

the direction of ~A. It stands to reason that if we subtract away the projection then we will be left
with the part of ~B which does not point in the direction of ~A, it should be orthogonal.

Orth ~A( ~B) = ~B − Proj ~A( ~B) = 〈2, 4, 6〉 − 〈4, 4, 2〉 = 〈−2, 0, 4〉

Let’s verify Orth ~A( ~B) is indeed orthogonal to ~A,

Orth ~A( ~B) • ~A = 〈−2, 0, 4〉 • 〈2, 2, 1〉 = −4 + 4 = 0.

Notice that the projection operator has given us the following orthogonal decomposition of ~B:

〈2, 4, 6〉 = ~B = Proj ~A( ~B) +Orth ~A( ~B) = 〈4, 4, 2〉+ 〈−2, 0, 4〉.

If ~A, ~B are any two nonzero vectors it is probably clear that we can perform the decomposition
outlined in the example above. It would not be hard to show that if S = { ~A, ~B} is linearly
indepedendent then S′ = { ~A,Orth ~A( ~B)} is an orthogonal set, moreover they have the same span.
This is a partial answer to the converse of Proposition 9.2.9. But, what if we had three vectors
instead of two? How would we orthogonalize a set of three linearly independent vectors?

Remark 9.2.13.

I hope you can forgive me for reverting to calculus III notation in the last page or two. It
should be clear enough to the reader that the orthogonalization and projection operations
can be implemented on either rows or columns. I return to our usual custom of thinking pri-
marily about column vectors at this point. We’ve already seen the definition from Calculus
III, now we turn to the n-dimensional case in matrix notation.

Definition 9.2.14.

Suppose a 6= 0 ∈ Rn, define the projection of b onto a to be the mapping Proja :
Rn → Rn such that Proja(b) = 1

aT a
(aT b)a. Moreover, we define Ortha : Rn → Rn by

Ortha(b) = b− Proja(b) = b− 1
aT a

(aT b)a for all b ∈ Rn.

Proposition 9.2.15.

If a 6= 0 ∈ Rn then Proja and Ortha are linear transformations.

1. Ortha(b) • a = 0 for all b ∈ Rn,

2. Ortha(b) •Proja(y) = 0 for all b, y ∈ Rn,

3. the projection is idempotent; Proja ◦Proja = Proja.

I leave the proof of linearity as an exercise. Begin with (1.): let a 6= 0 ∈ Rn and let b ∈ Rn,

a •Ortha(b) = aT (b− 1
aT a

(aT b)a)

= aT b− aT ( 1
aT a

(aT b)a)

= aT b− 1
aT a

(aT b)aTa

= aT b− aT b = 0.
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notice I used the fact that aT b, aTa were scalars to commute the aT to the end of the expression.
Notice that (2.) follows since Proja(y) = ka for some constant k. Next, let b ∈ Rn and consider:

(Proja ◦Proja)(b) = Proja(Proja(b))

= Proja(
1
aT a

(aT b)a)

= 1
aT a

(aT [ 1
aT a

(aT b)a])a

= 1
aT a

( a
T b
aT a

aTa)a

= 1
aT a

(aT b)a

= Proja(b)

since the above holds for all b ∈ Rn we find Proja ◦Proja = Proja. This can also be denoted
Proj2

a = Proja. �

To create an orthogonal set from a given LI set we just repeated apply the orthogonal projections:

Proposition 9.2.16.

If S = {a, b, c} be a linearly independent set of vectors in Rn then S′ = {a′, b′, c′} is an
orthogonal set of vectors in Rn if we define a′, b′, c′ as follows:

a′ = a, b′ = Ortha′(b), c′ = Ortha′(Orthb′(c)).

Proof: to prove S′ orthogonal we must show that a′ • b′ = 0, a′ • c′ = 0 and b′ • c′ = 0. We already
proved a′ • b′ = 0 in the Proposition 9.2.15. Likewise, a′ • c′ = 0 since Ortha′(x) is orthogonal to a′

for any x. Consider:

b′ • c′ = b′ •Ortha′(Orthb′(c))

= b′ •
[
Orthb′(c)− Proja′(Orthb′(c))

]
= b′ •Orthb′(c)−Ortha(b) •Proja(Orthb′(c))
= 0

Where we again used (1.) and (2.) of Proposition 9.2.15 in the critical last step. The logic of
the formulas is very natural. To construct b′ we simply remove the part of b which points in the
direction of a′. Then to construct c′ we first remove the part of c in the b′ direction and then the
part in the a′ direction. This means no part of c′ will point in the a′ or b′ directions. In principle,
one might worry we would subtract away so much that nothing is left, but the linear independence
of the vectors insures that is not possible. If it were that would imply a linear dependence of the
original set of vectors. �

For convenience let me work out the formulas we just discovered in terms of an explicit formula with
dot-products. We can also perform the same process for a set of 4 or 5 or more vectors. I’ll state the
process for arbitrary order, you’ll forgive me if I skip the proof this time. There is a careful proof
on page 379 of Spence, Insel and Friedberg. The connection between my Orth operator approach
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and the formulas in the proposition that follows is just algebra:

v′3 = Orthv′1(Orthv′2(v3))

= Orthv′2(v3)− Projv′1(Orthv′2(v3))

= v3 − Projv′2(v3)− Projv′1(v3 − Projv′2(v3))

= v3 − Projv′2(v3)− Projv′1(v3)− Projv′1(Projv′2(v3))

= v3 −
v3 • v

′
2

v′2 • v
′
2

v′2 −
v3 • v

′
1

v′1 • v
′
1

v′1

The last term vanished because v′1 • v
′
2 = 0 and the projections are just scalar multiples of those

vectors.

Proposition 9.2.17. The Gram-Schmidt Process

If S = {v1, v2, . . . , vk} is a linearly independent set of vectors in Rn then S′ = {v′1, v′2, . . . , v′k}
is an orthogonal set of vectors in Rn if we define v′i as follows:

v′1 = v1

v′2 = v2 −
v2 • v

′
1

v′1 • v
′
1

v′1

v′3 = v3 −
v3 • v

′
2

v′2 • v
′
2

v′2 −
v3 • v

′
1

v′1 • v
′
1

v′1

v′k = vk −
vk • v

′
k−1

v′k−1
• v′k−1

v′k−1 −
vk • v

′
k−2

v′k−2
• v′k−2

v′k−2 − · · · −
vk • v

′
1

v′1 • v
′
1

v′1.

Example 9.2.18. Suppose v1 = (1, 0, 0, 0), v2 = (3, 1, 0, 0), v3 = (3, 2, 0, 3). Let’s use the Gram-
Schmidt Process to orthogonalize these vectors: let v′1 = v1 = (1, 0, 0, 0) and calculate:

v′2 = v2 −
v2 • v1

v1 • v1
v1 = (3, 1, 0, 0)− 3(1, 0, 0, 0) = (0, 1, 0, 0).

Next,

v′3 = v3 −
v3 • v

′
2

v′2 • v
′
2

v′2 −
v3 • v

′
1

v′1 • v
′
1

v′1 = (3, 2, 0, 3)− 2(0, 1, 0, 0)− 3(1, 0, 0, 0) = (0, 0, 0, 3).

We find the orthogonal set of vectors {e1, e2, e4}. It just so happens this is also an orthonormal set
of vectors.

Proposition 9.2.19. Normalization

If S′ = {v′1, v′2, . . . , v′k} is an orthogonal subset of Rn then S′′ = {v′′1 , v′′2 , . . . , v′′k} is an

orthonormal set if we define v′′i = v̂′i = 1
||v′i||

v′i for each i = 1, 2, . . . , k.

Example 9.2.20. Suppose v1 = (1, 1, 1), v2 = (1, 2, 3), v3 = (0, 0, 3) find an orthonormal set of
vectors that spans span{v1, v2, v3}. We can use Gram-Schmidt followed by a normalization, let
v′1 = (1, 1, 1) then calculate

v′2 = (1, 2, 3)−
(

1 + 2 + 3

3

)
(1, 1, 1) = (1, 2, 3)− (2, 2, 2) = (−1, 0, 1).
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as a quick check on my arthimetic note v′1 • v
′
2 = 0 (good). Next,

v′3 = (0, 0, 3)−
(

0(−1) + 0(0) + 3(1)

2

)
(−1, 0, 1)−

(
0(1) + 0(1) + 3(1)

3

)
(1, 1, 1)

⇒ v′3 = (0, 0, 3) + (3
2 , 0,−

3
2)− (1, 1, 1) = (1

2 ,−1, 1
2)

again it’s good to check that v′2 • v
′
3 = 0 and v′1 • v

′
3 = 0 as we desire. Finally, note that ||v′1|| =√

3, ||v′2|| =
√

2 and ||v′3|| =
√

3/2 hence

v′′1 = 1√
3
(1, 1, 1), v′′2 = 1√

2
(−1, 0, 1), v′′3 =

√
2
3(1

2 ,−1, 1
2)

are orthonormal vectors.

Definition 9.2.21.

A basis for a subspace W of Rn is an orthogonal basis for W iff it is an orthogonal set of
vectors which is a basis for W . Likewise, an orthonormal basis for W is a basis which is
orthonormal.

Proposition 9.2.22. Existence of Orthonormal Basis

If W ≤ Rn then there exists an orthonormal basis of W

Proof: since W is a subspace it has a basis. Apply Gram-Schmidt to that basis then normalize
the vectors to obtain an orthnormal basis. �

Example 9.2.23. Let W = span{(1, 0, 0, 0), (3, 1, 0, 0), (3, 2, 0, 3)}. Find an orthonormal basis for
W ≤ R4. Recall from Example 9.2.18 we applied Gram-Schmidt and found the orthonormal set of
vectors {e1, e2, e4}. That is an orthonormal basis for W .

Example 9.2.24. In Example 9.2.20 we found {v′′1 , v′′2 , v′′3} is an orthonormal set of vectors.
Since orthogonality implies linear independence it follows that this set is in fact a basis for R3×1.
It is an orthonormal basis. Of course there are other bases which are orthogonal. For example,
the standard basis is orthonormal.

Example 9.2.25. Let us define S = {v1, v2, v3, v4} ⊂ R4 as follows:

v1 =


1
0
1
1

 , v2 =


1
1
1
1

 , v3 =


0
0
2
3

 , v4 =


3
2
0
3


It is easy to verify that S defined below is a linearly independent set vectors basis for span(S) ≤
R 4×1. Let’s see how to find an orthonormal basis for span(S). The procedure is simple: apply the
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Gram-Schmidt algorithm then normalize the vectors.

v′1 = v1 =


1
0
1
1



v′2 = v2 −
(
v2 • v

′
1

v′1 • v
′
1

)
v′1 =


1
1
1
1

− 3

3


1
0
1
1

 =


0
1
0
0



v′3 = v3 −
(
v3 • v

′
2

v′2 • v
′
2

)
v′2 −

(
v3 • v

′
1

v′1 • v
′
1

)
v′1 =


0
0
2
3

− 0

1


0
1
0
0

− 5

3


1
0
1
1

 =
1

3


−5

0
1
4


v′4 = v4 −

(v4 • v′3
v′3 • v

′
3

)
v′3 −

(v3 • v′2
v′2 • v

′
2

)
v′2 −

(v3 • v′1
v′1 • v

′
1

)
v′1

=


3
2
0
3

− 1
14


−5

0
1
4

−


0
2
0
0

−


2
0
2
2

 = 1
14


9
0

−27
18


Then normalize to obtain the orthonormal basis for Span(S) below:

β =
1√
3


1
0
1
1

 ,


0
1
0
0

 , 1√
42


−5

0
1
4

 , 1
9
√

14


9
0

−27
18

}

Proposition 9.2.26. Coordinates with respect to an Orthonormal Basis

If W ≤ Rn has an orthonormal basis {v1, v2, . . . , vk} and if w =
∑k

i=1wivi then wi = w • vi
for all i = 1, 2, . . . , k. In other words, each vector w ∈W may be expressed as

w = (w • v1)v1 + (w • v2)v2 + · · ·+ (w · · · vk)vk

Proof: Let w = w1v1 + w2v2 + · · ·+ wkvk and take the dot-product with vj ,

w • vj = (w1v1 + w2v2 + · · ·+ wkvk) • vj = w1(v1 • vj) + w2(v2 • vj) + · · ·+ wk(vk • vj)

Orthonormality of the basis is compactly expressed by the Kronecker Delta; vi • vj = δij this is zero
if i 6= j and it is 1 if they are equal. The whole sum collapses except for the j-th term which yields:
w • vj = wj . But, j was arbitrary hence the proposition follows. �.

The proposition above reveals the real reason we like to work with orthonormal coordinates. It’s
easy to figure out the coordinates, we simply take dot-products. This technique was employed with
great sucess in (you guessed it) Calculus III. The standard {̂i, ĵ, k̂} is an orthonormal basis and one
of the first things we discuss is that if ~v =< A,B,C > then A = ~v • î, B = ~v • ĵ and C = ~v • k̂.
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Example 9.2.27. For the record, the standard basis of Rn is an orthonormal basis and

v = (v • e1)e1 + (v • e2)e2 + · · ·+ (v • en)en

for any vector v in Rn.

Example 9.2.28. Let v = [1, 2, 3, 4]. Find the coordinates of v with respect to the orthonormal
basis β found in Example 9.2.25.

β = {f1, f2, f3, f4} =

{
1√
3


1
0
1
1

 ,


0
1
0
0

 , 1√
42


−5

0
1
4

 , 1
9
√

14


9
0

−27
18

}

Let us denote the coordinates vector [v]β = [w1, w2, w3, w4] we know we can calculate these by taking
the dot-products with the vectors in the orthonormal basis β:

w1 = v • f1 =
1√
3

[1, 2, 3, 4][1, 0, 1, 1]T =
8√
3

w2 = v • f2 = [1, 2, 3, 4][0, 1, 0, 0]T = 2

w3 = v • f3 =
1√
42

[1, 2, 3, 4][−5, 0, 1, 4]T =
14√
42

w4 = v • f4 = 1
9
√

14
[1, 2, 3, 4][9, 0,−27, 18]T = 0

9
√

14
= 0

Therefore, [v]β = [ 8√
3
, 2, 14√

42
, 0]. Now, let’s check our answer. What should this mean if it is

correct? We should be able verify v = w1f1 + w2f2 + w3f3 + w4f4:

w1f1 + w2f2 + w3f3 + w4f4 =
8√
3

1√
3


1
0
1
1

+ 2


0
1
0
0

+
14√
42

1√
42


−5

0
1
4



=
8

3


1
0
1
1

+ 2


0
1
0
0

+
1

3


−5

0
1
4



=


8/3− 5/3

2
8/3 + 1/3
8/3 + 4/3



=


1
2
3
4


Well, that’s a relief.
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9.3 orthogonal complements and projections

Upto now we have discussed projections with respect to one vector at a time, however we can just
as well discuss the projection onto some subspace of Rn. We need a few definitions to clarify and
motivate the projection.

Definition 9.3.1.

Suppose W1,W2 ⊆ Rn then we say W1 is orthogonal to W2 iff w1 •w2 = 0 for all w1 ∈W1

and w2 ∈W2. We denote orthogonality by writing W1 ⊥W2.

Example 9.3.2. Let W1 = span{e1, e2} and W2 = span{e3} then W1,W2 ≤ Rn. Let w1 =
ae1 + be2 ∈W1 and w2 = ce3 ∈W2 calculate,

w1 •w2 = (ae1 + be2) • (ce3) = ace1 • e3 + bce2 • e3 = 0

Hence W1 ⊥W2. Geometrically, we have shown the xy-plane is orthogonal to the z-axis.

We notice that orthogonality relative to the basis will naturally extend to the span of the basis
since the dot-product has nice linearity properties.

Proposition 9.3.3.

Suppose W1,W2 ≤ Rn the subspace W1 is orthogonal to the subspace W2 iff wi • vj = 0
for all i, j relative to a pair of bases {wi} for W1 and {vj} for W2.

Proof: Suppose {wi}ri=1 is a basis for W1 ≤ Rn and {vj}sj=1 for W2 ≤ Rn. If W1 ⊥W2 then clearly
{wi}ri=1 is orthogonal to {vj}sj=1. Conversely, suppose {wi}ri=1 is orthogonal to {vj}sj=1 then let
x ∈W1 and y ∈W2:

x • y =

( r∑
i=1

xiwi

)
•

( s∑
i=1

yjwj

)
=

r∑
i=1

s∑
j=1

xiyj(wi • vj) = 0. �

Given a subspace W which lives in Rn we might wonder what is the largest subspace which is
orthogonal to W? In R 3×1 it is clear that the xy-plane is the largest subspace which is orthogonal
to the z-axis, however, if the xy-plane was viewed as a subset of R 4×1 we could actually find a
volume which was orthogonal to the z-axis (in particular span{e1, e2, e4} ⊥ span{e3}).

Definition 9.3.4.

Let W ⊆ Rn then W⊥ is defined as follows:

W⊥ = {v ∈ Rn|v •w = 0 for all w ∈W}

It is clear that W⊥ is the largest subset in Rn which is orthogonal to W . Better than just that,
it’s the largest subspace orthogonal to W .
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Proposition 9.3.5.

Let S ⊂ Rn then S⊥ ≤ Rn.

Proof: Let x, y ∈ S⊥ and let c ∈ R. Furthermore, suppose s ∈ S and note

(x+ cy) • s = x • s+ c(y • s) = 0 + c(0) = 0.

Thus an aribtrary linear combination of elements of S⊥ are again in S⊥ which is nonempty as
0 ∈ S⊥ hence by the subspace test S⊥ ≤ Rn. It is interesting that S need not be a subspace for
this argument to hold. �

Example 9.3.6. Find the orthogonal complement to W = span{v1 = (1, 1, 0, 0), v2 = (0, 1, 0, 2)}.
Let’s treat this as a matrix problem. We wish to describe a typical vector in W⊥. Towards that
goal, let r = (x, y, z, w) ∈ W⊥ then the conditions that r must satisfy are v1 • r = vT1 r = 0 and
v2 • r = vT2 r = 0. But this is equivalent to the single matrix equation below:

[
1 1 0 0
0 1 0 2

]
x
y
z
w

 =

[
0
0

]
⇒ r =


2w
−2w
z
w

 = z


0
0
1
0

+ w


2
−2
0
1


Thus, W⊥ = span{(0, 0, 1, 0), (2,−2, 0, 1)}.

If you study the preceding example it becomes clear that finding the orthogonal complement of a
set of vectors is equivalent to calculating the null space of a particular matrix. We have considerable
experience in such calculations so this is a welcome observation.

Proposition 9.3.7.

If S = {v1, v2, . . . , vk} ⊆ Rn and A = [v1|v2| · · · |vk] then S⊥ = Null(AT )

Proof: Denote A = [v1|v2| · · · |vk] ∈ R n×k and x = [x1, x2, . . . , xk]
T . Observe that:

x ∈ Null(AT )⇔ ATx = 0

⇔ [row1(AT )x, row2(AT )x, · · · , rowk(AT )x] = 0

⇔ [(col1(A))Tx, (col2(A))Tx, · · · , (colk(A))Tx] = 0

⇔ [v1 •x, v2 •x, · · · , vk •x] = 0

⇔ vj •x = 0 for j = 1, 2, . . . , k

⇔ x ∈ S⊥

Therefore, Null(AT ) = S⊥. �

Given the correspondence above we should be interested in statements which can be made about
the row and column space of a matrix. It turns out there are two simple statements to be made in
general:
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Proposition 9.3.8.

Let A ∈ R m×n then

1. Null(AT ) ⊥ Col(A).

2. Null(A) ⊥ Row(A).

Proof: Let S = {col1(A), col2(A), . . . , coln(A)} and use Proposition 9.3.7 to deduce S⊥ = Null(AT ).
Therefore, each column of A is orthogonal to all vectors in Null(AT ), in particular each column is
orthgonal to the basis for Null(AT ). Since the pivot columns are a basis for Col(A) we can use
Proposition 9.3.3 to conclude Null(AT ) ⊥ Col(A).

To prove of (2.) apply (1.) to B = AT to deduce Null(BT ) ⊥ Col(B). Hence, Null((AT )T ) ⊥
Col(AT ) and we find Null(A) ⊥ Col(AT ). But, Col(AT ) = Row(A) thus Null(A) ⊥ Row(A). �

The proof above makes ample use of previous work. I encourage the reader to try to prove this
proposition from scratch. I don’t think it’s that hard and you might learn something. Just take an
arbitrary element of each subspace and argue why the dot-product is zero.

Proposition 9.3.9.

Let W1,W2 ≤ Rn, if W1 ⊥W2 then W1 ∩W2 = {0}

Proof: let z ∈ W1 ∩W2 then z ∈ W1 and z ∈ W2 and since W1 ⊥ W2 it follows z • z = 0 hence
z = 0 and W1 ∩W2 ⊆ {0}. The reverse inclusion {0} ⊆ W1 ∩W2 is clearly true since 0 is in every
subspace. Therefore, W1 ∩W2 = {0} �

We defined the direct sum of two subspaces in the Section 7.7. The fact that W1 + W2 = V
and W1 ∩ W2 = {0} was sufficient to prove V ≈ W1 × W2 so, by our definition, we can write
V = W1 ⊕W2. The theorem below is at the heart of many geometric arguments in multivariate
calculus. Intuitively I think of it like this: if we show x /∈W then by process of elimination it must
be in W⊥. Intuition fails unless W⊥ is a complementary subspace. We say W1 and W2 are
complementary subspaces of V iff V = W1 ⊕W2.

Theorem 9.3.10.

Let W ≤ Rn then

1. Rn = W ⊕W⊥.

2. dim(W ) + dim(W⊥) = n,

3. (W⊥)⊥ = W ,

Proof: Let W ≤ Rn and choose an orthonormal basis β = {v1, v2, . . . vk} for S. Let z ∈ Rn and
define

ProjW (z) =

k∑
i=1

(z • vi)vi and OrthW (z) = z − ProjW (z).
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Observe that z = ProjW (z) + OrthW (z) and clearly ProjW (z) ∈ S. We now seek to argue that
OrthW (z) ∈ S⊥. Let vj ∈ β then

vj •OrthW (z) = vj • (z − ProjW (z))

= vj • z − vj •
( k∑
i=1

(z • vi)vi

)

= vj • z −
k∑
i=1

(z • vi)(vj • vi)

= vj • z −
k∑
i=1

(z • vi)δij

= vj • z − z • vj
= 0

Therefore, Rn = W ⊕W⊥. To prove (2.) notice we know by Proposition 9.3.5 that W⊥ ≤ Rn
and consequently there exists an orthonormal basis Γ = {w1, w2, . . . , wl} for W⊥. Furthermore,
by Proposition 9.3.9 we find β ∩ Γ = ∅ since 0 is not in either basis. We argue that β ∪ Γ is
a basis for Rn. Observe that β ∪ Γ clearly spans Rn since z = ProjW (z) + OrthW (z) for each
z ∈ Rn and ProjW (z) ∈ span(β) while OrthW (z) ∈ span(Γ). Furthermore, I argue that β ∪ Γ
is an orthonormal set. By construction β and Γ are orthonormal, so all we need prove is that
the dot-product of vectors from β and Γ is zero, but that is immediate from the construction of
Γ. We learned in Proposition 9.2.9 that orthogonality for set of nonzero vectors implies linearly
independence. Hence, β ∪ Γ is a linearly independent spanning set for Rn. By the dimension
theorem we deduce that there must be n-vectors in β ∪ Γ since it must have the same number of
vectors as any other basis for Rn ( the standard basis obviously has n-vectors). Therefore,

dim(W ) + dim(W⊥) = n.

in particular, we count dim(W⊥) = n − k in my current notation. Now turn to ponder the proof
of (3.). Let z ∈ (W⊥)⊥ and expand z in the basis β ∪ Γ to gain further insight, z = z1v1 + z2v2 +
· · · zkvk + zk+1w1 + zk+2w2 + · · · znwn−k. Since z ∈ (W⊥)⊥ then z •w⊥ = 0 for all w⊥ ∈ W⊥, in
particular z •wj = 0 for all j = 1, 2, . . . , n− k. But, this implies zk+1 = zk+2 = · · · = zn = 0 since
Proposition 9.2.26 showed the coordinates w.r.t. an orthonormal basis are given by dot-products.
Therefore, z ∈ span(β) = W and we have shown (W⊥)⊥ ⊆ W . In invite the reader to prove the
reverse inclusion to complete this proof. �

Two items I defined for the purposes of the proof above have application far beyond the proof.
Let’s state them again for future reference. I give two equivalent definitions, technically we should
prove that the second basis dependent statement follows from the first basis-independent statement.
Primary definitions are, as a point of mathematical elegance, stated in a coordinate free langauge
in as much as possible. However the second statement is how we calculate projections in many
cases.
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Definition 9.3.11.

Let W ≤ Rn if z ∈ Rn and z = u + w for some u ∈ W and w ∈ W⊥ then we
define u = ProjW (z) and w = OrthW (z). Equivalently, choose an orthonormal basis
β = {v1, v2, . . . vk} for W then if z ∈ Rn we define

ProjW (z) =
k∑
i=1

(z • vi)vi and OrthW (z) = z − ProjW (z).

Perhaps the following picture helps: here I show projections onto a plane with basis {~u1, ~u2} and
its normal ~n.

Example 9.3.12. Let W = span{e1 +e2, e3} and x = (1, 2, 3) calculate ProjW (x). To begin I note
that the given spanning set is orthogonal and hence linear indpendent. We need only orthonormalize
to obtain an orthonormal basis β for W

β = {v1, v2} with v1 = 1√
2
(1, 1, 0), v2 = (0, 0, 1)

Calculate, v1 •x = 3√
2

and v2 •x = 3. Thus,

ProjW ((1, 2, 3)) = (v1 •x)v1 + (v2 •x)v2 = 3√
2
v1 + 3v2 = (3

2 ,
3
2 , 3)

Then it’s easy to calculate the orthogonal part,

OrthW ((1, 2, 3)) = (1, 2, 3)− (3
2 ,

3
2 , 3) = (−1

2 ,
1
2 , 0)

As a check on the calculation note that ProjW (x) +OrthW (x) = x and ProjW (x) •OrthW (x) = 0.
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Example 9.3.13. Let W = span{u1, u2, u3} ≤ R4 where

u1 =


2
1
2
0

 u2 =


0
−2
1
1

 u3 =


−1
2
0
−1


calculate ProjW ([0, 6, 0, 6]T ) 2. Notice that the given spanning set appears to be linearly independent
but it is not orthogonal. Apply Gram-Schmidt to fix it:

v1 = u1 = [2, 1, 2, 0]T

v2 = u2 − u2 • v1
v1 • v1

v1 = u2 = [0,−2, 1, 1]T

v3 = u3 − u3 • v1
v1 • v1

v1 − u3 • v2
v2 • v2

v2 = u3 + 5
6v2 = [−1, 2, 0,−1]T + [0,−10

6 ,
5
6 ,

5
6 ]T

We calculate,

v3 = [−1, 2− 5
3 ,

5
6 , −1 + 5

6 ]T = [−1, 1
3 ,

5
6 , −

1
6 ]T = 1

6 [−6, 2, 5,−1]T

The normalized basis follows easily,

v′1 = 1
3 [2, 1, 2, 0]T v′2 = 1√

6
[0,−2, 1, 1]T v′3 = 1√

66
[−6, 2, 5,−1]T

Calculate dot-products in preparation for the projection calculation,

v′1 •x = 1
3 [2, 1, 2, 0][0, 6, 0, 6]T = 2

v′2 •x = 1√
6
[0,−2, 1, 1][0, 6, 0, 6]T = 1√

6
(−12 + 6) = −

√
6

v′3 •x = 1√
66

[−6, 2, 5,−1][0, 6, 0, 6]T = 1√
66

(12− 6) = 6√
66

Now we calculate the projection of x = [0, 6, 0, 6]T onto W with ease:

ProjW (x) = (x • v′1)v′1 + (x • v′2)v′2 + (x • v′3)v′3

= (2)1
3 [2, 1, 2, 0]T − (

√
6) 1√

6
[0,−2, 1, 1]T + ( 6√

66
) 1√

66
[−6, 2, 5,−1]T

= [4
3 ,

2
3 ,

4
3 , 0]T + [0, 2,−1,−1]T + [−6

11 ,
2
11 ,

5
11 ,
−1
11 ]T

= [26
33 ,

94
33 ,

26
33 ,

−36
33 ]T

and,
OrthW (x) = [−26

33 ,
104
33 ,

−26
33 ,

234
33 ]T

2this problem is inspired from Anton & Rorres’ §6.4 homework problem 3 part d.Sorry about the notation here,
I’m afraid I’ll make a typo as I change it so here it stays.
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9.4 orthogonal transformations and geometry

If we begin with an orthogonal subset of Rn and we preform a linear transformation then will the
image of the set still be orthogonal? We would like to characterize linear transformations which
maintain orthogonality. These transformations should take an orthogonal basis to a new basis
which is still orthogonal.

Definition 9.4.1.

If T : Rn → Rn is a linear transformation such that T (x) •T (y) = x • y for all x, y ∈ Rn
then we say that T is an orthogonal transformation

Example 9.4.2. Let {e1, e2} be the standard basis for R2 and let R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
be a

rotation of the coordinates by angle θ in the clockwise direction,[
x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
=

[
x cos θ + y sin θ
−x sin θ + y cos θ

]
As a check on my sign conventions, consider rotating (1, 0) by R(π/2), we obtain (x′, y′) = (0, 1).
Intuitively, a rotation should not change the length of a vector, let’s check the math: let v, w ∈ R2,

R(θ)v •R(θ)w = [R(θ)v]TR(θ)w

= vTR(θ)TR(θ)w

Now calculate R(θ)TR(θ),

R(θ)TR(θ) =

[
cos θ sin θ
− sin θ cos θ

] [
cos θ − sin θ
sin θ cos θ

]
=

[
cos2 θ + sin2 θ 0

0 sin2 θ + cos2 θ

]
= I

Therefore, R(θ)v •R(θ) = vT Iw = vTw = v •w for all v, w ∈ R2 and we find LR(θ) is an orthogonal
transformation.

This shows the matrix of a rotation LR satisfies RTR = I. Is this always true or was this just a spe-
cial formula for rotations? Or is this just a two-dimensional thing? What if we look at orthhogonal
transformations on Rn what general condition is there on the matrix of the transformation?

Definition 9.4.3.

Let A ∈ R n×n then we say that A is an orthogonal matrix iff ATA = I. Moreover, we
say A is a reflection matrix if A is orthogonal and det(A) = −1 whereas we say A is
a rotation matrix if A is orthogonal with det(A) = 1. The set of all orthogonal n × n
matrices is denoted O(n) and the set of all n× n rotation matrices is denoted SO(n).
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Proposition 9.4.4. matrix of an orthogonal transformation is orthogonal

If A is the matrix of an orthogonal transformation on Rn then ATA = I and either A is a
rotation matrix or A is a reflection matrix.

Proof: Suppose L(x) = Ax and L is an orthogonal transformation on Rn. Notice that

L(ei) •L(ej) = [Aei]
TAej = eTi [ATA]ej

and
ei • ej = eTi ej = eTi Iej

hence eTi [ATA − I]ej = 0 for all i, j thus ATA − I = 0 by Example 3.3.11 and we find ATA = I.
Following a homework you did earlier in the course,

det(ATA) = det(I) ⇔ det(A)det(A) = 1 ⇔ det(A) = ±1

Thus A ∈ SO(n) or A is a reflection matrix. �

The proposition below is immediate from the definitions of length, angle and linear transformation.

Proposition 9.4.5. orthogonal transformations preserve lengths and angles

If v, w ∈ Rn and L is an orthogonal transformation such that v′ = L(v) and w′ = L(w)
then the angle between v′ and w′ is the same as the angle between v and w, in addition the
length of v′ is the same as v.

Remark 9.4.6.

Reflections, unlike rotations, will spoil the ”handedness” of a coordinate system. If we take
a right-handed coordinate system and perform a reflection we will obtain a new coordinate
system which is left-handed. If you’d like to know more just ask me sometime.

If orthogonal transformations preserve the geometry of Rn you might wonder if there are other
non-linear transformations which also preserve distance and angle. The answer is yes, but we need
to be careful to distinguish between the length of a vector and the distance bewtween points. It
turns out that the translation defined below will preserve the distance, but not the norm or length
of a vector.

Definition 9.4.7.

Fix b ∈ Rn then a translation by b is the mapping Tb(x) = x+ b for all x ∈ Rn.

This is known as an affine transformation, it is not linear since T (0) = b 6= 0 in general. ( if
b = 0 then the translation is both affine and linear). Anyhow, affine transformations should be
familar to you: y = mx+ b is an affine transformation on R.
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Proposition 9.4.8. translations preserve geometry

Suppose Tb : Rn → Rn is a translation then

1. If ∠(xyz) denotes the angle formed by line segments x̄y, ȳz which have endpoints x, y
and y, z respectively then ∠(Tb(x)Tb(y)Tb(z)) = ∠(xyz)

2. The distance from x to y is the equal to the distance from Tb(x) to Tb(y).

Proof: I’ll begin with (2.) since it’s easy:

d(Tb(x), Tb(y)) = ||Tb(y)− Tb(x)|| = ||y + b− (x+ b)|| = ||y − x|| = d(x, y).

Next, the angle ∠(xyz) is the angle between x− y and z − y. Likewise the angle ∠Tb(x)Tb(y)Tb(z)
is the angle between Tb(x) − Tb(y) and Tb(z) − Tb(y). But, these are the same vectors since
Tb(x)− Tb(y) = x+ b− (y + b) = x− y and Tb(z)− Tb(y) = z + b− (y + b) = z − y. �

Definition 9.4.9.

Suppose T (x) = Ax + b where A ∈ SO(n) and b ∈ Rn for all x ∈ Rn then we say T is a
rigid motion.

In high-school geometry you studied the concept of congruence. To objects were congruent if they
had the same size and shape. From the viewpoint of analytic geometry we can say two objects are
congruent iff one is the image of the other with respect to some rigid motion. We leave further
discussion of such matters to the modern geometry course where you study these concepts in depth.

Remark 9.4.10.

In Chapter 6 of my Mathematical Models in Physics notes I describe how Euclidean geometry
is implicit and foundational in classical Newtonian Mechanics. The concept of a rigid motion
is used to define what is meant by an intertial frame. I have these notes posted on my
website, ask if your interested. Chapter 7 of the same notes describes how Special Relativity
has hyperbolic geometry as its core. The dot-product is replaced with a Minkowski-product
which yields all manner of curious results like time-dilation, length contraction, and the
constant speed of light. If your interested in hearing a lecture or two on the geometry of
Special Relativity please ask and I’ll try to find a time and a place, I mean, we’ll make it
an event.

This concludes our short tour of Euclidean geometry. Incidentally, you might look at Barret Oneil’s
Elementary Diffferential Geometry if you’d like to see a more detailed study of isometries of R3.
Some notes are posted on my website from the Math 497, Spring 2014 course. We now generalize
to inner product spaces which include the dot-product as a particular case. The dot-product is
the most important and common inner-product, however it is not the only case of interest in this
course.

9.5 least squares analysis

In this section we consider results which ultimately show how to find the best approximation to
problems which have no exact solution. In other words, we consider how to almost solve inconsistent
systems in the best way possible.
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9.5.1 the closest vector problem

Suppose we are given a subspace and a vector not in the subspace, which vector in the subspace is
closest to the external vector ? Naturally the projection answers this question. The projection of
the external vector onto the subspace will be closest. Let me be a bit more precise:

Proposition 9.5.1. Closest vector inequality.

