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purpose and origins

These notes are a first step towards a book I wish to write on A-Calculus. These are about 70 per-
cent about complex analysis and 30 percent about the generalization of complex analysis to other
algebras of finite dimension. The non-standard material is largely adapted from several papers I
have written on A-Calculus in recent years.

I often refer to the non-standard material as A-Calculus because it is calculus where R has been
replaced by A which denotes a real associative unital algebra of finite dimension. Some would call
this hypercomplex analysis. I am reluctant to use that term because it is not really a generalization
of complex analysis. In fact, complex analysis is a special case of A-Calculus which has arguably
the most beautiful and elegant properties. Much of the reason I am introducing some rudimentary
A-Calculus in these notes is to draw your attention to just how special complex analysis is com-
pared to other cases. I think in the traditional path some of that is lost because all we do is think
about C. Don’t worry, we will think a lot about C, just not all the time.

In terms of Complex Analysis, much of what I say stems from an in-depth study I made of Gamelin’s
Complex Analysis in a previous offering of Math 331 at Liberty in 2014-2015. The You Tube videos
on Complex Analysis by me in 2015 are tied to that study as are the notes I entitled Guide to
Gamelin. In those notes I cover is the basic core of undergraduate complex analysis. My under-
standing of these topics began with a study of the classic text of Churchill as I took Math 513 at
NCSU a few years ago. My advisor Dr. R.O. Fulp taught the course and added much analysis
which was not contained in Churchill. Churchill is a good book, but, the presentation of analysis
and computations is more clear in Gamelin. I also have learned a great amount from Reinhold
Remmert’s Complex Function Theory [R91]. The history and insight of that book will bring me to
say a few dozen things this semester, it’s a joy to read, but, it’s not a first text in complex analysis
so I have not required you obtain a copy. There are about a half-dozen other books I consult for
various issues and I will comment on those as we use them.

Remark: many of the quotes given in this text are from [R91] or [N91] where the original source is
cited. I decided to simply cite those volumes rather than add the original literature to the bibliog-
raphy for several reasons. First, I hope it prompts some of you to read the literature of Remmert.
Second, the original documents are hard to find in most libraries.

For your second read through complex analysis I recommend [R91] and [RR91] or [F09] for the
student of pure mathematics. For those with an applied bent, I recommend [A03].

format of this guide

These notes were prepared with LATEX. I tend to use green for definitions, blue for theorems, red
for remarks and black for just about everything else. This is a work in progress, my apologies for
mistakes, just email me if one is troubling. I am here to help,

James Cook, August 27, 2018 version 1.0
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Notations:

Some of the notations below are from Gamelin, however, others are from [R91] and elsewhere.

Symbol terminology Definition in Guide

C complex numbers [1.1.1]
Re(z) real part of z [1.1.1]
Im(z) imaginary part of z [1.1.1]
z complex conjugate of z [1.1.3]
|z| modulus of z [1.1.3]
C× nonzero complex numbers [1.1.6]
C[z] polynomials in z with coefficients in C [1.1.8]
R[z] polynomials in z with coefficients in R
Arg(z) principle argument of z [1.3.1]
arg(z) set of arguments of z [1.3.1]
eiθ imaginary exponential [1.3.4]
|z|eiθ polar form of z [1.3.4]
ω primitive root of unity [1.3.12]
C∗ extended complex plane [??]
C− slit plane C− (−∞, 0] [2.1.1]
C+ slit plane C− [0,∞) [2.1.1]
f |U restriction of f to U [2.1.2]
n
√
z n-th principal root [2.1.4]

Argα α-argument of [2.1.5]
ez complex exponential [2.2.1]
Log(z) principal logarithm [2.3.1]
log(z) set of logarithms [2.3.2]
zα set of complex powers [2.4.1]
sin(z), cos(z) complex sine and cosine [2.5.1]
sinh(z), cosh(z) complex hyperbolic functions [2.5.2]
tan(z) complex tangent [2.5.3]
tanh(z) complex hyperbolic tangent [2.5.3]
lim
n→∞

an limit as n→∞ [10.1.1]

lim
z→zo

f(z) limit as z → zo [4.3.1]

C0(U) continuous functions on U [4.3.4]
Dε(zo) open disk radius ε centered at zo [4.2.1]
∂S boundary of S [4.2.3]
[p, q] line segment from p to q [4.2.4]
f ′(z) complex derivative [7.1.1]
JF Jacobian matrix of F [??]
ux = vy
uy = −vx

CR-equations of f = u+ iv [7.2.1]

O(C) entire functions on C [7.2.5]
O(D) holomorphic functions on D [7.2.9]

You can also use the search function within the pdf-reader.
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Chapter 1

Complex Numbers

1.1 Algebra and Geometry of Complex Numbers

I set aside the question of existence for now. Rest assured there is such a thing as C which merits
all the definitions and constructions shared in this section.

Definition 1.1.1. Let a, b, c, d ∈ R. A complex number is an expressions of the form a + ib.
By assumption, if a + ib = c + id we have a = c and b = d. We define the real part of a + ib by
Re(a+ib) = a and the imaginary part of a+ib by Im(a+ib) = b. The set of all complex numbers
is denoted C. Complex numbers of the form a + i(0) are called real whereas complex numbers of
the form 0 + ib are called imaginary. The set of imaginary numbers is denoted iR = {iy | y ∈ R}.

It is customary to write a + i(0) = a and 0 + ib = ib as the 0 is superfluous. Furthermore, the
notation1 C = R ⊕ iR compactly expresses the fact that each complex number is written as the
sum of a real and pure imaginary number. There is also the assumption R ∩ iR = {0}. In words,
the only complex number which is both real and pure imaginary is 0 itself.

We add and multiply complex numbers in the usual fashion:

Definition 1.1.2. Let a, b, c, d ∈ R. We define complex addition and multiplication as follows:

(a+ ib) + (c+ id) = (a+ c) + i(b+ d) & (a+ ib)(c+ id) = ac− bd+ i(ad+ bc).

Often the definition is recast in pragmatic terms as i2 = −1 and proceed as usual. Let me remind
the reader what is ”usual”. Addition and multiplication are commutative and obey the usual
distributive laws: for x, y, z ∈ C

x+ y = y + x, & xy = yx, & x(y + z) = xy + xz,

associativity of addition and multiplication can also be derived:

(x+ y) + z = x+ (y + z), & (xy)z = x(yz).

The additive identity is 0 whereas the multiplicative identity is 1, in particular:

z + 0 = z & 1 · z = z

1see the discussion of ⊕ (the direct sum) in my linear algebra notes. Here I view R ≤ C and iR ≤ C as independent
R-subspaces whose direct sum forms C.

1



2 CHAPTER 1. COMPLEX NUMBERS

for all z ∈ C. Notice, the notation 1z = 1 · z. Sometimes we like to use a · to emphasize the
multiplication, however, usually we just use juxtaposition to denote the multiplication. Finally,
using the notation of Definition 1.1.2, let us check that i2 = ii = (0 + i)(0 + i) = −1. Take
a = 0, b = 1, c = 0, d = 1:

i2 = ii = (0 + 1i)(0 + 1i) = (0 · 0− 1 · 1) + i(0 · 1 + 1 · 0) = −1.

In view of all these properties (which the reader can easily prove follow from Definition 1.1.2) we
return to the multiplication of a+ ib and c+ id:

(a+ ib)(c+ id) = a(c+ id) + ib(c+ id)

= ac+ iad+ ibc+ i2bd

= ac− bd+ i(ad+ bc).

Of course, this is precisely the rule we gave in Definition 1.1.2. It is convenient to define the
modulus and conjugate of a complex number before we work on fractions of complex numbers.

Definition 1.1.3. Let a, b ∈ R. We define complex conjugation as follows:

a+ ib = a− ib.

We also define the modulus of a+ ib which is denoted |a+ ib| where

|a+ ib| =
√
a2 + b2.

The complex number a+ib is naturally identified2 with (a, b) and so we have the following geometric
interpretations of conjugation and modulus:

( i.) conjugation reflects points over the real axis.

( ii.) modulus of a+ ib is the distance from the origin to a+ ib.

Let us pause to think about the problem of two-dimensional vectors. This gives us another view
on the origin of the modulus formula. We call the x-axis the real axis as it is formed by complex
numbers of the form z = x and the y-axis the imaginary axis as it is formed by complex numbers
of the form z = iy. In fact, we can identify 1 with the unit-vector (1, 0) and i with the unit-vector
(0, 1). Thus, 1 and i are orthogonal vectors in the plane and if we think about z = x + iy we can
view (x, y) as the coordinates3 with respect to the basis {1, i}. Let w = a+ib be another vector and
note the standard dot-product of such vectors is simply the sum of the products of their horizontal
and vertical components:

〈z, w〉 = xa+ yb

You can calculate that Re(zw) = xa + yb thus a formula for the dot-product of two-dimensional
vectors written in complex notation is just:

〈z, w〉 = Re(zw).

You may also recall from calculus III that the length of a vector ~A is calculated from
√
~A • ~A.

Hence, in our current complex notation the length of the vector z is given by |z| =
√
〈z, z〉 =

√
zz.

2Euler 1749 had this idea, see [N] page 60.
3if you’ve not had linear algebra yet then you may read on without worry
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If you are a bit lost, read on for now, we can also simply understand the |z| =
√
zz formula directly:

(a+ ib)(a+ ib) = (a+ ib)(a− ib) = a2 + b2 ⇒ |z| =
√
zz̄.

Properties of conjugation and modulus are fun to work out:

z + w = z + w & z · w = z · w & z = z & |zw| = |z||w|.

We will make use of the following throughout our study:

|z + w| ≤ |z|+ |w|, |z − w| ≥ |z| − |w| & |z| = 0 if and only if z = 0.

also, the geometrically obvious:

Re(z) ≤ |z| & Im(z) ≤ |z|.

We now are ready to work out the formula for the reciprocal of a complex number. Suppose z 6= 0
and z = a+ ib we want to find w = c+ id such that zw = 1. In particular:

(a+ ib)(c+ id) = 1 ⇒ ac− bd = 1, & ad+ bc = 0

You can try to solve these directly, but perhaps it will be more instructive4 to discover the formula
for the reciprocal by a formal calculation:

1

z
=

1

z

z

z
=

z

|z|2
⇒ 1

a+ ib
=

a− ib
a2 + b2

.

I said formal as the calculation in some sense assumes properties which are not yet justified. In any
event, it is simple to check that the reciprocal formula is valid: notice, if z 6= 0 then |z| 6= 0 hence

z ·
(

z

|z|2

)
= z ·

(
z

|z|2

)
= z ·

(
1

|z|2
· z
)

=
1

|z|2
(zz) =

1

|z|2
|z|2 = 1.

The calculation above proves z−1 = z/|z|2.

Example 1.1.4.
1

i
=
−i
|i|2

=
−i
1

= −i.

Of course, this can easily be seen from the basic identity ii = −1 which gives 1/i = −i.

Example 1.1.5.

(1 + 2i)−1 =
1− 2i

|1 + 2i|2
=

1− 2i

1 + 4
=

1− 2i

5
.

A more pedantic person would insist you write the standard Cartesian form 1
5 − i

2
5 .

The only complex number which does not have a multiplicative inverse is 0. This is part of the
reason that C forms a field. A field is a set which allows addition and multiplication such that the
only element without a multiplicative inverse is the additive identity (aka ”zero”). There is a more
precise definition given in abstract algebra texts, I’ll leave that for you to discover. That said, it is
perhaps useful to note that Z/pZ for p prime, Q,R,C are all fields. Furthermore, it is sometimes
useful to have notation for the set of complex numbers which admit a multicative inverse;

4this calculation is how to find (a+ ib)−1 for explicit examples
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Definition 1.1.6. The group of nonzero complex numbers is denoted C× where C× = C− {0}.

If we envision C as the plane, this is the plane with the origin removed. For that reason C× is
also known as the punctured plane. The term group is again from abstract algebra and it refers
to the multiplicative structure paired with C×. Notice that C× is not closed under addition since
z ∈ C× implies −z ∈ C× yet z+ (−z) = 0 /∈ C×. I merely try to make some connections with your
future course work in abstract algebra.

The complex conjugate gives us nice formulas for the real and imaginary parts of z = x + iy.
Notice that if we add z = x+ iy and z = x− iy we obtain z + z = 2x. Likewise, subtraction yields
z − z = 2iy. Thus as (by definition) x = Re(z) and y = Im(z) we find:

Re(z) =
1

2
(z + z) & Im(z) =

1

2i
(z + z)

In summary, for each z ∈ C we have z = Re(z) + iIm(z).

Example 1.1.7.

|z| = |Re(z) + iIm(z)| ≤ |Re(z)|+ |iIm(z)| = |Re(z)|+ |i||Im(z)| = |Re(z)|+ |Im(z)|.

An important basic type of function in complex function theory is a polynomial. These are sums of
power functions. Notice that zn is defined inductively just as in the real case. In particular, z0 = 1
and zn = zzn−1 for all n ∈ N. The story of n ∈ C waits for a future section.

Definition 1.1.8. A complex polynomial of degree n ≥ 0 is a function of the form:

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + ao

for z ∈ C. The set of all polynomials in z is denoted C[z].

The theorem which follows makes complex numbers an indispensable tool for polynomial algebra.

Theorem 1.1.9. Fundamental Theorem of Algebra Every complex polynomial p(z) ∈ C[z] of
degree n ≥ 1 has a factorization

p(z) = c(z − z1)m1(z − z2)m2 · · · (z − zk)mk ,

where z1, z2, . . . , zk are distinct and mj ≥ 1 for all j ∈ Nk. Moreover, this factorization is unique
upto a permutation of the factors.

I prefer the statement above (also given on page 4 of Gamelin) to what is sometimes given in
other books. The other common version is: every nonconstant complex polynomial has a zero.
Let us connect this to our version. Recall5 the factor theorem states that if p(z) ∈ C[z] with
deg(p(z)) = n ≥ 1 and zo satisfies p(zo) = 0 then (z − zo) is a factor of p(z). This means there
exists q(z) ∈ C[z] with deg(q(z)) = n − 1 such that p(z) = (z − zo)q(z). It follows that we may
completely factor a polynomial by repeated application of the alternate version of the Fundamental
Theorem of Algebra and the factor theorem.

5I suppose this was only presented in the case of real polynomials, but it also holds here. See Fraleigh or Dummit
and Foote or many other good abstract algebra texts for how to build polynomial algebra from scratch. That is not
our current purpose so I resist the temptation.
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Example 1.1.10. Let p(z) = (z+1)(z+2−3i) note that p(z) = z2 +(3−3i)z−3i. This polynomial
has zeros of z1 = −1 and z2 = −2+3i. These are not in a conjugate pair but this is not surprising
as p(z) /∈ R[z]. The notation R[z] denotes polynomials in z with coefficients from R.

Example 1.1.11. Suppose p(z) = (z2 + 1)((z − 1)2 + 9). Notice z2 + 1 = z2 − i2 = (z + i)(z − i).
We are inspired to do likewise for the first factor which is already in completed-square format:

(z − 1)2 + 9 = (z − 1)2 − 9i2 = (z − 1− 3i)(z − 1 + 3i).

Thus, p(z) = (z + i)(z − i)(z − 1 − 3i)(z − 1 + 3i). Notice p(z) ∈ R[z] is clear from the initial
formula and we do see the complex zeros of p(z) are arranged in conjugate pairs ±i and 1± 3i.

The example above is no accident: complex algebra sheds light on real examples. Since R ⊆ C it
follows we may naturally view R[z] ⊆ C[z] thus the Fundamental Theorem of Algebra applies to
polynomials with real coefficients in this sense: to solve a real problem we enlarge the problem to
the corresponding complex problem where we have the mathematical freedom to solve the problem
in general. Then, upon finding the answer, we drop back to the reals to present our answer. I
invite the reader to derive the Fundamental Theorem of Algebra for R[z] by applying the Funda-
mental Theorem of Algebra for C[z] to the special case of real coefficients. Your derivation should
probably begin by showing a complex zero for a polynomial in R[z] must come with a conjugate zero.

The importance of taking a complex view was supported by Gauss throughout his career. From a
letter to Bessel in 1811 [R91](p.1):

At the very beginning I would ask anyone who wants to introduce a new function into
analysis to clarify whether he intends to confine it to real magnitudes [real values of its
argument] and regard the imaginary values as just vestigial - or whether he subscribes
to my fundamental proposition that in the realm of magnitudes the imaginary ones
a+b
√
−1 = a+bi have to be regarded as enjoying equal rights with the real ones. We are

not talking about practical utility here; rather analysis is, to my mind, a self-sufficient
science. It would lose immeasurably in beauty and symmetry from the rejection of any
fictive magnitudes. At each stage truths, which otherwise are quite generally valid,
would have to be encumbered with all sorts of qualifications.

Gauss used the complex numbers in his dissertation of 1799 to prove the Fundamental Theorem of
Algebra. Gauss offered four distinct proofs over the course of his life. See Chapter 4 of [N91] for a
discussion of Gauss’ proofs as well as the history of the Fundamental Theorem of Algebra. Many
original quotes and sources are contained in that chapter which is authored by Reinhold Remmert.

1.2 On the Existence of Complex Numbers

Euler’s work from the eigthteenth century involves much calculation with complex numbers. It was
Euler who in 1777 introduced the notation i =

√
−1 to replace a + b

√
−1 with a + ib (see [R91]

p. 10). As is often the case in this history of mathematics, we used complex numbers long before
we had a formal construction which proved the existence of such numbers. In this subsection I
add some background about how to construct complex numbers. In truth, my true concept of
complex numbers is already given in what was already said in this section in the discussion up to
Definition 1.1.3 (after that point I implicitly make use of Model I below). In particular, I would
claim a mature viewpoint is that a complex number is defined by it’s properties. That said, it is



6 CHAPTER 1. COMPLEX NUMBERS

good to give a construction which shows such objects do exist. However, it’s also good to realize
the construction is not written in stone as it may well be replaced with some isomorphic copy.
There are three main models:

Model I: complex numbers as points in the plane: Gauss proposed the following construction:
CGauss = R2 paired with the multiplication ? and addition rules below:

(a, b) + (c, d) = (a+ c, b+ d) (a, b) ? (c, d) = (ac− bd, ad+ bc)

for all (a, b), (c, d) ∈ CGauss. What does this have to do with
√
−1? Consider,

(1, 0) ? (a, b) = (a, b)

Thus, multiplication by (1, 0) is like multiplying by 1. Also,

(0, 1) ? (0, 1) = (−1, 0)

It follows that (0, 1) is like i. We can define a mapping Ψ : CGauss → C by Ψ(a, b) = a + ib. This
mapping has Ψ(z + w) = Ψ(z) + Ψ(w) as well as Ψ(z ? w) = Ψ(z)Ψ(w). We observe that Ψ is a
one-one correspondence of CGauss and C which preserves multiplication and addition. Intuitively,
the existence of Ψ means that C and CGauss are the same object viewed in different notation6.

Model II: complex numbers as matrices of a special type: perhaps Cayley was the first to
7 propose the following construction:

Cmatrix =

{[
a b
−b a

] ∣∣∣∣ a, b ∈ R
}

Addition is matrix addition and we multiply in Cmatrix using the standard matrix multiplication:[
a b
−b a

] [
c d
−d c

]
=

[
ac− bd ad+ bc
−(ad+ bc) ac− bd

]
.

In matrices, the matrix

[
1 0
0 1

]
serves as the multiplicative identity (it is like 1) whereas the

matrix

[
0 1
−1 0

]
is analogus to i. Notice,

[
0 1
−1 0

] [
0 1
−1 0

]
=

[
−1 0
0 −1

]
= −

[
1 0
0 1

]
.

The mapping Φ : Cmatrix → C defined by Φ

([
a b
−b a

])
= a+ ib is a one-one correspondence for

which the algebra of matrices transfers to the algebra of complex numbers.

Model III: complex numbers as an extension field of R: The set of real polynomials in x
is denoted R[x]. If we define Cextension = R[x]/ < x2 + 1 > then the multiplication and addition
in this set is essentially that of polynomials. However, strict polynomial equality is replaced with
congruence modulo x2 + 1. Suppose we use [f(x)] to denote the equivalence class of f(x) modulo
x2 + 1 then as a point set:

[f(x)] = {f(x) + (x2 + 1)h(x) | h(x) ∈ R[x]}.
6the careful reader is here frustrated by the fact I have yet to say what C is as a point set
7I asked this at the math stackexchange site and it appears Cayley knew of these in 1858, see the link for details.

http://math.stackexchange.com/q/886872/36530
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More to the point, [x2 + 1] = [0] and [x2] = [−1]. From this it follows:

[a+ bx][c+ dx] = [(a+ bx)(c+ dx)] = [ac+ (ad+ bc)x+ bdx2] = [ac− bd+ (ad+ bc)x].

In Cextension the constant polynomial class [1] serves as the multiplicative identity whereas [x] is
like i. Furthermore, the mapping Ξ([a + bx]) = a + bi gives a one-one correspondence which pre-
serves the addition and multiplication of Cextension to that of C. The technique of field extensions
is discussed in some generality in the second course of a typical abstract algebra sequence. Cauchy
found this formulation in 1847 see [N91] p. 63.

Conclusion: as point sets CGauss,Cmatrix,Cextension are not the same. However, each one of these
objects provides the algebraic structure which (in my view) defines C. We could use any of them
as the complex numbers. For the sake of being concrete, I will by default use C = CGauss. But, I
hope you can appreciate this is merely a choice. But, it’s also a good choice since geometrically
it is natural to identify the plane with C. You might take a moment to appreciate we face the
same foundational issue when we face the question of what is R,Q,N etc. I don’t think we ever
constructed these in our course work. You have always worked formally in these systems. It sufficed
to accept truths about N,Q or R, you probably never required your professor to show you such a
system could indeed exist. Rest assured, they exist.

Remark: it will be our custom whenever we write z = x+ iy it is understood that x = Re(z) ∈ R
and y = Im(z) ∈ R. If we write z = x+ iy and intend x, y ∈ C then it will be our custom to make
this explicitly known. This will save us a few hundred unecessary utterances in our study.

1.3 Polar Representations

Polar coordinates in the plane are given by x = r cos θ and y = r sin θ where we define r =
√
x2 + y2.

Observe that z = x+ iy and r = |z| hence:

z = |z|(cos θ + i sin θ).

The standard angle is measured CCW from the positive x-axis. There is considerable freedom in
our choice of θ. For example, we identify geometrically −π/2, 3π/2, 7π/2, . . . . It is useful to have
a notation to express the totality of this ambiguity as well as to remove it by a standard choice:

Definition 1.3.1. Let z ∈ C with z 6= 0. Principle argument of z is the θo ∈ (−π, π] for which
z = |z|(cos θo + i sin θo). We denote the principle argument by Arg(z) = θo. The argument of z
is denoted arg(z) which is the set of all θ ∈ R such that z = |z|(cos θ + i sin θ).

From basic trigonometry we find: for z 6= 0,

arg(z) = Arg(z) + 2πZ = {Arg(z) + 2πk | k ∈ Z}.

Notice that arg(z) is not a function on C. Instead, arg(z) is a multiply-valued function. You
should recall a function is, by definition, single-valued. In contrast, the Principle argument is a
function from the punctured plane C× = C− {0} to (−π, π].

Example 1.3.2. Let z = 1− i then Arg(z) = −π/4 and arg(z) = {−π/4 + 2πk | k ∈ Z}.



8 CHAPTER 1. COMPLEX NUMBERS

Example 1.3.3. Let z = −2− 3i. We can calculate tan−1(−3/− 2) u 0.9828. Furthermore, this
complex number is found in quadrant III hence the standard angle is approximately θ = 0.9828+π =
4.124. Notice, θ 6= Arg(z) since 4.124 /∈ (−π, π]. We substract 2π from θ to obtain the approximate
value of Arg(z) is −2.159. To be precise, Arg(z) = tan−1(3/2)− π and

arg(z) = tan−1(3/2)− π + 2πZ.

At this point it is useful to introduce a notation which simultaneously captures sine and cosine and
their appearance in the formulas at the beginning of this section. What follows here is commonly
known as Euler’s formula. Incidentally, it is mentioned in [E91] (page 60) that this formula
appeared in Euler’s writings in 1749 and the manner in which he wrote about it implicitly indicates
that Euler already understood the geometric interpretation of C as a plane. It fell to nineteenth
century mathematicians such as Gauss to clarify and demystify C. It was Gauss who first called
C complex numbers in 1831 [E91]( page 61). This is what Gauss had to say about the term
”imaginary” in a letter from 1831 [E91]( page 62)

It could be said in all this that so long as imaginary quantities were still based on a
fiction, they were not, so to say, fully accepted in mathematics but were regarded rather
as something to be tolerated; they remained far from being given the same status as
real quantities. There is no longer any justification for such discrimination now that
the metaphysics of imaginary numbers has been put in a true light and that it has been
shown that they have just as good a real objective meaning as the negative numbers.

I only wish the authority of Gauss was properly accepted by current teachers of mathematics. It
seems to me that the education of precalculus students concerning complex numbers is far short of
where it ought to reach. Trigonometry and two dimensional geometry are both greatly simplified
by the use of complex notation.

Definition 1.3.4. Let θ ∈ R and define the imaginary exponential denoted eiθ by:

eiθ = cos θ + i sin θ.

For z 6= 0, if z = |z|eiθ then we say |z|eiθ is a polar form of z.

The polar form is not unique unless we restrict the choice of θ.

Example 1.3.5. Let z = −1 + i then |z| =
√

2 and Arg(z) = 3π
4 . Thus, −1 + i =

√
2ei

3π
4 .

Example 1.3.6. If z = i then |z| = 1 and Arg(z) = π
2 hence i = ei

π
2 .

Properties of the imaginary exponential follow immediately from corresponding properties for sine
and cosine. For example, since sine and cosine are never zero at the same angle we know eiθ 6= 0.
On the other hand, as cos(0) = 1 and sin(0) = 0 hence e0 = cos(0) + i sin(0) = 1 (if this were not
the case then the notation of eiθ would be dangerous in view of what we know for exponentials on
R). The imaginary exponential also supports the law of exponents:

eiθeiβ = ei(θ+β).

This follows from the known adding angle formulas cos(θ + β) = cos(θ) cos(β) − sin(θ) sin(β) and
sin(θ + β) = sin(θ) cos(β) + cos(θ) sin(β). However, the imaginary exponential does not behave
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exactly the same as the real exponentials. It is far from injective8 In particular, we have 2π-
periodicity of the imaginary exponential function: for each k ∈ Z,

ei(θ+2πk) = eiθ.

This follows immediately from the definition of the imaginary exponential and the known trigono-
metric identities: cos(θ + 2πk) = cos(θ) and sin(θ + 2πk) = cos(θ) for k ∈ Z. Given the above, we
have the following modication of the 1− 1 principle from precalculus:

eiθ = eiβ ⇒ θ − β ∈ 2πZ.

Example 1.3.7. To solve e3i = eiθ yields 3− θ = 2πk for some k ∈ Z. Therefore, the solutions of
the given equation are of the form θ = 3− 2πk for k ∈ Z.

In view of the addition rule for complex exponentials the multiplication of complex numbers in
polar form is very simple:

Example 1.3.8. Let z = reiθ and w = seiβ then

zw = reiθseiβ = rsei(θ+β).

We learn from the calculation above that the product of two complex numbers has a simple geo-
metric meaning in the polar notation. The magnitude of |zw| = |z||w| and the angle of zw is simply
the sum of the angles of the products. To be careful, we can show:

arg(zw) = arg(z) + arg(w)

where the addition of sets is made in the natural manner9:

arg(z) + arg(w) = {θ′ + β′ | θ′ ∈ arg(z), β′ ∈ arg(w)}.

If we multiply z 6= 0 by eiβ then we rotate z = |z|eiθ to zeiβ = |z|ei(θ+β). It follows that
multiplication by imaginary exponentials amounts to rotating points in the complex plane.
The formulae below can be derived by an inductive argument and the addition law for imaginary
exponentials.

Theorem 1.3.9. de Moivere’s formulae let n ∈ N and θ ∈ R then (eiθ)n = einθ.

To appreciate this I’ll present n = 2 as Gamelin has n = 3.

Example 1.3.10. De Moivere gives us (eiθ)2 = e2iθ but eiθ = cos θ + i sin θ thus squaring yields:

(cos θ + i sin θ)2 = cos2 θ − sin2 θ + 2i cos θ sin θ.

However, the definition of the imaginary exponential gives e2iθ = cos(2θ) + i sin(2θ). Thus,

cos2 θ − sin2 θ + 2i cos θ sin θ = cos(2θ) + i sin(2θ).

Equating the real and imaginary parts separately yields:

cos2 θ − sin2 θ = cos(2θ), & 2 cos θ sin θ = sin(2θ).
8or 1-1 if you prefer that terminology, the point is multiple inputs give the same output.
9Let S, T ⊆ C and c ∈ C then we define

cS = {cs | s ∈ S} c+ S = {c+ s | s ∈ S} S + T = {s+ t | s ∈ S, t ∈ T}.
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These formulae of de Moivere were discovered between 1707 and 1738 by de Moivere then in 1748
they were recast in our present formalism by Euler [R91] see p. 150. Incidentally, page 149 of [R91]
gives a rather careful justification of the polar form of a complex number which is based on the
application of function theory10. I have relied on your previous knowledge of trigonometry which
may be very non-rigorous. In fact, I should mention, at the moment eiθ is simply a convenient
notation with nice properties, but, later it will be the inevitable extension of the real exponential
to complex values. That mature viewpoint only comes much later as we develop a large part of
the theory, so, in the interest of not depriving us of exponentials until that time I follow Gamelin
and give a transitional definition. It is important we learn how to calculate with the imaginary
exponential as it is ubiquitous in examples throughout our study.

Definition 1.3.11. Suppose n ∈ N and w, z ∈ C such that zn = w then z is an n-th root of w.
The set of all n-th roots of w is (by default) denoted w1/n.

The polar form makes quick work of the algebra here. Suppose w = ρeiφ and z = reiθ such that
zn = w for some n ∈ N. Observe, zn = (reiθ)n = rn(eiθ)n = rneinθ hence we wish to find all
solutions of:

rneinθ = ρeiφ ? .

Take the modulus of the equation above to find rn = ρ hence r = n
√
ρ where we use the usual

notation for the (unique) n-th positive root of r > 0. Apply r = n
√
ρ to ? and face what remains:

einθ = eiφ.

We find nθ − φ ∈ 2πZ. Thus, θ = 2πk+φ
n for some k ∈ Z. At first glance, you might think there

are infinitely many solutions ! However, it happens11 as k ranges over Z notice that eiθ simply we
cycles back to the same solutions over and over. In particular, if we restrict to k ∈ {0, 1, 2, . . . , n−1}
it suffices to cover all possible n-th roots of w:

(ρeiφ)1/n =
{

n
√
ρei

φ
n , n
√
ρei

2π+φ
n , . . . , n

√
ρei

2π(n−1)+φ
n

}
?2 .

We can clean this up a bit. Note that 2πk+φ
n = 2πk

n + φ
n hence

ei
2πk+φ
n = ei(

2πk
n

+φ
n) = ei

2πk
n ei

φ
n =

(
ei

2π
n

)k
ei
φ
n

The term raised to the k-th power is important. Notice that once we have one element in the set
of n-roots then we may generate the rest by repeated multiplication by ei

2π
n .

Definition 1.3.12. Suppose n ∈ N then ω = ei
2π
n is an primitive n-th root of unity. If zn = 1

then we say z is an n-th root of unity.

In terms of the language above, every n-th root of unity can be generated by raising the primitive
root to some power between 0 and n− 1. Returning once more to ?2 we find, using ω = ei

2π
n :

(ρeiφ)1/n =
{

n
√
ρei

φ
n , n
√
ρei

φ
nω, n

√
ρei

φ
nω2, . . . , n

√
ρei

φ
nωn−1

}
.

We have to be careful with some real notations at this juncture. For example, it is no longer ok
to conflate n

√
x and x1/n even if x ∈ (0,∞). The quantity n

√
x is, by definition, w ∈ R such that

wn = x. However, x1/n is a set of values ! (unless we specify otherwise for a specific problem)

10in Remmert’s text the term ”function theory” means complex function theory
11it is very likely I prove this assertion in class via the slick argument found on page 150 of [R91].
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Example 1.3.13. The primitive fourth root of unity is ei
2π
4 = ei

π
2 = cosπ/2 + i sinπ/2 = i. Thus,

noting that 1 = 1e0 we find:

11/4 = {1, i, i2, i3} = {1, i,−1,−i}

Geometrically, these are nicely arranged in perfect symmetry about the unit-circle.

Example 1.3.14. Building from our work in the last example, it is easy to find (3 + 3i)1/4. Begin

by noting |3+3i| =
√

18 and Arg(3+3i) = π/4 hence 3+3i =
√

18eiπ/4. Thus, note
4
√√

18 = 8
√

18

(3 + 3i)1/4 = { 8
√

18eiπ/16, i
8
√

18eiπ/16,− 8
√

18eiπ/16,−i 8
√

18eiπ/16}.

which could also be expressed as:

(3 + 3i)1/4 = { 8
√

18eiπ/16,
8
√

18e5iπ/16,
8
√

18e9iπ/16,
8
√

18e13iπ/16}.

Example 1.3.15. (−1)1/5 is found by noting e2πi/5 is the primitive 5-th root of unity and −1 = eiπ

hence
(−1)1/5 = {eiπ/5, eiπ/5ω, eiπ/5ω2, eiπ/5ω3, eiπ/5ω4}.

Add a few fractions and use the 2π-periodicity of the imaginary exponential to see:

(−1)1/5 = {eiπ/5, e3πi/5, e5πi/5, e7πi/5, e9πi/5} = {eiπ/5, e3πi/5,−1, e−3πi/5, e−πi/5}.

We can use the example above to factor p(z) = z5 + 1. Notice p(z) = 0 implies z ∈ (−1)1/5. Thus,
the zeros of p are precisely the fifth roots of −1. This observation and the factor theorem yield:

p(z) = (z + 1)(z − eiπ/5)(z − e−iπ/5)(z − e3iπ/5)(z − e−3iπ/5).

If you start thinking about the pattern here (it helps to draw a picture which shows how the roots
of unity are balanced below and above the x-axis) you can see that the conjugate pair factors for
p(z) are connected to that pattern. Furthermore, if you keep digging for patterns in factoring
polynomials these appear again whenever it is possible. In particular, if n ∈ 1 + 2Z then −1 is a
root of unity and all other roots are arranged in conjugate pairs.

The words below are a translation of the words written by Galois the night before he died in a duel
at the age of 21:

Go to the roots of these calculations! Group the operations. Classify them according
to their complexities rather than their appearances! This, I believe, is the mission of
future mathematicians. This is the road on which I am embarking in this work.

Galois’ theory is still interesting. You can read about it in many places. For example, see Chapter
14 of Dummit and Foote’s Abstract Algebra.
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Chapter 2

Functions of a complex variable

A function from f : S → T is a single-valued assignment of f(s) ∈ T for each s ∈ S. This
clear definition of function was not clear until the middle of the nineteenth century. It is true that
the term originates with Leibniz in 1692 to (roughly) describe magnitudes which depended on the
point in question. Then Euler saw fit to call any analytic expression built from variables and some
constants a function. In other words, Euler essentially defined a function by its formula. However,
later, Euler did discuss an idea of an arbitrary function in his study of variational calculus. The
clarity to state the modern definition apparently goes to Dirichlet. In 1837 he wrote:

It is certainly not necessary that the law of dependence of f(x) on x be the same
throughout the interval; in fact one need not even think of the dependence as given by
explicit mathematical operations.

See [R91] pages 37-38 for more detailed references.

2.1 The Square and Square Root Functions

The title of this section is quite suspicious given our discussion of the n-th roots of unity. We learned
that z1/2 is not a function because it is double-valued. Therefore, to create a function based on
z1/2 we must find a method to select one of the values. Gamelin spends several paragraphs to
describe how w = z2 maps half of the z-plane onto all of the w-plane except the negative real axis.
In particular, he explains how {z ∈ C | Re(z) > 0} maps to the slit-plane defined below:

Definition 2.1.1. The (negative) slit plane is defined as C− = C− (−∞, 0]. Explicitly,

C− = C− {z ∈ C | Re(z) ≤ 0, Im(z) = 0}.

We also define the positive slit plane

C+ = C− {z ∈ C | Re(z) ≥ 0, Im(z) = 0}.

Generically, when a ray is removed from C the resulting object is called a slit-plane. We mostly
find use of C− since it is tied to the principle argument function. Let us introduce some notation
to sort out what is said in this section. Mostly we need function notation and the concept of a
restriction.

Definition 2.1.2. Let S ⊆ C and f : S → C a function. If U ⊆ S then we define the restriction
of f to U to be the function f |U : U → C where f |U (z) = f(z) for all z ∈ U .

13
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Often a function is not injective on its domain, but, if we make a suitable restriction of the domain
then an inverse function exists. In calculus I call this a local inverse of the function. In the context
of complex analysis, the process of restricting the domain such that the range of the restriction
does not multiply cover C is known as making a branch cut. The reason for that terminology is
manifest in the pictures on page 17 of Gamelin. In what follows I show how a different branch of
the square root may be selected.

Example 2.1.3. Let f : C → C be defined by f(z) = z2. Suppose we wish to make a branch cut
of z1/2 along [0,∞). This would mean we wish to delete the postive real axis from the range of
the square function. Let us denote C+ = C − [0,∞). The deletion of [0,∞) means we need to
eliminate z which map to the positive real axis. This suggests we limit the argument of z such that
Arg(z2) 6= 0. In particular, let us define U = {z ∈ C | Im(z) > 0}. This is the upper half plane.
Notice if z ∈ U then Arg(z) ∈ (0, π). That is, z ∈ U implies z = |z|eiθ for 0 < θ < π. Note:

f |U (z) = z2 =
(
|z|eiθ

)2
= |z|2e2iθ

Observe 0 < 2θ < 2π hence Arg(z2) ∈ (−π, 0) ∪ (0, π]. To summarize, if z ∈ U and w = z2 then
w ∈ C+. Furthermore, we can provide a nice formula for f3 = (f |U )−1 : C+ → U . For ρeiφ ∈ C+

where 0 < φ < 2π,
f3(ρeiφ) =

√
ρeiφ/2.

We could also use the lower half-plane to map to C+. Let V = {z ∈ C | − π < Arg(z) < 0}
and notice for z ∈ V we have z2 = |z|2e2iθ. Thus, once again the standard angle of w = z2 takes
on all angles except θ = 0. This is awkwardly captured in terms of the principal argument as
Arg(w) ∈ (−π, 0) ∪ (0, π]. Define f4 = (f |V )−1 : C+ → V for ρeiφ ∈ C+ where 0 < φ < 2π by

f4(ρeiφ) = −√ρeiφ/2.

Together, the ranges of f3 and f4 cover almost the whole z-plane. You can envision how to draw
pictures for f3 and f4 which are analogus to those given for the principal branch and its negative.

It is customary to use the notation
√
w for the principal branch. Likewise, for other root functions

the same convention is made:

Definition 2.1.4. The principal branch of the n-th root is defined by:

n
√
w = n

√
|w|ei

Arg(w)
n

for each w ∈ C×.

Notice that ( n
√
w)n =

(
n
√
|w|ei

Arg(w)
n

)n
= |w|eiArg(w) = w. Therefore, f(z) = zn has a local inverse

function given by the principal branch. The range of the principal branch function gives the domain
on which the principal branch serves as an inverse function. Since −π < Arg(w) < π for w ∈ C−
it follows that −π/n < Arg(w)/n < π/n. Thus, the principal branch serves as the inverse function
of f(z) = zn for z ∈ C× with −π/n < Arg(z) < π/n. In general, it will take n-branches to cover
the z-plane. We can see those arising from rotating the sector centered about zero by the primitive
n-th root. Notice this agrees nicely with what Gamelin shows for n = 2 in the text as the primitive
root of unity in the case of n = 2 is just −1 and we obtain the second branch by merely multiplying
by −1. This is still true for non-principal branches as I introduce below.
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Honestly, to treat this problem in more generality it is useful to introduce other choices for ”Arg”.
I’ll introduce the notation here so we have it later if we need it1.

Definition 2.1.5. The α-Argument for α ∈ R is denoted Argα : C× → [α, α+2π). In particular,
for each z ∈ C× we define Argα(z) ∈ arg(z) such that z ∈ (α, α+ 2π).

Unfortunately, Arg−π 6= Arg since Arg−π has −π in its range whereas Arg has range without −π.
To be clear, Range(Arg) = (−π, π] whereas Range(Arg−π) = [−π, π). In retrospect, we could use
Arg0 : C× → [0, 2π) to construct the branch-cut f3 from Example 2.1.3:

f3(w) =
√
|w|eiArg0(w)/2 for w ∈ C+ = C− [0,∞).

We can use the modified argument function above to give branch-cuts for the n-th root function
which delete the ray at standard angle α. These correspond to local inverse functions for f(z) = zn

restricted to {z ∈ C× | arg(z) = (α/n, (α+ 2π)/n) + 2πZ}.

Riemann Surfaces: if we look at all the branches of the n-root then it turns out we can sew them
together along the branches to form the Riemann surface R. Imagine replacing the w-plane C with
n-copies of the appropriate slit plane attached to each other along the branch-cuts. This separates
the values of f(z) = zn hence f : C → R is invertible. The idea of replacing the codomain of
C with a Riemann surface constructed by weaving together different branches of the function is a
challenging topic in general. I suspect this article by Teleman on Riemann surfaces is a good place
to start.

2.2 The Exponential Function

In this section we extend our transitional definition for the exponential to complex values. What
follows is simply the combination of the real and imaginary exponential functions:

Definition 2.2.1. The complex exponential function is defined by z 7→ ez where for each
z ∈ C we define ez = eRe(z)eIm(z). In particular, if x, y ∈ R and z = x+ iy,

ez = ex+iy = exeiy = ex (cos(y) + i sin(y)) .

When convenient, we also use the notation ez = exp(z) to make the argument of the exponential
more readable. 2. Consider, as |eiy| =

√
eiye−iy =

√
e0 = 1 we find

|ez| = |exeiy| = |ex||eiy| = |ex| = ex.

The magnitude of the complex exponential is unbounded as x → ∞ whereas the magnitude ap-
proaches zero as x→ −∞. If z = x+ iy then arg(ex+iy) = {y + 2πk | k ∈ Z}. Since ex+iy = exeiy

it is clear that ex does not change the direction of ex+iy; arg(ex+iy) = arg(eiy).

Observe domain(ez) = C however range(ez) = C× as we know eiy 6= 0 for all y ∈ R. Furthermore,
the complex exponential is not injective precisely because the imaginary exponential is not injective.
If two complex exponentials agree then their arguments need not be equal. In fact:

ez = ew ⇔ z − w ∈ 2πiZ.
1this is due to §26 of Brown and Churchill you can borrow from me if you wish
2 Notice, we have not given a careful definition of ex here for x ∈ R. We assume, for now, the reader has some

base knowledge from calculus which makes the exponential function at least partly rigorous. Later in this our study
we find a definition for the exponential which supercedes the one given here and provides a rigorous underpinning for
all these fun facts

https://math.berkeley.edu/~teleman/math/Riemann.pdf
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Moreover, ez = 1 iff z = 2πik for some k ∈ Z. The complex exponential function is a 2πi-periodic
function; ez+2πi = ez. We also have

ez+w = ezew & (ez)−1 = 1/ez = e−z.

The proof of the addition rule above follows from the usual laws of exponents for the real exponential
function as well as the addition rules for cosine and sine which give the addition rule for imaginary
exponentials. Of course, eze−z = ez−z = e0 = 1 shows 1/ez = e−z but it is also fun to work it out
from our previous formula for the reciprocal 1/z = z/|z|2. We showed |ex+iy| = ex hence:

1

ez
=
exe−iy

(ex)2
= e−xe−iy = e−(x+iy) = e−z.

As is often the case, the use of x, y notation clutters the argument.

To understand the geometry of z 7→ ez we study how the exponential maps the z-plane to the
w = u+ iv-plane where w = ez. Often we look at how lines or circles transform. In this case, lines
work well. I’ll break into cases to help organize the thought:

1. A vertical line in the z = x + iy-plane has equation x = xo whereas y is free to range
over R. Consider, exo+iy = exoeiy. As y-varies we trace out a circle of radius exo in the
w = u+ iv-plane. In particular, it has equation u2 + v2 = (exo)2.

2. A horizontal line in the z = x + iy-plane has equation y = yo whereas x is free to range
over R. Consider, ex+iyo = exeiyo . As x-varies we trace out a ray at standard angle yo in the
w-plane.

If you put these together, we see a little rectangle [a, b]× [c, d] in the z-plane transforms to a little
sector in the w-plane with |w| ∈ [ea, eb] and Arg(w) ∈ [c, d] (assuming [c, d] ⊆ (−π, π] otherwise
we’d have to deal with some alternate argument function). See Figure 5.3 at this website.

2.3 The Logarithm Function

As we discussed in the previous section, the exponential function is not injective. In particular,
ez = ez+2πi hence as we study z 7→ w = ez we find each horizontal strip R × (yo, y + 2π) maps to
C×−{w ∈ C | arg(w)∩{yo}. In other words, we map horizontal strips of height 2π to the slit-plane
where the slit is at standard angle yo. To cover C− we map the horizontal strip R× (−π, π) to C−.
This gives us the principal logarithm

Definition 2.3.1. The principal logarithm is defined by Log(z) = ln(|z|) + iArg(z) for each
z ∈ C×. In particular, for z = |z|eiθ with −π < θ ≤ π we define:

Log(x+ iy) = ln |z|+ iθ.

We can also simplify the formula by the power property of the real logarithm to

Log(x+ iy) =
1

2
ln(x2 + y2) + iArg(x+ iy).

Notice: we use ”ln” for the real logarithm function. In contrast, we reserve the notations ”log”
and ”Log” for complex arguments. Please do not write ln(1 + i) as in our formalism that is just
nonsense. There is a multiply-valued function of which this is just one branch. In particular:

http://mathfaculty.fullerton.edu/mathews/c2003/ComplexFunExponentialMod.html
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Definition 2.3.2. The logarithm is defined by log(z) = ln(|z|) + iarg(z) for each z ∈ C×. In
particular, for z = x+ iy 6= 0

log(x+ iy) =
{

ln
√
x2 + y2 + i[Arg(x+ iy) + 2πk] | k ∈ Z

}
.

Example 2.3.3. To calculate Log(1 + i) we change to polar form 1 + i =
√

2eiπ/4. Thus

Log(1 + i) = ln
√

2 + iπ/4.

Note arg(1 + i) = π/4 + 2πZ hence

log(1 + i) = ln
√

2 + iπ/4 + 2πiZ.

There are many values of the logarithm of 1 + i. For example, ln
√

2 + 9iπ/4 and ln
√

2− 7iπ/4 are
also a logarithms of 1 + i. These are the beginnings of the two tails3 which Gamelin illustrates on
page 22.

We could use Argα as given in Definition 2.1.5 to define other branches of the logarithm. In
particular, a reasonable notation would be:

Logα(z) = ln |z|+ iArgα(z).

The set of values in log(z) is formed from the union of all possible values for Logα(z) as we vary α
over R. Notice, for z ∈ C− = C−(−∞, 0] we have Arg−π(z) = Arg(z) hence the principal logarithm
Log and Logα are the same function on C−. However, Log(−1) = iπ whereas Log−π(−1) = −iπ.

Finally, let us examine how the logarithm does provide an inverse for the exponential. If we
restrict to a particular branch then the calculation is simple. For example, the principal branch,
let z ∈ R× (−π, π) and consider

eLog(z) = eln |z|+iArg(z) = eln |z|eiArg(z) = |z|eiArg(z) = z.

Conversely, for z ∈ C−,

Log(ez) = ln |ez|+ iArg(ez) = ln(eRe(z)) + iIm(z) = Re(z) + iIm(z) = z.

The discussion for the multiply valued logarithm requires a bit more care. Let z ∈ C×, by definition,

log(z) = {ln |z|+ i(Arg(z) + 2πk) | k ∈ Z}.

Let w ∈ log(z) and consider,

ew = exp (ln |z|+ i(Arg(z) + 2πk))

= exp (ln |z|+ i(Arg(z))

= exp(ln |z|)exp(i(Arg(z))

= |z|eiArg(z)

= z.

3 I can’t help but wonder, is there a math with more tails
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It follows that elog(z) = {z}. Sometimes, you see this written as elog(z) = z. if the author is not com-
mitted to viewing log(z) as a set of values. I prefer to use set notation as it is very tempting to use
function-theoretic thinking for multiply-valued expressions. For example, a dangerous calculation:

1 = −i2 = −ii = −(−1)1/2(−1)1/2 = −((−1)(−1))1/2 = −(1)1/2 = −1.

Wait. This is troubling if we fail to appreciate that 11/2 = {1,−1}. What appears as equality for
multiply-valued functions is better understood in terms of inclusion in a set. I will try to be explicit
about sets when I use them, but, beware, Gamelin does not share my passion for pedantics.

The trouble arises when we ignore the fact there are multiple values for a complex power function
and we try to assume it ought to behave as an honest, single-valued, function.

2.4 Power Functions

Definition 2.4.1. Let z, α ∈ C with z 6= 0. Define zα to be the set of values zα = exp(αlog(z)).

In particular,

zα = {exp(α[Log(z) + 2πik]) | k ∈ Z}.

However,

exp(α[Log(z) + 2πik]) = exp(α[Log(z))exp(2απik).

We have already studied the case α = 1/n. In that case exp(2απik) = exp(2απi/n) are the n-
roots of unity. In the case α ∈ Z the phase factor exp(2απik) = 1 and z 7→ zα is single-valued
with domain C. Generally, the complex power function is not single-valued unless we make some
restriction on the domain.

Example 2.4.2. Observe that log(3) = ln(3) + 2πiZ hence:

3i = ei log(3) = ei(ln(3)+2πiZ) = ei ln(3)e−2πZ.

In other words,

3i = [cos(ln(3)) + i sin(ln(3))]e−2πZ

= {[cos(ln(3)) + i sin(ln(3))]e−2πk | k ∈ Z}.

In this example, the values fall along the ray at θ = ln(3). As k →∞ the values approach the origin
whereas as k → −∞ the go off to infinity. I suppose we could think of it as two tails, one stretched
to ∞ and the other bunched at 0.

On page 25 Gamelin shows a similar result for ii. However, as was known to Euler [R91] (p. 162),
there is a real value of ii. In a letter to Goldbach in 1746, Euler wrote:

Recently I have found that the expression (
√
−1)

√
−1 has a real value, which in decimal

fraction form = 0.2078795763; this seems remarkable to me.

On pages 160-165 of [R91] a nice discussion of the general concept of a logarithm is given. The
problem of multiple values is dealt directly with considerable rigor.
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2.5 Trigonometric and Hyperbolic Functions

If you’ve taken calculus with me then you already know that for θ ∈ R the formulas:

cos θ =
1

2

(
eiθ + e−iθ

)
& sin θ =

1

2i

(
eiθ − e−iθ

)
are of tremendous utility in the derivation of trigonometric identities. They also set the stage for
our definitions of sine and cosine on C:

Definition 2.5.1. Let z ∈ C. We define:

cos z =
1

2

(
eiz + e−iz

)
& sin z =

1

2i

(
eiz − e−iz

)
All your favorite algebraic identities from real trigonometry hold here, unless, you are a fan of
| sin(x)| ≤ 1 and | cos(x)| ≤ 1. Those are not true for the complex sine and cosine. In particular,
note:

ei(x+iy) = eixe−y & e−i(x+iy) = e−ixey

Hence,

cos(x+ iy) =
1

2

(
eixe−y + e−ixey

)
& sin(x+ iy) =

1

2i

(
eixe−y − e−ixey

)
Clearly as |y| → ∞ the moduli of sine and cosine diverge. I present explicit formulas for the moduli
of sine and cosine later in terms of the hyperbolic functions.

I usually introduce hyperbolic cosine and sine as the even and odd parts of the exponential function:

ex =
1

2

(
ex + e−x

)
︸ ︷︷ ︸

cosh(x)

+
1

2

(
ex − e−x

)
︸ ︷︷ ︸

sinh(x)

.

Once again, the complex hyperbolic functions are merely defined by replacing the real variable x
with the complex variable z:

Definition 2.5.2. Let z ∈ C. We define:

cosh z =
1

2

(
ez + e−z

)
& sinh z =

1

2

(
ez − e−z

)
.

The hyperbolic trigonometric functions and the circular trigonometric functions are linked by the
following simple identities:

cosh(iz) = cos(z) & sinh(iz) = i sin(z)

and

cos(iz) = cosh(z) & sin(iz) = i sinh(z).

Return once more to cosine and use the adding angle formula (which holds in the complex domain
as the reader is invited to verify)

cos(x+ iy) = cos(x) cos(iy)− sin(x) sin(iy) = cos(x) cosh(y)− i sin(x) sinh(y)
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and
sin(x+ iy) = sin(x) cos(iy) + cos(x) sin(iy) = sin(x) cosh(y) + i cos(x) sinh(y).

In view of these identities, we calculate the modulus of sine and cosine directly,

| cos(x+ iy)|2 = cos2(x) cosh2(y) + sin2(x) sinh2(y)

| sin(x+ iy)|2 = sin2(x) cosh2(y) + cos2(x) sinh2(y).

However, cosh2 y − sinh2 y = 1 hence

cos2(x) cosh2(y) + sin2(x) sinh2(y) = cos2(x)[1 + sinh2(y)] + sin2(x) sinh2(y)

= cos2(x) + [cos2(x) + sin2(x)] sinh2(y)

= cos2(x) + sinh2(y).

A similar calculation holds for | sin(x+ iy)|2 and we obtain:

| cos(x+ iy)|2 = cos2(x) + sinh2(y) & | sin(x+ iy)|2 = sin2(x) + sinh2(y).

Notice, for y ∈ R, sinh(y) = 0 iff y = 0. Therefore, the only way the moduli of sine and cosine can
be zero is if y = 0. It follows that only zeros of sine and cosine are precisely those with which we
are already familar on R. In particular,

sin(πZ) = {0} & cos

(
2Z + 1

2
π

)
= {0}.

There are pages and pages of interesting identities to derive for the functions introduced here.
However, I resist. In part because they make nice homework/test questions for the students. But,
also, in part because a slick result we derive later on forces identities on R of a particular type to
necessarily extend to C.

Definition 2.5.3. Tangent and hyperbolic tangent are defined in the natural manner:

tan z =
sin z

cos z
& tanh z =

sinh z

cosh z
.

The domains of tangent and hyperbolic tangent are simply C with the zeros of the denominator
function deleted. In the case of tangent, domain(tan z) = C−

(
2Z+1

2

)
π.

Inverse Trigonometric Functions: consider f(z) = sin z then as sin(z + 2πk) = sin(z) for all
k ∈ Z we see that the inverse of sine is multiply-valued. If we wish to pick one of those values we
should study how to solve w = sin z for z. Note:

2iw = eiz − e−iz

multiply by eiz to obtain:
2iweiz = (eiz)2 − 1.

Now, substitute η = eiz to obtain:

2iwη = η2 − 1 ⇒ 0 = η2 − 2iwη − 1.

Completing the square yields,

0 = (η − iw)2 + w2 − 1 ⇒ (η − iw)2 = 1− w2.



2.5. TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 21

Consequently, η− iw ∈ (1−w2)1/2 which in terms of the principal root implies η = iw±
√

1− w2.
But, η = eiz so we find:

eiz = iw ±
√

1− w2.

There are many solutions to the equation above which are by custom included in the multiply-valued
inverse sine mapping below:

z = sin−1(w) = −i log(iw ±
√

1− w2).

Usually in an application where the above expression was found the context would guide us to choose

a particular logarithm. For example, for appropriate w we could study z = −iLog
(
iw +

√
1− w2

)
and find sin z = w for z so-defined.

Once again, the problem of defining an inverse sine function requires we reduce the domain of
sine to a set which is small enough that sine is injective. The problem of ambiguity in defining an
inverse sine function was already present in the context of the real sine function. It is our custom
that range sin−1 = [−π/2, π/2], but this is just one of an infinitely many choices. Notice the sine
function is injective going from any peak to valley of the sine graph. We could just as well have
defined range sin−1 = [π/2, 3π/2] then inverse sine would be the honest inverse of sine restricted to
[π/2, 3π/2]. Why not? To quote my littlest brother when he was little: cause be why.
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Chapter 3

Numbers

The idea of a number is probably more general than you realize. The sort of numbers we introduce
in this chapter are still relatively simple compared to other popular abstract number systems. For
example, I have nothing here to say about pyadic, hyperreal or surreal numbers. Not to mention
number fields of finite characteristic. All of the aforementioned topics have a vast literature which
was largely authored in the past century. Instead, our concept of number in this work is more
closely aligned with the structure we have already seen in C. Are numbers form what is known as
a real associative algebra of finite dimension. Such algebras used to be known as linear algebras,
but that term is not in modern usage. The history of real associative algebras includes complex
numbers and famously Hamilton’s quaternions. However, the algebras I share in these notes are
less known to the mathematics community of this century. One of my goals is to understand what
we are missing by largely ignoring such number systems in our standard curriculum.

This Chapter is an attempt at simplifying my presentation in Section 4 of Introduction to A-
Calculus, https://arxiv.org/abs/1708.04135. In particular, I simply assume as a point set A = Rn
in this Chapter and use only the standard basis. For those students who have had linear algebra
the presentation in my article follows the basis-dependence of the concepts introduced here.

3.1 Real Associative Algebra

A vector space paired with a multiplication forms an algebra. We assume the vector space is Rn
for the sake of keeping the presentation elementary as possible here.

Definition 3.1.1. Let A = Rn paired with a function ? : A×A → A which is called multiplica-
tion. In particular, the multiplication map satisfies the properties below:

(i.) bilinear: (cx+ y) ? z = c(x ? z) + y ? z and x ? (cy + z) = c(x ? y) + x ? z for all x, y, z ∈ A
and c ∈ R,

(ii.) associative: for which x ? (y ? z) = (x ? y) ? z for all x, y, z ∈ A and,

(iii.) unital: there exists 1 ∈ A for which 1 ? x = x and x ? 1 = x.

We say x ∈ A is an A-number. If x ? y = y ? x for all x, y ∈ A then A is commutative.

When there is no ambiguity we use 1 = 1 and we replace ? with juxtaposition; xy = x ? y. We
assume A is an associative algebra of finite dimension over R throughout the remainder of this
paper. In the commutative case there is no need to distinguish between left and right properties.

23
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However, we allow the possibility that A be noncommutative at this point in our development.

Given an algebra A we can trade it for a set of equivalent matrices denoted MA or left-multiplication
maps which we denote by RA. Let us describe how this trade is made1.

Definition 3.1.2. If Lα : A → A is defined by Lα(x) = α ? x for all x ∈ A then Lα is a left-
multiplication map. We let RA denote the regular representation of A which is defined to
be the set of all left-multiplication maps on A.

