Problems are typically taken from either Jeffrey Lee's text Manifolds and Differential Geometry (MDG) or John Lee's text Smooth Manifolds (SM). I've also written a few problems. Most problems 5pts here.

Problem 93 If E_{1}, E_{2}, E_{3} is an orthonormal frame field on \mathbb{R}^{3} for which E_{1}, E_{2} restrict to tangent fields to $M \subset \mathbb{R}^{3}$ and $E_{3}(p) \in T_{p} M^{\perp}$ then we say E_{1}, E_{2}, E_{3} is an adapted frame on M.
(a.) Show $S(v)=\omega_{13}(v) E_{1}+\omega_{23}(v) E_{2}$
(b.) Show $\omega_{13} \wedge \omega_{23}=K \theta^{1} \wedge \theta^{2}$
(c.) Show $\omega_{13} \wedge \theta^{2}+\theta^{1} \wedge \omega_{23}=2 H \theta^{1} \wedge \theta^{2}$
(d.) Show $\operatorname{det}(S)=\omega_{13}\left(E_{1}\right) \omega_{23}\left(E_{2}\right)-\omega_{13}\left(E_{2}\right) \omega_{23}\left(E_{1}\right)$
(e.) Show $d \omega_{12}=-K \theta^{1} \wedge \theta^{2}$,

Problem 94 A principal frame field adapted to M is an orthonormal frame field E_{1}, E_{2}, E_{3} adapted to M for which there exist principal curvature functions k_{1}, k_{2} such that $S\left(E_{1}\right)=k_{1} E_{1}$ and $S\left(E_{2}\right)=k_{2} E_{2}$. Show $E_{1}\left[k_{2}\right]=\left(k_{1}-k_{2}\right) \omega_{12}\left(E_{2}\right)$ and $E_{2}\left[k_{1}\right]=\left(k_{1}-k_{2}\right) \omega_{12}\left(E_{1}\right)$.

Problem 95 Consider the catenoid M given by parametric equations

$$
x=b \cosh (v / b) \cos (u), \quad y=b \cosh (v / b) \sin (u), \quad z=v
$$

Calculate the following:
(a.) Find an adapted frame E_{1}, E_{2}, E_{3} to M by normalizing $\partial_{u} X$ and $\partial_{v} X$ and setting $E_{3}=E_{1} \times E_{2}$.
(b.) Find coframe $\theta^{1}, \theta^{2}, \theta^{3}$ of the adapted frame, check that $\theta^{3}=0$ on M.
(c.) Find ω_{12} from solving Cartan's Structure Equations.
(d.) Calculate the Gaussian curvature from $d \omega_{12}=-K \theta^{1} \wedge \theta^{2}$.

Problem 96 Let $F: M \rightarrow N$ be a smooth surface map. For each patch $X: D \rightarrow M$ consider the map $\bar{X}=F \circ X: D \rightarrow N$. Then F is a local isometry if and only if for each patch X we have $E=\bar{E}$ and $F=\bar{F}$ and $G=\bar{G}$ where $E=\partial_{u} X \bullet \partial_{u} X$ and $F=\partial_{u} X \bullet \partial_{v} X$ and $G=\partial_{v} X \cdot \partial_{v} X$. Use this theorem to find a local isometry of the
(a.) plane and cylinder which have patches $X(u, v)=(u, v, 0)$ and $Y(u, v)=(R \cos (u / R), R \sin (u / R), v)$ respective.
(b.) the helicoid and catenoid which have patches $X(u, v)=(u \cos v, u \sin v, v)$ and $Y(u, v)=(g, h \cos v, h \sin v)$ where $g(u)=\sinh ^{-1}(u)$ and $h(u)=\sqrt{1+u^{2}}$
(it's a little algebra, but you can take the implicit formulation provided by the theorem and make it explicit)