If S ≤ Rn and b ∈ Rn such that b /∈ S then for all u ∈ S with u 6= ProjS(b),

||b− ProjS(b)|| < ||b− u||.

This means ProjS(b) is the closest vector to b in S.

Proof: Noice that b − u = b − ProjS(b) + ProjS(b) − u. Furthermore note that b − ProjS(b) =
OrthS(b) ∈ S⊥ whereas ProjS(b)−u ∈ S hence these are orthogonal vectors and we can apply the
Pythagorean Theorem,

||b− u||2 = ||b− ProjS(b)||2 + ||ProjS(b)− u||2

Notice that u 6= ProjS(b) implies ProjS(b) − u 6= 0 hence ||ProjS(b) − u||2 > 0. It follows that
||b−ProjS(b)||2 < ||b− u||2. And as the || · || is nonnegative3 we can take the squareroot to obtain
||b− ProjS(b)|| < ||b− u||. �

Remark 9.5.2.

In calculus III I show at least three distinct methods to find the point off a plane which
is closest to the plane. We can minimize the distance function via the 2nd derivative test
for two variables, or use Lagrange Multipliers or use the geometric solution which invokes
the projection operator. It’s nice that we have an explicit proof that the geometric solution
is valid. We had argued on the basis of geometric intuition that OrthS(b) is the shortest
vector from the plane S to the point b off the plane4 Now we have proof. Better yet, our
proof equally well applies to subspaces of Rn. In fact, this discussion extends to the context
of inner product spaces.

Example 9.5.3. Consider R2 let S = span{(1, 1)}. Find the point on the line S closest to the
point (4, 0).

ProjS((4, 0)) = 1
2((1, 1) • (4, 0))(1, 1) = (2, 2)

Thus, (2, 2) ∈ S is the closest point to (4, 0). Geometrically, this is something you should have been
able to derive for a few years now. The points (2, 2) and (4, 0) are on the perpendicular bisector of
y = x (the set S is nothing more than the line y = x making the usual identification of points and
vectors)

Example 9.5.4. In Example 9.3.13 we found that W = span{u1, u2, u3} ≤ R4 where

u1 =


2
1
2
0

 u2 =


0
−2
1
1

 u3 =


−1
2
0
−1


3notice a2 < b2 need not imply a < b in general. For example, (5)2 < (−7)2 yet 5 ≮ −7. Generally, a2 < b2

together with the added condition a, b > 0 implies a < b.
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has ProjW ((0, 6, 0, 6)) = (26
33 ,

94
33 ,

26
33 ,

−36
33 ). We can calculate that

rref


2 0 −1 0
1 −2 2 6
2 1 0 0
0 1 −1 6

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


This means that (0, 6, 0, 6) /∈W . However, we learned in Proposition 9.5.1 that ProjW ((0, 6, 0, 6))
is the vector in W which is closest to (0, 6, 0, 6). Notice that we can deduce that the orthogonal
basis from Example 9.3.13 unioned with OrthW ((0, 6, 0, 6)) will form an orthogonal basis for R4.
To modify it to an orthonormal basis we could simply normalize each vector to length one.

Example 9.5.5. Example 9.3.12 shows that W = span{e1 + e2, e3} and x = (1, 2, 3) yields
ProjW (x) = (3

2 ,
3
2 , 3). Again we can argue that x /∈ Col[e1 + e2|e3] = W but ProjW (x) is in

fact in W . Moreover, ProjW (x) is the closest vector to x which is in W . The geometric interpre-
tation here is that OrthW (x) = (−1

2 ,
1
2 , 0) is precisely the normal vector to the plane W .

The examples above are somewhat special in that the subspaces considered have only one dimension
less than the total vector space. This means that the orthogonal projection of any vector outside
the subspace will return the same vector modulo a nonzero constant. In other words, the orthogonal
complement is selecting the normal vector to our subspace. In general if we had a subspace which
was two or more dimensions smaller than the total vector space then there would be more variety in
the output of the orthogonal projection with respect to the subspace. For example, if we consider
a plane inside R4 then there is more than just one direction which is orthogonal to the plane, the
orthogonal projection would itself fill out a plane in R4.

9.5.2 inconsistent equations

We’ve spent considerable time solving systems of equations which were consistent. What if a sys-
tem of equations Ax = b is inconsistent? What if anything can we say? Let A ∈ R m×n then we

found in Proposition 6.7.3 Ax = b is consistent iff b ∈ Col(A). In other words, the system has a

solution iff there is some linear combination of the columns of A such that we obtain b. Here the
columns of A and b are both m-dimensional vectors. If rank(A) = dim(Col(A)) = m then the
system is consistent no matter which choice for b is made. However, if rank(A) < m then there
are some vectors in Rm which are not in the column space of A and if b /∈ Col(A) then there will
be no x ∈ Rn such that Ax = b. We can picture it as follows: the Col(A) is a subspace of Rm
and b ∈ Rm is a vector pointing out of the subspace. The shadow of b onto the subspace Col(A) is
given by ProjCol(A)(b).
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Notice that ProjCol(A)(b) ∈ Col(A) thus the system Ax = ProjCol(A)(b) has a solution for any
b ∈ Rm. In fact, we can argue that x which solves Ax = ProjCol(A)(b) is the solution which comes
closest to solving Ax = b. Closest in the sense that ||Ax−b||2 is minimized. We call such x the least
squares solution to Ax = b (which is kind-of funny terminology since x is not actually a solution,
perhaps we should really call it the ”least squares approximation”).

Theorem 9.5.6. Least Squares Solution:

If Ax = b is inconsistent then the solution of Au = Projcol(A)(b) minimizes ||Ax− b||2.

Proof: We can break-up the vector b into a vector ProjCol(A)(b) ∈ Col(A) and Orthcol(A)(b) ∈
Col(A)⊥ where

b = ProjCol(A)(b) +OrthCol(A)(b).

Since Ax = b is inconsistent it follows that b /∈ Col(A) thus OrthCol(A)(b) 6= 0. Observe that:

||Ax− b||2 = ||Ax− ProjCol(A)(b)−OrthCol(A)(b)||2

= ||Ax− ProjCol(A)(b)||2 + ||OrthCol(A)(b)||2

Therefore, the solution of Ax = ProjCol(A)(b) minimizes ||Ax−b||2 since any other vector will make
||Ax− ProjCol(A)(b)||2 > 0. �

Admittably, there could be more than one solution of Ax = ProjCol(A)(b), however it is usually the
case that this system has a unique solution. Especially for expermentally determined data sets.

We already have a technique to calculate projections and of course we can solve systems but it is
exceedingly tedious to use the proposition above from scratch. Fortunately there is no need:

Proposition 9.5.7.

If Ax = b is inconsistent then the solution(s) of Au = ProjCol(A)(b) are solutions of the

so-called normal equations ATAu = AT b.

Proof: Observe that,

Au = ProjCol(A)(b) ⇔ b−Au = b− ProjCol(A)(b) = OrthCol(A)(b)

⇔ b−Au ∈ Col(A)⊥

⇔ b−Au ∈ Null(AT )

⇔ AT (b−Au) = 0

⇔ ATAu = AT b,

where we used Proposition 9.3.8 in the third step. �

The proposition below follows immediately from the preceding proposition.

Proposition 9.5.8.

If det(ATA) 6= 0 then there is a unique solution of Au = ProjCol(A)(b).

Examples are given in the next section. The proposition above is the calculational core of the least
squares method.
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9.5.3 the least squares problem

In experimental studies we often have some model with coefficients which appear linearly. We
perform an experiment, collect data, then our goal is to find coefficients which make the model fit
the collected data. Usually the data will be inconsistent with the model, however we’ll be able to
use the idea of the last section to find the so-called best-fit curve. I’ll begin with a simple linear
model. This linear example contains all the essential features of the least-squares analysis.

linear least squares problem

Problem: find values of c1, c2 such that y = c1x+ c2 most closely models a given
data set: {(x1, y1), (x2, y2), . . . , (xk, yk)}

Solution: Plug the data into the model and see what equations result:

y1 = c1x1 + c2, y2 = c1x2 + c2, . . . yk = c1xk + c2

arrange these as a matrix equation,
y1

y2
...
yk

 =


x1 1
x2 1
...

...
xk 1


[
c1

c2

]
⇒ ~y = M~v

where ~y = (y1, y2, . . . , yk) and v = (c1, c2) and M is defined in the obvious way. The system ~y = M~v
will be inconsistent due to the fact that error in the data collection will5 make the results bounce
above and below the true solution. We can solve the normal equations MT~y = MTM~v to find
c1, c2 which give the best-fit curve6.

Example 9.5.9. Find the best fit line through the points (0, 2), (1, 1), (2, 4), (3, 3). Our model is
y = c1 + c2x. Assemble M and ~y as in the discussion preceding this example:

~y =


2
1
4
3

 M =


0 1
1 1
2 1
3 1

 ⇒ MTM =

[
0 1 2 3
1 1 1 1

]
0 1
1 1
2 1
3 1

 =

[
14 6
6 4

]

and we calculate: MT y =

[
0 1 2 3
1 1 1 1

]
2
1
4
3

 =

[
18
10

]

The normal equations7 are MTM~v = MT~y. Note that (MTM)−1 = 1
20

[
4 −6
−6 14

]
thus the

solution of the normal equations is simply,

~v = (MTM)−1MT~y = 1
20

[
4 −6
−6 14

] [
18
10

]
=

[
3
5
8
5

]
=

[
c1

c2

]
5almost always
6notice that if xi are not all the same then it is possible to show det(MTM) 6= 0 and then the solution to the

normal equations is unique
7notice my choice to solve this system of 2 equations and 2 unknowns is just a choice, You can solve it a dozen

different ways, you do it the way which works best for you.
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Thus, y = 0.6x+ 1.6 is the best-fit line. This solution minimizes the vertical distances squared
between the data and the model.

It’s really nice that the order of the normal equations is only as large as the number of coefficients
in the model. If the order depended on the size of the data set this could be much less fun for
real-world examples. Let me set-up the linear least squares problem for 3-coefficients and data from
R3, the set-up for more coefficients and higher-dimensional data is similar. We already proved this
in general in the last section, the proposition simply applies mathematics we already derived. I
state it for your convenience.

Proposition 9.5.10.

Given data {~r1, ~r2, . . . , ~rn} ⊂ R3, with ~rk = [xk, yk, zk]
T , the best-fit of the linear model

z = c1x+ c2y + c3 is obtained by solving the normal equations MTM~v = MT~z where

~z =

 c1

c2

c3

 M =


x1 y1 1
x2 y2 1
...

...
...

xn yn 1

 ~z =


z1

z2
...
zn

 .

Example 9.5.11. Find the plane which is closest to the points (0, 0, 0), (1, 2, 3), (4, 0, 1), (0, 3, 0), (1, 1, 1).
An arbitrary8 plane has the form z = c1x+ c2y + c3. Work on the normal equations,

M =


0 0 1
1 2 1
4 0 1
0 3 1
1 1 1

 ~z =


0
3
1
0
1

 ⇒ MTM =

 0 1 4 0 1
0 2 0 3 1
1 1 1 1 1




0 0 1
1 2 1
4 0 1
0 3 1
1 1 1

 =

 18 3 6
3 14 6
6 6 5



also, MT~z =

 0 1 4 0 1
0 2 0 3 1
1 1 1 1 1




0
3
1
0
1

 =

 8
7
5



We solve MTM~v = MT~z by row operations, after some calculation we find:

rref [MTM |MT~z] =

 1 0 1 89/279
0 1 1 32/93
0 0 1 19/93

 ⇒
c1 = 89/279
c2 = 32/93
c3 = 19/93

Therefore, z = 89
293x+ 32

93y+ 19
93 is the plane which is ”closest” to the given points. Technically, I’m

not certain that is is the absolute closest. We used the vertical distance squared as a measure of
distance from the point. Distance from a point to the plane is measured along the normal direction,
so there is no garauntee this is really the absolute ”best” fit. For the purposes of this course we
will ignore this subtle and annoying point. When I say ”best-fit” I mean the least squares fit of the
model.

8technically, the general form for a plane is ax+ by + cz = d, if c = 0 for the best solution then our model misses
it. In such a case we could let x or y play the role that z plays in our set-up.
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nonlinear least squares

Problem: find values of c1, c2 such that y = c1f1(x)x+ c2f2(x) + · · ·+ cnfn(x) most
closely models a given data set: {(x1, y1), (x2, y2), . . . , (xk, yk)}. We assume the
coefficients c1, c2 appear linearly on (possibly nonlinear) functions f1, f2, . . . fn.

Solution: Plug the data into the model and see what equations result:

y1 = c1f1(x1) + c2f2(x1) + · · ·+ cnfn(x1),

y2 = c1f1(x2) + c2f2(x2) + · · ·+ cnfn(x2),

...
...

...

yk = c1f1(xk) + c2f2(xk) + · · ·+ cnfn(xk)

arrange these as a matrix equation,
y1

y2
...
yk

 =


f1(x1) f2(x1) · · · fn(x1)
f1(x1) f2(x1) · · · fn(x1)

...
...

...
...

f1(xk) f2(xk) · · · fn(xk)



c1

c2
...
cn

 ⇒ ~y = M~v

where ~y = [y1, y2, . . . , yk]
T , v = [c1, c2, . . . , cn]T and M is defined in the obvious way. The system

~y = M~v will be inconsistent due to the fact that error in the data collection will9 make the results
bounce above and below the true solution. We can solve the normal equations MT~y = MTM~v to
find c1, c2, . . . , cn which give the best-fit curve10.

Remark 9.5.12.

Nonlinear least squares includes the linear case as a subcase, take f1(x) = x and f2(x) = 1
and we return to the linear least squares examples. We will use data sets from R2 in this
subsection. These techniques do extend to data sets with more variables as I demonstrated
in the simple case of a plane.

Example 9.5.13. Find the best-fit parabola through the data (0, 0), (1, 3), (4, 4), (3, 6), (2, 2). Our
model has the form y = c1x

2 + c2x+ c3. Identify that f1(x) = x2, f2(x) = x and f3(x) = 1 thus we
should study the normal equations: MTM~v = MT~y where:

M =


f1(0) f2(0) f3(0)
f1(1) f2(1) f3(1)
f1(4) f2(4) f3(4)
f1(3) f2(3) f3(3)
f1(2) f2(2) f3(2)

 =


0 0 1
1 1 1
16 4 1
9 3 1
4 2 1

 and ~y =


0
3
4
6
2

 .
Hence, calculate

MTM =

 0 1 16 9 4
0 1 4 3 2
1 1 1 1 1




0 0 1
1 1 1
16 4 1
9 3 1
4 2 1

 =

 354 100 30
100 30 10
30 10 5


9almost always

10notice that if fj(xi) are not all the same then it is possible to show det(MTM) 6= 0 and then the solution to the
normal equations is unique
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and,

MT~y =

 0 1 16 9 4
0 1 4 3 2
1 1 1 1 1




0
3
4
6
2

 =

 129
41
15


After a few row operations we can deduce,

rref [MTM |MT~y] =

 1 0 1 −5/14
0 1 1 177/70
0 0 1 3/35

 ⇒
c1 = −5/14 u −0.357
c2 = 177/70 u 2.529
c3 = 3/35 = 0.086

We find the best-fit parabola is y = −0.357x2 + 2.529x+ 0.086

Yes..., but what’s this for?

Example 9.5.14. Suppose you land on a mysterious planet. You find that if you throw a ball it’s
height above the ground y at time t is measured at times t = 0, 1, 2, 3, 4 seconds to be y = 0, 2, 3, 6, 4
meters respective. Assume that Newton’s Law of gravity holds and determine the gravitational
acceleration from the data. We already did the math in the last example. Newton’s law approximated
for heights near the surface of the planet simply says y′′ = −g which integrates twice to yield
y(t) = −gt2/2 +vot+y0 where vo is the initial velocity in the vertical direction. We find the best-fit
parabola through the data set {(0, 0), (1, 3), (4, 4), (3, 6), (2, 2)} by the math in the last example,

y(t) = −0.357t2 + 2.529 + 0.086

we deduce that g = 2(0.357)m/s2 = 0.714m/s2. Apparently the planet is smaller than Earth’s moon
(which has gmoon ≈ 1

69.8m/s2 = 1.63m/s2.
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Remark 9.5.15.

If I know for certain that the ball is at y = 0 at t = 0 would it be equally reasonable to
assume yo in our model? If we do it simplifies the math. The normal equations would only
be order 2 in that case.

Example 9.5.16. Find the best-fit parabola that passes through the origin and the points
(1, 3), (4, 4), (3, 6), (2, 2). To begin we should state our model: since the parabola goes through the
origin we know the y-intercept is zero hence y = c1x

2 + c2x. Identify f1(x) = x2 and f2(x) = x.
As usual set-up the M and ~y,

M =


f1(1) f2(1)
f1(4) f2(4)
f1(3) f2(3)
f1(2) f2(2)

 =


1 1
16 4
9 3
4 2

 and ~y =


3
4
6
2

 .
Calculate,

MTM =

[
1 16 9 4
1 4 3 2

]
1 1
16 4
9 3
4 2

 =

[
354 100
100 30

]
⇒ (MTM)−1 =

1

620

[
30 −100
−100 354

]

and,

MT~y =

[
1 16 9 4
1 4 3 2

]
3
4
6
2

 =

[
129
41

]

We solve MTM~v = MT~y by multiplying both sides by (MTM)−1 which yeilds,

~v = (MTM)−1MT~y =
1

620

[
30 −100
−100 354

] [
129
41

]
=

[
−23/62
807/310

]
⇒ c1 = −23/62 u −0.371

c2 = 807/310 u 2.603

Thus the best-fit parabola through the origin is y = −0.371x2 + 2.603x

Sometimes an application may not allow for direct implementation of the least squares method,
however a rewrite of the equations makes the unknown coefficients appear linearly in the model.

Example 9.5.17. Newton’s Law of Cooling states that an object changes temperature T at a rate
proportional to the difference between T and the room-temperature. Suppose room temperature is
known to be 70o then dT/dt = −k(T − 70) = −kT + 70k. Calculus reveals solutions have the form
T (t) = c0e

−kt + 70. Notice this is very intuitive since T (t) → 70 for t >> 0. Suppose we measure
the temperature at successive times and we wish to find the best model for the temperature at time
t. In particular we measure: T (0) = 100, T (1) = 90, T (2) = 85, T (3) = 83, T (4) = 82. One
unknown coefficient is k and the other is c1. Clearly k does not appear linearly. We can remedy
this by working out the model for the natural log of T − 70. Properties of logarithms will give us a
model with linearly appearing unknowns:

ln(T (t)− 70) = ln(c0e
−kt) = ln(c0) + ln(e−kt) = ln(c0)− kt
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Let c1 = ln(c0), c2 = −k then identify f1(t) = 1 while f2(t) = t and y = ln(T (t)− 70. Our model is
y = c1f1(t) + c2f2(t) and the data can be generated from the given data for T (t):

t1 = 0 : y1 = ln(T (0)− 70) = ln(100− 70) = ln(30)

t2 = 1 : y2 = ln(T (1)− 90) = ln(90− 70) = ln(20)

t3 = 2 : y3 = ln(T (2)− 85) = ln(85− 70) = ln(15)

t4 = 3 : y4 = ln(T (2)− 83) = ln(83− 70) = ln(13)

t5 = 4 : y5 = ln(T (2)− 82) = ln(82− 70) = ln(12)

Our data for (t, y) is (0, ln 30), (1, ln 20), (2, ln 15), (3, ln 13), (4, ln 12). We should solve normal equa-
tions MTM~v = MT~y where

M =


f1(0) f2(0)
f1(1) f2(1)
f1(2) f2(2)
f1(3) f2(3)
f1(4) f2(4)

 =


1 0
1 1
1 2
1 3
1 4

 and ~y =


ln 30
ln 20
ln 15
ln 13
ln 12

 .

We can calculate MTM =

[
5 10
10 30

]
and MT~y u

[
14.15
26.05

]
. Solve MTM~v = MT~y by multipli-

cation by inverse of MTM :

~y = (MTM)−1MT~y =

[
3.284
−0.2263

]
⇒ c1 u 3.284

c2 u −0.2263
.

Therefore, y(t) = ln(T (t) − 70) = 3.284 − 0.2263 we identify that k = 0.2263 and ln(c0) = 3.284
which yields c0 = e3.284 = 26.68. We find the best-fit temperature function is

T (t) = 26.68e−0.2263t + 70.

Now we could give good estimates for the temperature T (t) for other times. If Newton’s Law of
cooling is an accurate model and our data was collected carefully then we ought to be able to make
accurate predictions with our model.

Remark 9.5.18.

The accurate analysis of data is more involved than my silly examples reveal here. Each
experimental fact comes with an error which must be accounted for. A real experimentalist
never gives just a number as the answer. Rather, one must give a number and an uncertainty
or error. There are ways of accounting for the error of various data. Our approach here
takes all data as equally valid. There are weighted best-fits which minimize a weighted least
squares. Technically, this takes us into the realm of math of inner-product spaces. Finite
dimensional inner-product spaces also allows for least-norm analysis. The same philosophy
guides the analysis: the square of the norm measures the sum of the squares of the errors in
the data. The collected data usually does not precisely fit the model, thus the equations are
inconsistent. However, we project the data onto the plane representative of model solutions
and this gives us the best model for our data. Generally we would like to minimize χ2,
this is the notation for the sum of the squares of the error often used in applications. In
statistics finding the best-fit line is called doing ”linear regression”.
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9.6 inner products

The definition of an inner product is based on the idea of the dot product. Proposition 9.1.4 sum-
marized the most important properties. These properties form the definition for an inner product.
If you examine proofs in § 9.1 you’ll notice most of what I argued was based on using these 4 simple
facts for the dot-product11.

Definition 9.6.1.

Let V be a vector space over R. If there is a function 〈 , >: V × V → R such that for all
x, y, z ∈ V and c ∈ R,

1. 〈x, y〉 = 〈y, x〉 (symmetric),

2. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉,

3. 〈cx, y〉 = c〈x, y〉,

4. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 iff x = 0,

then we say 〈 , 〉 is an inner product on V . In this case we say V with 〈 〉 is an
inner product space. Items (1.), (2.) and (3.) together allow us to call 〈 , 〉 a real-valued
symmetric-bilinear-form on V . We may find it useful to use the notation g(x, y) = 〈x, y〉
for some later arguments, one should keep in mind the notation 〈 , 〉 is not the only choice.

Technically, items (2.) and (3.) give us ”linearity in the first slot”. To obtain bilinearity we need to
have linearity in the second slot as well. This means 〈x, y+ z〉 = 〈x, y〉+ 〈x, z〉 and 〈x, cy〉 = c〈x, y〉
for all x, y, z ∈ V and c ∈ R. Fortunately, the symmetry property will transfer the linearity to the
second slot. I leave that as an exercise for the reader.

Example 9.6.2. Obviously Rn together with the dot-product forms an inner product space. More-
over, the dot-product is an inner product.

Once we have an inner product for a vector space then we also have natural definitions for the
length of a vector and the distance between two points.

Definition 9.6.3.

Let V be an inner product vector space with inner product 〈 , 〉. The norm or length
of a vector is defined by ||x|| =

√
〈x, x〉 for each x ∈ V . Likewise the distance between

a, b ∈ V is defined by d(a, b) =
√
〈b− a, b− a〉 = ||b − a|| for all a, b ∈ V . We say these

are the length and distance functions induced by 〈 , 〉. Likewise the angle between two
nonzero vectors is defined implicitly by 〈v, w〉 = ||v||||w|| cos(θ).

As before the definition above is only logical if certain properties hold for the inner product, norm
and distance function. Happily we find all the same general properties for the inner product and
its induced norm and distance function.

11 WARNING: the next couple pages is dense. It’s a reiteration of the main theoretical accomplishments of this
chapter in the context of inner product spaces. If you need to see examples first then skip ahead as needed.
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Proposition 9.6.4.

If V is an inner product space with induced norm || • || and x, y ∈ V then |〈x, y〉| ≤ ||x|| ||y||.

Proof: since ||x|| =
√
〈x, x〉 the proof we gave for the case of the dot-product equally well applies

here. You’ll notice in retrospect I only used those 4 properties which we take as the defining axioms
for the inner product. �

In fact, all the propositions from §9.1 apply equally well to an arbitrary finite-dimensional inner
product space. The proof of the proposition below is similar to those I gave in §9.1

Proposition 9.6.5. Properties for induced norm and distance function on an inner product space.

If V is an inner product space with inner product 〈 , 〉 and norm ||x|| = √x, x and distance
function d(x, y) = ||y − x|| then for all x, y, z ∈ V and c ∈ R

(i.) ||x|| ≥ 0 (v.) d(x, y) ≥ 0
(ii.) ||x|| = 0⇔ x = 0 (vi.) d(x, y) = 0⇔ x = y
(iii.) ||cx|| = |c|||x|| (vii.) d(x, y) = d(y, x)
(iv.) ||x+ y|| ≤ ||x||+ ||y|| (viii.) d(x, z) ≤ d(x, y) + d(y, z)

An norm is simply an operation which satisfies (i.) − (iv.). If we are given a vector space with a
norm then that is called a normed linear space. If in addition all Cauchy sequences converge in the
space it is said to be a complete normed linear space. A Banach Space is defined to be a complete
normed linear space. A distance function is simply an operation which satisfies (v.) − (viii.). A
set with a distance function is called a metric space. I’ll let you ponder all these things in some
other course, I mention them here merely for breadth. These topics are more interesting infinite-
dimensional case.

What is truly interesting is that the orthogonal complement theorems and closest vector theory
transfer over to the case of an inner product space.

Definition 9.6.6.

Let V be an inner product space with inner product 〈 , 〉. Let x, y ∈ V then we say x is
orthogonal to y iff 〈x, y〉 = 0. A set S is said to be orthogonal iff every pair of vectors
in S is orthogonal. If W ≤ V then the orthogonal complement of W is defined to be
W⊥ = {v ∈ V | v •w = 0 ∀w ∈W}.

Proposition 9.6.7. Orthogonality results for inner product space.

If V is an inner product space with inner product 〈 , 〉 and norm ||x|| = √x, x then for all
x, y, z ∈ V and W ≤ V ,

(i.) 〈x, y〉 = 0 ⇒ ||x+ y||2 = ||x||2 + ||y||2
(ii.) if S ⊂ V is orthonormal ⇒ S is linearly independent
(iii.) S ⊂ V ⇒ S⊥ ≤ V
(iv.) W⊥ ∩W = {0}
(v.) V = W ⊕W⊥
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Definition 9.6.8.

Let V be an inner product space with inner product 〈 , 〉. A basis of 〈 , 〉-orthogonal vectors
is an orthogonal basis. Likewise, if every vector in an orthogonal basis has length one
then we call it an orthonormal basis.

Every finite dimensional inner product space permits a choice of an orthonormal basis. Examine
my proof in the case of the dot-product. You’ll find I made all arguments on the basis of the axioms
for an inner-product. The Gram-Schmidt process works equally well for inner product spaces, we
just need to exchange dot-products for inner-products as appropriate.

Proposition 9.6.9. Orthonormal coordinates and projection results.

If V is an inner product space with inner product 〈 , 〉 and β = {v1, v2, . . . , vk} is a
orthonormal basis for a subspace W then

(i.) w = 〈w, v1〉v1 + 〈w, v2〉v2 + · · ·+ 〈w, vk〉vk for each w ∈W,
(ii.) ProjW (x) ≡ 〈x, v1〉v1 + 〈x, v2〉v2 + · · ·+ 〈x, vk〉vk ∈W for each x ∈ V,
(iii.) OrthW (x) ≡ x− ProjW (x) ∈W⊥for each x ∈ V,
(iv.) x = ProjW (x) +OrthW (x) and 〈ProjW (x), OrthW (x)〉 = 0 for each x ∈ V,
(v.) ||x− ProjW (x)||〈||x− y|| for all y /∈W.

Notice that we can use the Gram-Schmidt idea to implement the least squares analysis in the
context of an inner-product space. However, we cannot multiply abstract vectors by matrices so
the short-cut normal equations may not make sense in this context. We have to implement the
closest vector idea without the help of those normal equations. I’ll demonstrate this idea in the
Fourier analysis section.

9.6.1 examples of inner-products

The dot-product is just one of many inner products. We examine an assortment of other inner-
products for various finite dimensional vector spaces.

Example 9.6.10. Let V = R2 and define 〈v, w〉 = v1w1+3v2w2 for all v = (v1, v2), w = (w1, w2) ∈
V . Let u, v, w ∈ V and c ∈ R,

1. symmetric property,

〈v, w〉 = v1w1 + 3v2w2 = w1v1 + 3w2v2 = 〈w, v〉

2. additive property:
〈u+ v, w〉 = (u+ v)1w1 + 3(u+ v)2w2

= (u1 + v1)w1 + 3(u2 + v2)w2

= u1w1 + v1w1 + 3u2w2 + 3v2w2

= 〈u,w〉+ 〈v, w〉

3. homogeneous property:
〈cv, w〉 = cv1w1 + 3cv2w2

= c(v1w1 + 3v2w2)
= c〈v, w〉
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4. positive definite property:

〈v, v〉 = v2
1 + 3v2

2 ≥ 0 and 〈v, v〉 = 0 ⇔ v = 0.

Notice e1 = (1, 0) is an orthonormalized vector with respect to 〈 , 〉 but e2 = (0, 1) not unit-length.
Instead, 〈e2, e2〉 = 3 thus ||e2|| =

√
3 so the unit-vector in the e2-direction is u = 1√

3
(0, 1) and with

respect to 〈 , 〉 we have an orthonormal basis {e1, u}.

The inner-product above might be used in an application where the second variable carries more
weight. For example, the coordinates could represent inventory of items in some shop. The different
coefficients of a non-standard inner product could reflect the prices associated with each unit-item.

Example 9.6.11. Let V = R m×n we define the Frobenious inner-product as follows:

〈A,B〉 =
m∑
i=1

n∑
j=1

AijBij .

It is clear that 〈A,A〉 ≥ 0 since it is the sum of squares and it is also clear that 〈A,A〉 = 0 iff
A = 0. Symmetry follows from the calculation

〈A,B〉 =
m∑
i=1

n∑
j=1

AijBij =
m∑
i=1

n∑
j=1

BijAij = 〈B,A〉

where we can commute Bij and Aij for each pair i, j since the components are just real numbers.
Linearity and homogeneity follow from:

〈λA+B,C〉 =
m∑
i=1

n∑
j=1

(λA+B)ijCij =
m∑
i=1

n∑
j=1

(λAij +Bij)Cij

= λ
m∑
i=1

n∑
j=1

AijCij +
m∑
i=1

n∑
j=1

BijCij = λ〈A,C〉+ 〈B,C〉

Therefore. the Frobenius inner-product is in fact an inner product. The Frobenious norm of a
matrix is induced as usual:

||A|| =
√
〈A,A〉

as a consequence of the theory in this chapter we already know a few interesting properties form
the matrix-norm, in particular ||〈A,B〉|| ≤ ||A||||B||. The particular case of square matrices allows
further comments. If A,B ∈ R n×n then notice

〈A,B〉 =
∑
i,j

AijBij =
∑
i

∑
j

Aij(B
T )ji = trace(ABT ) ⇒ ||A|| = trace(AAT )

We find an interesting identity for any square matrix

|trace(ABT )| ≤
√
trace(AAT )trace(BBT ).

The work of Frobenious was vast. As you take various courses you’ll come across his work. His
linear algebra text was one of the first to treat problems in n-dimensions across most topics. In
the theory of partial differential equations he found an existence theorem which still is of great
utility in the study of submanifolds which foliate a space. The method of Frobenius in ordinary
differential equations is also extremely important and lies at the genesis of many special functions.
That said, I don’t think Frobenius is well-known outside mathematical circles. Explaining his life’s
work would make an interesting topic for a math history project.
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Example 9.6.12. Let C[a, b] denote the set of functions which are continuous on [a, b]. This is an
infinite dimensional vector space. We can define an inner-product via the definite integral of the
product of two functions: let f, g ∈ C[a, b] define

〈f, g〉 =

∫ b

a
f(x)g(x)dx.

We can prove this is an inner-product. I’ll just show additivity,

〈f + g, h〉 =

∫ b

a
(f(x) + g(x))(x)h(x)dx

=

∫ b

a
f(x)h(x)dx+

∫ b

a
g(x)h(x)dx = 〈f, h〉+ 〈g, h〉.

I leave the proof of the other properties to the reader.

Example 9.6.13. Consider the inner-product 〈f, g〉 =
∫ 1
−1 f(x)g(x)dx for f, g ∈ C[−1, 1]. Let’s

calculate the length squared of the standard basis:

〈1, 1〉 =

∫ 1

−1
1 · 1dx = 2, 〈x, x〉 =

∫ 1

−1
x2dx =

x3

3

∣∣∣∣1
−1

=
2

3

〈x2, x2〉 =

∫ 1

−1
x4dx =

x5

5

∣∣∣∣1
−1

=
2

5

Notice that the standard basis of P2 are not all 〈 , 〉-orthogonal:

〈1, x〉 =

∫ 1

−1
xdx = 0 〈1, x2〉 = 〈x, x〉 =

∫ 1

−1
x2dx =

2

3
〈x, x2〉 =

∫ 1

−1
x3dx = 0

We can use the Gram-Schmidt process on {1, x, x2} to find an orthonormal basis for P2 on [−1, 1].
Let, u1(x) = 1 and

u2(x) = x− 〈x, 1〉
〈1, 1〉

= x

u3(x) = x2 − 〈x
2, x〉
〈x, x〉

x− 〈x
2, 1〉
〈1, 1〉

= x2 − 1

3

We have an orthogonal set of functions {u1, u2, u3} we already calculated the length of u1 and u2

so we can immediately normalize those by dividing by their lengths; v1(x) = 1√
2

and v2(x) =
√

3
2x.

We need to calculate the length of u3 so we can normalize it as well:

〈u3, u3〉 =

∫ 1

−1

(
x2 − 1

3

)2
dx =

∫ 1

−1

(
x4 − 2

3x
2 + 1

9

)
dx = 2

5 −
4
9 + 2

9 = 8
45

Thus v3(x) =
√

8
45

(
x2− 1

3

)
has length one. Therefore,

{
1√
2
,
√

3
2x,
√

8
45

(
x2− 1

3

)}
is an orthonormal

basis for P2 restricted to [−1, 1]. Other intervals would not have the same basis. This construction
depends both on our choice of inner-product and the interval considered. Incidentally, these are
the first three Legendre Polynomials. These arise naturally as solutions to certain differential
equations. The theory of orthogonal polynomials is full of such calculations. Orthogonal poly-
nomials are quite useful as approximating functions. If we offered a second course in differential
equations we could see the full function of such objects.
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Example 9.6.14. Clearly f(x) = ex /∈ P2. What is the least-squares approximation of f? Use the
projection onto P2: Proj P2(f) = 〈f, v1〉v1 + 〈f, v2〉v2 + 〈f, v3〉v3. We calculate,

〈f, v1〉 =

∫ 1

−1

1√
2
exdx = 1√

2
(e1 − e−1) u 1.661

〈f, v2〉 =

∫ 1

−1

√
3
2xe

xdx =
√

3
2(xex − ex)|1−1 =

√
3
2 [−(−e−1 − e−1)] =

√
6e−1 u 0.901

〈f, v3〉 =

∫ 1

−1

√
8
45

(
x2 − 1

3

)
exdx = 2e

3 −
14e−1

3 u 0.0402

Thus,

Proj P2(f)(x) = 1.661v1(x) + 0.901v2(x) + 0.0402v3(x)

= 1.03 + 1.103x+ 0.017x2

This is closest a quadratic can come to approximating the exponential function on the interval
[−1, 1]. What’s the giant theoretical leap we made in this example? We wouldn’t face the same leap
if we tried to approximate f(x) = x4 with P2. What’s the difference? Where does ex live?