A mapping T : A → A is said to be right-A-linear if T (x ? y) = T (x) ? y for all x, y ∈ A. It turns
out this is just another way of looking at left-multiplication maps2.

Proposition 3.1.3. A map T : A → A is right-A-linear if and only if T ∈ RA.

Proof: suppose T : A → A is right-A-linear. Notice x = 1 ? x thus for all x ∈ A hence T (x) =
T (1 ?x) = T (1) ?x = LT (1)(x) and we find T = LT (1) which means T is the left-multiplication map
by T (1). Conversely, suppose T ∈ RA then there exists α ∈ A such that T = Lα. Let x, y ∈ A and
observe by associativity of A we find

T (x ? y) = Lα(x ? y) = α ? (x ? y) = (α ? x) ? y = Lα(x) ? y = T (x) ? y.

Thus T is right-A-linear and this concludes our proof. �

Now, let us suppose Lα ∈ RA then it is a simple exercise to show Lα is a linear transformation on
A = Rn. Suppose x, y ∈ A and c ∈ R then

Lα(cx+ y) = α ? (cx+ y) = cα ? x+ α ? y = cLα(x) + Lα(y)

We learn in Linear Algebra that a linear transformation on Rn can be represented by matrix
multiplication via the standard matrix. In particular if T : Rn → Rn is a linear transformation then
[T ] ∈ Rn×n denotes the standard matrix of T and T (x) = [T ]x for all x ∈ Rn. Here [T ]x is the
multiplication of the square n× n matrix [T ] with the n× 1 column vector x. Let me give a brief
example for those who have not taken linear algebra. This example also serves to illustrate the
conventions I use for typsetting column vectors.

Example 3.1.4. The map T (x, y) = (x+ 2y, 3x+ 4y) is linear and

T (x, y) =

[
x+ 2y
3x+ 4y

]
=

[
1 2
3 4

] [
x
y

]
⇒ [T ] =

[
1 2
3 4

]
.

The standard matrix is also found by evaluating T on the standard basis e1 = (1, 0) and e2 = (0, 1):

[T ] = [T (e1)|T (e2)] = [T (1, 0)|T (0, 1)] = [(1, 3)|(2, 4)] =

[
1 2
3 4

]
.

1I should mention another way to define a regular representation is to consider the structure constants Cijk
defined implicitly by ei ? jj =

∑
i,j,k Cijkek. The matrix Ri defined by (Ri)kj = Cijk is in the first fundamental

representation, Si defined by (Sj)ik = Cijk is in the second fundamental representation and finally (Qk)ij = Cijk
defines a paraisotropic matrix of the algebra. If you enjoy this way of thinking then I would encourage you to read
the literature of hypercomplex analysis written by Ward and Wagner. See [ward1940, ward1952, wagner1948].

2The property of right-A-linearity will be important to future Chapters
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In general, if T : Rn → Rn is a linear transformation then the standard matrix of T is the n× n
matrix [T ] = [T (e1)|T (e2)| · · · |T (en)] where3 (ei)j = δij is the standard basis for Rn. When we
calculate the standard matrix of a left-multiplication map the resulting matrix is part of the matrix
representation of A.

Definition 3.1.5. The matrix representation of A is the set of all standard matrices for left-
multiplication maps of A; MA = {[T ] | T ∈ RA}. Equivalently,

MA = {[α ? e1|α ? e2| · · · |α ? en] | α ∈ A}.

We also denote M(α) = [α ? e1|α ? e2| · · · |α ? en] and say M(α) represents α.

Observe that when e1 = 1 ∈ A the matrix representation is very simple to understand:

M(α) = [α|α ? e2| · · · |α ? en],

the first column of such a matrix representation fixes the remaining columns. In contrast, the
identity of the algebra is not e1 (or any other ej) in Examples 3.1.18 and 3.1.25. The next example
is a bit silly, but I think it is worth including:

Example 3.1.6. The real numbers with their usual addition and multiplication is an associative
algebra over R. If a ∈ R then [a] ∈ MR = R1×1 is its left regular representation. Usually we will
not distinguish between a and [a].

Model II of Section 1.2 is seen once more:

Example 3.1.7. We denote complex numbers by

a+ ib =

[
a
b

]
= a

[
1
0

]
+ b

[
0
1

]
= ae1 + be2

so our usual convention is 1 = e1 and i = e2. We calculate the representation of a+ ib as follows:

M(a+ ib) = [a+ ib|(a+ ib)i] = [a+ ib| − b+ ia] =

[
a −b
b a

]
.

If you know the formula for the 2× 2 inverse matrix then it is interesting to note: for a+ ib 6= 0,

(M(a+ ib))−1 =

[
a −b
b a

]−1

=
1

a2 + b2

[
a b
−b a

]
= M

(
a− ib
a2 + b2

)
= M

(
(a+ ib)−1

)
. (3.1)

That is, the multiplicative inverse of the representation of a complex number is the representation
of the multiplicative inverse of the number. Moreover, notice the formula makes sense whenever
a2 + b2 6= 0. In particular, only a = b = 0 is a problem. Only zero fails to have a multiplicative
inverse for C. In fact, the complex numbers form a field since they have the structure of a
commutative algebra and have the pleasant feature that every nonzero number has a multiplicative
inverse. The definition which follows gives us some less clumsy language to continue this discussion:

Definition 3.1.8. We say x ∈ A is a unit if there exists y ∈ A for which x ? y = y ? x = 1. The
set of all units is known as the group of units and we denote this by U(A). We say a ∈ A is
a zero-divisor if a 6= 0 and there exists b 6= 0 for which a ? b = 0 or b ? a = 0. We also denote
zd(A) = {x ∈ A | x = 0 or x is a zero-divisor}

3The notation δij is called the Kronecker delta, it is defined to be 1 if i = j and 0 if i 6= j.



26 CHAPTER 3. NUMBERS

Notice the following result puts rather strict restrictions on the possible geometries for zd(A).

Theorem 3.1.9. The set zd(A) is fixed under negation.

Proof: suppose x ∈ zd(A) then there exists y ∈ A for which x ? y = 0. Thus −x ? y = 0 and we
find −x ∈ zd(A). �

In a field there are no zero-divisors; every nonzero element in a field is a unit. Equation 3.1 shows
there is some connection between units of C and units of MC. In fact, we can say much more about
the interconnection of A and MA. I think the proof of the following makes good homework:

Theorem 3.1.10. Let A = Rn be a unital associative algebra and define the matrix representation
of A by M(α) = [Lα] for each α ∈ A then for x, y, z ∈ A and c ∈ R,

(i.) M(1) = I (here I denotes the identity matrix),

(ii.) M(cx+ y) = cM(x) + M(y),

(iii.) M(x ? y) = M(x)M(y).

In the language of abstract algebra, the result above means that M : A →MA is an isomorphism
of algebras. Isomorphisms allow transport of structure. Consider, if x ? y = 1 then by the above
theorem,

M(x ? y) = M(x)M(y) = M(1) = I ⇒ M(x)−1 = M(x−1) . (3.2)

Equation 3.1 is simply an example of this general feature of the representation map M. This
theorem requires a bit of matrix theory. In particular, we learn in linear algebra that a matrix is a
unit if and only if it has nonzero determinant. It follows we can determine the zero divisors of the
algebra by finding which matrices in MA have zero determinant.

Theorem 3.1.11. Let A = Rn be a unital associative algebra with matrix representation MA where
M(α) = [Lα] and M−1([Lα]) = α for each α ∈ A. Then,

(i.) U(A) = M−1 ({A ∈MA | det(A) 6= 0}),

(ii.) zd(A) = M−1 ({A ∈MA | det(A) = 0}).

Example 3.1.12. The hyperbolic numbers are given by H = R⊕ jR where j2 = 1. If a+ jb, c+
jd ∈ H then

(a+ jb)(c+ jd) = ac+ adj + jbc+ j2bd = ac+ bd+ j(ad+ bc).

Here we have e1 = 1 and e2 = j thus calculate

M(a+ bj) = [a+ bj|(a+ bj)j] = [a+ bj|b+ ja] =

[
a b
b a

]
.

Calculate det(M(a + bj)) = det

[
a b
b a

]
= a2 − b2 thus zd(H) = {a + bj | a2 = b2} whereas

U(H) = {a+ bj | a2 6= b2}. Using Equation 3.2we find the inverse of a unit in H is simply

1

a+ bj
=

a− bj
a2 − b2

. (3.3)

Ignoring Equation 3.2 for a moment, another way we could derive the above formula is by direct
algebra in the hyperbolic numbers. Notice the identity (a+ bj)(a− bj) = a2 − b2 given a2 − b2 6= 0
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allows us to normalize to obtain (a + bj)
(
a−bj
a2−b2

)
= 1. Notice H is not a field. There are many

nonzero hyperbolic numbers which fail to have multiplicative inverses. Geometrically, if z = x+ jy
is a point in the hyperbolic plane then we find the zero divisors along the lines y = ±x. Fascinating
things happen with these zero-divisors, they are usually tied to the more novel features of hyperbolic
analysis.

One last algebraic idea before I share my big list of examples. Sometimes two algebras are really
the same algebra given different notation.

Definition 3.1.13. Let A be an algebra with multiplication ? and B be an algebra with multiplication
� then A is isomorphic to B if there exists a linear bijection Ψ : A → B for which Ψ(x ? y) =
Ψ(x) �Ψ(y) for all x, y ∈ A.

Example 3.1.14. This discussion continues Example 3.1.12. Let B = R × R with (a, b)(c, d) =
(ac, bd) for all (a, b), (c, d) ∈ B. We can show that

Ψ(a, b) = a

(
1 + j

2

)
+ b

(
1− j

2

)
& Ψ−1(x+ jy) = (x+ y, x− y) (3.4)

provide an isomorphism of H and R× R. We can use this isomorphism to transfer problems from
H to B and vice-versa. For example, to solve z2 +Bz + C = 0 in the hyperbolic numbers we note

z2 +Bz + C = 0 ⇒ Ψ−1(z)2 + Ψ−1(B)Ψ−1(z) + Ψ−1(C) = 0 (3.5)

Setting Ψ−1(B) = (b1, b2) and Ψ−1(C) = (c1, c2) and Ψ−1(z) = (x, y) we arrive at

(x, y)2 + (b1, b2)(x, y) + (c1, c2) = 0 (3.6)

which reduces to

(x2 + b1x+ c1, y
2 + b2y + c2) = (0, 0). (3.7)

Of course, these are just quadratic equations in R so we can solve them and transfer back the result
to the general solution of z2 + Bz + C = 0 in H. Given this correspondence, we deduce there are
either zero, two or four solutions to the quadratic hyperbolic equation.

3.1.1 Examples

To explain the structure of complex numbers it suffices to say i2 = −1 and then just add and
multiply a + bi, c + di as usual. Of course, we can be more explicit in our construction if the
audience knows about field extensions or group algebras, but, as a starting point it is convenient
to provide definitions of algebras which are accessible to every level of student.

Example 3.1.15. The dual numbers are given by N = R⊕εR where ε2 = 0. If a+εb, c+εd ∈ N
then

(a+ εb)(c+ εd) = ac+ adε+ bcε+ ε2bd = ac+ (ad+ bc)ε. (3.8)

Observe M(a+ bε) =

[
a 0
b a

]
∈ MN and zd(N ) = {a+ bε | a2 = 0} = εR. The units in the dual

numbers are of the form a+ bε where a 6= 0. Note (a+ bε)(a− bε) = a2 hence 1
a+bε = a−bε

a2 provided
a 6= 0.
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For higher dimensional algebras the multiplicative inverse of a general element can be calculated
by computing the inverse of the element’s regular representation.

Example 3.1.16. The n-th order dual numbers are given by Nn = R⊕ εR⊕· · ·⊕ εn−1R where
εn = 0 and εk 6= 0 for 1 ≤ k ≤ n − 1. The regular representation is formed by lower triangular
matrices of a particular type:

M(a1 + a2ε+ · · ·+ anε
n−1) =


a1 0 · · · 0 0
a2 a1 · · · 0 0
...

...
. . .

...
...

an−1 an−2 · · · a1 0
an an−1 · · · a2 a1

 ∈ MNn (3.9)

Notice a1 + a2ε+ · · ·+ anε
n−1 ∈ zd(Nn) only if a1 6= 0.

Example 3.1.17. Let H3 = R⊕jR⊕j2R where j3 = 1. The matrix representatives of these numbers

have an interesting shape; note: A ∈ MA implies A =

 a c b
b a c
c b a

. We note an isomorphism

H3 ≈ R× C is given by mapping j to (1, ω) where ω is a third root of unity.

Example 3.1.18. Let A = R × H where 1 = (1, 1 + 0j). Let β = {(1, 0), (0, 1), (0, j)} gives
block-diagonal A ∈ MA(β);

Mβ((a, b+ cj)) =

 a 0 0
0 b c
0 c b

 . (3.10)

This algebra is isomorphic to R× R× R with (a1, a2, a3) ? (b1, b2, b3) = (a1b1, a2b2, a3b3).

Example 3.1.19. Let the 4-hyperbolic numbers be defined by H4 = R ⊕ jR ⊕ j2R ⊕ j3R where
j4 = 1. Observe,

M(a+ bj + cj2 + dj3) =


a d c b
b a d c
c b a d
d c b a

 . (3.11)

This algebra is naturally isomorphic to C⊕H which is clearly isomorphic to C× R× R.

In close analogy to the n-hyperbolic numbers Hn discussed above we discuss the n-complicated
numbers Cn in what follows. In the case n = 2 the complicated numbers are just C so we begin
with n = 3.

Example 3.1.20. Let C3 = R⊕ kR⊕ k2R where k3 = −1. Observe

M(a+ bk + ck2) =

 a −c −b
b a −c
c b a

 .
Example 3.1.21. Let C4 = R⊕ kR⊕ k2R⊕ k3R where k4 = −1. Observe

M(a+ bk + ck2) =


a −d −c −b
b a −d −c
c b a −d
d c b a

 .
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Example 3.1.22. Let A = H × H where 1 = (1 + 0j, 1 + 0j). This means (1, 1) is naturally
represented by the identity matrix. Set β = {(1, 0), (j, 0), (0, 1), (0, j)} and observe

Mβ((a+ bj, c+ dj)) =


a b 0 0
b a 0 0

0 0 c d
0 0 d c

 . (3.12)

This algebra is isomorphic to R×R×R×R with the Hadamard product (a1, a2, a3, a4)∗(b1, b2, b3, b4) =
(a1b1, a2b2, a3b3, a4b4).

Example 3.1.23. Let A = C × C where 1 = (1 + 0i, 1 + 0i). Here we study the problem of two
complex variables. In this algebra (1+0i, 1+0i) corresponds to the identity and hence (1, 1) is natu-
rally represented by the identity matrix. In total we have once more a block-diagonal representation:

A ∈ MA implies A =


a −b 0 0
b a 0 0

0 0 c −d
0 0 d c

 and this matrix represents (a+ bi, c+ di).

Example 3.1.24. Let H = R ⊕ iR ⊕ jR ⊕ kR where i2 = j2 = k2 = −1 and ij = k. These are
Hamilton’s famed quaternions. We can show ij = −ji hence these are not commutative. With
respect to the natural basis e1 = 1, e2 = i, e3 = j, e4 = k we find the matrix representative of
a+ ib+ cj + dk is as follows:

A =


a −b −c −d
b a −d c
c d a −b
d −c b a

 ∈ MH. (3.13)

Example 3.1.25. Let A = R4 with the multiplication ? induced from the multiplication of 2 × 2
matrices. This is a noncommutative algebra. In particular, this multiplication is induced in the
natural manner: [

a b
c d

] [
t x
y z

]
=

[
at+ by ax+ bz
ct+ dy cx+ dz

]
. (3.14)

It follows that (a, b, c, d) ? (t, x, y, z) = (at + by, ax + bz, ct + dy, cx + dz). We can read from this
multiplication that the representative of (a, b, c, d) ∈ A is given by

M(a, b, c, d) =


a 0 b 0
0 a 0 b

c 0 d 0
0 c 0 d

 =

[
aI bI

cI dI

]
∈ MA. (3.15)

Given how we invented the multplication defining A we expect the multiplicative identity for A is
given by (1, 0, 0, 1) since this corresponds to the identity matrix in our construction.

A group is a set paired with a multiplication for which every element is a unit. I don’t expect
you know much about what a group is in this course, but I think it’s important to mention the
following as a method of construction:
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Example 3.1.26. Let G be a finite multiplicative group; G = {g1, . . . , gn} then we define

AG = g1R⊕ · · · ⊕ gnR (3.16)

with natural multiplication inherited from G. For example, for all a, b, c, d ∈ R,

(ag1 + bg2)(cg3 + dg4) = acg1g3 + adg1g4 + bcg2g3 + bdg2g4. (3.17)

The group algebra allows us to multiply R-linear combinations of group elements by extending the
group multiplication linearly. By construction, {g1, . . . , gn} serves as a basis for AG. As G is a
group we know for each i, j ∈ {1, . . . , n} there exists k ∈ {1, . . . , n} for which gigj = gk. If we
define structure constants Cijk by gigj =

∑
l Cijlgl then gigj = gk implies Cijl = δkl.

Example 3.1.27. The cyclic group of order n in multiplicative notation has the form G =
{e, g, g2, . . . , gn−1}. The group algebra AG = eR ⊕ gR ⊕ · · · ⊕ gn−1R. We usually call this al-
gebra the n-hyperbolic numbers.

3.2 Real and Unreal Parts

We should generalize the terminology of real and imaginary part to algebras. It is convenient to
use the terminology of the dot-product to create a formula in that which follows. We remind the
reader that x • y = x1y1 + x2y2 + · · ·+ xnyn for all x, y ∈ Rn. Note the usual length ‖x‖ =

√
x •x.

Moreover, any vector x 6= 0 can be expressed at x = ‖x‖x̂ where ‖x̂‖ = 1 is a unit-vector. To
calculate the component of y in the direction of x we simply calculate y • x̂. Moreover, the vector-
projection of y onto x is given by Projx(y) = (y • x̂)x̂ =

( y •x
x •x

)
x. Hopefully we saw these ideas for

at least R3 in our multivariate calculus course. History aside, we use the idea of projection to select
the real part of a number in A in what follows:

Definition 3.2.1. Let A = Rn be an associative unital algebra with unity 1. If z ∈ A then the
real part of z is Re(z) which is defined by

Re(z) =

(
z •1

1 •1

)
1.

The unreal part of z is Ur(z) is likewise defined by Ur(z) = z −Re(z).

Notice z = Re(z) + Ur(z) for any z ∈ A. We should discuss the precise connection of this new
terminology for C. Consider

Ur(x+ iy) = iy = iIm(x).

It is amusing that the imaginary part of a complex number z = x + iy is by definition the real
number y.

Example 3.2.2. Let ζ = x + jy + j2z ∈ H3 then Re(ζ) = x and Ur(ζ) = jy + j2z. However, to
be clear, if we use notation ζ = (x, y, z) then Re(ζ) = (x, 0, 0) whereas Ur(ζ) = (0, y, z).

Example 3.2.3. For the direct product algebra R× R the unity is (1, 1) since (x, y)(1, 1) = (x, y)
for all (x, y) ∈ R× R. Notice (1, 1) • (1, 1) = 2 hence

Re(x, y) =
x+ y

2
(1, 1) =

(
x+ y

2
,
x+ y

2

)
& Ur(x, y) =

(
x− y

2
,
y − x

2

)
.

By our construction, Re(z) and Ur(z) are orthogonal (meaning Re(z) •Ur(z) = 0) and thus

‖z‖2 = ‖Re(z)‖2 + ‖Ur(z)‖2.

Indeed, ‖Re(z)‖ ≤ ‖z‖ and ‖Ur(z)‖ ≤ ‖z‖ is clear from the equation above.



Chapter 4

Topology and Analysis

Our goal in this chapter is to give a basic introduction to topology and analysis for Rn. We wish to
describe carefully terms such as open, closed,boundary,open ball,closed ball, deleted-open ball, inte-
rior, compact, connected, path-connected, continuous, limit point and ultimately limit. All of these
terms are defined in terms which ultimately rely on the concept of a metric, or distance function,
on Rn which itself is induced from the Euclidean norm in our context1.

Unique to these notes, we also discuss how the norm interacts with the multiplication of the algebra.
This is not emphasized in the usual course since the norm on C is multiplicative. We explain here
that for most algebras we can only expect the norm is submultiplicative. Eventually, submultiplica-
tive norms do damage to the theory of power series over an algebra, but that we discuss much later
in this course. For the present purpose the submultiplicativity of the norm on an algebra will not
impact the results we study about limits.

What is analysis? I sometimes glibly say something along the lines of: algebra is about equations
whereas analysis is about inequality. Of course, any one-liner cannot hope to capture the entirety
of a field of mathematics. We can certainly say both analysis and algebra are about structure.
In algebra, the type of structure tends to be about generalizing rules of arithmetic. In analysis,
the purpose of the structure is to generalize the process of making imprecise statements precisely
known. For example, we might say a function is continuous if its values don’t jump for nearby
inputs. But, the structure of the limit replaces this fuzzy idea with a precise framework to judge
continuity. Remmert remarks on page 38 of [R91] that the idea of continuity pre-rigorization is
not strictly in one-one correspondence to our modern usage of the term. Sometimes, the term
continuous implied the function had much more structure than mere continuity. The process of
clarifying definitions is not always immediate. Cauchy’s imprecise language captured the idea of the
limit, but, it is generally agreed that it was not until the work of Weierstrauss (and his introduction
of the dreaded εδ-notation which haunts students to the present day) that the limit was precisely
defined.

1this is not a necessary restriction, one can show any norm on a finite dimensional vector space induces the same
topology, in other words the calculation of limits does not care if you set it up with the Euclidean or Taxi-cab norm

31
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4.1 Submultiplicative Property of Norm

Clearly there are many algebras we can consider. In order to make analysis over an algebra we need
a concept of length of a number. For C we defined |x+ iy| =

√
x2 + y2 and rather beautifully it

happened that |zw| = |z||w| for all z, w ∈ C. For an algebra this is not usually possible! Let us
define the norm for A = Rn by the usual Euclidean norm

‖x‖ = ‖(x1, x2, . . . , xn)‖ =
√
x2

1 + x2
2 + · · ·+ x2

n

This norm assigns a length of 1 to each standard basis element and has the excellent property that

|xj | ≤ ‖x‖

for any j = 1, 2, . . . , n; in other words, the length of a number in A = Rn is longer than the length
of any component of the number.

I have known there exists a constant for which ‖x ? y‖ ≤M‖x‖‖y‖ for several years. See Theorem
5.1 in Introduction to A-Calculus https://arxiv.org/abs/1708.04135. Khang Nguyen refined that
Theorem further and proved the following is reasonable in [CK18].

Definition 4.1.1. For A = Rn with multiplication ? we say the submultiplicative constant of
A is the smallest constant mA ∈ R such that ‖x ? y‖ ≤ mA‖x‖‖y‖ for all x, y ∈ A. Furthermore,
we say x, y ∈ A for which ‖x ? y‖ = mA‖x‖‖y‖ are known as sharpening numbers.

At the present time I only know precise values for mA for the n-hyperbolic numbers, the n-
complicated numbers and also dual numbers of small order. These results are an ongoing joint
work with Khang Nguyen [KC18]. In particular, we have shown:

(1.) The n-hyperbolic numbers Hn we find mHn =
√
n. I have known for a few years that for

hyperbolic numbers of the form z = x+ jy with j2 = 1 it is known ‖zw‖ ≤
√

2‖z‖‖w‖. The
result for n ≥ 3 is thanks to Khang in the Spring 2018 Semester. It is interesting to note the
inequality ‖xy‖ ≤

√
n‖x‖‖y‖ is sharp for x = y = 1 + j + j2 + · · ·+ jn−1 since ‖x‖ =

√
n and

as
x2 = (1 + j + j2 + · · ·+ jn−1)2 = n(1 + j + j2 + · · ·+ jn−1) = nx (4.1)

Thus ‖xy‖ = n‖x‖ = n
√
n =

√
n‖x‖‖y‖. The same x has x(x − n) = 0 which shows x and

x− n are zero-divsors.

(2.) The n-complicated numbers Cn it depends on whether n is even or odd. If n is odd then
mCn =

√
n. However, for n even, we find mCn =

√
n/2 and of course n = 2 is a very special

case; ‖zw‖ = ‖z‖‖w‖ for all z, w ∈ C2 = C which means every complex number is a sharpening
number2. For n > 2 the norm is not multiplicative. In fact, ‖xy‖ = mCn‖x‖‖y‖ only for select
x, y. In particular, if n is odd then we found sharpening number x = 1−k+k2−· · ·+kn−1 ∈ Cn
has x2 = nx thus ‖x2‖ =

√
n‖x‖2. In contrast, for even n 6= 2 we found sharpening number

x =
∑n−1

j=0 cos
(
jπ
n

)
kj which is a nonzero zero-divisor with x2 = n

2x and ‖x‖ =
√

n
2 . Thus

‖x2‖ =
√

n
2 ‖x‖

2.

(3.) The n-dual numbers are denoted by ∆n = Rn with εn = 0 and typical element z = x1 +x2ε+
· · ·+ xnε

n−1 then

2be warned, this terminology is special to these notes to my knowledge, so if you tell someone from outside this
course this term you’ll need to explain it most likely

https://arxiv.org/abs/1708.04135
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(a) for n = 2, m∆2 = 2√
3

with sharpening number x =
√

2 + ε.

(b) for n = 3, m∆3 = 4
3 with sharpening number x = 2 + 2ε+ ε2.

(c) n = 4: m∆4 =

√
2(1103+33

√
33)

1153 ≈ 1.49736. We note equality in ‖xy‖ ≤ m∆4‖x‖‖y‖

is attained for x = y =

√
5 +

√
11
3 +

(
1 +

√
11
3

)
ε +

√
3 +

√
11
3 ε

2 + ε3 ≈ 2.62961 +

2.91485ε+ 2.21695ε2 + ε3.

(d) n = 5: the closed form expression is too lengthy for us to display here, however an
approximation of the constant is m∆5 ≈ 1.64748. Equality in ‖xy‖ ≤ m∆5‖x‖‖y‖ is
attained when x = y ≈ 1− 1.14862ε+ 1.03046ε2 − 0.700308ε3 + 0.304849ε4.

(e) n = 6: the submultiplicative constant near m2(∆6) ≈ 1.78611 and equality in ‖xy‖ ≤
m∆6‖x‖‖y‖ is attained at x = y ≈ 1− 1.16152ε+ 1.12963ε2− 0.915093ε3 + 0.589126ε4−
0.253601ε5.

It was interesting that the sharpening numbers for the dual numbers were not zero divisors in
contrast to the n-hyperbolic or n-complicated numbers. In any event, I share these fun facts for
your amusement primarily. We really just need to know mA exists for which ‖x ? y‖ ≤ mA‖x‖‖y‖
for all x, y ∈ A. That inequality alone suffices for most of our work in the near future. That said,
when we study power series over an algebra we will likely discuss the deeper results in [CK18]. Let
us summarize the known properties of the norm for A.

Theorem 4.1.2. If A = Rn and ‖ · ‖ denotes the Euclidean norm then

(i.) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

(ii.) ‖cx‖ = |c|‖x‖ (homogeneity)

(iii.) ‖x ? y‖ ≤ mA‖x‖‖y‖ (submultiplicativity)

for all x, y ∈ A and c ∈ R where |c| =
√
c2.

I should mention we need the extension of (i.) for finite sums:

‖x1 + x2 + · · ·+ xk‖ ≤ ‖x1‖+ ‖x2‖+ · · ·+ ‖xk‖.

Also, beware that ||a/b|| 6= ||a||/||b|| in general3. However, we can say something productive:

Theorem 4.1.3. Suppose mA > 0 is a real constant such that ||x?y|| ≤ mA||x||||y|| for all x, y ∈ A.
If b ∈ U(A) and a ∈ A then

||a||
||b||
≤ mA

∣∣∣∣∣∣∣∣ab
∣∣∣∣∣∣∣∣. (4.2)

Proof: we know there exists mA > 0 for which ||x ? y|| ≤ mA||x||||y|| for all x, y ∈ A. Consider, if
b ∈ U(A) and a ∈ A then a/b ∈ A and a = b ? (a/b) thus

||a|| = ||b ? (a/b)|| ≤ mA ||b||
∣∣∣∣a
b

∣∣∣∣ and we deduce ||a||||b|| ≤ mA
∣∣∣∣a
b

∣∣∣∣. �

3we assume A is commutative and thus denote both a ? b−1 and b−1 ? a by a/b.
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4.2 Topology

At this point we turn to the geometric topology of Rn. Fundamental to almost everything is the
idea of a disk (n = 2) or ball. Here the term ball is used in a rather abstract fashion, it includes
line-segments, disks, actual three dimensional balls and a host of higher-dimensional balls which
I personally am unable to directly visualize. Let A = Rn where ‖x‖ =

√
x •x (Euclidean norm)

throughout what follows.

Definition 4.2.1. An open ball of radius ε centered at zo ∈ A is the subset all numbers which
are less than an ε distance from zo, we denote this open ball by

Bε(zo) = {z ∈ A | ‖z − zo‖ < ε}.

The deleted-ball with radius ε centered at zo is likewise defined

Bo
ε(zo) = {z ∈ A | 0 < ‖z − zo‖ < ε}.

The closed ball of radius ε centered at zo ∈ A is defined by

Bε(zo) = {z ∈ A | ‖z − zo‖ ≤ ε}.

We use balls to define topological concepts in A.

Definition 4.2.2. Let S ⊆ A. We say y ∈ S is an interior point of S iff there exists some open
ball centered at y which is completely contained in S. If each point in S is an interior point then
we say S is an open set.

Roughly, an open set is one with fuzzy edges. A closed set has solid edges. Furthermore, an open
set is the same as its interior and closed set is the same as its closure.

Definition 4.2.3. We say y ∈ A is a limit point of S iff every open ball centered at y contains
points in S − {y}. We say y ∈ A is a boundary point of S iff every open ball centered at y
contains points not in S and other points which are in S − {y}. We say y ∈ S is an isolated
point or exterior point of S if there exist open ball about y which do not contain other points in
S. The set of all interior points of S is called the interior of S. Likewise the set of all boundary
points for S is called the4 boundary of S and is denoted ∂S. The closure of S is defined to be
S = S ∪ {y ∈ C | y a limit point of S}.

To avoid certain pathological cases we often insist that the set considered is a domain or a region.
These are technical terms in this context and we should be careful not to confuse them with their
previous uses in mathematical discussion.

Definition 4.2.4. If a, b ∈ A then we define the directed line segment from a to b by

[a, b] = {a+ t(b− a) | t ∈ [0, 1]}

This notation is pretty slick as it agrees with interval notation on R when we think about them
as line segments along the real axis of A. However, certain things I might have called crazy in
precalculus now become totally sane. For example, [4, 3] has a precise meaning. I think, to be fair,
if you teach precalculus and someone tells you that [4, 3] meant the same set of points, but they
prefer to look at them Manga-style then you have to give them credit.

4technically this is the topological boundary which we can distinguish from the manifold boundary. For example,
(a, b) has topological boundary {a, b} whereas the manifold boundary is empty. In a manifold with boundary, if it
has a nonempty boundary then the boundary is necessarily a subset of the manifold. I digress mightily here.
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Definition 4.2.5. A subset U of A is called star shaped with star center zo if there exists zo
such that each z ∈ U has [zo, z] ⊆ U .

A given set may have many star centers5. For example, C− is star shaped and the only star centers
are found on [0,∞). Likewise, C+ is star shaped with possible star centers found on (−∞, 0].

Definition 4.2.6. A polygonal path γ from a to b in A is the union of finitely many line segments
which are placed end to end; γ = [a, z1] ∪ [z1, z2] ∪ · · · ∪ [zn−2, zn−1] ∪ [zn−1, b].

Gamelin calls a polygonal path in C a broken line segment.

Definition 4.2.7. A set S ⊆ A is connected iff there exists a polygonal path contained in S
between any two points in S. That is for all a, b ∈ S there exists a polygonal path γ from a to b
such that γ ⊆ S

Technically, the definition above defines path-connected for A. Fortunately, even for general
topologies, path-connected implies connected. More generally, in topology a set is connected if it
has no separation. A set U is separated if there exist open sets U1, U2 such that U1 ∩ U2 = ∅ and
U1 ∪ U2 = U . This characterization of connectedness plays an important role in certain proofs
of complex analysis so it’s wise to mention it here despite it’s apparent weirdness. Actually, the
definition I just shared for connectedness is not nearly as weird as the fact that in general connected
does not imply path-connected. See this blurb by Professor Keith Conrad if you want some gory
detail on why connected does not always imply path connected. For Rn open and connected implies
path connected so we can interchange the ideas of path-connected and connected for open sets.

Definition 4.2.8. An open connected set is called a domain. We say R is a region if R = D∪S
where D is a domain D and S ⊆ ∂D.

The concept of a domain is most commonly found in the remainder of our study. You should take
note of its meaning as it will not be emphasized every time it is used later.

Definition 4.2.9. A subset U ⊆ A is bounded if there exists M > 0 and zo ∈ U for which
U ⊆ Bδ(zo). If U ⊆ A is both closed and bounded then we say U is compact.

I should mention the definition of compact given here is not a primary definition, when you study
topology or real analysis you will learn a more fundamental characterization of compactness. We
may combine terms in reasonable ways. For example, a domain which is also star shaped is called
a star shaped domain. A region which is also compact is a compact region.

The theorem which follows is interesting because it connects an algebraic condition ∇h = 0 with a
topological trait of connectedness. Recall that h : Rn → R is continuously differentiable if each
of the partial derivatives of h is continuous. We need this condition to avoid pathological issues
which arise from merely assuming the partial derivatives exist. In the real case, the existence of
the partial derivatives does not imply their continuity. We’ll see something different for C as we
study complex differentiability.

5if a person knew something about this activity called basketball there must be team-specific jokes to make here

http://www.math.uconn.edu/~kconrad/blurbs/topology/connnotpathconn.pdf
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Theorem 4.2.10. If h : D → R is a continuously differentiable function on a domain D ⊆ A such

that ∇h =
〈
∂h
∂x1

, ∂h∂x2
, . . . , ∂h∂xn

〉
= 0 at each point on D then h is constant.

Proof: Let p, q ∈ D. As D is connected there exists a polygonal path γ from p to q. Let
p1, p2, . . . , pn be the points at which the line segments comprising γ are joined. In particular, γ1 is
a path from p to p1 and we parametrize the path such that dom(γ1) = [0, 1]. By the chain rule,

d

dt
(h(γ1(t))) = ∇h(γ1(t))) •

dγ1(t))

dt

however, γ1(t) ∈ D for each t hence ∇h(γ1(t))) = 0. Consequently,

d

dt
(h(γ1(t))) = 0

It follows from calculus h ◦ γ1 is constant on [0, 1] thus h(γ1(0)) = h(γ1(1)) hence h(p) = h(p1).
But, we can repeat this argument to show h(p2) = h(p3) and so forth and we arrive at:

h(p) = h(p1) = h(p2) = · · · = h(pn) = h(q).

But, p, q were arbitrary thus h is constant on D. �

We have much more to say about real differential calculus in later parts of these notes. I included
this here because of its topological content.

4.3 Limits and Continuity

What follows is the natural extension of the (εδ)-definition to our current context. Once more we
assume A = Rn throughout what follows.

Definition 4.3.1. (Limit and Continuity of function on A) Let f : U ⊆ A → A be a function
and zo a limit point of U . Also, suppose L ∈ A. We say lim

z→zo
f(z) = L if for each ε > 0 there exists

δ > 0 such that z ∈ A with 0 < ‖z − zo‖ < δ implies ‖f(z)−L‖ < ε. We say f is continuous at zo
if limz→zo f(z) = f(zo).

We also write f(z) → L as z → zo when the limit exists. Limit laws generalize to our context as
you might expect:

Theorem 4.3.2. Suppose lim
z→zo

f(z), lim
z→zo

g(z) ∈ A and c ∈ A then

(a.) lim
z→zo

[f(z) + g(z)] = lim
z→zo

f(z) + lim
z→zo

g(z)

(b.) lim
z→zo

[f(z) ? g(z)] = lim
z→zo

f(z) ? lim
z→zo

g(z)

(c.) lim
z→zo

[c ? f(z)] = c ? lim
z→zo

f(z)

(d.) lim
z→zo

[
f(z)

g(z)

]
=

limz→zo f(z)

limz→zo g(z)

where in the last property we assume lim
z→zo

g(z) ∈ U(A).
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Proof: parts (a.) and (c.) can be proved in nearly the same fashion as was done in first semester
calculus. Time permitting I’ll show in lecture what I mean by that. In contrast, (b.) and (d.)
require a different approach for A due to the possibility of zero-divisors and the submultiplicativity
of the norm. Let me sketch the argument here for (b.):

1. Notice f = (f1, f2, . . . , fn) where fj : U ⊆ A → R are the component functions of f for
j = 1, 2, . . . , n. The vector limit theorem of advanced calculus says lim f = L = (L1, . . . , Ln)
if and only if lim fj = Lj for j = 1, 2, . . . , n. In other words, we can attack a vector limit one
component a time if we so choose.

2. The product function defined pointwise by (f ? g)(z) = f(z) ? g(z) can be written as a sum
of component functions of f and g weighted against the structure constants of A; fg =∑

i,j,k Cijkfigjek hence (f ? g)k =
∑

i,j,k Cijkfigj . Then, as the limits of fi, gj are known since
we assume the limits of f, g are given we are able to calculate:

lim
z→zo

(f ? g)k = lim
z→zo

∑
i,j,k

Cijkfigj

=
∑
i,j,k

Cijk lim
z→zo

figj (by parts (a.) and (c.) which I might prove in class)

=
∑
i,j,k

Cijk

(
lim
z→zo

fi

)(
lim
z→zo

gj

)
(need Lemma I for this step)

=
∑
i,j,k

Cijk

(
lim
z→zo

f

)
i

(
lim
z→zo

g

)
j

(vector limit theorem)

=

(
lim
z→zo

f ? lim
z→zo

g

)
k

Since k is arbitrary this proves (b.) if we can prove the Lemma to follow:

Lemma I: if fi, gj : U ⊆ A → R where zo is a limit point of U and limz→zo fi = Li
and limz→zo gj = Mj then limz→zo(figj) = LiMj .

I think proving this Lemma this will make a good homework once I give a bit more guidance.

To prove (d.) notice f
g = f ? g−1 by assumption and to remove digression about left and right

factors let us assume A is commutative. Furthermore, we need the following

Lemma II: if limz→zo g = G ∈ U(A) then limz→zo g
−1 = G−1

In fact, the above Lemma is a particular case of a much more general theorem about limits of
composite functions. Assuming Lemma II and part (b.) we have:

lim
z→zo

[
f(z)

g(z)

]
= lim

z→zo

(
f ? g−1

)
=

(
lim
z→zo

f

)
?

(
lim
z→zo

g−1

)
= lim

z→zo
f ?

(
1

limz→zo g

)
=

limz→zo f

limz→zo g
. �

The composite limit rule takes Lemma II as a special case where the outside function is the reciprocal
function f(z) = 1

z and the inside function is just g(z) hence (f ◦ g)(z) = 1
g(z) .

Theorem 4.3.3. Suppose f : U ⊆ A → A and g ⊆ V ⊆ A → A are functions such that zo is a
limit point of V and limz→zo(g(z)) = wo ∈ U such that f is continuous at wo then

lim
z→zo

(f(g(z))) = f( lim
z→zo

g(z)).
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If time permits I will prove this in class. It is a theorem which is true in much greater generality
than that which we consider here. Let me repeat the definition of continuity once more:

Definition 4.3.4. If f : dom(f) ⊆ A → A is a function zo ∈ dom(f) such that lim
z→zo

f(z) = f(zo)

then f is continuous at zo. Iif f is continuous at each point in U ⊆ dom(f) then we say f is
continuous on U. When f is continuous on dom(f) we say f is continuous. The set of all
continuous functions on U ⊆ A is denoted C0(U).

The definition above gives continuity at a point, continuity on a set and finally continuitiy of the
function itself. In view of Theorem 4.3.2 we may immediately conclude that if f, g are continuous
then f + g, f ? g, cf and f/g are continuous provided g(z) ∈ U(A) for each z ∈ dom(g). The
conclusion holds at a point, on a common subset of the domains of f, g and finally on the domains
of the new functions f + g, f ? g, c ? f, f/g.

Example 4.3.5. Let f(z) = z for all z ∈ A. Let ε > 0 and choose δ = ε then observe 0 <
‖z− zo‖ < δ implies ‖f(z)− f(zo)‖ = ‖z− zo‖ < ε. Consequently, limz→zo(z) = zo for any zo ∈ A.
In other words, the function f = IdA is continuous on A.

Example 4.3.6. Let f(z) = z2 = z ? z then using a limit law and Example 4.3.6 we find:

lim
z→zo

z ? z = lim
z→zo

z ? lim
z→zo

z = zo ? zo = z2
o .

Thus the square function z 7→ z2 is continuous on A.

As a general rule, if the formula for a function makes sense then the function is continuous at such
a point. We can continue down the path of the above examples and show any polynomial function
on A is continuous. In addition z 7→ Rez and z 7→ Urz as well as z 7→ ‖z‖ are all continuous on
A. We are also interested in limits of expressions which are not continuous at the limit point, that
is the principle obession of the next Chapter. We define derivatives by just such a limit.



Chapter 5

Real Differentiation

This chapter contains a condensed introduction to the theory of real differentiation. I think the
treatment I give in Advanced Calculus1 is better since it embraces and uses normed linear spaces
and some abstract linear algebra. That said, about half the audience of this course has no such
background so I will focus our attention here on functions from Rn to Rm. The linear algebra
needed is simply basic facts about linear transformations, matrix multiplication and the use of
the standard basis for calculation. In short, the same corner of matrix theory which are already
encountered in the previous chapter.

In particular, for F : Rn → Rm we define the differential at p for F to be the linear transformation
dFp : Rn → Rm which best approximates the change in F near p. We quantify best by insisting dFp
satisfy the Frechet quotient. In contrast to first semester calculus, this definition only implicitly
defines the differential. Since dFp is a linear transformation its action can be expressed in terms
of matrix multiplication by the standard matrix; dFp(h) = JF (p)h where JF (p) is the Jacobian
matrix of F . The Jacobian matrix is the standard matrix of the differential; [dFp] = JF (p). The
partial derivative with respect to the j-th Cartesian coordinate is given by dFp(ej) = ∂jF (p) thus
JF = [∂1F | · · · |∂nF ].

It turns out p 7→ dFp is continuous2 provided all the partial derivatives of F are continuous near
p3. Furthermore, we will show that continuous differentiability of partial derivative functions at
p implies differentiability of a function at p. The theorem that continuously differentiable implies
differentiable is one of the cornerstone theorems of Advanced Calculus. I will not go over it in class,
but I include the proof here for the sake of completeness.

Finally, I share a few basic theorems of general calculus on Rn. Linearity, chain and a rather general
product rule justify much of the differential calculus you ever saw in previous coursework.

1I believe this course is offered again in Fall 2019 if you are interested
2in a sense which we’d rather not explain here
3which is easy enough to understand in terms of limits we’ve already discussed
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http://www.supermath.info/AdvancedCalculus.html
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5.1 Frechet and Partial Differentiability

The definition below says that 4F = F (a+ h)− F (a) ∼= dFa(h) when h is close to zero. I should
mention, going forward in this course, when I say a function is real differentiable I mean that it is
real differentiable in the Frechet sense defined below:

Definition 5.1.1. Suppose that U ⊆ Rn is open and F : U ⊆ Rn → Rm is a function the we say
that F is differentiable at a ∈ U iff there exists a linear mapping dFa : Rn → Rm such that

lim
h→0

[
F (a+ h)− F (a)− dFa(h)

‖h‖

]
= 0.

In such a case we call the linear mapping dFa the differential at a.

Partial derivatives are defined in the usual fashion. If F : dom(F ) ⊆ Rn → Rm we define, for such
points a ∈ dom(F ) as the limit exists,

∂F

∂xi
(a) = lim

h→0

F (a+ hei)− F (a)

h
.

Here ei ∈ Rn has all components 0 except for the i-th component which is 1. The connection of
the differential to partial derivatives is a bit subtle. On the one hand, if the differential exists then
partial derivatives exist and allow a nice formula for the differential.

Theorem 5.1.2. If F : dom(F ) ⊆ Rn → Rm is differentiable at p then the partial derivatives ∂F
∂xi

for i = 1, 2, . . . , n all exist at p and dFp(h) = JF (p)h where, suppressing p, JF =
[
∂F
∂x1

∣∣ ∂F
∂x2

∣∣ · · · ∣∣ ∂F∂xn ].
In contrast, it is possible for JF to exist at p and yet dFp fails to exist! We explore some of the
nefarious ways this may occur and then offer a remedy in the following subsection. But first let me
share some explicit examples of the Jacobian matrix.

You may recall the notation from calculus III at this point, omitting the a-dependence,

∇Fj = grad(Fj) =
[
∂1Fj , ∂2Fj , · · · , ∂nFj

]T
So if the derivative exists we can write it in terms of a stack of gradient vectors of the component
functions: (I used a transpose to write the stack side-ways),

F ′ =
[
∇F1|∇F2| · · · |∇Fm

]T
Finally, just to collect everything together,

F ′ =


∂1F1 ∂2F1 · · · ∂nF1

∂1F2 ∂2F2 · · · ∂nF2
...

...
...

...
∂1Fm ∂2Fm · · · ∂nFm

 =
[
∂1F | ∂2F | · · · | ∂nF

]
=


(∇F1)T

(∇F2)T

...

(∇Fm)T
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5.1.1 Examples of Jacobian Matrices

I have two goals in mind in the first five or so examples. First, show how we can use an algebra
formula to define a mapping on Rn. Second, to calculate the Jacobian of such functions. After
this first batch of somewhat preachy examples, I move on to a select collection of more random
functions which illustrate other cases for domain and codomain dimension.

Example 5.1.3. Suppose f(z) = z2 defines a mapping on R2 = C. If z = x + iy then z2 =
x2 − y2 + 2xyi. Real notation for f reads f(x, y) = (x2 − y2, 2xy) thus

Jf = [∂xf |∂yf ] =

[
2x −2y
2y 2x

]
Interesting, the Jacobian matrix of f(z) = z2 is the matrix representation of 2z = 2x+2yi. Curious.

Example 5.1.4. Let f(z) = z2 where z = x+ jy and j2 = 1 for H. Observe z2 = x2 + y2 + 2xyj
hence f(x, y) = (x2 + y2, 2xy) and

Jf = [∂xf |∂yf ] =

[
2x 2y
2y 2x

]
Once more, the Jacobian matrix of f(z) = z2 in the hyperbolic numbers is the matrix representation
of 2z = 2x+ 2yj. Curious.

Example 5.1.5. Let f(z) = ez where z = x + iy ∈ C. Recall ez = ex(cos y + i sin y) hence
f(x, y) = (ex cos y, ex sin y) and

Jf = [∂xf |∂yf ] =

[
ex cos y −ex sin y
ex sin y ex cos y

]
Apparently the Jacobian matrix of the complex exponential function is the matrix representation
of ez. Perhaps we start to see a pattern. See if you can guess the Jacobian matrix without direct
calculation in the next example.

Example 5.1.6. Let f(z) = 1
z where z = x+ jy ∈ H. Recall 1

z = 1
x+jy = x−jy

x2−y2 hence

f(x, y) =

(
x

x2 − y2
,
−y

x2 − y2

)
thus calculate (the last equality requires some steps)

∂f

∂x
=

(
x2 − y2 − 2x2

(x2 − y2)2
,
−2xy

(x2 − y2)2

)
= −

(
x2 + y2

(x2 − y2)2
,

2xy

(x2 − y2)2

)
=
−1

z2

and
∂f

∂y
=

(
−2xy

(x2 − y2)2
,
−(x2 − y2)− 2y2

(x2 − y2)2

)
= −

(
2xy

(x2 − y2)2
,
x2 + y2

(x2 − y2)2

)
= j

(
−1

z2

)
Thus, we find the expected result, the derivative of the 1/z function is −1/z2 in the following sense:

Jf = [∂xf |∂yf ] = −

[
x2+y2

(x2−y2)2
2xy

(x2−y2)2

2xy
(x2−y2)2

x2+y2

(x2−y2)2

]
=

[
−1

z2

∣∣∣∣j (−1

z2

)]
= M(−1/z2).
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Example 5.1.7. Let f(z) = 3z + z̄ where z = x + iy and z̄ = x − iy in C. In real notation,

f(x, y) = (4x, 2y) thus Jf =

[
4 0
0 2

]
. You can check, Jf is not in the matrix representation of C.

Example 5.1.8. Let f(t) = (t, t2, t3) then f ′(t) = (1, 2t, 3t2). In this case we have

f ′(t) = [dft] =

 1
2t
3t2


Example 5.1.9. Let f(~x, ~y) = ~x · ~y be a mapping from R3 × R3 → R. I’ll denote the coordinates
in the domain by (x1, x2, x3, y1, y2, y3) thus f(~x, ~y) = x1y1 + x2y2 + x3y3. Calculate,

[df(~x,~y)] = ∇f(~x, ~y)T = [y1, y2, y3, x1, x2, x3]

Example 5.1.10. Suppose F (x, y) = (x2 + y2, xy, x+ y) we find the Jacobian is a 3× 2 matrix:

JF =

[
∂F

∂x

∣∣∣∣∂F∂y
]

=

 2x 2y
y x
1 1

 .
Example 5.1.11. When other variables are used we still follow the same pattern. Suppose that
F (r, θ) = (r cos θ, r sin θ). We calculate,

JF = [∂rF |∂θF ] =

[
cos θ −r sin θ
sin θ r cos θ

]
Example 5.1.12. Let f(x, y, z) = (x+ y, y + z, x+ z, xyz). You can calculate,

[df(x,y,z)] =


1 1 0
0 1 1
1 0 1
yz xz xy


Example 5.1.13. Let f(x, y, z) = xyz. You can calculate,

[df(x,y,z)] =
[
yz xz xy

]
Example 5.1.14. Let f(x, y, z) = (xyz, 1− x− y). You can calculate,

[df(x,y,z)] =

[
yz xz xy
−1 −1 0

]

5.1.2 Continuous Differentiability

We have noted that differentiablility on some set U implies all sorts of nice formulas in terms of
the partial derivatives. Curiously the converse is not quite so simple. It is possible for the partial
derivatives to exist on some set and yet the mapping may fail to be differentiable. We need an extra
topological condition on the partial derivatives if we are to avoid certain pathological4 examples.

4”pathological” as in, ”your clothes are so pathological, where’d you get them?”
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Example 5.1.15. I found this example in Hubbard’s advanced calculus text(see Ex. 1.9.4, pg. 123).
It is a source of endless odd examples, notation and bizarre quotes. Let f(x) = 0 and

f(x) =
x

2
+ x2 sin

1

x

for all x 6= 0. I can be shown that the derivative f ′(0) = 1/2. Moreover, we can show that f ′(x)
exists for all x 6= 0, we can calculate:

f ′(x) =
1

2
+ 2x sin

1

x
− cos

1

x

Notice that dom(f ′) = R. Note then that the tangent line at (0, 0) is y = x/2.

You might be tempted to say then that this function is increasing at a rate of 1/2 for x near zero.
But this claim would be false since you can see that f ′(x) oscillates wildly without end near zero.
We have a tangent line at (0, 0) with positive slope for a function which is not increasing at (0, 0)
(recall that increasing is a concept we must define in a open interval to be careful). This sort of
thing cannot happen if the derivative is continuous near the point in question.

The one-dimensional case is really quite special, even though we had discontinuity of the derivative
we still had a well-defined tangent line to the point. However, many interesting theorems in calculus
of one-variable require the function to be continuously differentiable near the point of interest. For
example, to apply the 2nd-derivative test we need to find a point where the first derivative is zero
and the second derivative exists. We cannot hope to compute f ′′(xo) unless f ′ is continuous at xo.
The next example is sick.

Example 5.1.16. Let us define f(0, 0) = 0 and

f(x, y) =
x2y

x2 + y2

for all (x, y) 6= (0, 0) in R2. It can be shown that f is continuous at (0, 0). Moreover, since
f(x, 0) = f(0, y) = 0 for all x and all y it follows that f vanishes identically along the coordinate
axis. Thus the rate of change in the e1 or e2 directions is zero. We can calculate that

∂f

∂x
=

2xy3

(x2 + y2)2
and

∂f

∂y
=
x4 − x2y2

(x2 + y2)2

If you examine the plot of z = f(x, y) you can see why the tangent plane does not exist at (0, 0, 0).
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Notice the sides of the box in the picture are parallel to the x and y axes so the path considered
below would fall on a diagonal slice of these boxes5. Consider the path to the origin t 7→ (t, t) gives
fx(t, t) = 2t4/(t2 + t2)2 = 1/2 hence fx(x, y)→ 1/2 along the path t 7→ (t, t), but fx(0, 0) = 0 hence
the partial derivative fx is not continuous at (0, 0). In this example, the discontinuity of the partial
derivatives makes the tangent plane fail to exist.

One might be tempted to suppose that if a function is continuous at a given point and if all
the possible directional derivatives exist then differentiability should follow. It turns out this is
not sufficient since continuity of the function does not imply some continuity along the partial
derivatives. For example:

Example 5.1.17. Let us define f : R2 → R by f(x, y) = 0 for y 6= x2 and f(x, x2) = x. I invite
the reader to verify that this function is continuous at the origin. Moreover, consider the directional
derivatives at (0, 0). We calculate, if v = 〈a, b〉

Dvf(0, 0) = lim
h→0

f(0 + hv)− f(0)

h
= lim

h→0

f(ah, bh)

h
= lim

h→0

0

h
= 0.

To see why f(ah, bh) = 0, consider the intersection of ~r(h) = (ha, hb) and y = x2 the intersection
is found at hb = (ha)2 hence, noting h = 0 is not of interest in the limit, b = ha2. If a = 0
then clearly (ah, bh) only falls on y = x2 at (0, 0). If a 6= 0 then the solution h = b/a2 gives
f(ha, hb) = ha a nontrivial value. However, as h → 0 we eventually reach values close enough
to (0, 0) that f(ah, bh) = 0. Hence we find all directional derivatives exist and are zero at (0, 0).
Let’s examine the graph of this example to see how this happened. The pictures below graph the
xy-plane as red and the nontrivial values of f as a blue curve. The union of these forms the graph
z = f(x, y).

5the argument to follow stands alone, you don’t need to understand the picture to understand the math here, but
it’s nice if you do
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Clearly, f is continuous at (0, 0) as I invited you to prove. Moreover, clearly z = f(x, y) cannot be
well-approximated by a tangent plane at (0, 0, 0). If we capture the xy-plane then we lose the blue
curve of the graph. On the other hand, if we use a tilted plane then we lose the xy-plane part of
the graph.

The moral of the story in the last two examples is simply that derivatives at a point, or even all
directional derivatives at a point do not necessarily tell you much about the function near the point.
This much is clear: something else is required if the differential is to have meaning which extends
beyond one point in a nice way. Therefore, we consider the following:

It would seem the trouble has something to do with discontinuity in the derivative6.

Definition 5.1.18.

A mapping F : U ⊆ Rn → Rm is continuously differentiable at a ∈ U iff the partial
derivative mappings DjF exist on an open set containing a and are continuous at a.

The import of the theorem below is that we can build the tangent plane from the Jacobian matrix
provided the partial derivatives exist near the point of tangency and are continuous at the point
of tangency. This is a very nice result because the concept of the linear mapping is quite abstract
but partial differentiation of a given mapping is often easy. The proof that follows here is found in
many texts, in particular see C.H. Edwards Advanced Calculus of Several Variables on pages 72-73.

Theorem 5.1.19.

If F : Rn → Rm is continuously differentiable at a then F is differentiable at a

Proof: We give a proof form = 1 since the result then extends tom > 1 by the vector limit theorem.
Consider a+h sufficiently close to a that all the partial derivatives of F exist. Furthermore, consider
going from a to a+ h by traversing a hyper-parallel-piped travelling n-perpendicular paths:

a︸︷︷︸
po

→ a+ h1e1︸ ︷︷ ︸
p1

→ a+ h1e1 + h2e2︸ ︷︷ ︸
p2

→ · · · a+ h1e1 + · · ·+ hnen︸ ︷︷ ︸
pn

= a+ h.

Let us denote pj = a+ bj where clearly bj ranges from bo = 0 to bn = h and bj =
∑j

i=1 hiei. Notice
that the difference between pj and pj−1 is given by:

pj − pj−1 = a+

j∑
i=1

hiei − a−
j−1∑
i=1

hiei = hjej

6see commentary near Equations 2.18 and 2.19 in my Advanced Calculus notes for why the term continuously
differentiable is quite natural

http://www.supermath.info/AdvancedCalculus2017.pdf
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Consider then the following identity,

F (a+ h)− F (a) = F (pn)− F (pn−1) + F (pn−1)− F (pn−2) + · · ·+ F (p1)− F (po)

This is to say the change in F from po = a to pn = a+ h can be expressed as a sum of the changes
along the n-steps. Furthermore, if we consider the difference F (pj)−F (pj−1) you can see that only
the j-th component of the argument of F changes. Since the j-th partial derivative exists on the
interval for hj considered by construction we can apply the mean value theorem to locate cj such
that:

hj∂jF (pj−1 + cjej) = F (pj)− F (pj−1)

Therefore, using the mean value theorem for each interval, we select c1, . . . cn with:

F (a+ h)− F (a) =

n∑
j=1

hj∂jF (pj−1 + cjej)

It follows we should propose L to satisfy the definition of Frechet differentation as follows:

L(h) =
n∑
j=1

hj∂jF (a)

It is clear that L is linear (in fact, perhaps you recognize this as L(h) = (∇F )(a) •h). Let us
prepare to study the Frechet quotient,

F (a+ h)− F (a)− L(h) =
n∑
j=1

hj∂jF (pj−1 + cjej)−
n∑
j=1

hj∂jF (a)

=
n∑
j=1

hj
[
∂jF (pj−1 + cjej)− ∂jF (a)︸ ︷︷ ︸

gj(h)

]

Observe that pj−1 +cjej → a as h→ 0. Thus, gj(h)→ 0 by the continuity of the partial derivatives
at x = a. Finally, consider the Frechet quotient:

lim
h→0

F (a+ h)− F (a)− L(h)

||h||
= lim

h→0

∑
j hjgj(h)

||h||
= lim

h→0

∑
j

hj
||h||

gj(h)

Notice |hj | ≤ ||h|| hence

∣∣∣∣ hj||h|| ∣∣∣∣ ≤ 1 and

0 ≤
∣∣∣∣ hj||h||gj(h)

∣∣∣∣ ≤ |gj(h)|

Apply the squeeze theorem to deduce each term in the sum ? limits to zero. Consquently, L(h)
satisfies the Frechet quotient and we have shown that F is differentiable at x = a and the differen-
tial is expressed in terms of partial derivatives as expected; dFx(h) =

∑n
j=1 hj∂jF (a) �.
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5.2 Connections with Our Past and Future

The discussion below connects the difference quotient definition for the derivative with the Frechet
quotient introduced above.