Problem 97 Consider a surface $M \subset \mathbb{R}^{3}$ with adapted frame E_{i} and coframe θ^{i}. In this problem we seek to argue for the intrinsic character of the Gaussian curvature:
(a.) Define $\left.\gamma=\left(d \theta^{1}\left(E_{1}, E_{2}\right)\right) \theta^{1}+d \theta^{2}\left(E_{1}, E_{2}\right)\right) \theta^{2}$ and show $\gamma=\omega_{12}$.
(b.) Let $F: M \rightarrow \bar{M}$ be an isometry and let $\bar{E}_{j}=F_{*}\left(E_{j}\right)$ for $j=1,2$. Show $\theta^{j}=F^{*}\left(\bar{\theta}^{j}\right)$ for $j=1,2$ and $\omega_{12}=F^{*}\left(\bar{\omega}_{12}\right)$ where $\bar{\omega}_{12}$ is the connection form on \bar{M}.
(c.) Show $K=\bar{K} \circ F$

Problem 98 Let $g=\frac{4}{\left(1-x^{2}-y^{2}\right)^{2}}\left(d x^{2}+d y^{2}\right)$ then you can show $E_{i}=\frac{1}{2}\left(1-x^{2}-y^{2}\right) \frac{\partial}{\partial x^{i}}$ is a g-orthonormal frame in the sense that $g\left(E_{i}, E_{j}\right)=\delta_{i j}$. You could also show the dual coframe of 1-forms θ^{1}, θ^{2}

$$
\theta^{1}=\frac{2 d x}{1-x^{2}-y^{2}}, \quad \& \quad \theta^{2}=\frac{2 d y}{1-x^{2}-y^{2}} .
$$

With all of this given, calculate the Gaussian curvature. The set $M=\left\{\left(x^{1}, x^{2}\right) \mid\left\|\left(x^{1}, x^{2}\right)\right\|<\right.$ $1\}$ paired with the metric g is known as the hyperbolic disk. It is an example of how a subset of the plane can be given a non-Euclidean geometry.

Problem 99 Find a metric on the plane which gives a subset of the plane curvature $K=1$
Problem 100 Find a metric on a subset of the sphere which makes it flat.
Problem 101 State the Gauss Bonnet Theorem. Also, in a surface of constant curvature what can we say about the interior angles of a triangle ?

Problem 102 Explain why the sphere is not isometric to the torus.

Problem 103 Show that the ellipsoid $\mathcal{E}=\left\{(x, y, z) \left\lvert\, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1\right.\right\}$ is mapped to the unit-sphere Σ via the map $F: \Sigma \rightarrow \mathcal{E}$ defined by $F(u, v, w)=(a u, b v, c w)$. Also, explain why F is a diffeomorphism. Find the total curvature of \mathcal{E} via the Gauss Bonnet Theorem as well as the observation that diffeomorphisms are also homeomorphisms and as such preserve the Euler characteristic. Remember, we already know the total curvature of Σ from our work in class.

Extra Problems you don't have to do:

(I.) MDG, Exercise 4.42 on page 168 (formula for Christoffel symbols in terms of metric)
(II.) Let $E_{1}=-\sin \theta U_{1}+\cos \theta U_{2}$ and $E_{2}=U_{3}$ and $E_{3}=\cos \theta U_{1}+\sin \theta U_{2}$. Find the attitude matrix A for the cylindrical frame E_{1}, E_{2}, E_{3} and calculate the matrix of connection forms $\omega=(d A) A^{T}$
(III.) In cylindrical coordinates, the frame of the above problem is simply $E_{1}=\frac{1}{r} \frac{\partial}{\partial \theta}, E_{2}=\frac{\partial}{\partial z}$ and $E_{3}=\frac{\partial}{\partial r}$. This frame adapts nicely to the cylinder M given by $r=R$ where R is a fixed positive constant. Notice $E_{1}=\frac{1}{R} \frac{\partial}{\partial \theta}$ and $E_{2}=\frac{\partial}{\partial z}$ have coframe $\theta^{1}=R d \theta$ and $\theta^{2}=d z$. We found $\omega_{13}=-d \theta=-\omega_{31}$ whereas $\omega_{12}=\omega_{21}=\omega_{23}=\omega_{32}=0$.
(a.) Recall $S\left(E_{1}\right)=-\omega_{31}\left(E_{1}\right) E_{1}-\omega_{32}\left(E_{1}\right) E_{2}$ and $S\left(E_{2}\right)=-\omega_{31}\left(E_{2}\right) E_{1}-\omega_{32}\left(E_{2}\right) E_{2}$. Show E_{1}, E_{2} is a principle frame.
(b.) Calculate H and K
(c.) Give an example of an asymptotic curve on M
(d.) Give an example of a geodesic curve on M
(IV.) Let θ^{1}, θ^{2} be a coframe of E_{1}, E_{2} on a surface such that $\theta^{1} \wedge \theta^{2} \neq 0$. Notice $f \theta^{1} \wedge \theta^{2}=g \theta^{1} \wedge \theta^{2}$ implies $f=g$. Furthermore, if α is a one-form then