Example 9.6.15. Consider C[−π, π] with inner product 〈f, g〉 =
∫ π
−π f(x)g(x)dx. The set of sine

and cosine functions {1, cos(x), sin(x), cos(2x), sin(2x), . . . , cos(kx), sin(kx)} is an orthogonal set of
functions.

〈cos(mx), cos(nx)〉 =

∫ π

−π
cos(mx) cos(nx)dx = πδmn

〈sin(mx), sin(nx)〉 =

∫ π

−π
sin(mx) sin(nx)dx = πδmn

〈sin(mx), cos(nx)〉 =

∫ π

−π
sin(mx) cos(nx)dx = 0

Thus we find the following is a set of orthonormal functions

βtrig = { 1√
2π
, 1√

π
cos(x), 1√

π
sin(x), 1√

π
cos(2x), 1√

π
sin(2x), . . . , 1√

π
cos(kx), 1√

π
sin(kx)}

9.6.2 Fourier analysis

The idea of Fourier analysis is based on the least-squares approximation and the last example of
the preceding section. We wish to represent a function with a sum of sines and cosines, this is called
a Fourier sum. Much like a power series, the more terms we use to approximate the function the
closer the approximating sum of functions gets to the real function. In the limit the approximation
can become exact, the Fourier sum goes to a Fourier series. I do not wish to confront the analytical
issues pertaining to the convergence of Fourier series. As a practical matter, it’s difficult to calculate
infinitely many terms so in practice we just keep the first say 10 or 20 terms and it will come very
close to the real function. The advantage of a Fourier sum over a polynomial is that sums of
trigonometric functions have natural periodicities. If we approximate the function over the interval
[−π, π] we will also find our approximation repeats itself outside the interval. This is desireable if
one wishes to model a wave-form of some sort. Enough talk. Time for an example. ( there also an
example in your text on pages 540-542 of Spence, Insel and Friedberg)
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Example 9.6.16. Suppose f(t) =

{
1 0 < t < π

−1 − π < t < 0
and f(t + 2nπ) = f(t) for all n ∈ Z.

This is called a square wave for the obvious reason (draw its graph). Find the first few terms in
a Fourier sum to represent the function. We’ll want to use the projection: it’s convenient to bring
the normalizing constants out so we can focus on the integrals without too much clutter. 12

ProjW (f)(t) = 1
2π 〈f, 1〉+ 1

π 〈f, cos t〉 cos t+ 1
π 〈f, sin t〉 sin t+

+ 1
π 〈f, cos 2t〉 cos 2t+ 1

π 〈f, sin 2t〉 sin 2t+ · · ·

Where W = span(βtrig). The square wave is constant on (0, π] and [−π, 0) and the value at zero is
not defined ( you can give it a particular value but that will not change the integrals that calculate
the Fourier coefficients). Calculate,

〈f, 1〉 =

∫ π

−π
f(t)dt = 0

〈f, cos t〉 =

∫ π

−π
cos(t)f(t)dt = 0

Notice that f(t) and cos(t)f(t) are odd functions so we can conclude the integrals above are zero
without further calculation. On the other hand, sin(−t)f(−t) = (− sin t)(−f(t)) = sin tf(t) thus
sin(t)f(t) is an even function, thus:

〈f, sin t〉 =

∫ π

−π
sin(t)f(t)dt = 2

∫ π

0
sin(t)f(t)dt = 2

∫ π

0
sin(t)dt = 4

Notice that f(t) cos(kt) is odd for all k ∈ N thus 〈f, cos(kt)〉 = 0. Whereas, f(t) sin(kt) is even for
all k ∈ N thus

〈f, sin kt〉 =

∫ π

−π
sin(kt)f(t)dt = 2

∫ π

0
sin(kt)f(t)dt

= 2

∫ π

0
sin(kt)dt =

2

k

[
1− cos(kπ)

]
=

{
0, k even
4
k , k odd

Putting it all together we find (the ∼ indicates the functions are nearly the same except for a finite
subset of points),

f(t) ∼ 4

π

(
sin t+

1

3
sin 3t+ +

1

5
sin 5t+ · · ·

)
=

∞∑
n=1

4

(2n− 1)π
sin(2n− 1)t

12In fact, various texts put these little normalization factors in different places so when you look up results on
Fourier series beware conventional discrepancies
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I have graphed the Fourier sums up the sum with 11 terms.

Remark 9.6.17.

The treatment of Fourier sums and series is by no means complete in these notes. There is
much more to say and do. Our goal here is simply to connect Fourier analysis with the more
general story of orthogonality. In the math 334 course we use Fourier series to construct
solutions to partial differential equations. Those calculations are foundational to describe
interesting physical examples such as the electric and magnetic fields in a waveguide, the
vibrations of a drum, the flow of heat through some solid, even the vibrations of a string
instrument.

9.7 orthogonal matrices and the QR factorization

This section could be covered earlier. Here we discover a particular factorization which is possible
for an orthogonal matrix A (ATA = I). Some semesters we do not require this material.

Suppose we have an orthogonal basis β = {v1, v2, . . . , vn} for Rn. Let’s investigate the properties
of the matrix of this basis. Note that ||vj || 6= 0 for each j since β is linearly independent set of
vectors. Moreover, if we denote ||vj || = lj then we can compactly summarize orthogonality of β
with the following relation:

vj • vk = l2j δjk.

As a matrix equation we recognize that [vj ]
T vk is also the jk − th component of the product of

[β]T and [β]. Let me expand on this in matrix notation:

[β]T [β] =


vT1
vT2
...
vTn

 [v1|v2| · · · |vn] =


vT1 v1 vT1 v2 · · · vT1 vn
vT2 v1 vT2 v2 · · · vT2 vn

...
... · · ·

...
vTn v1 vTn v2 · · · vTn vn

 =


l21 0 · · · 0
0 l22 · · · 0
...

... · · ·
...

0 0 · · · l2n


This means that [β]T is almost the inverse of [β]. Observe if we had lj = 1 for j = 1, 2, . . . , n then
[β]T = [β]−1. In other words, if we use an orthonormal basis then the inverse of the basis matrix
is obtained by transposition. In fact, matrices with this property have a name:
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Definition 9.7.1.

Let A ∈ R n×n then we say that A is an orthogonal matrix iff ATA = I. The set of all
orthogonal n× n matrices is denoted O(n).

The discussion preceding the definition provides a proof for the following proposition:

Proposition 9.7.2. matrix of an orthonormal basis is an orthogonal matrix

If β is an orthonormal basis then [β]T [β] = I or equivalently [β]T = [β]−1.

So far we have considered only bases for all of Rn but we can also find similar results for a subspace
W ≤ Rn. Suppose dim(W ) < n. If β is an orthonormal basis for W then it is still true that
[β]T [β] = Idim(W ) however since [β] is not a square matrix it does not make sense to say that

[β]T = [β]−1. The QR-factorization of a matrix is tied to this discussion.

Proposition 9.7.3. QR factorization of a full-rank matrix

If A ∈ R m×n is a matrix with linearly independent columns then there exists a matrix Q ∈
R m×n whose columns form an orthonormal basis for Col(A) and square matrix R ∈ R n×n

which is upper triangular and has Rii > 0 for i = 1, 2, . . . , n.

Proof: begin by performing the Gram-Schmidt procedure on the columns of A. Next, normalize
that orthogonal basis to obtain an orthonormal basis β = {u1, u2, . . . , un} for Col(A). Note that
since each column in A is in Col(A) it follows that some linear combination of the vectors in β will
produce that column;

colj(A) = R1ju1 +R2ju2 + · · ·+Rnjun = [u1|u2| · · · |un][R1j , R2j , · · · , Rnj ]T

for some constants R1j , R2j , · · · , Rnj ∈ R. Let R be the matrix formed from the coefficients of
the linear combinations that link columns of A and the orthonormal basis; in particular define R
such that colj(R) = (R1j , R2j , · · · , Rnj). It follows that if we denote [β] = Q we have for each
j = 1, 2, . . . , n the relation

colj(A) = Qcolj(R)

Hence,
A = [col1(A)|col2(A)| · · · |coln(A)] = [Qcol1(R)|Qcol2(R)| · · · |Qcoln(R)]

and we find by the concatenation proposition

A = Q[col1(R)|col2(R)| · · · |coln(R)] = QR

where R ∈ R n×n as we wished. It remains to show that R is upper triangular with positive
diagonal entries. Recall how Gram-Schmidt is accomplished (I’ll do normalization along side the
orthogonalization for the purposes of this argument). We began by defining u1 = 1

||col1(A)||col1(A)

hence col1(A) = ||col1(A)||u1 and we identify that col1(R) = (||col1(A)||, 0, . . . , 0). The next step
in the algorithm is to define u2 by calculating v2 (since we normalized u1 •u1 = 1 )

v2 = col2(A)− (col2(A) •u1)u1

and normalizing (I define l2 in the last equality below)

u2 =
1

||col2(A)− (col2(A) •u1)u1||
v2 =

1

l2
v2
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In other words, l2u2 = v2 = col2(A)− (col2(A) •u1)u1 hence

col2(A) = l2u2 − (col2(A) •u1)u1

From which we can read the second column of R as

col2(R) = (−(col2(A) •u1), l2, 0, . . . , 0).

Continuing in this fashion, if we define lj to be the length of the orthogonalization of colj(A) with
respect to the preceding {u1, u2, . . . , uj−1} orthonormal vectors then a calculation similar to the
one just performed will reveal that

colj(R) = (?, . . . , ?, lj , 0, . . . , 0)

and ? are possibly nonzero components in rows 1 through j − 1 of the column vector and lj is the
j-th component which is necessarily posititive since it is the length of some nonzero vector. Put all
of this together and we find that R is upper triangular with positive diagonal entries13. �

Very well, we now know that a QR-factorization exists for a matrix with LI columns. This leaves
us with two natural questions:

1. how do we calculate the factorization of a given matrix A ?

2. what is the use of the QR factorization ?

We will answer (1.) with an example or two and I will merely scratch the surface for question (2.).
If you took a serious numerical linear algebra course then it is likely you would delve deeper.

Example 9.7.4. If QTQ = I then A = QR iff R = QTA. Suppose A is given below and form Q
as the orthonormalization of the columns in A: In particular, we use Example 9.2.25 to form Q
below.

A =


1 1 0 3
0 1 0 2
1 1 2 0
1 1 3 3

 & Q =


1/
√

3 0 −5/
√

42 1/
√

14
0 1 0 0

1/
√

3 0 1/
√

42 −3/
√

14

1/
√

3 0 4/
√

42 2/
√

14


Finally, multiply QT on A to find R:

R = QTA =


1/
√

3 0 1/
√

3 1/
√

3
0 1 0 0

−5/
√

42 0 1/
√

42 4/
√

14

1/
√

14 0 −3/
√

42 2/
√

14




1 1 0 3
0 1 0 2
1 1 2 0
1 1 3 3



=


3/
√

3 3/
√

3 5/
√

3 6/
√

3
0 1 0 2

0 0 14/
√

42 −3/
√

42

0 0 0 9/
√

14

 .
Note this is upper triangular as claimed.

Finally, returning to (2.). One nice use of the QR-factorization is to simplify calculation of the
normal equations. We sought to solve ATAu = AT b. Suppose that A = QR to obtain:

(QR)T (QR)u = (QR)T b ⇒ RTQTQRu = RTQT b ⇒ Ru = QT b .

This problem is easily solved by back-substitution since R is upper-triangular.

13see Lay pg. 405-406 if you don’t like my proof



Chapter 10

complex vectorspaces

In this brief chapter we study how our work over real vector spaces naturally extends to a vector
space over C. It is interesting to note the construction of the complexification of V as a particular
structure on V × V is the same in essence as Gauss’ construction of the complex numbers from
R2. Ideally this chapter would contain further discussion of complex linear algebra including the
theory of hermitian matrices and normal operators, the spectral theorem etc... but, time is short
this semester. If you wish to read further I recommend Insel Spence and Friedberg, however, there
are dozens of great texts to read on this topic.

10.0.1 concerning matrices and vectors with complex entries

To begin, we denote the complex numbers by C. As a two-dimensional real vector space we can
decompose the complex numbers into the direct sum of the real and pure-imaginary numbers;
C = R ⊕ iR. In other words, any complex number z ∈ R can be written as z = a + ib where
a, b ∈ R. It is convenient to define

If λ = α+ iβ ∈ C for α, β ∈ R then Re(λ) = α, Im(λ) = β

The projections onto the real or imaginary part of a complex number are actually linear transfor-
mations from C to R; Re : C→ R and Im : C→ R. Next, complex vectors are simply n-tuples of
complex numbers:

C n = {(z1, z2, . . . , zn) | zj ∈ C } .

Definitions of scalar multiplication and vector addition follow the obvious rules: if z, w ∈ C n and
c ∈ C then

(z + w)j = zj + wj (cz)j = czj

for each j = 1, 2, . . . , n. The complex n-space is again naturally decomposed into the direct sum of
two n-dimensional real spaces; C n = Rn⊕ iRn. In particular, any complex n-vector can be written
uniquely as the sum of real vectors are known as the real and imaginary vector components:

If v = a+ ib ∈ C n for a, b ∈ Rn then Re(v) = a, Im(v) = b.

Recall z = x + iy ∈ C has complex conjugate z∗ = x − iy. Let v ∈ C n we define the complex
conjugate of the vector v to be v∗ which is the vector of complex conjugates;

(v∗)j = (vj)
∗

267
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for each j = 1, 2, . . . , n. For example, [1 + i, 2, 3 − i]∗ = [1 − i, 2, 3 + i]. It is easy to verify the
following properties for complex conjugation of numbers and vectors:

(v + w)∗ = v∗ + w∗, (cv)∗ = c∗v∗, v∗∗ = v.

Complex matrices C m×n can be added, subtracted, multiplied and scalar multiplied in precisely
the same ways as real matrices in R m×n. However, we can also identify them as C m×n = R m×n⊕
iR m×n via the real and imaginary part maps (Re(Z))ij = Re(Zij) and (Im(Z))ij = Im(Zij)
for all i, j. There is an obvious isomorphism C m×n u R 2m×2n which follows from stringing out
all the real and imaginary parts. Again, complex conjugation is also defined component-wise:
((X + iY )∗)ij = Xij − iYij . It’s easy to verify that

(Z +W )∗ = Z∗ +W ∗, (cZ)∗ = c∗Z∗, (ZW )∗ = Z∗W ∗

for appropriately sized complex matrices Z,W and c ∈ C. Conjugation gives us a natural operation
to characterize the reality of a variable. Let c ∈ C then c is real iff c∗ = c. Likewise, if v ∈ C n

then we say that v is real iff v∗ = v. If Z ∈ C m×n then we say that Z is real iff Z∗ = Z. In short,
an object is real if all its imaginary components are zero. Finally, while there is of course much
more to say we will stop here for now.

10.1 the complexification

Suppose V is a vector space over R, we seek to construct a new vector space VC which is a natural
extension of V . In particular, define:

VC = {(x, y) | x, y ∈ V }

Suppose (x, y), (v, w) ∈ VC and a+ ib ∈ C where a, b ∈ R. Define:

(x, y) + (v, w) = (x+ v, y + w) & (a+ ib) · (x, y) = (ax− by, ay + bx).

I invite the reader to verify that VC given the addition and scalar multiplication above forms a
vector space over C. In particular we may argue (0, 0) is the zero in VC and 1 · (x, y) = (x, y).
Moreover, as x, y ∈ V and a, b ∈ R the fact that V is a real vector space yields ax−by, ay+bx ∈ V .
The other axioms all follow from transferring the axioms over R for V to VC. Our current notation
for VC is a bit tiresome. Note:

(1 + 0i) · (x, y) = (x, y) & (0 + i) · (x, y) = (−y, x).

Since R ⊂ C the fact that VC is a complex vector space automatically makes VC a real vector space.
Moreover, with respect to the real vector space structure of VC, there are two natural subspaces of
VC which are isomorphic to V .

W1 = (1 + i0) · V = V × {0} & W2 = (0 + i) · V = {0} × V

Note W1 +W2 = VC and W1 ∩W2 = {(0, 0)} hence VC = W1 ⊕W2. Here ⊕ could be denoted ⊕R
to emphasize it is a direct sum with respect to the real vector space structure of VC. Moreover, it
is convenient to simply write VC = V ⊕ iV . Another notation for this is VC = C ⊗ V where ⊗ is
the tensor product. This is perhaps the simplest way to think of the complexification:

To find the complexification of V (R) we simply consider V (C). In other words, replace
the real scalars with complex scalars.
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This slogan is just a short-hand for the explicit construction outlined thus far in this section.

Example 10.1.1. If V = R then VC = R⊕ iR = C.

Example 10.1.2. If V = Rn then VC = Rn ⊕ iRn = Cn.

Example 10.1.3. If V = Rm×n then VC = Rm×n ⊕ iRm×n = Cm×n.

We might notice a simple result about the basis of VC which is easy to verify in the examples given
thus far: if spanR(β) = V then spanC(β) = VC. Furthermore, viewing VC as real vector space , if β
is a basis for V then β ∪ iβ is a natural basis for VC. Although, it is often useful to order the real
basis for VC as follows: given β = {v1, v2, . . . , vn} construct βC as

βC = {v1, iv1, v2, iv2, . . . , vn, ivn}

Example 10.1.4. If V = R[t] then VC = R[t] ⊕ iR[t] = C[t]. Likewise for polynomials of limited
degree. For example W = P2 is given by spanR{1, t, t2} whereas WC = spanR{1, i, t, it, t2, it2}

From a purely complex perspective viewing an n-complex-dimensional space as a 2n-dimensional
real vector space is ackward. However, in the application we are most interested, the complex
vector space viewed as a real vector space yields data of interest to our study. We are primarily
interested in solving real problems, but a complexification of the problem at times yields a simpler
problem which is easily solved. Once the complexification has served its purpose of solvablility then
we have to drop back to the context of real vector spaces. This is the game plan, and the reason
we are spending some effort to discuss complex vector spaces here.

Example 10.1.5. If V = L(U,W ) then VC = L(U,W )⊕ iL(U,W ). If T ∈ VC then T = L1 + iL2

for some L1, L2 ∈ V . However, if β is a basis for U then β is a complex basis for UC thus T extends
uniquely to a complex linear map T : UC →WC. Therefore, we find VC = LC(UC,WC)

Example 10.1.6. As a particular application of the discussion in the last example: if V =
L(Rn,Rm) then VC = LC(Cn,Cm). Note that isomorphism and complexification intertwine nicely:
V ≈ Rm×n and C⊗ V ≈ C⊗ Rm×n as VC ≈ Cm×n.

The last example brings us to the main-point of this discussion. If we consider T : Rn → Rms and
we extend to T : Cn → Cm then this simply amounts to allowing the matrix of T be complex. Also,
conversely, if we allow the matrix to be complex then it implies we have extended to a complex
domain. The formula which defines the complexified version of a real linear transformation is
simply:

T (x+ iy) = T (x) + iT (y)

for all x, y ∈ V . This idea is at times tacitly used without any explicit mention of the complex-
ification. In view of our discussion in this chapter that omission is not too dangerous. Indeed,
that is why in other courses I at times just allow the variable to be complex. This amounts to the
complexification procedure defined in this chapter.
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Chapter 11

eigenvalues and eigenvectors

The terms eigenvalue and vector originate from the German school of mathematics which was very
influential in the early 20-th century. Heisenberg’s formulation of quantum mechanics gave new
importance to linear algebra and in particular the algebraic structure of matrices. In finite di-
mensional quantum systems the symmetries of the system were realized by linear operators. These
operators acted on states of the system which formed a complex vector space called Hilbert Space. 1

Operators representing momentum, energy, spin or angular momentum operate on a physical sys-
tem represented by a sum of eigenfunctions. The eigenvalues then account for possible value which
could be measured in an experiment. Generally, quantum mechanics involves complex vector spaces
and infinite dimensional vector spaces however many of the mathematical difficulties are already
present in our study of linear algebra. For example, one important question is how does one pick
a set of states which diagonalize an operator? Moreover, if one operator is diagonalized by a par-
ticular basis then can a second operator be diagonalized simultaneously? Linear algebra, and in
particular eigenvectors help give answers for these questions. 2

Beyond, or perhaps I should say before, quantum mechanics eigenvectors have great application
in classical mechanics, optics, population growth, systems of differential equations, chaos theory,
difference equations and much much more. They are a fundmental tool which allow us to pick apart
a matrix into its very core. Diagonalization of matrices almost always allow us to see the nature of
a system more clearly.

However, not all matrices are diagonalizable. It turns out that any matrix is similar to a real Jordan
Block matrix. Moreover, the similarity transformation is accomplished via a matrix formed from
concatenating generalized eigenvectors and certain parts of complex eigenvectors. When there are
enough ordinary eigenvectors then the Jordan Form of the matrix is actually a diagonal matrix.
However, when there is no eigen-basis then we must turn to generalized e-vectors and/or complex
e-vectors and generalized complex e-vectors to perform a similarity transformation to the real
Jordan form. The existence of the real Jordan form for any matrix serves to be a useful tool to
solve a variety of problems from any field which uses linear algebra to solve a coupled system. In
some sense, the coordinates paired with the Jordan form correspond to a coordinate system which

1Hilbert Spaces and infinite dimensional linear algebra are typically discussed in graduate linear algebra and/or
the graduate course in functional analysis, we focus on the basics in this course.

2in addition to linear algebra one should also study group theory. In particular, matrix Lie groups and their
representation theory explains most of what we call ”chemistry”. Magic numbers, electronic numbers, etc... all of
these are eigenvalues which label the states of the so-called Casimir operators
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presents the system with minimal coupling. Complex eigenvalues correspond to rotation/dilation
blocks. Also, in the study of systems of ODEs with constant coefficients the Jordan form again
allows for an elegant and general solution of any system in normal form. I include a section at the
end of this chapter to show you the magic of the matrix exponential paired with the Jordan basis.

11.1 why eigenvectors?

In this section I attempt to motivate why eigenvectors are natural to study for both mathematical
and physical reasons. In fact, you probably could write a book just on this question.

11.1.1 quantum mechanics

Physically measureable quantities are described by operators and states in quantum mechanics3.
The operators are linear operators and the states are usually taken to be the eigenvectors with
respect to a physical quantity of interest. For example:

p̂|p >= p|p > Ĵ2|j >= j(j + 1)|j > Ĥ|E >= E|E >

In the above the eigenvalues were p, j(j + 1) and E. Physically, p is the momentum, j(j + 1) is
the value of the square of the magnitude of the total angular momentum and E is the energy. The
exact mathematical formulation of the eigenstates of momentum, energy and angular momentum is
in general a difficult problem and well-beyond the scope of the mathematics we cover this semester.
You have to study Hilbert space which is an infinite-dimensional vector space with rather special
properties. In any event, if the physical system has nice boundary conditions then the quantum
mechanics gives mathematics which is within the reach of undergraduate linear algebra. For ex-
ample, one of the very interesting aspects of quantum mechanics is that we can only measure a
certain pairs of operators simultaneously. Such operators have eigenstates which are simultane-
ously eigenstates of both operators at once. The careful study of how to label states with respect
to the energy operator (called the Hamiltonian) and some other commuting symmetry operator
(like isospin or angular momentum etc...) gives rise to what we call Chemistry. In other words,
Chemistry is largely the tabulation of the specific interworkings of eigenstates as the correlate to
the energy, momentum and spin operators (this is a small part of what is known as representation
theory in modern mathematics). I may ask a question about simultaneous diagonalization. This is
a hard topic compared to most we study.

11.1.2 stochastic matrices

Definition 11.1.1.

Let P ∈ R n×n with Pij ≥ 0 for all i, j. If the sum of the entries in any column of P is one
then we say P is a stochastic matrix.

Example 11.1.2. Stochastic Matrix: A medical researcher4 is studying the spread of a virus in
1000 lab. mice. During any given week it’s estimated that there is an 80% probability that a mouse
will overcome the virus, and during the same week there is an 10% likelyhood a healthy mouse will

3you can skip this if you’re not a physics major, but maybe you’re interested despite the lack of direct relevance
to your major. Maybe your interested in an education not a degree. I believe this is possible so I write these words

4this example and most of the other applied examples in these notes are borrowed from my undergraduate linear
algebra course taught from Larson’s text by Dr. Terry Anderson of Appalachian State University
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become infected. Suppose 100 mice are infected to start, (a.) how many sick next week? (b.) how
many sick in 2 weeks ? (c.) after many many weeks what is the steady state solution?

Ik = infected mice at beginning of week k
Nk = noninfected mice at beginning of week k

P =

[
0.2 0.1
0.8 0.9

]
We can study the evolution of the system through successive weeks by multiply the state-vector
Xk = [Ik, Nk] by the probability transition matrix P given above. Notice we are given that X1 =
[100, 900]T . Calculate then,

X2 =

[
0.2 0.1
0.8 0.9

] [
100
900

]
=

[
110
890

]
After one week there are 110 infected mice Continuing to the next week,

X3 =

[
0.2 0.1
0.8 0.9

] [
110
890

]
=

[
111
889

]
After two weeks we have 111 mice infected. What happens as k → ∞? Generally we have Xk =
PXk−1. Note that as k gets large there is little difference between k and k − 1, in the limit they
both tend to infinity. We define the steady-state solution to be X∗ = limk→∞Xk. Taking the limit
of Xk = PXk−1 as k →∞ we obtain the requirement X∗ = PX∗. In other words, the steady state
solution is found from solving (P − I)X∗ = 0. For the example considered here we find,

(P − I)X∗ =

[
−0.8 0.1
0.8 −0.1

] [
u
v

]
= 0 v = 8u X∗ =

[
u
8u

]
However, by conservation of mice, u + v = 1000 hence 9u = 1000 and u = 111.1̄1 thus the steady
state can be shown to be X∗ = [111.1̄1, 888.8̄8]

Example 11.1.3. Diagonal matrices are nice: Suppose that demand for doorknobs halves every
week while the demand for yo-yos it cut to 1/3 of the previous week’s demand every week due to
an amazingly bad advertising campaign5. At the beginning there is demand for 2 doorknobs and 5
yo-yos.

Dk = demand for doorknobs at beginning of week k
Yk = demand for yo-yos at beginning of week k

P =

[
1/2 0
0 1/3

]
We can study the evolution of the system through successive weeks by multiply the state-vector
Xk = [Dk, Yk] by the transition matrix P given above. Notice we are given that X1 = [2, 5]T .
Calculate then,

X2 =

[
1/2 0
0 1/3

] [
2
5

]
=

[
1

5/3

]
Notice that we can actually calculate the k-th state vector as follows:

Xk = P kX1 =

[
1/2 0
0 1/3

]k [
2
5

]
=

[
2−k 0
0 3−k

]k [
2
5

]
=

[
2−k+1

5(3−k)

]
5insert your own more interesting set of quantities that doubles/halves or triples during some regular interval of

time
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Therefore, assuming this silly model holds for 100 weeks, we can calculate the 100-the step in the
process easily,

X100 = P 100X1 =

[
2−101

5(3−100)

]
Notice that for this example the analogue of X∗ is the zero vector since as k →∞ we find Xk has
components which both go to zero.

For some systems we’ll find a special state we called the ”steady-state” for the system. If the system
was attracted to some particular final state as t→∞ then that state satisfied PX∗ = X∗. We will
learn in this chapter to identify this makes X∗ is an eigenvector of P with eigenvalue 1.

11.1.3 motion of points under linear transformations

Remark 11.1.4.

What follows here is just intended to show you how you might stumble into the concept of
an eigenvector even if you didn’t set out to find it. The calculations we study here are not
what we aim to ultimately disect in this chapter. This is purely a mathematical experiment
to show how eigenvectors arise naturally through repeated matrix multiplication on a given
point. Physically speaking the last two subsections were way more interesting.

I’ll focus on two dimensions to begin for the sake of illustration. Let’s take a matrix A and a point
xo and study what happens as we multiply by the matrix. We’ll denote x1 = Axo and generally
xk+1 = Axk. It is customary to call xk the ”k-th state of the system”. As we multiply the k-th
state by A we generate the k + 1-th state.6

Example 11.1.5. Let A =
[

3 0
8 −1

]
and let xo = [ 1

2 ]. Calculate,

x1 =
[

3 0
8 −1

]
[ 1

2 ] = [ 3
6 ]

x2 =
[

3 0
8 −1

]
[ 3

6 ] = [ 9
18 ]

x3 =
[

3 0
8 −1

]
[ 9

18 ] = [ 27
54 ]

x4 =
[

3 0
8 −1

]
[ 27

54 ] = [ 81
162 ]

Each time we multiply by A we scale the vector by a factor of three. If you want to look at xo as
a point in the plane the matrix A pushes the point xk to the point xk+1 = 3xk. Its not hard to see
that xk = 3kxo. What if we took some other point, say yo = [ 1

0 ] then what will A do?

y1 =
[

3 0
8 −1

]
[ 1

0 ] = [ 3
8 ]

y2 =
[

3 0
8 −1

]
[ 3

8 ] = [ 9
16 ]

y3 =
[

3 0
8 −1

]
[ 9

16 ] = [ 27
56 ]

y4 =
[

3 0
8 −1

]
[ 27

48 ] = [ 81
160 ]

Now, what happens for arbitrary k? Can you find a formula for yk? This point is not as simple as

6ask Dr. Mavinga and he will show you how a recursively defined linear difference equation can be converted into
a matrix equation of the form xk+1 = Axk, this is much the same idea as saying that an n − th order ODE can be
converted into a system of n- first order ODEs.
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xo. The vector xo is apparently a special vector for this matrix. Next study, zo = [ 0
2 ],

z1 =
[

3 0
8 −1

]
[ 0

2 ] =
[

0
−2

]
z2 =

[
3 0
8 −1

] [
0
−2

]
= [ 0

4 ]

z3 =
[

3 0
8 −1

]
[ 0

4 ] =
[

0
−8

]
z4 =

[
3 0
8 −1

] [
0
−8

]
= [ 0

16 ]

Let me illustrate what is happening with a picture. I have used color to track the motion of a
particular point. You can see that all points tend to get drawn into the line with direction vector
xo with the sole exception of the points along the y-axis which I have denoted via diamonds in the
picture below:

The directions [1, 2] and [0, 1] are special, the following picture illustrates the motion of those points
under A:

The line with direction vector [1, 2] seems to attract almost all states to itself. On the other hand, if
you could imagine yourself a solution walking along the y-axis then if you took the slightest mis-step
to the right or left then before another dozen or so steps you’d find yourself stuck along the line in
the [1, 2]-direction. There is a connection of the system xk+1 = Axk and the system of differential
equations dx/dt = Bx if we have B = I + A. Perhaps we’ll have time to explore the questions
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posed in this example from the viewpoint of the corresponding system of differential equations. In
this case the motion is very discontinuous. I think you can connect the dots here to get a rough
picture of what the corresponding system’s solutions look like. In the differential equations Chapter
we develop these ideas a bit further. For now we are simply trying to get a feeling for how one
might discover that there are certain special vector(s) associated with a given matrix. We call these
vectors the ”eigenvectors” of A.

The next matrix will generate rather different motions on points in the plane.

Example 11.1.6. Let A =

[
1
2

√
3

2

−
√

3
2

1
2

]
. Consider the trajectory of xo = [1, 0]T ,

x1 =

[
1
2 −

√
3

2√
3

2
1
2

] [
1
0

]
=

[
1
2√
3

2

]

x2 =

[
1
2 −

√
3

2√
3

2
1
2

][
1
2√
3

2

]
=

[
−1

2√
3

2

]

x3 =

[
1
2 −

√
3

2√
3

2
1
2

][
−1

2√
3

2

]
=

[
−1
0

]

x4 =

[
1
2 −

√
3

2√
3

2
1
2

] [
−1
0

]
=

[
−1

2

−
√

3
2

]

x5 =

[
1
2 −

√
3

2√
3

2
1
2

][
−1

2

−
√

3
2

]
=

[
1
2

−
√

3
2

]

x6 =

[
1
2 −

√
3

2√
3

2
1
2

][
1
2

−
√

3
2

]
=

[
1
0

]
Past this point we just cycle back to the same points, clearly xk = xk+6 for all k ≥ 0. If we started
with a different initial point we would find this pattern again. The reason for this is that A is the
matrix which rotates vectors by π/3 radians. The trajectories generated by this matrix are quite
different then the preceding example, there is no special direction in this case.

Although, generally this type of matrix generates elliptical orbits and then there are two special di-
rections. Namely the major and minor axis of the ellipitical orbits. Finally, this sort of matrix could
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have a scaling factor built in so that the trajectories spiral in or out of the origin. I provide a picture
illustrating the various possibilities. The red dots in the picture below are generated from A as
was given in the preceding example, the blue dots are generated from the matrix [1

2col1(A)|col2(A)]
whereas the green dots are obtained from the matrix [2col1(A)|col2(A)]. In each case I started with
the point (1, 0) and studied the motion of the point under repeated multiplications of matrix:

Let’s summarize our findings so far: if we study the motion of a given point under successive
multiplications of a matrix it may be pushed towards one of several directions or it may go in a
circular/spiral-type motion.

Observation: a rotation does not move vectors along its axis; if R is a rotation in R3 and if
xo points along the axis of the rotation then it is geometrically obvious that Rxo = xo. For a
two-dimensional rotation the axis of rotation is not contained in the space so there is no vector
like xo. By the end of our study in this chapter we can replace geometric intuitionn here with
an explicit algebraic analysis. The basis for our conclusions will be the simple observation that a
vector along the axis of a rotation is an eigenvector with eigenvalue 1. Moreover, through fairly
simple algebra, we can show there is always an axis of rotation inside Rn if n is odd. However,
for even n, the the axis of the rotation may not reside inside the space. These abstract geometric
claims fall out of polynomial algebra. I hope by now you see eigenvectors appear naturally in a
variety of applications and we should like to understand their general properties.
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11.2 basic theory of eigenvectors

Eigenvectors are of special significance to a linear transformation. Let us define them precisely to
begin our careful study7.

Definition 11.2.1. eigenvector of a linear transformation on V

Let T : V → V be a linear transformation on a vector space V over R. If there exists
v ∈ V such that v 6= 0 such that T (v) = λv for some constant λ ∈ R then we say v is an
eigenvector of T with eigenvalue λ.

We often abbreviate eigenvector with e-vector and eigenvalue with e-value.

Example 11.2.2. Let T (f) = Df where D is the derivative operator. This defines a linear
transformation on function space F . An eigenvector for T would be a function which is proportional
to its own derivative fucntion... in other words solve dy

dt = λy. Separation of variables yields
y = ceλt. The eigenfunctions for T are simply exponential functions.

Example 11.2.3. Let T (A) = AT for A ∈ R n×n. If AT = A the n T (A) = AT = A so a symmetric
matrix is an e-vector with e-value λ1 = 1. On the other hand, if AT = −A then T (A) = AT = −A
hence an antisymmetric matrix is an e-vector of T with e-value λ2 = −1.