Example 5.2.1. Suppose f : dom(f) ⊆ R→ R is differentiable at x. It follows that there exists a

linear function dfx : R→ R such that limh→0
f(x+h)−f(x)−dfx(h)

|h| = 0. Note that

lim
h→0

f(x+ h)− f(x)− dfx(h)

|h|
= 0 ⇔ lim

h→0±

f(x+ h)− f(x)− dfx(h)

|h|
= 0.

In the left limit h→ 0− we have h < 0 hence |h| = −h. On the other hand, in the right limit h→ 0+

we have h > 0 hence |h| = h. Thus, differentiability suggests that limh→0±
f(x+h)−f(x)−dfx(h)

±h = 0.

But we can pull the minus out of the left limit to obtain limh→0−
f(x+h)−f(x)−dfx(h)

h = 0. Therefore,
after an algebra step, we find:

lim
h→0

[
f(x+ h)− f(x)

h
− dfx(h)

h

]
= 0.

Linearity of dfx : R→ R implies there exists m ∈ R1×1 = R such that dfx(h) = mh. Observe that

lim
h→0

dfx(h)

h
= lim

h→0

mh

h
= m.

It is a simple exercise to show that if lim(A − B) = 0 and lim(B) exists then lim(A) exists and

lim(A) = lim(B). Identify A = f(x+h)−f(x)
h and B = dfx(h)

h . Therefore,

m = lim
h→0

f(x+ h)− f(x)

h
.

Consequently, we find the 1 × 1 matrix m of the differential is precisely f ′(x) as we defined it via

a difference quotient in first semester calculus. In summary, we find dfx(h) = f ′(x)h .

I should mention, for a path ~r : R→ Rn there are arguments largely mirroring the example above
and we can prove7:

d~rt(h) = ~r ′(t)h

where ~r ′(t) = d~r
dt = limh→0

~r(t+h)−~r(t)
h is the derivative of a path you previously studied in multi-

variate calculus. For a less familar application, a path in C could be denoted z(t) = x(t) + iy(t)
and then we have

dz

dt
=
dx

dt
+ i

dy

dt

and the differential dzt(h) = dz
dt (t)h. In any event, I mostly mention this so you understand the

theoretical results I share later in this chapter apply meaningfully and naturally to paths in C or
A = Rn. We use many paths later in this course.

Remark 5.2.2.

Incidentally, I should mention that dfx is the differential of f at the point x. The differential
of f would be the mapping x 7→ dfx. Technically, the differential df is a function from R to
the set of linear transformations on R. You can contrast this view with that of first semester
calculus. There we say the mapping x 7→ f ′(x) defines the derivative f ′ as a function from
R to R. This simplification in perspective is only possible because calculus in one-dimension
is so special. More on this later. This distinction is especially important to understand if
you begin to look at questions of higher derivatives.

7see Example 2.1.9 etc. in my Advanced Calculus 2017 notes if you wish the gory details

http://www.supermath.info/AdvancedCalculus2017.pdf
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5.3 Rules for Real Derivatives

Linearity and the chain rule naturally generalize for Frechet derivatives on normed linear spaces8.
It is helpful for me to introduce some additional notation to analyze the convergence of the Frechet
quotient: supposing that F : dom(F ) ⊂ Rn → Rm is differentiable at a we set:

ηF (h) = F (a+ h)− F (a)− dFa(h) (5.1)

hence the Frechet quotient can be written as:

ηF (h)

‖h‖
=
F (a+ h)− F (a)− dFa(h)

‖h‖
. (5.2)

Thus differentiability of F at a requires ηF (h)
‖h‖ → 0 as h→ 0. For h 6= 0 and ‖h‖ < 1 we have:

0 ≤ ‖ηF (h)‖ < ‖ηF (h)‖
‖h‖

. (5.3)

Thus ‖ηF (h)‖ → 0 as h→ 0 by the squeeze theorem. Consequently,

lim
h→0

ηF (h) = 0. (5.4)

Therefore, ηF : Rn → Rm is continuous at h = 0 since ηF (0) = F (a)−F (a)−dFa(0) = 0 ( I remind
the reader that the linear transformation dFa must map zero to zero ). Continuity of ηF at h = 0
allows us to use theorems for continuous functions on ηF .

Theorem 5.3.1. Linearity of the Frechet derivatives: If F : dom(F ) ⊆ Rn → Rm and
G : dom(G) ⊆ Rn → Rm are differentiable at a and c ∈ R then cF +G is differentiable at a and

d(cF +G)a = cdFa + dGa

Proof: Let ηF (h) = F (a+h)−F (a)−dFa(h) and ηG(h) = G(a+h)−G(a)−dGa(h) for all h ∈ V .

Assume F and G differentiable at a hence limh→0
ηF (h)
‖h‖ = 0 and limh→0

ηG(h)
‖h‖ = 0. Moreover,

dFa, dGa : Rn → Rm are linear hence cdFa + dGa : Rn → Rm is linear. Hence calculate,

ηcF+G(h) = (cF +G)(a+ h)− (cF +G)(a)− (cdFa + dGa)(h) (5.5)

= c (F (a+ h)− F (a)− dFa(h)) +G(a+ h)−G(a)− dGa(h)

= cηF (h) + ηG(h)

Therefore, by the usual limit laws,

lim
h→0

ηcF+G(h)

‖h‖
= lim

h→0

cηF (h) + ηG(h)

‖h‖
= c lim

h→0

(
ηF (h)

‖h‖

)
+ lim
h→0

ηG(h)

‖h‖
= 0. �

Setting c = 1 or G = 0 we obtain important special cases:

d(F +G)a = dFa + dGa & d(cF )a = cdFa. (5.6)

The chain rule is also a general rule of calculus on a normed linear space. I found these notes by J.
C. M. Grajales on page 40 have a proof of the chain rule which appears complete. That said, the
chain rule is much easier to remember than to prove:

8but, we only study Rn here. Also, rules for radicals is something entirely different

http://matematicas.univalle.edu.co/~juancamg/Banach2.pdf
http://matematicas.univalle.edu.co/~juancamg/Banach2.pdf
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Theorem 5.3.2. Chain Rule: Let V1, V2, V3 be open subsets of Rn,Rm,Rk respective. Suppose G :
V1 → V2 is differentiable at a and F : V2 → V3 is differentiable at G(a) then F ◦G is differentiable
at a and

d(F ◦G)a = dFG(a) ◦ dGa.

When I first wrote notes for advanced calculus I realized I was writing the same argument over
and over. The result below is a result. This argument simultaneously covers derivatives of scalar
multiplications, matrix multiplications, dot and cross products. More importantly for us, it equally
well applies to the multiplication of an algebra A. For those who have not had linear algebra, as
you read the Theorem and proof below you can just think of a finite dimensional real normed linear
space as Rn and each basis is just the standard basis.

Theorem 5.3.3. One-size fits all product rule: Let W1,W2,W3, V be finite dimensional real
normed linear spaces and suppose U ⊆ V is open. Let β = {r1, . . . , rn} be a basis for V with
coordinates x1, . . . , xn. Let γ1 = {w1, . . . , wm1} be the basis for W1. Let γ2 = {v1, . . . , vm2} be
the basis for W2. Let γ3 = {ε1, . . . , εm3} be the basis for W3. Assume there exists a product
? : W1 ×W2 →W3 such that

(cx+ y) ? z = c(x ? z) + y ? z & x ? (cz + w) = c(x ? z) + x ? w

for all c ∈ R and x, y ∈ W1 and z, w ∈ W2. Then, if F : U → W1 and G : U → W2 are
continuously differentiable at a ∈ U then F ? G is continuously differentiable at a ∈ U where
(F ? G)(a) = F (a) ? G(a). Moreover, denoting ∂/∂xj by ∂j we have

∂j(F ? G)(a) = (∂jF )(a) ? G(a) + F (a) ? (∂jG)(a).

Hence, for each h ∈ V , d(F ? G)a(h) = dFa(h) ? G(a) + F (a) ? dGa(h).

Proof: assume the notation given in the Theorem and define constants cijk ∈ R such that:

vi ? wj =

m3∑
k=1

cijkεk. (5.7)

These constants characterize the nature of the multiplication ?. Interestingly, they have little to do
with the proof, essentially the play the role of bystanders. Assuming F : U →W1 and G : U →W2

are continuously differentiable at a means their component functions F1, . . . , Fm1 : U → R with
respect to γ1 and G1, . . . , Gm2 : U → R with respect to γ2 are continuous at a. The component
functions of F ? G are naturally related to those of F and G as follows:

F ? G =

(
m1∑
i=1

Fivi

)
?

m2∑
j=1

Gjwj

 (5.8)

=

m1∑
i=1

m2∑
j=1

FiGj (vi ? wj)

=

m1∑
i=1

m2∑
j=1

FiGj

(
m3∑
k=1

cijkεk

)

=

m3∑
k=1

m1∑
i=1

m2∑
j=1

FiGjcijk

 εk
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Thus F ? G has component function
∑m1

i=1

∑m2
j=1 FiGjcijk. Observe this is the sum of products of

continuously differentiable functions at a which is once again continuously differentiable a. Thus
F ? G is continuously differentiable at a as it has component functions whose partial derivative
functions are continous at a. This becomes explicitly clear if we calculate the partial derivative of
F ? G with respect to xl for points near a,

∂l(F ? G) =

m3∑
k=1

∂l

m1∑
i=1

m2∑
j=1

FiGjcijk

 εk : ∂l done componentwise (5.9)

=

m3∑
k=1

m1∑
i=1

m2∑
j=1

cijk∂l(FiGj)

 εk : linearity of ∂l

=

m3∑
k=1

m1∑
i=1

m2∑
j=1

cijk [(∂lFi)Gj + Fi∂lGj ]

 εk : ordinary product rule

=

m1∑
i=1

m2∑
j=1

m3∑
k=1

cijk(∂lFi)Gjεk +

m1∑
i=1

m2∑
j=1

m3∑
k=1

cijkFi(∂lGj)εk

= (∂lF ) ? G+ F ? (∂lG).

where I used the calculation of Equation 5.8 in reverse in order to make the final step. The
calculation makes it explicitly clear that the partial derivatives of F ? G are sums and products of
continuous functions hence F ?G is continuously differentiable as claimed. Finally, we can construct
the differential from partial derivatives: for h =

∑n
l=1 hlrl calculate:

d(F ? G)a(h) =
n∑
l=1

hl∂l(F ? G)(a) (5.10)

=
n∑
l=1

hl [(∂lF )(a) ? G(a) + F (a) ? (∂lG)(a)]

=

[
n∑
l=1

hl(∂lF )(a)

]
? G(a) + F (a) ?

[
n∑
l=1

hl(∂lG)(a)

]
.

= dFa(h) ? G(a) + F (a) ? dGa(h).

This completes the proof. �

Let’s unwrap a few common cases of this general product rule. I’ll continue to use the W1,W2,W3

and V notation to connect directly to Theorem 5.3.3.

(1.) Set W1 = W2 = W3 = R and V = R to produce the usual first semester calculus
product rule:

d

dt
(fg) =

df

dt
g + f

dg

dt
.

Of course, this was the heart of the proof.

(2.) Set W1 = W2 = W3 = R and V = Rn to produce the usual product rule for
real-valued functions of several variables:

∂

∂xi
(fg) =

∂f

∂xi
g + f

∂g

∂xi
.



5.4. HIGHER DERIVATIVES 51

(3.) Set W1 = R and W2 = W3 and V = Rn to produce the usual product rule for a
scalar function multiplied on a vector-valued function:

∂

∂xi
(f~v) =

∂f

∂xi
~v + f

∂~v

∂xi
.

(4.) Set W1 = W2 = Rn and W3 = R and V = R to produce the product rule for
dot-products of paths:

d

dt
(~v • ~w) =

d~v

dt
• ~w + ~v •

d~w

dt
.

(5.) Set W1 = W2 = R3 and W3 = R3 and V = R to produce the product rule for
cross-products of paths:

d

dt
(~v × ~w) =

d~v

dt
× ~w + ~v × d~w

dt
.

(6.) Set W1 = W2 = W3 = R n×n and V = R to produce the product rule for matrix-
valued functions of a real variable: t 7→ A(t), t 7→ B(t),

d

dt
(AB) =

dA

dt
B +A

dB

dt
.

(7.) Set W1 = W2 = W3 = C and V = C with z = x+ iy we find for f1 = u1 + iv1 and
f2 = u2 + iv2

∂

∂x
(f1f2) =

∂f1

∂x
f2 + f1

∂f2

∂x
&

∂

∂y
(f1f2) =

∂f1

∂y
f2 + f1

∂f2

∂y
.

(8.) Set W1 = W2 = W3 = A and V = A with multiplication ? and typical variable
ζ = x1e1 + x2e2 + · · ·+ xnen we find for f = f1e1 + f2e2 + · · ·+ fnen and
g = g1e1 + g2e2 + · · ·+ gnen

∂

∂xj
(f ? g) =

∂f

∂xj
? g + f ?

∂g

∂xj
.

I simply wish to impress on you that these product rules are all simply the standard product rule
married to the algebraic structure of the given product. So long as the product has the needed
linearity properties, there will be a corresponding product rule for functions.

5.4 Higher Derivatives

Comment: you can safely skip this section, I merely include it for the curious. Something strange
and wonderful happens for calculus over an algebra which makes this background essentially unec-
essary.

Given normed linear spaces V,W and U ⊆ V open and a differentiable map F : U → W we find
a linear transformation dFa : V → W for each a ∈ U . Therefore, we can define the map f ′ : U →
L(V ;W ) by the natural map a 7→ dFa. That is, f ′(a) = dfa. Furthermore, since L(V ;W ) is itself
a normed linear space we may study derivatives of f ′. In particular, if df ′a : V → L(V ;L(V ;W ))
is linear for each a ∈ U and satisfies the needed Frechet quotient then we may likewise define



52 CHAPTER 5. REAL DIFFERENTIATION

f ′′ : U → L(V ;L(V ;W )) by f ′′(a) = (f ′)′(a) = (df ′)a ∈ L(V ;L(V ;W )) for each a ∈ U . This all
gets a bit meta, so, its helpful to make use of an isomorphism Ψ : L(V ;L(V ;W )) → L(V, V ;W )
defined by:

Ψ(T )(x, y) = (T (x))(y) (5.11)

for all x, y ∈ V and T ∈ L(V,W ). Typically the Ψ is not written. With this abuse of language, we
have f ′′(a) : V × V →W given by

f ′′(a)(h, k) = df ′a(h, k) = d(h 7→ dfh)a(k) (5.12)

Thus, in stark contrast to first semester calculus, each added derivative brings out a new object.
Using the isomorphism and its extension to higher derivatives, we find the n-th derivative of f :
V →W is naturally understood as an n-linear map from V to W . What is beautiful is that we can
capture this simply in terms of iterated partial derivatives provided a certain continuity is given.
I’ll attempt to explain this for the case of second derivatives this semester. For the sake of time, I’ll
let Zorich provide the many details I omit here. If I find time to prepare and Lecture for Advanced
Calculus of Fall 2019, we may examine the proof that partial derivatives commute. Whether or not
we have time for the proof, the fact that partial derivatives commute is a cornerstone of abstract
calculus.



Chapter 6

Differentiation on an Algebra

In the usual course of complex analysis it is a simple matter to define differentiation with respect
to a complex variable. In particular, the usual definition is that for f : dom(f) ⊆ C → C the
complex derivative of f exists at z if and only if the following limit exists and

f ′(z) = lim
h→0

f(z + h)− f(z)

h

It is then a relatively straight-forward exercise to verify this complex differentiation satisfies all the
usual features of real calculus. Unfortunately, in an algebra A the division by h is rather troubling.
For C there is no problem since h 6= 0 suffices to give a well-defined meaning for 1/h. In contrast,
zd(A) 6= 0 and we cannot reasonably consider 1

h as h → 0 without some qualification. In short,
the difference quotient does not generalize to general differentiation over an algebra. Well, some
researchers might disagree with me on that, they would just assert we limit1 the limit to h ∈ U(A).
I call this modification of the difference quotient the deleted difference quotient 2

In this chapter we use the theory of real differentiation set forth in the previous chapter to frame
the definition of A-differentiability for a function f : dom(f) ⊆ A → A. The definition we
provide reproduces the usual definition for f ′(z) with the proper interpretation and it allows us to
meaningfully develop a theory of differential calculus for algebras with zero-divisors. We prove the
derivative with respect to an algebra variable has the usual linearity, product and chain rules. Our
proofs make ample use of the corresponding results for real derivatives which were offered in the
previous chapter.

In addition, we study the A-Cauchy Riemann Equations (A-CREqns). In particular, if a contin-
uously differentiable f : dom(f) ⊆ A → A satisfies the A-CREqns then f is A-differentiable.
Since the A-CREqns are relatively simple PDEs this provides a nice tool to check differentiability
with respect to A. In the case A = C these PDEs are simply called the Cauchy Riemann Equa-
tions.

Complex conjugation plays an important role in the usual complex analysis. You can express the
Cauchy Riemann Equations as ∂f

∂z̄ = 0. We show the A-CREqns may likewise be expressed by the

1fine, pun intended
2I discuss the merits and failings of the deleted difference quotient viewpoint in Section 6.4. I include this for

breadth, you can skip it in your first reading of the material. Perhaps you might return to it if you decide to study
A-Calculus more deeply.
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condition that n− 1 conjugate derivatives vanish for the n-dimensional algebra A.

We also study further differential consequences of the A-CREqns. Of course Laplace’s equation
is the most famous of these and we will likely spend a whole day to focus on Laplace’s equation
place in complex analysis. That said, it is convenient to introduce a general framework in which
the A-Laplace equations are found. We also detail how Taylor’s Theorem beautifully generalizes
to our context.

To the struggling student, please be patient with me, I soon will shift gears and focus almost
entirely on C. This Chapter finishes much of what I have to say about A-Calculus until much later
in the course.

6.1 A-Differentiability

In what follows we assume A = Rn has Euclidean norm ‖x‖ =
√
x •x. The treatment of this

material in [cookAcalculusI] allows A to be an abstract vector space of finite dimension and many
results involving the choice of basis are given. Once again I emphasize, in this course we assume
A = Rn in the interest of making this more understandable for students lacking a linear algebra
background. We now make use of Definition 4.3.1 where we introduced the limit on A.

Definition 6.1.1. Let U ⊆ A be an open set containing p. If f : U → A is a function then we say
f is A-differentiable at p if there exists a linear function dpf ∈ RA such that

lim
h→0

f(p+ h)− f(p)− dpf(h)

||h||
= 0. (6.1)

Definition 3.1.2 says RA is the set of all left-multiplication maps of A. As we have before discussed,
Lb(x) = b ? x defines the left-multiplication map on A by b. Proposition 3.1.3 argued that we
could also characterize RA as the set of right-A-linear maps on A. Let’s review the algebra once
again: for each b ∈ A and any pair x, y ∈ A,

Lb(x ? y) = b ? (x ? y) = (b ? x) ? y = Lb(x) ? y.

Thus each left-multiplication map allows us to pull A-numbers out to the right of its argument
(that is Lb is right-A-linear). Let us agree that we may either characterize the fundamental
representation as left-multiplications or as right-A-linear maps in the remainder of this course3.

I should mention, it is also clear that each map in RA is linear over R since: for x, y ∈ A and c ∈ R

Lb(cx+ y) = b ? (cx+ y) = cb ? x+ b ? y = cLb(x) + Lb(y).

In summary, dpf ∈ RA implies dpf : A → A is R-linear mapping on A and dpf(v ?w) = dpf(v) ?w
for all v, w ∈ A.

Theorem 6.1.2. If f is A differentiable at p then f is R-differentiable at p.

Proof: if f is A-differentiable at p then we know dpf ∈ RA satisfies the Frechet limit given in
Equation 6.1. Moreover, dpf is R-linear. �

There are R-differentiable functions which are not A-differentiable. The condition dpf ∈ RA is not
met by all functions on A.

3in other words, we need not speak of Proposition 3.1.3 any longer, this issue is settled
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Example 6.1.3. Let A be an algebra of dimension n ≥ 2 and {e1, . . . , en} an invertible basis with
e1 = 1 and coordinates x1, . . . , xn then we have ζ = x1 + · · · + xnen and ζ2 = x1 − x2e2 + · · · +
xnen. The function f(ζ) = ζ2 is everywhere real differentiable and nowhere A-differentiable. These
observations are most easily verified using the tools of Section 6.2 which culminate in Theorem
6.3.5.

If f is A-differentiable at each p ∈ V then f is A-differentiable on V and we write f ∈
CA(V ). If there exists an open set containing p on which f is A-differentiable then we say f
is A-differentiable near p and write f ∈ CA(p). There are several ways to characterize A-
differentiability at a point. These all follow from the isomorphism of A with RA or MA.

Theorem 6.1.4. Let U ⊆ A and p ∈ U . Let f : U → A be a R-differentiable function at p. The
following are equivalent

(i.) dfp(v ? w) = dfp(v) ? w for all v, w ∈ A,

(ii.) there exists λ ∈ A for which dfp(v) = λ ? v for each v ∈ A,

(iii.) [dfp] ∈ MA.

Proof: (i.) is right-A-linearity and (ii.) says dfp is a left-multiplication by λ thus we have already
shown the equivalence of (i.) and (ii.) in Proposition 3.1.3. Let us suppose f is R-differentiable at
p as in the statement of the Theorem. Furthermore, suppose [dfp] ∈ MA thus there exists b ∈ A for
which [Lb] = [dfp]. But, A = Rn and we know two linear transformation with the same standard
matrix are the same transformation thus Lb = dfp thus (ii.) follows with b = λ. Conversely, if (ii.)
is true then by definition of MA we have [dfp] ∈ MA. �

The A-number λ which appears above in (ii.) is known as the derivative of f at p. Notice: if
dpf(v) = λ ? v for each v ∈ A then (dpf)(1) = λ. We should appreciate the importance of the
isomorphism of RA and A as it allows derivatives of functions on A to be viewed once more as
functions on A. This is a great simplification as derivatives of R-differentiable maps are not usually
objects of the same type. The following quote4 is from Dieudonné in [Dmaster]

...on a one-dimensional vector space, there is a one-to-one correspondence between linear
forms and numbers, and therefore the derivative at a point is defined as a number instead
of a linear form.

Dieudonné says this to encourage students to place linear transformations at the center stage
of their analysis. In contrast, we find the correspondence of right-A-linear transformations, or
later k-linear transformations on A5, with A itself allows us to perform calculations in A-calculus
in nearly the same fashion as introductory real calculus. In other words, since there is also a
natural correspondence between A-linear transformations and A we escape the sophistication which
Dieudonné could not avoid.

Definition 6.1.5. Let U ⊆ A be an open set and f : U → A an A-differentiable function on U
then we define f ′ : U → A by f ′(p) = (dpf)(1) for each p ∈ U .

Many theorems of calculus hold for A-differentiable functions.

4from the introduction to Dieudonné’s chapter on differentiation in Modern Analysis Chapter VIII
5in particular, see Theorem 6.5.2
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Theorem 6.1.6. If f, g ∈ CA(p) and c ∈ A and we define f + g by (f + g)(x) = f(x) + g(x) and
(c ? f)(x) = c ? f(x). Then

(i.) f + g ∈ CA(p) and (f + g)′(p) = f ′(p) + g′(p),

(ii.) c ? f ∈ CA(p) and (c ? f)′(p) = c ? f ′(p).

Proof: suppose f, g ∈ CA(p) and c ∈ A. Notice f, g are R-differentiable at p so we are free to use
the general linearity of the differential as was demonstrated to prove Theorem 5.3.1. In particular,
f + g is R-differentiable and d(f + g)p = dfp + dgp. Observe, for x, y ∈ A,

d(f + g)p(x ? y) = dfp(x ? y) + dgp(x ? y) = dfp(x) ? y + dgp(x) ? y

where we used right-A-linearity of dfp and dgp in the last step. Factor out the multiplication by y
as to see:

d(f + g)p(x ? y) = (dfp(x) + dgp(x)) ? y = (dfp + gp)(x) ? y

which provides d(f + g)p(x ? y) = (d(f + g)p(x)) ? y thus d(f + g)p ∈ RA. Moreover

(f + g)′(p) = d(f + g)p(1) = dfp(1) + dgp(1) = f ′(p) + g′(p).

Thus (i.) is shown true. To prove (ii.) it is helpful to recall the general product rule proved in
Theorem 5.3.3. In particular, we think about case (8.) presented after the theorem which implies
c ? f is R-differentiable with

d(c ? f)p = dcp ? f(p) + c ? dfp.

I propose a homework for the reader; if G(x) = c for all x ∈ A then dGp = 0 for any p ∈ A. In
words, I invite the reader to prove the differential of a constant function is the zero transformation;
d(cp) = 0. With this trivial result in hand, d(c ? f)p = c ? dfp. Thus observe

(d(c ? f)p)(x ? y) = c ? (dfp(x ? y)) = c ? (dfp(x) ? y) = (c ? dfp(x)) ? y = (d(c ? f)p(x)) ? y

where we used right-A-linearity of dfp in the crucial middle step above. We find d(c?f)p ∈ RA hence
c?f ∈ CA(p) and (c?f)′(p) = d(c?f)p(1) = c?dfp(1) = c?f ′(p) which concludes the proof of (ii.). �

Proof of (ii.) without using uber-product rule: If f ∈ CA(p) then dpf ∈ RA which means
dpf(v ? w) = dpf(v) ? w. Let c ∈ A and define g(p) = c ? f(p). Let L(h) = c ? dpf(h) for each
h ∈ A. If v, w ∈ A then

L(v ? w) = c ? dpf(v ? w) = c ? dpf(v) ? w = L(v) ? w. (6.2)

thus L ∈ RA. It remains to show g is differentiable with dpg = L. If h 6= 0 let Ff ,Fg denote the
Frechet quotients of f, g respective. Since f is differentiable at p means limh→0Ff = 0. Calculate:

Fg =
g(p+ h)− g(p)− L(h)

||h||
=
c ? f(p+ h)− c ? f(p)− c ? dpf(h)

||h||
(6.3)

= c ?
f(p+ h)− f(p)− dpf(h)

||h||
= c ? Ff .
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Thus, recalling Theorem 4.1.2 we find ||Fg|| = ||c ?Ff || ≤ mA||c|| ||Ff ||. Since ||Ff || → 0 as h→ 0
it follows limh→0Fg = 06. Hence, g is R-differentiable with dpg = L. Thus c ? f ∈ CA(p) with
dp(c ? f) = c ? dpf . Note

dp(c ? f)(1) = c ? dpf(1) = c ? f ′(p) (6.4)

Consequently, (c ? f)′(p) = c ? f ′(p). �

The product of two A-differentiable functions is not necessarily A-differentiable in the case that
A is a noncommutative algebra. However, the product of two A-differentiable functions is always
R-differentiable as is clear from Theorem 5.3.3.

Theorem 6.1.7. Suppose f, g are A-differentiable at p then

dp(f ? g)(v) = dpf(v) ? g(p) + f(p) ? dpg(v)

for each v ∈ A. Furthermore, if A is commutative then f ? g is A-differentiable at p and

(f ? g)′(p) = f ′(p) ? g(p) + f(p) ? g′(p).

Proof: as discussed in Case (8.) following Theorem 5.3.3 we have f ? g is real-differentiable at p
with dp(f ?g)(v) = dpf(v)?g(p) +f(p)?dpg(v). Next, suppose A is commutative. If v, w ∈ A then

dp(f ? g)(v ? w) = dpf(v ? w) ? g(p) + f(p) ? dpg(v ? w) (6.5)

= dpf(v) ? w ? g(p) + f(p) ? dpg(v) ? w

=
(
dpf(v) ? g(p) + f(p) ? dpg(v)

)
? w

= dp(f ? g)(v) ? w

Thus dp(f ? g) ∈ RA and we have shown f ? g is A-differentiable at p. Moreover,

(f ? g)′(p) = dp(f ? g)(1) (6.6)

= dpf(1) ? g(p) + f(p) ? dpg(1)

= f ′(p) ? g(p) + f(p) ? g′(p). �

If A is not commutative then it is possible

dpf(v) ? w ? g(p) 6= dpf(v) ? g(p) ? w (6.7)

If f ? g is to be A differentiable at p then we need that

dpf(v) ? w ? g(p)− dpf(v) ? g(p) ? w = 0 (6.8)

for all v, w ∈ A. Equivalently,

dpf(v) ?
(
w ? g(p)− g(p) ? w

)
= 0 (6.9)

For example, if f(p) = c is the constant function then f ? g is differentiable as we already saw in
Theorem 6.1.6 part (ii.). For a less trivial example, we could seek a function g for which

w ? g(p)− g(p) ? w = 0 (6.10)

6alternatively, we could simply use the part (c.) of Theorem 4.3.2 to calculate directly that lim c?Ff = c?limFf =
c ? 0 = 0.
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for all w ∈ A and some p. The center of A is Z(A) = {x ∈ A | x ? y = y ? x for all y ∈ A}.
The center forms an ideal of A. We say A is a simple algebra if it has no ideals except {0} and
A. If g(p) ∈ Z(A) and g(p) 6= 0 then we find A is not a simple algebra. Another aspect to
this result is the nonexistence of higher than first-order A-polynomials. In particular, Rosenfeld
shows in [Rosenfeld] that there are only linear A-differentiable functions over simple associative or
alternative algebras. Simple algebras aside, there are algebras with nontrivial centers which in turn
support nontrivial functions which meet the criteria of Equation 6.10.

Example 6.1.8. Let A = R6 with the following noncommutative multiplication:

(a, b, c, d, e, f) ? (x, y, z, u, v, w) = (ax, by, cz, au+ dy, bv + ez, aw + dv + fz) (6.11)

The regular representation of A has typical element

M(a, b, c, d, e, f) =



a 0 0 0 0 0
0 b 0 0 0 0
0 0 c 0 0 0
0 d 0 a 0 0
0 0 e 0 b 0
0 0 f 0 d a

 (6.12)

Suppose A has variables ζ = (x1, . . . , x6) and define f(ζ) = (1, 1, 1, 1, 1, x2
3) and define g(ζ) =

(0, 0, 0, x2, 0, x5). Calculate (f ? g)(ζ) = (0, 0, 0, x2, 0, x5). We calculate,

[
∂f

∂xi

]
=



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 2x3 0 0 0

 &

[
∂g

∂xi

]
=



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0

 (6.13)

Observe f and g are A-differentiable and f ? g = g is likewise A-differentiable. In contrast, (g ?
f)(ζ) = (0, 0, 0, x2, 0, x2 +x5) is not A-differentiable as its Jacobian matrix is nonzero in the (2, 6)-
entry and hence is not7 in MA. Recall Equation 6.9 showed we need dpf to annihilate the center
of the algebra in order that f ? g be A-differentiable at p. Likewise, to have g ? f differentiable over
A at p we need dpg to annihilate the center of A. This is the distinction between f and g in this
example, only f has dpf annihilating the center of A.

Theorem 6.1.9. Suppose U, V ⊆ A are open sets and g : U → V and f : V → A are A-
differentiable functions. If p ∈ U then

(f ◦ g)′(p) = f ′(g(p)) ? g′(p).

Proof: if f ∈ CA(U) and g ∈ CA(V ) then f and g are R-differentiable on U, V respective.
Moreover, by the usual real calculus of a normed linear space, if the composite f ◦ g is defined at

7The algebra in Example 6.1.8 is isomorphic to the algebra formed by upper triangular matrices in R3×3. The center

of the upper triangular matrices is formed by the strictly upper triangular matrices. The element A =

 0 0 a
0 0 0
0 0 0


annihilates everything in the center of the triangular matrices. This is the reason that f ? g is differentiable whereas
g ? f is not; dpf corresponds to A whereas dpg does not annihilate the center of the algebra.
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p we have an elegant chain rule in terms of differentials: d(f ◦ g)p = dfg(p) ◦ dgp. Let v, w ∈ A and
consider

d(f ◦ g)p(v ? w) = (dfg(p) ◦ dgp)(v ? w) : real chain rule (6.14)

= dfg(p)(dgp(v ? w)) : def. of composite

= dfg(p)(dgp(v) ? w)) : as g ∈ CA(p)

= dfg(p)(dgp(v)) ? w : as f ∈ CA(g(p))

= d(f ◦ g)p(v) ? w : real chain rule

Thus d(f ◦ g)p ∈ RA which shows f ◦ g is A-differentiable at p. Moreover, as f ∈ CA(g(p)) implies
dfg(p)(w) = f ′(g(p)) ? w and g ∈ CA(p) implies dgp(v) = g′(p) ? v we derive

d(f ◦ g)p(v) = dfg(p)(dgp(v)) = f ′(g(p)) ? dgp(v) = f ′(g(p)) ? g′(p) ? v (6.15)

for each v ∈ A. Therefore, (f ◦ g)′(p) = f ′(g(p)) ? g′(p). �

Example 6.1.10. Claim: Let f(ζ) = ζn for some n ∈ N then f ′(ζ) = nζn−1.

We proceed by induction on n. If n = 1 then f(ζ) = ζ which is to say f = Id and hence dfp = Id
for each p ∈ A. Moreover,

dfp(x ? y) = Id(x ? y) = x ? y = Id(x) ? y = dfp(x) ? y (6.16)

which shows f is A-differentiable on A. We calculate (dfp)(1) = Id(1) = 1 = 1ζ0 hence the claim
is true for n = 1. Suppose the claim holds for some n ∈ N. Define f(ζ) = ζn and g(ζ) = ζ. We
have f ′(ζ) = nζn−1 by the induction hypothesis and we already argued g′(ζ) = 1. Thus, Theorem
6.1.7 applies to calculate ζn+1 = f(ζ) ? g(ζ):

(f ? g)′(ζ) = nζn−1 ? ζ + ζn ? 1 = (n+ 1)ζ(n+1)−1 (6.17)

thus the claim is true for n+ 1 and we conclude d
dζ (ζn) = nζn−1 for all n ∈ N.

Admittedly, we just introduced a new notation; if f is an A-differentiable function and ζ denotes
an A variable then we write

f ′(ζ) =
df

dζ
(ζ) =

d

dζ
(f(ζ)) & f ′ =

df

dζ
(6.18)

If the A-differentiability of f : A → A is not certain then we may still meaningfully calculate ∂
∂ζ

as a particular A-linear combination of real partial derivatives. In other words, we are able to find
an A-generalization of Wirtinger’s calculus. Details are given in the next section.

If A ≈ B then A and B differentiable functions are related through the isomorphism.

Theorem 6.1.11. Let Ψ : A → B be an isomorphism of unital, associative finite dimensional
algebras over R. If f is A differentiable at p then g = Ψ ◦ f ◦Ψ−1 is B-differentiable at Ψ(p).
Moreover, g′(p) = (Ψ ◦ f ′ ◦Ψ−1)(p).

Proof: Let (A, ?) and (B, ∗) be finite dimensional isomorphic unital associative algebras via the
isomorpism Ψ : A → B. In particular, Ψ is a linear bijection and Ψ(v ? w) = Ψ(v) ∗ Ψ(w) for all
v, w ∈ A. Since Ψ and Ψ−1 are linear maps on normed linear spaces of finite dimension we know
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these are smooth real maps with dΨp = Ψ for each p ∈ A and dΨ−1
q = Ψ−1 for each q ∈ B. If f

is A differentiable at p then dfp ∈ RA. Define g = Ψ ◦ f ◦Ψ−1 and notice dgq exists as g is formed
from the composite of differentiable maps. The chain rule8 provides,

dg = dΨ ◦ df ◦ dΨ−1 ⇒ dg = Ψ ◦ df ◦Ψ−1 (6.19)

as Ψ,Ψ−1 are linear maps. We seek to show dgq is right-B-linear at q = Ψ(p). Calculate,

dgq(v ∗ w) = Ψ(dfp(Ψ
−1(v ∗ w))) (6.20)

= Ψ(dfp(Ψ
−1(v) ?Ψ−1(w)))

= Ψ(dfp(Ψ
−1(v)) ?Ψ−1(w))

= Ψ(dfp(Ψ
−1(v))) ∗Ψ(Ψ−1(w))

= dgq(v) ∗ w.

Thus dgq ∈ LB and we find g is B-differentiable at q = Ψ(p) as claimed. �

Isomorphic algebras have algebra-differentiable functions which naturally correspond:

Corollary 6.1.12. If Ψ : A → B be an isomorphism of unital, associative finite dimensional
algebras over R and U ⊆ A an open set then each f ∈ CA(U) can be written as a composite
f = Ψ−1 ◦ g ◦Ψ for some g ∈ CB(Ψ(U))

Proof: Observe g = Ψ ◦ f ◦Ψ−1 satisfies f = Ψ−1 ◦ g ◦Ψ. Moreover, B-differentiability of g at
Ψ(p) ∈ Ψ(U) is naturally derived from the given A-differentiability of f at Ψ(p) ∈ Ψ(U) via the
result of Theorem 6.1.11. �

6.2 A-Cauchy Riemann Equations

The task of verifying A-differentiability of a function on A is greatly simplified via the use of the
A-Cauchy Riemann Equations. Recall Theorem 5.1.19 provided that a continuously differentiable
function was in fact a R-differentiable function. It follows that f : A → A which is continuously
differentiable at p and has dfp ∈ RA is A-differentiable at p. Let us record this result for future
reference:

Theorem 6.2.1. Let f : dom(f) ⊆ A → A be a function which is continuously differentiable at p
and dfp ∈ RA then f ∈ CA(p). If f is continuously differentiable at each point on its domain9 then
f is A-differentiable on its domain.

We remind the reader that continuously differentiability of f at p means that all the component
functions of f possess partial derivative functions which are continuous near p. The right-A-linearity
of dfp amounts to n2 − n equations which the partial derivatives of the entries in Jacobian matrix
of f must satisfy. Let us give these a proper naming:

Definition 6.2.2. Let f = (u1, u2, . . . , un) : dom(f) ⊆ A → A be a function with component
functions u1, u2, . . . , un. We call the equations imposed by dfp(x ? y) = dfp(x) ? y for all x, y ∈ A
the A Cauchy Riemann Equations(ACREqns) for A.

8explicitly dgq = dΨf(Ψ−1(q))
◦ dfΨ−1(q)

◦ dΨ−1
q

9ok, to be picky, I assume the domain is open given my previous definitions
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Often the ACREqns are studied at the level of component functions in the standard complex
analysis course. Let us begin with the A = C example.

Example 6.2.3. Let f = u+ iv then Jf =

[
ux uy
vx vy

]
. If Jf ∈MC then Jf = M(a+ ib) for some

complex number a+ ib. This means [
ux uy
vx vy

]
=

[
a −b
b a

]
hence a = ux = vy and b = vx = −uy. The equations ux = vy and vx = −uy are the standard
Cauchy Riemann equations. By Theorem 6.2.1, if f = u + iv is continously differentiable at p
and has ux = vy and vx = −uy at p then f is complex differentiable at p.

Example 6.2.4. Let f = u + jv then Jf =

[
ux uy
vx vy

]
. If Jf ∈ MH then Jf = M(a + jb) for

some hyperbolic number a+ jb. This means[
ux uy
vx vy

]
=

[
a b
b a

]
hence a = ux = vy and b = vx = uy. The equations ux = vy and vx = uy are the Hyperbolic
Cauchy Riemann equations. By Theorem 6.2.1, if f = u + jv is continously differentiable at p
and has ux = vy and vx = uy at p then f is hyperbolic differentiable at p.

We could continue with the pattern matching of the two examples above. That is how I used to
think about it. But, there is a better way.

Theorem 6.2.5. Suppose A = Rn is an associative unital algebra with structure constants Cijk
defined by ei ? ej =

∑
k Cijkek. If f : A → A is A-differentiable at p then

(i.)
∂f

∂xi
? ej =

∑
k

Cijk
∂f

∂xk
, ( we rarely use this formulation)

(ii.) given e1 = 1 we find
∂f

∂xj
=

∂f

∂x1
? ej for j = 2, . . . , n,

(iii.) if A is commutative then ∂f
∂xi

? ej = ei ?
∂f
∂xj

for all i, j = 1, 2, . . . , n.

Proof: suppose f is A-differentiable at p then dpf ∈ RA. The k-th partial derivatives with

respect to the Cartesian coordinate xk in A is given by dfp(ek) = ∂f
∂xk

. To derive (i.) suppose

ei ? ej =
∑

k C
k
ijek and calculate:

∂f

∂xi
? vj = dfp(ei) ? ej = dfp(ei ? ej) = dfp

(∑
k

Cijkek

)
=
∑
k

Cijkdfp(ek) =
∑
k

Cijk
∂f

∂xk
. (6.21)

Likewise, (ii.) follows as

dfp(ej) = dfp(1 ? ej) = dfp(1) ? ej ⇒
∂f

∂xj
=

∂f

∂x1
? ej (6.22)
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for j = 2, . . . , n. Finally, in the case A is commutative we derive (iii.) as follows:

∂f

∂xi
? ej = dfp(ei) ? ej = dfp(ei ? ej) = dfp(ej ? ei) = dfp(ej) ? ei =

∂f

∂xj
? ei. (6.23)

Thus, once more using commutativity of A, ∂f
∂xi

? ej = ei ?
∂f
∂xj

. �

The (i.), (ii.) or (iii.) equations above are known as generalized Cauchy Riemann Equations by
many authors. We prefer to call them the A-CR-equations as to be specific. Both (i.) and (ii.) are
suitable sets of equations when A is noncommutative. If 1 is conveniently presented in a basis for
A then (ii.) is the convenient description of A-differentiable functions.

Example 6.2.6. Consider the complicated numbers of the form ζ = x + ky + k2z where k3 = −1
then the A-CREqns can be expressed rather nicely as follows: for f : dom(f) ⊆ C3 → C3 we have
C3-CREqns: since e1 = 1, e2 = k and e3 = k2,

∂f

∂y
= k

∂f

∂y
&

∂f

∂z
= k2∂f

∂z

Setting f = u+ kv + k2w the above vector equations translate into:

uy + kvy + k2wy = k(ux + kvx + k2wx) & uz + kvz + k2wz = k2(ux + kvx + k2wx)

from which we derive: the n2 − n = 9 − 3 = 6 generalized Cauchy Riemann equations for the
3-complicated number system C3:

uy = −wx, vy = ux, wy = vx, uz = −vx, vz = −wx, wz = ux.

Notice, if we use these equations it allows us to simplify the Jacobian matrix for f as follows:

Jf = [fx|fy|fz] =

 ux uy uz
vx vy vz
wx wy wz

 =

 ux −wx −vx
vx ux −wx
wx vx ux

 = MC3(ux+kvx+k2wx) = MC3

(
∂f

∂x

)
.

6.3 Conjugation and the A-Cauchy Riemann Equations

Our first goal in this section is to describe a Wirtinger calculus for A. In particular, we define the
partial derivatives of an algebra variable and its conjugate variables. We should caution, the term
conjugate ought not be taken too literally. These conjugates generally do not form automorphisms of
the algebra. Their utility is made manifest that the play much the same role as the usual conjugate
in complex analysis. We follow the construction of Alvarez-Parrilla, Fŕıas-Armenta, López-González
and Yee-Romero directly for the definition below (this is Equation 4.3 of [pagr2012]):

Definition 6.3.1. Suppose A has an invertible basis which begins with the multiplicative identity
of the algebra. In particular, β = {v1, v2, . . . , vn} is a basis for A with v1 = 1. If ζ = x1v1 +x2v2 +
· · ·+ xnvn then we define the j-th conjugate of ζ as follows:

ζj = ζ − 2xjvj = x11 + · · ·+ xj−1vj−1 − xjvj + xj+1vj+1 + · · ·+ xnvn

for j = 2, 3 . . . , n.
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In some sense, the variables ζ, ζ2, . . . , ζn are simply an algebra notation for n real variables. Given
a function of x1, . . . , xn we are free to express the function in terms of the algebra variables
ζ, ζ2, . . . , ζn.

Theorem 6.3.2. Suppose A has invertible basis β = {1, v2, . . . , vn} and ζ =
∑n

i=1 xivi and ζj =

ζ − 2xjvj for j = 2, . . . , n then using 1
vj

to denote v−1
j and omit 1 we find:

(i.) xj =
1

2vj

(
ζ − ζj

)
for j = 2, . . . , n.

(ii.) x1 =
1

2

(
(3− n)ζ +

n∑
j=2

ζj

)
.

Proof: to obtain (i.) simply solve ζj = ζ − 2xjvj for xj . Then to derive (ii.) we solve ζ =
x11 + x2v2 + · · ·+ xnvn for x11:

x11 = ζ −
n∑
j=2

xjvj = ζ − 1

2

n∑
j=2

(ζ − ζj) =
1

2

[
(3− n)ζ +

n∑
j=2

ζj

]
(6.24)

finally, omit 1 to obtain (ii.) �

It may be helpful to formally discover the usual results of the Wirtinger’s [wirtinger] calculus for
complex analysis. Consider A = C where z = x + iy and z̄ = x − iy hence x = 1

2(z + z̄) and
y = i

2(z̄ − z). Hence, formally,

∂

∂z
=
∂x

∂z

∂

∂x
+
∂y

∂z

∂

∂y
=

1

2

(
∂

∂x
− i ∂

∂y

)
&

∂

∂z̄
=
∂x

∂z̄

∂

∂x
+
∂y

∂z̄

∂

∂y
=

1

2

(
∂

∂x
+ i

∂

∂y

)
. (6.25)

Furthermore, ∂x = ∂z + ∂z̄ and ∂y = i(∂z − ∂z̄). Observe, for a complex differentiable f we have
fy = ifx hence ∂z̄f = 1

2(fx + ify) = 1
2(fx + i2fx) = 0. Whereas ∂zf = 1

2(fx − ify) = fx. We
find a complex differentiable function may depend on z however it should not have a nontrivial
z̄-dependence. Since z and z̄ are obviously related by conjugation, the previous sentence has the
potential to confuse! That said, these statements about z or z̄-dependence ought to be understood
as comments about a partial real dependence.

We seek similar formulas for A. Hence, consider Theorem 6.3.2 shows that if A has invertible basis
β = {1, v2, . . . , vn} and ζ =

∑n
i=1 xivi and ζj = ζ − 2xjvj for j = 2, . . . , n then

xj =
1

2vj

(
ζ − ζj

)
& x1 =

1

2

(
(3− n)ζ +

n∑
j=2

ζj

)
. (6.26)

Formally,
∂xj
∂ζ = 1

2vj
for j = 2, . . . , n and ∂x1

∂ζ = 3−n
2 hence we suspect

∂

∂ζ
=

n∑
j=1

∂xj
∂ζ

∂

∂xj
=

1

2

(
(3− n)

∂

∂x1
+

1

v2

∂

∂x2
+ · · ·+ 1

vn

∂

∂xn

)
(6.27)

whereas
∂xj
∂ζk

= −1
2vj
δjk and ∂x1

∂ζk
= 1

2 thus we speculate:

∂

∂ζk
=

n∑
j=1

∂xj

∂ζk

∂

∂xj
=

1

2

(
∂

∂x1
− 1

vk

∂

∂xk

)
. (6.28)
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The calculations above convinced us to make the definition below (which is slightly different than
the defintion offered in [pagr2012] where ∂/∂ζ is defined differently in their Equation 4.7).

Definition 6.3.3. Suppose f : A → A is R-differentiable. Furthermore, suppose β = {1, v2, . . . , vn}
is an invertible basis and ζ = x11+ x2v2 + · · ·+ xnvn. We define

∂

∂ζ
=

1

2

(
(3− n)

∂

∂x1
+

1

v2

∂

∂x2
+ · · ·+ 1

vn

∂

∂xn

)
&

∂

∂ζk
=

1

2

(
∂

∂x1
− 1

vk

∂

∂xk

)
for j = 2, 3, . . . , n.

The merit of Definition 6.3.3 is seen in the theorem below10:

Theorem 6.3.4. Given the notation of Definition 6.3.3,

∂ζ

∂ζ
= 1,

∂ζj
∂ζ

= 0,
∂ζj

∂ζj
= 1,

∂ζj

∂ζk
= 0,

∂ζ

∂ζj
= 0

for all j = 2, . . . , n and k 6= j.

Proof: simple calculation. Consider:

∂ζ

∂ζ
=

1

2

(
(3− n)

∂

∂x1
+

1

v2

∂

∂x2
+ · · ·+ 1

vn

∂

∂xn

)
(x1 + · · ·+ xnvn) (6.29)

=
(3− n) + n− 1

2
= 1.

For j = 2, . . . , n we calculate:

∂ζj
∂ζ

=
1

2

(
(3− n)

∂

∂x1
+

1

v2

∂

∂x2
+ · · ·+ 1

vn

∂

∂xn

)
(x1 + · · · − xjvj + · · ·+ xnvn) (6.30)

=
3− n+ n− 3

2
= 0,

and

∂ζj

∂ζj
=

1

2

(
∂

∂x1
− 1

vj

∂

∂xj

)
(x1 + · · · − xjvj + · · ·+ xnvn) =

1

2

(
1 +

1

vj
vj

)
= 1, (6.31)

and for k 6= j,

∂ζj

∂ζk
=

1

2

(
∂

∂x1
− 1

vk

∂

∂xk

)
(x1 + · · · − xjvj + · · ·+ xnvn) =

1

2

(
1− 1

vk
vk

)
= 0. (6.32)

and finally

∂ζ

∂ζj
=

1

2

(
∂

∂x1
− 1

vj

∂

∂xj

)
(x1 + · · ·+ xjvj + · · ·+ xnvn) =

1

2

(
1− 1

vj
vj

)
= 0. (6.33)

10compare with Equation 4.9 in [pagr2012]
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In summary, the derivatives above show we may think of ζ and ζj as independent variables. �

We should connect the formal derivatives above with A-differentiability of a function. It turns out
we can recast the A-Cauchy Riemann Equations in terms of the formal derivatives we thus far
defined. In fact, A-differentiability of a function can be thought of as saying the given function
depends only on the variable of the algebra and not of any of its conjugates. More precisely:

Theorem 6.3.5. Let β = {1, v2, . . . , vn} be an invertible basis for the commutative algebra A. If

f : A → A is A-differentiable at p then
∂f

∂ζj
= 0 for j = 2, . . . , n.

Proof: following Definition 6.3.3

∂f

∂ζk
=

1

2

(
∂f

∂x1
− 1

vk
?
∂f

∂xk

)
=

1

2

(
∂f

∂x1
− 1

vk
?
∂f

∂x1
? vk

)
= 0 (6.34)

as A is assumed commutative and 1
vk
? vk = 1. �

The usual additive and product rules hold for ∂/∂ζ and ∂/∂ζj .

Theorem 6.3.6. Using the notation of Definition 6.3.3, if f, g : A → A are differentiable then

∂

∂ζ
(f + g) =

∂f

∂ζ
+
∂g

∂ζ
&

∂

∂ζj
(f + g) =

∂f

∂ζ
+

∂g

∂ζj

for j = 2, . . . , n. Likewise,

∂

∂ζ
(f ? g) =

∂f

∂ζ
? g + f ?

∂g

∂ζ
&

∂

∂ζj
(f ? g) =

∂f

∂ζj
? g + f ?

∂g

∂ζj

Proof: suppose f and g are real differentiable functions on A,

1

2

(
∂

∂x1
− 1

vk

∂

∂xk

)
(f + g) =

1

2

(
∂f

∂x1
− 1

vk

∂f

∂xk

)
+

1

2

(
∂g

∂x1
− 1

vk

∂g

∂xk

)
(6.35)

thus ∂
∂ζj

(f + g) = ∂f
∂ζ + ∂g

∂ζj
. Using the structure constants Cijk we express f ? g =

∑
ijk Cijkfigjvk

and it follows ∂j(f ? g) = ∂jf ? g + f ? ∂jg. Consequently,

1

2

(
∂

∂x1
− 1

vk

∂

∂xk

)
(f ? g) =

1

2

(
∂f

∂x1
? g + f ?

∂g

∂x1
− 1

vk

[
∂f

∂xk
? g + f ?

∂g

∂xk

])
(6.36)

=
1

2

(
∂f

∂x1
+− 1

vk

∂f

∂xk

)
? g + f ?

1

2

(
∂g

∂x1
+− 1

vk

∂g

∂xk

)
.

Hence ∂
∂ζj

(f ? g) = ∂f

∂ζj
? g + f ? ∂g

∂ζj
. The identities for ∂/∂ζ follow from similar calculations. �

The following example can be constructed in nearly every A.

Example 6.3.7. Suppose dim(A) ≥ 2. Let f(ζ) = ζ ζ2 where f : A → A then

∂f

∂ζ
=
∂ζ

∂ζ
ζ2 + ζ

∂ζ2

∂ζ
= ζ2 &

∂f

∂ζ2

=
∂ζ

∂ζ2

ζ2 + ζ
∂ζ2

∂ζ2

= ζ

This function is only A-differentiable at the origin. In the usual complex analysis it is simply the
square of the modulus; f(z) = zz = x2 + y2 where z = x+ iy has z2 = x− iy.
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Inverting Definition 6.3.3 for ∂/∂x1, . . . , ∂/∂xn in terms of ∂/∂ζ, . . . , ∂/∂ζn yields:

Theorem 6.3.8. Using the notation of Definition 6.3.3,

∂

∂x1
=

∂

∂ζ
+
∂

ζ2

+ · · ·+ ∂

ζn
&

∂

∂xk
= vk

(
∂

∂ζ
+
∂

ζ2

+ · · ·+ ∂

ζn
− 2

∂

ζk

)
Proof: Begin with Definition 6.3.3 and note the identity for ∂/∂x1 follows immediately from
summing ∂/∂ζ with the n− 1 conjugate derivatives ∂

∂ζ2
, . . . , ∂

∂ζn
:

∂

∂ζ
+
∂

ζ2

+ · · ·+ ∂

ζn
=

3− n
2

∂

∂x1
+
n− 1

2

∂

∂x1
=

∂

∂x1
. (6.37)

Following Definition 6.3.3 we substitute Equation 6.37 into the definition of ∂
∂ζk

to obtain:

∂

∂ζk
=

1

2

(
∂

∂ζ
+
∂

ζ2

+ · · ·+ ∂

ζn
− 1

vk

∂

∂xk

)
(6.38)

It is now clear we can solve for ∂
∂xk

to obtain the desired result. �

In principle we can take a given PDE in x1, . . . , xn and convert it to an A differential equation in
ζ, ζ1, . . . , ζn. If we assume a solution for which all the conjugate derivative vanish then the PDE
simplifies to an ordinary A-differential equation. For some PDEs the corresponding A-ODE may
be solvable using elementary calculus. See Example 6.6.1 for a demonstration.

Example 6.3.9. Consider A = R ⊕ jR ⊕ j2R where j3 = 1. We consider the algebra variable
ζ = x+ jy + zj2 and conjugate variables

ζ2 = x− jy + j2z & ζ3 = x+ jy − j2z (6.39)

In our current notation {1, j, j2} forms an invertible basis with v2 = j and v3 = j2. Note 1/v2 = j2

and 1/v3 = j. It follows we have derivatives

∂

∂ζ
=

1

2

[
j
∂

∂y
+ j2 ∂

∂z

]
&

∂

∂ζ2

=
1

2

[
∂

∂x
− j2 ∂

∂y

]
&

∂

∂ζ3

=
1

2

[
∂

∂x
− j ∂

∂z

]
. (6.40)

Thus, by Theorem 6.3.8, or direct calculation, we find:

∂

∂x
=

∂

∂ζ
+

∂

∂ζ2

+
∂

∂ζ3

,
∂

∂y
= j

(
∂

∂ζ
− ∂

∂ζ2

+
∂

∂ζ3

)
,

∂

∂z
= j2

(
∂

∂ζ
+

∂

∂ζ2

− ∂

∂ζ3

)
(6.41)

From the formulas above we can derive the following differential identities:

∂2

∂x2
− ∂

∂y

∂

∂z
= 2

(
∂

∂ζ

∂

∂ζ2

+
∂

∂ζ

∂

∂ζ3

+
∂2

∂ζ
2
2

)
(6.42)

∂2

∂y2
− ∂

∂z

∂

∂x
= 2j2

(
−2

∂

∂ζ

∂

∂ζ2

+
∂

∂ζ

∂

∂ζ3

− ∂

∂ζ2

∂

∂ζ3

+
∂2

∂ζ
2
3

)
∂2

∂z2
− ∂

∂x

∂

∂y
= 2j

(
−2

∂

∂ζ

∂

∂ζ3

+
∂

∂ζ

∂

∂ζ2

− ∂

∂ζ2

∂

∂ζ3

+
∂2

∂ζ
2
2

)
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If f = u + vj + j2w is an A-differentiable function then ∂f

∂ζ2
= 0 and ∂f

∂ζ3
= 0. Therefore, f is

annihilated by the operators ∂2
x − ∂y∂z, ∂2

y − ∂z∂x and ∂2
z − ∂x∂y. It follows that the component

functions of f must solve the corresponding PDEs:

Φxx − Φyz = 0, Φyy − Φzx = 0, Φzz − Φxy = 0.

These are known as the generalized Laplace Equations for the 3-hyperbolic numbers.

Generalized A-Laplace Equations are differential consequences of the A-CR equations. When
system of PDEs happens to be the A-Laplace equations we find any A-differentiable function
provides solutions to system. One may also wonder when a given system is consistent with the
A-Laplace equations. In the event a given system of PDEs was consistent then we may impose
the A-CR equations and their differential consequences on the given system of PDEs as to find a
special subclass of A-differentiable solutions. Computationally this section provides a roadmap for
this procedure:

(1.) given a PDE in real independent variables x1, x2, . . . , xn choose an algebra A of
dimension n to study in conjunction with the system.

(2.) convert the derivatives in the PDE with respect to x1, x2, . . . , xn to derivatives
with respect to the algebra variables ζ, ζ2, . . . , ζn

(3.) impose that the derivatives with respect to ζ2, . . . , ζn vanish, study the resulting
ordinary differential equation in ζ. If possible, solve the A-ODE which results.

The possibility that the technique above may produce novel solutions to particular systems of PDEs
is one of the major motivations of this work.

Example 6.3.10. An algebra which has a basis which is natural, but not invertible is given by the
direct product algebra A = R× R where

(a, b)(x, y) = (ax, by).

