Ma 341-002: Test I, n-th order ODEs

For full credit make sure to show all work. If in doubt ask.

(1.) [15pts] Suppose that a particle of mass m is subject to the frictional force $F=-\beta v$ where $\beta>0$ is some fixed constant and $v=\frac{d x}{d t}$ is the velocity. Assume that $v(0)=7$. Assuming the motion is one-dimensional we find Newton's $2^{\text {nd }}$ Law reads

$$
F=-\beta v=m a
$$

where $a=\frac{d v}{d t}$ is the acceleration. Find v as a function of time t.
© For a bonus point calculate the velocity as function of the position x. (for the bonus you may assume that the initial position is the origin; $x(0)=0$.)

SOLUTION: Use separation of variables,

$$
m \frac{d v}{d t}=\beta v \quad \Longrightarrow \quad \frac{d v}{v}=\frac{-\beta}{m} d t
$$

Now integrate both sides to obtain,

$$
\ln |v|=\frac{\beta t}{m}+c
$$

I'll apply the initial condition $v(0)=7$ to see that $\ln (7)=c$. Thus,

$$
\ln |v|=\frac{-\beta t}{m}+\ln (7) \Longrightarrow|v|=e^{-\frac{\beta t}{m}+\ln (7)}=7 e^{-\frac{\beta t}{m}}
$$

A moments reflection will reveal that this only has solutions when $v>0$ thus we find

$$
v(t)=7 e^{-\frac{\beta}{m} t}
$$

I have added the (t) to emphasize the functional dependence of velocity on time in our equation. In contrast we wish to calculate $v(x)$ for the bonus point, recall the standard trick that in one-dimensional motion $a=\frac{d v}{d t}=\frac{d x}{d t} \frac{d v}{d x}=v \frac{d v}{d x}$ so Newton's Law reads,

$$
m v \frac{d v}{d x}=-\beta v \Longrightarrow d v=-\frac{\beta}{m} d x \Longrightarrow \int_{v(0)}^{v(x)} d v=\int_{0}^{x}-\frac{\beta}{m} d x
$$

whence we find $v(x)-v(0)=-\frac{\beta}{m}(x-0)$ therefore,

$$
v(x)=7-\frac{\beta}{m} x
$$

(2.)[15pts] Suppose we have a donut shop where the donuts are fried such that once they leave the hopper they are at a toasty 200 degrees F . If the room temperature is 70 deg . F and if it takes 3 minutes for it to cool to 150 deg. F then what is the temperature of the donut at time t assuming that Newton's Law of Cooling applies to this tasty treat ?

SOLUTION: we begin by applying Newton's Law of cooling,

$$
\frac{d T}{d t}=k(T-70)
$$

If we rewrite this in prime notation we have $T^{\prime}-k T=70 k$. This is a first order, constant coefficient, non-homogeneous ODE so we may apply our usual bag of tricks,

$$
T^{\prime}+k T=70 k \Longrightarrow \lambda+k=0 \text { thus } \lambda=-k \Longrightarrow T_{h}(t)=c_{1} e^{-k t} .
$$

Moreover it is clear that we should guess $T_{p}=A$, and $T_{p}^{\prime}+k T_{p}=70 k$ reveals that $k A=70 k$ thus the particular solution is simply $T_{p}=70$. Our general solution is simply $T=T_{h}+T_{p}$ so

$$
T(t)=c_{1} e^{-k t}+70
$$

We still need to apply the two conditions we were given,

$$
\begin{aligned}
& T(0)=200=c_{1}+70 \Longrightarrow c_{1}=130 . \\
& T(3)=150=130 e^{-3 k}+70 \Longrightarrow \frac{80}{130}=e^{-3 k} \Longrightarrow k=-\frac{1}{3} \ln \left(\frac{8}{13}\right) .
\end{aligned}
$$

Now we just need to put it all together,

$$
T=130 e^{\frac{1}{3} \ln \left(\frac{8}{13}\right) t}+70 \Longrightarrow T=130 \exp \left(\ln \left[\frac{8}{13}\right]^{\frac{t}{3}}\right)+70
$$

Which simplifies to

$$
T=130\left(\sqrt[3]{\frac{8}{13}}\right)^{t}+70
$$

Of course I gave full credit for a variety of answers besides this one. I'd guess some of you prefer the following answer,

$$
T=130 e^{-0.1618 t}+70
$$

(3.)[10pts] Find the general solution to the following differential equation,

$$
x \frac{d v}{d x}=\frac{1-4 v^{2}}{3 v}
$$

SOULTION: we can solve this by separation of variables,

$$
\frac{3 v d v}{1-4 v^{2}}=\frac{d x}{x} \Longrightarrow \int \frac{3 v d v}{1-4 v^{2}}=\ln |x|+c
$$