Notice that there are infinitely many eigenvectors for a given eigenvalue in both of the examples
above. The number of eigenvalues for the function space example is infinite since any λ ∈ R will
do. On the other hand, the matrix example only had two eigenvalues. The distinction between
these examples is that function space is infinite dimensional whereas the matrix example is finite-
dimensional. The following proposition gives us a criteria to find e-values for T : V → V in the
case dim(V ) < ∞. Recall for the proposition the follows: IdV : V → V is the identity mapping
defined by IdV (x) = x for all x ∈ V .

Proposition 11.2.4.

Suppose V is a finite-dimensional vector space over R. Let T : V → V be a linear transfor-
mation. Then λ is an eigenvalue of T iff det(T −λIdV ) = 0. We say P (λ) = det(T −λIdV )
the characteristic polynomial and det(T − λIdV ) = 0 is the characteristic equation.

Proof: Observe λ ∈ R is an e-value of T iff there exists nonzero v ∈ V for which T (v) = λv
which is equivalent to the existence of a nontrivial solution of (T − λIdV )(v) = 0. However,
nullity(T − λIdV ) ≥ 1 iff T − λIdV is not invertible which is true iff det(T − λIdV ) = 0. The
proposition follows. �

Often the calculation of some quantity for a linear transformation is made clear by choice of a basis.
This is certainly the case here:

Proposition 11.2.5.

If V has basis β = {f1, . . . , fn} and T : V → V is a linear transformation. Then λ is an
eigenvalue of T iff det([T ]β,β − λI) = 0.

7in past courses I allowed λ ∈ C here, however, this time I will treat that case separately as the proper discussion
for λ ∈ C requires we discuss the complexification. A complex eigenvector is techinically not an eigenvector in our
langauge. An eigenvector in this chapter is by default a real eigenvector.
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Proof: Suppose λ ∈ R and let Id : V → V . Consider T − λId : V → V has matrix representative
with respect to the β basis as follows:

[T − λId]β,β = [Φ−1
β
◦ (T − λId) ◦Φβ]

= [Φ−1
β
◦T ◦Φβ − λΦ−1

β
◦ Id ◦Φβ]

= [Φ−1
β
◦T ◦Φβ]− λ[Φ−1

β
◦ Id ◦Φβ]

= [T ]β,β − λI.

In the calculation above we have used the fact that the coordinate map is an isomorphism and we
may easily calculate [T − λId]β,β = λI where I is the n× n identity matrix in Rn×n. Furthermore,
recall the definition of determinant for a linear transformation was that the determinant of a linear
transformation is the determinant of the matrix representative:

det(T − λId) = det([T − λId]β,β) = det([T ]β,β − λI).

The above is an identity for any real value λ. The proposition follows. �

The proposition above shows that we can narrow the focus of our study to Rn×n. If T : V → V
has e-values then its matrix will share the same e-values since the matrix and the transformation
share the same characteristic polynomials. For clarity of exposition we define e-vector and e-value
once again for a matrix.

Definition 11.2.6.

Let A ∈ R n×n. If v ∈ Rn is nonzero and Av = λv for some λ ∈ R then we say v is an
eigenvector with eigenvalue λ of the matrix A.

The definition above simply says the e-values and e-vectors of A are the e-values and e-vectors of
LA : Rn → Rn. We now turn our focus to matrices in what follows. The Proposition that follows is
just a Corollary of Proposition 11.2.4. However, since these comments are so important I reiterate
them once again in the matrix context:

Proposition 11.2.7.

Let A ∈ R n×n then λ is an eigenvalue of A iff det(A−λI) = 0. We say P (λ) = det(A−λI)
the characteristic polynomial and det(A− λI) = 0 is the characteristic equation.

Proof: Suppose λ is an eigenvalue of A then there exists a nonzero vector v such that Av = λv
which is equivalent to Av − λv = 0 which is precisely (A − λI)v = 0. Notice that (A − λI)0 = 0
thus the matrix (A − λI) is singular as the equation (A − λI)x = 0 has more than one solution.
Consequently det(A− λI) = 0.

Conversely, suppose det(A − λI) = 0. It follows that (A − λI) is singular. Clearly the system
(A − λI)x = 0 is consistent as x = 0 is a solution hence we know there are infinitely many solu-
tions. In particular there exists at least one vector v 6= 0 such that (A−λI)v = 0 which means the
vector v satisfies Av = λv. Thus v is an eigenvector with eigenvalue λ for A �

Let’s collect the observations of the above proof for future reference.
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Proposition 11.2.8.

The following are equivalent for A ∈ R n×n and λ ∈ R,

1. λ is an eigenvalue of A

2. there exists v 6= 0 such that Av = λv

3. there exists v 6= 0 such that (A− λI)v = 0

4. λ is a solution to det(A− λI) = 0

5. (A− λI)v = 0 has infinitely many solutions.

Many examples are given in Section 11.4. For clarity of logical structure we continue discussion of
the theory of eigenvectors here.

Proposition 11.2.9.

There exist n ∈ N and A ∈ Rn×n for which no eigenvectors exist.

Proof: choose n = 2 and study A =

[
0 −1
1 0

]
. We calculate

det(A− λI) = det

[
−λ −1
1 −λ

]
= λ2 + 1.

Therefore, no real solutions to the characteristic equation exist. Notice, if there existed an e-vector
v with e-value λr ∈ R then that would imply λr solves λ2 + 1 = 0 by Proposition 11.2.8. However,
this is impossible as λ2 + 1 = 0 has no real solutions. �

The theory of polynomial factoring plays a large role in the theory of eigenvectors. We just saw how
an irreducible quadratic was tied to the non-existence of e-vectors, we next see how the existence
of real roots for odd-order polynomials forces all odd-sized matrices to have at least one e-vector.

Proposition 11.2.10.

If k ∈ N and n = 2k − 1 then A ∈ Rn×n has at least one eigenvector.

Proof: Observe P (x) = det(A− xI) has deg(P ) = n with n-odd. Therefore, there exists r ∈ R for
which P (r) = 0 and by Proposition 11.2.8 there exists v 6= 0 for which Av = rv. �

If the reader forgot, you can argue for sufficiently large magnitude a an odd-order polynomial must
change sign; P (a)P (−a) < 0. The intermediate value theorem applies as polynomials are continuous
and thus we find a real root must exist. Of course, there is also a purely algebraic argument
which is derived from the fundamental theorem of algebra. We’ll discuss the algebraic structure
of polynomials in greater depth as we elevate the discussion to include complex eigenvectors in
Section 11.3.
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Proposition 11.2.11.

If P is the characteristic polynomial of A ∈ Rn×n then

P (λ) = co + c1λ+ · · ·+ (−1)nλn

and c0 = det(A).

Proof: by definition P (λ) = det(A−λI) and clearly P (λ) is an n-th order polynomial with leading
coefficient (−1)n hence there exist constants c0, c1, · · · , cn−1 ∈ R for which P (λ) = co + c1λ+ · · ·+
(−1)nλn. Set λ = 0 to obtain co = det(A). �

The proposition above is an interesting check on a set of proposed e-values. Incidentally, it continues
to hold for complex e-values. For example, the proof of Proposition 11.2.9 had characteristic
polynomial λ2 +1 = 0 which corresponds to λ1 = i and λ2 = −i of course λ1λ2 = −i2 = 1 = det(A).
Naturally, you should complain that I have not yet defined complex eigenvalues. We shall soon.

Proposition 11.2.12.

Zero is an eigenvalue of A iff A is a singular matrix.

Proof: Let P (λ) be the characteristic polynomial of A. If zero is an eigenvalue then λ must factor
the characteristic polynomial. Moreover, the factor theorem tells us that P (0) = 0 since (λ − 0)
factors P (λ). Thus c0 = 0 and we deduce using the previous proposition that det(A) = c0 = 0.
Which shows that A is singular. The converse follows by the same argument reversed. �

Proposition 11.2.13.

If A ∈ R n×n then A has n eigenvalues λ1, λ2, . . . , λn then det(A) = λ1λ2 · · ·λn.

Proof: If A ∈ R n×n then A has n eigenvalues λ1, λ2, . . . , λn ∈ R then the characteristic polynomial
factors over R:

det(A− λI) = k(λ− λ1)(λ− λ2) · · · (λ− λn)

Moreover, the leading term in P (λ) obtains a coefficient of (−1)n hence k = (−1)n. If c0 is the con-
stant term in the characteristic polynomial then algbera reveals that c0 = (−1)n(−λ1)(−λ2) · · · (−λn) =
λ1λ2 . . . λn. Therefore, using Proposition 11.2.11, det(A) = λ1λ2 . . . λn. �.

Proposition 11.2.14.

If A ∈ R n×n has e-vector v with eigenvalue λ then v is a e-vector of Ak with e-value λk.

Proof: let A ∈ R n×n have e-vector v with eigenvalue λ. Consider,

Akv = Ak−1Av = Ak−1λv = λAk−2Av = λ2Ak−2v = · · · = λkv.

The · · · is properly replaced by a formal induction argument. �.
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Proposition 11.2.15.

Let A be a upper or lower triangular matrix then the eigenvalues of A are the diagonal
entries of the matrix.

Proof: follows immediately from Proposition 8.4.3 since the diagonal entries of A − λI are of
the form Aii − λ hence the characteristic equation has the form det(A − λI) = (A11 − λ)(A22 −
λ) · · · (Ann − λ) which has solutions λ = Aii for i = 1, 2, . . . , n. �

Proposition 11.2.16.

Let A ∈ R2×2. The eigenvalues are determine the det(A) and trace(A):

det(A) = λ1λ2 & trace(A) = λ1 + λ2.

Proof: we know Proposition 11.2.13 yields det(A) = λ1λ2. If A =

[
a b
c d

]
then P (x) =

det

[
a− x b
c d− x

]
= (x − a)(x − d) − bc. Algebra reveals P (x) = x2 − (a + d)x + ad − bc

and completing the square yields:

λ± =
a+ d±

√
(a+ d)2 + 4bc

2

Let λ1 = λ+ and λ2 = λ−. Observe λ1 + λ2 = a+ d = trace(A). �

Perhaps you will not find it suprising that the algebra above equally well applies if λ± ∈ C. In
fact, the proposition above also applies to A ∈ Rn×n. We can show, trace(A) =

∑n
j=1 λj where λj

are eigenvalues of A. That general result also applies to the case of complex eigenvalues. I think
proving that in the same way as we did for n = 2 would be nearly impossible. Instead, we turn to
the question of linear independence. We saw orthonormality implied LI with little effort. We now
learn that distinct e-values also provide LI.

Proposition 11.2.17.

If A ∈ R n×n has e-vector v1 with e-value λ1 and e-vector v2 with e-value λ2 such that
λ1 6= λ2 then {v1, v2} is linearly independent.

Proof: Let v1, v2 have e-values λ1, λ2 respective and assume towards a contradction that v2 = kv2

for some nonzero constant k. Multiply by the matrix A,

Av1 = A(kv2) ⇒ λ1v1 = kλ2v2

But we can replace v1 on the l.h.s. with kv2 hence,

λ1kv2 = kλ2v2 ⇒ k(λ1 − λ2)v2 = 0

Note, k 6= 0 and v2 6= 0 by assumption thus the equation above indicates λ1 − λ2 = 0 therefore
λ1 = λ2 which is a contradiction. Therefore there does not exist such a k and the vectors are
linearly independent. �
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A direct argument is also possible. Suppose {v1, v2} is a set of nonzero vectors with Av1 = λ1v1

and Av2 = λ2v2 suppose c1v1 + c2v2 = 0. Multiply by A− λ1I,

c1(A− λ1I)v1 + c2(A− λ1I)v2 = 0 ⇒ c2(λ2 − λ1)v2 = 0

as λ2 − λ1 6= 0 and v2 6= 0 hence c2 = 0. Multiplication by A − λ2I likewise reveals c1 = 0.
Therefore, {v1, v2} is LI. You can choose which proof you think is best.

Proposition 11.2.18.

If A ∈ R n×n has eigenvectors v1, v2, . . . , vk with eigenvalues λ1, λ2, . . . , λk ∈ R such that
λi 6= λj for all i 6= j then {v1, v2, . . . , vk} is linearly independent.

Proof: I begin with a direct proof. Suppose v1, v2, . . . , vk are e-vectors with e-values λ1, λ2, . . . , λk ∈
R such that λi 6= λj for all i 6= j. Suppose c1v1 + c2v2 + · · ·+ ckvk = 0. Multiply by Πk−1

i=1 (A−λiI),

c1

k−1∏
i=1

(A− λiI)v1 + · · ·+ ck−1

k−1∏
i=1

(A− λiI)vk−1 + ck

k−1∏
i=1

(A− λiI)vk = 0 ?

Consider that the terms in the product commute as:

(A− λiI)(A− λjI) = A2 − (λi − λj)A+ λiλjI = (A− λjI)(A− λiI).

It follows that we can bring (A− λjI) to the right of the product multiplying the j-th summand:

c1

k−1∏
i 6=1

(A− λiI)(A− λ1I)v1 + · · ·+ ck−1

k−1∏
i 6=k−1

(A− λiI)(A− λk−1I)vk−1 + ck

k−1∏
i=1

(A− λiI)vk = 0 ?2

Notice, for i 6= j, (A − λjI)vi = λivi − λjvi = (λi − λj)vi 6= 0 as λi 6= λj and vi 6= 0. On the
other hand, if i = j then (A − λiI)vi = λivi − λivi = 0. Therefore, in ? we find that terms with
coefficients c1, c2, . . . , ck−1 all vanish. All that remains is:

ck

k−1∏
i=1

(A− λiI)vk = 0 ?3

We calculate,

k−1∏
i=1

(A− λiI)vk =
k−2∏
i=1

(A− λiI)(A− λk−1I)vk = (λk − λk−1)
k−2∏
i=1

(A− λiI)vk

= (λk − λk−1)(λk − λk−2)
k−3∏
i=1

(A− λiI)vk

= (λk − λk−1)(λk − λk−2) · · · (λk − λ1)vk.

However, as vk 6= 0 and λk 6= λi for i = 1, . . . k − 1 it follows that ?3 implies ck = 0. Next, we
repeat the argument, except only multiply ? by

∏k−1
i=1 (A− λi) which yields ck−1 = 0. We continue

in this fashion until we have shown c1 = c2 = · · · = ck = 0. Hence {v1, . . . , vk} is LI as claimed. �
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I am fond of the argument which was just offered. Technically, it could be improved by including
explicit induction arguments in place of · · · . The next argument is similar to our initial argument
for two vectors.

Proof: Let e-vectors v1, v2, . . . , vk have e-values λ1, λ2, . . . , λk. Let us prove the claim by induction
on k. Note k = 1 and k = 2 we have already shown in previous work. Suppose inductively the
claim is true for k − 1. Consider, towards a contradiction, that there is some vector vj which is a
nontrivial linear combination of the other vectors:

vj = c1v1 + c2v2 + · · ·+ ĉjvj + · · ·+ ckvk

Multiply by A,
Avj = c1Av1 + c2Av2 + · · ·+ ĉjAvj + · · ·+ ckAvk

Which yields,

λjvj = c1λ1v1 + c2λ2v2 + · · ·+ ĉjλjvj + · · ·+ ckλkvk

But, we can replace vj on the l.h.s with the linear combination of the other vectors. Hence

λj
[
c1v1 + c2v2 + · · ·+ ĉjvj + · · ·+ ckvk

]
= c1λ1v1 + c2λ2v2 + · · ·+ ĉjλjvj + · · ·+ ckλkvk

Consequently,

c1(λj − λ1)v1 + c2(λj − λ2)v2 + · · ·+ ̂cj(λj − λj)vj + · · ·+ ck(λj − λk)vk = 0

However, this is a set of k − 1 e-vectors with distinct e-values linearly combined to give zero. It
follows from the induction claim that each coefficient is trivial. As λj 6= λi for i 6= j it is thus
necessary that c1 = c2 = · · · = ck = 0. But, this implies vj = 0 which contradicts vj 6= 0 as is
known since vj was assumed an e-vector. Hence {v1, . . . , vk} is LI as claimed and by induction on
k ∈ N we find the proposition is true. �

Doubtless there are improvements and refinements of both versions of the proofs I offer here.
Moreover, you may be annoyed to have me point out yet again these LI results also transfer to the
context of distinct complex eigenvalues. That said, I suppose I should finally get to the task of
defining the complex eigenvalue.

11.3 complex eigenvalues and vectors

By now it should be clear that as we consider problems of real vector spaces the general results,
especially those algebraic in nature, invariably involve some complex case. However, technically
it usually happens that the construction from which the complex algebra arose is no longer valid
if the algebra requires complex solutions. The technique to capture data in the complex cases of
the real problems is to complexify the problem. What this means is we replace the given vector
spaces with their complexifications and we extend the linear transformations of interest in the
same fashion. It turns out that solutions to the complexification of the problem reveal both the
real solutions of the original problem as well as complex solutions which, while not real solutions,
still yield useful data for unwrapping the general real problem. If this all seems a little vague, don’t
worry, we will get into all the messy details for the eigenvector problem.



11.3. COMPLEX EIGENVALUES AND VECTORS 285

Definition 11.3.1.

If T : V → V is a linear transformation over R then the complexification of T is the
natural extension of T to TC : VC → VC where VC = V ⊕ iV given by:

TC(x+ iy) = T (x) + iT (y)

for all x+ iy ∈ VC. If v ∈ VC is a nonzero vector and λ ∈ C for which TC(v) = λv then we
say v is a complex eigenvector with eigenvalue λ for T .

Example 11.3.2. Consider T = D where D = d/dx. If λ = α + iβ then eλx = eαx(cos(βx) +
i sin(βx) by definition of the complex exponential. It is first semester calculus to show DC(eλx) =
λeλx. Thus eλx is a complex e-vector of TC with complex e-value λ. In other words, eλx for complex
λ are complex eigenfunctions of the differentiation operator.

Suppose β = {f1, . . . , fn} is a basis for V ; spanR(β) = V . On the other hand, β also serves as a
complex basis for VC, spanC(β) = VC. It follows that the matrix of TC with respect to β over C is
the same as the matrix of T with respect to β over R. In particular:

[TC(fi)]β = [T (fi)]β.

Suppose v is a complex e-vector with e-value λ then note TC(v) = λv implies [TC]β,β [v]β = λ[v]β
where [v]β ∈ Cn. However, [TC]β,β = [T ]β,β . Conversely, if [T ]β,β viewed as a matrix in Cn×n has
complex e-vector w with e-value λ then v = Φ−1

β (w) is a complex e-vector for TC with e-value λ.
My point is simply this: we can exchange the problem of complex e-vectors of T for the associated
problem of finding complex e-vectors of [T ]β,β . Just as we found in the case of real e-vectors it
suffices to study the matrix problem.

Definition 11.3.3.

Let A ∈ Cn×n. If v ∈ Cn is nonzero and Av = λv for some λ ∈ C then we say v is a
complex eigenvector with complex eigenvalue λ of the matrix A.

The proposition below is simply the complex analog of Proposition 11.2.7.

Proposition 11.3.4.

Let A ∈ Cn×n then λ ∈ C is an eigenvalue of A iff det(A − λI) = 0. We say P (λ) =
det(A − λI) the characteristic polynomial and det(A − λI) = 0 is the characteristic
equation.

Proof: the argument given for the real case works here also. �

The complex case is different than the real case for one main reason: the complex numbers are an
algebraically closed field. In particular we have the Fundamental Theorem of Algebra8

8 sometimes this is stated as ”there exists at least one complex solution to an n-th order complex polynomial
equation” then the factor theorem repeated applied leads to the theorem I quote here.
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Theorem 11.3.5.

Fundamental Theorem of Algebra: if P (x) is an n-th order polynomial complex coefficients
then the equation P (x) = 0 has n-solutions where some of the solutions may be repeated.
Moreover, if P (x) is an n-th order polynomial with real coefficients then complex solutions
to P (x) = 0 come in conjugate pairs. It follows that any polynomial with real coefficients
can be factored into a unique product of repeated real and irreducible quadratic factors.

A proof of this theorem would take us far of topic here9. I state it here to remind us of the
possibilities for solutions of the characteristic equation P (λ) = det(A− λI) = 0 which is simply an
n-th order polynomial equation in λ.

Proposition 11.3.6.

If A ∈ Cn×n then A has n eigenvalues, however, some may be repeated and/or complex. If
A ∈ Rn×n then complex eigenvalues arise in conjugate pairs.

Proof: observe P (λ) = det(A − λI) = 0 is an n-th order polynomial equation in λ. In the case
A ∈ R n×n we also have P (λ) is a polynomial with real coefficients. The proposition then follows
from Theorem 11.3.5 �

It is interesting to contrast the proposition above with Proposition 11.2.9. On the other hand,
Propositions 11.2.11, 11.2.12, 11.2.13, 11.2.14, 11.2.15, 11.2.16, 11.2.17, and 11.2.18 all
naturally extend to the case of complex eigenvectors. A set of complex eigenvectors with distinct
complex eigenvalues is LI as a set of complex vectors. In the case A ∈ R n×n the complex e-vectors
have special structure.

Proposition 11.3.7.

If A ∈ R n×n has complex eigenvalue λ and complex eigenvector v then λ∗ is likewise a
complex eigenvalue with complex eigenvector v∗ for A.

Proof: We assume Av = λv for some λ ∈ C and v ∈ C n×1 with v 6= 0. Take the complex conjugate
of Av = λv to find A∗v∗ = λ∗v∗. But, A ∈ R n×n thus A∗ = A and we find Av∗ = λ∗v∗. Moreover,
if v 6= 0 then v∗ 6= 0. Therefore, v∗ is an e-vector with e-value λ∗. �

This is a useful proposition. It means that once we calculate one complex e-vectors we almost
automatically get a second e-vector merely by taking the complex conjugate.

Proposition 11.3.8.

If A ∈ R m×n has complex e-value λ = α+iβ such that β 6= 0 and e-vector v = a+ib ∈ C n×1

such that a, b ∈ Rn then λ∗ = α − iβ is a complex e-value with e-vector v∗ = a − ib and
{v, v∗} is a linearly independent set of vectors over C.

Proof: Proposition 11.3.7 showed that v∗ is an e-vector with e-value λ∗ = α − iβ. Notice that
λ 6= λ∗ since β 6= 0. Therefore, v and v∗ are e-vectors with distinct e-values. Note that Proposition
11.2.18 is equally valid for complex e-values and e-vectors. Hence, {v, v∗} is linearly independent
since these are complex e-vectors with distinct complex e-values. �

9there is a nice proof which can be given in our complex variables course
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Proposition 11.3.9.

If A ∈ R m×n has complex e-value λ = α+iβ such that β 6= 0 and e-vector v = a+ib ∈ C n×1

such that a, b ∈ Rn then a 6= 0 and b 6= 0.

Proof: Expand Av = λv into the real components,

λv = (α+ iβ)(a+ ib) = αa− βb+ i(βa+ αb)

and
Av = A(a+ ib) = Aa+ iAb

Equating real and imaginary components yeilds two real matrix equations,

Aa = αa− βb and Ab = βa+ αb

Suppose a = 0 towards a contradiction, note that 0 = −βb but then b = 0 since β 6= 0 thus
v = 0 + i0 = 0 but this contradicts v being an e-vector. Likewise if b = 0 we find βa = 0 which
implies a = 0 and again v = 0 which contradicts v being an e-vector. Therefore, a, b 6= 0. �

Let T be a linear transformation on a R2 such that v = a + ib is a complex eigenvector with
λ = α+ iβ. The calculations above make it clear that if we set γ = {a, b} then

[T ]γ,γ =
[

[T (a)]γ | [T (b)]γ
]

=

[
α β
−β α

]
.

Of course, to be careful, we should prove {a, b} is a LI before are certain γ is a basis.

Proposition 11.3.10.

If A ∈ R n×n and λ = α + iβ ∈ C with α, β ∈ R and β 6= 0 is an e-value with e-vector
v = a+ ib ∈ C n×1 and a, b ∈ Rn then {a, b} is a linearly independent set of real vectors.

Proof: Add and subtract the equations v = a+ ib and v∗ = a− ib to deduce

a = 1
2(v + v∗) and b = 1

2i(v − v∗)

Let c1, c2 ∈ R then consider,

c1a+ c2b = 0 ⇒ c1[1
2(v + v∗)] + c2[ 1

2i(v − v∗)] = 0

⇒ [c1 − ic2]v + [c1 + ic2]v∗ = 0

But, {v, v∗} is linearly independent hence c1 − ic2 = 0 and c1 + ic2 = 0. Adding these equations
gives 2c1 = 0. Subtracting yields 2ic2 = 0. Thus c1 = c2 = 0 and we conclude {a, b} is linearly
independent set of real vectors. �
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11.4 examples of real and complex eigenvectors

And now, the examples! Note, we should see all the propositions exhibited in these examples.

11.4.1 characteristic equations

Example 11.4.1. Let A =
[

3 0
8 −1

]
. Find the eigenvalues of A from the characteristic equation:

det(A− λI) = det

[
3− λ 0

8 −1− λ

]
= (3− λ)(−1− λ) = (λ+ 1)(λ− 3) = 0

Hence the eigenvalues are λ1 = −1 and λ2 = 3. Notice this is precisely the factor of 3 we saw
scaling the vector in the first example of this chapter.

Example 11.4.2. Let A =

[
1
2

√
3

2

−
√

3
2

1
2

]
. Find the eigenvalues of A from the characteristic equation:

det(A− λI) = det

[
1
2 − λ

√
3

2

−
√

3
2

1
2 − λ

]
= (1

2 − λ)2 + 3
4 = (λ− 1

2)2 + 3
4 = 0

Well how convenient is that? The determinant completed the square for us. We find: λ = 1
2 ± i

√
3

2 .
It would seem that elliptical orbits somehow arise from complex eigenvalues

Proposition 8.4.3 proved that taking the determinant of a triagular matrix was easy. We just multi-
ply the diagonal entries together. This has interesting application in our discussion of eigenvalues.

Example 11.4.3. Given A below, find the eigenvalues. Use Proposition 8.4.3 to calculate the
determinant,

A =

 2 3 4
0 5 6
0 0 7

 ⇒ det(A− λI) =

 2− λ 3 4
0 5− λ 6
0 0 7− λ

 = (2− λ)(5− λ)(7− λ)

Therefore, λ1 = 2, λ2 = 5 and λ3 = 7.

Remark 11.4.4. eigenwarning

Calculation of eigenvalues does not need to be difficult. However, I urge you to be careful
in solving the characteristic equation. More often than not I see students make a mistake
in calculating the eigenvalues. If you do that wrong then the eigenvector calculations will
often turn into inconsistent equations. This should be a clue that the eigenvalues were
wrong, but often I see what I like to call the ”principle of minimal calculation” take over
and students just adhoc set things to zero, hoping against all logic that I will somehow not
notice this. Don’t be this student. If the eigenvalues are correct, the eigenvector equations
are consistent and you will be able to find nonzero eigenvectors. And don’t forget, the
eigenvectors must be nonzero.
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11.4.2 real eigenvector examples

Example 11.4.5. Let A =

[
3 1
3 1

]
find the e-values and e-vectors of A.

det(A− λI) = det

[
3− λ 1

3 1− λ

]
= (3− λ)(1− λ)− 3 = λ2 − 4λ = λ(λ− 4) = 0

We find λ1 = 0 and λ2 = 4. Now find the e-vector with e-value λ1 = 0, let u1 = [u, v]T denote the
e-vector we wish to find. Calculate,

(A− 0I)u1 =

[
3 1
3 1

] [
u
v

]
=

[
3u+ v
3u+ v

]
=

[
0
0

]
Obviously the equations above are redundant and we have infinitely many solutions of the form

3u+ v = 0 which means v = −3u so we can write, u1 =

[
u
−3u

]
= u

[
1
−3

]
. In applications we

often make a choice to select a particular e-vector. Most modern graphing calculators can calcu-
late e-vectors. It is customary for the e-vectors to be chosen to have length one. That is a useful
choice for certain applications as we will later discuss. If you use a calculator it would likely give

u1 = 1√
10

[
1
−3

]
although the

√
10 would likely be approximated unless your calculator is smart.

Continuing we wish to find eigenvectors u2 = [u, v]T such that (A − 4I)u2 = 0. Notice that u, v
are disposable variables in this context, I do not mean to connect the formulas from the λ = 0 case
with the case considered now.

(A− 4I)u1 =

[
−1 1
3 −3

] [
u
v

]
=

[
−u+ v
3u− 3v

]
=

[
0
0

]
Again the equations are redundant and we have infinitely many solutions of the form v = u. Hence,

u2 =

[
u
u

]
= u

[
1
1

]
is an eigenvector for any u ∈ R such that u 6= 0.

Remark 11.4.6.

It was obvious the equations were redundant in the example above. However, we need not
rely on pure intuition. The problem of calculating all the e-vectors is precisely the same as
finding all the vectors in the null space of a matrix. We already have a method to do that
without ambiguity. We find the rref of the matrix and the general solution falls naturally
from that matrix. I don’t bother with the full-blown theory for simple examples because there
is no need. However, with 3 × 3 examples it may be advantageous to keep our earlier null
space calculational scheme in mind.

Example 11.4.7. Let A =

 0 0 −4
2 4 2
2 0 6

 find the e-values and e-vectors of A.

0 = det(A− λI) = det

 −λ 0 −4
2 4− λ 2
2 0 6− λ


= (4− λ)

[
−λ(6− λ) + 8

]
= (4− λ)

[
λ2 − 6λ+ 8

]
= −(λ− 4)(λ− 4)(λ− 2)
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Thus we have a repeated e-value of λ1 = λ2 = 4 and λ3 = 2. Let’s find the eigenvector u3 = [u, v, w]T

such that (A− 2I)u3 = 0, we find the general solution by row reduction

rref

 −2 0 −4 0
2 2 2 0
2 0 4 0

 =

 1 0 2 0
0 1 −1 0
0 0 0 0

 ⇒ u+ 2w = 0
v − w = 0

⇒ u3 = w

 −2
1
1


Next find the e-vectors with e-value 4. Let u1 = [u, v, w]T satisfy (A− 4I)u1 = 0. Calculate,

rref

 −4 0 −4 0
2 0 2 0
2 0 2 0

 =

 1 0 1 0
0 0 0 0
0 0 0 0

 ⇒ u+ w = 0

Notice this case has two free variables, we can use v, w as parameters in the solution,

u1 =

 u
v
w

 =

 −wv
w

 = v

 0
1
0

+ w

 −1
0
1

 ⇒ u1 = v

 0
1
0

 and u2 = w

 −1
0
1


I have boxed two linearly independent eigenvectors u1, u2. These vectors will be linearly independent
for any pair of nonzero constants v, w.

You might wonder if it is always the case that repeated e-values get multiple e-vectors. In the
preceding example the e-value 4 had algebraic multiplicity two and there were likewise two linearly
independent e-vectors. The next example shows that is not the case.

Example 11.4.8. Let A =

[
1 1
0 1

]
find the e-values and e-vectors of A.

det(A− λI) = det

[
1− λ 1

0 1− λ

]
= (1− λ)(1− λ) = 0

Hence we have a repeated e-value of λ1 = 1. Find all e-vectors for λ1 = 1, let u1 = [u, v]T ,

(A− I)u1 =

[
0 1
0 0

] [
u
v

]
=

[
0
0

]
⇒ v = 0 ⇒ u1 = u

[
1
0

]
We have only one e-vector for this system.

Incidentally, you might worry that we could have an e-value (in the sense of having a zero of the
characteristic equation) and yet have no e-vector. Don’t worry about that, we always get at least
one e-vector for each distinct e-value. See Proposition 11.2.8

Example 11.4.9. Let A =

 1 2 3
4 5 6
7 8 9

 find the e-values and e-vectors of A.

0 = det(A− λI) = det

 1− λ 2 3
4 5− λ 6
7 8 9− λ


= (1− λ)

[
(5− λ)(9− λ)− 48

]
− 2
[
4(9− λ)− 42

]
+ 3
[
32− 7(5− λ)

]
= −λ3 + 15λ2 + 18λ

= −λ(λ2 − 15λ− 18)
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Therefore, using the quadratic equation to factor the ugly part,

λ1 = 0, λ2 =
15 + 3

√
33

2
, λ3 =

15− 3
√

33

2

The e-vector for e-value zero is not too hard to calculate. Find u1 = [u, v]T such that (A−0I)u1 = 0.
This amounts to row reducing A itself:

rref

 1 2 3 0
4 5 6 0
7 8 9 0

 =

 1 0 −1 0
0 1 2 0
0 0 0 0

 ⇒ u− w = 0
v + 2w = 0

⇒ u1 = w

 1
−2
1


The e-vectors corresponding e-values λ2 and λ3 are hard to calculate without numerical help. Let’s
discuss Texas Instrument calculator output. To my knowledge, TI-85 and higher will calculate both
e-vectors and e-values. For example, my ancient TI-89, displays the following if I define our matrix
A = mat2,

eigV l(mat2) = {16.11684397, −1.11684397, 1.385788954e− 13}

Calculators often need a little interpretation, the third entry is really zero in disguise. The e-vectors
will be displayed in the same order, they are given from the ”eigVc” command in my TI-89,

eigV c(mat2) =

 .2319706872 .7858302387 .4082482905
.5253220933 .0867513393 −.8164965809
.8186734994 −.6123275602 .4082482905


From this we deduce that eigenvectors for λ1, λ2 and λ3 are

u1 =

 .2319706872
.5253220933
.8186734994

 u2 =

 .7858302387
.0867513393
−.6123275602

 u3 =

 .4082482905
−.8164965809
.4082482905


Notice that 1/

√
6 u 0.408248905 so you can see that u3 above is simply the u = 1/

√
6 case for

the family of e-vectors we calculated by hand already. The calculator chooses e-vectors so that the
vectors have length one.

While we’re on the topic of calculators, perhaps it is worth revisiting the example where there was
only one e-vector. How will the calculator respond in that case? Can we trust the calculator?

Example 11.4.10. Recall Example 11.4.8. We let A =

[
1 1
0 1

]
and found a repeated e-value of

λ1 = 1 and single e-vector u1 = u

[
1
0

]
. Hey now, it’s time for technology, let A = a,

eigV l(a) = {1, 1} and eigV c(a) =

[
1. −1.
0. 1.e− 15

]
Behold, the calculator has given us two alleged e-vectors. The first column is the genuine e-vector
we found previously. The second column is the result of machine error. The calculator was tricked
by round-off error into claiming that [−1, 0.000000000000001] is a distinct e-vector for A. It is not.
Moral of story? When using calculator you must first master the theory or else you’ll stay mired
in ignorance as presribed by your robot masters.
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Finally, I should mention that TI-calculators may or may not deal with complex e-vectors ade-
quately. There are doubtless many web resources for calculating e-vectors/values. I would wager
if you Googled it you’d find an online calculator that beats any calculator. Many of you have a
laptop with wireless so there is almost certainly a way to check your answers if you just take a
minute or two. I don’t mind you checking your answers. If I assign it in homework then I do want
you to work it out without technology. Otherwise, you could get a false confidence before the test.
Technology is to supplement not replace calculation.

Remark 11.4.11.

I would also remind you that there are oodles of examples beyond these lecture notes in
the homework solutions from previous year(s). If these notes do not have enough examples
on some topic then you should seek additional examples elsewhere, ask me, etc... Do not
suffer in silence, ask for help. Thanks.