Notice e1e2 = (1, 0)(0, 1) = (0, 0) thus e1, e2 ∈ zd(A). In contrast, (1, 1)(x, y) = (x, y) thus
(1, 1) = 1. Let us set v1 = (1, 1) since it is certainly invertible. To complete the basis for A we
need to find v2 which is linearly independent with v1. A nice choice is v2 = (1,−1) since v1 • v2 = 0
it follows the angle between v1, v2 is π/2 radians and certainly v1, v2 are linearly independent.
Furthermore, if ζ = y1v1 + y2v2 then

ζ = (x1, x2) = y1(1, 1) + y2(1,−1) = (y1 + y2, y1 − y2)

whereas,
ζ̄ = y1v1 − y2v2 = (y1 − y2, y1 + y2).

Of course, v1 = e1 + e2 and v2 = e1 − e2 hence

∂f

∂ζ
=

∂f

∂y1
= df(v1) = df(e1 + e2) = df(e1) + df(e2) = fx + fy.

and since v−1
2 = v2 as v2v2 = (1,−1)(1,−1) = (1, 1).

∂f

∂ζ̄
=

1

2

(
∂f

∂y1
− v−1

2

∂f

∂y2

)
=

1

2

(
∂f

∂y1
− (1,−1)

∂f

∂y2

)
.
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But, ∂f
∂y1

= df(v1) = df(e1) + df(e2) = fx + fy and ∂f
∂y2

= df(v2) = df(e1)− df(e2) = fx − fy. Thus,

∂f

∂ζ̄
=

1

2
(fx + fy + (−1, 1)(fx − fy)) (6.43)

=
1

2
((ux + uy, vx + vy) + (−1, 1)(ux − uy, vx − vy))

=
1

2
((ux + uy, vx + vy) + (uy − ux, vx − vy))

= (uy, vx).

If f is A-differentiable then f = (u, v) has uy = 0 and vx = 0 hence ∂f
∂ζ̄

= 0 as expected.

6.4 Deleted difference quotients

There are several popular definitions of differentiability with respect to an algebra. Either we can
follow the path of first semester calculus and use a difference quotient11 or we can follow something
involving a Frechet quotient12. To see a rather detailed exposition of how these are related in the
particular context of bicomplex or multi-complex numbers see [price].

The general concept this section is an adaptation and generalization of the arguments given in
[gadeaD1vsD2] for the context of the hyperbolic numbers. We show how some introductory results
in [gadeaD1vsD2] generalize to any commutative semisimple algebra of finite dimension over R.
Ultimately the section demonstrates why we prefer the definition of A-differentiability given in
Definition 6.1.1 as opposed to the deleted-difference quotient definition. It is helpful to have a
precise and abbreviated terminology for the discussion which follows:

Definition 6.4.1. Let f : dom(f)→ A be a function where dom(f) is open and p ∈ dom(f).

(1.) If f is A-differentiable at p then f is D1 at p. .

(2.) If lim
U(A)3ζ→p

f(ζ)− f(p)

ζ − p
exists then f is D2 at p.

If f is D1(D2) for each p ∈ U then f is D1(D2) on U .

If we fix our attention to a point then the class of D1 and D2 functions at p are inequivalent.

Example 6.4.2. In the spirit of Dirichlet we define f(z) =

{
0 if ζ ∈ U(A) ∪ {0}
1 if ζ ∈ zd(A)− {0}

. Since f(ζ) =

0 for all ζ ∈ U(A) we find f(ζ)−f(0)
ζ = 0 for all ζ ∈ U(A). Thus f is D2-differentiable over A at

p = 0. Notice, A-differentiability implies real differentiability and thus continuity. Clearly f is not
continuous at p = 0 thus f is not D1 differentiable at p = 0.

In fact, D1 on A at a point need not imply D2 at a the given point in A. For an explicit demon-
stration of this in the case of A = H see Example 2.2 part (2) of [gadeaD1vsD2].

11suitably modified to avoid zero-divisors
12where A-differentiability is imposed by an algebraic condition on the differential
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Theorem 6.4.3. Let f be a function on A with ζo ∈ dom(f) where dom(f) is open in A. If f is
D2 differentiable at ζo then

lim
ζ→ζo

ζ−ζo ∈U(A)

||f(ζ)− f(ζo)− λ ? (ζ − ζo)||
||ζ − ζo||

= 0 (6.44)

Proof: since f is D2 differentiable at ζo there exists λ ∈ A to which the deleted-difference quotient
of f converges at ζo. In particular, for each ε > 0 there exists δ > 0 for which ζ − ζo ∈ U(A) with
0 < ||ζ − ζo|| < δ implies∣∣∣∣∣∣∣∣f(ζ)− f(ζo)

ζ − ζo
− λ
∣∣∣∣∣∣∣∣ < ε ⇒

∣∣∣∣∣∣∣∣f(ζ)− f(ζo)− λ ? (ζ − ζo)
ζ − ζo

∣∣∣∣∣∣∣∣ < ε (6.45)

Apply Corollary 4.1.3,

||f(ζ)− f(ζo)− λ ? (ζ − ζo)||
||ζ − ζo||

≤ mA
∣∣∣∣∣∣∣∣f(ζ)− f(ζo)− λ ? (ζ − ζo)

ζ − ζo

∣∣∣∣∣∣∣∣ < mAε (6.46)

Thus
||f(ζ)− f(ζo)− λ ? (ζ − ζo)||

||ζ − ζo||
→ 0 as ζ → ζo for ζ − ζo ∈ U(A). �

The deleted limit in Equation 6.44 almost provides D1-differentiability at ζo. To overcome the
difficulty of Example 6.4.2 it suffices to assume continuity of f near ζo.

Theorem 6.4.4. Let f be a function on A which is continuous in some open set containing ζo. If
f is D2 differentiable at ζo then f is D1 differentiable at ζo.

Proof: let ε > 0 and use Theorem 6.4.3 to choose δ > 0 such that ζ−ζo ∈ U(A) and ||ζ−ζo|| < δ im-
plies ||f(ζ)−f(ζo)−λ?(ζ−ζo)|| < ε||ζ−ζo||. It remains to show ||f(ζ)−f(ζo)−λ?(ζ−ζo)|| < ε||ζ−ζo||
for ζ − ζo /∈ U(A). We begin by making δ smaller (if necessary) such that f is continuous on
U = {ζ ∈ dom(f) | ||ζ−ζo|| < δ}. Note U∩U(A) is dense in U . Consequently, if ζ1−ζo ∈ zd(A)∩U
then ζ1−ζo is a limit point of U ∩U(A). Hence there exists a sequence of points ζn−ζo ∈ U ∩U(A)
for which ζn − ζo → ζ1 − ζo. Hence, ζn → ζ1 and by continuity of f near ζo we find f(ζn)→ f(ζ1).
Observe, as ζn − ζo ∈ U ∩U(A) we have the estimate ||f(ζn)− f(ζo)− λ ? (ζn − ζo)|| < ε||ζn − ζo||.
Hence, as n→∞ we find ||f(ζ1)− f(ζo)− λ ? (ζ1 − ζo)|| < ε||ζ1 − ζo||. But, as ζ1 was an arbitrary

zero-divisor near ζo we find limζ→ζo
||f(ζ)−f(ζo)−λ?(ζ−ζo)||

||ζ−ζo|| = 0. Thus the Frechet derivative of f at

ζo exists and the differential dζof ∈ RA since dζof(h) = λ ? h. We conclude f is D1 at ζo. �

Theorem 6.4.5. Let U ⊂ A be open. If f is D2 at each point in U then f is continuous on U

Proof: Suppose f is D2 at each point of the open set U . Let ζo ∈ U . By Theorem 6.4.3

lim
ζ→ζo

ζ−ζo ∈U(A)

||f(ζ)− f(ζo)− λ ? (ζ − ζo)||
||ζ − ζo||

= 0 (6.47)

But, lim ζ→ζo
ζ−ζo ∈U(A)

||ζ − ζo|| = 0 and lim ζ→ζo
ζ−ζo ∈U(A)

||λ ? (ζ − ζo)|| = 0 hence we deduce

lim
ζ→ζo

ζ−ζo ∈U(A)

||f(ζ)− f(ζo)|| = 0. (6.48)
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It remains to show ζ for which ζ → ζo with ζ − ζo ∈ zd(A) also have ||f(z) − f(ζo)|| → 0. Let
ε > 0 and choose δ > 0 with {ζ | ||ζ − ζo||} ⊂ U and for which ζ − ζo ∈ U(A) and ||ζ − ζo|| < δ
imply ||f(ζ)− f(ζo)|| < ε/2. Selection of such δ > 0 is possible by Equation 6.48. Form a triangle
with vertices ζo, ζ2, ζ1 where ||ζ2 − ζo|| < ||ζ1 − ζo|| < δ. By construction ζ1 ∈ U thus f is D2 at ζ1.
Hence, following the thought behind Equation 6.48 once more, we find there exists δ′ > 0 for which
||ζ2 − ζ1|| < δ′ and ζ2 − ζ1 ∈ U(A) imply ||f(ζ2)− f(ζ1)|| < ε/2. Since U(A) is dense in A we are
free to move ζ2 as close as we wish to ζ1 while maintaining ζ2 − ζ1 ∈ U(A) and ζ2 − ζo ∈ U(A).
Hence, for ζ1 such that ζ1 − ζo ∈ zd(A) with ||ζ1 − ζo|| < δ we find

||f(ζ1)− f(ζo)|| ≤ ||f(ζ1)− f(ζ2)||+ ||f(ζ2)− f(ζo)|| < ε/2 + ε/2 = ε. (6.49)

Therefore, f is continuous at ζo and hence f is continuous on U . �

Given Theorem 6.4.5 and Theorem 6.4.4 we obtain the main result of this section:

Theorem 6.4.6. Let U be an open set in A. If f is D2 at each point in U then f is D1 on U .

In other words, functions which are D2-holomorphic are necessarily D1-holomorphic. We will see
the converse need not be true. There are functions which are D1 on an open set and yet fail to be
D2 at even a single point in the set.

Example 6.4.7. Let A = R ⊕ εR where ε2 = 0. In this algebra, (a + bε)ε = aε hence a typical

matrix in MA has the form

[
a 0
b a

]
. If f = u + εv : A → A is A-differentiable in the D1 sense

then ux = vy and uy = 0. Conversely, if u, v are continuously differentiable on A and satisfy
ux = vy and uy = 0 then f = u+ εv is A-differentiable in the D1 sense on A. Observe u = c1 and
v = c2 + y dc1dx where both c1 and c2 are real-valued functions of x alone describe the general form of
a A-differentiable function in the D1 sense.

For example, setting c1 = x and c2 = 0 provides the function f(x+εy) = x+yε. The D1 derivative is
simply the constant function f ′ = 1 on A. Let us study the D2 differentiability of f at zo = xo+yoε.
First, note (a− bε/a)(a+ bε) = a2 hence for a 6= 0

1

a+ bε
=
a− bε/a

a2
. (6.50)

We use this identity to begin the calculation below: for x 6= xo,

f(x+ yε)− f(xo + yoε)

(x− xo) + ε(y − yo)
=

[x− xo + (y − yo)ε] [x− xo − (y − yo)ε/(x− xo)]
(x− xo)2

(6.51)

= 1 + ε

[
y − yo
x− xo

− y − yo
(x− xo)2

]
Notice Equation 6.50 shows (R ⊕ εR)× = {x + yε | x 6= 0}. Thus, we study how the difference
quotient of f behaves as x+ yε→ xo + εyo for x 6= xo. Observe the 1 agrees with the D1 derivative.
However, the remaining terms do not converge in the deleted limit hence f is not D2 at xo + εyo.
But, xo + yoε is arbitrary so we have shown f is nowhere D2.

It seems for general finite dimensional commutative unital algebras over R it may be difficult or
even impossible to obtain nontrivial functions of D2 type. Fortunately, we are free to study D1-
differentiability as it includes D2-functions when they exist.
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Much of the literature on hypercomplex variables is largely centered on semisimple algebras. Upto
isomorphism in the commutative case we face A = Rn × Cm. In such a context, it can be shown
the set of D1 and D2 differentiable functions on an open set coincide.

Theorem 6.4.8. Let U be an open set in a commutative semisimple finite dimensional real algebra
A. The set of D1 functions on U coincides with the set of D2 functions on U .

Proof: Suppose A is a commutative semisimple finite dimensional real algebra and U ⊆ A is open.
In Theorem 6.4.6 we showed that the set of D2-differentiable functions on U are a subset of the D1-
differentiable functions on U . It remains to show D1 functions on U are necessarily D2 functions on
U . Our proof involves several steps. First, we show the results hold for the direct product algebra
Rn. Second, we show the result holds for the direct product Cm. Third, Wedderburn’s Theorem
tells us A ≈ Rn × Cm and we show how our result filters naturally through the isomorphism to
complete the proof.

Consider AR = Rn with UR open in AR. Suppose f = (f1, . . . , fn) is D1-differentiable on AR. Then
f is differentiable on UR and as the regular representation of AR is formed by diagonal matrix we
find the Cauchy Riemann equations simply indicate that fj is a function of xj alone13. In total,

f(x) = (f1(x1), f2(x2), . . . , fn(xn)). (6.52)

Moreover, differentiability on UR implies the partial derivatives of f likewise exist on UR hence
fj is a real-differentiable function of xj for j = 1, 2, . . . , n. Notice, 1 ∈ Rn has the explicit form
1 = (1, 1, . . . , 1) and it follows for h = (h1, h2, . . . , hn) 6= 0

1

h
=

(
1

h1
,

1

h2
, . . . ,

1

hn

)
. (6.53)

Consider the difference quotient at p = (p1, p2, . . . , pn). Define 4jf = fj(pj + hj)− fj(pj)

f(p+ h)− f(p)

h
=

(
1

h1
,

1

h2
, . . . ,

1

hn

)
(41f,42f, . . . ,4nf) (6.54)

=

(
41f

h1
,
42f

h2
, . . . ,

4nf

hn

)
To prove f is D2 at p we must show the limit of the difference quotient exists as h → 0 for h ∈
U(A)R. The condition h ∈ U(A)R simply requires hj 6= 0 for all j = 1, 2, . . . , n. Differentiability
of fj at pj gives

lim
hj→0

4jf

hj
= lim

hj→0

fj(pj + hj)− fj(pj)
hj

= f ′j(pj). (6.55)

Notice, the condition that hi 6= 0 for i = 1, 2, . . . , n has no bearing on the limit above. Hence,

lim
h→0

h∈U(A)R

4jf

hj
= f ′j(pj). (6.56)

Since this holds for each component of 4f/h we find

lim
h→0

h∈U(A)R

f(p+ h)− f(p)

h
=
(
f ′1(p1), f ′2(p2), . . . , f ′n(pn)

)
(6.57)

13as is often notated fj = f(xj).
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Therefore, f is D2 at p ∈ UR. But, p was arbitrary hence f is D2 on UR.

Next, if AC = Cm and UC is open in AC we consider g which is D1 on UC . Extending the result
seen in Example 3.1.23 we find the Jacobian matrix of g will be block-diagonal with m-blocks of the

form

[
aj −bj
bj aj

]
for j = 1, 2, . . . ,m. The j-th diagonal block serves to give the ordinary Cauchy

Riemann equations for gj . The zero blocks in for gj serve to indicate gj is a function of zj alone.
Here we use (z1, z2, . . . , zm) as the variable on AC . In summary, g = (g1, g2, . . . , gm) where gj is a
complex differentiable function of zj alone. Moreover, we may follow the arguments for AR simply
replacing real with complex limits. We find,

lim
h→0

h∈U(A)C

g(p+ h)− g(p)

h
=
(
g′1(p1), g′2(p2), . . . , g′m(pm)

)
(6.58)

where g′j =
dgj
dzj

are complex derivatives.

If B = Rn×Cm then we can fit together our result for Rn and Cm if we make the usual identification
that x ∈ Rn and z ∈ Cm gives (x, z) ∈ Rn × Cm. Notice (x, z) ∈ B× only if x ∈ (Rn)× and
z ∈ (Cm)×. Moreover,

1

(x, z)
=

(
1

x
,

1

z

)
=

(
1

x1
, . . . ,

1

xn
,

1

z1
, . . . ,

1

zm

)
. (6.59)

It follows that if (f, g) is D1 differentiable on U open in B then (f, g) is D2 differentiable with
(f, g)′ = (f ′1, . . . , f

′
n, g
′
1, . . . , g

′
m) on U .

Finally, if A is commutative and semisimple associative algebra over R then Wedderburn’s Theo-
rem14 provides an isomorphism of A and B = Rn × Cm for some n,m ∈ N. Suppose Ψ : A → B
provides the isomorphism. If U is open in A then Ψ(U) = U ′ is open in B. Furthermore, suppose F
is D1 with respect to A on U . Apply Theorem 6.1.11 at each point in U to find that G = Ψ ◦ f ◦Ψ−1

is D1 with respect to B at each point in U ′. Therefore, G is D2 differentiable on U ′ as we have
already shown D1 implies D2 for an open subset of Rn×Cm. It is simple15 to verify that Ψ preserves
differences and multiplicative inverses and Ψ ◦ f = G ◦Ψ thus:

Ψ

(
f(p+ h)− f(p)

h

)
=

Ψ(f(p+ h))−Ψ(f(p))

Ψ(h)
=
G(Ψ(p+ h))−G(Ψ(p))

Ψ(h)
. (6.60)

Consequently,
f(p+ h)− f(p)

h
= Ψ−1

(
G(Ψ(p) + Ψ(h))−G(Ψ(p))

Ψ(h)

)
(6.61)

If p ∈ U then Ψ(p) ∈ U ′ where G is D2 differentiable. Note h→ 0 with h ∈ U(A) implies Ψ(h)→ 0
with Ψ(h) ∈ B×. Using continuity of Ψ−1 and that G is D2 at Ψ(p) we find

lim
h→0

h∈U(A)

f(p+ h)− f(p)

h
= Ψ−1

 lim
Ψ(h)→0

Ψ(h)∈B×

G(Ψ(p) + Ψ(h))−G(Ψ(p))

Ψ(h)

 = Ψ−1(G′(Ψ(p))). (6.62)

14see Dummit and Foote page 854-855, Theorem 4 part (5.) in [DF]
15if you disagree, then perhaps read this section in my paper [cookAcalculusI] where there is a link to an earlier

Theorem which I have omitted in these notes to avoid abstract distraction
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Therefore, f is D2 at p with f ′(p) = Ψ−1(G′(Ψ(p))). �

In conclusion, the distinction between D1 and D2 differentiability is lost in the commutative
semisimple case. This is reflected in Definition 2.11 of [gadeaD1vsD2]. However, if we drop the
semisimple condition and just consider general real associative algebras then we argue from Theorem
6.4.6 and Example 6.4.7 that D1-differentiability provides a more general concept of differentiation
over an algebra. For these reasons we take Definition 6.1.1 as primary.

6.5 Higher A-derivatives

The calculus of higher derivatives for functions on Rn requires the study of symmetric multilinear
maps16. However, in A-calculus this is avoided due to a fortunate isomorphism between A and
symmetric multi-A-linear mappings of A. Let us begin by generalizing RA to its multilinear analog:

Definition 6.5.1. We say T : A× · · · × A︸ ︷︷ ︸
k

→ A is a k-linear map on A if T is right-A-linear

in each of its arguments. That is, T is additive in each entry and T (z1, . . . , zj ? w, . . . , zn) =
T (z1, . . . , zj , . . . , zn) ? w. for all z1, . . . , zn, w ∈ A.

If T (vσ(1), . . . , vσ(k)) = T (v1, . . . , vk) for all permutations σ then T is symmetric. We continue to
assume A is a unital, associative and finite-dimensional algebra over R.

Theorem 6.5.2. The set of symmetric k-linear maps on A is isomorphic to A.

Proof: the sum and scalar multiple of symmetric k-linear map is once more k-linear and symmetric.
Since vj = 1 ? vj we find:

T (v1, . . . , vk) = T (1, . . . ,1) ? v1 ? · · · ? vk. (6.63)

thus T is uniquely fixed by k-linearity on A together with its value on (1, . . . ,1). �

This calculation above reminds us a similar calculation which was required to understand the
connection between RA and MA.

Definition 6.5.3. Suppose f is a function on A for which the derivative function f ′ is A-differentiable
at p then we define f ′′(p) = (f ′)′(p). Furthermore, supposing the derivatives exist, we define
f (k)(p) = (f (k−1))′(p) for k = 2, 3, . . . .

Naturally we define functions f ′′, f ′′′, . . . , f (k) in the natural pointwise fashion for as many points
as the derivatives exist. Furthermore, with respect to β = {v1, . . . , vn} where v1 = 1, we have
f ′(p) = dpf(1) = ∂f

∂x1
(p). Thus, f ′ = ∂f

∂x1
. Suppose f ′′(p) exists. Note,

f ′′(p) = (f ′)′(p) = #(dpf
′(1)) =

∂f ′

∂x1
(p) =

∂2f

∂x2
1

(p). (6.64)

Thus, f ′′ = ∂2f
∂x2

1
. By induction, we find the following theorem:

Theorem 6.5.4. If f : A → A, β = {1, . . . , vn} a basis, and f (k) exists then f (k) = ∂kf
∂xk1

.

16see, for example, Zorich, Mathematical Analysis II, see Section 10.5 pages 80-87. The results we claim without
proof from advanced calculus can all be found in [zorich].
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The algebra derivatives naturally dovetail with the iterated-symmetric-Frechet differentials which
are used to describe higher derivatives of a map on normed linear spaces17.

Theorem 6.5.5. Suppose f : A → A is a function for which f (k)(p) exists. Then the iterated k-th
Frechet differential exists and is related to the k-th A derivative as follows:

dkpf(v1, . . . , vk) = f (k)(p) ? v1 ? · · · ? vk.

for all v1, . . . , vk ∈ A.

Proof: Suppose f : A → A is a function for which f (k)(p) exists. The existence of the iterated
A-derivatives implies that f is also k-fold R-differentiable and thus dkpf : A × · · · × A → A exists
and is a real symmetric k-linear map. Let β = {v1, . . . , vn} with v1 = 1 be a basis for A with
coordinates x1, . . . , xn. The iterated k-th Frechet differential and iterated partial derivatives are
related by:

dkpf(vi1 , vi2 , . . . , vik) =
∂kf

∂xi1∂xi2 · · · ∂xik
. (6.65)

Differentiating the A-CR equations ∂f
∂xj

= ∂f
∂x1

? vj with respect to xi yields:

∂2f

∂xi∂xj
=

∂

∂xi

[
∂f

∂xj

]
=

∂

∂xi

[
∂f

∂x1
? vj

]
=

∂

∂x1

[
∂f

∂xi

]
? vj

=
∂2f

∂x2
1

vi ? vj (6.66)

Apply Equation 6.66 repeatedly as to exchange partial derivatives with respect to xij for partial
derivatives with respect to x1 and multiplication by vij obtain:

∂kf

∂xi1∂xi2 · · · ∂xik
=
∂kf

∂xk1
? vi1 ? vi2 ? · · · ? vik = f (k) ? vi1 ? vi2 ? · · · ? vik (6.67)

We used Theorem 6.5.4 in the last step. Compare Equations 6.65 and 6.67 to conclude the proof. �

In fact, the first equality in Equation 6.67 should be emphasized:

Theorem 6.5.6. If f : A → A is k-times A-differentiable then

∂kf

∂xi1∂xi2 · · · ∂xik
=
∂kf

∂xk1
? vi1 ? vi2 ? · · · ? vik .

Theorem 6.5.5 and 6.5.6 provide the basis for both the formulation of an A-variable Taylor Theorem
as well as a lucid derivation of generalized Laplace Equations.

17The iterated-differentials are developed in many advanced calculus texts. See [zorich] where the theory of real
higher derivatives is developed in Section 10.5 pages 80-87.
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6.5.1 The A-harmonic equations

In the case of complex analysis the second order differential consequences of the Cauchy Riemann
equations include the Laplace equations. It is interesting to determine what equations form the
analog to Laplace’s Equation for A. In 1948 Wagner derived generalized Laplace Equations
in [wagner1948] via calculations performed through the lens of the paraisotropic matrix. Then, in
1992, Waterhouse derived the same results by using the trace on a Frobenius algebra [waterhouseII].
In both cases, the argument is essentially a pairing of the commutativity of mixed real partial
derivatives and the generalized Cauchy Riemann equations.

Theorem 6.5.7. Let U be open in A and suppose f : U → A is twice A-differentiable on U . If

there exist Bij ∈ R for which
∑

i,j Bijvi ? vj = 0 then
∑

i,j Bij
∂2f

∂xi∂xj
= 0.

Proof: suppose f is twice continuously A-differentiable on U ⊂ A and suppose there exist Bij ∈ R
for which

∑
i,j Bijvi ? vj = 0. Multiply the given equation by ∂2f

∂x2
1

to obtain:

∑
i,j

Bij
∂2f

∂x2
1

? vi ? vj = 0. (6.68)

Then, by Equation 6.67 we deduce ∂2f
∂x2

1
? vi ? vj = ∂2f

∂xi∂xj
. Therefore,

∑
i,j

Bij
∂2f

∂xi∂xj
= 0. �

Theorem 6.5.7 essentially says that a quadratic equation in A yields a corresponding Laplace-type
equation for A-differentiable functions. Hence we find:

Corollary 6.5.8. Generalized Laplace equations can be assembled by mimicking patterns in the
multiplication table for A to matching patterns in the Hessian matrix. Moreover, each component
of an A-differentiable function is a solution to the generalized Laplace equations.

This result was given by Wagner in [wagner1948].

Example 6.5.9. Consider A = R ⊕ jR ⊕ j2R where j3 = 1. Notice, we have multiplication table
and Hessian matrix

1 j j2

1 1 j j2

j j j2 1

j2 j2 1 j

&

x y z

x fxx fxy fxz
y fyx fyy fyz
z fzx fyz fzz

(6.69)

Theorem 6.5.8 allows us to find the following generalized Laplace equations by inspection of the
tables above:

fxx = fyz, fxy = fzz, fxz = fyy (6.70)

You might recognize these from Example 6.3.9.

Example 6.5.10. Consider A = R⊕ iR where i2 = −1. Notice, we have multiplication table and
Hessian matrix

1 i

1 1 i

i i −1

&

x y

x fxx fxy
y fyx fyy

(6.71)

Theorem 6.5.8 allows us to find the Laplace equations by inspection of the tables above: if f = u+iv
then

fxx = −fyy, ⇒ uxx + uyy = 0 & vxx + vyy = 0. (6.72)
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If we consider the component formulation of the Cauchy Riemann equations then differentiation
of these equations will produce second order homogeneous PDEs which include the generalized
Laplace Equations and other less elegant equations coupling distinct components. The elegance of
the generalized Laplace equations is seen in the fact that every component of an A-differentiable
function is what we may call A-harmonic. In other words, the algebra A provides a natural func-
tion theory to study A-harmonic functions. Notice, the concept of A-harmonicity involves solving
a system of PDEs. When is it possible to find an A for which a given system of real PDEs for the
A-harmonic equations for A? Theorem 6.5.8 gives at least a partial answer. If we replicate patterns
imposed on the Hessian matrix to produce a multiplication table then we can test if the table is
a possible multiplication table for an algebra. It is interesting to note that Ward already solved
the corresponding problem for generalized Cauchy Riemann equations in 1952. In particular, Ward
showed in [ward1952] how to construct an algebra A which takes a given set of n2−n independent
PDEs as its generalized A-CR equations.

The next example was inspired by Example 4.6 in [waterhouseII]. It demonstrates how algebraic
insight can be wielded to produce solutions to PDEs.

Example 6.5.11. Consider the wave equation c2uxx = utt where c is a positive constant which
characterizes the speed of the transverse waves modelled by this PDE. Let us find an algebra Wc

which takes the speed-c wave equation as its generalized Laplace Equation. Let (x, t) = x+ kt form
a typical point in the algebra. What rule should we give to k? Following Corollary 6.5.8 we should
consider the correspondence:

c2uxx = utt ↔ c2 = k2 (6.73)

thus set k2 = c2. The algebra Wc = R⊕kR with k2 = c2 has Wc-differentiable functions f = u+kv
for which c2uxx = utt. Observe Γ :Wc → H defined by Γ(x+kt) = x+cjt serves as an isomorphism
of Wc and the hyperbolic numbers of Example 3.1.14. Combine Ψ−1(x + jy) = (x + y, x − y) of
Example 3.1.14 with Γ to construct the isomorphism Φ = Ψ−1 ◦Γ from Wc to R×R. In particular,

Φ(x+ kt) = Ψ−1(Γ(x+ kt)) = Ψ−1(x+ cjt) = (x+ ct, x− ct) (6.74)

Following the insight of Theorem 6.1.11 we associate to each Wc-differentiable function f : Wc →
Wc a corresponding R× R differentiable function F as follows:

f = Φ−1 ◦F ◦Φ (6.75)

where F : R × R → R × R. The structure of R × R-differentiable functions is rather simple;
F (a, b) = (F1(a), F2(b)) where F1, F2 are differentiable functions on R. Thus,

f(x+ kt) = Φ−1(F (Φ(x+ kt))) (6.76)

= Φ−1(F ((x+ ct, x− ct)))
= Φ−1(F1(x+ ct), F2(x− ct))

=
1

2
(F1(x+ ct) + F2(x− ct)) +

k

2c
(F1(x+ ct)− F2(x− ct))

We have shown that A-differentiable functions f = u+ kv have (using x+ kt = (x, t) to make the
formulas more recognizable)

u(x, t) =
1

2
(F1(x+ ct) + F2(x− ct)) & v(x, t) =

k

2
(F1(x+ ct)− F2(x− ct)). (6.77)

We’ve shown how d’Alembert’s solution to the wave-equation appears naturally in the function
theory of Wc.
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Naturally, there are higher order versions of the Laplace Equations.

Theorem 6.5.12. Let U be open in A and suppose f : U → A is k-times A-differentiable. If there
exist Bi1i2...ik ∈ R for which

∑
i1i2...ik

Bi1i2...ikvi1 ? vi2 ? · · · ? vik = 0 then∑
i1i2...ik

Bi1i2...ik
∂kf

∂xi1∂xi2 · · · ∂xik
= 0.

Proof: multiply the assumed relation by ∂kf
∂xk1

and apply Theorem 6.5.6. �

6.5.2 A-variate Taylor’s Theorem

If we are given that f : A → A is smooth in the sense of real analysis then it is simple to show that
the existence of the first A-derivative implies the existence of all higher A-derivatives.

Theorem 6.5.13. Let A be a commutative unital finite dimensional algebra over R. Suppose f :
A → A has arbitrarily many continuous real derivatives at p and suppose f is once A-differentiable
at p then f (k)(p) exists for all k ∈ N.

Proof: suppose f is smooth and once A-differentiable at p. We assume A is a commutative unital
algebra over R with basis β = {1, . . . , vn}. Assume inductively that f (k)(p) exists hence Theorem

6.5.4 provides f (k)(p) = ∂kf(p)

∂xk1
. Consider, omitting p to reduce clutter,

∂f (k)

∂xj
=

∂

∂xj

[
∂kf

∂xk1

]
=

∂k

∂xk1

[
∂f

∂xj

]
=

∂k

∂xk1

[
∂f

∂x1

]
? vj =

∂f (k)

∂x1
? vj . (6.78)

Thus f (k) is A-differentiable at p which proves f (k+1)(p) exists. �

In [zorich] a multivariate Taylor’s Theorem over a finite dimensional normed linear space is given.
In particular, if f : V → V is real analytic then f is represented by its multivariate Taylor series
on some open set containing p. The multivariate Taylor series of f centered at p is given, for h
sufficiently small, by the convergent series18:

f(p+ h) = f(p) + dpf(h) +
1

2
d2
pf(h, h) +

1

3!
d3
pf(h, h, h) + · · · (6.79)

Notice, for (h, . . . , h) ∈ Ak we may expand h =
∑

ij
hijvij for j = 1, 2, . . . , k,

dkpf(h, . . . , h) =
∑
i1,...,ik

hi1hi2 · · ·hikd
k
pf(vi1 , vi2 , . . . , vik) (6.80)

Compare the formulas above to the form of the k-term in the Taylor expansion for anA-differentiable
function given below. This simplification has Theorem 6.5.2 at its root.

Theorem 6.5.14. Let A be a commutative, unital, associative algebra over R. If f is real analytic
at p ∈ A then

f(p+ h) = f(p) + f ′(p) ? h+
1

2
f ′′(p) ? h2 + · · ·+ 1

k!
f (k)(p) ? hk + · · ·

where h2 = h ? h and hk+1 = hk ? h for k ∈ N.

18equivalently, f(p+ h) = f(p) +
∑∞
k=1

∑
i1,...,ik

1
k!

∂kf(p)
∂xi1∂xi2 ···∂xik

hi1hi2 · · ·hik .
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Proof: Suppose f is real analytic and A-differentiable. Since real analytic implies f is smooth
over R we apply Theorem 6.5.13 to see f is smooth over A. Therefore, we may follow the proof of
Theorem 6.5.5 and obtain:

dkpf(vi1 , vi2 , . . . , vik) = f (k)(p) ? vi1 ? vi2 ? · · · ? vik . (6.81)

Observe the k-th power of h ∈ A is given by

hk =
∑
i1,...,ik

hi1hi2 · · ·hikvi1 ? vi2 ? · · · ? vik . (6.82)

Therefore, combining Equations 6.80, 6.81, and 6.82 we find

dkpf(h, . . . , h) =
∑
i1,...,ik

hi1hi2 · · ·hikd
k
pf(vi1 , vi2 , . . . , vik) (6.83)

=
∑
i1,...,ik

hi1hi2 · · ·hikf
(k)(p) ? vi1 ? vi2 ? · · · ? vik .

= f (k)(p) ?
∑
i1,...,ik

hi1hi2 · · ·hikvi1 ? vi2 ? · · · ? vik

= f (k)(p) ? hk.

We conclude, f(p+ h) = f(p) + f ′(p) ? h+ 1
2f
′′(p) ? h2 + · · ·+ 1

k!f
(k)(p) ? hk + · · · . �

We study the theory of convergence series in A in the sequel to this paper which is a joint work
with Daniel Freese [cookfreese].

6.6 An approach to the inverse problem

The inverse problem of A-calculus is roughly this:

When can we translate a problem of real calculus to a corresponding problem of A-
calculus ?

Naturally, this raises a host of questions. What kind of real calculus problems? How do we choose
A? In [pagr2012] and [pagr2015] the authors study how to modify certain ODEs in terms of A-
calculus. In contrast, our study on the inverse problem has centered around systems of PDEs. In
particular, we seek to answer the following question:

When can we find solutions to a system of PDEs which are simultaneously solutions to
the generalized Laplace equations of some algebra A ?

Our hope is that if the answer to the question above is affirmative then it may be possible to rewrite
the system of PDEs in an A-based notation where the PDE in many variables simply becomes an
A-ODE in a single algebra variable. Of course, this is just an initial conjecture, there are many
directions we could explore at the level of algebra-based differential equations19. Let us examine a
simple example of how an A-ODE can replace a system of PDEs.

19In fact at the time this paper is prepared the author has already shown how to solve many A-ODEs. The joint
work [cookbedell] with Nathan BeDell is currently under preparation. Nathan BeDell has three other papers [be-
dellI],[bedellII],[bedellIII] in preparation which discuss zero-divisors and basic algebra, the construction of logarithms,
and identities for generalized trigonmetric functions and many other algebraic preliminaries.
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Example 6.6.1. Let z = x + jy denote an independent hyperbolic variable and w = u + jv the
solution of dw

dz = w2. Separating variables gives dw
w2 = dz hence −1

w = z + c where c = c1 + jc2

is a hyperbolic constant. Thus, w = −1
z+c is the solution. What does this mean at the level of real

calculus? Note,
dw

dz
= w2 ⇒ ux + jvx = (u+ jv)2 = u2 + v2 + 2juv (6.84)

In other words, the A-ODE is the nonlinear system of PDEs

ux = u2 + v2, & vx = 2uv (6.85)

paired with the A-CR equations ux = vy and uy = vx. We have the solution already from direct
calculus on A,

w =
−1

z + c
⇒ u+ jv = − x+ c1 − j(y + c2)

(x+ c1)2 − (y + c2)2
(6.86)

Thus, u = − x+c1
(x+c1)2−(y+c2)2 and v = y+c2

(x+c1)2−(y+c2)2 are the real solutions to 6.85 and you can check

that ux = vy and uy = vx as well.

6.6.1 optional section on tableau for A-calculus

Our first goal in understanding the inverse problem was to decide when it is possible to pair a sys-
tem like 6.85 with the A-CR equations of an appropriate algebra A. Essentially, our first concern
is whether there is at least an algebra whose A-CR equations and their differential consequences
are not inconsistent with a given system of PDEs.

We construct the generic tableau T = A⊕ T1 ⊕ T2 ⊕ · · · ⊕ Tk ⊕+ · · ·

Tk = span{dxi1 ⊗ dxi2 ⊗ · · · ⊗ dxik ⊗ vj | 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n, 1 ≤ j ≤ n} (6.87)

We use these spaces to account for dependencies amongst variables and their derivatives. In par-
ticular, we focus our attention on PDEs which are formed from n-dependent and n-independent
variables. Notice, we only need increasing indices since these symbols represent partial derivatives
which we can commute to be in increasing order20. The Gauss map of a function f : A → A into
the generic tableau is formed as follows: if f =

∑
ujvj

γ(f) = f ⊕

∑
i,j

∂uj

∂xi
vj ⊗ dxi

⊕
∑
i1≤i2

∑
j

∂2uj

∂xi1∂xi2
vj ⊗ dxi1 ⊗ dxi2

⊕ · · · (6.88)

For the k-th term,

γ(f) = · · · ⊕

 ∑
i1≤i2≤···≤ik

∑
j

∂kuj

∂xi1∂xi2 · · · ∂xik
vj ⊗ dxi1 ⊗ dxi2 ⊗ · · · ⊗ dxik

⊕ · · · (6.89)

Or, more concisely,

γ(f) = f +
∑
i

(∂if) dxi +
∑
i1≤i2

(∂i1∂i2f) dxi1 ⊗ dxi2+ (6.90)

· · ·+
∑

i1≤···≤ik

(∂i1 · · · ∂ikf)dxi1 ⊗ · · · ⊗ dxik + · · ·

20this construction was inspired by a more sophisticated, but similar, construction in Chapter 4 of [cartan4beginners]
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We seek to represent systems of PDEs as particular subspaces inside T . The PDEs we study have
finite order and hence the calculation ultimately amounts to a question of finite dimensional linear
algebra. We should note the subspace of T which is given by the A-CR equations is particularly
simple.

Theorem 6.6.2. Let TA ≤ T denote the subspace of T generated by infinitely A-differentiable
functions then γ ∈ TA has the form

γ = αo + α1 ?
∑
i

vi ⊗ dxi + α2 ?
∑
i1≤i2

vi1 ? vi2 ⊗ dxi1 ⊗ dxi2 + · · ·+ αk ?
∑
|I|

vI ⊗ dxI + · · ·

where |I| indicates the sum over increasing k-tuples of indices taken from {1, 2, . . . , n} and vI =
vi1 ? vi2 ? · · · ? vik and dxI = dxi1 ⊗ dxi2 ⊗ · · · ⊗ dxik .

Proof: If f has arbitrarily many A-derivatives then we find

∂if = (∂1f) ? vi, (6.91)

∂i1∂i2f = (∂2
1f) ? vi1 ? vi1

∂i1∂i2 · · · ∂ikf = (∂k1f) ? vi1 ? vi1 ? · · · ? vik .

Then by Equation 6.90 we find γf has the form given in the Theorem. �



Chapter 7

Complex Functions

Remark: at this point I make a rather drastic turn. For the most part I abandon discussion of
abstract hypercomplex analysis and we focus almost entirely on A = C. I will at times take a few
minutes to insert a comment in class about what I’ve learned for general A-Calculus, but these
notes will probably not reflect those comments. That said, I will try to continue developing some
ideas in A-calculus in the homework as appropriate. I’m hopeful this makes the remainder of the
course a bit easier to follow. My apologies for this hard segway, I have to admit my time is too
limited to do a full edit past this point justice.

7.1 Review of Results for Calculus on C

As we discussed, the following Definition is equivalent to that offered for A-differentiability in the
specific and very nice case A = C. I leave this as a Definition in these notes in order to maintain the
organization which follows from this point. I am trying hard to not talk much about A-Calculus
until much later, so, these notes are largely the same as those I gave in 2015. However, I tried to
remove derivations which are not relevant since we already did lot of work in the abstract case.
For example, we already know the sum, product and chain rule for A-Calculus hence we need not
prove those again here in the special context of complex calculus.

Definition 7.1.1. If lim
z→zo

f(z)− f(zo)

z − zo
exists then we say f is complex differentiable at zo

and we denote f ′ (zo) = lim
z→zo

f(z)− f(zo)

z − zo
. Furthermore, the mapping z 7→ f ′(z) is the complex

derivative of f .

We continue to use many of the same notations as in first semester calculus. In particular, f ′(z) =
df/dz and d/dz(f(z)) = f ′(z). My language differs slightly from Gamelin here in that I insist we
refer to the complex differentiability of f .

Theorem 7.1.2. Given functions f, g, w which are complex differentiable (and nonzero for g in
the quotient) we have:

d

dz

(
f + g

)
=
df

dz
+
dg

dz
,

d

dz

(
cf
)

= c
df

dz
,

d

dz

(
f(w)

)
=

df

dw

dw

dz

where the notation df
dw indicates we take the derivative function of f and evaluate it at the value of

the inside function w; that is, df
dw (z) = f ′(w(z)).

81
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We also know the power rule in complex calculus.

Theorem 7.1.3. Power law for integer powers: let n ∈ Z then d
dz

(
zn
)

= nzn−1.

Non-integer power functions have phase functions which bring the need for branch cuts. It follows
that we ought to discuss derivatives of exponential and log functions before we attempt to extend
the power law to other than integer powers. That said, nothing terribly surprising happens. It is
in fact the case d

dz z
n = nzn−1 for n ∈ C however we must focus our attention on just one branch

of the function.

Let us attempt to find d
dz e

z directly from Definition 7.1.1. Notice ez+h = ezeh hence

ez+h − ez

h
= ez · e

h − 1

h

it follows that the value of d
dz e

z rests on the limit of eh−1
h as h → 0. Let h = a + ib and note

ea+ib = ea cos b+ iea sin b thus

eh − 1

h
=
ea cos b+ iea sin b− 1

a+ ib
=
ea(cos b− 1 + i sin b)(a− ib)

a2 + b2

Therefore,
eh − 1

h
= ea · a(cos b− 1) + b sin b

a2 + b2
+ iea · b(1− cos b) + a sin b

a2 + b2

The limit h = a + ib → 0 amounts to (a, b) → 0 in the real notation. Notice both the real and

imaginary components of eh−1
h are somewhat formiddable indeterminant forms. This is the trouble

we face if we are so bold as to use Definition 7.1.1 directly. In contrast, we will dispatch the problem
with ease given the Theorems of the next section.

If a function is complex differentiable over a domain of points it turns out that the complex deriva-
tive function must be continuous. Not all texts would include this fact in the definition of analytic,
but, I’ll follow Gamelin and make some comments later when we can better appreciate why this is
not such a large transgression (if it’s one at all). See pages 56-57 of [R91] for a definition without
the inclusion of the continuity of f ′. Many other texts use the term holomorphic in the place of
analytic and I will try to use both appropriately. Note carefully the distinction between at a point,
on a set and for the whole function. There is a distinction between complex differentiability at a
point and holomorphicity at a point.

Definition 7.1.4. We say f is holomorphic on domain D if f is complex differentiable at each
point in D. We say f is holomorphic at zo if there exists an open disk D centered at zo on which
f |D is holomorphic.

Given our calculations thus far we can already see that polynomial functions are holomorphic on C.
Furthermore, if p(z), q(z) ∈ C[z] then p/q is holomorphic on C − {z ∈ C | q(z) = 0}. We discover
many more holomorphic functions via the Cauchy Riemann equations of the next section. It is also
good to have some examples which show not all functions on C are holomorphic.

Example 7.1.5. Let f(z) = z then the difference quotient is
z − a
z − a

. If we consider the path z = a+t

where t ∈ R then
z − a
z − a

=
a+ t− a
a+ t− a

= 1
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hence as t→ 0 we find the difference quotient tends to 1 along this horizontal path through a. On
the other hand, if we consider the path z = a+ it then

z − a
z − a

=
a− it− a
a+ it− a

= −1

hence as t→ 0 we find the difference quotient tends to −1 along this vertical path through a. But,
this shows the limit z → a of the difference quotient does not exist. Moreover, as a was an arbitrary
point in C we have shown that f(z) = z is nowhere complex differentiable on C.

The following example is taken from [R91] on page 57. I provide proof of the claims made below
in the next section as the Cauchy Riemann equations are far easier to calculate that limits.

Example 7.1.6. Let f(z) = x3y2 + ix2y3 where z = x + iy. We can show that f is complex
differentiable where x = 0 or y = 0. In other words, f is complex differentiable on the coordinate
axes. It follows this function is nowhere holomorphic on C since we cannot find any point about
which f is complex differentiable on an whole open disk.

7.2 The Cauchy-Riemann Equations

I have edited this Section drastically in comparison to the 2014 notes since we have already in-
troduced and discussed the A-Cauchy Riemann Equations in a lot of detail. Our goal here is to
appreciate their specific application to A = C. In fact, there is much to say.

Let’s examine what makes complex differentiability so special from a real viewpoint. Let h = x+ iy
and f ′(zo) = a+ ib

dfzo(h) = f ′(zo)h = (a+ ib)(x+ iy) = ax− by + i(bx+ ay).

If I write this as a matrix multiplication using 1 = (1, 0) and i = (0, 1) the calculation above is
written as

dfzo(h) =

[
a −b
b a

] [
x
y

]
.

However, the Jacobian matrix is unique and thus[
a −b
b a

]
=

[
ux uy
vx vy

]
⇒ ux = vy, uy = −vx

The boxed equations are the Cauchy Riemann or (CR) equations for f = u+ iv.

Definition 7.2.1. Let f = u + iv then ux = vy and uy = −vx are the Cauchy Riemann or
(CR)-equations for f .

We have shown if a function f = u+iv is complex differentiable then it is real differentiable
and the component functions satisfy the CR-equations.

Example 7.2.2. . At this point we can return to my claim in Example 7.1.6. Let f(z) = x3y2 +
ix2y3 where z = x+ iy hence u = x3y2 and v = x2y3 and we calculate:

ux = 3x2y2, uy = 2x3y, vx = 2xy3, vy = 3x2y2.
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If f is holomorphic on some open set disk D then it is complex differentiable at each point in D.
Hence, by our discussion preceding this example it follows ux = vy and vx = −uy. The only points
in C at which the CR-equations hold are where x = 0 or y = 0. Therefore, it is impossible for f
to be complex differentiable on any open disk. Thus our claim made in Example 7.1.6 is true; f is
nowhere holomorphic.

Now, let us investigate the converse direction. Let us see that if the CR-equations hold for continu-
ously real differentiable function on a domain then the function is holomorphic on that domain. We
assume continuously differentiable on a domain for our expositional convenience. See pages 58-59
of [R91] where he mentions a number of weaker conditions which still are sufficient to guarantee
complex differentiability at a given point.

Suppose f = u + iv is continuously real differentiable mapping on a domain D where the CR
equations hold throughout D. That is for each x + iy ∈ D the real-valued component functions
u, v satisfy ux = vy and vx = −uy.

Jfh =

[
ux uy
vx vy

] [
h1

h2

]
=

[
ux −vx
vx ux

] [
h1

h2

]
=

[
uxh1 − vxh2

vxh1 + uxh2

]
= (uxh1 − vxh2) + i(vxh1 + uxh2)

= (ux + ivx)(h1 + ih2).

Let zo ∈ D and define ux(zo) = a and vx(zo) = b. The calculation above shows the CR-equations
allow the (real) differential of f as multiplication by the complex number a + ib. We propose
f ′(zo) = a + ib. We can derive the needed difference quotient by analyzing the Frechet quotient
with care. We are given1:

lim
h→0

f(zo + h)− f(zo)− (a+ ib)h

h
= 0.

Notice, limh→0
(a+ib)h

h = a+ ib thus2

lim
h→0

f(zo + h)− f(zo)

h
− lim
h→0

(a+ ib)h

h
= 0.

Therefore,

a+ ib = lim
h→0

f(zo + h)− f(zo)

h

which verifies our claim f ′(zo) = a+ ib. Let us gather the results:

Theorem 7.2.3. We have shown:

1. If f = u+ iv : U ⊆ C→ C is complex differentiable at zo ∈ U then f is real differentiable at
zo and ux = vy and vx = −uy at zo.

1I’m cheating, see your homework (Problem 20) where you show limh→0 g(h)/|h| = 0 implies limh→0 g(h)/h = 0.
2I encourage the reader to verify the little theorem: if lim(f − g) = 0 and lim g exists then lim f = lim g.
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2. If f = u + iv : U ⊆ C → C is continuously real differentiable at zo ∈ U and ux = vy and
vx = −uy at zo then f is complex differentiable at zo.

3. If f = u+iv is continuously differentiable on a domain D and the CR-equations hold through-
out D then f is holomorphic on D.

Note that (3.) aligns with the theorem given on page 47 of Gamelin. I reader might note the proof
I offered here differs significantly in style from that of page 48 in Gamelin. We should note when
f is complex differentiable we have the following identities:

f ′(z) = ux + ivx = vy − iuy ⇒ df

dz
=
∂f

∂x
&

df

dz
= −i∂f

∂y

where the differential identities hold only for holomorphic functions. The corresponding identities
for arbitrary functions on C are discussed on pages 124-126 of Gamelin.

As promised, we can show the other elementary functions are holomorphic in the appropriate
domain. Let us begin with the complex exponential.

Example 7.2.4. Let f(z) = ez then f(x + iy) = ex(cos y + i sin y) hence u = ex cos y and v =
ex sin y. Observe u, v clearly have continuous partial derivatives on C and

ux = ex cos y, vx = ex sin y, uy = −ex sin y, vy = ex cos y.

Thus ux = vy and vx = −uy for each point in C and we find f(z) = ez is holomorphic on C.
Moreover, as f ′(z) = ux + ivx = ex cos y + iex sin y we find the comforting result d

dz e
z = ez.

Definition 7.2.5. If f : C→ C is holomorphic on all of C then f is an entire function. The set
of entire functions on C is denoted O(C)

The complex exponential function is entire. Functions constructed from the complex exponential
are also entire. In particular, it is a simple exercise to verify sin z, cos z, sinh z, cosh z are all entire
functions. We can either use part (2.) of Theorem 7.2.3 and explicitly calculate real and imaginary
parts of these functions, or, we could just use Example 7.2.4 paired with the chain rule. For
example:

Example 7.2.6.

d

dz
sin z =

d

dz

[
1

2i

(
eiz − e−iz

)]
=

1

2i

d

dz

[
eiz
]
− 1

2i

d

dz

[
e−iz

]
=

1

2i
eiz

d

dz
[iz]− 1

2i
e−iz

d

dz
[−iz]

=
1

2i
eizi− 1

2i
e−iz(−i)

=
1

2

(
eiz + e−iz

)
= cos(z).
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Very similar arguments show the hopefully unsurprising results below:

d

dz
sin z = cos z,

d

dz
cos z = − sin z,

d

dz
sinh z = cosh z,

d

dz
cosh z = sinh z.

You might notice that Theorem 4.2.10 applies to real-valued functions on the plane. The theorem
below deals with a complex-valued function.

Theorem 7.2.7. If f is analytic on a domain D and f ′(z) = 0 for all z ∈ D then f is constant.

Proof: observe f ′(z) = ux + ivx = 0 thus ux = 0 and vx = 0 thus vy = 0 and uy = 0 by the
CR-equations. Thus ∇u = 0 and ∇v = 0 on a connected open set so we may apply Theorem 4.2.10
to see u(z) = a and v(z) = b for all z ∈ D hence f(z) = a+ ib for all z ∈ D. �

There are some striking, but trivial, statements which follow from the Theorem above. For instance:

Theorem 7.2.8. If f is holomorphic and real-valued on a domain D then f is constant.

Proof: Suppose f = u + iv is holomorphic on a domain D then ux = vy and vx = −uy hence
f ′(z) = ux + ivx = vy + ivx. Yet, v = 0 since f is real-valued hence f ′(z) = 0 and we find f is
constant by Theorem 7.2.8. �

You can see the same is true of f which is imaginary and analytic. We could continue this
section to see how to differentiate the reciprocal trigonometric or hyperbolic functions such as
sec z, csc z, cschz, sechz, tan z, tanh z however, I will refrain as the arguments are the same as you
saw in first semester calculus. It seems likely I ask some homework about these. You may also re-
call, we needed implicit differentiation to find the derivatives of the inverse functions in calculus
I. The same is true here and that is the topic of the next section.

The set of holomorphic functions over a domain is an object worthy of study. Notice, ifD is a domain
in C then polynomials, rational functions with nonzero denominators in D are all holomorphic. Of
course, the functions built from the complex exponential are also holomorphic. A bit later, we’ll
see any power series is holomorphic in some domain about its center. Each holomorphic function
on D is continuous, but, not all continous functions on D are holomorphic. The antiholomorphic
functions are also continuous. The quintessential antiholomorphic example is f(z) = z.

Definition 7.2.9. The set of all holomorphic functions on a domain D ⊆ C is denoted O(D).

On pages 59-60 of [R91] there is a good discussion of the algebraic properties of O(D). Also, on
61-62 Remmert discusses the notation O(D) and the origin of the term holomorphic which was
given in 1875 by Briot and Bouquet. We will eventually uncover the equivalence of the terms
holomorphic, analytic , conformal. These terms are in part tied to the approaches of Cauchy,
Weierstrauss and Riemann. I’ll try to explain this trichotomy in better detail once we know more.
It is the theme of Remmert’s text [R91].

7.2.1 CR equations in polar coordinates

If we use polar coordinates to rewrite f as follows:

f(x(r, θ), y(r, θ)) = u(x(r, θ), y(r, θ)) + iv(x(r, θ), y(r, θ))
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we use shorthands F (r, θ) = f(x(r, θ), y(r, θ)) and U(r, θ) = u(x(r, θ), y(r, θ)) and V (r, θ) =
v(x(r, θ), y(r, θ)). We derive the CR-equations in polar coordinates via the chain rule from multi-
variate calculus,

Ur = xrux + yruy = cos(θ)ux + sin(θ)uy and Uθ = xθux + yθuy = −r sin(θ)ux + r cos(θ)uy

Likewise,

Vr = xrvx + yrvy = cos(θ)vx + sin(θ)vy and Vθ = xθvx + yθvy = −r sin(θ)vx + r cos(θ)vy

We can write these in matrix notation as follows:[
Ur
Uθ

]
=

[
cos(θ) sin(θ)
−r sin(θ) r cos(θ)

] [
ux
uy

]
and

[
Vr
Vθ

]
=

[
cos(θ) sin(θ)
−r sin(θ) r cos(θ)

] [
vx
vy

]

Multiply these by the inverse matrix:

[
cos(θ) sin(θ)
−r sin(θ) r cos(θ)

]−1

= 1
r

[
r cos(θ) − sin(θ)
r sin(θ) cos(θ)

]
to find[

ux
uy

]
=

1

r

[
r cos(θ) − sin(θ)
r sin(θ) cos(θ)

] [
Ur
Uθ

]
=

[
cos(θ)Ur − 1

r sin(θ)Uθ
sin(θ)Ur + 1

r cos(θ)Uθ

]
A similar calculation holds for V . To summarize:

ux = cos(θ)Ur − 1
r sin(θ)Uθ vx = cos(θ)Vr − 1

r sin(θ)Vθ

uy = sin(θ)Ur + 1
r cos(θ)Uθ vy = sin(θ)Vr + 1

r cos(θ)Vθ

Another way to derive these would be to just apply the chain-rule directly to ux,

ux =
∂u

∂x
=
∂r

∂x

∂u

∂r
+
∂θ

∂x

∂u

∂θ

where r =
√
x2 + y2 and θ = tan−1(y/x). I leave it to the reader to show you get the same formulas

from that approach. The CR-equation ux = vy yields:

(A.) cos(θ)Ur − 1
r sin(θ)Uθ = sin(θ)Vr + 1

r cos(θ)Vθ

Likewise the CR-equation uy = −vx yields:

(B.) sin(θ)Ur + 1
r cos(θ)Uθ = − cos(θ)Vr + 1

r sin(θ)Vθ

Multiply (A.) by r sin(θ) and (B.) by r cos(θ) and subtract (A.) from (B.):

Uθ = −rVr

Likewise multiply (A.) by r cos(θ) and (B.) by r sin(θ) and add (A.) and (B.):

rUr = Vθ

Finally, recall that z = reiθ = r(cos(θ) + i sin(θ)) hence

f ′(z) = ux + ivx

= (cos(θ)Ur − 1
r sin(θ)Uθ) + i(cos(θ)Vr − 1

r sin(θ)Vθ)

= (cos(θ)Ur + sin(θ)Vr) + i(cos(θ)Vr − sin(θ)Ur)

= (cos(θ)− i sin(θ))Ur + i(cos(θ)− i sin(θ))Vr

= e−iθ(Ur + iVr)
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Theorem 7.2.10. Cauchy Riemann Equations in Polar Form: If f(reiθ) = U(r, θ)+ iV (r, θ)
is a complex function written in polar coordinates r, θ then the Cauchy Riemann equations are
written Uθ = −rVr and rUr = Vθ. If f ′(zo) exists then the CR-equations in polar coordinates hold.
Likewise, if the CR-equations hold in polar coordinates and all the polar component functions and
their partial derivatives with respect to r, θ are continuous on an open disk about zo then f ′(zo)

exists and f ′(z) = e−iθ(Ur + iVr) which can be written simply as
df

dz
= e−iθ

∂f

∂r
.

Example 7.2.11. Let f(z) = z2 hence f ′(z) = 2z as we have previously derived. That said, lets
see how the theorem above works: f(reiθ) = r2e2iθ hence

f ′(z) = e−iθ
∂f

∂r
= e−iθ2re2iθ = 2reiθ = 2z.

Example 7.2.12. Let f(z) = Log(z) then for z ∈ C− we find f(reiθ) = ln(r) + iθ for θ = Arg(z)
hence

f ′(z) = e−iθ
∂f

∂r
= e−iθ

1

r
=

1

reiθ
=

1

z
.

I mentioned the polar form of Cauchy Riemann equations in these notes since they can be very
useful when we work problems on disks. We may not have much occasion to use these, but it’s nice
to know they exist.

7.3 Inverse Mappings and the Jacobian

In advanced calculus there are two central theorems of the classical study: the inverse function
theorem and the implicit function theorem. In short, the inverse function theorem simply says that
if F : U ⊆ Rn → Rn is continuously differentiable at p and has det(F ′(p)) 6= 0 then there exists
some neighborhood V of p on which F |V has a continuously differentiable inverse function. The
simplest case of this is calculus I where f : U ⊆ R → R is locally invertible at p ∈ U if f ′(p) 6= 0.
Note, geometrically this is clear, if the slope were zero then the function will not be 1− 1 near the
point so the inverse need not exist. On the other hand, if the derivative is nonzero at a point and
continuous then the derivative must stay nonzero near the point (by continuity of the derivative
function) hence the function is either increasing or decreasing near the point and we can find a
local inverse. I remind the reader of these things as they may not have thought through them
carefully in their previous course work. That said, I will not attempt a geometric visualization of
the complex case. We simply need to calculate the determinant of the derivative matrix and that
will allow us to apply the advanced calculus theorem here:

Theorem 7.3.1. If f is complex differentiable at p then det Jf (p) = |f ′(p)|2.

