Problems are typically taken from either Jeffrey Lee's text Manifolds and Differential Geometry (MDG) or John Lee's text Smooth Manifolds (SM). I've also written a few problems.

Problem 1 Spheres are a nice example. Let's build some background.
(a.) Find an atlas for the circle of radius R in \mathbb{R}^{2}.
(b.) Find an atlas for the the sphere of radius R in \mathbb{R}^{3} and show your charts are compatible.
(c.) Find an atlas for the n-sphere of radius R in \mathbb{R}^{n+1}
(d.) Find a different atlas that covers most of the sphere from (b.) and check compatibility.

Problem 2 MDG exercise 1.40
Problem 3 MDG exercise 1.42
Problem 4 MDG exercise 1.45
Problem 5 MDG exercise 1.46
Problem 6 MDG exercise 1.47
Problem 7 MDG exercise 1.48
Problem 8 MDG exercise 1.54
Problem 9 MDG exercise 1.56
Problem 10 MDG exercise 1.60
Problem 11 MDG exercise 1.61
Problem 12 MDG Problem 4 from around page 51.
Problem 13 MDG Problem 7 from around page 51.
Problem 14 MDG Problem 16 from around page 51.
Problem 15 Let $f, g \in C^{\infty}(M)$. Prove the following for (U, x) a chart in the atlas of M.
(a.)

$$
\frac{\partial}{\partial x^{i}}[f+g]=\frac{\partial f}{\partial x^{i}}+\frac{\partial g}{\partial x^{i}}
$$

(b.)

$$
\frac{\partial}{\partial x^{i}}[f g]=\frac{\partial f}{\partial x^{i}} g+f \frac{\partial g}{\partial x^{i}} .
$$