11.4.3 complex eigenvector examples

Example 11.4.12. Let A =

[
0 1
−1 0

]
and find the e-values and e-vectors of the matrix. Observe

that det(A−λI) = λ2+1 hence the eigevalues are λ = ±i. Find u1 = [u, v]T such that (A−iI)u1 = 0

0 =

[
−i 1
−1 −i

] [
u
v

]
=

[
−iu+ v
−u− iv

]
⇒ −iu+ v = 0

−u− iv = 0
⇒ v = iu ⇒ u1 = u

[
1
i

]
We find infinitely many complex eigenvectors, one for each nonzero complex constant u. In appli-

cations, in may be convenient to set u = 1 so we can write, u1 =

[
1
0

]
+ i

[
0
1

]
Let’s generalize the last example.

Example 11.4.13. Let θ ∈ R and define A =

[
cos θ sin θ
− sin θ cos θ

]
and find the e-values and e-vectors

of the matrix. Observe

0 = det(A− λI) = det

[
cos θ − λ sin θ
− sin θ cos θ − λ

]
= (cos θ − λ)2 + sin2 θ

= cos2 θ − 2λ cos θ + λ2 + sin2 θ

= λ2 − 2λ cos θ + 1

= (λ− cos θ)2 − cos2 θ + 1

= (λ− cos θ)2 + sin2 θ

Thus λ = cos θ ± i sin θ = e±iθ. Find u1 = [u, v]T such that (A− eiθI)u1 = 0

0 =

[
−i sin θ sin θ
− sin θ −i sin θ

] [
u
v

]
=

[
0
0

]
⇒ −iu sin θ + v sin θ = 0

If sin θ 6= 0 then we divide by sin θ to obtain v = iu hence u1 = [u, iu]T = u[1, i]T which is precisely
what we found in the preceding example. However, if sin θ = 0 we obtain no condition what-so-ever
on the matrix. That special case is not complex. Moreover, if sin θ = 0 it follows cos θ = 1 and in
fact A = I in this case. The identity matrix has the repeated eigenvalue of λ = 1 and every vector
in R2×1 is an e-vector.
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Example 11.4.14. Let A =

 1 1 0
−1 1 0
0 0 3

 find the e-values and e-vectors of A.

0 = det(A− λI) =

 1− λ 1 0
−1 1− λ 0
0 0 3− λ


= (3− λ)

[
(1− λ)2 + 1

]
Hence λ1 = 3 and λ2 = 1 ± i. We have a pair of complex e-values and one real e-value. Notice
that for any n× n matrix we must have at least one real e-value since all odd polynomials possess
at least one zero. Let’s begin with the real e-value. Find u1 = [u, v, w]T such that (A− 3I)u1 = 0:

rref

 −2 1 0 0
−1 −2 0 0
0 0 0 0

 =

 1 0 0 0
0 1 0 0
0 0 0 0

 ⇒ u1 = w

 0
0
1


Next find e-vector with λ2 = 1 + i. We wish to find u2 = [u, v, w]T such that (A− (1 + i)I)u2 = 0: −i 1 0 0

−1 −i 0 0
0 0 −1− i 0

 r2 + ir1 → r2−−−−−−−−−→
1
−1−ir3 → r3
−−−−−−−−→

 −i 1 0 0
0 0 0 0
0 0 1 0


One more row-swap and a rescaling of row 1 and it’s clear that

rref

 −i 1 0 0
−1 −i 0 0
0 0 −1− i 0

 =

 1 i 0 0
0 0 1 0
0 0 0 0

 ⇒ u+ iv = 0
w = 0

⇒ u2 = v

 i
1
0


I chose the free parameter to be v. Any choice of a nonzero complex constant v will yield an e-vector
with e-value λ2 = 1 + i. For future reference, it’s worth noting that if we choose v = 1 then we find

u2 =

 0
1
0

+ i

 1
0
0


We identify that Re(u2) = e2 and Im(u2) = e1

Example 11.4.15. Let B =

[
0 1
−1 0

]
and let C =

[
1
2

√
3

2

−
√

3
2

1
2

]
. Define A to be the block

matrix

A =

[
B 0

0 C

]
=


0 1 0 0
−1 0 0 0

0 0 1
2

√
3

2

0 0 −
√

3
2

1
2


find the e-values and e-vectors of the matrix. Block matrices have nice properties: the blocks
behave like numbers. Of course there is something to prove here, and I have yet to discuss block
multiplication in these notes.

det(A− λI) = det

[
B − λI 0

0 C − λI

]
= det(B − λI)det(C − λI)
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Notice that both B and C are rotation matrices. B is the rotation matrix with θ = π/2 whereas C
is the rotation by θ = π/3. We already know the e-values and e-vectors for each of the blocks if we
ignore the other block. It would be nice if a block matrix allowed for analysis of each block one at
a time. This turns out to be true, I can tell you without further calculation that we have e-values

λ1 = ±i and λ2 = 1
2 ± i

√
3

2 which have complex e-vectors

u1 =


1
i
0
0

 = e1 + ie2 u2 =


0
0
1
i

 = e3 + ie4

I invite the reader to check my results through explicit calculation. Technically, this is bad form as
I have yet to prove anything about block matrices. Perhaps this example gives you a sense of why
we should talk about the blocks at some point.

Finally, you might wonder are there matrices which have a repeated complex e-value. And if so are
there always as many complex e-vectors as there are complex e-values? The answer: sometimes.

Take for instance A =

[
B 0

0 B

]
(where B is the same B as in the preceding example) this

matrix will have a repeated e-value of λ = ±i and you’ll be able to calculate u1 = e1 ± ie2 and
u2 = e3± ie4 are linearly independent e-vectors for A. However, there are other matrices for which
only one complex e-vector is available despite a repeat of the e-value.

Example 11.4.16. Let A =


2 3 1 0
−3 2 0 1
0 0 2 3
0 0 −3 2

 you can calculate λ = 2 ± 3i is repeated and yet

there are only two LI complex eigenvectors for A. In particular, v = a + ib for λ = 2 + 3i and v∗

for λ∗ = 2 − 3i. From this pair, or just one of the complex eigenvectors, we find just two LI real
vectors: {a, b}. Naturally, if we wish to associate some basis of R4 with A then we are missing two
vectors. We return to this mystery in the next section. Note:

A =

[
2 3
−3 2

]
⊗
[

1 0
0 1

]
+

[
0 1
0 0

]
⊗
[

1 0
0 1

]
.

The ⊗ is the tensor product. Can you see how it is defined?
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11.5 eigenbases and eigenspaces

If we have a basis of eigenvectors then it is called an eigenbasis. For a linear transformation:

Definition 11.5.1. eigenbasis for linear transformation

Let T : V → V be a linear transformation on a vector space V over R. If there exists a
basis β = {v1, v2, . . . , vn} of V such that such that T (vj) = λjvj for some constant λj ∈ R
then we say β is an eigenbasis of T .

Recall, a diagonal matrix D is one for which Dij = 0 for i 6= j. The matrix of a linear transfor-
mation with respect to an eigenbasis will be diagonal with e-values as the diagonal entries:

Proposition 11.5.2.

If T : V → V is a linear transformation and T has an eigenbasis β = {f1, . . . , fn} where fj
is an eigenvector with eigenvalue λj for j = 1, . . . , n then

[T ]β,β =


λ1 0 · · · 0
0 λ2 · · · 0
...

... · · ·
...

0 0 · · · λn

 .

Proof: In general, [T ]β,β = [[T (f1)]β | [T (f2)]β | · · · | [T (fn)]β]. However, as vj is an eigenvector
we have T (vj) = λjvj . Moreover, by definition of β coordinates, [fj ]β = ej ∈ Rn hence:

[T ]β,β = [[λ1f1)]β | [λ2f2]β | · · · | [λnfn]β]

= [λ1e1 | λ2e2 | · · · | λnen ].

Thus, [T ]β,β is diagonal with λ1, λ2, . . . , λn on the diagonal as claimed. �

Now would be a good time to read Example 7.4.8 again. There we found the matrix of a linear
transformation T : R3 → R3 is diagonal with respect to an eigenbasis. It turns out that there exist
linear transformations which can not be diagonalized. However, even for those tranformations,
we may still be able to find a basis which partially diagonalizes the matrix. In particular, this
brings us to the definition of the λj-eigenspace. We will soon see that the restriction of the linear
transformation to this space will be diagonal.

Definition 11.5.3. eigenspace and geometric vs. algebraic multiplicity

Let T : V → V be a linear transformation. We define the set of all eigenvectors of T with
eigenvalue λj adjoined the zero-vector is the λj-eigenspace denoted byWλj . The dimension
of Wλj is known as the geometric multiplicity of λj . The algebraic multiplicity of
λj is the largest m ∈ N for which number of times (λ − λj)m appears as a factor of the
characteristic polynomial.

I will provide examples once we focus on the matrix analog of the definition above. For the moment,
we just have a few more theoretical items to clarify:



296 CHAPTER 11. EIGENVALUES AND EIGENVECTORS

Proposition 11.5.4.

If T : V → V is a linear transformation and Wλ is an eigenspace of T then Wλ ≤ V .

Proof: exercise for reader. �

Proposition 11.5.5.

If T : V → V is a linear transformation and Wλ is an eigenspace of T then T |Wλ
= λId|Wλ

.
Moreover, if β is a basis for Wλ then [T |Wλ

]β,β = λI.

Proof: if w ∈Wλ then T (w) = λw = λIdWλ
(w) hence T |Wλ

= λIdWλ
. The fact that

[T |Wλ
]β,β = λI follows from the same argument as was given in Proposition 11.5.2. �

Theorem 11.5.6.

If T : V → V is a linear transformation with distinct real e-values λ1, λ2 . . . , λk with
geometric multiplicities g1, g2, . . . , gk and algebraic multiplicities a1, a2, . . . , ak respective
such that aj = gj for all j ∈ Nk. Then V = W1 ⊕W2 ⊕ · · · ⊕Wk where
Wj = {x ∈ V |T (x) = λjx}. Moreover, the matrix of T with respect to a basis β =
β1 ∪ β2 ∪ · · · ∪ βk where βj is basis for Wj from j = 1, 2, . . . , k is diagonal with:

Diag([T ]β,β) = (λ1, . . . , λ1︸ ︷︷ ︸
g1

, λ2, . . . , λ2︸ ︷︷ ︸
g2

, . . . , λk, . . . , λk︸ ︷︷ ︸
gk

).

Proof: Suppose the presuppositions of the theorem are true. We intend to use criteria (iv.)
of Theorem 7.7.11 to show V is a direct sum of the eigenspaces. Take nonzero vj ∈ Wj for
j = 1, 2, . . . , k. Consider,

c1v1 + c2v2 + · · · ckvk = 0.

By Proposition 11.2.18 adapated to linear transformations (exercise for reader) we find {v1, v2, . . . , vk}
LI as these are e-vectors of T with distinct e-values. Hence c1 = c2 = · · · = ck = 0. Therefore,
criteria (iv.) of Theorem 7.7.11 is met and we find V = W1⊕W2⊕ · · · ⊕Wk. The remaining claim
of the theorem is immediate upon application of Proposition 11.5.2. �

It is not generally true that algebraic and geometric multiplicities are equal. Moreover, we also
know that some eigenvalues may be complex. Both of these facts make diagonalization of a given
linear transformation an uncertain task. The proposition below will help us judge if diagonalization
is an impossibility for T .

Proposition 11.5.7.

If T : V → V is a linear transformation with eigenvalue λ with algebraic multiplicity a and
geometric multiplicity g then g ≤ a.
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Proof: Suppose g is the geometric multiplicity of λ. Then there exists a basis {v1, v2, . . . , vg} for
Wλ ≤ V . Extend this to a basis β = {v1, . . . , vg, vg+1, . . . , vn} for V . Observe,

T

(
n∑
i=1

xivi

)
=

g∑
i=1

xiT (vi) +
n∑

i=g+1

xiT (vi) (11.1)

=

g∑
i=1

λxivi +

n∑
i=g+1

xiT (vi).

Recall, [T ]β,β = [[T (v1)]β| · · · |[T (vn)]β]. Our calculation above implies that first g columns are
given as follows:

[T ]β,β = [λe1| · · · |λeg|[T (vg+1)]β| · · · |[T (vn)]β].

Thus, the matrix of T with respect to basis β has the following block-structure:

[T ]β,β =

[
λIg B

0 C

]
We calculate the characteristic polynomial in x by an identity of the determinant: the determinant
of an upper-block-triangular matrix is the product of the determinants of the blocks on the diagonal

det([T ]β,β − xI) = det(λIg − xIg)det(C − xIn−g) = (λ− x)gdet(C − xIn−g).

Thus there are at least g factors of (x− λ) in P (x) hence a ≥ g. �

Proposition 11.2.4 implies that for each eigenvalue λ there exists at least one eigenvector v ∈
Null(T − λId). This fact together with the proposition above shows that for each real eigenvalue
λj of a linear transformation T we have 1 ≤ gj ≤ aj . Moreover, it is only possible to diagonalize T
when all the eigenvalues are real and the algebraic and geometric multiplicities all match10.

Everything we have discussed for linear transformations transfers to matrices. In particular, A ∈
R n×n has a given property if LA : Rn → Rn has that given property. That said, let us be explicit:

Definition 11.5.8.

Let A ∈ R n×n then a basis {v1, v2, . . . , vn} for Rn is called an eigenbasis of A if each
vector in the basis is an e-vector for A.

Example 11.5.9. We calculated in Example 11.4.7 the e-values and e-vectors of A =

 0 0 −4
2 4 2
2 0 6


were λ1 = λ2 = 4 and λ3 = 2 with e-vectors

u1 =

 0
1
0

 u2 =

 −1
0
1

 u3 =

 −2
1
1


Linear indpendence of u3 from u1, u2 is given from the fact the e-values of u3 and u1, u2 are distinct.
Then is is clear that u1 is not a multiple of u2 thus they are linearly independent. It follows that
{u1, u2, u3} form a linearly independent set of vectors in R3, therefore {u1, u2, u3} is an eigenbasis.

10 this is an iff claim, the careful reader will not I have not supplied the converse in these notes, I have not yet
shown that if a linear transformation is diagonalizable then it has an eigenbasis. That is easier than what we have
worked through and I leave it as an exercise for the reader.
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Definition 11.5.10.

Let A ∈ R n×n then we call the set of all real e-vectors with real e-value λ unioned with the
zero-vector the λ-eigenspace and we denote this set by Wλ.

Example 11.5.11. Again using Example 11.4.7 we have two eigenspaces,

W4 = span{

 0
1
0

 ,
 −1

0
1

} W2 = span{

 −2
1
1

}
In the example below we study how the eigenspaces of similar matrices compare. We already
anticipate the result as we know that similar matrices are just different pictures of a given linear
transformation. Furthermore, the eigenvalues as well as algebraic and geometric multiplicities are
invariants of the underlying linear transformation. All pictures of the linear transformation must
share these same traits11.

Example 11.5.12. Consider the matrix

B =

 4 2 2
0 0 −4
0 2 6

 .
You can calculate the characteristic polynomial for B is PB(λ) = det(B − λI) = (λ − 4)2(λ − 2)
thus we find e-values of λ1 = 4 and λ2 = 2. Its also easy to calculate two LI e-vectors for λ1 = 4
namely (1, 0, 0) and (0, 1,−1) and one e-vector (1,−2, 1) with e-value λ2 = 2. The e-spaces have
the form

WB
λ1

= span{(1, 0, 0), (0, 1,−1)} WB
λ2

= span{(1,−2, 1)}

Clearly dimWB
λ1

= 2 and dimWB
λ2

= 1.

Perhaps these seem a bit familar. Recall from Example 11.4.7 that the matrix

A =

 0 0 −4
2 4 2
2 0 6


also had e-values λ1 = 4 and λ2 = 2. However, the e-spaces have the form

WA
λ1

= span{(0, 1, 0), (−1, 0, 1)} WA
λ2

= span{(−2, 1, 1)}

I constructed B by performing a similarity transformation by P = E1↔2 so it is in fact true that
B ∼ A. Therefore, we can take the following view of this example: the matrix A defines a linear
operator T : Rn → Rn by T (v) = Av. The e-values of T are λ1 = 4 and λ2 = 2 and the dimensions
of the corresponding e-spaces are 2 and 1 respective. If we calculate the e-spaces WB

λ1
,WB

λ2
for

[T ]β,β = B with respect to a nonstandard basis β then the e-spaces will not be the same subspaces
of R3 as WA

λ1
,WA

λ2
. However, dimWB

λ1
= dimWA

λ1
and dimWB

λ2
= dimWA

λ2
.

11the proof of the eigenvalues and algebraic multiplicities being invariant in different representations of a given T
is implicit within the proof of Proposition 11.2.5. The claim that T and [T ]β,β share the same geometric multiplicity
is left as an exercise for the reader.
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Definition 11.5.13.

Let A be a real square matrix with real e-value λ. The dimension of Wλ is called the
geometric multiplicity of λ. The number of times the λ solution is repeated in the
characteristic equation’s solution is called the algebraic multiplicity of λ.

We already know from the examples we’ve considered thus far that there will not always be an
eigenbasis for a given matrix A. In general, here are the problems we’ll face:

1. we could have complex e-vectors (see Example 11.4.12)

2. we could have less e-vectors than needed for a basis (see Example 11.4.8)

We can say case 2 is caused from the geometric multiplicity being less than the algebraic multiplic-
ity. What can we do about this? If we want to adjoin vectors to make-up for the lack of e-vectors
then how should we find them in case 2? This question is answered in the next section.

If a matrix has n-linearly independent e-vectors then we’ll find that we can perform a similarity
transformation to transform the matrix into a diagonal form. Let me briefly summarize what is
required for us to have n-LI e-vectors. This is the natural extension of Theorem 11.5.6. A simple
proof of what follows is to apply Theorem 11.5.6 to T = LA where A ∈ R n×n.

Proposition 11.5.14. criteria for real diagonalizability

Suppose that A ∈ R n×n has distinct eigenvalues λ1, λ2, . . . , λk ∈ R such that the charac-
teristic polynomial factors as follows:

PA(λ) = ±(λ− λ1)a1(λ− λ2)a2 · · · (λ− λk)ak .

We identify a1, a2, . . . , ak are the algebraic mulitplicities of λ1, λ2, . . . , λk respective and
a1 + a2 + · · · ak = n. Furthermore, suppose we say that the j-th eigenspace Wλj = {x ∈
R | Ax = λjx} has dim(Wλj ) = gj for j = 1, 2, . . . k. The values g1, g2, . . . , gk are called the
geometric mulitplicities of λ1, λ2, . . . , λk respective. With all of the language above in
mind we can state that if aj = gj for all j = 1, 2, . . . k then A is diagonalizable.

Another way to understand the proposition above is that it really says is that if there exists an
eigenbasis for A then it is diagonalizable. Simply take the union of the basis for each eigenspace
and note the LI of this union follows immediately from Proposition 11.2.18 and the fact they are
bases12. Once we have an eigenbasis we still need to prove diagonalizability follows. Since that is
what is most interesting I’ll restate it once more. Note in the proposition below the e-values may
be repeated. Technically, I don’t really need to give the proof as we could easily derive this from
Theorem 11.5.6. However, I leave the proof as it illustrates an important calculational technique.

Proposition 11.5.15.

Suppose that A ∈ R n×n has e-values λ1, λ2, . . . , λn with linearly independent e-vectors
v1, v2, . . . , vn. If we define V = [v1|v2| · · · |vn] then D = V −1AV where D is a diagonal
matrix with the eigenvalues down the diagonal: D = [λ1e1|λ2e2| · · · |λnen].

12actually there is something to show here but I leave it to the reader for now
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Proof: Notice that V is invertible since we assume the e-vectors are linearly independent. More-
over, V −1V = I in terms of columns translates to V −1[v1|v2| · · · |vn] = [e1|e2| · · · |en]. From which
we deduce that V −1vj = ej for all j. Also, since vj has e-value λj we have Avj = λjvj . Observe,

V −1AV = V −1A[v1|v2| · · · |vn]

= V −1[Av1|Av2| · · · |Avn]

= V −1[λ1v1|λ2v2| · · · |λnvn]

= V −1[λ1v1|λ2v2| · · · |λnvn]

= [λ1V
−1v1|λ2V

−1v2| · · · |λnV −1vn]

= [λ1e1|λ2e2| · · · |λnen] �.

Example 11.5.16. Revisit Example 11.4.5 where we learned A =

[
3 1
3 1

]
had e-values λ1 = 0

and λ2 = 4 with e-vectors: u1 = [1,−3]T and u2 = [1, 1]T . Let’s follow the advice of the proposition
above and diagonalize the matrix. We need to construct U = [u1|u2] and calculate U−1, which is
easy since this is a 2× 2 case:

U =

[
1 1
−3 1

]
⇒ U−1 =

1

4

[
1 −1
3 1

]
Now multiply,

U−1AU =
1

4

[
1 −1
3 1

] [
3 1
3 1

] [
1 1
−3 1

]
=

1

4

[
1 −1
3 1

] [
0 4
0 4

]
=

1

4

[
0 0
0 16

]

Therefore, we find confirmation of the proposition, U−1AU =

[
0 0
0 4

]
.

Notice there is one very unsettling aspect of diagonalization; we need to find the inverse of a matrix.
Generally this is not pleasant. Orthogonality will offer an insight to help us here in Section 11.8.

Calculational inconvieniences aside, we have all the tools we need to diagonalize a matrix. What
then is the point? Why would we care if a matrix is diagonalized? One reason is that we can
calculate arbitrary powers of the matrix with a simple calculation. Note that: if A ∼ D then
Ak ∼ Dk. In particular: if D = P−1AP then A = PDP−1 thus:

Ak = AA · · ·A︸ ︷︷ ︸
k−factors

= (PDP−1)(PDP−1) · · · (PDP−1) = PDkP−1.

Note, Dk is easy to calculate. Try this formula out on the last example. Try calculating A25 directly
and then indirectly via this similarity transformation idea.

Beyond this there are applications of diagonalization too numerous to list. One reason I particularly
like the text by Lay is he adds much detail on possible applications that I do not go into here.
See sections 4.8, 4.9, 5.6, 5.7 for more on the applications of eigenvectors and diagonalization.
Section 11.9 shows how e-vectors allow an elegant analysis of systems of differential equations and
the geometry of quadratic forms. Chapters 12 give greater insight into e-vector-based analysis of
quadratic forms and Chapter 13 details how generalized, possibly complex, eigenvectors derive the
general solution of dx

dt = Ax for A ∈ R n×n.
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11.6 generalized eigenvectors

We begin again with the definition as it applies to a linear transformation.

Definition 11.6.1.

A generalized eigenvector of order k with eigenvalue λ with respect to a linear transfor-
mation T : V → V is a nonzero vector v such that

(T − λId)kv = 0 & (T − λId)k−1v 6= 0.

The existence of a generalized eigenvector of order k with eigenvalue λ implies the null space
Null[(T − λId)k−1] 6= 0. However, if k ≥ 2, this also implies Null[(T − λId)k−2] 6= 0. Indeed, if
there exists a single generalized eigenvector of order k it follows that:

(T − λId)k−1, (T − λId)k−2, . . . , T − λId

all have nontrivial null spaces. This claim is left to the reader as an exercise. If you would like
more complete exposition of this topic you can read Insel Spence and Friedberg. I am trying to get
to the point without too much detail here.

Definition 11.6.2.

A k-chain with eigenvalue λ of a linear transformation T : V → V is set of k nonzero vec-
tors v1, v2, . . . , vk such that (T −λId)(vj) = vj−1 for j = 1, 2, . . . , k and v1 is an eigenvector
with eigenvalue λ; T − λId)(v1) = 0.

Of course, the reason we care about the chain is what follows:

Theorem 11.6.3.

A k-chain with e-value λ for T : V → V is a set of LI generalized e-vectors order 1, . . . , k.

Proof: Let {v1, . . . , vk} be a k-chain with e-value λ for T . By definition (T − λId)(v1) = 0.
Consider:

(T − λId)(v2) = v1 ⇒ (T − λId)2(v2) = (T − λId)(v1) = 0.

Thus v2 is a generalized e-vector of order 2. Next, observe

(T − λId)(v3) = v2 ⇒ (T − λId)3(v3) = (T − λId)2(v2) = 0.

Thus v3 is a generalized e-vector of order 3. We continue in this fashion until we reach the k-th
vector in the chain:

(T − λId)(vk) = vk−1 ⇒ (T − λId)k(vk) = (T − λId)k−1(vk−1) = 0.

Thus vk is a generalized e-vector of order k. To prove LI of the chain suppose that:

c1v1 + c2v2 + · · ·+ ckvk = 0.

Operate successively by (T − λId)j for j = k− 1, k− 2, . . . , 2, 1 to derive first ck = 0 then ck−1 = 0
then continuing until we reach c2 = 0 and finally c1 = 0. �.
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It turns out that we can always choose generalized eigenvectors such thay they line-up into chains.
The details of the proof of the theorem that follow can be found in Insel Spence and Friedberg’s
Linear Algebra and most graduate linear algebra texts. They introduce an organizational tool
known as dot-diagrams to see how to arrange the chains.

Theorem 11.6.4. Jordan basis theorem

If T : V → V is a linear transformation with real eigenvalues then there exists a basis for
V formed from chains of generalized e-vectors. Such a basis is a Jordan basis. Moreover,
up to ordering of the chains, the matrix of T is unique and is called the Jordan form of T

Proof: see Chapter 7 of Insel Spence and Friedberg’s third13 ed. of Linear Algebra. �

The matrix of T with respect to a Jordan basis will be block-diagonal and each block will be a
Jordan block. For brevity of exposition14 consider T : V → V which has a single k-chain as it a
basis for V , β = {v1, v2, . . . , vk} is a k-chain with e-value λ for T :

T (v1) = λv1, T (v2) = λv2 + v1, . . . , T (vk) = λvk + vk−1

Thus the matrix of T has the form:

[T ]β,β =


λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · λ 1
0 0 0 · · · 0 λ


To be clear, all the diagonal entried as λ and there is a string of 1’s along the superdiagonal. All
other entries are zero. In some other texts, for example Hefferon, it should be noted the Jordan
block has 1’s right below the diagonal. This stems from a different formulation of the chains.

Perhaps you wonder why even look at chains? Of course, the Jordan basis theorem is reason
enough, but another reason is that they appear somewhat naturally in differential equations. Let’s
examine how in a simple example.

Example 11.6.5. Consider T = D on P2 = span{1, x, x2}. Clearly T (1) = 0 hence v1 = 1 is an
eigenvector with eigenvalue λ = 0 for T . Furthermore, as T (x) = 1 and T (x2) = 2x it follows

[T ]β,β =

 0 1 0
0 0 2
0 0 0

. Thus T has only zero as an e-value and its algebraic multiplicity is three.

If we consider γ = {1, x, x2/2} then this is a 3-chain with e-value λ = 0. Note:

T (1) = 0, T (x) = 1, T (x2/2) = x ⇒ [T ]γ,γ =

 0 1 0
0 0 1
0 0 0

 .
There are more exciting reasons attached to the study of the matrix exponential, see Chapter 13.

13maybe the fourth edition is better, some student has mine currently
14you doubt this?
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It’s deja vu all over again.

Definition 11.6.6.

A generalized eigenvector of order k with eigenvalue λ with respect to a A ∈ R n×n is a
nonzero vector v such that

(A− λI)kv = 0 & (A− λI)k−1v 6= 0.

Naturally, the chains are also of interest in the matrix case:

Definition 11.6.7.

A k-chain with eigenvalue λ of A ∈ R n×n is a set of k nonzero vectors v1, v2, . . . , vk
such that (A− λI)vj = vj−1 for j = 1, 2, . . . , k and v1 is an eigenvector with eigenvalue λ;
(A− λI)v1 = 0.

The analog of Theorem 11.6.3 is true for the matrix case. However, perhaps this special case with
the contradiction-based proof will add some insight for the reader.

Proposition 11.6.8.

Suppose A ∈ R n×n has e-value λ and e-vector v1 then if (A − λI)v2 = v1 has a solution
then v2 is a generalized e-vector of order 2 which is linearly independent from v1.

Proof: Suppose (A−λI)v2 = v1 is consistent then multiply by (A−λI) to find (A−λI)2v2 = (A−
λI)v1. However, we assumed v1 was an e-vector hence (A−λI)v1 = 0 and we find v2 is a generalized
e-vector of order 2. Suppose v2 = kv1 for some nonzero k then Av2 = Akv1 = kλv1 = λv2 hence
(A − λI)v2 = 0 but this contradicts the construction of v2 as the solution to (A − λI)v2 = v1.
Consequently, v2 is linearly independent from v1 by virtue of its construction. �.

Example 11.6.9. Let’s return to Example 11.4.8 and look for a generalized e-vector of order 2.

Recall A =

[
1 1
0 1

]
and we found a repeated e-value of λ1 = 1 and single e-vector u1 =

[
1
0

]
(fix

u = 1 for convenience). Let’s complete the chain: find v2 = [u, v]T such that (A− I)u2 = u1,[
0 1
0 0

] [
u
v

]
=

[
1
0

]
⇒ v = 1, u is free

Any choice of u will do, in this case we can even set u = 0 to find

u2 =

[
0
1

]
Clearly, {u1, u2} forms a basis of R 2×1. It is not an eigenbasis with respect to A, however it is
what is known as a Jordan basis for A.
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Theorem 11.6.10.

Any matrix with real eigenvalues can be transformed to Jordan form J by a similarity
transformation based on conjugation by the matrix [β] of a Jordan basis β. That is, there
exists Jordan basis β for Rn such that [β]−1A[β] = J

Proof: apply Theorem 11.6.4 to the linear transformation T = LA : Rn → Rn. �

The nicest examples are those which are already in Jordan form at the beginning:

Example 11.6.11. Suppose A =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 it is not hard to show that det(A − λI) =

(λ− 1)4 = 0. We have a quadruple e-value λ1 = λ2 = λ3 = λ4 = 1.

0 = (A− I)~u =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ⇒ ~u =


s1

0
s3

0


Any nonzero choice of s1 or s3 gives us an e-vector. Let’s define two e-vectors which are clearly
linearly independent, ~u1 = [1, 0, 0, 0]T and ~u2 = [0, 0, 1, 0]T . We’ll find a generalized e-vector to go
with each of these. There are two length two chains to find here. In particular,

(A− I)~u3 = ~u1 ⇒


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



s1

s2

s3

s4

 =


1
0
0
0

 ⇒ s2 = 1, s4 = 0, s1, s3 free

I choose s1 = 0 and s3 = 1 since I want a new vector, define ~u3 = [0, 0, 1, 0]T . Finally solving
(A − I)~u4 = ~u2 for ~u4 = [s1, s2, s3, s4]T yields conditions s4 = 1, s2 = 0 and s1, s3 free. I choose
~u4 = [0, 0, 0, 1]T . To summarize we have four linearly independent vectors which form two chains:

(A− I)~(u)3 = ~u1, (A− I)~u1 = 0 (A− I)~u4 = ~u2, (A− I)~u2 = 0

The matrix above was in an example of a matrix in Jordan form. When the matrix is in Jordan
form then the each elemement of then standard basis is an e-vector or generalized e-vector.

Example 11.6.12.

A =



2 1 0 0 0 0 0 0
0 2 1 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 3 1 0 0 0
0 0 0 0 3 1 0 0
0 0 0 0 0 3 1 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 4


Here we have the chain {e1, e2, e3} with e-value λ1 = 2, the chain {e4.e5, e6, e7} with e-value λ2 = 3
and finally a lone e-vector e8 with e-value λ3 = 4
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Usually we can find a chain of generalized e-vectors for each e-value and that will produce a Jordan
basis. However, there is a trap that you will not likely get caught in for a while. It is not always
possible to use a single chain for each e-value. Sometimes it takes a couple chains for a single
e-value. So, to be safe, you should start with finding the highest vector in the chain then work your
way down to eigenvectors. That said, we typically calculate by finding e-vectors first and working
up the chain to the generalized e-vectors. I make this comment to warn you of the danger.

11.7 real Jordan form

Consider A ∈ R n×n. It may not have a Jordan form. Why? Because we assumed that the matrix
has only real eigenvalues in the previous section. Therefore, if we remove that restriction then we
must account for the possibility of complex eigenvalues. We continue the work we began in Section
11.3 here. The theorem that follows collects the main thought for the complex case: basically,
what this theorem says is that everything we did over R also holds for complex vector spaces and
in particular, this implies the complexification of a real linear transformation always permits a
complex Jordan form.

Theorem 11.7.1.

If V is an n-dimensional real vector space and T : V → V is a linear transformation then T
has n-complex e-values. Furthermore, if the geometric multiplicity of the complexification
of T matches the algebraic multiplicity for each complex e-value then the complexification is
diagonalizable; in particular, T : VC → VC permits a complex eigenbasis β for VC = V ⊕ iV
such that [T ]β,β ∈ Cn×n is diagonal with the complex e-values on the diagonal. If the
geometric multiplicity of the complexification does not match the algebraic multiplicity for
some complex eigenvalue(s) then it is possible to find a basis of generalized complex e-vectors
for VC for which the matrix of the complexified T has complex Jordan form. Furthermore,
up to the ordering of the chains of complex generalized e-vectors the Jordan form of the
complexification of T is unique.

Proof: the characterisitc equation for the matrix of the complexification with respect to any basis
is a n-th order complex polynomial equation hence it has n-complex solutions. Those are, by defini-
tion, complex e-values for T . Furthermore, the theorems about diagonalization over R equally well
apply to linear transformations on complex vector space and the diagonalization result follows upon
transfer of the arguments for Theorem 11.5.6. Similar comments apply to the claims concerning
the complex Jordan form. �

Diagonalization of T : VC → VC is interesting, but, we are mostly interested in what the diagonal-
ization reveals about T : V → V . The simplest case is two-dimensional.

Theorem 11.7.2.

If V is an 2-dimensional real vector space and T : V → V is a linear transformation with
complex eigenvalue λ = α+ iβ where β 6= 0 with complex eigenvector v = a+ ib ∈ VC then

the matrix of T with respect to γ = {a, b} is [T ]γ,γ =

[
α β
−β α

]
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Proof: If T has complex eigenvalue λ = α+ iβ where β 6= 0 corresponding to complex eigenvector
v = a+ ib for a, b ∈ V . We assume T (v) = λv hence:

T (a+ ib) = (α+ iβ)(a+ ib)

thus, by definition of the complexification,

T (a) + iT (b) = αa− βb+ i(βa+ αb) ?

Then, by a modification of the arguments for Proposition 11.3.10 to the abstract context, we have
that {a, b} forms a LI set of vectors for V . Since dim(V ) = 2 it follows γ = {a, b} forms a basis.
Moreover, from ? we obtain:

T (a) = αa− βb & T (b) = βa+ αb.

Recall, the matrix [T ]γ,γ = [[T (a)]γ |[T (b)]γ ]. Therefore, the theorem follows as [T (a)]γ = (α,−β)
and [T (b)]γ = (β, α) are clear from the equations above. �

It might be instructive to note the complexification has a different complex matrix than the real
matrix we just exhibited. The key equations are T (v) = λv and T (v∗) = λ∗v thus if δ = {v, v∗} is
a basis for VC = V ⊕ iV then the complexification T : VC → VC has matrix:

[T ]δ,δ =

[
α+ iβ 0

0 α− iβ

]
.

The matrix above is complex, but it clearly contains information about the linear transformation T
of the real vector space V . Next, we study a repeated complex eigenvalue where the complexification
is not complex diagonalizable.

Theorem 11.7.3.

