You are allowed one page of notes and a calculator. No phones. More than 150pts to earn. Thanks!

Problem 1: (9pts) Suppose f(2) = 20 and g(2) = 2, and g(20) = 11. Calculate the following:

(a.)
$$(f+g)(2) = f(a) + g(a) = 20 + 2 = 22$$

(b.)
$$(fg)(2) = f(a) \theta(2) = 20.2 = 40$$

(c.)
$$(g \circ f)(2) = 9(f(a)) = 9(20) = []$$

Problem 2: (15pts) Consider the graph y = f(x) given below. Answer the following questions using interval notation where appropriate. Fill in the blanks:

(a.) the domain of
$$f(x) = (-8, 4) \cup (4, 8]$$

(b.) the range of
$$f(x) = (-6, 6]$$
.

(c.)
$$f(4) = \underline{d.n.e.}$$

(d.)
$$f(2) = 6$$

(e.) If
$$g(x) = x^2 + 4$$
 the calculate $(f \circ g)(2) = f(3(2)) = f(3^2 + 4) = f(8) = -4$

Problem 3: (6pts) Let $f(x) = \begin{cases} 2x^2 + 3 & : -2 < x < 1 \\ \sqrt{x + 14} & : 1 \le x \le 3 \end{cases}$.

Given the function above, calculate:

(a.)
$$f(2) = \sqrt{2+14} = \sqrt{16} = 4$$

(b.)
$$f(-1) = \frac{2(-1)^2 + 3}{5}$$

Problem 4: Let $f(x) = x^2 - 4x$. Carefully graph y = f(x) on the grid provided below (10pts). Also, find the range of the function and write it in interval notation (5pts).

$$f(x) = x^2 - 4x = (x-a)^2 - 4 = 9$$

$$vertex (a, -4)$$
parabola open up.

$$f(4) = 0$$
 $f(x) = x(x-4)$
 $f(6) = 4^2-4 = 12$ $f(4) = x(x-4)$
 $f(6) = 4^2-4 = 12$ $f(4) = 12$ $f(4) = 12$ $f(4) = 12$

range
$$(f) = [-4, \infty)$$

Problem 5: (15pts) The difference quotient based at a for f(x) is given by $\frac{f(a+h)-f(a)}{h}$ where $h \neq 0$. Calculate and simplify the difference quotient for $f(x) = \frac{1}{x+3}$.

$$\frac{f(a+h) - f(a)}{h} = \frac{1}{h} \left[\frac{1}{a+h+3} - \frac{1}{a+3} \right]$$

$$= \frac{1}{h} \left[\frac{a+3 - (a+h+3)}{(a+h+3)(a+3)} \right]$$

$$= \frac{1}{h} \left[\frac{-h}{(a+h+3)(a+3)} \right]$$

$$= \frac{-1}{(a+h+3)(a+3)}$$

Problem 6: (10pts) Find the average rate of change from x = 6 to x = 8 for the function whose graph

$$\frac{\Delta x}{\Delta x} = \frac{8-6}{f(8)-f(6)} = \frac{4-(-6)}{3} = \frac{3}{10}$$

$$\frac{\Delta^{9}}{\Delta x} = 5$$

Problem 7: (10pts) Given $f(x) = \sqrt{-x}$ and $g(x) = \sqrt{6+2x}$, calculate the formula for (f+g)(x) and find the domain of f + q.

$$\phi(x) = \sqrt{-x}$$

$$f(x) = \sqrt{-x}$$
 needs $-x ≥ 0 ⇒ dom(f) = (-∞, 0)$.

$$9(x) = \sqrt{6+2x} \quad \text{need} \quad 6+2x \ge 0$$

$$6+2x \ge 0$$

$$2x \ge -6$$

 $x \ge -3$ \Rightarrow $dom(9) = [-3, \infty)$

$$dom(f+9) = dom(f) \cap dom(9) = [-3, 0].$$

$$(f+g)(x) = \sqrt{-x} + \sqrt{6+2x}$$

Problem 8: (10pts) For the functions given above, find the formula and domain for f/g.

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \sqrt{\frac{f}{6+ax}}$$
 \notin

$$\left(\frac{f}{g}\right) = (-3, 0)$$

$$\oint dom \left(\frac{f}{g}\right) = (-3, 0]$$

Problem 9: (12pts) If possible, graph the inverse function for each function graph below. If the

function does not have an inverse explain why.

Problem 10: (18pts) Let $f(x) = (x+2)^3$ and $g(x) = \frac{1}{3-x}$. Find the formulas for:

(a.)
$$(f \circ g)(x) = f(g(x)) = f(\frac{1}{3-x}) = \left[\frac{1}{3-x} + a \right]^3$$

(b.)
$$(g \circ f)(x) = 9(f(x)) = 9((x+a)^3) = \frac{1}{3 - (x+a)^3}$$

(c.)
$$(f \circ f)(x) = f(f(x)) = f((X+\lambda)^3) = (X+\lambda)^3 + \lambda^3$$

Problem 11: (10pts) Consider the graph $y = (x+6)(x+2)^2(x-3)(x-7)$. Sketch the graph and determine the number of local maximums as well as the number of local minimums.

Problem 12: (10pts) Consider the graph of $yx - x^2 = yx^3$. Is this the graph of a function?

$$4x - 4x^{3} = x^{2}$$

$$4(x - x^{3}) = x^{2}$$

$$4 = \frac{x^{2}}{x - x^{3}}$$

Problem 13: (12pts) Given the function $f(x) = 41 + \frac{x}{x-3}$ calculate the formula for $f^{-1}(y)$.

$$A = A1 + \frac{x}{x-3}$$

$$A1 + \frac{x}{x-3}$$

Problem 14: (8pts) Find the domain and range f(x) given in the previous problem.

don
$$(f(x)) = (-\infty, 3) \cup (3, \infty)$$
 (must avoid $x = 3$)
runge $(f(x)) = \text{dom}(f^{-1}(y)) = (-\infty, 42) \cup (42, \infty)$