|MaTH 334: FaLL 2016 MISSION 2 |

Please put your work on these sheets. If you need additional room to show your work then add paper
as needed, but be sure to put your answer clearly near the problem statement. Box your answers.
Make sure you name is on each page and the assignment is stapled. Thanks and enjoy.

Problem 1 [3pts] Consider the set of curves dsecribed by 3? = kz. Find the orthogonal trajectories
to the given set of curves.
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Problem 2 [3pts] Find the velocity of a mass m which is launched vertically with velocity v, from a
planet with mass M and radius R. Recall that the gravitational force is given by:
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if we assume the motion is directly vertical and y is the altitude of m. You may find the velocity
as a function of y. '
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Problem 3 [4pts] Suppose a rocket car has an initial speed of v, as it hurtles across a speedway
in a remote desert. Suppose the driver opens a parachute which developes a retarding force
proportional to the cube of the velocity; Fy = —kv3. Find the velocity as:

(a.) a function of time,

(b.) a function of position z taking x, as the initial position
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Problem 4 [3pts] A tank initially contains 100 gallons of water with 10Ib of lemon drink mix. Then
at t = 0 fresh water is added to the tank at 3 gallons per minute and at the same time 3 gallons
are drained per minute from the tank. Assume the tank is well-mixed during this process. Find
the 1b’s of lemon drink mix as a function of time. If you like your drink with a concentration of
11b per 20 gallons then at what time should you drink from the drain?
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Problem 5 [3pts] A chain is coiled on the ground. One end is then lifted with constant force. Find
the velocity.
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Problem 6 [3pts| Suppose the RL-circuit has a voltage source which varies with time according to
E(t) = V,cos(t). Find the current as a function of time and the initial current I,. hint: this is like
an example in the notes, just replace the constant £ with the sinuisoidal source E(t) = V, cos(t)
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Problem 7 [Ipts] The Cartesian form of a complex number is a + ¢b. Find the Cartesian form of
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Problem 8 [2pts] Differentiate f(x) = ¢**(cos(bz) + isin(bz)) and show that f'(z) = (a + ib) f(z).
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Problem 9 [2pts] If we denote e{®+®)® = e9%(cos(bx) + isin(bz)) then we have shown in the previous
problem that ££e** = Ae*® for any A = a + b € C. In other words, the exponential function
obeys a chain-rule in the complex case much the same as in the real case. And now the task:
Show y” + 4y’ + 5y = 0 has complex solution y = ¢+,
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