If V is an 4-dimensional real vector space and T : V → V is a linear transformation with
repeated complex eigenvalue λ = α + iβ where β 6= 0 with complex eigenvector v1 =
a1 + ib1 ∈ VC and generalized complex eigenvector v2 = a2 + ib2 where (T − λId)(v2) = v1

then the matrix of T with respect to γ = {a1, b1, a2, b2} is [T ]γ,γ =


α β 1 0
−β α 0 1
0 0 α β
0 0 −β α



Proof: we are given T (v1) = λv1 and T (v2) = λv2 + v1. We simply need to extract real equations
from this data: note v1 = a1 + ib1 and v2 = a2 + ib2 where a1, a2, b1, b2 ∈ V and λ = α + iβ.
Set γ = {a1, b1, a2, b2}. The first two columns follow from the same calculation as in the proof of
Theorem 11.7.2. Calculate,

T (a2 + ib2) = (α+ iβ)(a2 + ib2) + (a1 + ib1) = αa2 − βb2 + a1i(βa2 + αb2 + b1).

Note T (a2 + ib2) = T (a2) + iT (b2). Thus T (a2) = a1 + αa2 − βb2 hence [T (a2)]γ = (1, 0, α,−β).
Also, T (b2) = b1 + βa2 + αb2 from which it follows [T (b2)]γ = (0, 1, β, α). The theorem follows. �
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Once more, I write the matrix of the complexification of T for the linear transformation considered
above. Let δ = {v1, v2, v

∗
1, v
∗
2} then

[T ]δ,δ =


α+ iβ 1 0 0

0 α+ iβ 0 0

0 0 α− iβ 1
0 0 0 α− iβ


The next case would be a complex eigenvalue repeated three times. If δ = {v1, v2, v3, v

∗
1, v
∗
2, v
∗
3}

where (T − λ)(v3) = v2, (T − λ)(v2) = v1 and (T − λ)(v1) = 0. The complex Jordan matrix would
have the form:

[T ]δ,δ =



λ 1 0 0 0 0
0 λ 1 0 0 0
0 0 λ 0 0 0

0 0 0 λ∗ 1 0
0 0 0 0 λ∗ 1
0 0 0 0 0 λ∗

 .

In this case, if we use the real and imaginary components of v1, v2, v3 as the basis γ = {a1, b1, a2, b2, a3, b3}
then the matrix of T : V → V will be formed as follows:

[T ]γ,γ =



α β 1 0 0 0
−β α 0 1 0 0
0 0 α β 1 0
0 0 −β α 0 1
0 0 0 0 α β
0 0 0 0 −β α

 .

The proof is essentially the same as we already offered for the repeated complex eigenvalue case.
In Example 11.4.16 we encountered a matrix with a repeated complex eigenvalue with geometric
multiplicity of one. I observed a particular formula in terms of the tensor product. I think it
warrants further comment here. In particular, we can write an analogus formula here for the 6× 6
matrix above:

[T ]γ,γ =

[
α β
−β α

]
⊗

 1 0 0
0 1 0
0 0 1

+

[
1 0
0 1

]
⊗

 0 1 0
0 0 1
0 0 0


If T has a 4-chain of generalized complex e-vectors then we expect the pattern continues to:

[T ]γ,γ =

[
α β
−β α

]
⊗


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+

[
1 0
0 1

]
⊗


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .
The term built from tensoring with the superdiagonal matrix will be nilpotent. Perhaps we will
explore this in the exercises. Hefferon or Damiano and Little etc. has a section if you wish a second
opinion on all this.

Remark 11.7.4.
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I’ll abstain from writing the general Jordan form of a matrix. Sufficient to say, it is block
diagonal where each block is either formed as discussed thus far in this section or it is a
real Jordan block. Any matrix A is similar to a unique matrix in real Jordan form up to
the ordering of the blocks.

Example 11.7.5. To begin let’s try an experiment using the e-vector and complex e-vectors for
found in Example 11.4.14. We’ll perform a similarity transformation based on this complex basis:
β = {(i, 1, 0), (−i, 1, 0), (0, 0, 1)}. Notice that

[β] =

 i −i 0
1 1 0
0 0 1

 ⇒ [β]−1 =
1

2

 −i 1 0
i 1 0
0 0 2


Then, we can calculate that

[β]−1A[β] =
1

2

 −i 1 0
i 1 0
0 0 2

 1 1 0
−1 1 0
0 0 3

 i −i 0
1 1 0
0 0 1

 =

 1 + i 0 0
0 1− i 0
0 0 3


Note that A is complex-diagonalizable in this case. Furthermore, A is already in real Jordan form.

We should take a moment to appreciate the significance of the 2 × 2 complex blocks in the real
Jordan form of a matrix. It turns out there is a simple interpretation:

Example 11.7.6. Suppose b 6= 0 and C =

[
a −b
b a

]
. We can calculate that det(A − λI) =

(a − λ)2 + b2 = 0 hence we have complex eigenvalues λ = a ± ib. Denoting r =
√
a2 + b2 (the

modulus of a+ ib). We can work out that

C =

[
a −b
b a

]
= r

[
a/r −b/r
b/r a/r

]
=

[
r 0
0 r

] [
cos(β) − sin(β)
sin(β) cos(β)

]
Therefore, a 2× 2 matrix with complex eigenvalue will factor into a dilation by the modulus of the
e-value |λ| times a rotation by the argument of the eigenvalue. If we write λ = rexp(iβ) then we
can identify that r > 0 is the modulus and β is an arugment (there is degeneracy here because angle
is multiply defined).

Transforming a given matrix by a similarity transformation into real Jordan form is a generally
difficult calculation. On the other hand, reading the eigenvalues as well as geometric and algebraic
multiplicities is a simple matter given an explicit matrix in real Jordan form.

Example 11.7.7. Suppose A =


2 3 0 0
−3 2 0 0
0 0 5 1
0 0 0 5

. I can read λ1 = 2 + 3i with geometric and

algebraic multiplicity one and λ2 = 5 with geometric multiplicity one and algebraic multiplicity two.
Of course, λ = 2− 3i is also an e-value as complex e-values come in conjugate pairs.

Example 11.7.8. Suppose A =



0 3 1 0 0 0
−3 0 0 1 0 0
0 0 0 3 0 0
0 0 −3 0 0 0
0 0 0 0 5 0
0 0 0 0 0 5

. I read λ1 = 3i with geometric multi-

plicity one and algebraic multiplicity two. Also λ2 = 5 with geometric multiplicity and algebraic
multiplicity two.
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11.8 eigenvectors and orthogonality

We can apply the Gram-Schmidt process to orthogonalize the set of e-vectors. If the resulting set
of orthogonal vectors is still an eigenbasis then we can prove the matrix formed from e-vectors is
an orthogonal matrix.

Proposition 11.8.1.

If A ∈ R n×n has e-values λ1, λ2, . . . , λn with orthonormal e-vectors v1, v2, . . . , vn and if we
define V = [v1|v2| · · · |vn] then V −1 = V T and D = V TAV where D is a diagonal matrix
with the eigenvalues down the diagonal: D = [λ1e1|λ2e2| · · · |λnen].

Proof: Orthonormality implies vTi vj = δij . Observe that

V TV =


vT1
vT2
...

vTn

 [v1|v2| · · · |vn] =


vT1 v1 vT1 v2 · · · vT1 vn
vT1 v1 vT1 v2 · · · vT1 vn

...
... · · ·

...
vTn v1 vTn v2 · · · vTn vn

 =


1 0 · · · 0
0 1 · · · 0
...

... · · ·
...

0 0 · · · 1

 .
Thus V −1 = V T . The proposition follows from Proposition 11.5.15. �

This is great news. We now have hope of finding the diagonalization of a matrix without going
to the trouble of inverting the e-vector matrix. Notice that there is no gaurantee that we can
find n-orthonormal e-vectors. Even in the case we have n-linearly independent e-vectors it could
happen that when we do the Gram-Schmidt process the resulting vectors are not e-vectors. That
said, there is one important, and common, type of example where we are in fact gauranteed the
existence of an orthonormal eigenbases for A.

Theorem 11.8.2.

A matrix A ∈ R n×n is symmetric iff there exists an orthonormal eigenbasis for A.

Proof: I’ll prove the reverse implication in these notes. The forward implication is difficult and is
probably best seen as a natural result in the theory of adjoints. See Chapter 6 of Insel Spence and
Friedberg’s third ed. or look up the section where the spectral theorem is proved in any advanced
linear algebra text. Assume there exists and orthonormal eigenbasis {v1, v2, . . . , vn} for A. Let
V = [v1|v2| · · · |vn] and use Proposition 11.8.1, V TAV = D where D is a diagonal matrix with the
e-values down the diagonal. Clearly DT = D. Transposing the equation yields (V TAV )T = D.
Use the socks-shoes property for transpose to see (V TAV )T = V TAT (V T )T = V TATV . We find
that V TATV = V TAV . Multiply on the left by V and on the right by V T and we find AT = A
thus A is symmetric. �.

This theorem is a useful bit of trivia to know. But, be careful not to overstate the result. This
theorem does not state that all diagonalizable matrices are symmetric.

Example 11.8.3. In Example 11.4.7 we found the e-values and e-vectors of A =

 0 0 −4
2 4 2
2 0 6


were λ1 = λ2 = 4 and λ3 = 2 with e-vectors

u1 =

 0
1
0

 u2 =

 −1
0
1

 u3 =

 −2
1
1


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We argued in Example 11.5.9 that {u1, u2, u3} is an eigenbasis. In view of the Theorem above
we know there is no way to perform the Gram-Schmidt process and get and orthonormal set of
e-vectors for A. We could orthonormalize the basis, but it would not result in a set of e-vectors.
We can be certain of this since A is not symmetric. I invite you to try Gram-Schmidt and see how
the process spoils the e-values. The principle calculational observation is simply that when you add
e-vectors with different e-values there is no reason to expect the sum is again an e-vector. There is
an exception to my last observation, what is it?

Example 11.8.4. Let A =

 0 0 0
0 1 2
0 2 1

. Observe that det(A− λI) = −λ(λ+ 1)(λ− 3) thus λ1 =

0, λ2 = −1, λ3 = 3. We can calculate orthonormal e-vectors of v1 = [1, 0, 0]T , v2 = 1√
2
[0, 1,−1]T

and v3 = 1√
2
[0, 1, 1]T . I invite the reader to check the validity of the following equation: 1 0 0

0 1√
2
−1√

2

0 1√
2

1√
2


 0 0 0

0 1 2
0 2 1


 1 0 0

0 1√
2

1√
2

0 −1√
2

1√
2

 =

 0 0 0
0 −1 0
0 0 3


Its really neat that to find the inverse of a matrix of orthonormal e-vectors we need only take the

transpose; note

 1 0 0
0 1√

2
−1√

2

0 1√
2

1√
2


 1 0 0

0 1√
2

1√
2

0 −1√
2

1√
2

 =

 1 0 0
0 1 0
0 0 1

.

11.9 select applications

The remaining chapters in these notes give much further comment on quadratic forms and systems
of differential equations. These examples are selected to show the reader what eigenvalues allow
for explicit problems. To understand the general method to solve other such problems, it would be
wise to read the next two chapters.

Example 11.9.1. Consider the quadric form Q(x, y) = 4xy. It’s not immediately obvious (to
me) what the level curves Q(x, y) = k look like. We’ll make use of the preceding proposition to

understand those graphs. Notice Q(x, y) = [x, y]

[
0 2
0 2

] [
x
y

]
. Denote the matrix of the form by

A and calculate the e-values/vectors:

det(A− λI) = det

[
−λ 2
2 −λ

]
= λ2 − 4 = (λ+ 2)(λ− 2) = 0

Therefore, the e-values are λ1 = −2 and λ2 = 2.

(A+ 2I)~u1 =

[
2 2
2 2

] [
u
v

]
=

[
0
0

]
⇒ ~u1 =

1√
2

[
1
−1

]
I just solved u+ v = 0 to give v = −u choose u = 1 then normalize to get the vector above. Next,

(A− 2I)~u2 =

[
−2 2
2 −2

] [
u
v

]
=

[
0
0

]
⇒ ~u2 =

1√
2

[
1
1

]



11.9. SELECT APPLICATIONS 311

I just solved u − v = 0 to give v = u choose u = 1 then normalize to get the vector above. Let
P = [~u1|~u2] and introduce new coordinates ~y = [x̄, ȳ]T defined by ~y = P T~x. Note these can be
inverted by multiplication by P to give ~x = P~y. Observe that

P =
1

2

[
1 1
−1 1

]
⇒ x = 1

2(x̄+ ȳ)
y = 1

2(−x̄+ ȳ)
or

x̄ = 1
2(x− y)

ȳ = 1
2(x+ y)

The proposition preceding this example shows that substitution of the formulas above into Q yield:

Q̃(x̄, ȳ) = −2x̄2 + 2ȳ2

It is clear that in the barred coordinate system the level curve Q(x, y) = k is a hyperbola. If we
draw the barred coordinate system superposed over the xy-coordinate system then you’ll see that
the graph of Q(x, y) = 4xy = k is a hyperbola rotated by 45 degrees. The graph z = 4xy is thus a
hyperbolic paraboloid:

The fascinating thing about the mathematics here is that if you don’t want to graph z = Q(x, y),
but you do want to know the general shape then you can determine which type of quadraic surface
you’re dealing with by simply calculating the eigenvalues of the form.
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11.9.1 linear differential equations and e-vectors: diagonalizable case

Any system of linear differential equations with constant coefficients15 can be reformulated into a
single system of linear differential equations in normal form d~x

dt = A~x + ~f where A ∈ R n×n and
~f : R→ Rn is a vector-valued function of a real variable which is usually called the inhomogeneous
term. To begin suppose ~f = 0 so the problem becomes the homogeneous system d~x

dt = A~x. We wish
to find a vector-valued function ~x(t) = (x1(t), x2(t), . . . , xn(t) such that when we differentiate it we
obtain the same result as if we multiplied it by A. This is what it means to solve the differential
equation d~x

dt = A~x. Essentially, solving this DEqn is like performing n-integrations at once. For
each integration we get a constant, these constants are fixed by initial conditions if we have n of
them. In any event, the general solution has the form:

~x(t) = c1~x1(t) + c2~x2(t) + · · ·+ cn~xn(t)

where {~x1(t), ~x2(t), . . . , ~xn(t)} is a LI set of solutions to d~x
dt = A~x meaning

d~xj
dt = A~xj for each

j = 1, 2, . . . , n. Therefore, if we can find these n-LI solutions then we’ve solved the problem.
It turns out that the solutions are particularly simple if the matrix is diagonalizable: suppose
{~u1, ~u2, . . . , ~un} is an eigenbasis with e-values λ1, λ2, . . . , λn. Let ~xj = eλjt~uj and observe that

d~xj
dt

=
d

dt

[
eλjt~uj

]
=

d

dt

[
eλjt

]
~uj = eλjtλj~uj = eλjtA~uj = Aeλjt~uj = A~xj .

We find that each eigenvector ~uj yields a solution ~xj = eλjt~uj . If there are n-LI e-vectors then we
obtain n-LI solutions.

Example 11.9.2. Consider for example, the system

x′ = x+ y, y′ = 3x− y

We can write this as the matrix problem[
x′

y′

]
︸ ︷︷ ︸
d~x/dt

=

[
1 1
3 −1

]
︸ ︷︷ ︸

A

[
x
y

]
︸ ︷︷ ︸

~x

It is easily calculated that A has eigenvalue λ1 = −2 with e-vector ~u1 = (−1, 3) and λ2 = 2 with
e-vectors ~u2 = (1, 1). The general solution of d~x/dt = A~x is thus

~x(t) = c1e
−2t

[
−1

3

]
+ c2e

t

[
1
1

]
=

[
−c1e

−2t + c2e
2t

3c1e
−2t + c2e

2t

]
So, the scalar solutions are simply x(t) = −c1e

−2t + c2e
2t and y(t) = 3c1e

−2t + c2e
2t .

Thus far I have simply told you how to solve the system d~x/dt = A~x with e-vectors, it is interesting
to see what this means geometrically. For the sake of simplicity we’ll continue to think about the
preceding example. In it’s given form the DEqn is coupled which means the equations for the
derivatives of the dependent variables x, y cannot be solved one at a time. We have to solve both
at once. In the next example I solve the same problem we just solved but this time using a change
of variables approach.

15there are many other linear differential equations which are far more subtle than the ones we consider here,
however, this case is of central importance to a myriad of applications
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Example 11.9.3. Suppose we change variables using the diagonalization idea: introduce new vari-
ables x̄, ȳ by P (x̄, ȳ) = (x, y) where P = [~u1|~u2]. Note (x̄, ȳ) = P−1(x, y). We can diagonalize A by
the similarity transformation by P ; D = P−1AP where Diag(D) = (−2, 2). Note that A = PDP−1

hence d~x/dt = A~x = PDP−1~x. Multiply both sides by P−1:

P−1d~x

dt
= P−1PDP−1~x ⇒ d(P−1~x)

dt
= D(P−1~x).

You might not recognize it but the equation above is decoupled. In particular, using the notation
(x̄, ȳ) = P−1(x, y) we read from the matrix equation above that

dx̄

dt
= −2x̄,

dȳ

dt
= 2ȳ.

Separation of variables and a little algebra yields that x̄(t) = c1e
−2t and ȳ(t) = c2e

2t. Finally, to
find the solution back in the original coordinate system we multiply P−1~x = (c1e

−2t, c2e
2t) by P to

isolate ~x,

~x(t) =

[
−1 1

3 1

] [
c1e
−2t

c2e
2t

]
=

[
−c1e

−2t + c2e
2t

3c1e
−2t + c2e

2t

]
.

This is the same solution we found in the last example. Usually linear algebra texts present this
solution because it shows more interesting linear algebra, however, from a pragmatic viewpoint the
first method is clearly faster.

Finally, we can better appreciate the solutions we found if we plot the direction field (x′, y′) =
(x+y, 3x−y) via the ”pplane” tool in Matlab. I have clicked on the plot to show a few representative
trajectories (solutions):
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11.9.2 linear differential equations and e-vectors: non-diagonalizable case

Generally, there does not exist an eigenbasis for the matrix in d~x/dt = A~x. If the e-values are
all real then the remaining solutions are obtained from the matrix exponential. It turns out that
X = exp(tA) is a solution matrix for d~x/dt = A~x thus each column in the matrix exponential
is a solution. However, direct computation of the matrix exponential is not usually tractable.
Instead, an indirect approach is used. One calculates generalized e-vectors which when multiplied
on exp(tA) yield very simple solutions. For example, if (A − 3I)~u1 = 0 and A − 3I)~u2 = ~u1 and
(A − 3I)~u3 = ~u2 is a chain of generalized e-vectors with e-value λ = 3 we obtain solutions to
d~x/dt = A~x of the form:

~x1(t) = e3t~u1, ~x2(t) = e3t(~u2 + t~u1), ~x3(t) = e3t(~u3 + t~u2 +
1

2
t2~u1).

All these formulas stem from a simplification of ~xj = etA~uj which I call the the magic formula.
That said, if you’d like to understand what in the world this subsection really means then you
probably should read the DEqns chapter. There is one case left, if we have complex e-valued
then A is not real-diagonalizable and the solutions actually have the form ~x(t) = Re(etA~u) or
~x(t) = Im(etA~u) where ~u is either a complex e-vector or a generalized complex e-vector. Again, I
leave the details for the later chapter. My point here is mostly to alert you to the fact that there are
deep and interesting connections between diagonalization and the Jordan form and the solutions
to corresponding differential equations.



Chapter 12

quadratic forms

Quadradic forms arise in a variety of interesting applications. From geometry to physics these
particular formulas arise. When there are no cross-terms it is fairly easy to analyze the behaviour
of a given form. However, the appearance of cross-terms masks the true nature of a given form.
Fortunately quadratic forms permit a matrix formulation and even more fantastically the matrix
is necessarily symmetric and real. It follows the matrix is orthonormally diagonalizable and the
spectrum (set of eigenvalues) completely describes the given form. We study this application of
eigenvectors and hopefully learn a few new things about geometry and physics in the process.

12.1 conic sections and quadric surfaces

Some of you have taken calculus III others have not, but most of you still have much to learn about
level curves and surfaces. Let me give two examples to get us started:

x2 + y2 = 4 level curve; generally has form f(x, y) = k

x2 + 4y2 + z2 = 1 level surface; generally has form F (x, y, z) = k

Alternatively, some special surfaces can be written as a graph. The top half of the ellipsoid
F (x, y, z) = x2 + 4y2 + z2 = 1 is the graph(f) where f(x, y) =

√
1− x2 − 4y2 and graph(f) =

{x, y, f(x, y) |(x, y) ∈ dom(f)}. Of course there is a great variety of examples to offer here and I
only intend to touch on a few standard examples in this section. Our goal is to see what linear
algebra has to say about conic sections and quadric surfaces.

315
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12.2 quadratic forms and their matrix

Definition 12.2.1.

Generally, a quadratic form Q is a function Q : Rn → R whose formula can be written
Q(~x) = ~xTA~x for all ~x ∈ Rn where A ∈ R n×n such that AT = A.

In particular, if ~x = (x, y) and A =

[
a b
b c

]
then

Q(~x) = ~xTA~x = ax2 + bxy + byx+ cy2 = ax2 + 2bxy + y2.

The n = 3 case is similar,denote A = [Aij ] and ~x = (x, y, z) so that

Q(~x) = ~xTA~x = A11x
2 + 2A12xy + 2A13xz +A22y

2 + 2A23yz +A33z
2.

Generally, if [Aij ] ∈ R n×n and ~x = [xi]
T then the associated quadratic form is

Q(~x) = ~xTA~x =
∑
i,j

Aijxixj =

n∑
i=1

Aiix
2
i +

∑
i<j

2Aijxixj .

In case you wondering, yes you could write a given quadratic form with a different matrix which
is not symmetric, but we will find it convenient to insist that our matrix is symmetric since that
choice is always possible for a given quadratic form.

Also, you may recall (from the future) I said a bilinear form was a mapping from V ×V → R which
is linear in each slot. For example, an inner-product as defined in Definition 9.6.1 is a symmetric,
positive definite bilinear form. When we discussed 〈x, y〉 we allowed x 6= y, in contrast a quadratic
form is more like 〈x, x〉. Of course the dot-product is also an inner product and we can write a
given quadratic form in terms of a dot-product:

~xTA~x = ~x · (A~x) = (A~x) · ~x = ~xTAT~x

Some texts actually use the middle equality above to define a symmetric matrix.

Example 12.2.2.

2x2 + 2xy + 2y2 =
[
x y

] [ 2 1
1 2

] [
x
y

]
Example 12.2.3.

2x2 + 2xy + 3xz − 2y2 − z2 =
[
x y z

]  2 1 3/2
1 −2 0

3/2 0 −1

 x
y
z


Proposition 12.2.4.

The values of a quadratic form on Rn − {0} is completely determined by it’s values on
the (n − 1)-sphere Sn−1 = {~x ∈ Rn | ||~x|| = 1}. In particular, Q(~x) = ||~x||2Q(x̂) where
x̂ = 1

||~x||~x.
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Proof: Let Q(~x) = ~xTA~x. Notice that we can write any nonzero vector as the product of its
magnitude ||x|| and its direction x̂ = 1

||~x||~x,

Q(~x) = Q(||~x||x̂) = (||~x||x̂)TA||~x||x̂ = ||~x||2x̂TAx̂ = ||x||2Q(x̂).

Therefore Q(~x) is simply proportional to Q(x̂) with proportionality constant ||~x||2. �

The proposition above is very interesting. It says that if we know how Q works on unit-vectors then
we can extrapolate its action on the remainder of Rn. If f : S → R then we could say f(S) > 0
iff f(s) > 0 for all s ∈ S. Likewise, f(S) < 0 iff f(s) < 0 for all s ∈ S. The proposition below
follows from the proposition above since ||~x||2 ranges over all nonzero positive real numbers in the
equations above.

Proposition 12.2.5.

If Q is a quadratic form on Rn and we denote Rn∗ = Rn − {0}

1.(negative definite) Q(Rn∗ ) < 0 iff Q(Sn−1) < 0

2.(positive definite) Q(Rn∗ ) > 0 iff Q(Sn−1) > 0

3.(non-definite) Q(Rn∗ ) = R− {0} iff Q(Sn−1) has both positive and negative values.

Before I get too carried away with the theory let’s look at a couple examples.

Example 12.2.6. Consider the quadric form Q(x, y) = x2 + y2. You can check for yourself that
z = Q(x, y) is a cone and Q has positive outputs for all inputs except (0, 0). Notice that Q(v) = ||v||2
so it is clear that Q(S1) = 1. We find agreement with the preceding proposition. Next, think about
the application of Q(x, y) to level curves; x2 + y2 = k is simply a circle of radius

√
k or just the

origin. Here’s a graph of z = Q(x, y):

Notice that Q(0, 0) = 0 is the absolute minimum for Q. Finally, let’s take a moment to write

Q(x, y) = [x, y]

[
1 0
0 1

] [
x
y

]
in this case the matrix is diagonal and we note that the e-values are

λ1 = λ2 = 1.
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Example 12.2.7. Consider the quadric form Q(x, y) = x2 − 2y2. You can check for yourself
that z = Q(x, y) is a hyperboloid and Q has non-definite outputs since sometimes the x2 term
dominates whereas other points have −2y2 as the dominent term. Notice that Q(1, 0) = 1 whereas
Q(0, 1) = −2 hence we find Q(S1) contains both positive and negative values and consequently we
find agreement with the preceding proposition. Next, think about the application of Q(x, y) to level
curves; x2 − 2y2 = k yields either hyperbolas which open vertically (k > 0) or horizontally (k < 0)
or a pair of lines y = ±x

2 in the k = 0 case. Here’s a graph of z = Q(x, y):

The origin is a saddle point. Finally, let’s take a moment to write Q(x, y) = [x, y]

[
1 0
0 −2

] [
x
y

]
in this case the matrix is diagonal and we note that the e-values are λ1 = 1 and λ2 = −2.

Example 12.2.8. Consider the quadric form Q(x, y) = 3x2. You can check for yourself that
z = Q(x, y) is parabola-shaped trough along the y-axis. In this case Q has positive outputs for all
inputs except (0, y), we would call this form positive semi-definite. A short calculation reveals
that Q(S1) = [0, 3] thus we again find agreement with the preceding proposition (case 3). Next, think
about the application of Q(x, y) to level curves; 3x2 = k is a pair of vertical lines: x = ±

√
k/3 or

just the y-axis. Here’s a graph of z = Q(x, y):

Finally, let’s take a moment to write Q(x, y) = [x, y]

[
3 0
0 0

] [
x
y

]
in this case the matrix is

diagonal and we note that the e-values are λ1 = 3 and λ2 = 0.
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Example 12.2.9. Consider the quadric form Q(x, y, z) = x2 + 2y2 + 3z2. Think about the appli-
cation of Q(x, y, z) to level surfaces; x2 + 2y2 + 3z2 = k is an ellipsoid. I can’t graph a function of
three variables, however, we can look at level surfaces of the function. I use Mathematica to plot
several below:

Finally, let’s take a moment to write Q(x, y, z) = [x, y, z]

 1 0 0
0 2 0
0 0 3

[ x
y

]
in this case the matrix

is diagonal and we note that the e-values are λ1 = 1 and λ2 = 2 and λ3 = 3.

The examples given thus far are the simplest cases. We don’t really need linear algebra to un-
derstand them. In contrast, e-vectors and e-values will prove a useful tool to unravel the later
examples.

Proposition 12.2.10.

If Q is a quadratic form on Rn with matrix A and e-values λ1, λ2, . . . , λn with orthonormal
e-vectors v1, v2, . . . , vn then

Q(vi) = λi
2

for i = 1, 2, . . . , n. Moreover, if P = [v1|v2| · · · |vn] then

Q(~x) = (P T~x)TP TAPP T~x = λ1y
2
1 + λ2y

2
2 + · · ·+ λny

2
n

where we defined ~y = P T~x.

Let me restate the proposition above in simple terms: we can transform a given quadratic form to
a diagonal form by finding orthonormalized e-vectors and performing the appropriate coordinate
transformation. Since P is formed from orthonormal e-vectors we know that P will be either a
rotation or reflection. This proposition says we can remove ”cross-terms” by transforming the
quadratic forms with an appropriate rotation.

Example 12.2.11. Consider the quadric form Q(x, y) = 2x2 + 2xy + 2y2. It’s not immediately
obvious (to me) what the level curves Q(x, y) = k look like. We’ll make use of the preceding

proposition to understand those graphs. Notice Q(x, y) = [x, y]

[
2 1
1 2

] [
x
y

]
. Denote the matrix

of the form by A and calculate the e-values/vectors:

det(A− λI) = det

[
2− λ 1

1 2− λ

]
= (λ− 2)2 − 1 = λ2 − 4λ+ 3 = (λ− 1)(λ− 3) = 0
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Therefore, the e-values are λ1 = 1 and λ2 = 3.

(A− I)~u1 =

[
1 1
1 1

] [
u
v

]
=

[
0
0

]
⇒ ~u1 =

1√
2

[
1
−1

]
I just solved u+ v = 0 to give v = −u choose u = 1 then normalize to get the vector above. Next,

(A− 3I)~u2 =

[
−1 1
1 −1

] [
u
v

]
=

[
0
0

]
⇒ ~u2 =

1√
2

[
1
1

]
I just solved u − v = 0 to give v = u choose u = 1 then normalize to get the vector above. Let
P = [~u1|~u2] and introduce new coordinates ~y = [x̄, ȳ]T defined by ~y = P T~x. Note these can be
inverted by multiplication by P to give ~x = P~y. Observe that

P =
1

2

[
1 1
−1 1

]
⇒ x = 1

2(x̄+ ȳ)
y = 1

2(−x̄+ ȳ)
or

x̄ = 1
2(x− y)

ȳ = 1
2(x+ y)

The proposition preceding this example shows that substitution of the formulas above into Q yield1:

Q̃(x̄, ȳ) = x̄2 + 3ȳ2

It is clear that in the barred coordinate system the level curve Q(x, y) = k is an ellipse. If we draw
the barred coordinate system superposed over the xy-coordinate system then you’ll see that the graph
of Q(x, y) = 2x2 + 2xy + 2y2 = k is an ellipse rotated by 45 degrees. Or, if you like, we can plot
z = Q(x, y):

1technically Q̃(x̄, ȳ) is Q(x(x̄, ȳ), y(x̄, ȳ))
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Example 12.2.12. Consider the quadric form Q(x, y) = x2+2xy+y2. It’s not immediately obvious
(to me) what the level curves Q(x, y) = k look like. We’ll make use of the preceding proposition to

understand those graphs. Notice Q(x, y) = [x, y]

[
1 1
1 1

] [
x
y

]
. Denote the matrix of the form by

A and calculate the e-values/vectors:

det(A− λI) = det

[
1− λ 1

1 1− λ

]
= (λ− 1)2 − 1 = λ2 − 2λ = λ(λ− 2) = 0

Therefore, the e-values are λ1 = 0 and λ2 = 2.

(A− 0)~u1 =

[
1 1
1 1

] [
u
v

]
=

[
0
0

]
⇒ ~u1 =

1√
2

[
1
−1

]
I just solved u+ v = 0 to give v = −u choose u = 1 then normalize to get the vector above. Next,

(A− 2I)~u2 =

[
−1 1
1 −1

] [
u
v

]
=

[
0
0

]
⇒ ~u2 =

1√
2

[
1
1

]
I just solved u − v = 0 to give v = u choose u = 1 then normalize to get the vector above. Let
P = [~u1|~u2] and introduce new coordinates ~y = [x̄, ȳ]T defined by ~y = P T~x. Note these can be
inverted by multiplication by P to give ~x = P~y. Observe that

P =
1

2

[
1 1
−1 1

]
⇒ x = 1

2(x̄+ ȳ)
y = 1

2(−x̄+ ȳ)
or

x̄ = 1
2(x− y)

ȳ = 1
2(x+ y)

The proposition preceding this example shows that substitution of the formulas above into Q yield:

Q̃(x̄, ȳ) = 2ȳ2

It is clear that in the barred coordinate system the level curve Q(x, y) = k is a pair of paralell
lines. If we draw the barred coordinate system superposed over the xy-coordinate system then you’ll
see that the graph of Q(x, y) = x2 + 2xy + y2 = k is a line with slope −1. Indeed, with a little
algebraic insight we could have anticipated this result since Q(x, y) = (x+y)2 so Q(x, y) = k implies
x+ y =

√
k thus y =

√
k − x. Here’s a plot which again verifies what we’ve already found:
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Example 12.2.13. Consider the quadric form Q(x, y) = 4xy. It’s not immediately obvious (to
me) what the level curves Q(x, y) = k look like. We’ll make use of the preceding proposition to

understand those graphs. Notice Q(x, y) = [x, y]

[
0 2
0 2

] [
x
y

]
. Denote the matrix of the form by

A and calculate the e-values/vectors:

det(A− λI) = det

[
−λ 2
2 −λ

]
= λ2 − 4 = (λ+ 2)(λ− 2) = 0

Therefore, the e-values are λ1 = −2 and λ2 = 2.

(A+ 2I)~u1 =

[
2 2
2 2

] [
u
v

]
=

[
0
0

]
⇒ ~u1 =

1√
2

[
1
−1

]
I just solved u+ v = 0 to give v = −u choose u = 1 then normalize to get the vector above. Next,

(A− 2I)~u2 =

[
−2 2
2 −2

] [
u
v

]
=

[
0
0

]
⇒ ~u2 =

1√
2

[
1
1

]
I just solved u − v = 0 to give v = u choose u = 1 then normalize to get the vector above. Let
P = [~u1|~u2] and introduce new coordinates ~y = [x̄, ȳ]T defined by ~y = P T~x. Note these can be
inverted by multiplication by P to give ~x = P~y. Observe that

P =
1

2

[
1 1
−1 1

]
⇒ x = 1

2(x̄+ ȳ)
y = 1

2(−x̄+ ȳ)
or

x̄ = 1
2(x− y)

ȳ = 1
2(x+ y)

The proposition preceding this example shows that substitution of the formulas above into Q yield:

Q̃(x̄, ȳ) = −2x̄2 + 2ȳ2

It is clear that in the barred coordinate system the level curve Q(x, y) = k is a hyperbola. If we
draw the barred coordinate system superposed over the xy-coordinate system then you’ll see that
the graph of Q(x, y) = 4xy = k is a hyperbola rotated by 45 degrees. The graph z = 4xy is thus a
hyperbolic paraboloid:

The fascinating thing about the mathematics here is that if you don’t want to graph z = Q(x, y),
but you do want to know the general shape then you can determine which type of quadraic surface
you’re dealing with by simply calculating the eigenvalues of the form.
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Remark 12.2.14.

I made the preceding triple of examples all involved the same rotation. This is purely for my
lecturing convenience. In practice the rotation could be by all sorts of angles. In addition,
you might notice that a different ordering of the e-values would result in a redefinition of
the barred coordinates. 2

We ought to do at least one 3-dimensional example.