The integral on the r.h.s was elementary, but the l.h.s requires a little work. Not too much though it's just a u-substitution. Use $u=1-4 v^{2}$ so that $d u=-8 v d v$ thus $v d v=\frac{-1}{8} d u$,

$$
\int \frac{3 v d v}{1-4 v^{2}}=\int \frac{3\left(\frac{-1}{8} d u\right)}{u}=-\frac{3}{8} \ln \left|1-4 v^{2}\right|
$$

Consequently,

$$
-\frac{3}{8} \ln \left|1-4 v^{2}\right|=\ln |x|+c
$$

We could simplify this answer further but without an initial condition we'd need to be real careful with the absolute value bars on both sides.
(4.)[10pts] Find the general solution to the following differential equation,

$$
\frac{d y}{d x}+2 x y=e^{x-x^{2}}
$$

SOLUTION: this is an integrating factor method problem. Identify that it is already conveniently in standard form with $p=2 x$ so the integrating factor is

$$
\mu=\exp \left(\int(2 x d x)\right)=e^{x^{2}}
$$

Now multiply our given ODE by μ to obtain,

$$
e^{x^{2}} \frac{d y}{d x}+2 x e^{x^{2}} y=e^{x^{2}} e^{x-x^{2}}=e^{x}
$$

Now as usual we can apply the product rule due to the insight of the method,

$$
\frac{d}{d x}\left(e^{x^{2}} y\right)=e^{x} \Longrightarrow e^{x^{2}} y=\int e^{x} d x=e^{x}+c \Longrightarrow y=e^{x-x^{2}}+c e^{-x^{2}}
$$

(5.)[15pts] Solve the following constant coefficient ODEs,
a.) $y^{\prime \prime}+9 y=0$
b.) $y^{\prime \prime \prime}-y^{\prime}=0$
c.) $\left[(D-1)^{3}\left(D^{2}+1\right)\left((D-2)^{2}+9\right)^{2}\right](y)=0$

SOLUTION: in each case we write the auxiliary equation and solve it in order that we can apply our general results which we derived in the lecture,
(a.) $\lambda^{2}+9=0$ which has solutions $\lambda= \pm 3 i$ thus $\alpha=0$ and $\beta=3$ so,

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

(b.) $\lambda^{3}-\lambda=\lambda\left(\lambda^{2}-1\right)=\lambda(\lambda-1)(\lambda+1)=0$ thus $\lambda_{1}=0, \lambda_{2}=1, \lambda_{3}=-1$. Which gives us the following general solution,

$$
y=c_{1}+c_{2} e^{x}+c_{3} e^{-x}
$$

Although we could also write $y=b_{1}+b_{2} \cosh (x)+b_{3} \sinh (x)$ it is a simple exercise to show these solutions are equivalent.
c.) $\left[(D-1)^{3}\left(D^{2}+1\right)\left((D-2)^{2}+9\right)^{2}\right](y)=0$ tells us that the aux. equation is

$$
(\lambda-1)^{3}\left(\lambda^{2}+1\right)\left((\lambda-2)^{2}+9\right)^{2}=0 .
$$

We can break this up into three cases,

$$
\begin{aligned}
(\lambda-1)^{3}=0 & \Longrightarrow \lambda=1, \text { three times } \\
\lambda^{2}+1=0 & \Longrightarrow \lambda= \pm i \\
\left((\lambda-2)^{2}+9\right)^{2}=0 & \Longrightarrow \lambda=2 \pm 3 i, \text { twice }
\end{aligned}
$$

So we find the following general solution,

$$
\begin{aligned}
y=c_{1} e^{x} & +c_{2} x e^{x}+c_{3} x^{2} e^{x}+c_{4} \cos (x)+c_{5} \sin (x) \\
& +c_{6} e^{2 x} \cos (3 x)+c_{7} e^{2 x} \sin (3 x)+c_{8} x e^{2 x} \cos (3 x)+c_{9} x e^{2 x} \sin (3 x)
\end{aligned}
$$

(6.)[35pts] Solve the following non-homogeneous ODE. Please justify your particular solution via the annihilator method before you get too far into the problem.