Proof: suppose f = u+ iv is complex differentiable then the CR equations hold thus:

det Jf (p) = det

[
ux −vx
vx ux

]
= (ux)2 + (vx)2 = |ux + ivx|2 = |f ′(z)|2. �

If f = u+ iv is holomorphic on a domain D with (ux)2 + (vx)2 6= 0 on D then f is locally invertible
throughout D. The interesting thing about the theorem which follows is we also learn that the
inverse function is holomorphic about some small open disk about the point where f ′(p) 6= 0.
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Theorem 7.3.2. If f(z) is analytic on a domain D, zo ∈ D, and f ′(zo) 6= 0. Then there is a
(small) disk U ⊆ D containing zo such that f |U is 1 − 1, the image V = f(U) of U is open, and
the inverse function f−1 : V → U is analytic and satisfies

(f−1)′(f(z)) = 1/f ′(z) for z ∈ U .

Proof: I will give a proof which springs naturally from advanced calculus. First note that f ′(zo) 6= 0
implies |f ′(zo)|2 6= 0 hence by Theorem 7.3.1 and the inverse function theorem of advanced calculus
the exists an open disk U centered about zo and a function g : f(U) → U which is the inverse
of f restricted to U . Furthermore, we know g is continuously real differentiable. In particular,
g ◦ f = IdU and the chain rule in advanced calculus provides Jg(f(p))Jf (p) = I for each p ∈ U .

Here I =

[
1 0
0 1

]
. We already learned that the holomorphicity of f implies we can write Jf (p) =[

a −b
b a

]
where ux(p) = a and vx(p) = b. The inverse of such a matrix is given by:

[
a −b
b a

]−1

=
1

a2 + b2

[
a b
−b a

]
.

But, the equation Jg(f(p))Jf (p) = I already tells us (Jf (p))−1 = Jg(f(p)) hence we find the
Jacobian matrix of g(f(p)) is given by:

Jg(f(p)) =

[
a/(a2 + b2) b/(a2 + b2)
−b/(a2 + b2) a/(a2 + b2)

]
This matrix shows that if g = m + in then mx(f(p)) = a/(a2 + b2) and nx = −b/(a2 + b2). Thus
we have g′ = mx + inx where

g′(f(p)) =
1

a2 + b2
(a− ib) =

a− ib
(a+ ib)(a− ib)

=
1

a+ ib
=

1

f ′(p)
. �

Discussion: I realize some of you have not had advanced calculus so the proof above it not optimal.
Thankfully, Gamelin gives an argument on page 52 which is free of matrix arguments. That said, if
we understand the form of the Jacobian matrix as it relates the real Jordan form of a matrix then
the main result of the conformal mapping section is immediately obvious. In particular, provided
a2 + b2 6= 0 we can factor as follows

Jf =

[
a −b
b a

]
=
√
a2 + b2

[
a/
√
a2 + b2 −b/

√
a2 + b2

b/
√
a2 + b2 a/

√
a2 + b2

]
.

It follows there exists θ for which

Jf = ±
√
a2 + b2

[
cos θ − sin θ
sin θ cos θ

]
.

This shows the Jacobian matrix of a complex differentiable mapping has a very special form. Ge-
ometrically, we have a scale factor of

√
a2 + b2 which either elongates or shrinks vectors. Then the

matrix with θ is precisely a rotation by θ. If the ± = + then in total the Jacobian is just a dilation
and rotation. If the ± = − then the Jacobian is a reflection about the origin followed by a
dilation and rotation. In general, the possible geometric behaviour of 2 × 2 matrices is much
more varied. This decomposition is special to our structure. We discuss the further implications of
these observations in Section 7.5.

The application of the inverse function theorem requries less verbosity.
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Example 7.3.3. Note f(z) = ez has f ′(z) = ez 6= 0 for all z ∈ C. It follows that there exist local
inverses for f about any point in the complex plane. Let w = Log(z) for z ∈ C−. Since the inverse
function theorem shows us dw

dz exists we may calculate as we did in calculus I. To begin, w = Log(z)

hence ew = z then differentiate to obtain ew dwdz = 1. But ew = z thus d
dzLog(z) = 1

z for all z ∈ C−.

We should remember, it is not possible to to find a global inverse as we know ez = ez+2πim for
m ∈ Z. However, given any choice of logarithm Logα(z) we have d

dzLogα(z) = 1
z for all z in the slit

plane which omits the discontinutiy of Logα(z). In particular, Logα(z) ∈ O(D) for

D = C− {reiα | r ≥ 0}.

Example 7.3.4. Suppose f(z) =
√
z denotes the principal branch of the square-root function. In

particular, we defined f(z) = e
1
2
Log(z) thus for3 z ∈ C−

d

dz

√
z =

d

dz
e

1
2
Log(z) = e

1
2
Log(z) d

dz

1

2
Log(z) =

√
z · 1

2z
=

1

2
√
z
.

Let L(z) be some branch of the logarithm and define zc = ecL(z) we calculate:

d

dz
zc =

d

dz
ecL(z) = ecL(z) d

dz
cL(z) = ecL(z) c

z
= czc−1.

To verify the last step, we note:

1

z
= z−1 = e−L(z) ⇒ 1

z
ecL(z) = e−L(z)+cL(z) = e(c−1)L(z) = zc−1.

Here I used the adding angles property of the complex exponential which we know4 arises from the
corresponding laws for the real exponential and the sine and cosine functions.

7.4 Harmonic Functions

If a function F has second partial derivatives is continuously differentiable then the order of partial
derivatives in x and y may be exchanged. In particular,

∂

∂x

∂

∂y

(
F (x, y)

)
=

∂

∂y

∂

∂x

(
F (x, y)

)
We will learn as we study the finer points of complex function theory that if a function is complex
differentiable at each point in some domain5 then the complex derivative is continuous. In other
words, there are no merely complex differentiable functions on a domain, there are only continu-
ously complex differentiable functions on a domain. The word ”domain” is crucial to that claim as
Example 7.2.2 shows that the complex derivaitve may only exist along stranger sets and yet not
exist elsewhere (such a complex derivative function is hardly continuous on C).

In addition to the automatic continuity of the complex derivative on domains6 we will also learn
that the complex derivative function on a domain is itself complex differentiable. In other words,

3we defined
√
z for all z ∈ C×, however, we cannot find a derivative on all of the punctured plane since if we did

that would imply the
√
z function is continuous on the punctured plane (which is false). In short, the calculation

breaks down at the discontinuity of the square root function
4perhaps we can give a more fundamental reason based on self-contained arithmetic later in this course!
5as we have discussed, a domain is an open and connected set
6Gamelin assumes this point as he defines analytic to include this result on page 45
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on a domain, if z 7→ f ′(z) exists then z 7→ f ′′(z) exists. But, then by the same argument f (3)(z)
exists etc. We don’t have the theory to develop this claim yet, but, I hope you don’t mind me
sharing it here. It explains why if f = u+ iv is holomorphic on a domain then the second partial
derivatives of u, v must exist and be continuous. I suppose it might be better pedagogy to just
say we know the second partial derivatives of the component functions of an analytic function are
continuous. But, the results I discuss here are a bit subtle and its not bad for us to discuss them
multiple times as the course unfolds. We now continue to the proper content of this section.

Laplace’s equation is one of the fundamental equations of mathematical physics. The study of the
solutions to Laplace’s equation is known as harmonic analysis. For Rn the Laplacian is defined:

4 =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
n

which gives Laplace’s equation the form 4u = 0. Again, this is studied on curved spaces and in
generality far beyond our scope.

Definition 7.4.1. Let x, y be Cartesian coordinates on C then uxx + uyy = 0 is Laplace’s Equa-
tion. The solutions of Laplace’s Equation are called harmonic functions.

The theorem below gives a very simple way to create new examples of harmonic functions. It also
indicates holomorphic functions have very special the component functions.

Theorem 7.4.2. If f = u+ iv is holomorphic on a domain D then u, v are harmonic on D.

Proof: as discussed at the beginning of this section, we may assume on the basis of later work
that u, v have continuous second partial derivatives. Moreover, as f is holomorphic we know u, v
solve the CR-equations ∂xu = ∂yv and ∂xv = −∂yu. Observe

∂xu = ∂yv ⇒ ∂x∂xu = ∂x∂yv ⇒ ∂x∂xu = ∂y∂xv = ∂y[−∂yu]

Therefore, ∂x∂xu+ ∂y∂yu = 0 which shows u is harmonic. The proof for v is similar. �

A fun way to prove the harmonicity of v is to notice that f = u+ iv harmonic implies −if = v− iu
is harmonic thus Re(−if) = v and we already showed the real component of f is harmonic thus
we may as well apply the result to −if .

Example 7.4.3. Let f(z) = ez then ex+iy = ex cos y + iex sin y hence u = ex cos y and v = ex sin y
are solutions of φxx+ φyy = 0.

The functions u = ex cos y and v = ex sin y have a special relationship. In general:

Definition 7.4.4. If u is a harmonic function on a domain D and u + iv is holomorphic on D
then we say v is a harmonic conjugate of u on D.

I chose the word ”a” in the definition above rather than the word ”the” as the harmonic conjugate
is not unique. Observe:

d

dz

(
u+ i(v + vo)

)
=

d

dz

(
u+ iv

)
.

If v is a harmonic conjugate of u then v + vo is also a harmonic conjugate of u for any vo ∈ R.

A popular introductory exercise is the following:



92 CHAPTER 7. COMPLEX FUNCTIONS

Given a harmonic function u find a harmonic conjugate v on a given domain.

Gamelin gives a general method to calculate the harmonic conjugate on page 56. This is essen-
tially the same problem we faced in calculus III when we derived potential functions for a given
conservative vector field.

Example 7.4.5. Let u(x, y) = x2− y2 then clearly uxx +uyy = 2− 2 = 0. Hence u is harmonic on
C. We wish to find v for which u+ iv is holomorphic on C. This means we need to solve ux = vy
and vx = −uy which yield vy = 2x and vx = 2y. Integrating yields:

∂v

∂y
= 2x ⇒ v = 2xy + h1(x)

and
∂v

∂x
= 2y ⇒ v = 2xy + h2(y)

from h1(x), h2(y) are constant functions and a harmonic conjugate has the form v(x, y) = 2xy+vo.
In particular, if we select vo = 0 then

u+ iv = (x2 − y2) + 2ixy = (x+ iy)2

The holomorphic function here is just our old friend f(z) = z2.

The shape of the domain was not an issue in the example above, but, in general we need to be
careful as certain results have a topological dependence. In Gamelin he proves the theorem below
for a rectangle. As he cautions, it is not true for regions with holes like the punctured plane C× or
annuli. Perhaps I have assigned problem 7 from page 58 which gives explicit evidence of the failure
of the theorem for domains with holes.

Theorem 7.4.6. Let D be an open disk, or an open rectangle with sides parallel to the axes, and
let u(x, y) be a harmonic function on D. Then there is a harmonic function v(x, y) on D such that
u+ iv is holomorphic on D. The harmonic conjugate v is unique, up to adding a constant.

7.5 Conformal Mappings

A few nice historical remarks on the importance of the concept discussed in this section is given on
page 78 of [R91]. Gauss realized the importance in 1825 and it served as a cornerstone of Riemann’s
later work. Apparently, Cauchy and Weierstrauss did not make much use of conformality.

Following the proof of the inverse function theorem I argued the 2× 2 Jacobian matrix of a holo-
morphic function was quite special. In particular, we observed it was the product of a reflection,
dilation and rotation. That said, at the level of complex notation the same observation is cleanly
given in terms of the chain rule and the polar form of complex numbers.

Suppose f : D → C is holomorphic on the domain D. Let zo be a point in D and, for some ε > 0,
γ : (−ε, ε) → D a path with γ(0) = zo. The tangent vector at zo for γ is simply γ′(0). Consider
f as the mapping z 7→ w = f(z); we transport points in the z = x + iy-plane to points in the
w = u + iv-plane. Thus, the curve f ◦ γ : (−ε, ε) → C is naturally a path in the w-plane and we
are free to study how the tangent vector of the transformed curve relates to the initial curve in
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the z-plane. In particular, differentiate and make use of the chain rule for complex differentiable
functions7:

d

dt

(
f(γ(t))

)
=
df

dz
(γ(t))

dγ

dt
.

Let df
dz (γ(0)) = reiθ and γ′(0) = v we find the vector γ′(0) = v transforms to (f ◦ γ)′(0) = reiθv.

Therefore, the tangent vector to the transported curve is stretched by a factor of r = |(f ◦ γ)′(0)|
and rotated by angle θ = Arg((f ◦ γ)′(0)).

Now, suppose we have c such that γ1(0) = γ2(0) = zo then f ◦ γ1 and f ◦ γ2 are curves through
f(zo) = wo and we can compare the angle between the curves f ◦ γ1 at zo and the angle between
the image curves f ◦ γ1 and f ◦ γ2 at wo. Recall the angle between to curves is measured by the
angle between their tangent vectors at the point of intersection. In particular, if γ′1(0) = v1 and
γ′2(0) = v2 then note df

dz (γ1(0)) = df
dz (γ1(0)) = reiθ hence both v1 and v2 are rotated and stretched

in the same fashion. Let us denote w1 = reiθv1 and w1 = reiθv1. Recall the dot-product defines

the angle betwen nonzero vectors by θ =
~A • ~B

|| ~A|||| ~B||
. Furthermore, we saw shortly after Definition

1.1.3 that the Euclidean dot-product is simply captured by the formula 〈v, w〉 = Re(zw). Hence,
consider:

〈w1, w2〉 = 〈reiθv1, re
iθv2〉

= Re
(
reiθv1reiθv2

)
= r2Re

(
eiθv1v2e

−iθ
)

= r2Re (v1v2)

= r2〈v1, v2〉.

Note we have already shown |w1| = r|v1| and |w2| = r|v2| hence:

〈v1, v2〉
|v1||v2|

=
r2〈v1, v2〉
r|v1|r|v2|

=
〈w1, w2〉
|w1||w2|

.

Therefore, the angle between curves is preserved under holomorphic maps.

Definition 7.5.1. A smooth complex-valued function g(z) is conformal at zo if whenever γo, γ1

are curves terminating at zo with nonzero tangents, then the curves g ◦ γo and g ◦ γ1 have nonzero
tangents at g(zo) and the angle between g ◦ γo and g ◦ γ1 at g(zo) is the same as the angle between
γo and γ1 at zo.

Therefore, we have the following result from the calculation of the previous page:

Theorem 7.5.2. If f(z) is holomorphic at zo and f ′(zo) 6= 0 then f(z) is conformal at zo.

This theorem gives beautiful geometric significance to holomorphic functions. The converse of
the theorem requires we impose an additional condition. The function f(z) = z = x − iy has

Jf =

(
1 0
0 −1

)
and det(Jf ) = −1 < 0. This means that the function does not maintain the ori-

entation of vectors. On page 74 of [R91] the equivalence of real differentiable, angle-preserving,
orientation-preserving maps and nonzero f ′ holomorphic maps is asserted. The proof is already

7I will write a homework (Problem 27) where you derive this
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contained in the calculations we have considered.

We all should recognize x = xo and y = yo as the equations of vertical and horizontal lines
respective. At the point (xo, yo) these lines intersect at right angles. It follows that the image of
the coordinate grid in the z = x+ iy plane gives a family of orthogonal curves in the w-plane. In
particular, the lines which intersect at (xo, yo) give orthogonal curves which intersect at f(xo+ iyo).
In particular x 7→ w = f(x+ iyo) and y 7→ w = f(xo + iy) are paths in the w-plane which intersect
orthogonally at wo = f(xo + iyo).

Example 7.5.3. Consider f(z) = z2. We have f(x + iy) = (x + iy)(x + iy) = x2 − y2 + 2ixy.
Thus,

t 7→ t2 − y2
o + 2iyot & t 7→ x2

o − t2 + 2ixot

Let u, v be coordinates on the w-plane. The image of y = yo has

u = t2 − y2
o & v = 2yot

If yo 6= 0 then t = v/2yo which gives u = 1
4y2
o
v2 − y2

o . This is a parabola which opens horizontally

to the right in the w-plane. The image of x = xo has

u = x2
o − t2 & v = 2xot

If xo 6= 0 then t = v/2xo which gives u = x2
o − 1

4x2
o
v2. This is a parabola which opens horizontally

to the left in the w-plane. As level-curves in the w-plane the right-opening parabola is F (u, v) =
u− 1

4y2
o
v2 + y2

o = 0 whereas the left-opening parabola is given by G(u, v) = u−x2
o + 1

4x2
o
v2. We know

the gradients of F and G are normals to the curves. Calculate,

∇F = 〈1,− v

2y2
o

〉 & ∇G = 〈1, v

2x2
o

〉 ⇒ ∇F •∇G = 1− v2

4x2
oy

2
o

At a point of intersection we have x2
o− 1

4x2
o
v2 = 1

4y2
o
v2−y2

o from which we find x2
o+y2

o = v2( 1
4x2
o
+ 1

4y2
o
).

Multiply by x2
oy

2
o to obtain x2

oy
2
o(x

2
o +y2

o) = v2

4 (y2
o +x2

o). But, this gives 1 = v2

4x2
oy

2
o

. Therefore, at the

point of intersection we find ∇F •∇G = 0. It follows the sideways parabolas intersect orthogonally.

If xo = 0 then t 7→ −t2 is a parametrization of the image of the y-axis which is the negative real
axis in the w-plane. If yo = 0 then t 7→ t2 is a parametrization of the image of the x-axis which is
the positive real axis in the w-plane. The point at which these exceptional curves intersect is w = 0
which is the image of z = 0. That point, is the only point at which f ′(0) 6= 0.

I plot several of the curves in the w-plane. You can see how the intersections make right angles at
each point except the origin.
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The plot above was produced using www.desmos.com which I whole-heartedly endorse for simple
graphing tasks.

We can also study the inverse image of the cartesian coordinate lines u = uo and v = vo in the
z-plane. In particular,

u(x, y) = uo & v(x, y) = vo

give curves in z = x+ iy-plane which intersect at zo orthogonally provided f ′(zo) 6= 0.

Example 7.5.4. We return to Example 7.5.3 and as the reverse question: what is the inverse
image of u = uo or v = vo for f(z) = z2 where z = x+ iy and u = x2− y2 and v = 2xy. The curve
x2 − y2 = uo is a hyperbola with asymptotes y = ±x whereas 2xy = vo is also a hyperbola, but, it’s
asymptotes are the x, y axes. Note that uo = 0 gives y = ±x whereas vo = 0 gives the x, y-axes.
These meet at the origin which is the one point where f ′(z) 6= 0.

Example 7.5.5. Consider f(z) = ez then f(x+ iy) = ex cos y+ iex sin y. We observe u = ex cos y
and v = ex sin y. The curves uo = ex cos y and vo = ex sin y map to the vertical and horizontal lines
in the w-plane. I doubt these are familar curves in the xy-plane. Here is a plot of the z-plane with
the inverse images of a few select u, v-coordinate lines:

www.desmos.com
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On the other hand, we can study how z 7→ w = ez distorts the x, y-coordinate grid. The horizontal
line through xo + iyo is parametrized by x = xo + t and y = yo has image

t 7→ f(xo + t+ iyo) = exo+teiyo

as t varies we trace out the ray from the origin to ∞ in the w-plane at angle yo. The vertical line
through xo + iyo is parametrized by x = xo and y = yo + t has image

t 7→ f(xo + t+ iyo) = exoei(yo+t)

as t varies we trace out a circle of radius exo centered at the origin of the w-plane. Therefore, the
image of the x, y-coordinate lines in the w-plane is a family of circles and rays eminating from the
origin. Notice, the origin itself is not covered as ez 6= 0.

There is another simple calculation to see the orthogonality of constant u or v curves. Calculate
∇u = 〈ux, uy〉 and ∇v = 〈vx, vy〉. But, if f = u + iv is holomorphic then ux = vy and vx = −uy.
By CR-equations,

∇u = 〈ux, uy〉 = 〈vy,−vx〉

but, ∇v = 〈vx, vy〉 hence ∇u •∇v = 0. Of course, this is just a special case of our general result on
conformality of holomorphic maps.
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7.6 Fractional Linear Transformations

Definition 7.6.1. Let a, b, c, d ∈ C such that ad− bc 6= 0. A fractional linear transformation

or Mobius transformation is a function of the form f(z) =
az + b

cz + d
. If f(z) = az then f is

a dilation. If f(z) = z + b then f is a translation. If f(z) = az + b then f is an affine
transformation. If f(z) = 1/z then f is an inversion.

The quotient rule yields f ′(z) =
a(cz + d)− (az + b)c

(cz + d)2
=

ad− bc
(cz + d)2

thus the condition ad− bc 6= 0

is the requirement that f(z) not be constant. Gamelin shows through direct calculation that if
f and g are Mobius transformations then the composite f ◦ g is also a mobius transformation. It
turns out the set of all Mobius transformations forms a group under composition. This group of
fractional linear transformations is built from affine transformations and inversions. In particular,

consider f(z) =
az + b

cz + d
. If c = 0 then f(z) = a

dz+ b
d which is just an affine transformation. On the

other hand, if c 6= 0 then

f(z) =
az + b

cz + d
=

a
c (cz + d)− ad

c + b

cz + d
=
a

c
+
bc− ad

c

1

cz + d

This expression can be seen as the composition of the maps below:

f1(z) =
a

c
+
bc− ad

c
z & f2(z) =

1

z
& f3(z) = cz + d

In particular, f = f1 ◦ f2 ◦ f3. This provides proof similar to that given in Gamelin page 65:

Theorem 7.6.2. Every fractional linear transformation is the composition of dilations, translations
and inversions.

Furthermore, we learn that any three points and values in the extended complex plane C∪{∞} = C∗
fix a unique Mobius transformation.

Theorem 7.6.3. Given any distinct triple of points zo, z1, z2 ∈ C∗ and a distinct triple of values
wo, w1, w2 ∈ C∗ there is a unique fractional linear transformation f(z) for which f(zo) = wo,
f(z1) = w1 and f(z2) = w2.

The arithmetic for the extended complex plane is simply:

1/∞ = 0, & c · ∞ =∞

expressions of the form ∞/∞ must be carefullly analyzed by a limiting procedure just as we
introduced in calculus I. I will forego a careful proof of these claims, but, it is possible.

Example 7.6.4. Find a mobius transformation which takes 1, 2, 3 to 0, i,∞ respective. Observe
1
z−3 has 3 7→ ∞. Also, z − 1 maps 1 to 0. Hence, f(z) = A z−1

z−3 maps 1, 3 to 0,∞. We need only
set f(2) = i but this just requires we choose A wisely. Consider:

f(2) = A
2− 1

2− 3
= i ⇒ A = −i ⇒ f(z) = −iz − 1

z − 3
.
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Example 7.6.5. Find a mobius transformation which takes zo =∞, z1 = 0 and z2 = 3i to wo = 1
and w1 = i and w2 = ∞ respective. Let us follow idea of page 65 in Gamelin. We place z − 3i in

the denominator to map 3i to ∞. Hence f(z) =
az + b

z − 3i
. Now, algebra finishes the job:

f(0) = i ⇒ b

−3i
= i ⇒ b = 3.

and

f(∞) = 1 ⇒ a∞+ 3

∞− 3i
= 1 ⇒ a+ 3/∞

1− 3i/∞
= 1 ⇒ a = 1.

Hence f(z) =
z + 3

z − 3i
. Now, perhaps the glib arithmetic I just used with ∞ has sown disquiet in

your mathematical soul. Let us double check given the sketchy nature of my unproven assertions:
to be careful, what we mean by f(∞) in the context of C is just:

f(∞) = lim
z→∞

z + 3

z − 3i
= lim

z→∞

z + 3

z − 3i
= lim

z→∞

1 + 3/z

1− 3i/z
= 1.

In the calculation above I have used the claim 1/z → 0 as z → ∞. This can be rigorously shown
once we give a careful definition of z →∞. Next, consider

f(0) =
0 + 3

0− 3i
=

1

−i
= i & f(3i) =

6i

0
=∞ ∈ C∗

thus f(z) is indeed the Mobius transformation we sought. Bottom line, the arithmetic I used with
∞ is justified by the corresponding arithmetic for limits of the form z →∞.

There is a nice trick to find the formula which takes {z1, z2, z3} ⊂ C∗ to {w1, w2, w3} ⊂ C∗
respectively. We simply write the cross-ratio below and solve for w:

(w1 − w)(w3 − w2)

(w1 − w2)(w3 − w)
=

(z1 − z)(z3 − z2)

(z1 − z2)(z3 − z)
.

This is found in many complex variables texts. I found it in Complex Variables: Introduction and
Applications second ed. by Mark J. Ablowitz and Athanassios S. Fokas; see their §5.7 on bilinear
transformations8. I tend to consult Ablowitz and Fokas for additional computational ideas. It’s
a bit beyond what I intend for this course computationally.

Example 7.6.6. Let us try out this mysterious cross-ratio. We seek the map of {i,∞, 3} to
{∞, 0, 1}. Consider,

(∞− w)(1− 0)

(∞− 0)(1− w)
=

(i− z)(3−∞)

(i−∞)(3− z)
.

This simplifies to:

1

1− w
=
i− z
3− z

⇒ 1− w =
3− z
i− z

⇒ w = 1− 3− z
i− z

=
z − 3 + i− z

i− z
=
i− 3

i− z
.

Define f(z) = i−3
i−z and observe f(i) =∞, f(∞) = 0 and f(3) = i−3

i−3 = 1.

8I would not use this term, but, some folks use this as yet another label for Mobius transformation or frac-
tional linear transformation. You might wonder why this cross-ratio technique provides the desired fractional linear
transformation. I welcome you to explain it to me in office hours.
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There are many variations on the examples given above, but, I hope that is enough to get you
started. Beyond finding a particular Mobius transformation, it is also interesting to study what
happens to various curves for a given Mobius transformation. In particular, the theorem below is
beautifully simple and reason enough for us to discuss C∗ in this course:

Theorem 7.6.7. A fractional linear transformation maps circles to circles in the extended complex
plane to circles in the extended complex plane

Recall that a line is a circle through ∞ in the context of C∗. You might think I’m just doing math
for math’s sake here9, but, there is actually application of the observations of this section to the
problem of conformal mapping. We later learn that conformal mapping allows us to solve Laplace’s
equation by transferrring solutions through conformal maps. Therefore, the problem we solve here
is one step towards find the voltage function for somewhat complicated boundary conditions in the
plane. Or, solving certain problems with fluid flow. Gamelin soon returns to these applications in
future chapters, I merely make this comment here to give hope to those who miss applications.

Recall, if D is a domain then O(D) the set of holomorphic functions from D to C.

Definition 7.6.8. Let D be a domain, we say f ∈ O(D) is biholomorphic mapping of D onto
D′ if f(D) = D′ and f−1 : D′ → D is holomorphic.

In other words, a biholomorphic mapping is a bijection which is a holomorphic map with holomor-
phic inverse map. These sort of maps are important because they essentially describe coordinate
change maps for C, or from another perspective, they give us a way to produce new domains from
old. The fractional linear transformations are important examples of biholomorphic maps on C.
However, the restriction of a fractional linear transformation is also worthy of study. In particular,
we find below the restriction of a mobius transformation to a half-plane may give us an image which
is a disk.

As is often the case, this construction is due to Cayley. The Cayley Map is simply a particular
example of a linear fractional transformation. In what follows here I share some insights I found
on pages 80-84 of [R91].

Example 7.6.9. Let h(z) = z−i
z+i be defined for z ∈ H where H = {z ∈ C | Im(z) > 0} is the open

upper half-plane. It can be shown that h(z) ∈ E where E = {z ∈ C | |z| ≤ 1} is the closed unit
disk. To see how you might derive this function simply imagine mapping {0, 1,∞} of the boundary
of H to the points {−1,−i, 1}. Fun fact, if you walk along the boundary of a subset of the plane
then the interior of the set is on your left if you are wolking in the positively oriented sense. It
is also known that a holomorphic map preserves orientations which implies that boundaries map
to boundaries and points which were locally left of the boundary get mapped to points which are
locally left of the image curve. In particular, note {0, 1,∞} on the boundary of H in the domain
map to the points {−1,−i, 1} on the unit-circle under the mobius transformations. Furthermore,
we see the unit-circle given a CCW orientation. The direction of the curve is implicit within the
fact that the triple {0, 1,∞} is in the order in which they are found on ∂H so likewise {−1,−i, 1}
are in order (this forces CCW orientiation of the image circle). Perhaps a picture is helpful:

9which is, incidentally, totally fine
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I skipped the derivation of h(z) in the example above. We could use the cross-ratio or the techniques
discussed earlier. The larger point made by Remmert here is that this transformation is natural
to seek out and in some sense explains why we’ve been studying fractional linear transformations
for 200+ years. Actually, I’m not sure the precise history of these. I think it is fair to conjecture
Mobius, Cauchy and Gauss were involved. But, as with any historical conjecture of this period,
it seems wise to offer Euler as a possibility, surely he at least looked at these from a real variable
viewpoint.

The next thing you might try is to square h−1 of the mapping above. If we feed z 7→ z2 the

open half-plane then the image will be a slit-complex plane. In total z 7→
(
z+1
z−1

)2
: E → C− is

a surjection indeed we can even verify this is a biholomorphic mapping. It turns out the slit is
a necessary feature, no amount of tinkering can remove it and obtain all of C while maintaining
the biholomorphicity of the map. In fact, Liouville’s Theorem forbids a biholomorphic mapping of
the disk onto C. But, Riemann in 185110 showed that every simply connected proper subset of C
can be biholomorphically mapped onto the unit-disk. In this section, we have simply exposed the
machinery to make that happen for simple sets like half-planes. A vast literature exists for more
complicated domains.

10Riemann’s study of complex analysis was centered around the study of conformal mappings, this result is known
as ”Riemann Mapping Theorem” see apge 295 of Gamelin for further discussion.



Chapter 8

Line Integrals and Harmonic
Functions

In this chapter we review and generalize some basic constructions in multivariate calculus. Gen-
eralize in the sense that we analyze complex-valued vector fields over C. We remind the reader
how Green’s Theorem connects to both Stokes’ and Gauss’ Theorems as the line integral allows
us to calculate both circulation and flux in two-dimensions. We analyze the interplay between
path-independence, vanishing loop integrals, exact and closed differential forms. Complex analysis
enters mainly in our discussion of harmonic conjugates. When u+ iv is holomorphic this indicates
u, v are both solutions of Laplace’s equation and they have orthogonal level curves. This simple
observation motivates us to use complex analysis to solve Laplace’s equation in the plane. In par-
ticular, we examine how fluid flow problems may be solved by selecting an appropriate holomorphic
function on a given domain. Heat and electrostatics are also briefly discussed.

8.1 Line Integrals and Green’s Theorem

The terminology which follows here is not universally used. As you read different books the terms
curve and path are sometimes overloaded with particular technical meanings. In my view, this is
the case with the term ”curve” as defined below.

Definition 8.1.1. A path γ : I ⊆ R→ C is a continuous function. We usually either have I = [a, b]
or I = R. If γ is a path such that γ(s) 6= γ(t) for s 6= t then γ is simple. If the path begins and
ends at the same point then γ is said to be closed. A simple closed path is of the form γ : [a, b]→ C
such that γ(s) 6= γ(t) for all s 6= t with a ≤ s, t < b and γ(a) = γ(b). The component functions
of γ = x + iy are x and y respective. We say γ is smooth if it has smooth component functions.
A continuous path which is built by casewise-joining of finitely many smooth paths is a piecewise
smooth path or simply a curve.

101
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In other texts, the term curve is replaced with arc or contour. In this course I follow Gamelin’s
terminology1.

Definition 8.1.2. A path γ : I ⊆ R→ C has trace γ(I).

The trace of a path is the pointset in C which the path covers.

Definition 8.1.3. A path γ : [a, b] → C has reparametrization γ̃ if there is a smooth injective
function h : [ã, b̃]→ [a, b] such that γ̃(t) = γ(h(t)). If h is strictly increasing then γ̃ shares the same
direction as γ. If h is strictly decreasing then γ̃ has direction opposite to that of γ.

The direction of a curve is important since the line-integral is sensitive to the orientation of curves.
Furthermore, to be careful, whenever a geometric definition is given we ought to show the defini-
tion is independent of the choice of parametrization for the curve involved. The technical details
of such soul-searching amounts to taking an arbtrary reparametrization (or perhaps all orientation
preserving reparametrizations) and demonstrating the definition naturally transforms.

Definition 8.1.4. Let P be complex values and continuous near the trace of γ : [a, b]→ C. Define:∫
γ
P dx =

∫ b

a
P (γ(t))

dRe(γ)

dt
dt &

∫
γ
P dy =

∫ b

a
P (γ(t))

dIm(γ)

dt
dt.

If we use the usual notation γ = x+ iy then the definitions above look like a u-substitution:∫
γ
P dx =

∫ b

a
P (x(t), y(t))

dx

dt
dt &

∫
γ
P dy =

∫ b

a
P (x(t), y(t))

dy

dt
dt

These integrals have nice linearity properties.

Theorem 8.1.5. For f, g continuous near the trace of γ and c ∈ C:∫
γ
(f + cg)dx =

∫
γ
f dx+ c

∫
γ
g dx &

∫
γ
(f + cg)dy =

∫
γ
f dy + c

∫
γ
g dy.

We define sums of the integrals over dx and dy in the natural manner:∫
γ
P dx+Qdy =

∫
γ
P dx+

∫
γ
Qdy.

At first glance this seems like it is merely calculus III restated. However, you should notice that
P and Q are complex-valued functions. That said, if both P,Q are real then ~F = 〈P,Q〉 is a
real-vector field in the plane and the standard line-integral from multivariate calculus is precisely:∫

γ

~F • d~r =

∫
γ
P dx+Qdy.

1in other courses, my default is to call the parametrization of a curve a path. For me, a curve is the point-set
whereas a path is a mapping from R into whatever space is considered. Gamelin uses the term ”trace” in the place
of my usual term ”curve”
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You should recall the integral above calculates the work done by ~F along the path γ. Continuing,
suppose we drop the condition that P,Q be real. Instead, consider P = P1 + iP2 and Q = Q1 + iQ2.
Consider: ∫

γ
P dx+Qdy =

∫
γ
(P1 + iP2) dx+ (Q1 + iQ2) dy

=

∫
γ
P1 dx+ i

∫
γ
P2 dx+

∫
γ
Q1 dy + i

∫
γ
Q2 dy

=

(∫
γ
P1 dx+

∫
γ
Q1 dy

)
+ i

(∫
γ
P2 dx+

∫
γ
Q2 dy

)
=

∫
γ
〈P1, Q1〉 • d~r + i

∫
γ
〈P2, Q2〉 • d~r.

Therefore, we can interpret the
∫
γ P dx + Qdy as the complex sum of the work done by the force

〈Re(P ),Re(Q)〉 and i times the work done by 〈Im(P ), Im(Q)〉 along γ. Furthermore, as the
underlying real integrals are invariant under an orientation preserving reparametrization γ̃ of γ it
follows

∫
γ Pdx + Qdy =

∫
γ̃ Pdx + Qdy. In truth, these integrals are not the objects of primary

interest in complex analysis. We merely discuss them here to gain the computational basis for the
complex integral which is defined by

∫
γ fdz =

∫
γ fdx+ i

∫
γ fdy. We study the complex integral

in Chapter 4.

Example 8.1.6. Let γ1(t) = cos t+ i sin t for 0 ≤ t ≤ π. Then x = cos t and dx = − sin tdt whereas
y = sin t and dy = cos tdt. Let P (x+ iy) = y + ix2 and calculate

∫
γ1
P dx:∫

γ1

(y + ix2) dx =

∫ π

0

(
sin t+ i cos2 t

)
(− sin tdt)

= −
∫ π

0
sin2 t− i

∫ π

0
cos2 t sin tdt

= −π
2

+ i
u3

3

∣∣∣∣−1

1

= −π
2
− i2

3
.

To integrate along a curve we simply sum the integrals along the smooth paths which join to form
the curve. In particular:

Definition 8.1.7. Let γ be a curve formed by joining the smooth paths γ1, γ2, . . . , γn. In terms of
the trace denoted trace(γ) = [γ] we have [γ] = [γ1]∪ [γ2]∪ · · · ∪ [γn] Let P,Q be complex valued and
continuous near the trace of γ. Define:∫

γ
P dx+Qdy =

n∑
j=1

∫
γj

P dx+Qdy.

I assume the reader can define
∫
γ P dx and

∫
γ Qdy for a curve in the same fashion. Let us continue

Example 8.1.6.

Example 8.1.8. Let γ2(t) = −1 + 2t for 0 ≤ t ≤ 1. This is the natural parametrization of the
line-segment [−1, 1]. Let γ1 be as in Example 8.1.6 and define γ = γ1 ∪ γ2. We seek to calculate
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∫
γ P dx where P (x + iy) = y + ix2. Let us consider γ2, in this path we have x = −1 + 2t hence

dx = 2dt whereas y = 0 so dy = (0)dt. Thus,∫
γ2

(y + ix2)dx =

∫ 1

0

(
0 + i(−1 + 2t)2

)
(2dt) = 2i

∫ 1

0

(
1− 4t+ 4t2

)
= 2i

(
1− 4

2
+

4

3

)
=

2i

3
.

Thus, ∫
γ
P dx =

∫
γ1

P dx+

∫
γ2

P dx = −π
2
− i2

3
+

2i

3
= −π

2
.

In order to state the complex-valued version of Green’s Theorem we define complex-valued area
integrals and partial derivatives of complex-valued functions2:

Definition 8.1.9. Let F and G be real-valued functions on C = R2 then we define:∫∫
S

(F + iG)dA =

∫∫
S
F dA+ i

∫∫
S
GdA.

∂

∂x

(
F + iG

)
=
∂F

∂x
+ i

∂G

∂x

The double integral
∫∫
S f dA =

∫∫
S f(x, y)dx dy and partial derivatives above are discussed in detail

in multivariable calculus. We calculate these integrals by iterated integrals over type I or II regions
or polar coordinate substitution.

Theorem 8.1.10. Complex-valued Green’s Theorem: Let γ be a simple closed curve which forms
the boundary of S in the positively oriented sense; that is, S ⊆ C and ∂S = γ:∫

γ
P dx+Qdy =

∫∫
S

(
∂Q

∂x
− ∂P

∂y

)
dA.

Proof: let P = P1 + iP2 and Q = Q1 + iQ2 where P1, P2, Q1, Q2 are all real-valued functions.
Observe, from our discussion ealier in this section,∫

γ
P dx+Qdy =

(∫
γ
P1 dx+

∫
γ
Q1 dy

)
+ i

(∫
γ
P2 dx+

∫
γ
Q2 dy

)
however, we also have:∫∫

S

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫∫
S

(
∂Q1

∂x
− ∂P1

∂y

)
dA+ i

∫∫
S

(
∂Q2

∂x
− ∂P2

∂y

)
dA.

Finally, by Green’s Theorem for real-valued double integrals we obtain:∫
γ
Pj dx+

∫
γ
Qj dy =

∫∫
S

(
∂Qj
∂x
− ∂Pj

∂y

)
dA.

for j = 1 and j = 2. Therefore,

∫
γ
P dx+Qdy =

∫∫
S

(
∂Q

∂x
− ∂P

∂y

)
dA. �

Of course, I have taken a rather different path from that in Gamelin. He gives a proof of Green’s
Theorem based on deriving Green’s Theorem for a triangle, stretching the theorem to a curved
triangle then summing over a triangulazation of the space. It is a nice, standard, argument. I
might go over it in lecture. See pages 357-367 of my 2014 Multivariable Calculus notes for a proof
of Green’s Theorem based on a rectangularization of a space. I will not replicate it here.

2we have used this idea before. For example, when I wrote df
dz

= ∂f
∂x

= ux + ivx.
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Example 8.1.11. We now attack Example 8.1.8 with the power of Green’s Theorem. Consider
P = y+ ix2 and Q = 0. Apply Green’s Theorem with Q = 0 we have (remember S is the upper-half
of the unit-disk) ∫

γ
P dx = −

∫∫
S

∂P

∂y
dA = −

∫∫
S
dA = −π

2
.

Very well, we have almost good agreement between Example 8.1.11 and Example 8.1.8. I now am
sure there is an error in what is currently written. First person to find the error and email me the
correction in detail earns 5pts bonus.

A comment from the future: In view of the results of the next section there is a natural reason
why P = y+ ix2 has different behaviour for P1 = y and P2 = x2. In particular, the differential ydx
is not an exact form on the half-disk whereas x2dx = d(x3/3) hence x2dx is exact.

In order to calculate integrals in the complex plane we need to be able to parametrize the paths of
interest. In particular, you should be ready, willing, and able to parametrize lines, circles and all
manner of combinations thereof. The next example illustrates how two dimensional vector problems
are nicely simplified by the use of complex notation.

Example 8.1.12. Let γ be the curve formed by the rays γ1, γ3 at θ = π/6 and θ = π/3 and the
arcs γ4, γ1 connecting the rays along |z| = 1 and |z| = 2. Assume γ is positively oriented and the
picture below helps explain my choice of numbering:

In detail: the rays are parametrized by γ1(t) = teiπ/6 = t(
√

3 + i)/2 for 1 ≤ t ≤ 2 and γ3(t) =
−teiπ/3 = −t(1 + i

√
3)/2 for −2 ≤ t ≤ −1. The arcs are given by γ2(t) = 2eit for π/6 ≤ t ≤ π/3

and γ4(t) = e−it for −π/3 ≤ t ≤ −π/6. If we let γ−4 denote the reverse of γ4 then we have the
natural parametrization γ−4(t) = eit for π/6 ≤ t ≤ π/3. In practice, it’s probably better to use the
reversed curve and simply place a minus in to account for the reversed path. I use this idea in what
follows. Consider then, for γ1 we have x = t

√
3/2 and y = t/2 hence dy = dt/2 and:∫

γ1

x dy =

∫ 2

1
(t
√

3/2)(dt/2) =

√
3

4

t2

2

∣∣∣∣2
1

=

√
3

4

[
4

2
− 1

2

]
=

3
√

3

8
.

For γ2 observe x = 2 cos t whereas y = 2 sin t hence dy = 2 cos t dt and:∫
γ2

x dy =

∫ π/3

π/6
(2 cos t)(2 cos tdt)

=

∫ π/3

π/6
4 cos2 tdt

= 2

∫ π/3

π/6
[1 + cos(2t)]dt = 2

(
π

3
− π

6
+

1

2
sin

(
2π

3

)
− 1

2
sin

(
2π

6

))
=
π

3
.
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Next, consider γ−3(t) = t(1 + i
√

3)/2 for 1 ≤ t ≤ 2. This is the reversal of γ3. We have x = t/2
and y = t

√
3/2 hence dy =

√
3dt/2 hence:∫

γ−3

x dy =

∫ 2

1
(t/2)(

√
3dt/2) =

√
3

4

t2

2

∣∣∣∣2
1

=

√
3

4

[
4

2
− 1

2

]
=

3
√

3

8
.

Last, γ4 has reversal γ−4(t) = eit = cos t+ i sin t thus x = cos t and dy = cos tdt∫
γ−4

x dy =

∫ π/3

π/6
(cos t)(cos tdt)

=

∫ π/3

π/6
cos2 tdt

=
1

2

∫ π/3

π/6
[1 + cos(2t)]dt =

1

2

(
π

3
− π

6
+

1

2
sin

(
2π

3

)
− 1

2
sin

(
2π

6

))
=

π

12
.

In total, we have:∫
γ
x dy =

∫
γ1

x dy +

∫
γ2

x dy −
∫
γ−3

x dy −
∫
γ−4

x dy =
3
√

3

8
+
π

3
− 3
√

3

8
− π

12
=

π

4
.

Let us check our work by using Green’s Theorem on Q = x and P = 0. Let S be as in the diagram
hence γ = ∂S is the positively oriented boundary for which Green’s Theorem applies:

∫
γ
x dy =

∫∫
S
dA =

∫ π/3

π/6

∫ 2

1
r dr dθ =

(∫ π/3

π/6
dθ

)(∫ 2

1
r dr

)
=
[π

3
− π

6

] [22

2
− 12

2

]
=

3π

12
=
π

4
.

I think it is fairly clear from this example that we should use Green’s Theorem when possible.

8.2 Independence of Path

The theorems we cover in this section should all be familar from your study of multivariate calculus.
That said, we do introduce some new constructions allowing for complex-valued components. I’ll
say more about the correspondence between what we do here and the usual multivariate calculus
at the conclusion of this section.

The total differential of a complex function u+ iv is defined by du+ idv where du and dv are the
usual total differentials from multivariate calculus. This is equivalent to the definition below:

Definition 8.2.1. If h is a complex-valued function which has continuous real partial derivative
functions hx, hy then the differential dh of h is

dh =
∂h

∂x
dx+

∂h

∂y
dy.

A differential form Pdx+Qdy is said to be exact on U ⊆ C if there exists a function h for which
dh = Pdx+Qdy for each point in U .
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Recall from calculus I, if F ′(t) = f(t) for all t ∈ [a, b] then the FTC states
∫ b
a f(t)dt = F (b)−F (a).

If we write this in a slightly different notation then the analogy to what follows is even more clear.
In particular F ′ = dF/dt so F ′(t) = f(t) means dF = f(t) dt hence by an F -substitution,∫ b

a
f(t)dt =

∫ F (b)

F (a)
dF = F (b)− F (a).

You can see that f(t)dt is to F as Pdx+Qdy is to h.

Theorem 8.2.2. If γ is a piecewise smooth curve from A to B and h is continuously (real) differ-

entiable near γ with dh = Pdx+Qdy then

∫
γ
Pdx+Qdy =

∫
γ
dh = h(B)− h(A).

Proof: the only thing we need to show is
∫
γ dh = h(B) − h(A). The key point is that if γ(t) =

x(t) + iy(t) then by the chain-rule:

d

dt
h(γ(t)) =

d

dt
h(x(t), y(t)) =

∂h

∂x

dx

dt
+
∂h

∂y

dy

dt
.

We assume γ : [a, b]→ C has γ(a) = A and γ(b) = B. Thus,∫
γ
dh =

∫
γ

∂h

∂x
dx+

∂h

∂y
dy =

∫ b

a

(
∂h

∂x

dx

dt
+
∂h

∂y

dy

dt

)
dt

=

∫ b

a

d

dt

(
h(γ(t))

)
dt

= h(γ(b))− h(γ(a))

= h(B)− h(A). �

When we integrate
∫
γ Pdx + Qdy for an exact differential form Pdx + Qdy = dh then there is

no need to work out the details of the integration. Thankfully we can simply evaluate h at the
end-points.

Example 8.2.3. Let γ be some path from i to 1 + i.∫
γ
(y + 3x2)dx+ (x+ 4y3)dy =

∫ 1+2i

i
d
(
xy + x3 + y4

)
=
(
1(2i) + 13 + (2i)4

)
− i4

= 2i+ 1 + 16− 1

= 16 + 2i.

The replacement of the notation
∫
γ with

∫ 1+2i
i is only reasonable if the integral dependends only on

the endpoints. Theorem 8.2.2 shows this is true whenever Pdx+Qdy is exact near the integration.

To make it official, let me state the definition clearly:

Definition 8.2.4. The differential form Pdx + Qdy is independent of path in U ⊆ C if for
every pair of curves γ1, γ2 in U with matching starting and ending points have

∫
γ1
Pdx + Qdy =∫

γ2
Pdx+Qdy.

An equivalent condition to independence of path is given by the vanishing of all integrals around
loops; a loop is just a simple closed curve.
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Theorem 8.2.5. Pdx+Qdy is independent of path in U iff
∫
γ Pdx+Qdy = 0 for all simple closed

curves γ in U .

Proof: Suppose Pdx + Qdy is path-independent. Let γ be a loop in U . Pick any two distinct
points on the loop, say A and B. Let γ1 be the part of the loop from A to B. Let γ2 be the part of
the loop from B to A. Then the reversal of γ2 is γ−2 which goes from A to B. Hence γ1 and γ−2

are two paths in U from A to B hence:∫
γ1

Pdx+Qdy =

∫
γ−2

Pdx+Qdy = −
∫
γ2

Pdx+Qdy.

Therfore,

0 =

∫
γ1

Pdx+Qdy +

∫
γ2

Pdx+Qdy =

∫
γ
Pdx+Qdy.

Conversely, if we assume
∫
γ Pdx+Qdy = 0 for all loops then by almost the same argument we can

obtain the integrals along two different paths with matching terminal points agree. �

Words are very uncessary, they can only do harm. Ok, maybe that’s a bit much, but the proof of
the Theorem above is really just contained in the diagram below:

You might suspect that exact differential forms and path-independent differential forms are one
and the same: if so, good thinking:

Lemma 8.2.6. Let P and Q be continuous complex-valued functions on a domain D. Then Pdx+
Qdy is path-independent if and only if Pdx + Qdy is exact on D. Furthermore, the h for which
dh = Pdx+Qdy is unique up to an additive constant.

Proof: the reverse implication is a trivial consequence of Theorem 8.2.2. Assume dh = Pdx+Qdy
and γ1, γ2 are two curves from A to B. Then

∫
γ1
Pdx+Qdy = h(B)−h(A) =

∫
γ2
Pdx+Qdy hence

path-independence of Pdx+Qdy on D is established.

The other direction of the proof is perhap a bit more interesting. Beyond just being a proof for
this Lemma, the formula we study here closely analogus to the construction of the potential energy
function by integration of the force field.

Assume Pdx + Qdy is path-independent on the open connected set D. Pick some reference point
A ∈ D and let z ∈ D we define

h(z) =

∫ z

A
Pdx+Qdy.

Fix a point (xo, yo) = B ∈ D, we wish to study the partial derivatives of h at (xo, yo). Let γ
be a path from A to B in D. Since D is open we can construct paths γ1 the horizontal path
[xo + iyo, x+ iyo] and γ2 be the red vertical path [xo + iyo, xo + iy] both inside D.
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Notice the point at the end of γ1 is x+ iyo and:

h(x+ iyo) =

∫
γ
Pdx+Qdy +

∫
γ1

Pdx+Qdy

However, γ1 has x = t for xo ≤ t ≤ x and y = yo hence dx = dt and dy = 0,

h(x+ iyo) =

∫
γ
Pdx+Qdy +

∫ x

xo

P (t, yo)dt.

Notice γ has no dependence on x thus:

∂

∂x
h(x+ iyo) =

∂

∂x

∫ x

xo

P (t, yo)dt = P (x, yo).

where we have used the FTC in the last equality. Next, note γ1 ends at xo + iy thus:

h(xo + iy) =

∫
γ
Pdx+Qdy +

∫
γ2

Pdx+Qdy

But, γ2 has x = xo and y = t for yo ≤ t ≤ y thus dx = 0 and dy = dt. We find

h(xo + iy) =

∫
γ
Pdx+Qdy +

∫ y

yo

Q(xo, t)dt

Notice γ has no dependence on y thus:

∂

∂y
h(xo + iy) =

∂

∂y

∫ y

yo

Q(xo, t)dt = Q(xo, y).

In total we have shown hx(x, yo) = P (x, yo) and hy(xo, y) = Q(xo, y). By continuity of P and Q
we find dh = Pdx + Qdy at (xo, yo). However, (xo, yo) is an arbitrary point of D and it follows
Pdx+Qdy is exact on D with potential h(z) =

∫ z
A Pdx+Qdy.

Finally, to study uniqueness, suppose h1 is another function on D for which dh1 = Pdx + Qdy.
Notice dh = dh1 thus d(h − h1) = 0 but this implies ∇Re(h − h1) = 0 and ∇Im(h − h1) = 0
thus both the real and imaginary components of h− h1 are constant and we find h = h1 + c. The
function h is uniquely associated to Pdx+Qdy on a domain up to an additive constant. �

I usually say that h is the potential for Pdx+Qdy modulo an additive constant. If all differential
forms were exact then integration would be much easier and life would not be so interesting.
Fortunately, only some forms are exact. The following definition is a natural criteria to investigate
since P = ∂h

∂x and Q = ∂h
∂y suggest that P and Q are related by differentiation due to Clairaut’s

theorem on commuting partial derivatives. We expect ∂
∂y

∂h
∂x = ∂

∂x
∂h
∂y hence ∂P

∂y = ∂Q
∂x . Thus define:
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Definition 8.2.7. A differential form Pdx+Qdy is closed on D if ∂Q
∂x = ∂P

∂y for all points in D.

The argument just above the Definition already proves the Lemma below:

Lemma 8.2.8. If Pdx+Qdy is an exact form on D then Pdx+Qdy is a closed form on D.

The converse of the Lemma above requires we place a topological restriction on the domain D. It is
not enough that D be connected, we need the stricter requirement that D be simply connected.
Qualitatively, simple connectivity means we can take loops in D an continuously deform them to
points without getting stuck on missing points or holes in D. The deformation discussed on pages
80-81 of Gamelin give you a better sense of the technical details involved in such deformations. To
be entirely honest, the proper study of simply connected spaces belongs to topology. But, ignoring
topology is a luxury we cannot afford. We do need a suitable description of spaces without loop
catching holes. A good criteria is star-shaped. A star-shaped space is simply connected and the
vast majority of all the examples which cross our path will fit the criteria of star-shaped; rectangles,
disks, half-disks, sectors, even slit-planes are all star-shaped. There are spaces which are simply
connected, yet, not star-shaped:

You can see that while these shapes are not star-shaped, we could subdivide them into a finite
number of star-shaped regions.

Example 8.2.9. Consider θ(z) = Arg(z) = tan−1(y/x)+c for x > 0. The differential is calculated
as follows:

dθ =

(
dx

∂

∂x
+ dy

∂

∂y

)
tan−1(y/x = dx

−y/x2

1 + (y/x)2
+ dy

1/x

1 + (y/x)2
=
−ydx+ xdy

x2 + y2

Notice that the principal argument for x ≤ 0 is obtained by addition of a constant hence the same
derivatives hold for x < 0. Let

ω =
−ydx+ xdy

x2 + y2

then ω = Pdx+Qdy where P = −y
x2+y2 and Q = x

x2+y2 . I invite the reader to verify that ∂yP = ∂xQ

for all points in the punctured plane C× = C − {0}. Thus ω is closed on C×. However, ω is not
exact on the punctured plane as we may easily calculate the integral of ω around the CCW-oriented
unit-circle as follows: γ(t) = eit has x = cos t and y = sin t hence −ydx+xdy = − sin t(− sin tdt) +
cos t(cos tdt) = dt and x2 + y2 = cos2 t+ sin2 t = 1 hence:∫

γ
ω =

∫
γ

−ydx+ xdy

x2 + y2
=

∫ 2π

0

dt

1
= 2π.

Hence, by Theorem 8.2.5 combined with Lemma 8.2.6 we see ω cannot be exact. However, if
we consider ω with domain restricted to a slit-complex plane then we can argue that Argα is the
potential function for ω meaning d(Argα(z)) = −ydx+xdy

x2+y2 . In the slit-complex plane there is no path
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which encircles the origin and the nontrivial loop integral is removed. If we use 1 as a reference
point for the potential construction then we find the following natural integral presentation of the
principal argument:

Arg(z) =

∫ z

1

−ydx+ xdy

x2 + y2

The example above is the quintessential example of a form which is closed but not exact. Poincare’s
Lemma solves this puzzle in more generality. In advanced calculus, I usually share a calculation
which shows that in any contractible subset of Rn every closed differential p-form is the exterior
derivative of a potential (p− 1)-form. What we study here is almost the most basic case3. What
follows is a weakened converse of Lemma 8.2.8; we find if a form is closed on a star-shaped domain
then the form must be exact.

Theorem 8.2.10. If domain D is star-shaped. Then Pdx+Qdy closed in D implies there exists
function h on D for which dh = Pdx+Qdy in D.

Proof: assume D is a star-shaped domain and Pdx+Qdy is a closed form on D. This means we
assume ∂xQ = ∂yP on D. Let A be a star-center for D and define h(z) =

∫
[A,z] Pdx+Qdy

Fix a point zo in D and note [A, zo] is in D. Furthermore, γ1 is given by x = t for xo ≤ t ≤ x
and y = yo. Likewise, γ2 is the line-segment [zo, xo + iy] where x = xo and y = t for yo ≤ t ≤ y.
Note [A, xo + iy] and [A, x+ iyo] are in D. Apply Green’s Theore on the triangle T2 with vertices
A, zo, xo + iy: ∫

∂T2

Pdx+Qdy =

∫∫
T2

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫∫
T2

(0)dA = 0.

3in one-dimension all smooth forms fdx are both closed and exact
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Thus, ∫
[A,zo]

Pdx+Qdy +

∫
[zo,xo+iy]

Pdx+Qdy +

∫
[xo+iy,A]

Pdx+Qdy = 0

but, we defined h(z) =
∫

[A,z] Pdx+Qdy thus

h(xo, yo)− h(xo, y) +

∫ y

yo

Q(xo, t)dt = 0 ⇒ ∂h

∂y
= Q(xo, y).

Examine triangle T1 formed by A, zo, x + iyo to derive by a very similar argument ∂h
∂x = P (x, yo).

Thus, dh = Pdx+Qdy at zo and it follows h(z) =
∫

[A,z] Pdx+Qdy serves to define a potential for
Pdx+Qdy on D. Thus Pdx+Qdy is exact on D. �

Given that we have shown the closed form Pdx+Qdy on star-shaped domain is exact we have by
Lemma 8.2.6 that Pdx+Qdy is path-independent. It follows we can calculate h(z) along any path
in D, not just [A, z] which was our starting point for the proof above.

The remainder of Gamelin’s section 3.2 is devoted to discussing deformation theorems for closed
forms. I give a simplified proof of the deformation. Actually, at the moment, I’m not certain if
Gamelin’s proof is more or less general than the one I offer below. There may be a pedagogical
reason for his development I don’t yet appreciate4.

Suppose γup and γdown are two curves from A to B. For simplicity of exposition, let us suppose
these curves only intersect at their endpoints. Suppose Pdx + Qdy is a closed form on the region
between the curves. We may inquire, does

∫
γup

Pdx + Qdy =
∫
γdown

Pdx + Qdy ? To understand

the resolution of this question we should consider the picture below:

Here I denote γup = γ1 ∪ γ2 and γdown = γ3 ∪ γ4 . The middle points M,N are joined by the
cross-cuts γ5 and γ6 = γ−5. Notice that ∂S = γ5 ∪ γ−1 ∪ γ3 whereas ∂T = γ6 ∪ γ4 ∪ γ−2. Now,
apply Green’s Theorem to the given closed form on S and T to obtain:∫

∂S
Pdx+Qdy =

∫∫
S

(
∂Q

∂x
− ∂P

∂y

)
dA = 0 &

∫
∂T
Pdx+Qdy =

∫∫
T

(
∂Q

∂x
− ∂P

∂y

)
dA = 0.