Example 12.2.15. Consider the quadric form Q defined below:

Q(x, y, z) = [x, y, z]

 6 −2 0
−2 6 0

0 0 5

 x
y
z


Denote the matrix of the form by A and calculate the e-values/vectors:

det(A− λI) = det

 6− λ −2 0
−2 6− λ 0
0 0 5− λ


= [(λ− 6)2 − 4](5− λ)

= (5− λ)[λ2 − 12λ+ 32](5− λ)

= (λ− 4)(λ− 8)(5− λ)

Therefore, the e-values are λ1 = 4, λ2 = 8 and λ3 = 5. After some calculation we find the following
orthonormal e-vectors for A:

~u1 =
1√
2

 1
1
0

 ~u2 =
1√
2

 1
−1
0

 ~u3 =

 0
0
1


Let P = [~u1|~u2|~u3] and introduce new coordinates ~y = [x̄, ȳ, z̄]T defined by ~y = P T~x. Note these
can be inverted by multiplication by P to give ~x = P~y. Observe that

P =
1√
2

 1 1 0
−1 1 0

0 0
√

2

 ⇒
x = 1

2(x̄+ ȳ)
y = 1

2(−x̄+ ȳ)
z = z̄

or
x̄ = 1

2(x− y)
ȳ = 1

2(x+ y)
z̄ = z

The proposition preceding this example shows that substitution of the formulas above into Q yield:

Q̃(x̄, ȳ, z̄) = 4x̄2 + 8ȳ2 + 5z̄2

It is clear that in the barred coordinate system the level surface Q(x, y, z) = k is an ellipsoid. If we
draw the barred coordinate system superposed over the xyz-coordinate system then you’ll see that
the graph of Q(x, y, z) = k is an ellipsoid rotated by 45 degrees around the z − axis. Plotted below
are a few representative ellipsoids:
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Remark 12.2.16.

If you would like to read more about conic sections or quadric surfaces and their connection
to e-values/vectors I reccommend sections 9.6 and 9.7 of Anton’s text. I have yet to add
examples on how to include translations in the analysis. It’s not much more trouble but
I decided it would just be an unecessary complication this semester. Also, section 7.1,7.2
and 7.3 in Lay’s text show a bit more about how to use this math to solve concrete applied
problems. You might also take a look in Strang’s text, his discussion of tests for positive-
definite matrices is much more complete than I will give here.

12.2.1 summary of quadratic form analysis

There is a connection between the shape of level curves Q(x1, x2, . . . , xn) = k and the graph xn+1 =
f(x1, x2, . . . , xn) of f . I’ll discuss n = 2 but these comments equally well apply to w = f(x, y, z) or
higher dimensional examples. Consider a critical point (a, b) for f(x, y) then the Taylor expansion
about (a, b) has the form

f(a+ h, b+ k) = f(a, b) +Q(h, k)

where Q(h, k) = 1
2h

2fxx(a, b) +hkfxy(a, b) + 1
2h

2fyy(a, b) = [h, k][Q](h, k). Since [Q]T = [Q] we can
find orthonormal e-vectors ~u1, ~u2 for [Q] with e-values λ1 and λ2 respective. Using U = [~u1|~u2] we
can introduce rotated coordinates (h̄, k̄) = U(h, k). These will give

Q(h̄, k̄) = λ1h̄
2 + λ2k̄

2

Clearly if λ1 > 0 and λ2 > 0 then f(a, b) yields the local minimum whereas if λ1 < 0 and λ2 < 0
then f(a, b) yields the local maximum. Edwards discusses these matters on pgs. 148-153. In short,
supposing f ≈ f(p) + Q, if all the e-values of Q are positive then f has a local minimum of f(p)
at p whereas if all the e-values of Q are negative then f reaches a local maximum of f(p) at p.
Otherwise Q has both positive and negative e-values and we say Q is non-definite and the function
has a saddle point. If all the e-values of Q are positive then Q is said to be positive-definite
whereas if all the e-values of Q are negative then Q is said to be negative-definite. Edwards
gives a few nice tests for ascertaining if a matrix is positive definite without explicit computation
of e-values. Finally, if one of the e-values is zero then the graph will be like a trough.

Remark 12.2.17. summary of the summary.

In short, the behaviour of a quadratic form Q(x) = xTAx is governed by it’s spectrum
{λ1, λ2, . . . , λk}. Moreover, the form can be written as Q(y) = λ1y

2
1 + λ2y

2
2 + · · ·+ λky

2
k by

choosing the coordinate system which is built from the orthonormal eigenbasis of col(A).
In this coordinate system questions of optimization become trivial (see section 7.3 of Lay
for applied problems)
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12.3 Taylor series for functions of two or more variables

It turns out that linear algebra and e-vectors can give us great insight into locating local extrema
for a function of several variables. To summarize, we can calculate the multivariate Taylor series
and we’ll find that the quadratic terms correspond to a quadratic form. In fact, each quadratic
form has a symmetric matrix representative. We know that symmetric matrices are diagonalizable
hence the e-values of a symmetric matrix will be real. Moreover, the eigenvalues tell you what the
min/max value of the function is at a critical point (usually). This is the n-dimensional general-
ization of the 2nd-derivative test from calculus. If you’d like to see further detail on these please
consider taking Advanced Calculus (Math 332).

Our goal here is to find an analog for Taylor’s Theorem for function from Rn to R. Recall that if
g : U ⊆ R→ R is smooth at a ∈ R then we can compute as many derivatives as we wish, moreover
we can generate the Taylor’s series for g centered at a:

g(a+ h) = g(a) + g′(a)h+
1

2
g′′(a)h2 +

1

3!
g′′(a)h3 + · · · =

∞∑
n=0

g(n)(a)

n!
hn

The equation above assumes that g is analytic at a. In other words, the function actually matches
it’s Taylor series near a. This concept can be made rigorous by discussing the remainder. If one
can show the remainder goes to zero then that proves the function is analytic. You might read
pages 117-127 of Edwards Advanced Calculus for more on these concepts, I sometimes cover parts
of that material in Advanced Calculus, Theorem 6.3 is particularly interesting.

12.3.1 deriving the two-dimensional Taylor formula

The idea is fairly simple: create a function on R with which we can apply the ordinary Taylor series
result. Much like our discussion of directional derivatives we compose a function of two variables
with linear path in the domain. Let f : U ⊆ R2 → R be smooth with smooth partial derivatives
of all orders. Furthermore, let (a, b) ∈ U and construct a line through (a, b) with direction vector
(h1, h2) as usual:

φ(t) = (a, b) + t(h1, h2) = (a+ th1, b+ th2)

for t ∈ R. Note φ(0) = (a, b) and φ′(t) = (h1, h2) = φ′(0). Construct g = f ◦φ : R → R and
differentiate, note we use the chain rule for functions of several variables in what follows:

g′(t) = (f ◦φ)′(t) = f ′(φ(t))φ′(t)

= ∇f(φ(t)) · (h1, h2)

= h1fx(a+ th1, b+ th2) + h2fy(a+ th1, b+ th2)

Note g′(0) = h1fx(a, b)+h2fy(a, b). Differentiate again (I omit (φ(t)) dependence in the last steps),

g′′(t) = h1f
′
x(a+ th1, b+ th2) + h2f

′
y(a+ th1, b+ th2)

= h1∇fx(φ(t)) · (h1, h2) + h2∇fy(φ(t)) · (h1, h2)

= h2
1fxx + h1h2fyx + h2h1fxy + h2

2fyy

= h2
1fxx + 2h1h2fxy + h2

2fyy
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Thus, making explicit the point dependence, g′′(0) = h2
1fxx(a, b) + 2h1h2fxy(a, b) + h2

2fyy(a, b). We
may construct the Taylor series for g up to quadratic terms:

g(0 + t) = g(0) + tg′(0) +
1

2
g′′(0) + · · ·

= f(a, b) + t[h1fx(a, b) + h2fy(a, b)] +
t2

2

[
h2

1fxx(a, b) + 2h1h2fxy(a, b) + h2
2fyy(a, b)

]
+ · · ·

Note that g(t) = f(a+ th1, b+ th2) hence g(1) = f(a+ h1, b+ h2) and consequently,

f(a+ h1, b+ h2) = f(a, b) + h1fx(a, b) + h2fy(a, b)+

+
1

2

[
h2

1fxx(a, b) + 2h1h2fxy(a, b) + h2
2fyy(a, b)

]
+ · · ·

Omitting point dependence on the 2nd derivatives,

f(a+ h1, b+ h2) = f(a, b) + h1fx(a, b) + h2fy(a, b) + 1
2

[
h2

1fxx + 2h1h2fxy + h2
2fyy

]
+ · · ·

Sometimes we’d rather have an expansion about (x, y). To obtain that formula simply substitute
x − a = h1 and y − b = h2. Note that the point (a, b) is fixed in this discussion so the derivatives
are not modified in this substitution,

f(x, y) = f(a, b) + (x− a)fx(a, b) + (y − b)fy(a, b)+

+
1

2

[
(x− a)2fxx(a, b) + 2(x− a)(y − b)fxy(a, b) + (y − b)2fyy(a, b)

]
+ · · ·

At this point we ought to recognize the first three terms give the tangent plane to z = f(z, y) at
(a, b, f(a, b)). The higher order terms are nonlinear corrections to the linearization, these quadratic
terms form a quadratic form. If we computed third, fourth or higher order terms we’d find that,
using a = a1 and b = a2 as well as x = x1 and y = x2,

f(x, y) =
∞∑
n=0

n∑
i1=0

n∑
i2=0

· · ·
n∑

in=0

1

n!

∂(n)f(a1, a2)

∂xi1∂xi2 · · · ∂xin
(xi1 − ai1)(xi2 − ai2) · · · (xin − ain)

The multivariate Taylor formula for a function of j-variables for j > 2 is very similar. Rather than
even state the formula I will show a few examples in the subsection that follows.

12.3.2 examples

Example 12.3.1. Suppose f(x, y) = exp(−x2 − y2 + 2y − 1) expand f about the point (0, 1):

f(x, y) = exp(−x2)exp(−y2 + 2y − 1) = exp(−x2)exp(−(y − 1)2)

expanding,

f(x, y) = (1− x2 + · · · )(1− (y − 1)2 + · · · ) = 1− x2 − (y − 1)2 + · · ·

Recenter about the point (0, 1) by setting x = h and y = 1 + k so

f(h, 1 + k) = 1− h2 − k2 + · · ·

If (h, k) is near (0, 0) then the dominant terms are simply those we’ve written above hence the graph
is like that of a quadraic surface with a pair of negative e-values. It follows that f(0, 1) is a local
maximum. In fact, it happens to be a global maximum for this function.
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Example 12.3.2. Suppose f(x, y) = 4− (x− 1)2 + (y− 2)2 +Aexp(−(x− 1)2− (y− 2)2) + 2B(x−
1)(y− 2) for some constants A,B. Analyze what values for A,B will make (1, 2) a local maximum,
minimum or neither. Expanding about (1, 2) we set x = 1 + h and y = 2 + k in order to see clearly
the local behaviour of f at (1, 2),

f(1 + h, 2 + k) = 4− h2 − k2 +Aexp(−h2 − k2) + 2Bhk
= 4− h2 − k2 +A(1− h2 − k2) + 2Bhk · · ·
= 4 +A− (A+ 1)h2 + 2Bhk − (A+ 1)k2 + · · ·

There is no nonzero linear term in the expansion at (1, 2) which indicates that f(1, 2) = 4 + A
may be a local extremum. In this case the quadratic terms are nontrivial which means the graph of
this function is well-approximated by a quadraic surface near (1, 2). The quadratic form Q(h, k) =
−(A+ 1)h2 + 2Bhk − (A+ 1)k2 has matrix

[Q] =

[
−(A+ 1) B

B −(A+ 1)2

]
.

The characteristic equation for Q is

det([Q]− λI) = det

[
−(A+ 1)− λ B

B −(A+ 1)2 − λ

]
= (λ+A+ 1)2 −B2 = 0

We find solutions λ1 = −A− 1 +B and λ2 = −A− 1−B. The possibilities break down as follows:

1. if λ1, λ2 > 0 then f(1, 2) is local minimum.

2. if λ1, λ2 < 0 then f(1, 2) is local maximum.

3. if just one of λ1, λ2 is zero then f is constant along one direction and min/max along another
so technically it is a local extremum.

4. if λ1λ2 < 0 then f(1, 2) is not a local etremum, however it is a saddle point.

In particular, the following choices for A,B will match the choices above

1. Let A = −3 and B = 1 so λ1 = 3 and λ2 = 1;

2. Let A = 3 and B = 1 so λ1 = −3 and λ2 = −5

3. Let A = −3 and B = −2 so λ1 = 0 and λ2 = 4

4. Let A = 1 and B = 3 so λ1 = 1 and λ2 = −5

Here are the graphs of the cases above, note the analysis for case 3 is more subtle for Taylor
approximations as opposed to simple quadraic surfaces. In this example, case 3 was also a local
minimum. In contrast, in Example 12.2.12 the graph was like a trough. The behaviour of f away
from the critical point includes higher order terms whose influence turns the trough into a local
minimum.
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Example 12.3.3. Suppose f(x, y) = sin(x) cos(y) to find the Taylor series centered at (0, 0) we
can simply multiply the one-dimensional result sin(x) = x − 1

3!x
3 + 1

5!x
5 + · · · and cos(y) = 1 −

1
2!y

2 + 1
4!y

4 + · · · as follows:

f(x, y) = (x− 1
3!x

3 + 1
5!x

5 + · · · )(1− 1
2!y

2 + 1
4!y

4 + · · · )
= x− 1

2xy
2 + 1

24xy
4 − 1

6x
3 − 1

12x
3y2 + · · ·

= x+ · · ·

The origin (0, 0) is a critical point since fx(0, 0) = 0 and fy(0, 0) = 0, however, this particular
critical point escapes the analysis via the quadratic form term since Q = 0 in the Taylor series
for this function at (0, 0). This is analogous to the inconclusive case of the 2nd derivative test in
calculus III.

Example 12.3.4. Suppose f(x, y, z) = xyz. Calculate the multivariate Taylor expansion about the
point (1, 2, 3). I’ll actually calculate this one via differentiation, I have used tricks and/or calculus
II results to shortcut any differentiation in the previous examples. Calculate first derivatives

fx = yz fy = xz fz = xy,

and second derivatives,
fxx = 0 fxy = z fxz = y

fyx = z fyy = 0 fyz = x

fzx = y fzy = x fzz = 0,

and the nonzero third derivatives,

fxyz = fyzx = fzxy = fzyx = fyxz = fxzy = 1.

It follows,

f(a+ h, b+ k, c+ l) =
= f(a, b, c) + fx(a, b, c)h + fy(a, b, c)k + fz(a, b, c)l +

1
2( fxxhh+ fxyhk + fxzhl + fyxkh+ fyykk + fyzkl + fzxlh+ fzylk + fzzll ) + · · ·

Of course certain terms can be combined since fxy = fyx etc... for smooth functions (we assume
smooth in this section, moreover the given function here is clearly smooth). In total,

f(1 + h, 2 + k, 3 + l) = 6 + 6h+ 3k + 2l +
1

2

(
3hk + 2hl + 3kh+ kl + 2lh+ lk

)
+

1

3!
(6)hkl

Of course, we could also obtain this from simple algebra:

f(1 + h, 2 + k, 3 + l) = (1 + h)(2 + k)(3 + l) = 6 + 6h+ 3k + l + 3hk + 2hl + kl + hkl.

Remark 12.3.5.

One very interesting application of the orthogonal complement theorem is to the method of
Lagrange multipliers. The problem is to maximize an objective function f(x1, x2, . . . , xn)
with respect to a set of constraint functions g1(x1, x2, . . . , xn) = 0, g2(x1, x2, . . . , xn) = 0
and gk(x1, x2, . . . , xn) = 0. One can argue that extreme values for f must satisfy

∇f = λ1∇g1 + λ2∇g2 + · · ·+ λk∇gk

for a particular set of Lagrange multipliers λ1, λ2, . . . , λk. The crucial step in the analysis
relies on the orthogonal decomposition theorem. It is the fact that forces the gradient of
the objective function to reside in the span of the gradients of the constraints. See my
Advanced Calculus notes, or consult many advanced calculus texts.
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12.4 intertia tensor, an application of quadratic forms

We can use quadratic forms to elegantly state a number of interesting quantities in classical me-
chanics. For example, the translational kinetic energy of a mass m with velocity v is

Ttrans(v) =
m

2
vT v = [v1, v2, v3]

 m/2 0 0
0 m/2 0
0 0 m/2

 v1

v2

v3

 .
On the other hand, the rotational kinetic energy of an object with moment of intertia I and angular
velocity ω with respect to a particular axis of rotation is

Trot(v) =
I

2
ωTω.

In addition you might recall that the force F applied at radial arm r gave rise to a torque of
τ = r × F which made the angular momentum L = Iω have the time-rate of change τ = dL

dt . In
the first semester of physics this is primarily all we discuss. We are usually careful to limit the
discussion to rotations which happen to occur with respect to a particular axis. But, what about
other rotations? What about rotations with respect to less natural axes of rotation? How should
we describe the rotational physics of a rigid body which spins around some axis which doesn’t
happen to line up with one of the nice examples you find in an introductory physics text?

The answer is found in extending the idea of the moment of intertia to what is called the inertia
tensor Iij (in this section I is not the identity). To begin I’ll provide a calculation which motivates
the definition for the inertia tensor.

Consider a rigid mass with density ρ = dm/dV which is a function of position r = (x1, x2, x3).
Suppose the body rotates with angular velocity ω about some axis through the origin, however
it is otherwise not in motion. This means all of the energy is rotational. Suppose that dm is at
r then we define v = (ẋ1, ẋ2, ẋ3) = dr/dt. In this context, the velocity v of dm is also given by
the cross-product with the angular velocity; v = ω × r. Using the einstein repeated summation
notation the k-th component of the cross-product is nicely expressed via the Levi-Civita symbol;
(ω × r)k = εklmωlxm. Therefore, vk = εklmωlxm. The infinitesimal kinetic energy due to this little
bit of rotating mass dm is hence

dT =
dm

2
vkvk

=
dm

2
(εklmωlxm)(εkijωixj)

=
dm

2
εklmεkijωlωixmxj

=
dm

2
(δliδmj − δljδmi)ωlωixmxj

=
dm

2
(δliδmjωlωixmxj − δljδmiωlωixmxj)

= ωl
dm

2
(δliδmjxmxj − δljδmixmxj)ωi

= ωl

[
dm

2
(δli||r||2 − xlxi)

]
ωi.
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Integrating over the mass, if we add up all the little bits of kinetic energy we obtain the total kinetic
energy for this rotating body: we replace dm with ρ(r)dV and the integration is over the volume
of the body,

T =

∫
ωl

[
1

2
(δli||r||2 − xlxi)

]
ωiρ(r)dV

However, the body is rigid so the angular velocity is the same for each dm and we can pull the
components of the angular velocity out of the integration3 to give:

T =
1

2
ωj

[∫
(δjk||r||2 − xjxk)ρ(r)dV

]
︸ ︷︷ ︸

Ijk

ωk

This integral defines the intertia tensor Ijk for the rotating body. Given the inertia tensor Ilk the
kinetic energy is simply the value of the quadratic form below:

T (ω) =
1

2
ωTω = [ω1, ω2, ω3]

 I11 I12 I13

I21 I22 I23

I31 I32 I33

 ω1

ω2

ω3

 .
The matrix above is not generally diagonal, however you can prove it is symmetric (easy). There-
fore, we can find an orthonormal eigenbasis β = {u1, u2, u3} and if P = [β] then it follows by
orthonormality of the basis that [I]β,β = P T [I]P is diagonal. The eigenvalues of the inertia tensor (
the matrix [Ijk]) are called the principle moments of inertia and the eigenbasis β = {u1, u2, u3}
define the principle axes of the body.

The study of the rotational dynamics flows from analyzing the equations:

Li = Iijωj and τi =
dLi
dt

If the initial angular velocity is in the direction of a principle axis u1 then the motion is basically
described in the same way as in the introductory physics course provided that the torque is also
in the direction of u1. The moment of intertia is simply the first principle moment of inertia and
L = λ1ω. However, if the torque is not in the direction of a princple axis or the initial angular ve-
locity is not along a principle axis then the motion is more complicated since the rotational motion
is connected to more than one axis of rotation. Think about a spinning top which is spinning in
place. There is wobbling and other more complicated motions that are covered by the mathematics
described here.

Example 12.4.1. The intertia tensor for a cube with one corner at the origin is found to be

I =
2

3
Ms2

 1 −3/8 −3/8
−3/8 1 −3/8
−3/8 −3/8 1


Introduce m = M/8 to remove the fractions,

I =
2

3
Ms2

 8 −3 −3
−3 8 −3
−3 −3 8


3I also relabled the indices to have nicer final formula, nothing profound here
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You can calculate that the e-values are λ1 = 2 and λ2 = 11 = λ3 with principle axis in the directions

u1 =
1√
3

(1, 1, 1), u2 =
1√
2

(−1, 1, 0), u3 =
1√
2

(−1, 0, 1).

The choice of u2, u3 is not unique. We could just as well choose any other orthonormal basis for
span{u2, u3} = W11.

Finally, a word of warning, for a particular body there may be so much symmetry that no particular
eigenbasis is specified. There may be many choices of an orthonormal eigenbasis for the system.
Consider a sphere. Any orthonormal basis will give a set of principle axes. Or, for a right circular
cylinder the axis of the cylinder is clearly a principle axis however the other two directions are
arbitrarily chosen from the plane which is the orthogonal complement of the axis. I think it’s fair
to say that if a body has a unique (up to ordering) set of principle axes then the shape has to
be somewhat ugly. Symmetry is beauty but it implies ambiguity for the choice of certain princple
axes.
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Chapter 13

systems of differential equations

Systems of differential equations are found at the base of many nontrivial questions in physics,
math, biology, chemistry, nuclear engineering, economics, etc... Consider this, anytime a problem
is described by several quantities which depend on time and each other it is likely that a simple
conservation of mass, charge, population, particle number,... force linear relations between the time-
rates of change of the quantities involved. This means, we get a system of differential equations.
To be specific, Newton’s Second Law is a system of differential equations. Maxwell’s Equations
are a system of differential equations. Now, generally, the methods we discover in this chapter will
not allow solutions to problems I allude to above. Many of those problems are nonlinear. There
are researchers who spend a good part of their career just unraveling the structure of a particular
partial differential equation. That said, once simplifying assumptions are made and the problem
is linearlized one often faces the problem we solve in this chapter. We show how to solve any
system of first order differential equations with constant coefficients. This is accomplished by the
application of Jordan basis for the matrix of the system to the matrix exponential. I’m not sure
the exact history of the method I show in this chapter. In my opinion, the manner in which the
chains of generalized eigenvectors tame the matrix exponential are reason enough to study them.

333
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13.1 calculus of matrices

A more apt title would be ”calculus of matrix-valued functions of a real variable”.

Definition 13.1.1.

A matrix-valued function of a real variable is a function from I ⊆ R to R m×n. Suppose
A : I ⊆ R → R m×n is such that Aij : I ⊆ R → R is differentiable for each i, j then we
define

dA
dt =

[dAij
dt

]
which can also be denoted (A′)ij = A′ij . We likewise define

∫
Adt = [

∫
Aijdt] for A with

integrable components. Definite integrals and higher derivatives are also defined component-
wise.

Example 13.1.2. Suppose A(t) =

[
2t 3t2

4t3 5t4

]
. I’ll calculate a few items just to illustrate the

definition above. calculate; to differentiate a matrix we differentiate each component one at a time:

A′(t) =

[
2 6t

12t2 20t3

]
A′′(t) =

[
0 6

24t 60t2

]
A′(0) =

[
2 0
0 0

]
Integrate by integrating each component:

∫
A(t)dt =

[
t2 + c1 t3 + c2

t4 + c3 t5 + c4

] ∫ 2

0
A(t)dt =

 t2
∣∣2
0

t3
∣∣2
0

t4
∣∣2
0

t5
∣∣2
0

 =

[
4 8
16 32

]

Proposition 13.1.3.

Suppose A,B are matrix-valued functions of a real variable, f is a function of a real variable,
c is a constant, and C is a constant matrix then

1. (AB)′ = A′B +AB′ (product rule for matrices)

2. (AC)′ = A′C

3. (CA)′ = CA′

4. (fA)′ = f ′A+ fA′

5. (cA)′ = cA′

6. (A+B)′ = A′ +B′

where each of the functions is evaluated at the same time t and I assume that the functions
and matrices are differentiable at that value of t and of course the matrices A,B,C are such
that the multiplications are well-defined.
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Proof: Suppose A(t) ∈ R m×n and B(t) ∈ R n×p consider,

(AB)′ij = d
dt((AB)ij) defn. derivative of matrix

= d
dt(
∑

k AikBkj) defn. of matrix multiplication

=
∑

k
d
dt(AikBkj) linearity of derivative

=
∑

k

[
dAik
dt Bkj +Aik

dBkj
dt

]
ordinary product rules

=
∑

k
dAik
dt Bkj +

∑
k Aik

dBkj
dt algebra

= (A′B)ij + (AB′)ij defn. of matrix multiplication
= (A′B +AB′)ij defn. matrix addition

this proves (1.) as i, j were arbitrary in the calculation above. The proof of (2.) and (3.) follow
quickly from (1.) since C constant means C ′ = 0. Proof of (4.) is similar to (1.):

(fA)′ij = d
dt((fA)ij) defn. derivative of matrix

= d
dt(fAij) defn. of scalar multiplication

= df
dtAij + f

dAij
dt ordinary product rule

= (dfdtA+ f dAdt )ij defn. matrix addition

= (dfdtA+ f dAdt )ij defn. scalar multiplication.

The proof of (5.) follows from taking f(t) = c which has f ′ = 0. I leave the proof of (6.) as an
exercise for the reader. �.

To summarize: the calculus of matrices is the same as the calculus of functions with the small
qualifier that we must respect the rules of matrix algebra. The noncommutativity of matrix mul-
tiplication is the main distinguishing feature.

Since we’re discussing this type of differentiation perhaps it would be worthwhile for me to insert
a comment about complex functions here. Differentiation of functions from R to C is defined by
splitting a given function into its real and imaginary parts then we just differentiate with respect
to the real variable one component at a time. For example:

d

dt
(e2t cos(t) + ie2t sin(t)) =

d

dt
(e2t cos(t)) + i

d

dt
(e2t sin(t))

= (2e2t cos(t)− e2t sin(t)) + i(2e2t sin(t) + e2t cos(t)) (13.1)

= e2t(2 + i)(cos(t) + i sin(t))

= (2 + i)e(2+i)t

where I have made use of the identity1 ex+iy = ex(cos(y) + i sin(y)). We just saw that

d

dt
eλt = λeλt

which seems obvious enough until you appreciate that we just proved it for λ = 2 + i. We make
use of this calculation in the next section in the case we have complex e-values.

1or definition, depending on how you choose to set-up the complex exponential, I take this as the definition in
calculus II
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13.2 introduction to systems of linear differential equations

A differential equation (DEqn) is simply an equation that is stated in terms of derivatives. The
highest order derivative that appears in the DEqn is called the order of the DEqn. In calculus
we learned to integrate. Recall that

∫
f(x)dx = y iff dy

dx = f(x). Everytime you do an integral
you are solving a first order DEqn. In fact, it’s an ordinary DEnq (ODE) since there is only one
indpendent variable ( it was x ). A system of ODEs is a set of differential equations with a common
independent variable. It turns out that any linear differential equation can be written as a system
of ODEs in normal form. I’ll define normal form then illustrate with a few examples.

Definition 13.2.1.

Let t be a real variable and suppose x1, x2, . . . , xn are functions of t. If Aij , fi are functions
of t for all 1 ≤ i ≤ m and 1 ≤ j ≤ n then the following set of differential equations is defined
to be a system of linear differential equations in normal form:

dx1
dt = A11x1 +A12x2 + · · ·A1nxn + f1

dx2
dt = A21x1 +A22x2 + · · ·A2nxn + f2

... =
...

... · · ·
...

dxm
dt = Am1x1 +Am2x2 + · · ·Amnxn + fm

In matrix notation, dx
dt = Ax + f . The system is called homogeneous if f = 0 whereas

the system is called nonhomogeneous if f 6= 0. The system is called constant coefficient
if d

dt(Aij) = 0 for all i, j. If m = n and a set of intial conditions x1(t0) = y1, x2(t0) =
y2, . . . , xn(t0) = yn are given then this is called an initial value problem (IVP).

Example 13.2.2. If x is the number of tigers and y is the number of rabbits then

dx
dt = x+ y dy

dt = −100x+ 20y

is a model for the population growth of tigers and bunnies in some closed environment. My logic for
my made-up example is as follows: the coefficient 1 is the growth rate for tigers which don’t breed to
quickly. Whereas the growth rate for bunnies is 20 since bunnies reproduce like, well bunnies. Then
the y in the dx

dt equation goes to account for the fact that more bunnies means more tiger food and
hence the tiger reproduction should speed up (this is probably a bogus term, but this is my made up
example so deal). Then the −100x term accounts for the fact that more tigers means more tigers
eating bunnies so naturally this should be negative. In matrix form[ dx

dt
dy
dt

]
=

[
1 1
−100 20

] [
x
y

]
How do we solve such a system? This is the question we seek to answer.

The preceding example is a predator-prey model. There are many other terms that can be added to
make the model more realistic. Ultimately all population growth models are only useful if they can
account for all significant effects. History has shown population growth models are of only limited
use for humans.
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Example 13.2.3. Reduction of Order in calculus II you may have studied how to solve y′′ +
by′ + cy = 0 for any choice of constants b, c. This is a second order ODE. We can reduce it to a
system of first order ODEs by introducing new variables: x1 = y and x2 = y′ then we have

x′1 = y′ = x2

and,
x′2 = y′′ = −by′ − cy = −bx2 − cx1

As a matrix DEqn, [
x1

x2

]′
=

[
0 1
−c −b

] [
x1

x2

]
Similarly if y′′′′ + 2y′′′ + 3y′′ + 4y′ + 5y = 0 we can introduce variables to reduce the order: x1 =
y, x2 = y′, x3 = y′′, x4 = y′′′ then you can show:

x1

x2

x3

x4


′

=


0 1 0 0
0 0 1 0
0 0 0 1
−5 −4 −3 −2



x1

x2

x3

x4


is equivalent to y′′′′+ 2y′′′+ 3y′′+ 4y′+ 5y = 0. We call the matrix above the companion matrix
of the n-th order constant coefficient ODE. There is a beautiful interplay between solutions to n-th
order ODEs and the linear algebra of the compansion matrix.

Example 13.2.4. Suppose y′′ + 4y′ + 5y = 0 and x′′ + x = 0. The is a system of linear second
order ODEs. It can be recast as a system of 4 first order ODEs by introducing new variables:
x1 = y, x2 = y′ and x3 = x, x4 = x′. In matrix form the given system in normal form is:

x1

x2

x3

x4


′

=


0 1 0 0
−5 −4 0 0
0 0 0 1
0 0 −1 0



x1

x2

x3

x4


The companion matrix above will be found to have eigenvalues λ = −2 ± i and λ = ±i. I know
this without further calculation purely on the basis of what I know from DEqns and the interplay I
alluded to in the last example.

Example 13.2.5. If y′′′′+2y′′+y = 0 we can introduce variables to reduce the order: x1 = y, x2 =
y′, x3 = y′′, x4 = y′′′ then you can show:

x1

x2

x3

x4


′

=


0 1 0 0
0 0 1 0
0 0 0 1
−1 0 −2 0



x1

x2

x3

x4


is equivalent to y′′′′+2y′′+y = 0. If we solve the matrix system then we solve the equation in y and
vice-versa. I happen to know the solution to the y equation is y = c1 cos t+c2 sin t+c3t cos t+c4t sin t.
From this I can deduce that the companion matrix has a repeated e-value of λ = ±i and just one
complex e-vector and its conjugate. This matrix would answer the bonus point question I posed a
few sections back. I invite the reader to verify my claims.
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Remark 13.2.6.

For those of you who will or have taken math 334 my guesswork above is predicated on two
observations:

1. the ”auxillarly” or ”characteristic” equation in the study of the constant coefficient
ODEs is identical to the characteristic equation of the companion matrix.

2. ultimately eigenvectors will give us exponentials and sines and cosines in the solution
to the matrix ODE whereas solutions which have multiplications by t stem from
generalized e-vectors. Conversely, if the DEqn has a t or t2 multiplying cosine, sine
or exponential functions then the companion matrix must in turn have generalized
e-vectors to account for the t or t2 etc...

I will not explain (1.) in this course, however we will hopefully make sense of (2.) by the
end of this section.

13.3 the matrix exponential

Perhaps the most important first order ODE is dy
dt = ay. This DEqn says that the rate of change in

y is simply proportional to the amount of y at time t. Geometrically, this DEqn states the solutions
value is proportional to its slope at every point in its domain. The solution2 is the exponential
function y(t) = eat.

We face a new differential equation; dxdt = Ax where x is a vector-valued function of t and A ∈ R n×n.
Given our success with the exponential function for the scalar case is it not natural to suppose that
x = etA is the solution to the matrix DEqn? The answer is yes. However, we need to define a few
items before we can understand the true structure of the claim.

Definition 13.3.1.

Let AR n×n define eA ∈ R n×n by the following formula

eA =
∞∑
n=0

1
n!A

n = I +A+ 1
2A

2 + 1
3!A

3 + · · · .

We also denote eA = exp(A) when convenient.

This definition is the natural extension of the Taylor series formula for the exponential function we
derived in calculus II. Of course, you should be skeptical of this definition. How do I even know the
series converges for an arbitrary matrix A? And, what do I even mean by ”converge” for a series
of matrices? (skip the next subsection if you don’t care)

2ok, technically separation of variables yields the general solution y = ceat but I’m trying to focus on the expo-
nential function for the moment.
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13.3.1 analysis for matrices

Remark 13.3.2.

The purpose of this section is to alert the reader to the gap in the development here. We
will use the matrix exponential despite our inability to fully grasp the underlying analysis.
Much in the same way we calculate series in calculus without proving every last theorem. I
will attempt to at least sketch the analytical underpinnings of the matrix exponential. The
reader will be happy to learn this is not part of the required material.

We use the Frobenius norm for A ∈ R n×n, ||A|| =
√∑

i,j(Aij)
2. We already proved this was a

norm in a previous chapter. A sequence of square matrices is a function from N to R n×n. We
say the sequence {An}∞n=1 converges to L ∈ R n×n iff for each ε > 0 there exists M ∈ N such that
||An − L|| < ε for all n > M . This is the same definition we used in calculus, just now the norm is
the Frobenius norm and the functions are replaced by matrices. The definition of a series is also
analogus to the definition you learned in calculus II.

Definition 13.3.3.

Let Ak ∈ R m×m for all k, the sequence of partial sums of
∑∞

k=0Ak is given by Sn =∑n
k=1Ak. We say the series

∑∞
k=0Ak converges to L ∈ R m×m iff the sequence of partial

sums converges to L. In other words,

∞∑
k=1

Ak = lim
n→∞

n∑
k=1

Ak.

Many of the same theorems hold for matrices:

Proposition 13.3.4.

Let t → SA(t) =
∑
Ak(t) and t → SB(t) =

∑
k Bk(t) be matrix valued functions of a real

variable t where the series are uniformly convergent and c ∈ R then

1.
∑

k cAk = c
∑

k Ak

2.
∑

k(Ak +Bk) =
∑

k Ak +
∑

k Bk

3. d
dt

[∑
k Ak

]
=
∑

k
d
dt

[
Ak
]

4.
∫ [∑

k Ak
]
dt = C +

∑
k

∫
Akdt where C is a constant matrix.

The summations can go to infinity and the starting index can be any integer.

Uniform convergence means the series converge without regard to the value of t. Let me just
refer you to the analysis course, we should discuss uniform convergence in that course, the concept
equally well applies here. It is the crucial fact which one needs to interchange the limits which
are implicit within

∑
k and d

dt . There are counterexamples in the case the series is not uniformly
convergent. Fortunately,

Proposition 13.3.5.