$$
y^{\prime \prime}-2 y^{\prime}+y=e^{x}+e^{2 x}+x^{2}
$$

SOLUTION: To begin lets find the homogeneous solution,

$$
\lambda^{2}-2 \lambda+1=(\lambda-1)^{2}=0 \quad \Longrightarrow \quad y_{h}=c_{1} e^{x}+c_{2} x e^{x}
$$

This shows us that we can rewrite the given equation as $L[y]=g$ identifying that $L=(D-1)^{2}$ and $g=e^{x}+e^{2 x}+x^{2}$. Next, we wish to determine the correct guess for the particular solution using the method of annihilators. That means to start with we need to find an operator A such that $A[g]=0$. Observe that

$$
\begin{aligned}
& A_{1}\left[e^{x}\right]=0 \quad \Longrightarrow \quad A_{1}=D-1 \\
& A_{2}\left[e^{2 x}\right]=0 \quad \Longrightarrow \quad A_{2}=D-2 \\
& A_{3}\left[x^{2}\right]=0 \quad \Longrightarrow \quad A_{3}=D^{3}
\end{aligned}
$$

Next, we can form the total annihilator by multiplying these together. It is clear that $A=(D-1)(D-2) D^{3}$ will annihilate $g=e^{x}+e^{2 x}+x^{2}$. Then we operate on our equation $L[y]=g$ by A on both sides,

$$
(D-1)(D-2) D^{3}(D-1)^{2}[y]=0
$$

Now we can write the aux. equation, I'll gather together the $(D-1)$ factors,

$$
(\lambda-1)^{3}(\lambda-2) \lambda^{3}=0
$$

Which yields $\lambda_{1}=\lambda_{2}=\lambda_{3}=1, \lambda_{4}=2$ and $\lambda_{5}=\lambda_{6}=\lambda_{7}=0$ thus the general solution to $A L[y]=0$ (which is also the general solution to $L[y]=g$ as is clear from our calculations) is simply,

$$
y=c_{1} e^{x}+c_{2} x e^{x}+c_{3} x^{2} e^{x}+c_{4} e^{2 x}+c_{5}+c_{6} x+c_{7} x^{2}
$$

We identify that the first two terms are y_{h} and we for our future convenience relabel the coefficients on the remaining terms which form y_{p}

$$
y_{p}=A x^{2} e^{x}+B e^{2 x}+C+D x+E x^{2}
$$

Now we must determine the undetermined coefficients A, B, C, D, E.

Lets calculate the derivatives of y_{p},

$$
\begin{aligned}
y_{p}^{\prime} & =2 A x e^{x}+A x^{2} e^{x}+2 B e^{2 x}+D+2 E x \\
& =\left(2 A x+A x^{2}\right) e^{x}+2 B e^{2 x}+D+2 E x
\end{aligned}
$$

Now differentiate again,

$$
\begin{aligned}
y^{\prime \prime}{ }_{p} & =(2 A+2 A x) e^{x}+\left(2 A x+A x^{2}\right) e^{x}+4 B e^{2 x}+2 E \\
& =\left(2 A+4 A x+A x^{2}\right) e^{x}+4 B e^{2 x}+2 E
\end{aligned}
$$

Now plug y_{p} into the differential equation,

$$
y_{p}^{\prime \prime}-2 y_{p}^{\prime}+y_{p}=e^{x}+e^{2 x}+x^{2}
$$

This yields,

$$
\begin{aligned}
& \left(2 A+4 A x+A x^{2}\right) e^{x}+4 B e^{2 x}+2 E \\
& \quad-2\left[\left(2 A x+A x^{2}\right) e^{x}+2 B e^{2 x}+D+2 E x\right] \\
& \quad+A x^{2} e^{x}+B e^{2 x}+C+D x+E x^{2}=e^{x}+e^{2 x}+x^{2}
\end{aligned}
$$

Now we must be careful with parenthesis and signs and such,

$$
2 A e^{x}+B e^{2 x}+2 E-2 D-4 E x+C+D x+E x^{2}=e^{x}+e^{2 x}+x^{2}
$$

From which it follows that

$$
\begin{aligned}
& e^{x}: 2 A=1 \\
& e^{2 x}: B=1 \\
& 1: 2 E-2 D+C=0 \\
& x:-4 E+D=0 \\
& x^{2}: E=1
\end{aligned}
$$

These equations are not too bad to solve, clearly $A=1 / 2, B=1, E=1$ then we see that $D=4 E=4$ and finally $C=2 D-2 E=8-2=6$. Thus the general solution is

$$
y=c_{1} e^{x}+c_{2} x e^{x}+\frac{1}{2} x^{2} e^{x}+e^{2 x}+6+4 x+x^{2}
$$