The double integrals above are zero because we know ∂Q
∂x = ∂P

∂y . To complete the argument we
break the line-integrals around the boundary into pieces taking into account the sign-rule for curve

4I think the rolling wave argument is essentially the same as I give here, but I should compare Gamelin’s proof to
mine when time permits
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reversals: for ∂S = γ5 ∪ γ−1 ∪ γ3 we obtain:∫
γ5

Pdx+Qdy −
∫
γ1

Pdx+Qdy +

∫
γ3

Pdx+Qdy = 0

for ∂T = γ6 ∪ γ4 ∪ γ−2 we obtain:∫
γ6

Pdx+Qdy +

∫
γ4

Pdx+Qdy −
∫
γ2

Pdx+Qdy = 0.

Summing the two equations above and noting that
∫
γ6
Pdx+Qdy+

∫
γ5
Pdx+Qdy = 0 we obtain:

(using Gamelin’s slick notation)[
−
∫
γ1

+

∫
γ3

+

∫
γ4

−
∫
γ2

]
(Pdx+Qdy) = 0 ⇒

[∫
γ1

+

∫
γ2

]
(Pdx+Qdy) =

[∫
γ3

+

∫
γ4

]
(Pdx+Qdy).

Consequently, as γup = γ1 ∪ γ2 and γdown = γ3 ∪ γ4 we conclude∫
γup

Pdx+Qdy =

∫
γdown

Pdx+Qdy.

We have shown that the integral of a differential form Pdx + Qdy is unchanged if we deform the
curve of integration over a region on which the form Pdx+Qdy is closed5

The construction of the previous page is easily extended to deformations over regions which are not
simply connected. For example, we can argue that if Pdx+Qdy is closed on the crooked annulus
then the integral of Pdx+Qdy on the inner and outer boundaries must conicide.

The argument again centers on the application of Green’s Theorem to simply connected domains
on which the area integral vanishes hence leaving the integral around the boundary trivial. When
we add the integral around ∂T and ∂S the red cross-cuts vanish. Define γout = γ3 ∪ γ4 and
γin = γ−1 ∪ γ−2 (used the reversals to make the curve have a postive orientation). In view of these
defitions, we find: ∫

γout

Pdx+Qdy =

∫
γin

Pdx+Qdy.

The deformation of the inner annulus boundary to the outer boundary leaves the integral unchanged
because the differential form Pdx+Qdy was closed on the intermediate curves of the deformation.

5 in the language of exterior calculus; d(Pdx+Qdy) = (Qx − Py)dx ∧ dy = 0.
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Example 8.2.11. In Example 8.2.9 we learned that the form −ydx+xdy
x2+y2 is closed on the punctured

plane C×. We also showed that
∫
γ
−ydx+xdy
x2+y2 = 2π where γ is the CCW-oriented unit-circle. Let C

be any positively oriented loop which encircles the origin we may deform the unit-circle to the loop
through a region on which the form is closed hence

∫
C
−ydx+xdy
x2+y2 = 2π.

There are additional modifications of Green’s Theorem for regions with finitely many holes. If you’d
like to see my additional thoughts on this topic as well as an attempt at an intuitive justification of
Green’s Theorem you can look at my 2014 Multivariate Calculus notes §7.5. Finally, I will collect
our results as does Gamelin at this point:

Theorem 8.2.12. Let D be a domain and Pdx + Qdy a complex-valued differential form. The
following are equivalent:

1. path-independence of Pdx+Qdy in D

2.
∮
γ Pdx+Qdy = 0 for all loops γ in D,

3. Pdx+Qdy is exact in D; there exists h such that dh = Pdx+Qdy on D,

4. (given the additional criteria D is star-shaped) Pdx+Qdy is closed on D; ∂yP = ∂xQ on D.

In addition, if Pdx+Qdy is closed on a region where γ1 may be continuously deformed to γ2 then∫
γ1
Pdx+Qdy =

∫
γ2
Pdx+Qdy.

The last sentence of the Theorem above is often used as it was in Example 8.2.11.

8.3 Harmonic Conjugates

In this section we assume u is a real-valued smooth function.

Lemma 8.3.1. If u(x, y) is harmonic then the differential −∂u
∂y
dx+

∂u

∂x
dy is closed.

Proof: assume uxx + uyy = 0. Consider Pdx+Qdy with P = −∂u
∂y and Q = ∂u

∂x . Note:

∂P

∂y
=

∂

∂y

[
−∂u
∂y

]
= −uyy = uxx =

∂

∂x

[
∂u

∂x

]
=
∂Q

∂x
.

Thus Pdx+Qdy is closed. �

For the sake of discussion let ω = −∂u
∂ydx + ∂u

∂xdy. By our work in the previous section (see part
(4.) of Theorem 8.2.12 ) if D is a star-shaped domain then there exists some smooth function v
such that dv = ω. Explicitly, this gives:

∂v

∂x
dx+

∂v

∂y
dy = −∂u

∂y
dx+

∂u

∂x
dy

But, equating coefficients6 of dx and dy yields:

∂v

∂x
= −∂u

∂y
&

∂v

∂y
=
∂u

∂x
.

Which means f = u+ iv has ux = vy and uy = −vx for all points in the domain D where u, v are
smooth hence part (3.) of Theorem 7.2.3 we find f = u+ iv is holomorphic on D; u+ iv ∈ O(D).
To summarize we have proved the following:

6hey, uh, why can we do that here?
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Theorem 8.3.2. If u(x, y) is harmonic on a star-shaped domain then there exists a function v(x, y)
on D such that u+ iv is holomorphic on D.

Let D be star-shaped. Following the proof of (1.) in Theorem 8.2.12 we know the potential function

for −∂u
∂y
dx +

∂u

∂x
dy can be constructed by integration. In particular, we choose a reference point

A ∈ D and let B be another point in D:

v(B) =

∫ B

A
−∂u
∂y
dx+

∂u

∂x
dy.

Gamelin points us back to page 56-57 to see this formula was derived in a special case for a disk
with a particular path. The Example in Gamelin shows that the harmonic conjugate of log |z| is
given by Arg(z) on the slit complex plane C−. I will attempt one of the problems I assigned for
homework.

Example 8.3.3. Suppose u(x, y) = ex
2−y2

cos(2xy). It can be shown that uxx + uyy = 0 hence u is
harmonic on C. Choose reference point A = 0 and consider:

v(B) =

∫ B

0
−∂(ex

2−y2
cos(2xy))

∂y
dx+

∂(ex
2−y2

cos(2xy))

∂x
dy

Differentiating, we obtain,

v(B) =

∫ B

0
−ex2−y2

[−2y cos(2xy)− 2x sin(2xy)]︸ ︷︷ ︸
P

dx+ ex
2−y2

[2x cos(2xy)− 2y sin(2xy)]︸ ︷︷ ︸
Q

dy

Let us calculate the integral from 0 to B = xo + iyo by following the horizontal path γ1 defined by
x = t and y = 0 for 0 ≤ t ≤ xo for which dx = dt and dy = 0∫

γ1

Pdx+Qdy =

∫ xo

0
P (t, 0)dt =

∫ xo

0
−ex2

[0]dt = 0.

Define γ2 by x = xo and y = t for 0 ≤ t ≤ yo hence dx = 0 and dy = dt. Thus calculate:

v(xo + iyo) =

∫
γ2

Pdx+Qdy =

∫ yo

0
Q(xo, t)dt

=

∫ yo

0
ex

2
o−t2 [2xo cos(2xot)− 2t sin(2xot)]dt

= ex
2
o

∫ yo

0
[2xo cos(2xot)e

−t2 − 2t sin(2xot)e
−t2 ]dt

= ex
2
o

(
e−t

2
sin(2xot)

) ∣∣∣∣yo
0

(integral not too bad)

= ex
2
oe−y

2
o sin(2xoyo)

= ex
2
o−y2

o sin(2xoyo).

Therefore, ex
2−y2

cos(2xy) + iex
2−y2

sin(2xy) = ex
2−y2+2ixy = ez

2
is a holomorphic function on C.

When one of you asked me about this problem, my approach was quite different than the example
above. These integrals are generally a sticking point. So, a simple approach is to attempt to see
how the given u appears as Ref for some f = f(z). Theoretically, the integral approach is superior.
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8.4 The Mean Value Property

In our usual conversation, this is the average value property7

Definition 8.4.1. Let h : D → R be a continuous function on a domain D. Let zo ∈ D such that
the disk {z ∈ C | |z−zo| < ρ} ⊆ D. The average value of h(z) on the circle {z ∈ C | |z−zo| = r}
is

A(r) =

∫ 2π

0
h(zo + reiθ)

dθ

2π

for 0 < r < ρ.

Basically, this says we parametrize the circle around zo and integrate h(z) around that circle
(provided the circle fits within the domain D). We may argue that A(r)→ A(zo) for small values
of r. Notice

∫ 2π
0 h(zo)dθ = 2πh(zo) thus h(zo) =

∫ 2π
0

dθ
2π . We use this little identity below:

|A(r)− h(zo)| =
∣∣∣∣ ∫ 2π

0
[h(zo + reiθ)− h(zo)]

dθ

2π

∣∣∣∣ ≤ ∫ 2π

0

∣∣∣h(zo + reiθ)− h(zo)
∣∣∣ dθ

2π

Now, continuity of h(z) at zo gives us that the integrand tends to zero as r → 0 thus it follows
A(r)→ h(zo) as r → 0. The theorem below was suprising to me when I first saw it. In short, the
theorem says the average of the values of a harmonic function on a disk is the value of the function
at the center of the disk.

Theorem 8.4.2. If u(z) is a harmonic function on a domain D, and if the disk {z ∈ C | |z−zo| < ρ}
is contained in D, then

u(zo) =

∫ 2π

0
u(zo + reiθ)

dθ

2π
0 < r < ρ.

Proof: The proof is given on page 86. I’ll run through it here: let u be harmonic on the domain

D then Lemma 8.3.1 tells us that the differential −∂u
∂y
dx+

∂u

∂x
dy is closed. Hence, it is exact and

so the integral around a loop is zero:

0 =

∮
|z−zo|=r

−∂u
∂y
dx+

∂u

∂x
dy

The theorem essentially follows from the identity above, we just need to write the integral in detail.
Let z = zo + reiθ parametrize the circle so x = xo + r cos θ and y = yo + r sin θ thus dx = −r sin θdθ
and dy = r cos θdθ hence:

0 = r

∫ 2π

0

[
∂u

∂y
sin θ +

∂u

∂x
cos θ

]
dθ = r

∫ 2π

0

[
∂u

∂y

∂y

∂r
+
∂u

∂x

∂x

∂r

]
dθ = r

∫ 2π

0

∂u

∂r
dθ.

Understand that ∂u
∂r is evaluated at zo + reiθ. We find (dividing by 2πr)

0 =
1

2π

∫ 2π

0

∂

∂r

[
u(zo + reiθ)

]
dθ =

∂

∂r

[∫ 2π

0
u(zo + reiθ)

dθ

2π

]
7notice the average is taken with respect to the angular parameter around the circle. One might also think about

the average taken w.r.t. arclength. In an arclength-based average we would divide by 2πr and we would also integrate
from s = 0 to s = 2πr. A u = s/r substitution yields the θ-based integral here. It follows this average is the same as
the usual average over a space curve discussed in multivariate calculus.
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where we have used a theorem of analysis that allows us to exchange the order of integration and

differentiation8. We find

∫ 2π

0
u(zo+reiθ)

dθ

2π
is constant for 0 < r < ρ where ρ is determined by the

size of the domain D. More to the point, as we allow r → 0 it is clear that
∫ 2π

0 u(zo+re
iθ) dθ

2π → u(zo)
hence the the constant value of the integral is just u(zo) and this completes the proof. �

Definition 8.4.3. We say a continuous real-valued function h(z) on a domain D ⊆ C has the
mean value property if for each point zo ∈ D the value h(zo) is the average of h(z) over any
small circle centered at zo.

The point of this section is that harmonic functions have the mean value property. It is interesting
to note that later in the course we the converse is also true; a function with the mean value property
must also be harmonic.

8.5 The Maximum Principle

Theorem 8.5.1. Strict Maximum Principle (Real Version). Let u(z) be a real-valued har-
monic function on a domain D such that u(z) ≤M for all z ∈ D. If u(zo) = M for some zo ∈ D,
then u(z) = M for all z ∈ D.

The proof is given on Gamelin page 87. In short, we can show the set of points SM for which
u(z) = M is open. However, the set of points S<M for which u(z) < M is also open by continuity
of u(z). Note D = SM ∪ S<M hence either SM = D or S<M = D as D is connected. This proves
the theorem.

When a set D is connected it does not allow a separation. A separation is a pair of non-empty
subsets U, V ⊂ D for which U ∩ V = and U ∪ V = D. We characterized connectedness in terms
of paths in this course, but, there are spaces which path-connected and connected are distinct
concepts. See pages 40-43 of [R91] for a fairly nuanced discussion of path-connectedness.

Theorem 8.5.2. Strict Maximum Principle (Complex Version) Let h(z) be a bounded,
complex-valued, harmonic function on a domain D. If |h(z)| ≤ M for all z ∈ D, and |h(zo)| = M
for some zo ∈ D, then h(z) is constant on D.

The proof is given on page 88 of Gamelin. I will summarize here: because we have a point zo for
which |h(zo)| = M it follows there exists c ∈ C such that |c| = 1 and ch(zo) = M . But, Re(ch(z)) is
a real-valued harmonic function on a domain hence Theorem 8.5.1 applies to u(z) = Re(ch(z)) = M
for all z ∈ D. Thus Re(h(z)) = M/c for all z ∈ D. It follows that Im(h(z)) = 0 for all z ∈ D. But,
you may recall we showed all real-valued holomorphic functions are constant in Theorem 7.2.8.

Theorem 8.5.3. Maximum Principle Let h(z) be a complex-valued harmonic function on a
bounded domain D such that h(z) extends continuously to the boundary ∂D of D. If |h(z)| ≤ M
for all z ∈ ∂D then |h(z)| ≤M for all z ∈ D.

This theorem means that to bound a harmonic function on some domain it suffices to bound it on
the edge of the domain. Well, some fine print is required. We need that there exists a continuous
extension of the harmonic function to an open set which is just a little bigger than D ∪ ∂D. The
proof is outlined on page 88. In short, this theorem is a consequence of the big theorem of analysis:

8this is not always possible, certain conditions on the function are needed, since u is assumed smooth here that
suffices
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The continuous image of a compact domain attains extreme values.

In other words, if your domain fits inside some ball (or disk here) of finite radius and the real-
valued function of that domain is continuous then there is some point(s) p, q ∈ D for which
f(p) ≤ f(z) ≤ f(q). Very well, so if the maximum modulus is attained in the interior of D
we have |h(D)| = {M} for some M ∈ R hence by continuity the extension of h to the boundary
the modulus of the boundary is also at constant value M . Therefore, the maximum modulus of
h(z) is always attained on the boundary given the conditions of the theorem.

The results of this section and the last are important parts of the standard canon of complex
analysis. That said, we don’t use them all the time. Half the reason I cover them is to assign
III.5#3. I want all my students to experience the joy of proving the Fundamental Theorem of
Algebra.

8.6 Applications to Fluid Dynamics

The foundation of the applications discussed in the text is the identification that line-integrals in
the plane permit two interpretations:∫

γ
Pdx+Qdy = circulation of vector field 〈P,Q〉 along γ.

whereas ∫
γ
Qdx− Pdy = flux of vector field 〈P,Q〉 through γ.

Green’s Theorem has an interesting meaning with respect to both concepts: let γ be a loop and D
a domain for which ∂D = γ and consider: for V = 〈P,Q〉 and T = (dx/ds, dy/ds) for arclength s,∮

γ
(V •T )ds =

∮
γ
Pdx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫∫
D
∇× 〈P,Q, 0〉 • d ~A

Thus Green’s Theorem is a special case of Stokes’ Theorem. On the other hand, for normal9

n = (dy/ds.− dx/ds)∮
γ
(V •n)ds =

∮
γ
Qdx− Pdy =

∫∫
D

(
∂P

∂x
+
∂Q

∂y

)
dA =

∫∫∫
D×[0,1]

∇ • 〈P,Q, 0〉dV

hence Green’s Theorem is a special case of Gauss’ Theorem. If the form Pdx+Qdy is closed then
we find the vector field 〈P,Q〉 is irrotational (has vanishing curl). If the form Qdx−Pdy is closed
then we find the vector field 〈P,Q〉 has vanishing divergence.

The starting point for our study of fluid physics is to make a few assumptions about the flow and
how we will describe it. First, we use V (z) = P + iQ to denote the velocity field of the liquid
and D is the domain on which we study the flow. If V (zo) = A+ iB then the liquid at z = zo has
velocity A + iB. Of course, we make the identification A + iB = 〈A,B〉 throughout this section.
For the math to be reasonable and the flow not worthy of prize winning mathematics:

1. V (z) is time-independent,

9if you have studied the Frenet-Serret T,N,B frame, I should caution that n need not coincide with N . Here n
is designed to point away from the interior of the loop
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2. There are no sources or sinks of liquid in D. Fluid is neither created nor destroyed,

3. The flow is incompressible, the density (mass per unit area) is the same throughout D.

4. The flow is irrotational in the sense that around any little circle in D there is no circulation.

Apply Green’s Theorem to condition (4.) to see that ∂xQ = ∂yP is a necessary condition for
V = P + iQ on D. But, this is just the condition that Pdx + Qdy is closed. Thus, for sim-
ply connected subset S of D we may select a function φ such that dφ = Pdx + Qdy. which
means ∇φ = 〈P,Q〉 in the usual language of multivariate calculus. The function φ such that
dφ = Pdx+Qdy is called the potential function of V on S.

We argue next that (2.) implies φ is harmonic on S. Consider the flux through any little loop γ in
S with Dγ the interior of γ; ∂Dγ = γ. If we calculate the flux of V through γ we find it is zero as
the fluid is neither created nor destroyed in D. But, Green’s Theorem gives us the following:

flux of V through γ =

∮
γ
(V •n)ds =

∮
γ
Qdx− Pdy =

∫∫
D

(
∂P

∂x
+
∂Q

∂y

)
dA = 0.

Hence Px +Qy = 0 on S. But, P = φx and Q = φy hence φxx + φyy = 0. Thus φ is harmonic on S

As we have shown φ is harmonic on S, the theory of harmonic conjugates allows us construction of
ψ on S for which f(z) = φ+ iψ is holomorphic on S. We say f(z) so constructed is the complex
velocity potential of the flow. Note:

V (z) = φx + iφy = φx − iψx = φx + iψx = f ′(z).

Recall from our work on conformal mappings we learned the level curves of Ref(z) and Imf(z)
are orthogonal if f(z) is a non-constant holomorphic mapping. Therefore, if the velocity field is
nonzero then we have such a situation where Re(f(z)) = φ(z) and Im(f(z)) = ψ(z). We find the
geometric meaning of ψ and φ is:

1. level curves of ψ are streamlines of the flow. The tangents to the stream lines line up with
V (z). In other words, ψ(z) = c describes a path along which the fluid particles travel.

2. level curves of φ are orthogonal to the stream lines.

It follows we call ψ the stream function of V . At this point we have all the toys we need to look
at a few examples.

Example 8.6.1. Study the constant horizontal flow V (z) = 1 on C. We expect stream lines of the
form y = yo hence ψ(z) = y. But, the harmonic function φ(z) for which f(z) = φ(z) + iψ(z) with
ψ(z) = y is clearly just ψ(z) = x. Hence the complex velocity potential is f(z) = z. Of course we
could also have seen this geometrically, as the orthogonal trajectories of the streamlines y = yo are
just x = xo.

Is every holomorphic function a flow? NO. This is the trap I walked into today (9-12-14). Consider:

Example 8.6.2. Study the possible flow V (z) = x + iy. The potential of the flow φ must solve
dφ = xdx + ydy. This implies φ = 1

2(x2 + y2). However, φxx + φyy = 2 6= 0 hence the potential
potential is not a potential as it is not harmonic ! This ”flow” V (z) = x + iy violates are base
assumptions since ∇ •V = 2. Fluid is created everywhere in this flow so the technology of this
section is totally off base here!
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There is a special subclass of harmonic functions which can be viewed as flows. We need V = P+iQ
where the form Pdx+Qdy is closed (∇× V = 0) and the form Pdy −Qdx is closed (∇ •V = 0).

Example 8.6.3. Consider V (z) = x+iy
x2+y2 = 1

r 〈cos θ, sin θ〉 = 1
r r̂. We wish to solve dφ = xdx+idy

x2+y2

hence φx = x
x2+y2 and φy = y

x2+y2 which has solution

φ(x+ iy) = ln
√
x2 + y2 ⇒ φ(z) = ln |z|

However, we know log(z) = ln |z|+ i arg(z) is holomorphic (locally speaking of course) hence f(z) =
log(z) is the complex velocity potential and we identify the stream function is arg(z). If we calculate
the circulation of the flow around a circle centered at the origin we obtain 2π. Of course, z = 0 is
not in the domain of the flow and in fact we can deduce the origin serves as a source for this flow.
The speed of the fluid approaches infinity as we get close to z = 0 then it slows to zero as it spreads
out to ∞. The streamlines are rays in this problem.

The examples and discussion on pages 94-96 of Gamelin about how to morph a standard flow to
another via a holomorphic map is very interesting. I will help us appreciate it in the homework.

8.7 Other Applications to Physics

The heat equation is given by ut = uxx + uyy in two dimensions. Therefore, if we solve the
steady-state or time-independent problem of heat-flow then we must face the problem of solving
uxx + uyy = 0. Of course, this is just Laplace’s equation and an analog of the last section exists
here as we study the flow of heat. There are two standard problems:

1. Dirichlet Problem: given a prescribed function v on the boundary of D which represents
the temperature-distribution on the boundary, find a harmonic function u on D for which
u = v on ∂D.

2. Neumann Problem: given a prescribed function v on the boundary of D which represents
the flow of heat through the boundary, find a harmonic function u on D for which ∂u

∂n = v
where n is the normal direction on ∂D.

The notation ∂u
∂n = v simply indicates the directional derivative of u in the normal direction n.

We introduce Q = ∇u = ux + iuy as the flow of heat. It points in the direction of increasing
levels of temperature u. The condition ∇ •Q = 0 expresses the lack of heat sources or sinks. The
condition ∇×Q = 0 assumes the heat flow is irrotational. Given both these assumptions we face
the same mathematical problem as we studied for fluids. Perhaps you can appreciate why the old
theory of heat literally thought of heat as being a liquid or gas which flowed. Only somewhat
recently have we understood heat from the perspective of statistical thermodynamics which says
temperature and heat flow are simply macroscopic manifestations of the kinetics of atoms. If you
want to know more, perhaps you should study thermodynamics10

Example 8.7.1. Suppose u(z) = uo for all z ∈ C. Then, Q = ∇u = 0. There is zero flow of heat.

Example 8.7.2. Problem: Find the steady-state heat distribution for a circular plate of radius 1
(|z| ≤ 1) for which the upper edge (y > 0, |z| = 1) is held at constant temperature u = 1 and the
lower edge (y < 0, |z| = 1)is held at constant temperature u = −1.

10coming soon to a university near you
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Solution: we assume that there are no heat sources within the disk and the flow of heat is
irrotational. Thus, we seek a harmonic function on the disk which fits the presribed boundary
conditions. At this point we make a creative leap: this problem reminds us of the upper-half plane
and the behaviour of Arg(w). Recall: for w = t ∈ R with t > 0

Arg(t) = 0 & Arg(−t) = −π

Furthermore, recall Example 7.6.9 where we studied h(z) = z−i
z+i . This Cayley map mapped (0,∞)

to the lower-half of the unit-circle. I argue that (−∞, 0) maps to the upper-half of the circle. In
particular, we consider the point −1 ∈ (−∞, 0). Observe:

h(−1) =
−1− i
−1 + i

=
(−1− i)(−1− i)

2
=

(1 + i)2

2
=

1 + 2i+ i2

2
= i.

I’m just checking to be sure here. Logically, since we know fractional linear transformations map
lines to circles or lines and we already know (0,∞) maps to half of the circle the fact the other half
of the line must map to the other half of the circle would seem to be a logically inevitable.

The temperature distribution u(z) = Arg(z) for z ∈ H sets u = 0 for z ∈ (0,∞) and u = −π for
z ∈ (−∞, 0). We shift the temperatures to −1 to 1 by some simple algebra: to send (−π, 0) to
(−1, 1) we need to stretch by m = 2

π and shift by 1. The new u:

u(z) = 1 +
2

π
Arg(z)

Let us check my algebra: for t > 0, u(−t) = 1 + 2(−π)
π = −1 whereas u(t) = 1 + 2(0)

π = 1.

Next, we wish to transfer the temperature distribution above to the disk via the Cayley map. We

wish to pull-back the temperature function in z given by u(z) = 1 +
2

π
Arg(z) to a corresponding

function U(w) for the disk |w| ≤ 1. We accomplish the pull-back by setting U(w) = u(h−1(w)).
What is the inverse of the Cayley map ? We can find this by solving z−i

z+i = w for z:

z − i
z + i

= w ⇒ z − i = zw + iw ⇒ z − zw = i+ iw ⇒ z = i
1 + w

1− w
.

Hence h−1(w) = i1+w
1−w . And we find the temperature distribution on the disk as desired:

U(w) = 1 +
2

π
Arg

(
i
1 + w

1− w

)
We can check the answer here. Suppose w = eit then

1 + eit

1− eit
=
e−it/2 + eit/2

e−it/2 − eit/2
=

cos(t/2)

−i sin(t/2)
⇒ Arg

(
i
1 + w

1− w

)
= Arg

(
−cos(t/2)

sin(t/2)

)
Notice, for 0 < t < π we have 0 < t/2 < π/2 hence cos(t/2) > 0 and sin(t/2) > 0 hence

Arg
(
− cos(t/2)

sin(t/2)

)
= −π and so U(eit) = −1. On the other hand, if −π < t < 0 then −π/2 < t/2 < 0

and cos(t/2) > 0 whereas sin(t/2) < 0 hence Arg
(
− cos(t/2)

sin(t/2)

)
= 0 and so U(eit) = 1.
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Happily we have uncovered another bonus opportunity in the example above. It would seem I

have a sign error somewhere, or, a misinterpretation. The solution above is exactly backwards.

We have the top edge at U = −1 whereas the lower edge is at U = 1. Pragmatically, −U(w) is

the solution. But, I will award 5 or more bonus points to the student who explains this enigma.

Finally, a word or two about electrostatics. E = E1 + iE2 being the electric field is related to the
physical potential V by E = −dV . This means E = −∇V where V is the potential energy per
unit charge or simply the potential. Notice Gamelin has φ = −V which means the relation between
level curves of φ and E will not follow the standard commentary in physics. Note the field lines of
E point towards higher levels of level curves for φ. In the usual story in physics, the field lines of
E flow to lower voltage regions. In contrast, Just something to be aware of if you read Gamelin
carefully and try to match it to the standard lexicon in physics. Of course, most multivariate
calculus treatments share the same lack of insight in their treatment of ”potential” functions. The
reason for the sign in physics is simply that the choice causes the sum of kinetic and potential
energy to be conserved. If we applied Gamelin’s choice to physics we would find it necessary to
conserve the difference of kinetic and potential energy. Which students might find odd. Setting
aside this unfortunate difference in conventions, the example shown by Gamelin on pages 99-100
are pretty. You might constrast against my treatment of two-dimensional electrostatics in my 2014
Multivariable Calculus notes pages 368-371.



Chapter 9

Complex Integration and Analyticity

In this chapter we discover many surprising theorems which connect a holomorphic function and
its integrals and derivatives. In part, the results here are merely a continuation of the complex-
valued multivariate analysis studied in the previous chapter. However, the Theorem of Goursat
and Cauchy’s integral formula lead to striking results which are not analogus to the real theory.
In particular, if a function is complex differentiable on a domain then Goursat’s Theorem provides
that z 7→ f ′(z) is automatically a continuous mapping. There is no distinction between complex
differentiable and continuously complex differentiable in the function theory on a complex domain.
Moreover, if a function is once complex differentiable then it is twice complex differentiable. Con-
tinuing this thought, there is no distinction between the complex smooth functions and the complex
once-differentiable functions on a complex domain. These distinctions are made in the real case
and the distinctions are certainly aspects of the more subtle side of real analysis. These truths and
more we discover in this chapter.

Before going into the future, let us pause to enjoy a quote by Gauss from 1811 to a letter to Bessel:

What should we make of
∫
φx · dx for x = a + bi? Obviously, if we’re to proceed from

clear concepts, we have to assume that x passes, via infinitely small increments (each of
the form α+ iβ), from that value at which the integral is supposed to be 0, to x = a+bi
and that then all the φx · dx are summed up. In this way the meaning is made precise.
But the progression of x values can take place in infinitely many ways: Just as we think
of the realm of all real magnitudes as an infinite straight line, so we can envision the
realm of all magnitudes, real and imaginary, as an infinite plane wherein every point
which is determined by an abscissa a and ordinate b represents as well the magnitude
a+ bi. The continuous passage from one value of x to another a+ bi accordingly occurs
along a curve and is consequently possible in infinitely many ways. But I maintain that
the integral

∫
φx · dx computed via two different such passages always gets the same

value as long as φx =∞ never occurs in the region of the plane enclosed by the curves
describing these two passages. This is a very beautiful theorem, whose not-so-difficult
proof I will give when an appropriate occassion comes up. It is closedly related to other
beautiful truths having to do with developing functions in series. The passage from point
to point can always be carried out without touching one where φx = ∞. However, I
demand that those points be avoided lest the original basic conception

∫
φx · dx lose its

clarity and lead to contradictions. Moreover, it is also clear how a function generated
by
∫
φx · dx could have several values for the same values of x depending on whether a

123
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point where φx = ∞ is gone around not at all, once, or several times. If, for example,
we define log x having gone around x = 0 one of more times or not at all, every circuit
adds the constant 2πi or −2πi; thus the fact that every number has multiple logarithms
becomes quite clear” (Werke 8, 90-92 according to [R91] page 167-168)

This quote shows Gauss knew complex function theory before Cauchy published the original mon-
umental works on the subject in 1814 and 1825. Apparently, Poisson also published an early work
on complex integration in 1813. See [R91] page 175.

9.1 Complex Line Integral

The definition of the complex integral is naturally analogus to the usual Riemann sum in R. In the
real integral one considers a partition of xo, x1, . . . , xn which divides [a, b] into n-subintervals. In
the complex integral, to integrate along a path γ we consider points zo, z1, . . . , zn along the path.
In both cases, as n→∞ we obtain the integral.

Definition 9.1.1. Let γ : [a, b] → C be a smooth path and f(z) a complex-valued function which
is continuous on and near γ. Let zo, z1, . . . , zn ∈ trace(γ) where a ≤ to < t1 < · · · < tn ≤ b and
γ(tj) = zj for j = 0, 1, . . . , n. We define:∫

γ
f(z) dz = lim

n→∞

n∑
j=1

f(zj)(zj − zj−1).

Equivalently, as a complex-valued integral over the real parameter of the path:∫
γ
f(z) dz =

∫ b

a
f(γ(t))

dγ

dt
dt.

Or, as a complex combination of real line-integrals:∫
γ
f(z) dz =

∫
γ
udx− vdy + i

∫
γ
udy + vdx.

And finally, in terms set in the previous chapter,∫
γ
f(z) dz =

∫
γ
f(z) dx+ i

∫
γ
f(z) dy

The initial definition above is not our typical method of calculation! In fact, the boxed formulas
we find in the next page or so are equivalent to the initial, Riemann sum definition given above. I
thought I should start with this so you better appreciate the boxed-definitions which we uncover
below. Consider,

zj − zj−1 = γ(tj)− γ(tj−1) =
γ(tj)− γ(tj−1)

tj − tj−1
(tj − tj−1)

Applying the mean value theorem we select t∗j ∈ [tj−1, tj ] for which γ′(t∗j ) =
γ(tj)−γ(tj−1)

tj−tj−1
. Returning

to the integral, and using 4tj = tj − tj−1 we obtain∫
γ
f(z) dz = lim

n→∞

n∑
j=1

f(γ(tj))
dγ

dt
(t∗j )4tj =

∫ b

a
f(γ(t))

dγ

dt
dt.
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I sometimes use the boxed formula above as the definition of the complex integral. Moreover, in
practice, we set z = γ(t) as to symbolically replace dz with dz

dt dt. See Example 9.1.3 for an example
of this notational convenience. That said, the expression above can be expressed as a complex-
linear combination of two real integrals. If we denote γ = x+ iy and f = u+ iv then (I omit some
t-dependence to make it fit in second line)∫

γ
f(z) dz = lim

n→∞

n∑
j=1

(u(γ(tj)) + iv(γ(tj)))

(
dx

dt
(t∗j ) + i

dy

dt
(t∗j )

)
4tj

= lim
n→∞

n∑
j=1

(
u ◦ γ

dx

dt
− v ◦ γ)

dy

dt

)
4tj + i lim

n→∞

n∑
j=1

(
u ◦ γ

dy

dt
+ v ◦ γ

dx

dt

)
4tj

=

∫ b

a

(
u(γ(t))

dx

dt
− v(γ(t))

dy

dt

)
dt+ i

∫ b

a

(
u(γ(t))

dy

dt
+ v(γ(t))

dx

dt

)
dt

=

∫
γ
udx− vdy + i

∫
γ
udy + vdx.

Thus, in view of the integrals of complex-valued differential forms defined in the previous chapter
we can express the complex integral elegantly as dz = dx+ idy where this indicates∫

γ
f(z) dz =

∫
γ
f(z) dx+ i

∫
γ
f(z) dy.

To summarize, we could reasonably use any of the boxed formulas to define
∫
γ f(z) dz. In view of

this comment, let us agree that we call all of these the definition of the complex integral. We will
use the formulation which is most appropriate for the task at hand.

To integrate over a curve we follow the method laid out in Definition 8.1.7. To calculate the integral
over a curve we calculate the integral over each path comprising the curve then we sum all the path
integrals.

Definition 9.1.2. In particular, if γ is a curve formed by joining the smooth paths γ1, γ2, . . . , γn.
In terms of the trace denoted trace(γ) = [γ] we have [γ] = [γ1]∪ [γ2]∪· · ·∪ [γn]. Let f(z) be complex
valued and continuous near the trace of γ. Define:∫

γ
f(z) dz =

n∑
j=1

∫
γj

f(z) dz.

Example 9.1.3. Let γ : [0, 2π]→ C be the unit-circle γ(t) = eit. Calculate
∫
γ
dz
z . Note, if z = eit

then dz = ieitdt hence: ∫
γ

dz

z
=

∫ 2π

0

ieitdt

eit
= i

∫ 2π

0
dt = 2πi.

Example 9.1.4. Let C be the line-segment from p to q parametrized by t ∈ [0, 1]; z = p+ t(q − p)
hence dz = (q − p)dt. We calculate, for n ∈ Z with n 6= −1,∫

C
zndz =

∫ 1

0
(p+ t(q − p))n(q − p)dt =

(p+ t(q − p))n+1

n+ 1

∣∣∣∣1
0

=
qn+1

n+ 1
− pn+1

n+ 1
.
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Calculational Comment: For your convenience, let us pause to note some basic properties of
an integral of a complex-valued function of a real variable. In particular, suppose f(t), g(t) are
continuous complex-valued functions of t ∈ R and c ∈ C and a, b ∈ R then∫

(f(t) + g(t)) dt =

∫
f(t)dt+

∫
g(t)dt &

∫
cf(t)dt = c

∫
f(t)dt

More importantly, the FTC naturally extends; if dF
dt = f then∫ b

a
f(t) dt = F (b)− F (a).

Notice, this is not quite the same as first semester calculus. Yes, the formulas look the same, but,
there is an important distinction. In the last example p = 4 + 3i and q = 13eiπ/3 are possible. I
don’t think you had that in first semester calculus. You should notice the chain-rule you proved in
Problem 27 is immensely useful in what follows from here on out. Often, as we calculate dz by dγ

dt dt
we have γ(t) written as the composition of a holomorphic function of z and some simple function
of t. I already used this in Examples 9.1.3 and 9.1.4. Did you notice?

Example 9.1.5. Let γ = [p, q] and let c ∈ C with c 6= −1. Recall f(z) = zc is generally a multiply-
valued function whose set of values is given by zc = exp(c log(z)). Suppose p, q fall in a subset of
C on which a single-value of zc is defined and let zc denote that function of z. Let γ(t) = p+ tv
where v = q − p for 0 ≤ t ≤ 1 thus dz = vdt and:∫

γ
zcdz =

∫ 1

0
(p+ tv)cvdt

notice
d

dt

[
(p+ tv)c+1

c+ 1

]
= (p+tv)cv as we know f(z) = zc+1 has f ′(z) = (c+1)zc and d

dt(p+tv) = v.

The chain rule (proved by you in Problem 27) completes the thought. Consequently, by FTC for
complex-valued integrals of a real variable,∫

γ
zcdz =

(p+ tv)c+1

c+ 1

∣∣∣∣1
0

=
pc+1

c+ 1
− qc+1

c+ 1
.

The deformation theorem we discussed in the previous chapter is still of great utility here. We
continue Example 9.1.3 to consider arbitrary loops.

Example 9.1.6. The differential form ω = dz/z is closed on the punctured plane C×. In particular,

ω =
dx+ idy

x+ iy
⇒ P =

1

x+ iy
& Q =

i

x+ iy

Observe ∂xQ = ∂yP for z 6= 0 thus ω is closed on C× as claimed. Let γ be a, postively oriented,
simple, closed, curve containg the origin in its interior. Then by the deformation theorem we argue∫

γ

dz

z
= 2πi.

since a simple closed loop which encircles the origin can be continuously deformed to the unit-circle.

Notice, in C×, any loop not containing the origin can be smoothly deformed to a point in and thus
it is true that

∫
γ
dz
z = 0 if 0 is not within the interior of the loop.
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Example 9.1.7. Let R > 0 and zo a fixed point in the complex plane. Assume the integration is
taken over a positively oriented parametrization of the pointset indicated: for m ∈ Z,∫

|z−zo|=R
(z − zo)m dz =

{
2πi for m = −1

0 for m 6= −1.

Let z = zo +Reit for 0 ≤ t ≤ 2π parametrize |z − zo| = R. Note dz = iReitdt hence∫
|z−zo|=R

(z − zo)m dz =

∫ 2π

0
(Reit)miReitdt

= iRm+1

∫ 2π

0
ei(m+1)t dt

= iRm+1

∫ 2π

0

(
cos[(m+ 1)t] + i sin[(m+ 1)t]

)
dt.

The integral of any integer multiple of periods of trigonometric functions is trivial. However, in the
case m = −1 the calculation reduces to

∫
|z−zo|=R(z − zo)−1 dz = i

∫ 2π
0 cos(0)dt = 2πi. I encourage

the reader to extend this calculation to arbitrary loops by showing the form (z − zo)mdz is closed
on at least the punctured plane.

Let γ be a loop containing zo in its interior. An interesting aspect of the example above is the
contrast of

∫
γ

dz
z−zo = 2πi and

∫
γ

dz
(z−zo)2 = 0. One might be tempted to think that divergence at a

point necessitates a non-trivial loop integral after seeing the m = −1 result. However, it is not the
case. At least, not at this naive level of investigation. Later we will see the quadratic divergence
generates nontrivial integrals for f ′(z). Cauchy’s Integral formula studied in §4.4 will make this
clear. Next, we consider less exact methods. Often, what follows it the only way to calculate
something. In contrast to the usual presentation of real-valued calculus, the inequality theorem
below is a weapon we will wield to conquer formiddable enemies later in this course. So, sharpen
your blade now as to prepare for war.

Following Gamelin, denote the infinitesimal arclength ds = |dz| and define the integral with respect
to arclength of a complex-valued function by:

Definition 9.1.8. Let γ : [a, b] → C be a smooth path and f(z) a complex-valued function which
is continuous on and near γ. Let zo, z1, . . . , zn ∈ trace(γ) where a ≤ to < t1 < · · · < tn ≤ b and
γ(tj) = zj for j = 0, 1, . . . , n. We define:∫

γ
f(z) |dz| = lim

n→∞

n∑
j=1

f(zj)|zj − zj−1|.

Equivalently, as a complex-valued integral over the real parameter of the path:∫
γ
f(z) |dz| =

∫ b

a
f(γ(t))

∣∣∣∣dγdt
∣∣∣∣ dt.

We could express this as a complex-linear combination of the standard real-arclength integrals of
multivariate calculus, but, I will abstain. It is customary in Gamelin to denote the length of the
path γ by L. We may calculate L by integration of |dz| along γ = x+ iy : [a, b]→ C:

L =

∫
γ
|dz| =

∫ b

a

√
dx

dt

2

+
dy

dt

2

dt.
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Of course, this is just the usual formula for arclength of a parametrized curve in the plane. The
Theorem below is often called the ML-estimate or ML-theorem throughout the remainder of
this course.

Theorem 9.1.9. Let h(z) be a continuous near a smooth path γ with length L. Then

1.

∣∣∣∣∫
γ
h(z) dz

∣∣∣∣ ≤ ∫
γ
|h(z)| |dz|.

2. If |h(z)| ≤M for all z ∈ [γ] then

∣∣∣∣∫
γ
h(z) dz

∣∣∣∣ ≤ML.

Proof: in terms of the Riemann sum formulation of the complex integral and arclength integral
the identities above are merely consequences of the triangle inequality applied to a particular
approximating sum. Note:∣∣∣∣∣∣

n∑
j=1

h(zj)(zj − zj−1)

∣∣∣∣∣∣ ≤
n∑
j=1

|h(zj)(zj − zj−1)| =
n∑
j=1

|h(zj)||zj − zj−1|

where we used multiplicativity of the norm1 in the last equality and the triangle inequality in
the first inequality. Now, as n→∞ we obtain (1.). The proof of (2.) is one more step:∣∣∣∣∣∣

n∑
j=1

h(zj)(zj − zj−1)

∣∣∣∣∣∣ ≤=

n∑
j=1

|h(zj)||zj − zj−1| ≤
n∑
j=1

M |zj − zj−1| = M

n∑
j=1

|zj − zj−1| = ML. �

I should mention, last time I taught this course I tried to prove this on the fly directly from the
definition written as

∫
γ f(z) dz =

∫ b
a f(γ(t))dγdt dt. It went badly. There are proofs which are not

at the level of the Riemann sum and it’s probably worthwhile to share a second proof. I saw this
proof in my complex analysis course given by my advisor Dr. R.O. Fulp in 2005 at NCSU.

Alternate Proof: we begin by developing a theorem for complex-valued functions of a real-

variable. We claim Lemma:
∣∣∣∫ ba w(t)dt

∣∣∣ ≤ ∫ ba |w(t)| dt. Notice that w(t) denotes the modulus of the

complex value w(t). If w(t) = 0 on [a, b] then the claim is true. Hence, suppose w(t) is continuous

and hence the integral of w(t) exists and we set R > 0 and θ ∈ R such that
∫ b
a w(t)dt = Reiθ. Let’s

get real: in particular R = e−iθ
∫ b
a w(t)dt =

∫ b
a e
−iθw(t)dt hence:

R =

∫ b

a
e−iθw(t)dt

= Re

(∫ b

a
e−iθw(t)dt

)
=

∫ b

a
Re(e−iθw(t)) dt

≤
∫ b

a

∣∣∣e−iθw(t)
∣∣∣ dt due to a property of modulus; Re(z) ≤ |z|

=

∫ b

a
|w(t)| dt

1Bailu, here is a spot we need sub-multiplicativity over A. We will get a modified ML-theorem accordinng to
the size of the structure constants.Note, the alternate proof would not go well in A since we do not have a polar
representation of an arbtrary A-number.
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Thus, the Lemma follows as: |
∫ b
a w(t) dt| = |Reiθ| ≤

∫ b
a |w(t)| dt. Now, suppose h(z) is complex-

valued and continuous near γ : [a, b] → C. We calculate, using the Lemma, then multiplicative
property of the modulus:∣∣∣∣∫

γ
h(z) dz

∣∣∣∣ =

∣∣∣∣∫ b

a
h(γ(t))

dγ

dt
dt

∣∣∣∣ ≤ ∫ b

a

∣∣∣∣h(γ(t))
dγ

dt

∣∣∣∣ dt =

∫ b

a
|h(γ(t))|

∣∣∣∣dγdt
∣∣∣∣ dt =

∫
γ
|h(z)| |dz|.

This proves (1.) and the proof of (2.) is essentially the same as we discussed in the first proof. �

Example 9.1.10. Consider h(z) = 1/z on the unit-circle γ. Clearly, |z| = 1 for z ∈ [γ] hence
|h(z)| = 1 which means this estimate is sharp, it cannot be improved. Furthermore, L = 2π and

the ML-estimate shows
∣∣∣∫γ dz

z

∣∣∣ ≤ 2π. Indeed, in Example 9.1.3
∫
γ
dz
z = 2πi so the estimate is not

too shabby.

Typically, the slightly cumbersome part of applying the ML-estimate is fiinding M . Helpful tech-
niques include: using the polar form of a number, Re(z) ≤ |z| and Im(z) ≤ |z| and naturally
|z + w| ≤ |z|+ |w| as well as |z − w| ≥ ||z| − |w|| which is useful for manipulating denomiinators.

Example 9.1.11. Let γR be the half-circle of radius R going from R to −R on the real-axis. Find
an bound on the modulus of

∫
γR

dz
z2+6

. Notice, on the circle we have |z| = R. Furthermore,

1

|z2 + 6|
≤ 1

||z2| − |6||
=

1

||z|2 − 6|
=

1

|R2 − 6|

If R >
√

6 then we have bound M = 1
R2−6

for which |h(z)| ≤ M for all z ∈ C with |z| = R. Note,
L = πR for the half-circle and the ML-estimate gives:∣∣∣∣∫

γR

dz

z2 + 6

∣∣∣∣ ≤ πR

R2 − 6
.

Notice, if we consider R → ∞ then we find from the estimate above and the squeeze theorem that∣∣∣∫γR dz
z2+6

∣∣∣→ 0. It follows that the integral of dz
z2+6

over an infinite half-circle is zero.

A similar calculation shows any rational function f(z) = p(z)/q(z) with deg(p(z)) + 2 ≤ deg(q(z))
has an integral which vanishes over sections of a cricle which has an infinite radius.

9.2 Fundamental Theorem of Calculus for Analytic Functions

The term primitive means antiderivative. In particular:

Definition 9.2.1. We say F (z) is a primitive of f(z) on D iff F ′(z) = f(z) for each z ∈ D.

The fundamental theorem of calculus part II2 has a natural analog in our context.

Theorem 9.2.2. Complex FTC II: Let f(z) be continuous with primitive F (z) on D then if γ
is a path from A to B in D then ∫

γ
f(z) dz = F (b)− F (a).

2following the usual American textbook ordering
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Proof: recall the complex derivative can be cast as a partial derivative with respect to x or y in
the following sense: dF

dz = ∂F
∂x = −i∂F∂y . Thus:∫

γ
f(z) dz =

∫
γ

dF

dz
dz =

∫
γ

dF

dz
dx+ i

∫
γ

dF

dz
dy

=

∫
γ

∂F

∂x
dx+ i

∫
γ
−i∂F

∂y
dy

=

∫
γ

(
∂F

∂x
dx+

∂F

∂y
dy

)
=

∫
γ
dF

= F (B)− F (A).

where we used Theorem 8.2.2 in the last step3. �

In the context of the above theorem we sometimes use the notation
∫
γ f(z) dz =

∫ B
A f(z) dz. This

notation should be used with care.

Example 9.2.3. ∫ 1+3i

0
z3 dz =

1

4
z4

∣∣∣∣1+3i

0

=
(1 + 3i)4

4
.

The example below is essentially given on page 108 of Gamelin. I make the ε in Gamelin’s example
explicit.

Example 9.2.4. The function f(z) = 1/z has primitive Log(z) = ln |z|+ iArg(z) on C−. We can
capture the integral around the unit-circle by a limitiing process. Consider the unit-circle, positively
oriented, with an ε-sector deleted just below the negative x-axis; γε : [−π+ε, π]→ C with γ(t) = eit.
The path has starting point γ(π) = eiπ and ending point γ(−π + ε) = ei(−π+ε). Note [γε] ⊂ C−
hence for each ε > 0 we are free to apply the complex FTC:∫

γε

dz

z
= Log(eiπ)− Log(ei(−π+ε)) = 2πi+ iε.

Thus, as ε → 0 we find 2πi + iε → 2πi and γε → γ0 where γ0 denotes the positively oriented
unit-circle. Therefore, we find:

∫
γ0

dz
z = 2πi.

The example above gives us another manner to understand Example 9.1.3. It all goes back to
the 2πZ degeneracy of the standard angle. Let us continue to what Gamelin calls Fundamental
Theorem of Calculus (II). Which, I find funny, since the American text books tend to have I
and II reversed from Gamelin’s usage.

Theorem 9.2.5. Complex FTC I: let D be star-shaped and let f(z) be holomorphic on D. Then
f(z) has a primitive on D and the primitive is unique up to an additive constant. A primitive for
f(z) is given by4

F (z) =

∫ z

zo

f(ζ) dζ

where zo is a star-center of D and the integral is taken along some path in D from zo to z.

3alternative proof: try to derive it via
∫
γ
f(z)dz =

∫ b
a
f(γ(t))γ′(t)dt and Problem 27.

4the symbol ζ is used here since z has another set meaning, this is the Greek letter ”zeta”
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Proof: the basic idea is simply to use Theorem 8.2.10. We need to show f(z)dz is a closed form.
Let f = u+ iv then:

f(z) dz = (u+ iv)(dx+ idy) = (u+ iv)︸ ︷︷ ︸
P

dx+ (iu− v)︸ ︷︷ ︸
Q

dy

We wish to show Qx = Py. Remember, ux = vy and vx = −uy since f = u+ iv ∈ O(D),

Qx = iux − vx = ivy + uy = Py.

Therefore, the form f(z)dz is closed on the star-shaped domain D hence by the proof of Theorem
8.2.10 the form f(z)dz is exact with potential given by:

F (z) =

∫ z

zo

f(ζ)dζ

where we identify in our current lexicon F (z) is a primitive of f(z). �.

The assumption of star-shaped (or simply connected to be a bit more general) is needed since there
are closed forms on domains with holes which are not exact. The standard example is C× where
dz
z is closed, but

∫
|z|=1

dz
z = 2πi shows we cannot hope for a primitive to exist on all of C×. If such

a primitive did exist then the integral around |z| = 1 would necessarily be zero which contradicts
the always important Example 9.1.3.

9.3 Cauchy’s Theorem

It seems we accidentally proved the theorem below in the proof of Theorem 9.2.5.

Theorem 9.3.1. original form of Morera’s Theorem: a continuously differentiable function
f(z) on D is holomorphic on D if and only if the differential f(z)dz is closed.

Proof: If f(z) is holomorphic on D then

f(z) dz = (u+ iv)(dx+ idy) = (u+ iv)︸ ︷︷ ︸
P

dx+ (iu− v)︸ ︷︷ ︸
Q

dy

and the Cauchy Riemann equations for u, v yield:

Qx = iux − vx = ivy + uy = Py.

Conversely, let f = u + iv and note if f(z) dz = Pdx + Qdy is closed then this forces u, v to
solve the CR-equations by the algebra in the forward direction of the proof. However, we also are
given f(z) is continuously differentiable hence f(z) is holomorphic by part (3.) of Theorem 7.2.3. �

Apply Green’s Theorem to obtain Cauchy’s Theorem:

Theorem 9.3.2. Cauchy’s Theorem: let D be a bounded domain with piecewise smooth bound-
ary. If f(z) is holomorphic and continuously differentiable on D and extends continuously to ∂D

then

∫
∂D

f(z) dz = 0.
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Proof: assume f(z) is holomorphic on D then Theorem 9.3.1 tells us f(z) dz = Pdx + Qdy is
closed. Apply Green’s Theorem 8.1.10 to obtain

∫
∂D f(z) dz =

∫∫
D(Qx − Py) but as Pdx+Qdy is

closed we know Qx = Py hence
∫
∂D f(z) dz = 0 �

Notice, Green’s Theorem extends to regions with interior holes in a natural manner: the boundary
of interior holes is given a CW-orientation whereas the exterior boundary is given CCW-orientation.
It follows that a holomorphic function on an annulus must have integrals on the inner and outer
boundaries which cancel. See the discussion before Theorem 8.2.12 for a simple case with one hole.
Notice how the CW-orientation of the inner curve allows us to chop the space into two positively ori-
ented simple curves. That construction can be generalized, perhaps you will explore it in homework.

I am pleased with the integration of the theory of exact and closed forms which was initiated in
the previous chapter. But, it’s probably wise for us to pause on a theorem as important as this
and see the proof in a self-contained fashion.

Stand Alone Proof: If f(z) is holomorphic with continuous f ′(z) on D and extends continuously
to ∂D. Let f(z) = u+ iv and use Green’s Theorem for complex-valued forms:∫

∂D
f(z) dz =

∫
∂D

(u+ iv)(dx+ idy)

=

∫
∂D

(u+ iv)dx+ (iu− v)dy

=

∫∫
D

(
∂(iu− v)

∂x
− ∂(u+ iv)

∂y

)
dA

=

∫∫
D

(iux − vx − uy − ivy) dA

=

∫∫
D

(0) dA

= 0.

where we used the CR-equations ux = vy and vx = −uy to cancel terms. �

Technically, the assumption in both proofs above of the continuity of f ′(z) throughout D is needed
in order that Green’s Theorem apply. That said, we shall soon study Goursat’s Theorem and gain
an appreciation for why this detail is superfluous5

Example 9.3.3. The function f(z) = 2z
1+z2 has natural domain of C − {i,−i}. Moreover, partial

fractions decomposition provides the following identity:

f(z) =
z + i+ z − i
(z − i)(z + i)

=
1

z + i
+

1

z − i

If ε < 1 and γε(p) denotes the circle centered at p with positive orientation and radius ε then I
invite the student to verify that:∫

γε(−i)

dz

z + i
= 2πi &

∫
γε(−i)

dz

z − i
= 0

5you may recall Gamelin’s definition of analytic assumes the continuity of z 7→ f ′(z). This is Gamelin’s way of
saying,”this detail need not concern the beginning student” Remember, I have replaced analytic with holomorphic
throughout this guide. Although, the time for the term ”analytic” arises in the next chapter.
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whereas ∫
γε(i)

dz

z + i
= 0 &

∫
γε(i)

dz

z − i
= 2πi.

Suppose D is a domain which includes ±i. Let S = D− interior(γε(±i)). That is, S is the domain
D with the points inside the circles γε(−i) and γε(i) deleted. Furthermore, we suppose ε is small
enough so that the circles are interior to D. This is possible as we assumed D is an open connected
set when we said D is a domain. All of this said: note f is holmorphic on S since f(z) is cleary
complex-differentiable near each point in S and thus we may apply Cauchy’s Theorem on S:

0 =

∫
∂S

2zdz

z2 + 1
=

∫
∂D

2zdz

z2 + 1
−
∫
γε(−i)

(
dz

z + i
+

dz

z − i

)
−
∫
γε(i)

(
dz

z + i
+

dz

z − i

)
But, we know the integrals around the circles and it follows:∫

∂D

2dz

z2 + 1
= 4πi.

Notice the nontriviality of the integral above is due to the singular points ±i in the domain.

Look back at Example 9.1.7 if you are rusty on how to calculate the integrals around the circles. It
is fun to think about the calculation above in terms of what we can and can’t do with logarithms:∫

γε(−i)

(
dz

z + i
+

dz

z − i

)
=

∫
γε(−i)

(
dz

z + i
+ d[log(z − i)]

)
=

∫
γε(−i)

dz

z + i
= 2πi.

where the log(z − i) is taken to be a branch of the logarithm which is holomorphic on the given
circle; for example, log(z − i) = Logπ/2(z − i) would be a reasonable choice since the circle is
centered at z = −i which falls on θ = −π/2. The jump in the Logπ/2(z − i) occurs away from
where the integration is taken and so long as ε < 1 we have that dz/(z − i) is exact with potential
Logπ/2(z − i). That said, we prefer the notation log(z − i) when the details are not important to
the overall calculation. Notice, see for dz/(z+ i) as the differential of a logarithm because the circle
of integration necessarily contains the singularity which forbids the existence of the logarithm on
the whole punctured plane C− {−i}. Similarly,∫

γε(i)

(
dz

z + i
+

dz

z − i

)
=

∫
γε(i)

(
d[log(z + i)] +

dz

z − i

)
=

∫
γε(i)

dz

z − i
= 2πi

is a slick notation to indicate the use of an appropriate branch of log(z + i). In particular,
Log−π/2(z + i) is appropriate for ε < 1.
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9.4 The Cauchy Integral Formula

Once again, when we assume holomorphic on a domain we also add the assumption of continuity
of f ′(z) on the domain. Gamelin assumes continuity of f ′(z) when he says f(z) is analytic on D.
As I have mentioned a few times now, we show in Section 9.7 that f(z) holomorphic on a domain
automatically implies that f ′(z) is continuous. This means we can safely delete the assumption of
continuity of f ′(z) once we understand Goursat’s Theorem.

The theorem below is rather surprising in my opinion.

Theorem 9.4.1. Cauchy’s Integral Formula (m = 0): let D be a bounded domain with piecewise
smooth boundary ∂D. If f(z) is holomorphic with continuous f ′(z) on D and f(z), f ′(z) extend
continuously to ∂D then for each z ∈ D,

f(z) =
1

2πi

∫
∂D

f(w)

w − z
dw

Proof: Assume the preconditions of the theorem. Fix a point z ∈ D. Note D is open hence z is
interior thus we are free to choose ε > 0 for which {w ∈ C | |w − z| < ε} ⊆ D. Define:

Dε = D − {w ∈ C | |w − z| ≤ ε}

Observe the boundary of Dε consists of the outer boundary ∂D and the circle γ−ε which is |w−z| = ε

given CW-orientation; ∂Dε = ∂D ∪ γ−ε . Further, observe g(w) = f(w)
w−z is holomorphic as

g′(w) =
f ′(w)

w − z
− f(w)

(w − z)2

and g′(w) continuous on Dε and g(w), g′(w) both extend continuously to ∂Dε as we have assumed
from the outset that f(w), f ′(w) extend likewise. We obtain from Cauchy’s Theorem 9.3.2 that:∫

∂Dε

f(w)

w − z
dw = 0 ⇒

∫
∂D

f(w)

w − z
dw +

∫
γ−ε

f(w)

w − z
dw = 0.