$$
\alpha=\alpha\left[E_{1}\right] \theta^{1}+\alpha\left[E_{2}\right] \theta^{2}
$$

Use the assumptions above to find α given that $\alpha \wedge \theta^{1}=A \theta^{1} \wedge \theta^{2}$ and $\alpha \wedge \theta^{2}=B \theta^{1} \wedge \theta^{2}$. (your formula for α will involve A and B)
(V.) The helicoid has patch $X(u, v)=(u \cos v, u \sin v, b v)$ where $b>0$. Since this is an orthogonal patch, we can use frame $E_{1}=\frac{1}{\sqrt{E}} X_{u}$ and $E_{2}=\frac{1}{\sqrt{G}} X_{v}$ and coframe $\theta^{1}=\sqrt{E} d u$ and $\theta^{2}=\sqrt{G} d v$. Derive the connection form ω_{12} and the Gaussian curvature K from the equations $d \theta^{1}=\omega_{12} \wedge \theta^{2}$, $d \theta^{2}=\omega_{21} \wedge \theta^{1}$ and $d \omega_{12}=-K \theta^{1} \wedge \theta^{2}$.
(VI.) The paraboloid of revolution has patch $X(u, v)=\left(u \cos v, u \sin v, u^{2} / 2\right)$ where $b>0$. Since this is an orthogonal patch, we can use frame $E_{1}=\frac{1}{\sqrt{E}} X_{u}$ and $E_{2}=\frac{1}{\sqrt{G}} X_{v}$ and coframe $\theta^{1}=\sqrt{E} d u$ and $\theta^{2}=\sqrt{G} d v$. Derive the connection form ω_{12} and the Gaussian curvature K from the equations $d \theta^{1}=\omega_{12} \wedge \theta^{2}, d \theta^{2}=\omega_{21} \wedge \theta^{1}$ and $d \omega_{12}=-K \theta^{1} \wedge \theta^{2}$.
(VII.) The cone has patch $X(u, v)=(u \cos v, u \sin v, a u)$ where $a>0$. Since this is an orthogonal patch, we can use frame $E_{1}=\frac{1}{\sqrt{E}} X_{u}$ and $E_{2}=\frac{1}{\sqrt{G}} X_{v}$ and coframe $\theta^{1}=\sqrt{E} d u$ and $\theta^{2}=\sqrt{G} d v$. Derive the connection form ω_{12} and the Gaussian curvature K from the equations $d \theta^{1}=\omega_{12} \wedge \theta^{2}$, $d \theta^{2}=\omega_{21} \wedge \theta^{1}$ and $d \omega_{12}=-K \theta^{1} \wedge \theta^{2}$.
(VIII.) Let $X(u, v)=(u, v, f(u, v))$ where f is a smooth function of u, v on \mathbb{R}^{2}. Let $M=X\left(\mathbb{R}^{2}\right)$. Calculate the Gaussian curvature of M. What condition on f is needed for M to be flat?
(IX.) Let

$$
X(u, v)=(u \cos (v), u \sin (v), v)
$$

Calculate E, F, G and L, M, N. Use the standard formulas to calculate the Gaussian and mean curvature.
(X.) Suppose $u>0$ and let

$$
X(u, v)=\left(u \cos (v), u \sin (v), u^{2}\right)
$$

Calculate the associated frame field E_{1}, E_{2} as well as the dual frame θ^{1}, θ^{2}. Find the connection form ω_{12} and calculate the Gaussian curvature K. For bonus, also find ω_{12}, ω_{23} and calculate the mean curvature H.

