Problems are typically taken from either Jeffrey Lee's text *Manifolds and Differential Geometry* (MDG) or John Lee's text *Smooth Manifolds* (SM). I've also written a few problems. Most problems 5pts here.

- **Problem 57** Let S be a mixed tensor field on a smooth manifold M such that $S_p : T_p M \times T_p M \times T_p^* M \to \mathbb{R}$ at each $p \in M$. If coordinate charts x and y have domains which overlap then express S in both coordinate charts and show how the components in x and y are related.
- **Problem 58** Let $T = (x^2 + y^2)dx \otimes dx + xydx \otimes dy$ define a tensor on $M = (0, \infty)^2$. Let F(u, v, w) = (u + v, v + w) define a map from $(0, \infty)^3$ to $(0, \infty)^2$. Calculate the pull-back of T under F; that is, calculate F^*T .
- **Problem 59** (10pts) Let M be a smooth manifold and suppose \mathcal{B} is the set of rank two smooth covariant tensor fields on M. In particular, if $T \in \mathcal{B}$ then $T_p: T_pM \times T_pM \to \mathbb{R}$ is a bilinear map and $T(X,Y) \in C^{\infty}(M)$ whenever $X, Y \in \mathfrak{X}(M)$. Prove the following assertions about \mathcal{B} :
 - (a.) any $T \in \mathcal{B}$ can be decomposed into the sum of a symmetric and antisymmetric tensor. Let us denote \mathcal{B}_A for the antisymmetric tensors and \mathcal{B}_S for the symmetric tensors in \mathcal{B} .
 - (b.) if $dx^i \wedge dx^j = dx^i \otimes dx^j dx^j \otimes dx^i$ then $\gamma_A = \{dx^i \wedge dx^j \mid 1 \le i < j \le n\}$ is a point-wise basis for \mathcal{B}_A on the domain of the chart x for M where dim(M) = n.
 - (c.) if $dx^i dx^j = dx^i \otimes dx^j + dx^j \otimes dx^i$ then $\gamma_S = \{dx^i dx^j \mid 1 \leq i \leq j \leq n\}$ is a is a point-wise basis for \mathcal{B}_S on the domain of the chart x for M where dim(M) = n,
 - (d.) comment on the notations for the objects in this problem in terms of terminology from Chapter 12 of John Lee's text.

Problem 60 Suppose $T = \sum_{i,j=1}^{n} T_{ij} dx^{i} \otimes dx^{j}$ and suppose T is antisymmetric. If $T = \sum_{i < j} C_{ij} dx^{i} \wedge dx^{j}$ then how are the tensor components T_{ij} related to the form components C_{ij} ? Also, how would you define B_{ij} for which $T = \sum_{i,j=1}^{n} B_{ij} dx^{i} \wedge dx^{j}$?

- **Problem 61** SM Exercise 12.3 page 306. (establish property of $F \otimes G$ in the context of multilinear maps)
- Problem 62 SM Exercise 12.15 page 315 (prove basic properties of the symmetric product)
- **Problem 63** SM Exercise 12.26, just part (b), page 320 (prove property of pull-back with respect to \otimes of covariant tensor fields)
- Problem 64 SM Problem 12-7 page 325 (breakdown of general covariant tensor into symmetric and antisymmetric is not possible)
- Problem 65 SM Exercise 13.13 page 332. (on flatness)
- Problem 66 SM Exercise 13.24 page 337. (on curve length)

Problem 67SM Problem 13-7 page 345. (product of flat metrics flat)Problem 68SM Problem 13-7 page 345. (flat \mathbb{T}^n)