However, if γ+
ε denotes the CCW-oriented circle, we have

∫
γ−ε

f(w)
w−z dw = −

∫
γ+
ε

f(w)
w−z dw hence:∫

∂D

f(w)

w − z
dw =

∫
γ+
ε

f(w)

w − z
dw

The circle γ+
ε has w = z + εeiθ for 0 ≤ θ ≤ 2π thus dz = iεeiθdθ and we calculate:∫
γ+
ε

f(w)

w − z
dw =

∫ 2π

0

f(z + εeiθ)

εeiθ
iεeiθdθ = 2πi

∫ 2π

0
f(z + εeiθ)

dθ

2π
= 2πif(z).

In the last step we used the Mean Value Property given by Theorem 8.4.2. Finally, solve for f(z)
to obtain the desired result. �

We can formally derive the higher-order formulae by differentiation:

f ′(z) =
1

2πi

d

dz

∫
∂D

f(w)

w − z
dw =

1

2πi

∫
∂D

d

dz

[
f(w)

w − z

]
dw =

1!

2πi

∫
∂D

f(w)

(w − z)2
dw
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Differentiate once more,

f ′′(z) =
1

2πi

d

dz

∫
∂D

f(w)

(w − z)2
dw =

1

2πi

∫
∂D

d

dz

[
f(w)

(w − z)2

]
dw =

2!

2πi

∫
∂D

f(w)

(w − z)3
dw

continuing, we would arrive at:

f (m)(z) =
m!

2πi

∫
∂D

f(w)

(w − z)m+1
dw

which is known as Cauchy’s generalized integral formula. Note that 0! = 1 and f (0)(z) = f(z)
hence Theorem 9.4.1 naturally fits into the formula above.

It is probably worthwhile to examine a proof of the formulas above which is not based on differen-
tiating under the integral. The arguments below show that our formal derivation above were valid.
In the case m = 1 the needed algebra is simple enough:

1

w − (z +4z)
− 1

w − z
=

4z
(w − (z +4z))(w − z)

.

Then, appealing to the m = 0 case to write the functions as integrals:

f(z +4z)− f(z)

4z
=

1

2πi4z

∫
∂D

1

w − (z +4z)
dw +

1

2πi4z

∫
∂D

1

w − z
dw

=
1

2πi4z

∫
∂D

[
1

w − (z +4z)
− 1

w − z

]
f(w) dw

=
1

2πi

∫
∂D

f(w)

(w − (z +4z))(w − z)
dw.

Finally, as 4z → 0 we find f ′(z) = 1
2πi

∫
∂D

f(w)
(w−z)2 dw. We assume that the limiting process 4z → 0

can be interchanged with the integration process. Gamelin comments this is acceptable due to the
uniform continuity of the integrand.

We now turn to the general case, assume Cauchy’s generalized integral formula holds for m − 1.
We need to make use of the binomial theorem:

((w − z) +4z)m = (w − z)m −m(w − z)m−14z +
m(m− 1)

2
(w − z)m−2(4z)2 + · · ·+ (4z)m

Clearly, we have ((w − z) +4z)m = (w − z)m −m(w − z)m−14z + g(z, w)(4z)2 It follows that:

1

(w − (z +4z))m
− 1

(w − z)m
=
m(w − z)m−14z + g(z, w)(4z)2

(w − (z +4z))m(w − z)m

=
m4z

(w − (z +4z))(w − z)m
.+

g(z, w)(4z)2

(w − (z +4z))m(w − z)m

Apply the induction hypothesis to obtain the integrals below:
f (m−1)(z +4z)− f (m−1)(z)

4z
=

=
(m− 1)!

2πi4z

∫
∂D

f(w)

(w − (z +4z))m
dw +

(m− 1)!

2πi4z

∫
∂D

f(w)

(w − z)m
dw

=
(m− 1)!

2πi4z

∫
∂D

[
m4z

(w − (z +4z))(w − z)m
.+

g(z, w)(4z)2

(w − (z +4z))m(w − z)m

]
f(w) dw

=
m!

2πi

∫
∂D

f(w)dw

(w − (z +4z))(w − z)m
.+

(m− 1)!

2πi

∫
∂D

g(z, w)4zf(w)dw

(w − (z +4z))m(w − z)m
.
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As 4z → 0 we see the right integral vanishes and the left integral has a denominator which tends
to (w − z)m+1 hence, by the definition of the m-th derivative,

f (m)(z) =
m!

2πi

∫
∂D

f(w)dw

(w − z)m+1

The arguments just given provide proof of the following theorem:

Theorem 9.4.2. Cauchy’s Generalized Integral Formula (m ∈ N∪ {0}): let D be a bounded
domain with piecewise smooth boundary ∂D. If f(z) is holomorphic with continuous f ′(z) on D
and f(z), f ′(z) extend continuously to ∂D then for each z ∈ D,

f (m)(z) =
m!

2πi

∫
∂D

f(w)

(w − z)m+1
dw

Often we need to use the theorem above with the role of z as the integration variable. For example:

f (m)(zo) =
m!

2πi

∫
∂D

f(z)

(z − zo)m+1
dz

from which we obtain the useful identity:

∫
∂D

f(z)

(z − zo)m+1
dz =

2πif (m)(zo)

m!

This formula allows us to calculate many difficult integrals by simple evaluation of an approrpriate
derivative. That said, we do improve on this result when we uncover the technique of residues later
in the course. Think of this as an intermediate step in our calculational maturation.

Example 9.4.3. Let the integral below be taken over the CCW-oriented curve |z| = 1:∮
|z|=2

sin(2z)

(z − i)6
dz =

2πi

5!

d5

dz5

∣∣∣∣
z=i

sin(2z) =
2πi

5 · 4 · 3 · 2
(−32 cos(2i)) =

−8πi cosh(2)

15
.

Example 9.4.4. Notice that z4 + i = 0 for z ∈ (−i)1/4 =
(
e−iπ/2

)1/4
= e−iπ/8{1, i,−1,−i} hence

z4 + i = (z − e−iπ/8)(z − ie−iπ/8)(z + e−iπ/8)(z + ie−iπ/8). Consider the circle |z − 1| = 1 (blue).
The dotted circle is the unit-circle and the intersection near ie−iπ/8 is at θ = π/3 which is roughly
as illustrated.

The circle of integration below encloses the principal root (red), but not the other three non-principal
fourth roots of −i(green). Consequently, we apply Cauchy’s integral formula based on the divergence
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of the principal root:∮
|z−1|=1

dz

z4 + i
=

∮
|z−1|=1

dz

(z − e−iπ/8)(z − ie−iπ/8)(z + e−iπ/8)(z + ie−iπ/8)

=
2πi

(z − ie−iπ/8)(z + e−iπ/8)(z + ie−iπ/8)

∣∣∣∣
z=e−iπ/8

=
2πi

(e−iπ/8 − ie−iπ/8)(e−iπ/8 + e−iπ/8)(e−iπ/8 + ie−iπ/8)

=
2πi

e−3iπ/8(1− i)(1 + 1)(1 + i)

=
πi

2
e3iπ/8.

Of course, you could simplify the answer further and present it in Cartesian form.

Some of the most interesting applications involve integrations whose boundaries are allowed to ex-
pand to infinity. We saw one such example in Problem 53 which was #1 from IV.3 in Gamelin. The
key in all of our problems is that we must identify the divergent points for the integrand. Provided
they occur either inside or outside the curve we proceed as we have shown in the examples above.
We do study divergences on contours later in the course, there are some precise results which are
known for improper integrals of that variety6

Finally, one last point:

Corollary 9.4.5. If f(z) is holomorphic with continuous derivative f ′(z) on a domain D then f(z)
is infinitely complex differentiable. That is, f ′, f ′′, . . . all exist and are continuous on D.

The proof of this is that Cauchy’s integral formula gives us an explicit expression (which exists) for
any possible derivative of f . There are no just once or twice continuously complex differentiable
functions. You get one continuous derivative on a domain, you get infinitely many. Pretty good
deal. Moreover, the continuity of the derivative is not even needed as we discover soon.

9.5 Liouville’s Theorem

It is our convention to say f(z) is holomorphic on a closed set D iff there exists an open set
D̃ containing D on which f(z) ∈ O(D̃). Consider a function f(z) for which f ′(z) exists and is
continuous for z ∈ C such that |z − zo| ≤ ε. In such a case Cauchy’s integral formula applies: for
ρ < ε,

f (m)(zo) =
m!

2πi

∫
|z−zo|=ρ

f(z)

(z − zo)m+1
dz

We parametrize the circle by z = zo + ρeiθ for 0 ≤ θ ≤ 2π where dz = iρeiθdθ. Therefore,

f (m)(zo) =
m!

2πi

∫ 2π

0

f(zo + ρeiθ)

(ρeiθ)m+1
iρeiθdθ =

m!

2πρm

∫ 2π

0
f(zo + ρeiθ)e−imθdθ

If we have |f(zo + ρeiθ)| ≤M for 0 ≤ θ ≤ 2π then the we find∣∣∣∣∫ 2π

0
f(zo + ρeiθ)e−imθdθ

∣∣∣∣ ≤ ∫ 2π

0

∣∣∣f(zo + ρeiθ)e−imθ
∣∣∣ dθ =

∫ 2π

0

∣∣∣f(zo + ρeiθ)
∣∣∣ dθ ≤ 2πM.

The discussion above serves to justify the bound given below:

6in particular, see §V II.5 if you wish
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Theorem 9.5.1. Cauchy’s Estimate: suppose f(z) is holomorphic with continuous derivative
on a domain D then for any closed disk {z ∈ C | |z − zo| ≤ ε} ⊂ D on which |f(z)| ≤ M for all
z ∈ C with |z − zo| = ρ < ε we find ∣∣∣f (m)(zo)

∣∣∣ ≤ Mm!

ρm

Many interesting results flow from the estimate above. For example:

Theorem 9.5.2. Liouville’s Theorem: Suppose f(z) is holomorphic with continuous derivative
on C. If |f(z)| ≤M for all z ∈ C then f(z) is constant.

Proof: Assume f(z), f ′(z) are continuous on C and |f(z)| ≤M for all C. Let us consider the disk
of radius R centered at zo. From Cauchy’s Estimate with m = 1 we obtain:

∣∣f ′(zo)∣∣ ≤ M

R
.

Observe, as R → ∞ we find |f ′(zo)| → 0 hence f ′(zo) = 0. But, zo was an arbitrary point in C
hence f ′(z) = 0 for all z ∈ C and as C is connected we find f(z) = c for all z ∈ C. �

We saw in the homework that this theorem allows a relatively easy proof of the Fundamental
Theorem of Algebra. In addition, we were able to show that an entire function whose range misses
a disk of values must be constant. As I mentioned in class, the take-away message here is simply
this: every bounded entire function is constant.

9.6 Morera’s Theorem

I think the central result of this section is often attributed to Goursat. More on that in the next
section. Let us discuss what is presented in Gamelin. It is important to note that continuous
differentiability of f(z) is not assumed as a precondition of the theorem.

Theorem 9.6.1. Morera’s Theorem: Let f(z) be a continuous function on a domain U . If∫
∂R f(z)dz = 0 for every closed rectangle R contained in U with sides parallel to the coordinate

axes then f(z) is holomorphic with continuous f ′(z) in U .

Proof: the vanishing of the rectangular integral allows us to exchange the lower path between two
vertices of a rectangle for the upper path:

It suffices to prove the theorem for a disk D with center zo where D ⊆ U7. Define:

F (z) =

∫
γd(z)

f(w)dw

7do you understand why this is true and no loss of generality here?
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where γd(z) = [xo+iyo, iyo+x]∪ [iyo+x, x+iy] where zo = xo+iyo and z = x+iy. To show F ′(z)
exists we consider the difference: here 4z is a small enough displacement as to keep z +4z ∈ D,
the calculation below is supported by the diagram which follows after:

F (z + 4z)− F (z) =

∫
γd(z+4z)

f(w)dw −
∫
γd(z)

f(w)dw

=

∫
γd(z+4z)

f(w)dw +

∫
−γd(z)

f(w)dw

=

∫
γu(z,z+4z)

f(w)dw ? .

Where −γd(z) denotes the reversal of γd(z). I plotted it as the red path below. The blue path is
γd(z +4z). By the assumption of the theorem we are able to replace the sum of the blue and red
paths by the green path γu(z, z +4z).

Notice, f(z) is just a constant in the integral below hence:∫
γu(z,z+4z)

f(z)dw = f(z)

∫ z+4z

z
dw = f(z)w

∣∣∣∣z+4z
z

= f(z)4z.

Return once more to ? and add f(z)− f(z) to the integrand:

F (z + 4z)− F (z) =

∫
γu(z,z+4z)

[f(z) + f(w)− f(z)]dw

= f(z)4z +

∫
γu(z,z+4z)

(
f(w)− f(z)

)
dw ? ?

Note L(γu(z, z +4z)) < 2|4z| and if we set M = sup{|f(w)− f(z)| | z ∈ γu(z, z +4z)} then the
ML-estimate provides ∣∣∣∣∣

∫
γu(z,z+4z)

(
f(w)− f(z)

)
dw

∣∣∣∣∣ ≤ML < 2M |4z|

Rearranging ?? we find: ∣∣∣∣F (z + 4z)− F (z)

4z
− f(z)

∣∣∣∣ ≤ 2M.

Notice that as 4z → 0 we have 2M → 0 hence F ′(z) = f(z) be the inequality above. Furthermore,
we assumed f(z) continuous hence F ′(z) is continuous. Consequently F (z) is both holomorphic
and possesses continuous derivative F ′(z) on D. Apply the Corollary 9.4.5 to Cauchy’s Generalized
Integral Formula to see that F ′′(z) = f ′(z) exists and is continuous. �
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9.7 Goursat’s Theorem

Let me begin with presenting Goursat’s Theorem as it appears in Gamelin:

Theorem 9.7.1. Goursat’s Theorem: (Gamelin Version) If f(z) is a complex-valued function
on a domain D such that

f ′(zo) = lim
z→zo

f(z)− f(zo)

z − zo
exists at each point zo of D then f(z) is analytic on D.

Notice, in our language, the theorem above can be stated: If a function is holomorphic on a domain
D then z → f ′(z) is continuous.

Proof: let R be a closed rectangle in D with sides parallel to the coordinate axes. Divide R into four

identical sub-rectangles and let R1 be the sub-rectangle for which
∣∣∣∫∂R1

f(z)dz
∣∣∣ is largest (among

the 4 sub-rectangles). Observe that
∣∣∣∫∂R1

f(z)dz
∣∣∣ ≥ 1

4

∣∣∫
∂R f(z)dz

∣∣ or, equivalently,
∣∣∫
∂R f(z)dz

∣∣ ≤
4
∣∣∣∫∂R1

f(z)dz
∣∣∣. Then, we subdivide R1 into 4 sub-rectangles and the rectangle with largest integral

R2. Continuing in this fashion we obtain a sequence of nested rectangles R ⊃ R1 ⊃ R2 ⊃ · · · ⊃
Rn ⊃ · · · . It is a simple exercise to verify:∣∣∣∣∫

∂Rn

f(z)dz

∣∣∣∣ ≤ 4

∣∣∣∣∣
∫
∂Rn+1

f(z)dz

∣∣∣∣∣ ⇒
∣∣∣∣∫
∂R
f(z)dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫
∂Rn

f(z)dz

∣∣∣∣ ? .

The subdivision process is illustrated below:

As n → ∞ it is clear that the sequence of nested rectangles converges to a point zo ∈ R. Fur-
thermore, if L is the length of the perimeter of R then L/2n is the length of ∂Rn. As f(z) is
complex-differentiable at zo we know for each z ∈ Rn there must exist an εn such that∣∣∣∣f(z)− f(zo)

z − zo
− f ′(zo)

∣∣∣∣ ≤ εn
hence ∣∣f(z)− f(zo)− f ′(zo)(z − zo)

∣∣ ≤ εn|z − zo| ≤ 2εnL/2
n ? ?.

The last inequality is very generous since zo, z ∈ Rn surely implies they are closer than the perimeter
L/2n apart. Notice, the function g(z) = f(zo) + f ′(zo)(z − zo) has primitive G(z) = f(zo)z +
f ′(zo)(z

2/2− zzo) on Rn hence8
∫
∂Rn

g(z)dz = 0. Subtracting this zero is crucial:∣∣∣∣∫
∂Rn

f(z)dz

∣∣∣∣ =

∣∣∣∣∫
∂Rn

[
f(z)− f(zo)− f ′(zo)(z − zo)

]
dz

∣∣∣∣ ≤ (2εnL/2
n)(L/2n) =

2L2εn
4n

.

8this application of Cauchy’s Theorem does not beg the question by assuming continuity of g′(z)



9.8. COMPLEX NOTATION AND POMPEIU’S FORMULA 141

where we applied the ML-estimate by ?? and L(∂Rn) = L/2n. Returning to ?,∣∣∣∣∫
∂R
f(z)dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫
∂Rn

f(z)dz

∣∣∣∣ ≤ 4n · 2L2εn
4n

= 2L2εn.

Finally, as n → 0 we have εn → 0 thus it follows
∫
∂R f(z)dz = 0. But, this shows the integral

around an arbitrary rectangle in D is zero hence by Morera’s Theorem 9.6.1 we find f(z) is holo-
morphic with continuous f ′(z) on D. �

We now see that holomorphic functions on a domain are indeed analytic (as defined by Gamelin).

9.8 Complex Notation and Pompeiu’s Formula

My apologies, it seems I have failed to write much here. I have many things to say, some of them
I said in class. Recently, we learned how to generalize the idea of this section to nearly arbitrary
associative algebras. More on that somewhere else.
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Chapter 10

Power Series

A power series is simply a polynomial without end. But, this begs questions. What does ”without
end” mean? How can we add, subtract, multiply and divide things which have no end? In this
chapter we give a careful account of things which go on without end.

History provides examples of the need for caution1. For example, even Cauchy wrongly asserted
in 1821 that an infinite series of continuous functions was once more continuous. In 1826 Abel2

provided a counter-example and in the years to follow the concept of uniform convergence was
invented to avoid such blunders. Abel had the following to say about the state of the theory as he
saw it: from page 114 of [R91]

If one examines more closely the reasoning which is usually employed in the treatment
of infinite series, he will find that by and large it is unsatisfactory and that the number
of propositions about infinite series which can be regarded as rigorously confirmed is
small indeed

The concept of uniform convergence is apparently due to the teacher of Weierstrauss. Christoph
Gudermann wrote in 1838: ”it is a fact worth noting that... the series just found have all the
same convergence rate”. Weierstrauss used the concept of uniform convergence throughout his
work. Apparently, Seidel and Stokes independently in 1848 and 1847 also used something akin to
uniform convergence of a series, but the emminent British mathematician G.H Hardy gives credit
to Weierstrauss:

Weierstrauss’s discovery was the earliest, and he alone fully realized its far-reaching
importance as one of the fundamental ideas of analysis

It is fun to note Cauchy’s own view of his 1821 oversight. In 1853 in the midst of a work which
used and made significant contributions to the theory of uniformly convergent series, he wrote that
it is easy to see how one should modify the statement of the theorem. See page 102 of [R91] for
more details as to be fair to Cauchy.

In this chapter, we study convergence of sequence and series. Ultimately, we find how power series
work in the complex domain. The results are surprisingly simple as we shall soon discover. Most
importantly, we introduce the term analytic and see in what sense it is equivalent to our term
holomorphic. Obviously, we differ from Gamelin on this point of emphasis.

1the facts which follow here are taken from [R91] pages 96-98 primarily
2did work on early group theory, we name commutative groups Abelian groups in his honor
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10.1 Complex Sequences

A function n 7→ an from N to C is a sequence of complex numbers. Sometimes we think of
a sequence as an ordered list; {an} = {a1, a2, . . . }. We assume the domain of sequences in this
section is N but this is not an essential constraint, we could just as well study sequences with
domain {k, k + 1, . . . } for some k ∈ Z.

Definition 10.1.1. Sequential Limit: Let an be a complex sequence and a ∈ C. We say an → a
iff for each ε > 0 there exists N ∈ N such that |an − a| < ε whenever n > N . In this case we write

lim
n→∞

an = a.

Essentially, the idea is that the sequence clusters around L as we go far out in the list.

Definition 10.1.2. Bounded Sequence: Suppose R > 0 and |an| < R for all n ∈ N then {an}
is a bounded sequence

The condition |an| < R implies an is in the disk of radius R centered at the origin.

Theorem 10.1.3. Convergent Sequence Properties: A convergent sequence is bounded. Fur-
thermore, if sn → s and tn → t then

(a.) sn + tn → s+ t

(b.) sntn → st

(c.) sn/tn → s/t provided t 6= 0.

The proof of the theorem above mirrors the proof you would give for real sequences.

Theorem 10.1.4. in-between theorem: If rn ≤ sn ≤ tn, and if rn → L and tn → L then
sn → L.

The theorem above is for real sequences. We have no3 order relations on C. Recall, by definition,
monotonic sequences sn are either always decreasing (sn+1 ≤ sn) or always increasing (sn+1 ≥ sn).
The completeness, roughly the idea that R has no holes, is captured by the following theorem:

Theorem 10.1.5. A bounded monotone sequence of real numbers coverges.

The existence of a limit can be captured by the limit inferior and the limit superior. These are in
turn defined in terms of subsequences.

Definition 10.1.6. Let {an} be a sequence. We define a subsequence of {an} to be a sequence
of the form {anj} where j 7→ nj ∈ N is a strictly increasing function of j.

Standard examples of subsequences of {aj} are given by {a2j} or {a2j−1}.

Example 10.1.7. If aj = (−1)j then a2j = 1 whereas a2j−1 = −1. In this example, the even
subsequence and the odd sequence both converge. However, lim aj does not exist.

Apparently, considering just one subsequence is insufficient to gain much insight. On the other
hand, if we consider all possible subsequences then it is possible to say something definitive.

3to be fair, you can order C, but the order is not consistent with the algebraic structure. See this answer

http://math.stackexchange.com/a/492897/36530
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Definition 10.1.8. Let {an} be a sequence. We define limsup(an) to be the upper bound of all
possible subsequential limits. That is, if {anj} is a subsequence which converges to t (we allow
t = ∞) then t ≤ limsup(an). Likewise, we define liminf(an) to be the lower bound (possibly −∞)
of all possible subsequential limits of {an}.

Theorem 10.1.9. The sequence an → L ∈ R if and only iff limsup(an) = liminf(an) = L ∈ R.

The concepts above are not available directly on C as there is no clear definition of an increasing
or decreasing complex number. However, we do have many other theorems for complex sequences
which we had before for R. In the context of advanced calculus, I call the following the vector limit
theorem. It says: the limit of a vector-valued sequence is the vector of the limits of the component
sequences. Here we just have two components, the real part and the imaginary part.

Theorem 10.1.10. Suppose zn = xn + iyn ∈ C for all n ∈ N and z = x + iy ∈ C. The sequence
zn → z if and only iff both xn → x and yn → y.

Proof Sketch: Notice that if xn → x and yn → y then it is an immediate consequence of Theorem
10.1.3 that xn + iyn → x + iy. Conversely, suppose zn = xn + iyn → z. We wish to prove that
xn → x = Re(z) and yn → y = Im(z). The inequalities below are crucial:

|xn − x| ≤ |zn − z| & |yn − y| ≤ |zn − z|

Let ε > 0. Since zn → z we are free to select N ∈ N such that for n ≥ N we have |zn− z| < ε. But,
then it follows |xn−x| < ε and |yn−y| < ε by the crucial inequalities. Hence xn → x and yn → y. �

Definition 10.1.11. We say a sequence {an} is Cauchy if for each ε > 0 there exists N ∈ N for
which N < m < n implies |am − an| < ε.

As Gamelin explains, a Cauchy sequence is one where the differences am − an tend to zero in the
tail of the sequence. At first glance, this hardly seems like an improvement on the definition of
convergence, yet, in practice, so many proofs elegantly filter through the Cauchy criterion. In any
space, if a sequence converges then it is Cauchy. However, the converse only holds for special spaces
which are called complete.

Definition 10.1.12. A space is complete if every Cauchy sequence converges.

The content of the theorem below is that C is complete.

Theorem 10.1.13. A complex sequence converges iff it is a Cauchy sequence.

Real numbers as also complete. This is an essential difference between the rational and the real
numbers. There are certainly sequences of rational numbers whose limit is irrational. For example,
the sequence of partial sums from the p = 2 series {1, 1 + 1/4, 1 + 1/4 + 1/9, . . . } has rational
elements yet limits to π2/6. This was shown by Euler in 1734 as is discussed on page 333 of [R91].
The process of adjoining all limits of Cauchy sequences to a space is known as completing a
space. In particular, the completion of Q is R. Ideally, you will obtain a deeper appreciation of
Cauchy sequences and completion when you study real analysis. That said, if you are willing to
accept the truth that R is complete it is not much more trouble to show Rn is complete.
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10.2 Infinite Series

We discussed and defined complex sequences in Chapter 2. See Definition 10.1.1. We now discuss
series of complex numbers. In short, a complex series is formed by adding the terms in some
sequence of complex numbers:

∞∑
n=0

zn = zo + z1 + z2 + · · ·

If this sum exists as a complex number then the series is convergent whereas if the sum above does
not converge then the series is said to be divergent. The convergence (or divergence) of the series
is described precisely by the convergence (or divergence) of the sequence of partial sums:

Definition 10.2.1. Let an ∈ C for each n ∈ N ∪ {0} then we define

∞∑
j=0

aj = lim
n→∞

n∑
j=0

aj .

If limn→∞
∑n

j=0 aj = S ∈ C then the series ao + a1 + · · · is said to converge to S.

The linearity theorems for sequences induce similar theorems for series. In particular, Theorem
10.1.3 leads us to:

Theorem 10.2.2. Let c ∈ C,
∑
aj = A and

∑
bj = B then

∑
(aj + bj) = A+B and

∑
caj = cA;∑

(aj + bj) =
∑

aj +
∑

bj additivity of convergent sums∑
cbj = c

∑
bj homogeneity of convergent sums

Proof: let Sn =
∑n

j=0 aj and Tn =
∑n

j=0 bj . We are given, from the definition of convergent series,
that these partial sums converge; Sn → A and Tn → B as n→∞. Consider then,

n∑
j=0

(aj + cbj) =
n∑
j=0

aj + c
n∑
j=0

bj

Thus, the sequence of partial sums for
∑∞

j=0(aj + cbj) is found to be Sn + cTn. Apply Theorem
10.1.3 and conclude Sn + cTn → A+ cB as n→∞. Therefore,

∞∑
j=0

(aj + cbj) =
∞∑
j=0

aj + c
∞∑
j=0

bj .

If we set c = 1 we obtain additivity, if we set A = 0 we obtain homogeneity. �

I offered a proof for series which start at j = 0, but, it ought to be clear the same holds for series
which start at any particular j ∈ Z.

Let me add a theorem which is a simple consequence of Theorem 10.1.10 applied to partial sums:

Theorem 10.2.3. Let xk, yk ∈ R then
∑
xk+iyk converges iff

∑
xk and

∑
yk converge. Moreover,

in the convergent case,
∑
xk + iyk =

∑
xk + i

∑
yk.
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Series of real numbers enjoy a number of results which stem from the ordering of the real numbers.
The theory of series with non-negative terms is particularly intuitive. Suppose ao, a1, · · · > 0 then
{ao, ao +a1, ao +a1 +a2, . . . } is a monotonically increasing sequence. Recall Theorem 10.1.5 which
said that a monotonic sequence converged iff it was bounded.

Theorem 10.2.4. If 0 ≤ ak ≤ rk, and if
∑
rk converges, then

∑
ak converges, and

∑
ak ≤

∑
rk.

Proof: obviously ak, rk ∈ R by the condition 0 ≤ ak ≤ rk. Observe
∑n+1

k=0 rk = rn+1 +
∑n

k=0 rk
hence

∑n+1
k=0 rk ≥

∑n
k=0 rk. Thus the sequence of partial sums of

∑
rk is increasing. Since

∑
rk

converges it follows that the convergent sequence of partial sums is bounded. That is, there exists
M ≥ 0 such that

∑n
k=0 rk ≤ M for all n ∈ N ∪ {0}. Notice ak ≤ rk implies

∑n
k=0 ak ≤

∑n
k=0 rk.

Therefore,
∑n

k=0 ak ≤ M . Observe ak ≥ 0 implies
∑n

k=0 ak is increasing by the argument we
already offered for

∑n
k=0 rk. We find

∑n
k=0 ak is a bounded, increasing sequence of non-negative

real numbers thus limn→∞
∑n

k=0 ak = A ∈ R by Theorem 10.1.5. Finally, we appeal to part of
the sandwhich theorem for real sequences, if cn ≤ dn for all n and both cn and dn converge then
limn→∞ cn ≤ limn→∞ dn. Think of cn =

∑n
k=0 ak and dn =

∑n
k=0 rk. Note

∑n
k=0 ak ≤

∑n
k=0 rk

implies limn→∞
∑n

k=0 ak ≤ limn→∞
∑n

k=0 rk. The theorem follows. �

Can you appreciate the beauty of how Gamelin discusses convergence and proofs ? Compare the
proof I give here to his paragraph on page 130-131. His prose captures the essential details of what
I wrote above without burying you in details which obscure. In any event, I will continue to add
uglified versions of Gamelin’s prose in this chapter. I hope that by seeing both your understanding
is fortified.

We return to the study of complex series once more. Suppose aj ∈ C in what follows. The definition
of a finite sum is made recursively by

∑0
j=0 aj = ao and for n ≥ 1:

n∑
j=0

aj = an +
n−1∑
j=0

aj .

Notice this yields:

an =

n∑
j=0

aj −
n−1∑
j=0

aj .

Suppose
∑∞

j=0 aj = S ∈ C. Observe, as n → ∞ we see that
∑n

j=0 aj −
∑n−1

j=0 aj → S − S = 0.
Therefore, the condition an → 0 as n→∞ is a necessary condition for convergence of ao+a1+· · · .

Theorem 10.2.5. If
∑∞

j=0 aj converges then aj → 0 as j →∞.

Of course, you should recall from calculus that the criteria above is not sufficient for convergence
of the series. For example, 1 + 1/2 + 1/3 + · · · diverges despite the fact 1/n→ 0 as n→∞.

I decided to elevate Gamelin’s example on page 131 to a proposition.

Proposition 10.2.6. Let zj ∈ C for j ∈ N ∪ {0}.

If |z| < 1 then
∞∑
j=0

zn =
1

1− z
. If |z| ≥ 1 then

∞∑
j=0

zn diverges.
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Proof: if |z| ≥ 1 then the n-th term test shows the series diverges. Suppose |z| < 1. Consider,

Sn = 1 + z + z2 · · ·+ zn ⇒ zSn = z + z2 + · · ·+ zn + zn+1

and we find Sn − zSn = 1− zn+1 thus (1− z)Sn = 1− zn+1 and derive:

Sn =
1− zn+1

1− z

This is a rare and wonderful event that we were able to explicitly calculate the n-th partial sum
with such small effort. Note |z| < 1 implies |z|n+1 → 0 as n→∞. Therefore,

∞∑
j=0

zn = lim
n→∞

1− zn+1

1− z
=

1

1− z
. �

Definition 10.2.7. A complex series
∑
ak is said to converge absolutely if

∑
|ak| converges.

Notice that |ak| denotes the modulus of ak. In the case ak ∈ R this reduces to the usual4 definition
of absolute convergence since the modulus is merely the absolute value function in that case. If
you’d like to see a proof of absolute convergence in the real case, I recommend page 82 of [J02].
The proof there is based on parsing the real series into non-negative and negative terms. We have
no such dichotomy to work with here so something else must be argued.

Theorem 10.2.8. If
∑
ak is absolutely convergent then

∑
ak converges and

∣∣∣∑ ak

∣∣∣ ≤∑ |ak|.

Proof: assume
∑
|ak| converges. Let ak = xk + iyk where xk, yk ∈ R. Observe:

|ak| =
√
x2
k + y2

k ≥
√
x2
k = |xk| & |ak| ≥ |yk|.

Thus, |xk| ≤ |ak| hence by comparison test the series
∑
|xk| converges with

∑
|xk| ≤

∑
|ak|. Like-

wise, |yk| ≤ |ak| hence by comparison test the series
∑
|yk| converges with

∑
|yk| ≤

∑
|ak|. Recall

that absolute convergence of a real series implies convergence hence
∑
xk and

∑
yk exist. Theorem

10.2.3 allows us to conclude
∑
xk + iyk =

∑
ak converges. �

Given that I have used the absolute convergence theorem for real series I think it is appropriate to
offer the proof of that theorem since many of you may either have never seen it, or at a minimum,
have forgotten it. Following page 82 of [J02] consider a real series

∑∞
n=0 xn. We define:

pn =

{
xn if xn ≥ 0

0 if xn < 0
& qn =

{
0 if xn ≥ 0

−xn if xn < 0

Notice xn = pn − qn. Furthermore, notice pn, qn are non-negative terms. Observe

p0 + p1 + · · ·+ pn ≤ |xo|+ |x1|+ · · ·+ |xn|

Hence
∑
|xn| converging implies

∑
pn converges by Comparison Theorem 10.2.4 and

∑
pn ≤∑

|xn|. Likewise,
q0 + q1 + · · ·+ qn ≤ |xo|+ |x1|+ · · ·+ |xn|

4in the sense of second semester calculus where you probably first studied series
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Hence
∑
|xn| converging implies

∑
qn converges by Comparison Theorem 10.2.4 and

∑
qn ≤∑

|xn|. But, then
∑
xn =

∑
(pn − qn) =

∑
pn −

∑
qn by Theorem 10.2.2. Finally, notice

x0 + x1 + · · ·+ xn ≤ |x0|+ |x1|+ · · ·+ |xn|

thus as n → ∞ we obtain
∑
xn ≤

∑
|xn|. This completes the proof that absolute convergence

implies convergence for series with real terms.

I challenge you to see that my proof here is really not that different from what Gamelin wrote5.

Example 10.2.9. Consider |z| < 1. Proposition 10.2.6 applies to show
∑
zj is absolutely conver-

gent by direct calculation and:

∣∣∣∣ 1

1− z

∣∣∣∣ =

∣∣∣∣∣∣
∞∑
j=0

zj

∣∣∣∣∣∣ ≤
∞∑
j=0

|z|j =
1

1− |z|
.

Following Gamelin,

1

1− z
−

n∑
k=0

zk =

∞∑
k=0

zk −
n∑
k=0

zk =

∞∑
k=n+1

zk = zn+1
∞∑
k=0

zk =
zn+1

1− z
.

Therefore, ∣∣∣∣∣ 1

1− z
−

n∑
k=0

zk

∣∣∣∣∣ =
|z|n+1

|1− z|
≤ |z|

n+1

1− |z|
.

The inequality above gives us a bound on the error for the n-th partial sum of the geometric series.

If you are interested in the history of absolute convergence, you might look at pages 29-30 of [R91]
where he describes briefly the influence of Cauchy, Dirichlet and Riemann on the topic. It was
Riemann who proved that a series which converges but, does not converge absolutely, could be
rearranged to converge to any value in R.

10.3 Sequences and Series of Functions

A sequence of functions on E ⊆ C is an assignment of a function on E for each n ∈ N ∪ {0}.
Typically, we denote the sequence by {fn} or simply by fn. In addition, although we are ultimately
interested in the theory of sequences of complex functions, I will give a number of real examples to
illustrate the subtle issues which arise in general.

Definition 10.3.1. A sequence of functions fn on E is said to pointwise converge to f if
limn→∞ fn(z) = f(z) for all z ∈ E.

You might be tempted to suppose that if each function of the sequence is continuous and the limit
exists then surely the limit function is continuous. Well, you’d be wrong:

5Bailu, notice the proof I give here easily extends to an associative algebra
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Example 10.3.2. Let n ∈ N∪{0} and define fn(x) = xn for x ∈ [0, 1]. We can calculate the limit
function:

f(x) = lim
n→∞

xn =

{
0 if 0 ≤ x < 1

1 if x = 1

Notice, fn is continuous for each n ∈ N, but, the limit function f is not continuous. In particular,
you can see we cannot switch the order of the limits below:

0 = lim
x→1−

(
lim
n→∞

xn
)
6= lim

n→∞

(
lim
x→1−

xn
)

= 1

To guarantee the continuity of the limit function we need a stronger mode of convergence. Following
Gamelin (and a host of other analysis texts) consider:

Example 10.3.3. We define a sequence for which each function gn makes a triangular tent of
slope ±n2 from x = 0 to x = 2/n. In particular, for n ∈ N define:

gn(x) =


n2x if 0 ≤ x < 1/n

2n− n2x if 1/n ≤ x ≤ 2/n

0 if 2/n ≤ x ≤ 1

Notice, ∫ 1/n

0
n2xdx = n2 (1/n)2

2
=

1

2

and ∫ 2/n

1/n
(2n− n2x)dx = 2n(2/n− 1/n)− n2

2
[(2/n)2 − (1/n)2] = 2− 3

2
=

1

2
.

Therefore,
∫ 1

0 gn(x) dx = 1 for each n ∈ N. However, as n → ∞ we find gn(x) → 0 for each
x ∈ [0, 1]. Observe:

1 = lim
n→∞

∫ 1

0
gn(x) dx 6=

∫ 1

0
lim
n→∞

gn(x) dx = 0.

To guarantee the integral of the limit function is the limit of the integrals of the sequence we need
a stronger mode of convergence. Here I break from Gamelin and add one more example.

Example 10.3.4. For each n ∈ N define fn(x) = xn/n for 0 ≤ x ≤ 1. Notice that limn→∞ x
n/n =

0 for each x ∈ [0, 1]. Furthermore, limx→a x
n/n = an/n for each a ∈ [0, 1] where we use one-sided

limits at a = 0+, 1−. It follows that:

lim
n→∞

lim
x→a

xn

n
= lim

n→∞

an

n
= 0

likewise,

lim
x→a

lim
n→∞

xn

n
= lim

x→a
0 = 0

Thus, the limit n→∞ and x→ a commute for this sequence of functions.

The example above shows us there is hope for the limit of a sequence of continuous function to be
continuous. Perhaps we preserve derivatives under the limit ? Consider:
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Example 10.3.5. Once more study fn(x) = xn/n for 0 ≤ x ≤ 1. Notice dfn
dx = xn−1. However,

this is just the sequence we studied in Example 10.3.2,

lim
n→∞

dfn
dx

=

{
0 if 0 ≤ x < 1

1 if x = 1
⇒ lim

x→1−
lim
n→∞

dfn
dx

= lim
x→1−

(0) = 0.

On the other hand,

lim
x→1−

dfn
dx

= lim
x→1−

xn−1 = 1 ⇒ lim
n→∞

lim
x→1−

dfn
dx

= lim
n→∞

(1) = 1.

Therefore, the limit of the sequence of derivatives is not the derivative of the limit function.

The examples above lead us to define a stronger type of convergence which preserves continuity
and integrals to the limit. However, in the real case, differentiation is still subtle.

The standard definition of uniform convergence is given below:6

Definition 10.3.6. Let {fn} be a sequence of functions on E. Let f be a function on E. We say
{fn} converges uniformly to f if for each ε > 0 there exists an N ∈ N such that n > N implies
|fn(x)− f(x)| < ε for all x ∈ E.

This is not quite Gamelin’s presentation. Instead, from page 134, Gamelin says:

We say a sequence of functions {fj} converges uniformly to f on E if |fj(x)−f(x)| ≤
εj for all x ∈ E where εj → 0 as j → ∞. We call εj the worst-case estimator of
the difference fj(x) − f(x) and usually take εj to be the supremum (maximum) of
|fj(x)− f(x)| over x ∈ E,

εj = sup
x∈E
|fj(x)− f(x)|.

Very well, are these definitions of uniform convergence equivalent? For a moment, let us define the
uniform convergence of Gamelin as G-uniform convergence whereas that given in the Definition
10.3.6 defines S-uniform convergence. The question becomes:

Can we show a sequence of functions {fn} on E is S-uniformly convergent to f on E
iff the sequence of functions is G-uniformly convergent to f on E ?

This seems like an excellent homework question, so, I will merely assert it’s verity for us here:

Theorem 10.3.7. Let {fn} be a sequence of functions on E. Then {fn} is S-uniformly convergent
to f on E if and only if {fn} is G-uniformly convergent to f on E.

Proof: by trust in Gamelin, or as is my preference, your homework. �

The beautiful feature of Gamelin’s definition is that it gives us a method to calculate the worst-
case estimator. We merely need to find the maximum difference between the n-th function in the
sequence and the limit function over the given domain of interest (E).

If you think about it, the supremum gives you the best worst-case estimator. Let me explain, if
εj has |fj(z) − f(z)| ≤ εj for all z ∈ E then εj is an upper bound on |fj(z) − f(z)|. But, the

6for instance, see page 246 of [J02].
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supremum is the least upper bound hence |fj(w) − f(w)| ≤ supz∈E |fj(z) − f(z)| ≤ εj for all
w ∈ E. This simple reasoning shows us that when the supremum exists and we may use it as a
worst-case estimator provided we also know supz∈E |fj(z) − f(z)| → 0 as j → ∞. On the other
hand, if no supremum exists or if the supremum does not go to zero as j → ∞ then we have no
hope of finding a worst case estimator.

The paragraph above outlines the logic used in the paragraphs to follow.

In Example 10.3.2 we had fn(x) = xn for x ∈ [0, 1] pointwise converged to f(x) =

{
0 if 0 ≤ x < 1

1 if x = 1

from which we may calculate7 supx∈[0,1] |xn−f(x)| = 1. Therefore, it is not possible to find εn → 0.
In Gamelin’s terminology, the worst-case estimator is 1 hence this sequence is not uniformly con-
vergent to f(x) on [0, 1].

In Example 10.3.3 we had

gn(x) =


n2x if 0 ≤ x < 1/n

2n− n2x if 1/n ≤ x ≤ 2/n

0 if 2/n ≤ x ≤ 1

which is point-wise convergent to g(x) = 0 for x ∈ [0, 1]. The largest value attained by gn(x) is
found at x = 1/n where

gn(1/n) = n2(1/n) = n

Therefore,

sup
x∈[0,1]

|gn(x)− g(x)| = n.

Therefore, the convergence of {gn} to g is not uniform on [0, 1].

Next, consider Example 10.3.4 where we noted that fn(x) = xn/n converges pointwise to f(x) = 0
on [0, 1]. In this case it is clear that fn(1) = 1/n is the largest value attained by fn(x) on [0, 1]
hence:

sup
x∈[0,1]

|fn(x)− f(x)| = 1/n = εn → 0 as n→∞.

Hence {xn/n} converges uniformly to f(x) = 0 on [0, 1]. Apparently, continuity is preserved under
uniform convergence. On the other hand, Example 10.3.5 shows us that, for real functions, deriva-
tives need not be preserved in a uniformly convergent limit.

We now present the two major theorems about uniformly convergent sequences of functions.

Theorem 10.3.8. Let {fj} be a sequence of complex-valued functions on E ⊆ C. If each fj is
continuous on E and if {fj} converges uniformly to f on E then f is continuous on E.

7sometimes the supremum is also known as the least upper bound, it is the smallest possible upper bound on the
set in question. In this case, 1 is not attained in the set, but numbers arbitrary close to 1 are attained. Technically,
this set has no maximum which is why the parenthetical comment in Gamelin suggesting supremum and maximum
are synonyms is sometimes not helpful.
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Proof: let ε > 0. By uniform convergence, there exists N ∈ N for which

|fN (z)− f(z)| < ε

3
?

for all z ∈ E. However, by continuity of fN at z = a there exists δ > 0 such that 0 < |z − a| < δ
implies

|fN (z)− fN (a)| < ε

3
? ?.

We claim f(z) is continuous at z = a by the same choice of δ. Consider, for 0 < |z − a| < δ,

|f(z)− f(a)| = |f(z)− fN (z) + fN (z)− fN (a) + fN (a)− f(a)|
≤ |fN (z)− f(z)|+ |fN (z)− fN (a)|+ |fN (a)− f(a)|

≤ ε

3
+
ε

3
+
ε

3
= ε

where I have used ?? for the middle term and ? for the left and rightmost terms. Thus limz→a f(z) =
f(a) and as a ∈ E was arbitrary we have shown f continuous on E. �

I followed the lead of [J02] page 246 where they offer the same proof for an arbitary metric space.

Theorem 10.3.9. Let γ be a piecewise smooth curve in the complex plane. If {fj} is a sequence of
continuous complex-valued functions on γ, and if {fj} converges uniformly to f on γ then

∫
γ fj(z)dz

converges to
∫
γ f(z)dz.

Proof: let εj be the worst-case estimator for fj − f on γ then |fj(z) − f(z)| ≤ εj for all z ∈ [γ].
Let γ have length L and apply the ML-estimate:∣∣∣∣∫

γ
(fj(z)− f(z))dz

∣∣∣∣ ≤ εjL.
Thus, as j →∞ we find

∣∣∣∫γ fj(z)dz − ∫γ f(z)dz
∣∣∣→ 0. �

This theorem is also true in the real case as you may read on page 249 of [J02]. However, that
proof requires we understand the real analysis of integrals which is addressed by our real analysis
course. The ML-theorem is the hero here. Furthermore, in the same section of [J02] you’ll find
what additional conditions are needed to preserve differentiability past the limiting process.

The definitions given for series below are quite natural. As a guiding concept, we say X is a feature
of a series if X is a feature of the sequence of partial sums.

Definition 10.3.10. Let
∑∞

j=0 fj be a sequence of complex-valued functions on E. The partial
sums are functions defined by Sn(z) =

∑n
j=0 fj(z) = f0(z)+f1(z)+ · · ·+fn(z) for each z ∈ E. The

series
∑∞

j=0 fj converges pointwise on E iff {Sn(z)} converges pointwise on E. The series
∑∞

j=0 fj
converges uniformly on E iff {Sn(z)} converges uniformly on E.

The theorem below gives us an analog of the comparison test for series of complex functions.

Theorem 10.3.11. Weierstrauss M-Test: suppose Mk ≥ 0 and
∑
Mk converges. If gk are

complex-valued functions on a set E such that |gk(z)| ≤ Mk for all z ∈ E then
∑
gk converges

uniformly on E.
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Proof: let z ∈ E and note that |gk(z)| ≤Mk implies that
∑
|gk(z)| is convergent by the comparison

test Theorem 10.2.4. Moreover, as absolute convergence implies convergence we have
∑∞

k=0 gk(z) =
g(z) ∈ C with |g(z)| ≤

∑
|gk(z)| ≤

∑
Mk by Theorem 10.2.8. The difference between the series

and the partial sum is bounded by the tail of the majorant series∣∣∣∣∣g(z)−
n∑
k=0

gk(z)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

gk(z)

∣∣∣∣∣ ≤
∞∑

k=n+1

Mk.

However, this shows a worst-case estimator for Sn(z)−g(z) is given by εn =
∑∞

k=n+1Mk. We argue
εn =

∑∞
k=n+1Mk → 0 as n→∞ for each z ∈ E hence

∑
gk converges uniformly on E. �

For future reference:

Definition 10.3.12. A given series of functions
∑
fj on E is dominated by Mj if |fj(z)| ≤ Mj.

When
∑
Mj converges we call Mj a majorant for

∑
fj.

Just to reiterate: if we can find a majorant for a given series of functions then it serves to show
the series is uniformly convergent by Weierstrauss’ M -Test. Incidentally, as a historical aside,
Weierstrauss gave this M -test as a footnote on page 202 of his 1880 work Zur Functionenlehre see
[R91] page 103.

Example 10.3.13. The geometric series
∞∑
k=0

zk =
1

1− z
converges for each z ∈ C with |z| < 1.

Consider that in Example 10.2.9 we derived:∣∣∣∣∣
∞∑
k=0

zk −
n∑
k=0

zk

∣∣∣∣∣ =
|z|n+1

|1− z|
.

Notice sup|z|<1

(
|z|n+1

1−|z|

)
is unbounded hence

∑∞
k=0 z

k does not converge uniformly on E = {z ∈
C | |z| < 1}. However, if 0 < R < 1 we consider a disk DR = {z ∈ C | |z| < R}. We can
find a majorant for the geometric series

∑∞
k=0 z

k as follows: let Mk = Rk for each z ∈ DR note
|zk| = |z|k ≤ Rk and

∑∞
k=0R

k = 1
1−R . Therefore,

∑∞
k=0 z

k is uniformly convergent on DR by
Weierstrauss’ M -Test.

The example above explains why
∑∞

k=0 z
k is pointwise convergent, but not uniformly convergent,

on the entire open unit-disk E. On the other hand, we have uniform convergence on any closed
disk inside E.

Example 10.3.14. Consider
∑∞

k=1
zk

k3 . If we consider |z| < 1 notice we have the inequality
∣∣∣ zkk3

∣∣∣ =

|z|k
k3 ≤ 1

k3 . Recall from calculus II that
∑∞

k=1
1
k3 is the p = 3 series which converges. Therefore, by

the Weierstrauss M -test, we find
∑∞

k=1
zk

k3 converges uniformly on |z| < 1.

We now turn to complex analysis. In particular, we work to describe how holomorphicity filters
through sequential limits. The theorem below is somewhat shocking given what we saw in the real
case in Example 10.3.5.

Theorem 10.3.15. If {fj} is a sequence of holomorphic functions on a domain D that converge
uniformly to f on D then f is holomorphic on D.
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Proof: We follow Gamelin and use Morera’s Theorem. To begin, We need continuity to apply
Morera’s Theorem. Notice fj holomorphic implies fj converges to f which is continuous on D by
the supposed uniform covergence and Theorem 10.3.8.

let R be a rectangle in D with sides parallel to the coordinate axes. Uniform convergence of the
sequence and Theorem 10.3.9 shows:

lim
j→∞

∫
∂R
fj(z)dz =

∫
∂R

lim
j→∞

(fj(z)) dz =

∫
∂R
f(z)dz.

Consider that fj ∈ O(D) allows us to apply Morera’s Theorem to deduce
∫
∂R fj(z)dz = 0 for each

j. Therefore,
∫
∂R f(z)dz = limj→∞(0) = 0. However, as R was arbitrary, we have by Morera’s

Theorem that f is holomorphic on D. �

I suspect the discussion of continuity above is a vestige of our unwillingness to embrace Goursat’s
result in Gamelin.

Theorem 10.3.16. Suppose that {fj} is holomorphic for |z − zo| ≤ R, and suppose that the
sequence {fj} converges uniformly to f for |z− zo| ≤ R. Then for each r < R and for each m ≥ 1,

the sequence of m-th derivatives {f (m)
j } converges uniformly to f (m) for |z − zo| ≤ r.

Proof: as the convergence of {fj} is uniform we may select εj such that |fj(z) − f(z)| ≤ εj for
|z − zo| < R where εj → 0 as j → ∞. Fix s such that r < s < R. Apply the Cauchy Integral
Formula for the m-th derivative of fj(z)− f(z) on the disk |z − zo| ≤ s:

f
(m)
j (z)− f (m)(z) =

m!

2πi

∮
|z−zo|=s

fj(w)− f(w)

(w − z)m+1
dw

for |z − zo| ≤ r. Consider, if |w − zo| = s and |z − zo| ≤ r then

|w − z| = |w − zo + zo − z| ≥ ||w − zo| − |z − zo|| = |s− |z − zo|| ≥ |s− r|.

Thus |w − z| ≥ s− r and it follows that∣∣∣∣fj(w)− f(w)

(w − z)m+1

∣∣∣∣ ≤ εj
(s− r)m+1

Therefore, as L = 2πs for |z − zo| = s the ML-estimate provides:

|f (m)
j (z)− f (m)(z)| ≤ m!

2πi
· εj

(s− r)m+1
· 2πs = ρj (this defines ρj)

for |z − zo| ≤ r. Notice, m is fixed thus ρj → 0 as j → ∞. In other words, ρj serves as the
worst-case estimator for the m-th derivative and we have established the uniform convergence of

{f (m)
j } for |z − zo| ≤ r. �

I believe there are a couple small typos in Gamelin’s proof on 136-137. They are corrected in what
is given above.

Definition 10.3.17. A sequence {fj} of holomorphic functions on a domain D converges nor-
mally to an analytic function f on D if it converges uniformly to f on each closed disk contained
in D.
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Gamelin points out this leads immediately to our final theorem for this section: (this is really just
Theorem 10.3.16 rephrased with our new normal convergence terminology)

Theorem 10.3.18. Suppose that {fj} is a sequence of holomorphic functions on a domain D that
converges normally on D to the holomorphic function f . Then for each m ≥ 1, the sequence of

m-th derivatives {f (m)
j } converges normally to f (m) on D.

We already saw this behaviour with the geometric series. Notice that Example 10.3.13 shows∑∞
j=0 z

j converges normally to 1
1−z on E = {z ∈ C | |z| < 1}. Furthermore, we ought to note

that the Weierstrauss M -test provides normal convergence. See [R91] page 92-93 for a nuanced
discussion of the applicability and purpose of each mode of convergence. In summary, local uniform
convergence is a natural mode for sequences of holomorphic functions whereas, normal convergence
is the prefered mode of convergence for series of holomorphic functions. If the series are not normally
convergent then we face the rearrangement ambiguity just as we did in the real case. Finally, a
historical note which is a bit amusing. The term normally convergent is due to Baire of the famed
Baire Catagory Theorem. From page 107 of [R91]

Although in my opinion the introduction of new terms must only be made with extreme
prudence, it appeared indispensable to me to characterize by a brief phrase the simplest
and by far the most prevalent case of uniformly convergent series, that of series whose
terms are smaller in modulus than positive numbers forming a convergent series (what
one sometimes calls the Weierstrauss criterion). I call these series normally convergent,
and I hope that people will be willing to excuse this innovation. A great number of
demonstrations, be they in theory of series or somewhat further along in the theory of
infinite products, are considerably simplified when one advances this notion, which is
much more manageable than that of uniform convergence. ( 1908 )

10.4 Power Series

In this section we study series of power functions.

Definition 10.4.1. A power series centered at zo is a series of the form

∞∑
k=0

ak(z− zo)k where

ak, zo ∈ C for all k ∈ N ∪ {0}. We say ak are the coefficients of the series.

Example 10.4.2.
∑∞

k=0
2k

k! (z − 3i)k is a power series centered at zo = 3i with coefficient ak = 2k

k! .

I will diverge from Gamelin slightly here and add some structure from [R91] page 110-111.

Lemma 10.4.3. Abel’s Convergence Lemma: Suppose for the power series
∑
akz

k there are
positive real numbers s and M such that |ak|sk ≤M for all k. Then this power series is normally
convergent in {z ∈ C | |z| < s}.

Proof: consider r with 0 < r < s and let q = r/s. Observe, for z ∈ {z ∈ C | |z| < r},

|akzk| < |ak|rk = |ak|sk
(r
s

)k
≤Mqk

The series
∑
Mqk is geometric with q = r/s < 1 hence

∑
Mqk = M

1−q . Therefore, by Weierstrauss’

criterion we find
∑
akz

k is normally convergent on {z ∈ C | |z| < s}. �
This leads to the insightful result below:
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Corollary 10.4.4. If the series
∑
akz

k converges at zo 6= 0, then it converges normally in the
open disk {z ∈ C | |z| < |zo|}.

Proof: as
∑
akz

k
o converges we have akz

k
o → 0 as k → ∞. Thus, |ak||zko | → 0 as k → ∞. Conse-

quently, the sequence {|ak||zko |} of positive terms is convergent and hence bounded. That is, there
exists M > 0 for which ak||zko | ≤M for all k. �

The result above is a guiding principle as we search for possible domains of a given power series. If
we find even one point at a certain distance from the center of the expansion then the whole disk
is included in the domain. On the other hand, if we found the series diverged at a particular point
then we can be sure no larger disk is included in the domain of power series. However, there might
be points closer to the center which are also divergent. To find the domain of convergence we need
to find the closest singularity to the center of the expansion (the center was z = 0 in Lemma and
Corollary above, but, clearly these results translate naturally to series of the form

∑
ak(z − zo)k).

Indeed, we should make a definition in view of our findings:

Definition 10.4.5. A power series

∞∑
k=0

ak(z − zo)k has radius of convergence R if the series

converges for |z− zo| < R but diverges for |z− zo| > R. In the case the series converges everywhere
we say R =∞ and in the case the series only converges at z = zo we say R = 0.

It turns out the concept above is meaningful for all power series:

Theorem 10.4.6. Let
∑
ak(z − zo)k be a power series. Then there is R, 0 ≤ R ≤ ∞ such that∑

ak(z− zo)k converges normally on {z ∈ C | |z− zo| < R}, and
∑
ak(z− zo)k does not converge

if |z − zo| > R.

Proof: Let us define (this can be a non-negative real number or ∞)

R = sup{t ∈ [0,∞) | |ak|tk is a bounded sequence}

If R = 0 then the series converges only at z = zo. Suppose R > 0 and let s be such that 0 < s < R.
By construction ofR, the sequence |ak|sk is bounded and by Abel’s convergence lemma

∑
ak(z−zo)k

is normally convergent in {z ∈ C | |z − zo| < s}. However, {z ∈ C | |z − zo| < R} is formed by a
union of the open s-disks and thus we find normal convergence on the open R-disk centered at zo. �

The proof above is from page 111 of [R91]. Note the union argument is similar to V.2#10 of page
138 in Gamelin where you were asked to show uniform convergence extends to finite unions.

Example 10.4.7. The series
∑∞

k=0 z
k is the geometric series. We have shown it converges iff

|z| < 1 which shows R = 1.

Example 10.4.8. The series
∑∞

k=1
zk

k4 has majorant Mk = 1/k4 for |z| < 1. Recall, by the p-
series test, with p = 4 > 1 the series

∑∞
k=1

1
k4 converges. Thus, the given series in z is normally

convergent on |z| < 1.

Example 10.4.9. Consider

∞∑
j=0

(−1)j

4j
(z−i)2j. Notice this is geometric, simply let w = −(z−i)2/4

and note:

wj =

(
−(z − i)2

4

)j
=

(−1)j(z − i)2j

4j
⇒

∞∑
j=0

(−1)j

4j
(z − i)2j =

∞∑
j=0

wj =
1

1− w
=

1

1 + (z − i)2/4
.
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The convergence above is only given if we have |w| < 1 which means |− (z− i)2/4| < 1 which yields
|z − i| < 2. The given series represents the function f(z) = 1

1+(z−i)2/4
on the open disk |z − i| < 2.

The power series
∞∑
j=0

(−1)j

4j
(z − i)2j is centered at zo = i and has R = 2.

It is customary to begin series where the formula is reasonable when the start of the sum is not
indicated.

Example 10.4.10. The series
∑
kkzk has R = 0. Notice this series diverges by the n-th term test

whenever z 6= 0.

Example 10.4.11. The series
∑
k−kzk has R =∞. To see this, apply of Theorem 10.4.17 .