Let A be a square matrix then exp(A) =
∑∞

k=0
1
k!A

k is a uniformly convergent series of
matrices.
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Basically, the argument is as follows: The set of square matrices with the Frobenius norm is
isometric to Rn2

which is a complete space. A complete space is one in which every Cauchy sequence
converges. We can show that the sequence of partial sums for exp(A) is a Cauchy sequence in R n×n

hence it converges. Obviously I’m leaving some details out here. You can look at the excellent
Calculus text by Apostle to see more gory details. Also, if you don’t like my approach to the matrix
exponential then he has several other ways to look it.

13.3.2 formulas for the matrix exponential

Now for the fun part.

Proposition 13.3.6.

Let A be a square matrix then d
dt

[
exp(tA)

]
= Aexp(tA)

Proof: I’ll give the proof in two notations. First,

d
dt

[
exp(tA)

]
= d

dt

[ ∞∑
k=0

1
k! t

kAk
]

defn. of matrix exponential

=
∞∑
k=0

d
dt

[
1
k! t

kAk
]

since matrix exp. uniformly conv.

=
∞∑
k=0

k
k! t

k−1Ak Ak constant and d
dt(t

k) = ktk−1

= A
∞∑
k=1

1
(k−1)! t

k−1Ak−1 since k! = k(k − 1)! and Ak = AAk−1.

= Aexp(tA) defn. of matrix exponential.

I suspect the following argument is easier to follow:

d
dt(exp(tA)) = d

dt(I + tA+ 1
2 t

2A2 + 1
3! t

3A3 + · · · )
= d

dt(I) + d
dt(tA) + 1

2
d
dt(t

2A2) + 1
3·2

d
dt(t

3A3) + · · ·
= A+ tA2 + 1

2 t
2A3 + · · ·

= A(I + tA+ 1
2 t

2A2 + · · · )
= Aexp(tA). �

Notice that we have all we need to see that exp(tA) is a matrix of solutions to the differential
equation x′ = Ax. The following prop. follows from the preceding prop. and Prop. 3.6.2.

Proposition 13.3.7.

If X = exp(tA) then X ′ = Aexp(tA) = AX. This means that each column in X is a
solution to x′ = Ax.

Let us illustrate this proposition with a particularly simple example.

Example 13.3.8. Suppose x′ = x, y′ = 2y, z′ = 3z then in matrix form we have: x
y
z

′ =
 1 0 0

0 2 0
0 0 3

 x
y
z


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The coefficient matrix is diagonal which makes the k-th power particularly easy to calculate,

Ak =

 1 0 0
0 2 0
0 0 3

k =

 1 0 0
0 2k 0
0 0 3k


⇒ exp(tA) =

∞∑
k=0

tk

k!

 1 0 0
0 2k 0
0 0 3k

 =


∑∞

k=0
tk

k! 1
k 0 0

0
∑∞

k=0
tk

k! 2
k 0

0 0
∑∞

k=0
tk

k! 3
k


⇒ exp(tA) =

 et 0 0
0 e2t 0
0 0 e3t


Thus we find three solutions to x′ = Ax,

x1(t) =

 et

0
0

 x2(t) =

 0
e2t

0

 x3(t) =

 0
0
e3t


In turn these vector solutions amount to the solutions x = et, y = 0, z = 0 or x = 0, y = e2t, z = 0
or x = 0, y = 0, z = e3t. It is easy to check these solutions.

Usually we cannot calculate the matrix exponential explicitly by such a straightforward calculation.
We need e-vectors and sometimes generalized e-vectors to reliably calculate the solutions of interest.

Proposition 13.3.9.

If A,B are square matrices such that AB = BA then eA+B = eAeB

Proof: I’ll show how this works for terms up to quadratic order,

eAeB = (1 +A+ 1
2A

2 + · · · )(1 +B + 1
2B

2 + · · · ) = 1 + (A+B) + 1
2A

2 +AB + 1
2B

2 + · · · .

However, since AB = BA and

(A+B)2 = (A+B)(A+B) = A2 +AB +BA+B2 = A2 + 2AB +B2.

Thus,
eAeB = 1 + (A+B) + 1

2(A+B)2 + · · · = eA+B �

You might wonder what happens if AB 6= BA. In this case we can account for the departure from
commutativity by the commutator of A and B.

Definition 13.3.10.

Let A,B ∈ R n×n then the commutator of A and B is [A,B] = AB −BA.
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Proposition 13.3.11.

Let A,B,C ∈ R n×n then

1. [A,B] = −[B,A]

2. [A+B,C] = [A,C] + [B,C]

3. [AB,C] = A[B,C] + [A,C]B

4. [A,BC] = B[A,C] + [A,B]C

5. [[A,B], C] + [[B,C], A] + [[C,A], B] = 0

The proofs of the properties above are not difficult. In contrast, the following formula known as
the Baker-Campbell-Hausdorff (BCH) relation takes considerably more calculation:

eAeB = eA+B+
1
2 [A,B]+

1
12 [[A,B],B]+

1
12 [[B,A],A]+··· BCH-formula

The higher order terms can also be written in terms of nested commutators. What this means is
that if we know the values of the commutators of two matrices then we can calculate the product
of their exponentials with a little patience. This connection between multiplication of exponentials
and commutators of matrices is at the heart of Lie theory. Actually, mathematicians have greatly
abstracted the idea of Lie algebras and Lie groups way past matrices but the concrete example of
matrix Lie groups and algebras is perhaps the most satisfying. If you’d like to know more just ask.
It would make an excellent topic for an independent study that extended this course.

Remark 13.3.12.

In fact the BCH holds in the abstract as well. For example, it holds for the Lie algebra of
derivations on smooth functions. A derivation is a linear differential operator which satisfies
the product rule. The derivative operator is a derivation since D[fg] = D[f ]g+ fD[g]. The
commutator of derivations is defined by [X,Y ][f ] = X(Y (f))− Y (X(f)). It can be shown
that [D,D] = 0 thus the BCH formula yields

eaDebD = e(a+b)D.

If the coefficient of D is thought of as position then multiplication by ebD generates a
translation in the position. By the way, we can state Taylor’s Theorem rather compactly in
this operator notation: f(x+h) = exp(hD)f(x) = f(x)+hf ′(x)+ h2

2 f
′′(x)+ h3

3! f
′′′(x)+ · · · .

Proposition 13.3.13.

Let A,P ∈ R n×n and assume P is invertible then

exp(P−1AP ) = P−1exp(A)P

Proof: this identity follows from the following observation:

(P−1AP )k = P−1APP−1APP−1AP · · ·P−1AP = P−1AkP.

Thus exp(P−1AP ) =
∑∞

k=0
1
k!(P

−1AP )k = P−1(
∑∞

k=0
1
k!A

k)P = P−1exp(A)P . �
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Proposition 13.3.14.

Let A be a square matrix, det(exp(A)) = exp(trace(A)).

Proof: If the matrix A is diagonalizable then the proof is simple. Diagonalizability means there
exists invertibleP = [v1|v2| · · · |vn] such that P−1AP = D = [λ1v1|λ2v2| · · · |λnvn] where vi is an
e-vector with e-value λi for all i. Use the preceding proposition to calculate

det(exp(D)) = det(exp(P−1AP ) = det(P−1exp(A)P ) = det(P−1P ) det(exp(A)) = det(exp(A))

On the other hand, the trace is cyclic trace(ABC) = trace(BCA)

trace(D) = trace(P−1AP ) = trace(PP−1A) = trace(A)

But, we also know D is diagonal with eigenvalues on the diagonal hence exp(D) is diagonal with
eλi on the corresponding diagonals

det(exp(D)) = eλ1eλ2 · · · eλn and trace(D) = λ1 + λ2 + · · ·+ λn

Finally, use the laws of exponents to complete the proof,

etrace(A) = etrace(D) = eλ1+λ2+···+λn = eλ1eλ2 · · · eλn = det(exp(D)) = det(exp(A)).

I’ve seen this proof in texts presented as if it were the general proof. But, not all matrices are
diagonalizable so this is a curious proof. I stated the proposition for an arbitrary matrix and I
meant it. The proof, the real proof, is less obvious. Let me sketch it for you:

better proof: The preceding proof shows it may be hopeful to suppose that det(exp(tA)) =
exp(t trace(A)) for t ∈ R. Notice that y = ekt satisfies the differential equation dy

dt = ky. Conversely,

if dy
dt = ky for some constant k then the general solution is given by y = coe

kt for some co ∈ R.
Let f(t) = det(exp(tA)). If we can show that f ′(t) = trace(A)f(t) then we can conclude f(t) =
c0e

t trace(A). Consider:

f ′(t) = d
dh

(
f(t+ h)

∣∣∣∣
h=0

= d
dh

(
det(exp[(t+ h)A])

∣∣∣∣
h=0

= d
dh

(
det(exp[tA+ hA])

∣∣∣∣
h=0

= d
dh

(
det(exp[tA]exp[hA])

∣∣∣∣
h=0

= det(exp[tA]) d
dh

(
det(exp[hA])

∣∣∣∣
h=0

= f(t) d
dh

(
det(I + hA+ 1

2h
2A2 + 1

3!h
3A3 + · · · )

∣∣∣∣
h=0

= f(t) d
dh

(
det(I + hA))

∣∣∣∣
h=0
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Let us discuss the d
dh(det(I + hA)) term seperately for a moment:3

d
dh(det(I + hA)) = d

dh [
∑
i1,...,in

εi1i2...in(I + hA)i11(I + hA)i22 · · · (I + hA)inn]h=0

=
∑
i1,...,in

εi1i2...in
d
dh [(I + hA)1i1(I + hA)1i2 · · · (I + hA)nin ]h=0

=
∑
i1,...,in

εi1i2...in(A1i1I1i2 · · · Inin + I1i1A2i2 · · · Inin + · · ·+ I1i1I2i2 · · ·Anin)

=
∑
i1

εi12...nA1i1 +
∑
i2

ε1i2...nA2i2 + · · ·+
∑
in

ε12...InAnin

= A11 +A22 + · · ·+Ann

= trace(A)

Therefore, f ′(t) = trace(A)f(t) consequently, f(t) = coe
t trace(A) = det(exp(tA)). However, we can

resolve co by calculating f(0) = det(exp(0)) = det(I) = 1 = co hence

et trace(A) = det(exp(tA))

Take t = 1 to obtain the desired result. �

Remark 13.3.15.

The formula det(exp(A)) = exp(trace(A)) is very important to the theory of matrix Lie
groups and Lie algebras. Generically, if G is the Lie group and g is the Lie algebra then
they are connected via the matrix exponential: exp : g→ Go where I mean Go to denoted
the connected component of the identity. For example, the set of all nonsingular matrices
GL(n) forms a Lie group which is disconnected. Half of GL(n) has positive determinant
whereas the other half has negative determinant. The set of all n × n matrices is denoted
gl(n) and it can be shown that exp(gl(n)) maps onto the part of GL(n) which has positive
determinant. One can even define a matrix logarithm map which serves as a local inverse for
the matrix exponential near the identity. Generally the matrix exponential is not injective
thus some technical considerations must be discussed before we could put the matrix log on
a solid footing. This would take us outside the scope of this course. However, this would
be a nice topic to do a follow-up independent study. The theory of matrix Lie groups and
their representations is ubiqitious in modern quantum mechanical physics.

Finally, we come to the formula that is most important to our study of systems of DEqns. Let’s
call this the magic formula.

Proposition 13.3.16.

Let λ ∈ C and suppose A ∈ R n×n then

exp(tA) = eλt(I + t(A− λI) + t2

2 (A− λI)2 + t3

3! (A− λI)3 + · · · ).

3I use the definition of the identity matrix Iij = δij in eliminating all but the last summation in the fourth line.
Then the levi-civita symbols serve the same purpose in going to the fifth line as εi12...n = δ1i1 ,ε1i2...n = δ2i2 etc...
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Proof: Notice that tA = t(A− λI) + tλI and tλI commutes with all matrices thus,

exp(tA) = exp(t(A− λI) + tλI)

= exp(t(A− λI))exp(tλI)

= eλtexp(t(A− λI))

= eλt
(
I + t(A− λI) + t2

2 (A− λI)2 + t3

3! (A− λI)3 + · · ·
)

In the third line I used the identity proved below,

exp(tλI) = I + tλI + 1
2(tλ)2I2 + · · · = I(1 + tλ+ (tλ)2

2 + · · · ) = Ietλ. �

While the proofs leading up to the magic formula only dealt with real matrices it is not hard to see
the proofs are easily modified to allow for complex matrices.

13.4 solutions for systems of DEqns with real eigenvalues

Let us return to the problem of solving ~x ′ = A~x for a constant square matrix A where ~x =
[x1, x2, . . . , xn] is a vector of functions of t. I’m adding the vector notation to help distinguish the
scalar function x1 from the vector function ~x1 in this section. Let me state one theorem from the
theory of differential equations. The existence of solutions theorem which is the heart of of this
theorem is fairly involved to prove. It requires a solid understanding of real analysis.

Theorem 13.4.1.

If ~x ′ = A~x and A is a constant matrix then any solution to the system has the form

~x(t) = c1~x1(t) + c2~x2(t) + · · ·+ cn~xn(t)

where {~x1, ~x2, . . . , ~xn} is a linearly independent set of solutions defined on R (this is
called the fundamental solution set). Moreover, these fundamental solutions can be
concatenated into a single invertible solution matrix called the fundamental matrix
X = [~x1|~x2| · · · |~xn] and the general solution can be expressed as ~x(t) = X(t)~c where ~c
is an arbitrary vector of real constants. If an initial condtion ~x(to) = ~xo is given then the
solution to the IVP is ~x(t) = X−1(to)X(t)~xo.

We proved in the previous section that the matrix exponential exp(tA) is a solution matrix and the
inverse is easy enought to guess: exp(tA)−1 = exp(−tA). This proves the columns of exp(tA) are
solutions to ~x ′ = A~x which are linearly independent and as such form a fundamental solution set.

Problem: we cannot directly calculate exp(tA) for most matrices A. We have a solution we
can’t calculate. What good is that?

When can we explicitly calculate exp(tA) without much thought? Two cases come to mind: (1.) if
A is diagonal then it’s easy, saw this in Example 13.3.8, (2.) if A is a nilpotent matrix then there
is some finite power of the matrix which is zero; Ak = 0. In the nilpotent case the infinite series
defining the matrix exponential truncates at order k:

exp(tA) = I + tA+ t2

2 A
2 + · · ·+ tk−1

(k−1)!A
k−1
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Example 13.4.2. Let A =

[
0 1
0 0

]
we calculate A2 =

[
0 1
0 0

] [
0 1
0 0

]
=

[
0 0
0 0

]
thus

exp(tA) = I + tA =

[
1 0
0 1

]
+ t

[
0 1
0 0

]
=

[
1 t
0 1

]

Incidentally, the solution to ~x ′ = A~x is generally ~x(t) = c1

[
1
0

]
+ c2

[
t
1

]
. In other words,

x1(t) = c2 + c2t whereas x2(t) = c2. These solutions are easily seen to solve the system x′1 = x2

and x′2 = 0.

Unfortunately, the calculation we just did in the last example almost never works. For example,

try to calculate an arbitrary power of A =

[
1 2
3 4

]
, let me know how it works out. We would like

for all examples to truncate. The magic formula gives us a way around this dilemma:

Proposition 13.4.3.

Let A ∈ R n×n. Suppose v is an e-vector with e-value λ then exp(tA)v = eλtv.

Proof: we are given that (A− λI)v = 0 and it follows that (A− λI)kv = 0 for all k ≥ 1. Use the
magic formula,

exp(tA)v = eλt(I + t(A− λI) + · · · )v = eλt(Iv + t(A− λI)v + · · · = eλtv

noting all the higher order terms vanish since (A− λI)kv = 0. �

We can’t hope for the matrix exponential itself to truncate, but when we multiply exp(tA) on an
e-vector something special happens. Since eλt 6= 0 the set of vector functions
{eλ1tv1, e

λ2tv2, . . . , e
λktvk} will be linearly independent if the e-vectors vi are linearly independent. If

the matrix A is diagonalizable then we’ll be able to find enough e-vectors to construct a fundamental
solution set using e-vectors alone. However, if A is not diagonalizable, and has only real e-values,
then we can still find a Jordan basis {v1, v2, . . . , vn} which consists of generalized e-vectors and it
follows that {etAv1, e

tAv2, . . . , e
tAvn} forms a fundamental solution set. Moreover, this is not just

of theoretical use. We can actually calculate this solution set.

Proposition 13.4.4.

Let A ∈ R n×n. Suppose A has a chain {v1, v2, . . . , vk} is of generalized e-vectors with
e-value λ, meaning (A− λ)v1 = 0 and (A− λ)vk−1 = vk for k ≥ 2, then

1. etAv1 = eλtv1,

2. etAv2 = eλt(v2 + tv1),

3. etAv3 = eλt
(
v3 + tv2 + t2

2 v1

)
,

4. etAvk = eλt
(
vk + tvk−1 + · · ·+ tk−1

(k−1)!v1

)
.

Proof: Study the chain condition,

(A− λI)v2 = v1 ⇒ (A− λ)2v2 = (A− λI)v1 = 0



13.4. SOLUTIONS FOR SYSTEMS OF DEQNS WITH REAL EIGENVALUES 347

(A− λI)v3 = v2 ⇒ (A− λI)2v3 = (A− λI)v2 = v1

Continuing with such calculations4 we find (A − λI)jvi = vi−j for all i > j and (A − λI)ivi = 0.
The magic formula completes the proof:

etAv2 = eλt
(
v2 + t(A− λI)v2 + t2

2 (A− λI)2v2 · · ·
)

= eλt
(
v2 + tv1

)
likewise,

etAv3 = eλt
(
v3 + t(A− λI)v3 + t2

2 (A− λI)2v3 + t3

3! (A− λI)3v3 + · · ·
)

= eλt
(
v3 + tv2 + t2

2 (A− λI)v2

)
= eλt

(
v3 + tv2 + t2

2 v1

)
.

We already proved the e-vector case in the preceding proposition and the general case follows from
essentially the same calculation. �

We have all the theory we need to solve systems of homogeneous constant coefficient ODEs.

Example 13.4.5. Recall Example 11.4.5 we found A =

[
3 1
3 1

]
had e-values λ1 = 0 and λ2 = 4

and corresponding e-vectors

~u1 =

[
1
−3

]
and ~u2 =

[
1
1

]
thus we find the general solution to ~x ′ = A~x is simply,

~x(t) = c1

[
1
−3

]
+ c2e

4t

[
1
1

]
just to illustrate the terms: we have fundmamental solution set and matrix:{[

1
−3

]
,

[
e4t

e4t

]}
X =

[
1 e4t

−3 e4t

]
Notice that a different choice of e-vector scaling would just end up adjusting the values of c1, c2 in
the event an initial condition was given. This is why different choices of e-vectors still gives us the
same general solution. It is the flexibility to change c1, c2 that allows us to fit any initial condition.

Example 13.4.6. We can modify Example 13.2.2 and propose a different model for a tiger/bunny
system. Suppose x is the number of tigers and y is the number of rabbits then

dx
dt = x− 4y dy

dt = −10x+ 19y

is a model for the population growth of tigers and bunnies in some closed environment. Suppose
that there is initially 2 tigers and 100 bunnies. Find the populations of tigers and bunnies
at time t > 0:

4keep in mind these conditions hold because of our current labling scheme, if we used a different indexing system
then you’d have to think about how the chain conditions work out, to test your skill perhaps try to find the general
solution for the system with the matrix from Example 11.6.11
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Solution: notice that we must solve ~x ′ = A~x where A =

[
1 −4
−10 19

]
and ~x(0) = [2, 100]T . We

can calculate the eigenvalues and corresponding eigenvectors:

det(A− λI) = 0 ⇒ λ1 = −1, λ2 = 21 ⇒ u1 =

[
2
1

]
, u2 =

[
−1
5

]
Therefore, using Proposition 13.4.4, the general solution has the form:

~x(t) = c1e
−t
[

2
1

]
+ c2e

21t

[
−1
5

]
.

However, we also know that ~x(0) = [2, 100]T hence[
2

100

]
= c1

[
2
1

]
+ c2

[
−1
5

]
⇒

[
2

100

]
=

[
2 −1
1 5

] [
c1

c2

]

⇒
[
c1

c2

]
=

1

11

[
5 1
−1 2

] [
2

100

]
=

1

11

[
110
198

]
Finally, we find the vector-form of the solution to the given initial value problem:

~x(t) = 10e−t
[

2
1

]
+ 198

11 e
21t

[
−1
5

]
Which means that x(t) = 20e−t − 198

11 e
21t and y(t) = 1020e−t + 90e21t are the number of tigers and

bunnies respective at time t.

Notice that a different choice of e-vectors would have just made for a different choice of c1, c2 in
the preceding example. Also, notice that when an initial condition is given there ought not be any
undetermined coefficients in the final answer5.

Example 13.4.7. We found that in Example 11.4.7 the matrix A =

 0 0 −4
2 4 2
2 0 6

 has e-values

λ1 = λ2 = 4 and λ3 = 2 with corresponding e-vectors

~u1 =

 0
1
0

 ~u2 =

 −1
0
1

 ~u3 =

 −2
1
1


Hence, using Proposition 13.4.4 and Theorem 13.4.1 the general solution of d~x

dt = A~x is simply:

~x(t) = c1e
4t~u1 + c2e

4t~u2 + c3e
2t~u3 = c1e

4t

 0
1
0

+ c2e
4t

 −1
0
1

+ c3e
2t

 −2
1
1


5Assuming of course that there are enough initial conditions given to pick a unique solution from the family of

solutions which we call the ”general solution”.
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Example 13.4.8. Find the general solution of d~x
dt = A~x given that:

A =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .
We analyzed this matrix in Example 11.6.11. We found a pair of chains of generalized e-vectors
all with eigenvalue λ = 1 which satisfied the following conditions:

(A− I)~u3 = ~u1, (A− I)~u1 = 0 (A− I)~u4 = ~u2, (A− I)~u2 = 0

In particular, ~uj = ej for j = 1, 2, 3, 4. We can use the magic formula to extract 4 solutions from
the matrix exponential, by Proposition 13.4.4 we find:

~x1 = eAt~u1 = et~u1 = ete1 (13.2)

~x2 = eAt~u2 = et(e2 + te1)

~x3 = eAt~u3 = ete3

~x4 = eAt~u4 = et(e4 + te3)

Let’s write the general solution in vector and scalar form, by Theorem 13.4.1,

~x(t) = c1~x1 +c2~x2 +c3~x3 +c4~x4 = c1e
te1 +c2e

t(e2 + te1)+c3e
te3 +c4e

t(e4 + te3) =


c1e

t + tc2e
t

c2e
t

c3e
t + tc4e

t

c4e
t


In other words, x1(t) = c1e

t + tc2e
t, x2(t) = c2e

t, x3(t) = c3e
t + tc4e

t and x4(t) = c4e
t form the

general solution to the given system of differential equations.

Example 13.4.9. Find the general solution of d~x
dt = A~x given (generalized)eigenvectors ~ui, i =

1, 2, 3, 4, 5, 6, 7, 8, 9 such that:

(A− I)~u1 = 0, A~u2 = ~u2, A~u3 = 7~u3, (A− I)~u4 = ~u1

(A+ 5I)~u5 = 0, (A− 3I)~u6 = ~u7 A~u7 = 3~u7, A~u8 = 0, (A− 3I)~u9 = ~u6

We can use the magic formula to extract 9 solutions from the matrix exponential, by Proposition
13.4.4 we find:

~x1 = eAt~u1 = et~u1 = et~u1 (13.3)

~x2 = eAt~u2 = et~u2

~x3 = eAt~u3 = e7t~u3

~x4 = eAt~u4 = et(~u4 + t~u1) can you see why?

~x5 = eAt~u5 = e−5t~u5

~x6 = eAt~u6 = e3t(~u6 + t~u7) can you see why?

~x7 = eAt~u7 = e3t~u7

~x8 = eAt~u8 = ~u8

~x9 = eAt~u9 = e3t(~u9 + t~u6 + 1
2 t

2~u7) can you see why?
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Let’s write the general solution in vector and scalar form, by Theorem 13.4.1,

~x(t) =

9∑
i=1

ci~xi

where the formulas for each solution ~xi was given above. If I was to give an explicit matrix A with
the eigenvectors given above it would be a 9× 9 matrix.

Challenge: find the matrix exponential eAt in terms of the given (generalized)eigenvectors.

Hopefully the examples have helped the theory settle in by now. We have one last question to
settle for systems of DEqns.

Theorem 13.4.10.

The nonhomogeneous case ~x ′ = A~x+ ~f the general solution is ~x(t) = X(t)c+~xp(t) where X
is a fundamental matrix for the corresponding homogeneous system and ~xp is a particular

solution to the nonhomogeneous system. We can calculate ~xp(t) = X(t)
∫
X−1 ~fdt.

Proof: suppose that ~xp = X~v for X a fundamental matrix of ~x ′ = A~x and some vector of unknown

functions ~v. We seek conditions on ~v which make ~xp satisfy ~xp
′ = A~xp + ~f . Consider,

(~xp)
′ = (X~v)′ = X ′~v +X~v′ = AX~v +X~v′

But, ~xp
′ = A ~Xp + ~f = AX~v + ~f hence

X d~v
dt = ~f ⇒ d~v

dt = X−1 ~f

Integrate to find ~v =
∫
X−1 ~fdt therefore xp(t) = X(t)

∫
X−1 ~fdt. �

If you ever work through variation of parameters for higher order ODEqns then you should appreci-
ate the calculation above. In fact, we can derive n-th order variation of parameters from converting
the n-th order ODE by reduction of order to a system of n first order linear ODEs. You can show
that the so-called Wronskian of the fundamental solution set is precisely the determinant of the
fundamental matrix for the system ~x ′ = A~x where A is the companion matrix. I have this worked
out in an old test from a DEqns course I taught at NCSU6

6see solution of Problem 6 in www.supermath.info/ma341f07test2 sol.pdf for the n = 2 case of this comment,
also §6.4 of Nagel Saff and Snider covers n-th order variation of parameters if you want to see details
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Example 13.4.11. Suppose that A =

[
3 1
3 1

]
and ~f =

[
et

e−t

]
, find the general solution of

the nonhomogenous DEqn ~x ′ = A~x + ~f . Recall that in Example 13.4.5 we found ~x ′ = A~x has

fundamental matrix X =

[
1 e4t

−3 e4t

]
. Use variation of parameters for systems of ODEs to constuct

~xp. First calculate the inverse of the fundamental matrix, for a 2× 2 we know a formula:

X−1(t) = 1
e4t−(−3)e4t

[
e4t −e4t

3 1

]
= 1

4

[
1 −1

3e−4t e−4t

]
Thus,

xp(t) = X(t)

∫
1
4

[
1 −1

3e−4t e−4t

] [
et

e−t

]
dt = 1

4X(t)

∫ [
et − e−t

3e−3t + e−5t

]
dt

= 1
4

[
1 e4t

−3 e4t

] [
et + e−t

−e−3t − 1
5e
−5t

]
= 1

4

[
1(et + e−t) + e4t(−e−3t − 1

5e
−5t)

−3(et + e−t) + e4t(−e−3t − 1
5e
−5t)

]
= 1

4

[
et + e−t − et − 1

5e
−t

−3et − 3e−t − et − 1
5e
−t

]
= 1

4

[
4
5e
−t

−4et − 16
5 e
−t

]
Therefore, the general solution is

~x(t) = c1

[
1
−3

]
+ c2e

4t

[
1
1

]
+ 1

5

[
e−t

−et − 4e−t

]
.

The general scalar solutions implicit within the general vector solution ~x(t) = [x(t), y(t)]T are

x(t) = c1 + c2e
4t + 1

5e
−t y(t) = −3c1 + c2e

4t − 1
5e
t − 4

5e
−t.

I’ll probably ask you to solve a 3× 3 system in the homework. The calculation is nearly the same
as the preceding example with the small inconvenience that finding the inverse of a 3× 3 requires
some calculation.

Remark 13.4.12.

You might wonder how would you solve a system of ODEs x′ = Ax such that the coefficients
Aij are not constant. We will not cover such problems in this course. We do cover how to
solve an n− th order ODE with nonconstant coefficients via series techniques in Math 334.
It’s probably possible to extend some of those techniques to systems. Laplace Transforms
also extend to systems of ODEs. It’s just a matter of algebra. Nontrivial algebra.
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13.5 solutions for systems of DEqns with complex eigenvalues

The calculations in the preceding section still make sense for a complex e-value and complex e-
vector. However, we usually need to find real solutions. How to fix this? The same way as
always. We extract real solutions from the complex solutions. Fortunately, our previous work on
linear independence of complex e-vectors insures that the resulting solution set will be linearly
independent.

Proposition 13.5.1.

Let A ∈ R n×n. Suppose A has a chain {v1, v2, . . . , vk} is of generalized complex e-vectors
with e-value λ = α + iβ, meaning (A − λ)v1 = 0 and (A − λ)vk−1 = vk for k ≥ 2 and
vj = aj + ibj for aj , bj ∈ Rn for each j, then

1. etAv1 = eλtv1,

2. etAv2 = eλt(v2 + tv1),

3. etAv3 = eλt
(
v3 + tv2 + t2

2 v1

)
,

4. etAvk = eλt
(
vk + tvk−1 + · · ·+ tk−1

(k−1)!v1

)
.

Furthermore, the following are the 2k linearly independent real solutions that are implicit
within the complex solutions above,

1. x1 = Re(etAv1) = eαt
[
(cosβt)a1 − (sinβt)b1

]
,

2. x2 = Im(etAv1) = eαt
[
(sinβt)a1 + (cosβt)b1

]
),

3. x3 = Re(etAv2) = eαt
[
(cosβt)(a2 + ta1)− (sinβt)(b2 + tb1)

]
,

4. x4 = Im(etAv2) = eαt
[
(sinβt)(a2 + ta1) + (cosβt)(b2 + tb1)

]
,

5. x5 = Re(etAv3) = eαt
[
(cosβt)(a3 + ta2 + t2

2 a1)− (sinβt)(b3 + tb2 + t2

2 b1)
]
,

6. x6 = Im(etAv3) = eαt
[
(cosβt)(a3 + ta2 + t2

2 a1)− (sinβt)(b3 + tb2 + t2

2 b1)
]
.

Proof: the magic formula calculations of the last section just as well apply to the complex case.
Furthermore, we proved that

Re
[
eαt+iβt(v + iw)

]
= eαt

[
(cosβt)v − (sinβt)w

]
and

Im
[
eαt+iβt(v + iw)

]
= eαt

[
(sinβtv + (cosβt)w

]
,

the proposition follows. �
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Example 13.5.2. This example uses the results derived in Example 11.4.12. Let A =

[
0 1
−1 0

]
and find the e-values and e-vectors of the matrix. Observe that det(A − λI) = λ2 + 1 hence the
eigevalues are λ = ±i. We find u1 = [1, i]T . Notice that

u1 =

[
1
i

]
=

[
1
0

]
+ i

[
0
1

]
.

This means that ~x ′ = A~x has general solution:

~x(t) = c1

(
cos(t)

[
1
0

]
− sin(t)

[
0
1

])
+ c2

(
sin(t)

[
1
0

]
+ cos(t)

[
0
1

])
.

The solution above is the ”vector-form of the solution”. We can add the terms together to find the
scalar solutions: denoting ~x(t) = [x(t), y(t)]T ,

x(t) = c1 cos(t) + c2 sin(t) y(t) = −c1 sin(t) + c2 cos(t)

These are the parametric equations of a circle with radius R =
√
c2

1 + c2
2.

Example 13.5.3. We solved the e-vector problem for A =

 1 1 0
−1 1 0
0 0 3

 in Example 11.4.14.

We found one real e-value λ1 = 3 and a pair of complex e-values λ2 = 1 ± i. The corresponding
e-vectors were:

~u1 =

 0
0
1

 ~u2 =

 0
1
0

+ i

 1
0
0


We identify that Re(~u2) = e2 and Im(~u2) = e1. The general solution of ~x ′ = A~x should have the
form:

~x(t) = c1e
At~u1 + c2Re(e

At~u2) + c3Im(eAt~u2)

The vectors above are e-vectors so these solution simplify nicely:

~x(t) = c1e
3te3 + c2e

t(cos(t)e2 − sin(t)e1) + c3e
t(sin(t)e2 + cos(t)e1)

For fun let’s look at the scalar form of the solution. Denoting ~x(t) = [x(t), y(t), z(t)]T ,

x(t) = −c2e
t sin(t) + c3e

t cos(t), y(t) = c2e
t cos(t) + c3e

t sin(t), z(t) = c1e
3t

Believe it or not this is a spiral helix which has an exponentially growing height and radius.

Example 13.5.4. Let’s suppose we have a chain of 2 complex eigenvectors ~u1, ~u2 with eigenvalue
λ = 2 + i3. I’m assuming that

(A− (2 + i)I)~u2 = ~u1, (A− (2 + i)I)~u1 = 0.

We get a pair of complex-vector solutions (using the magic formula which truncates since these are
e-vectors):

~z1(t) = eAt ~u1 = e(2+i)t ~u1, ~z2(t) = eAt ~u2 = e(2+i)t( ~u2 + t ~u1),
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The real and imaginary parts of these solutions give us 4 real solutions which form the general
solution:

~x(t) = c1e
2t
[
cos(3t)Re(~u1)− sin(3t)Im(~u1)

]
+ c2e

2t
[
sin(3t)Re(~u1) + cos(3t)Im(~u1)

]
+ c3e

2t
[
cos(3t)[Re(~u2) + tRe(~u1)]− sin(3t)[Im(~u2) + tIm(~u1)]

]
+ c4e

2t
[
sin(3t)[Re(~u2) + tRe(~u1)] + cos(3t)[Im(~u2) + tIm(~u1)]

]
.

13.6 geometry and difference equations revisited

In Example 11.1.5 we studied A =
[

3 0
8 −1

]
and how it pushed the point xo = [ 1

2 ] around the plane.
We found xi for i = 1, 2, 3, 4 by multiplication by A directly. That method is fine for small i
but what is we wished to know the formula for the 1000-th state? We should hope there is some
way to find that state without direct multiplication repeated 1000 times. One method is to make
use of the diagonalization of the matrix. We know that e-vectors (if they exist) can be glued
together to make the diagonalizing similarity transforming matrix; there exists P ∈ R n×n such
that P−1AP = D where D is a diagonal matrix. Notice that Dk is easy to calculate. We can solve
for A = PDP−1 and find that A2 = PDP−1PDP−1 = PD2P−1. The you can prove inductively
that Ak = PDkP−1. It is much easier to calculate PDkP−1 when k >> 1.

13.6.1 difference equations vs. differential equations

I mentioned that the equation xk+1 = Axk is a difference equation. We can think of this as a
differential equation where the time-step is always one-unit. To see this I should remind you how
~x ′ = B~x is defined in terms of a limiting process:

~x ′(t) = lim
h→0

~x(t+ h)− ~x(t)

h
= B~x(t)

A gross approximation to the continuous limiting process would be to just take h = 1 and drop the
limit. That approximation yields:

B~x(t) = ~x(t+ 1)− ~x(t).

We then suppose t ∈ N and denote ~x(t) = ~xt to obtain:

~xt+1 = (B + I)~xt.

We see that the differential equation ~x ′ = B~x is crudely approximated by the difference equation
~xt+1 = A~xt. where A = B + I. Since we now have tools to solve differential equations directly it
should be interesting to contrast the motion generated by the difference equation to the exact para-
metric equations which follow from the e-vector solution of the corresponding differential equation.
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