At times I refer to what follows as Taylor’s Theorem. This is probably not a good practice since
Taylor’s work was in the real domain and we make no mention of an estimate on the remainder
term. That said, Cauchy has enough already so I continue this abuse of attribution.

Theorem 10.4.12. Let
∑
ak(z − zo)k be a power series with radius of convergence R > 0. Then,

the function

f(z) =
∑

ak(z − zo)k, |z − zo| < R,

is holomorphic. The derivatives of f(z) are obtained by term-by-term differentiation ,

f ′(z) =

∞∑
k=1

kak(z − zo)k−1, f ′′(z) =

∞∑
k=2

k(k − 1)ak(z − zo)k−2,

and similarly for higher-order derivatives. The coefficients are given by:

ak =
1

k!
f (k)(zo), k ≥ 0.

Proof: by Theorem 10.4.6 the given series is normally convergent on DR(zo); recall, DR(zo) =
{z ∈ C | |z − zo| < R}. Notice that, for each k ∈ {0} ∪ N, fk(z) = ak(z − zo)k is holomorphic
on DR(zo) hence by Theorem 10.3.15 we find f(z) is holomorphic on DR(zo). Furthermore, by
Theorem 10.3.16, f ′ and f ′′ are holomorphic on DR(zo) and are formed by the series of derivatives
and second derivatives of fk(z) = ak(z − zo)k. We can calculate,

dfk
dz

= kak(z − zo)k−1 &
d2fk
dz2

= k(k − 1)ak(z − zo)k−2.

Finally, the k-th coefficients of the series may be selected by evaluation at zo of the k-th derivative
of f . For k = 0 notice

f(zo) = ao + a1(zo − zo) + a2(zo − zo)2 + · · · = ao

thus, as f (0)(z) = f(z) we have f (0)(zo) = ao. Consider f (k)(z), apply the earlier result of this
theorem for the k-th derivative,

f (k)(z) =
∞∑
j=k

j(j − 1)(j − 2) · · · (j − k + 1)aj(z − zo)j−k
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evaluate the above at z = zo, only j − k = 0 gives nonzero term:

f (k)(zo) = k(k − 1)(k − 2) · · · (k − k + 1)ak = k!ak ⇒ ak =
f (k)(zo)

k!
. �

The next few examples illustrate an important calculational technique in this course. Basically,
the idea is to twist geometric series via the term-by-term calculus to obtain near-geometric series.
This allows us a wealth of examples with a minimum of calculation. I begin with a basic algebra
trick before moving to the calculus-based slight of hand.

Example 10.4.13.
∞∑
k=0

z3k+4 =

∞∑
k=0

z4z3k = z4
∞∑
k=0

(z3)k =
z4

1− z3k
.

The series above normally converges to f(z) = z4

1−z3k for |z3| < 1 which is simply |z| < 1.

Example 10.4.14.

∞∑
k=0

(
z2k + (z − 1)2k

)
=

∞∑
k=0

z2k +

∞∑
k=0

(z − 1)2k =
1

1− z2
+

1

1− (z − 1)2

where the geometric series both converge only if we have a simultaneous solution of |z| < 1 and
|z − 1| < 1. The open region on which the series above converges is not a disk. Why does this not
contradict Theorem 10.4.6 ?

Ok, getting back to the calculus tricks I mentioned previous to the above pair of examples,

Example 10.4.15. Notice f(z) = 1
1−z2 has df

dz = 2z
(1−z2)2 . However, for |z2| < 1 which is more

naturally presented as |z| < 1 we have:

f(z) =
1

1− z2
=
∞∑
k=0

z2k ⇒ df

dz
=
∞∑
k=1

2kz2k−1.

Therefore, we discover, for |z| < 1 the function g(z) = 2z
(1−z2)2 has the following power series

representation centered at zo = 0,

2z

(1− z2)2
=
∞∑
k=1

2kz2k−1 = 2z + 4z3 + 6z5 + · · · .

Example 10.4.16. The singularity of f(z) = Log(1 − z) is found at z = 1 hence we have hope
to look for power series representations for this function away from zo = 1. Differentiate f(z) to
obtain (note, the −1 is from the chain rule):

df

dz
=
−1

1− z
= −

∞∑
k=0

zk.

Integrate both sides of the above to see that there must exist a constant C for which

Log(1− z) = C −
∞∑
k=0

zk+1

k + 1
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But, we have Log(1− 0) = 0 = C hence,

−Log(1− z) =
∞∑
k=0

zk+1

k + 1
= z +

1

2
z2 +

1

3
z3 + · · · .

The calculation above holds for |z| < 1 according to the theorems we have developed about the
geometric series and term-by-term calculus. However, in this case, we may also observe z = −1
produces the negative of alternating harmonic series which converges. Thus, there is at least one
point on which the series for −Log(1−z) converges where the differentiated series did not converge.
This is illustrative of a general principle which is worth noticing: differentiation may remove points
from the boundary of the disk of convergence whereas integration tends to add points of convergence
on the boundary.

Theorem 10.4.17. If |ak/ak+1| has a limit as k → ∞, either finite or +∞, then the limit is the
radius of convergence R of

∑
ak(z − zo)k

Proof: Let L = limk→∞ |ak/ak+1|. If r < L then there must exist N ∈ N such that |ak/ak+1| > r
for all k > N . Observe |ak| > r|ak+1| for k > N . It follows,

|aN |rN ≥ |aN+1|rN+1 ≥ |aN+2|rN+2 ≥ · · ·

Let M = max{|ao|, |a1|r, . . . , |aN−1|rN−1, |aN |rN} and note |ak|rk ≤ M for all k hence by Abel’s
Convergence Lemma, the power series

∑
ak(z − zo)k is normally convergent for |z| < r. Thus,

r ≤ R as R defines the maximal disk on which
∑
ak(z − zo)k is normally convergent. Let {rn} be

a sequence of such that rn < L for each n and rn → L as n→∞. For rn < L we’ve shown rn ≤ R
hence limn→∞ rn ≤ limn→∞R by the sandwhich theorem. Thus L ≤ R.

Suppose s > L. We again begin with an observation that there exists an N ∈ N such that
|ak/ak+1| < s for k > N . It follows,

|aN |sN ≤ |aN+1|sN+1 ≤ |aN+2|sN+2 ≤ · · ·

and clearly
∑
ak(z− zo)k fails the n-th term test for z ∈ C with |z− zo| > s. We find the series di-

verges for |z−zo| > s and thus we find s ≥ R. Let {sn} be a sequence of values with sn > L for each
n and limn→∞ sn = L. The argument we gave for s equally well applies to each sn hence sn ≥ R
for all n. Once again, take n→∞ and apply the sandwhich lemma to obtain limn→∞ sn = L ≤ R.

Thus L ≤ R and L ≥ R and we conclude L = R as desired. �

Theorem 10.4.18. If k
√
|ak| has a limit as k → ∞, either finite or +∞, then the radius of

convergence R of
∑
ak(z − zo)k is given by:

R =
1

limk→∞
k
√
|ak|

.

Proof: see page 142. Again, you can see Abel’s Convergence Lemma at work. �

One serious short-coming of the ratio and root tests is their failure to apply to series with infinitely
many terms which are zero. The Cauchy Hadamard formula gives a refinement which allows us
to capture such examples. In short, the limit superior replaces the limit in Theorem 10.4.18. If you
would like to read more, I recommend page 112 of [R91].
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10.5 Power Series Expansion of an Analytic Function

In the previous section we studied some of the basic properties of complex power series. Our
main result was that a function defined by a power series is holomorphic on the open disk of
convergence. We discover a converse in this section: holomorphic functions on a disk admit power
series representation on the disk. We finally introduce the term analytic

Definition 10.5.1. A function f(z) is analytic on DR(zo) = {z ∈ C | |z − zo| < R} if there exist
coefficients ak ∈ C such that f(z) =

∑∞
k=0 ak(z − zo)k for all z ∈ DR(zo).

Of course, by Theorem 10.4.12 we immediately know f(z) analytic on some disk about zo forces
the coefficients to follow Taylor’s Theorem ak = f (k)(zo)/k!. Thus, another way of characterizing
an analytic function is that an analytic function is one which is generated by its Taylor series8.

Theorem 10.5.2. Suppose f(z) is holomorphic for |z − zo| < ρ. Then f(z) is represented by the
power series

f(z) =

∞∑
k=0

ak(z − zo)k, |z − zo| < ρ,

where

ak =
f (k)(zo)

k!
, k ≥ 0,

and where the power series has radius of convergence9 R ≥ ρ. For any fixed r, 0 < r < ρ, we have

ak =
1

2πi

∮
|w−zo|=r

f(w)

(w − zo)k+1
dw, k ≥ 0.

Further, if |f(z)| ≤M for |z − zo| = r, then

|ak| ≤
M

rk
, k ≥ 0.

Proof: assume f(z) is as stated in the theorem. Let z ∈ C such that |z| < r < ρ. Suppose |w| = r
then by the geometric series Proposition 10.2.6

f(w)

w − z
=
f(w)

w

1

1− z/w
=
f(w)

w

∞∑
k=0

( z
w

)k
=

∞∑
k=0

f(w)
zk

wk+1
.

Moreover, we are given the convergence of the above series is uniform for |w| = r. This allows us
to expand Cauchy’s Integral formula into the integral of a series of holomorphic functions which
converges uniformly. It follows we are free to apply Theorem 10.3.9 to exchange the order of the
integration and the infinite summation in what follows:

f(z) =
1

2πi

∫
|w|=r

f(w)

w − z
dw

=
1

2πi

∫
|w|=r

( ∞∑
k=0

f(w)
zk

wk+1

)
dw

=

∞∑
k=0

(
1

2πi

∫
|w|=r

f(w)

wk+1
dw

)
︸ ︷︷ ︸

ak

zk.

8again, I feel obligated to mention Taylor’s work was in the real domain, so this term is primarily to allow the
reader to connect with their experience with real power series

9we should remember Theorem 10.4.6 provides the series is normally convergent
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This suffices to prove the theorem in the case zo = 0. Notice the result holds whenever |z| < r and
as r < ρ is arbitrary, we must have the radius of convergence10 R ≥ ρ. Continuing, I reiterate the
argument for zo 6= 0 as I think it is healthy to see the argument twice and as the algebra I use in
this proof is relevant to future work on a multitude of examples.

Suppose z ∈ C such that |z − zo| < r < ρ. Suppose |w − zo| = r hence |z − zo|/|w − zo| < 1 thus:

f(w)

w − z
=

f(w)

w − zo − (z − zo)

=
f(w)

w − zo
· 1

1−
(
z−zo
w−zo

)
=

f(w)

w − zo

∞∑
k=0

(
z − zo
w − zo

)k
=

∞∑
k=0

f(w)(z − zo)k

(w − zo)k+1

Thus, following the same logic as in the zo = 0 case, but now for |w − zo| = r, we obtain:

f(z) =
1

2πi

∫
|w−zo|=r

f(w)

w − z
dw

=
1

2πi

∫
|w−zo|=r

( ∞∑
k=0

f(w)(z − zo)k

(w − zo)k+1

)
dw

=
∞∑
k=0

(
1

2πi

∫
|w−zo|=r

f(w)

(w − zo)k+1
dw

)
︸ ︷︷ ︸

ak

(z − zo)k.

Once again we can argue that as |z − zo| < r < ρ gives f(z) presented as the power series centered
at zo above for arbitrary r it must be that the radius of convergence R ≥ ρ.

The derivative identity ak = f (k)(zo)
k! is given by Theorem 10.4.12 and certain applies here as we

have shown the power series representation of f(z) exists. Finally, if |f(z)| ≤ M for |z − zo| < r
then apply Cauchy’s Estimate 9.5.1

|ak| =

∣∣∣∣∣f (k)(zo)

k!

∣∣∣∣∣ ≤ 1

k!

Mk!

rk
=
M

rk
�

Consider the argument of the theorem above. If you were a carefree early nineteenth century
mathematician you might have tried the same calculations. If you look at was derived for ak and
compare the differential to the integral result then you would have derived the Generalized Cauchy
Integral Formula:

ak =
f (k)(zo)

k!
=

1

2πi

∫
|w−zo|=r

f(w)

(w − zo)k+1
dw.

You can contrast our viewpoint now with that which we proved the Generalized Cauchy Integral
Formula back in Theorem 9.4.2. The technique of expanding 1

w−z into a power series for which

10this can be made rigorous with a sequential argument as I offered twice in the proof of Theorem 10.4.17
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integration and differentiation term-by-term was to be utilized was known and practiced by Cauchy
at least as early as 1831 see page 210 of [R91]. In retrospect, it is easy to see how once one of these
theorems was discovered, the discovery of the rest was inevitable to the curious.

What follows is a corollary to Theorem 10.5.2.

Corollary 10.5.3. Suppose f(z) and g(z) are holomorphic for |z − zo| < r. If f (k)(zo) = g(k)(zo)
for k ≥ 0 then f(z) = g(z) for |z − zo| < r.

Proof: if f, g are holomorphic on |z − zo| < r then Theorem 10.5.2 said they are also analytic
on |z − zo| < r with coefficients fixed by the values of the function and their derivatives at zo.
Consequently, both functions share identical power series on |z − zo| < r hence their values match
at each point in the disk. �

Theorem 10.4.6 told us that the domain of a power series included an open disk of some maximal
radius R. Now, we learn that if f(z) is holomorphic on an open disk centered at zo then it has a
power series representation on the disk. It follows that the function cannot be holomorphic beyond
the radius of convergence given to us by Theorem 10.4.6 for if it did then we would find the power
series centered at zo converged beyond the radius of convergence.

Corollary 10.5.4. Suppose f(z) is analytic at zo, with power series expansion centered at zo;
f(z) =

∑∞
k=0 ak(z − zo)k. The radius of convergence of the power series is the largest number R

such that f(z) extends to be holomorphic on the disk {z ∈ C | |z − zo| < R}

Notice that power series converge normally on the disk of their convergence. It seems that Gamelin
is unwilling to use the term normally convergent except to introduce it. Of course, this is not a big
deal, we can either use the term or state it’s equivalent in terms of uniform convergence on closed
subsets.

Example 10.5.5. Let f(z) =
∞∑
k=0

1

k!
zk = 1+z+

1

2
z2+

1

6
z3+· · · . We can show f(z)f(w) = f(z+w)

by direct calculation of the Cauchy product. Once that is known and we observe f(0) = 0 then it
is simple to see f(z)f(−z) = f(z − z) = f(0) = 1 hence 1

f(z) = f(−z). Furthermore, we can

easily show df
dz = f . All of these facts are derived from the arithmetic of power series alone. That

said, perhaps you recognize these properties as those of the exponential function. There are two
viewpoints to take here:

1. define the complex exponential function by the power series here and derive the basic properties
by the calculus of series

2. define the complex exponential function by ex+iy = ex(cos y + i sin y) and verify the given
series represents the complex exponential on C.

Whichever viewpoint you prefer, we all agree:

ez =

∞∑
k=0

1

k!
zk = 1 + z +

1

2
z2 +

1

6
z3 + · · ·

Notice ak = 1/k! hence ak/ak+1 = (k + 1)!/k! = k + 1 hence R =∞ by ratio test for series.
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Example 10.5.6. Consider f(z) = cosh z notice f ′(z) = sinh z and f ′′(z) = cosh z and in general
f (2k)(z) = cosh z and f (2k+1)(z) = sinh z. We calculate f (2k)(0) = cosh 0 = 1 and f (2k+1)(0) =
sinh 0 = 0. Thus,

cosh z =

∞∑
k=0

1

(2k)!
z2k = 1 +

1

2
z2 +

1

4!
z4 + · · ·

Example 10.5.7. Following from Definition 2.5.2 we find ez = cosh z + sinh z. Thus, sinh z =
ez − cosh z. Therefore,

sinh z =

∞∑
n=0

1

n!
zn −

∞∑
k=0

1

(2k)!
z2k.

However,

∞∑
n=0

1

n!
zn =

∞∑
k=0

1

(2k)!
z2k +

∞∑
k=0

1

(2k + 1)!
z2k+1 hence the even terms cancel and we find

the odd series below for hyperbolic sine:

sinh z =
∞∑
k=0

1

(2k + 1)!
z2k+1 = 1 +

1

3!
z3 +

1

5!
z5 + · · ·

Example 10.5.8. To derive the power series for sin z and cos z we use the relations cosh(iz) =
cos(z) and sinh(iz) = i sin z hence

cos z =
∞∑
k=0

1

(2k)!
(iz)2k =

∞∑
k=0

(−1)k

(2k)!
z2k

since i2k = (i2)k = (−1)k. Likewise, as i2k+1 = i(−1)k

i sin z =
∞∑
k=0

1

(2k + 1)!
(iz)2k+1 = i

∞∑
k=0

(−1)k

(2k)!
z2k

Therefore,

cos z =

∞∑
k=0

(−1)k

(2k)!
z2k = 1− 1

2
z2 +

1

4!
z4 + · · ·

and

sin z =
∞∑
k=0

(−1)k

(2k + 1)!
z2k+1 = z − 1

3!
z3 +

1

5!
z5 + · · · .

Once again, I should comment, we could use the boxed formulas above to define cosine and sine. It
is then straightforward to derive all the usual properties of sine and cosine. A very nice presentation
of this is found on pages 274-278 of [J02]. You might be interested to know that π can be carefully
defined as twice the smallest positive zero of cos z. Since the series definition of cosine does not
implicitly use the definition of π, this gives us a careful, non-geometric, definition of π.
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10.6 Power Series Expansion at Infinity

The technique used in this section could have been utilized in earlier discussions of ∞. To study
the behaviour of f(z) at z = ∞ we simple study the corresponding function g(w) = f(1/w) at
w = 0.

Example 10.6.1. Notice limz→∞ f(z) = limw→0 f(1/w) allows us to calculate:

lim
z→∞

z

z + 1
= lim

w→0

1/w

1/w + 1
= lim

w→0

1

1 + w
=

1

1 + 0
= 1.

Definition 10.6.2. A function f(z) is analytic at z =∞ if g(w) = f(1/w) is analytic at w = 0.

In particular, we mean that there exist coefficients bo, b1, . . . and ρ > 0 such that g(w) = bo+b1w+
b2w

2 + · · · for all w ∈ C such that 0 < |w| < ρ. Recall, by Theorem 10.5.2 we have
∑

k=0 bkw
k

converging normally to g(w) on the open disk of convergence. If |z| > 1/ρ then 1/|z| < ρ hence

f(z) = g(1/z) = bo + b1/z + b2/z
2 + · · · .

The series bo+b1/z+b2/z
2+· · · coverges normally to f(z) on the exterior domain {z ∈ C | |z| > R}

where R = 1/ρ. Recall that normal convergence previous meant we had uniform convergence on all
closed subdisks, in this context, it means we have uniform convergence for any S > R. In particular,
for each S > R, the series bo + b1/z+ b2/z

2 + · · · converges uniformly to f(z) for {z ∈ C | |z| > S}.

Example 10.6.3. Let P (z) ∈ C[z] be a polynomial of order N . Then P (z) = ao+a1z+ · · ·+aNz
N

is not analytic at z =∞ as the function g(w) = ao + a1/w+ · · ·+ an/z
N is not analytic at w = 0.

Example 10.6.4. Let f(z) = 1
z2 + 1

z42 is analytic at z = ∞ since g(w) = f(1/w) = w2 + w42 is
analytic at w = 0. In fact, g is entire which goes to show f(z) = 1

z2 + 1
z42 on C×. Refering to the

terminology just after 10.6.2 we have ρ =∞ hence R = 0.

The example above is a rather silly example of a Laurent Series. It is much like being asked to
find the Taylor polynomial for f(z) = z2 + 3z + 2 centered at z = 0; in the same way, the function
is defined by a Laurent polynomial centered at z = 0, there’s nothing to find. The major effort of
the next Chapter is to develop theory to understand the structure of these Laurent series.

Example 10.6.5. Let f(z) = z2

z2−1
consider g(w) = f(1/w) = 1/w2

1/w2−1
= 1

1−w2 =
∑∞

k=0w
2k. Hence

f(z) is analytic at z = ∞. Notice, the power series centered at w = 0 converges normally on
|w| < 1 hence the series below converges normally to f(z) for |z| > 1

f(z) =
∞∑
k=0

(
1

z

)2k

= 1 +
1

z2
+

1

z4
+ · · · .

Example 10.6.6. Let f(z) = sin(1/z2). Notice g(w) = sin(w2) = w2 − 1
3!(w

2)3 + · · · for w ∈ C.
Thus f(z) is analytic at z =∞ and f(z) is represented normally on the punctured plane by:

f(z) =
1

z2
− 1

3!

1

z6
+

1

5!

1

z10
+ · · · =

∞∑
k=0

(−1)k

(2k + 1)!

1

z4k+2
.

In summary, we have seen that a function which is analytic at z = zo 6= ∞ allows a power series
representation

∑∞
k=0 ak(z−zo)k on disk of radius 0 < R ≤ ∞. On the other hand, a function which

is analytic at z = ∞ has a representation of the form
∑k=0
−∞ akz

k = ao + a−1/z + a−2/z
2 + · · · on

an annulus |z| > R where 0 ≤ R <∞.
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Theorem 10.6.7. If f is analyic at ∞ then there exists ρ > 0 such that for |z − zo| > ρ

f(z) =

0∑
k=−∞

ak(z − zo)k = ao +
a−1

z − zo
+

a−1

(z − zo)2
+ · · · .

I should mention, if you wish a more careful treatment, you might meditate on the arguments
offered on page 348 of [R91].

10.7 Manipulation of Power Series

The sum, difference, scalar multiple, product and quotient of power series are discussed in this
section.

Theorem 10.7.1. Suppose
∑∞

k=0 ak(z− zo)k and
∑∞

k=0 bk(z− zo)k are convergent power series on
a domain D then

∞∑
k=0

ak(z − zo)k + c
∞∑
k=0

bk(z − zo)k =
∞∑
k=0

(ak + cbk)(z − zo)k

for all z ∈ D.

Proof: suppose f, g are analytic on D where f(z) =
∑∞

k=0 ak(z−zo)k and g(z) =
∑∞

k=0 bk(z−zo)k.
Let c ∈ C and define h(z) = f(z) + cg(z) for each z ∈ D. Observe,

h(k)(zo) = f (k)(zo) + cg(k)(zo) ⇒ h(k)(zo)

k!
=
f (k)(zo)

k!
+ c

g(k)(zo)

k!
= ak + cbk

by Theorem 10.5.2. Thus, h(z) =
∑∞

k=0(ak + cbk)(z − zo)k by Corollary 10.5.4. �

The method of proof is essentially the same for the product of series theorem. We use Corollary
10.5.4 to obtain equality of functions by comparing derivatives. I suppose we should define the
product of series:

Definition 10.7.2. Cauchy Product: Let
∑∞

k=0 ak(z − zo)k and
∑∞

k=0 bk(z − zo)k then( ∞∑
k=0

ak(z − zo)k
)( ∞∑

k=0

bk(z − zo)k
)

=

∞∑
k=0

ck(z − zo)k

where we define ck =
∑k

n=0 anbk−n for each k ≥ 0.

Technically, we ought to wait until we prove the theorem below to make the definition above. I
hope you can forgive me.

Theorem 10.7.3. Suppose
∑∞

k=0 ak(z− zo)k and
∑∞

k=0 bk(z− zo)k are convergent power series on
an open disk D with center zo ∈ D then( ∞∑

k=0

ak(z − zo)k
)( ∞∑

k=0

bk(z − zo)k
)

=

∞∑
k=0

ck(z − zo)k

for all z ∈ D where ck is defined by the Cauchy Product; ck =
∑k

n=0 anbk−n for each k ≥ 0.
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Proof: I follow the proof on page 217 of [R91]. Let f(z) =
∑∞

k=0 ak(z−zo)k and g(z) =
∑∞

k=0 bk(z−
zo)

k for each z ∈ D. By Theorem 10.4.12 both f and g are holomorphic on D. Therefore, h = fg is
holomorphic on D as (fg)′(z) = f ′(z)g(z) + f(z)g′(z) for each z ∈ D. Theorem 10.5.2 then shows
fg is analytic at zo hence there exist ck such that h(z) = f(z)g(z) =

∑
k ck(z − zo)k. It remains

to show that ck is as given by the Cauchy product. We proceed via Corollary 10.5.4. We need to

show h(k)(zo)
k! = ck for k ≥ 0. Begin with k = 0,

h(zo) = f(zo)g(zo) = aobo = co.

Continuing, for k = 1,

h′(zo) = f ′(zo)g(zo) + f(zo)g
′(zo) = a1b0 + a0b1 = c1.

Differentiating once again we find k = 2, note f ′′(zo)/2 = a2,

h′′(zo) = f ′′(zo)g(zo) + f ′(zo)g
′(zo) + g′(zo)f

′(zo) + f(zo)g
′′(zo)

= 2a2b0 + 2a1b1 + 2a0b2

= 2c2.

To treat the k-th coefficient in general it is useful for us to observe the Leibniz k-th derivative rule:

(fg)(k)(z) =
∑
i+j=k

k!

i!j!
f (i)(z)g(j)(z) = f (k)(z)g(z) + kf (k−1)(z)g′(z) · · ·+ f(z)g(k)(z)

Observe, f (i)(zo)/i! = ai and g(j)(zo)/j! = bj hence:

(fg)(k)(zo) =
∑
i+j=k

k!aibj = k!(aobk + · · ·+ akbo) = k!ck.

Thus, (fg)(k)(zo)/k! = ck and the theorem by Corollary 10.5.4. �

I offered the argument for k = 0, 1 and 2 explicitly to take the mystery out of the Leibniz rule
argument. I leave the proof of the Leibniz rule to the reader. There are other proofs of the product
theorem which are just given in terms of the explicit analysis of the series. For example, see
Theorem 3.50d of [R76] where the product of a convergent and an absolutely convergent series is
shown to converge to an absolutely convergent series defined by the Cauchy Product.

Example 10.7.4. Find the power series to order 5 centered at z = 0 for 2 sin z cos z

2 sin z cos z = 2

(
z − 1

6
z3 +

1

120
z5 + · · ·

)(
1− 1

2
z2 +

1

24
z4 + · · ·

)
= 2

(
z −

[
1

2
+

1

6

]
z3 +

[
1

24
+

1

12
+

1

120

]
z5 + · · ·

)
= 2z − 4

3
z3 +

4

15
z5 + · · ·

Of course, as 2 sin z cos z = sin(2z) = 2z − 1
3!(2z)

3 + 1
5!(2z)

5 + · · · we can avoid the calculation
above. I merely illustrate the consistency.

The example below is typical of the type of calculation we wish to master:
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Example 10.7.5. Calculate the product below to second order in z:

ez cos(2z + 1) = ez (cos(2z) cos(1)− sin(2z) sin(1))

=

(
1 + z +

1

2
z2

)(
cos(1)(1− 1

2
(2z)2)− 2z sin(1)

)
+ · · ·

=

(
1 + z +

1

2
z2

)(
cos(1)− 2 sin(1)z − 2 cos(1)z2

)
+ · · ·

= cos(1) + [cos(1)− 2 sin(1)] z +

(
cos(1)

2
− 2 sin(1)− 2 cos(1)

)
z2 + · · ·

Stop and ponder why I did not directly expand cos(2z+ 1) as
∑∞

k=0
(−1)k

(2k+1)!(2z+ 1)2k+1. If you did
that, then you would need to gather infinitely many terms together to form the sines and cosines
we derived with relative ease from the adding-angles formula for cosine.

The geometric series allows fascinating calculation:

Example 10.7.6. Multiply 1 + z + z2 + · · · and 1− z + z2 + · · · .

(1 + z + z2 + · · · )(1− z + z2 + · · · ) =
1

1− z
· 1

1 + z
=

1

1− z2
= 1 + z2 + z4 + · · · .

I probably could add some insight here by merging the calculations I cover in calculus II here,
however, I’ll stop at this point and turn to the question of division.

Suppose
∑∞

k=0 ak(z − zo)k where ao 6= 0. Calculation of 1∑∞
k=0 ak(z−zo)k amounts to calculation of

coefficients bk for k ≥ 0 such that
(∑∞

k=0 ak(z − zo)k
) (∑∞

k=0 bk(z − zo)k
)

= 1. The Cauchy product
provides a sequence of equations we must solve:

aobo = 1 ⇒ bo = 1/ao.

aob1 + a1bo = 0, ⇒ b1 =
−a1bo
ao

=
−a1

a2
o

.

aob2 + a1b1 + a2bo = 0, ⇒ b2 = −a1b1 + a2bo
ao

=
a2

1

a3
o

− a2

a2
o

.

aob3 + a1b2 + a2b1 + a3b0 = 0 ⇒ b3 = −a1b2 + a2b1 + a3bo
ao

.

The calculation above can clearly be extended to higher order. Recursively, we have solution:

bk = −a1bk−1 + a2bk−2 + · · ·+ ak−1b1 + akbo
ao

for k ≥ 0.

Example 10.7.7. Consider 2− 4z+ 8z2− 16z3 · · · identify ao = 2, a1 = −4, a2 = 8 and a3 = −16.
Using the general calculation above this example, calculate

bo =
1

2
, b1 =

4

4
= 1, b2 =

−(−4)(1)− (8)(1/2)

2
= 0, b3 = −−4(0) + (8)(1) + (−16)(1/2)

2
= 0.

Hence,
1

2− 4z + 8z2 − 16z3 · · ·
=

1

2
+ z + · · · .

I can check our work as 2 − 4z + 8z2 − 16z3 · · · = 2(1 − 2z + (−2z)2 + (−2z)3 · · · ) = 2
1+2z hence

1
2−4z+8z2−16z3··· = 1+2z

2 = 1
2 + z. Apparently, we could calculate bk = 0 for k ≥ 2.
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We next illustrate how to find the power series for tan(z) by long-division:

The calculation above shows that sin z = z− 1
3!z

3 + 1
5!z

5 + · · · divided by cos z = 1− 1
2!z

2 + 1
4!z

4 + · · ·
yields:

tan z =
sin z

cos z
= z +

1

3
z3 +

2

15
z5 + · · · .

It should be fairly clear how to obtain higher-order terms by the method of long-division.

We now consider a different method to calculate the power series for tan z which uses the geometric
series to obtain the reciprocal of the cosine series. Consider,

1

cos z
=

1

1− 1
2!z

2 + 1
4!z

4 + · · ·

=
1

1−
(

1
2z

2 − 1
24z

4 + · · ·
)

= 1 +

(
1

2
z2 − 1

24
z4 + · · ·

)
+

(
1

2
z2 − 1

24
z4 + · · ·

)2

+ · · ·

= 1 +
1

2
z2 +

(
− 1

24
+

1

2
· 1

2

)
z4 + · · ·

= 1 +
1

2
z2 +

5

24
z4 + · · · .

Then, to find tan(z) we simply multiply by the sine series,

sin z · 1

cos z
=

(
z − 1

6
z3 +

1

120
z5 + · · ·

)(
1 +

1

2
z2 +

5

24
z4 + · · ·

)
= z +

(
1

2
− 1

6

)
z3 +

(
5

24
− 1

12
+

1

120

)
z5 + · · ·

= z +
1

3
z3 +

2

15
z5 + · · · .

The recursive technique, long-division and geometric series manipulation are all excellent tools
which we use freely throughout the remainder of our study. Some additional techniques are eucli-
dated in §10.9. There I show my standard bag of tricks for recentering series.
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10.8 The Zeros of an Analytic Function

Power series are, according to Dr. Monty Kester, Texas sized polynomials. With all due respect to
Texas, it’s not that big. That said, power series and polynomials do share much in common. In
particular, we find a meaningful and interesting generalization of the factor theorem.

Definition 10.8.1. Let f be an analytic function which is not identically zero near z = zo then we
say f has a zero of order N at zo if

f(zo) = 0, f ′(zo) = 0, · · · f (N−1)(zo) = 0, f (N)(zo) 6= 0.

A zero of order N = 1 is called a simple zero. A zero of order N = 2 is called a double zero.

Suppose f(z) has a zero of order N at zo. If f(z) =
∑∞

k=0 ak(z − zo)k then as ak = f (k)

k! = 0 for
k = 0, 1, . . . , N − 1 we have

f(z) =
∞∑
k=N

ak(z − zo)k = (z − zo)N
∞∑
k=N

ak(z − zo)k−N = (z − zo)N
∞∑
j=0

aj+N (z − zo)j︸ ︷︷ ︸
h(z)

Observe that h(z) is also analytic at zo and h(zo) = aN = f (N)(zo)
N ! 6= 0. It follows that there exists

ρ > 0 for which 0 < |z − zo| < ρ implies f(z) 6= 0. In other words, the zero of an analytic function
is isolated.

Definition 10.8.2. Let U ⊆ C then zo ∈ U is an isolated point of U if there exists some ρ > 0
such that {z ∈ U | |z − zo| < ρ} = {zo}.

We prove that all zeros of an analytic function are isolated a bit later in this section. However, first
let me record the content of our calculations thus far:

Theorem 10.8.3. Factor Theorem for Power Series: If f(z) is an analytic function with a
zero of order N at zo then there exists h(z) analytic at zo with h(zo) 6= 0 and f(z) = (z− zo)Nh(z).

Example 10.8.4. The prototypical example is simply the monomial f(z) = (z − zo)n. You can
easily check f has a zero z = zo of order n.

Example 10.8.5. Consider f(z) = sin(z2) = z2 − 1
6z

6 + 1
120z

10 + · · · . Notice f(0) = f ′(0) = 0
and f ′′(0) = 2 thus f(z) as a double zero of z = 0 and we can factor out z2 from the power series
centered at z = 0 for f(z):

f(z) = z2

(
1− 1

6
z4 +

1

120
z8 + · · ·

)
.

Example 10.8.6. Consider f(z) = sin(z2) = z2− 1
6z

6+ 1
120z

10+· · · once again. Let us consider the
zero for f(z) which is given by z2 = nπ for some n ∈ Z with n 6= 0. This has solutions z = ±

√
nπ.

In each case, f(±
√
nπ) = sinnπ = 0 and f ′(±

√
nπ) = ±2

√
nπ cos±

√
nπ 6= 0. Therefore, every

other zero of f(z) is simple. Only z = 0 is a double zero for f(z). Although the arguments offered
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thus far suffice, I find explicit calculation of the power series centered at
√
nπ a worthwhile exercise:

sin(z2) = sin
(
[z −

√
nπ +

√
nπ ]2

)
= sin

(
(z −

√
nπ)2 + 2

√
nπ(z −

√
nπ) + nπ

)
= (−1)n sin

(
(z −

√
nπ)2 + 2

√
nπ(z −

√
nπ)

)
= (−1)n

(
(z −

√
nπ)2 + 2

√
nπ(z −

√
nπ)− 1

6

(
(z −

√
nπ)2 + 2

√
nπ(z −

√
nπ)

)3

+ · · ·

)

= (z −
√
nπ)(−1)n

(
2
√
nπ + (z −

√
nπ)− 4nπ

√
nπ

3
(z −

√
nπ)2 + · · ·

)
Example 10.8.7. Consider f(z) = 1−cosh(z) once again f(0) = 1−1 = 0 and f ′(0) = sinh(0) = 0
whereas f ′′(0) = − cosh(0) = −1 6= 0 hence f(z) has a double zero at z = 0. The power series for
hyperbolic cosine is cosh(z) = 1 + z2/2 + z4/4! + · · · and thus

f(z) =
1

2
z2 +

1

4!
z4 + · · · = z2

(
1

2
+

1

4!
z2 + · · ·

)

Definition 10.8.8. Let f be an analytic function on an exterior domain |z| > R for some R > 0.
If f is not identically zero for |z| > R then we say f has a zero of order N at ∞ if g(w) = f(1/w)
has a zero of order N at w = 0.

Theorem 10.8.9 translates to the following result for Laurent series11:

Theorem 10.8.9. If f(z) is an analytic function with a zero of order N at ∞ then

f(z) =
aN

(z − zo)N
+

aN+1

(z − zo)N+1
+

aN+2

(z − zo)N+2
+ · · · .

Example 10.8.10. Let f(z) = 1
1+z3 has

g(w) =
1

1 + 1/w3
=

w3

w3 + 1
= w3 − w6 + w9 + · · ·

hence g(w) has a triple zero at w = 0 which means f(z) has a triple zero at ∞. We could also have
seen this simply by expressing f as a function of 1/z:

f(z) =
1

1 + z3
=

1/z3

1 + 1/z3
=

1

z3
− 1

z6
+

1

z9
+ · · · .

Example 10.8.11. Consider f(z) = ez notice g(w) = f(1/w) = e1/w = 1 + 1
w + 1

2
1
w2 + · · · is not

analytic at w = 0 hence we cannot even hope to ask if there is a zero at ∞ for f(z) or what its
order is.

Following Gamelin, we include this nice example.

11I will get around to properly defining this term in the next chaper
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Example 10.8.12. Let f(z) = 1
(z−zo)n then observe

f(z) =
1

zn − nzn−1zo + · · · − nzzn−1
o + zno

=
1

zn

(
1

1− nzn−1zo+···+nzzn−1
o −zno

zn

)

=
1

zn

(
1

1− nzo
z + · · ·+ nzn−1

o
zn−1 − zno

zn

)

=
1

zn

(
1 +

nzo
z

+ · · · − nzn−1
o

zn−1
+
zno
zn

+ · · ·
)
.

This serves to show f(z) has z =∞ as a zero of order n.

Statements as above may be understood literally on the extended complex plane C∪{∞} or simply
as a shorthand for facts about exterior domains in C.

If you survey the examples we have covered so far in this section you might have noticed that when
f(z) is analytic at zo then f(z) has a zero at zo iff the zero has finite order. If we were to discuss a
zero of infinite order then intuitively that would produce the zero function since all the coefficients
in the Taylor series would vanish. Intuition is not always the best guide on such matters, therefore,
let us establish the result carefully:

Theorem 10.8.13. If D is a domain and f is an analytic function on D, which is not identically
zero, then the zeros of f are isolated points in D.

Proof: let U = {z ∈ D | f (m)(z) = 0 for all m ≥ 0}. Suppose zo ∈ U then f (k)(zo)/k! = 0 for all
k ≥ 0 hence f(z) =

∑∞
k=0 ak(z − zo)k = 0. Thus, f(z) vanishes on an open disk D(zo) centered

at zo and it follows f (k)(z) = 0 for each z ∈ D(zo) and k ≥ 0. Thus D(zo) ⊆ U . Hence zo is an
interior point of U , but, as zo was arbitrary, it follows U is open.

Next, consider V = D − U and let zo ∈ V . There must exist n ≥ 0 such that f (n)(zo) 6= 0 thus
an 6= 0 and consequently f(z) =

∑∞
k=0 ak(z − zo)k 6= 0. It follows there is a disk D(zo) centered at

zo on which f(z) 6= 0 for each z ∈ D(zo). Thus D(zo) ⊆ V and this shows V is an open set.

Consider then, D = U ∪ (D − U) hence as D is connected we can only have U = ∅ or U = D. If
U = D then we find f(z) = 0 for all z ∈ D and that is not possible by the preconditions of the
theorem. Therefore U = ∅. In simple terms, we have shown that every zero of an non-indentically-
vanishing analytic function must have finite order.

To complete the argument, we must show the zeros are isolated. Notice that zo a zero of f(z)
has finite order N hence, by Theorem 10.8.9, f(z) = (z − zo)nh(z) where h is analytic at zo with
h(zo) 6= 0. Therefore, there exists ρ > 0 for which the series for h(z) centered at zo represents h(z)
for each |z−zo| < ρ. Moreover, observe h(z) 6= 0 for all |z−zo| < ρ. Consider |f(z)| = |z−zo|N |h(z)|,
this cannot be zero except at the point z = zo hence there is no other zero for f(z) on |z − zo| < ρ
hence zo is isolated. �.

The theorem above has interesting consequences.
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Theorem 10.8.14. If f and g are analytic on a domain D, and if f(z) = g(z) for each z belonging
to a set with a nonisolated point, then f(z) = g(z) for all z ∈ D.

Proof: let C = {z ∈ D | f(z) = g(z)} and suppose the coincidence set C has a nonisolated point.
Consider h(z) = f(z) − g(z) for z ∈ D. If h(z) is not identically zero on D then the existence of
C contradicts Theorem 10.8.13 since C by its definition is a set with non-isolated zeros for h(z).
Consequently, h(z) = f(z)− g(z) = 0 for all z ∈ D. �

Gamelin points out that if we apply the theorem above twice we obtain:

Theorem 10.8.15. Let D be a domain, and let E be a subset of D that has a nonisolated point.
Let F (z, w) be a function defined for each z, w ∈ D which is analytic in z with w-fixed and likewise
analytic in w when we fix z. If F (z, w) = 0 whenever z, w ∈ E, then F (z, w) = 0 for all z, w ∈ D.

Early in this course I made some transitional definitions which you might argue are somewhat
adhoc. For example, we defined ez, sin z, sinh z, cos z and cosh z all by simply extending their real
formulas in the natural manner in view of Euler’s formula eiθ = cos θ+ i sin θ. The pair of theorems
above show us an astonishing fact about complex analysis: there is just one way to define it as
a natural extension of real calculus. Once Euler found his formula for real θ, there was only one
complex extension which could be found.

Example 10.8.16. Let f(z) = ez. Let g(z) be another entire function. Suppose f(z) = g(z) for
all z ∈ R. Then, as R has a nonisolated point we find f(z) = g(z) for all z ∈ C. In other words,
there is only one entire function on C which restricts to the real exponential on R ⊂ C.

The same argument may be repeated for sin z, sinh z, cos z and cosh z. Each of these functions is
the unique entire extension of the corresponding function on R. So, in complex analysis, we fix
an analytic function on a domain if we know its values on some set with a nonisolated point. For
example, the values of an analytic function on a domain are uniquely prescribed if we are given
the values on a line-segment, open or closed disk, or even a sequence with a cluster-point in the
domain. For further insight and some history on the topic of the identity theorem you can read
pages 227-232 of [R91].

You might constrast this situation to that of linear algebra; if we are given the finite set of values
to which a given basis in the domain must map then there is a unique linear transformation which
is the extension from the finite set to the infinite set of points which forms the vector space. On
the other side, a smooth function on an interval of R may be extended smoothly in infinitely many
ways. Thus, the structure of complex analysis is stronger than that of real analysis and weaker
than that of linear algebra.

One last thought, I have discussed extensions of functions to entire functions on C. However, there
may not exist an entire function to which we may extend. For example, ln(x) for x ∈ (0,∞) does
not permit an extension to an entire function. Worse yet, we know this extends most naturally to
log(z) which is a multiply-valued function. Remmert explains that 18-th century mathematicians
wrestled with this issue. The temptation to assume by the principle of permanence there was a
unique extension for the natural log led to considerable confusion. Euler wrote this in 1749 (page
159 [R91])

We see therefore that is is essential to the nature of logarithms that each number have
an infinity of logarithms and that all these logarithms be different, not only from one
another, but also[different] from all the logarithms of every other number.
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Ok, to be fair, this is a translation.

10.9 Analytic Continuation

Suppose we have a function f(z) which is holomorphic on a domain D. If we consider zo ∈ D then
there exist ak for k ≥ 0 such that f(z) =

∑∞
k=0 ak(z − zo)k for all z ∈ D(zo) ⊆ D. However, if we

define g(z) by the power series for f(z) at zo then the natural domain of g(z) =
∑∞

k=0 ak(z − zo)k
is the disk of convergence DR(zo) where generally D(zo) ⊆ DR(zo). The function g is an analytic
continuation of f .

Example 10.9.1. Consider f(z) = ez for z ∈ A = {z ∈ C | 1/2 < |z| < 2}. If we note
f(z) = ez−1+1 = eez−1 =

∑∞
k=0

e
k!(z − 1)k for all z ∈ A. However, DR(1) = C thus the function

defined by the series is an analytic continuation of the exponential from the given annulus to the
entire plane.

Analytic continuation is most interesting when there are singular points to work around. We can
also begin with a function defined by a power series as in the next example.

Example 10.9.2. Let f(z) =

∞∑
k=0

(z
2

)k
for |z| < 2. Notice that f(z) = 1

1−z/2 = 2
2−z and we can

expand the function as a power series centered at z = −1,

f(z) =
2

2− (z + 1− 1)
=

2

3− (z + 1)
=

2

3
· 1

1− (z + 1)/3
=

2

3

∞∑
k=0

1

3k
(z + 1)k.

for each z with |z + 1|/3 < 1 or |z + 1| < 3. In this case, the power series centered at z = −1

extends past |z| < 2. If we define g(z) =

∞∑
k=0

2

3k+1
(z + 1)k then R = 3 and the natural domain is

|z + 1| < 3.

The example above is easy to understand in the picture below:

Recentering the given series moves the center further from the singularity of the underlying function
z 7→ 2

2−z for z 6= 2. We know what will happen if we move the center somewhere else, the new
radius of convergence will simply be the distance from the new center to z = 2.

In Gamelin §V.8 problem 2 you will see that the analytic continuation of a given holomorphic func-
tion need not match the function. It is possible to continue from one branch of a multiply-valued
function to another branch. This is also shown on page 160 of Gamelin where he continues the
principal branch of the squareroot mapping to the negative branch.
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If we study the analytic continuation of a function defined by a series the main question which we
face is the nature of the function on the boundary of the disk of convergence. There must be at
least one point of divergence. See our Corollary 10.4.4 or look at page 234 of [R91] for a careful
argument. Given f(z) =

∑
ak(z − zo)k with disk DR(zo) of convergence, a point z1 ∈ ∂DR(zo)

is a singular point of f if there does not exist a holomorphic function g(z) on Ds(z1) for which
f(z) = g(z) for all z ∈ DR(zo) ∩Ds(z1). The set of all singular points for f is called the natural
boundary of f and the disk DR(zo) is called the region of holomorphy for f . On page 150 of
[R91] the following example is offered:

Example 10.9.3. Set g(z) = z+z2 +z4 +z8 + · · · . The radius of convergence is found to be R = 1.
Furthermore, we can argue that g(z)→∞ as z approaches any even root of unity. Remmert shows
on the page before that the even (or odd) roots of unity are dense on the unit circle hence the
function g(z) is unbounded at each point on |z| = 1 and it follows that the unit-circle is the natural
boundary of this series.

Certainly, many other things can happen on the boundary.

Example 10.9.4.

∞∑
k=1

(−1)k−1

k
zk = z − z

2
+
z

3
+ · · · converges for each z with |z| = 1 except the

single singular point z = −1.

Remmert informs that Lusin in 1911 found a series with coefficients ck → 0 yet
∑
ckz

k diverges
at each |z| = 1. Then Sierpinski in 1912 produced a series which diverges at every point on the
unit-circle except z = 1. See pages 120-121 [R91] for further details.

In summary, the problem of analytic continuation is subtle. When given a series presentation of
an analytic function it may not be immediately obvious where the natural boundary of the given
function resides. On the other hand, when the given function is captured by an algebraic expres-
sion or a formula in terms of sine, cosine etc. then through essentially precalculus-type domain
considerations we can find see the natural boundary arise from the nature of the formula. Any
series which represents the function will face the same natural boundaries. Well, I have tried not
to overstate anything here, I hope I was successful. The full appreciation of analytic continuation
is far beyond this course. For an attack similar to what I have done in examples here, see this
MSE question. For a still bigger picture, see Wikipedia article on analytic continuation where
it is mentioned that trouble with analytic continuation for functions of several complex variables
prompted the invention of sheaf cohomology.

Let me collect a few main points from Gamelin. If D is a disk and f is analytic on D and R(z1) is
the radius of convergence of the power series at z1 ∈ D and R(z2) is the radius of convergence of
the power series at z2 ∈ D, then |R(z1) − R(z2)| ≤ |z1 − z2|. This inequality shows the radius of
convergence is a continuous function on the domain of an analytic function.

Definition 10.9.5. We say that f is analytically continuable along γ if for each t there is a
convergent power series

ft(z) =
∞∑
n=0

an(t)(z − γ(t))n, |z − γ(t)| < r(t),

such that fa(z) is the power series representing f(z) at zo, and such that when s is near t, then
fs(z) = ft(z) for all z in the intersection of the disks of convergence for fs(z) and ft(z).

http://math.stackexchange.com/q/503527/36530
http://math.stackexchange.com/q/503527/36530
http://en.wikipedia.org/wiki/Analytic_continuation
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It turns out that when we analytically continue a given function from one initial point to a final
point it could be the continuations do not match. However, there is a simple condition which
assures the continuations do coincide. The idea here is quite like our deformation theorem for
closed forms.

Theorem 10.9.6. Monodromy Theorem: Let f(z) be analytic at zo. Let γo(t) and γ1(t) for
a ≤ t ≤ b be paths from zo to z1 along which f(z) can be continued analytically. Suppose γo can
be continuously deformed to γ1 along paths γs which begin at zo and end at z1 and allow f(z) to be
continued analytically. Then the analytic continuations of f(z) along γo and γ1 coincide at z1.

If there is a singularity, that is a point near the domain where the function cannot be analytically
extended, then the curves of continuation might not be able to be smoothly deformed. The defor-
mation could get snagged on a singularity. Of course, there is more to learn from Gamelin on this
point. I will not attempt to add to his treatment further here.



Chapter 11

Laurent Series and Isolated
Singularities

Laurent was a French engineer who lived from 1813 to 1854. He extended Cauchy’s work on disks to
annuli by introducing reciprocal terms centered about the center of the annulus. His original work
was not published. However, Cauchy was aware of the result and has this to say about Laurent’s
work in his report to the French Academy of 1843:

the extension given by M. Laurent · · · seems to us worthy of note

In this chapter we extend Cauchy’s theorems on power series for analytic functions. In particular,
we study how we can reproduce any analytic function on an annulus by simply adjoing recipro-
cal powers to the power series. A series built, in general, from both positive and negative power
functions centered about some point zo is called a Laurent series centered at zo. The annulus we
consider can reduce to a deleted disk or extend to ∞. Most of these results are fairly clean exten-
sions of what we have done in previous chapters. Excitingly, we shall see the generalized Cauchy
integral formula naturally extends. The extended theorem naturally ties coefficients of a given
Laurent series to integrals around a circle in the annulus of convergence. That simple connection
lays the foundation for the residue calculus of the next chapter. In terms of explicit calculation, we
continue to use the same techniques as in our previous work. However, the domain of consideration
is markedly different. We must keep in mind our study is about some annulus.

Laurent’s proof of the Laurent series development can be found in a publication which his widow
published in his honor in 1863. Apparently both Cauchy and Weierstrauss also has similar results
in terms of mean values around 1840-1841. As Remmert explains (page 350-355 [R91]), all known
proofs of the Laurent decomposition involve integration. Well, apparently, Pringsheim wrote a 1223
page work which avoided integration and instead did everything in terms of mean values. So, we
should say, no efficient proof without integrals is known. Also of note, Laurent’s Theorem can be
derived from the Cauchy-Taylor theorem by direct calculational attack; this difficult proof due to
Scheffer in 1884 (which also implicitly uses integral theory) is reproduced on p. 352-355 of [R91].

We could have made the definition some time ago, but, I give it here since I found myself using the
term at various points in my exposition of this chapter.

Definition 11.0.1. If f ∈ O(zo) then there exists some r > 0 such that f is holomorphic on
|z − zo| < r. In other words, O(zo) is the set of holomorphic functions at zo.

177
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11.1 The Laurent Decomposition

If a function f is analytic on an annulus then the function can be written as the sum of two analytic
functions fo, f1 on the annulus. Where, fo is analytic from the outer circle of the annulus to the
center and f1 is analytic from the inner circle of the annulus to ∞.

Theorem 11.1.1. Laurent Decomposition: Suppose 0 ≤ ρ < σ ≤ ∞, and suppose f(z) is
analytic for ρ < |z − zo| < σ. Then f(z) can be decomposed as a sum

f(z) = fo(z) + f1(z),

where fo is analytic for |z − zo| < σ and f1 is analytic for |z − zo| > ρ and at ∞. If we normalize
the decomposition such that f1(∞) = 0 then the decomposition is unique.

Let us examine a few examples and then we will offer a proof of the general assertion.

Example 11.1.2. Let f(z) =
z3 + z + 1

z
= z2 +1+

1

z
for z 6= 0. In this example ρ = 0 and σ =∞

and fo(z) = z2 + 1 whereas f1(z) = 1/z.

Example 11.1.3. Let f(z) be an entire function. For example, ez, sin z, sinh z, cos z or cosh z.
Then f(z) = fo(z) and f1(z) = 0. The function fo is analytic on any disk, but, we do not assume
it is analytic at ∞. On the other hand, notice that f1 = 0 is analytic at ∞ as claimed.

Example 11.1.4. Suppose f(z) is analytic at zo = ∞ then there exists some exterior domain
|z−zo| > ρ for which f(z) is analytic. In this case, f(z) = f1(z) and fo(z) = 0 for all z ∈ C∪{∞}.

Proof: Suppose 0 ≤ ρ < σ ≤ ∞, and suppose f(z) is analytic for ρ < |z − zo| < σ. Furthermore,
suppose f(z) = fo(z) + f1(z) where fo is analyic for |z − zo| < σ and f1 is analytic for |z − zo| > ρ
and at ∞. Suppose go, g1 form another Laurent decomposition with f(z) = go(z) + g1(z). Notice,

go(z)− fo(z) = g1(z)− f1(z)

for ρ < |z − zo| < σ. In view of the above overlap condition we are free to define:

h(z) =

{
go(z)− fo(z), for |z − zo| < σ

g1(z)− f1(z), for |z − zo| > ρ

Notice h is entire and h(z)→ 0 as z →∞. Thus h is bounded and entire and we apply Liouville’s
Theorem to conclude h(z) = c for all z ∈ C. In particular, h(z) = 0 on the annulus ρ < |z− zo| < σ
and we conclude that if a Laurent decomposition exists then it must be unique.

The existence of the Laurent Decomposition is due to Cauchy’s Integral formula on an annulus.
Technically, we have not shown this result explicitly1, to derive it we simply need to use the cross-
cut idea which is illustrated in the discussion preceding Theorem 8.2.12. Once more, suppose
0 ≤ ρ < σ ≤ ∞, and suppose f(z) is analytic for ρ < |z − zo| < σ. Consider some subannulus
ρ < r < |z − zo| < s < σ. Cauchy’s Integral formula gives

f(z) =
1

2πi

∮
|w−zo|=s

f(w)

w − z
dw︸ ︷︷ ︸

fo(z)

− 1

2πi

∮
|w−zo|=r

f(w)

w − z
dw︸ ︷︷ ︸

−f1(z)

.

1see pages 344-346 of [R91] for careful proofs of these results
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Notice fo is analytic for |z − zo| < s and f1 is analytic for |z − zo| > r and f1(z) → 0 as z → ∞.
As Gameline points out here, our current formulation would seem to depend on r, s but we already
showed the decomposition is unique if it exists thus fo and f1 must be defined for ρ < |z−zo| < σ. �

If you wish to read a different formulation of essentially the same proof, I recommend page 347 of
[R91].

Example 11.1.5. Consider f(z) = 2z−i
z(z−i) . This function is analytic on C − {0, i}. A simple

calculation reveals:

f(z) =
1

z
+

1

z − i
With respect to the annulus 0 < |z| < 1 we have fo(z) = 1

z−i and f1(z) = 1
z . On the other hand,

for the annulus 0 < |z − i| < 1 we have f1(z) = 1
z−i and f0(z) = 1

z . If we study disks centered at
any point in C− {0, i} then fo(z) = f(z) and f1(z) = 0.

We sometimes call the set such as 0 < |z− i| < 1 an annulus, but, we would do equally well to call
it a punctured disk centered at i = 1.

Example 11.1.6. Consider f(z) = 1
sin z this has a Laurent decomposition on the annuli which fit

between the successive zeros of sin z. That is, on nπ < |z| < (n + 1)π. For example, when n = 0
we have sin z = z − 1

6z
3 + · · · hence, using our geometric series reciprocal technique,

f(z) =
1

sin z
=

1

z − 1
6z

3 + · · ·
=

1

z(1− 1
6z

2 + · · · )
=

1

z

(
1 + (z2/6 + · · · )2 + · · ·

)
=

1

z
+

1

36
z3 + · · ·

Hence f1(z) = 1/z whereas fo(z) = z3/36 + · · · for the punctured disk of raduis π centered about
z = 0.

Suppose f(z) = fo(z) +f1(z) is the Laurent decomposition on ρ < |z− zo| < σ. By Theorem 10.5.2
there exists a power series representation of fo

fo(z) =

∞∑
k=0

ak(z − zo)k

for |z − zo| < σ. Next, by Theorem 10.6.7, noting that ao = f1(∞) = 0 gives

f1(z) =
−1∑

k=−∞
ak(z − zo)k

for |z− zo| > ρ. Notice both the series for fo and f1 converge normally and summing both together
gives:

f(z) =
∞∑

k=−∞
ak(z − zo)k

which is normally convergen on ρ < |z − zo| < σ. In this context, normally convergent means we
have uniform convergence for each s ≤ |z − zo| ≤ t where ρ < s < t < σ.

Given a function f(z) defined by a Laurent series centered at zo:

f(z) =
∞∑

k=−∞
ak(z − zo)k ?
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for ρ < |z − zo| < σ. We naturally wish to characterize the meaning of the coefficients2 ak. This
is accomplished by integration. In particular, we begin by integration over the circle |z − zo| = r
where ρ < r < σ: ∫

|z−zo|=r
f(z) dz =

∫
|z−zo|=r

( ∞∑
k=−∞

ak(z − zo)k
)
dz

=

∞∑
k=−∞

ak

(∫
|z−zo|=r

(z − zo)kdz

)

=

∞∑
k=−∞

ak (2πiδk,−1)

= 2πia−1

We have used the uniform convergence of the given series which allows term-by-term integration.
In addition, the integration was before discussed in Example 9.1.7. In summary, we find the k = −1
coefficient has a rather beautiful significance:

a−1 =
1

2πi

∫
|z−zo|=r

f(z) dz

where the circle of integration can be taken as any circle in the annulus of convergence for the
Laurent series. What does this formula mean?

We can integrate by finding a Laurent expansion of the integrand!

Example 11.1.7. Let f(z) = sin z
1−z . Observe,

sin z

1− z
=

sin(z − 1 + 1)

1− z
=

cos(1) sin(z − 1) + sin(1) cos(z − 1)

z − 1
=

sin 1

z − 1
+ cos(1)− sin 1

2
(z− 1) + · · ·

thus a−1 = sin 1 and we find: ∫
|z−1|=2

sin z

1− z
dz = 2πi sin 1.

We now continue our derivation of the values for the coefficients in ?, we divide by (z− zo)n+1 and
once more integrate over the circle |z − zo| = r where ρ < r < σ:∫

|z−zo|=r

f(z)

(z − zo)n+1
dz =

∫
|z−zo|=r

( ∞∑
k=−∞

ak(z − zo)k−n−1

)
dz

=
∞∑

k=−∞
ak

(∫
|z−zo|=r

(z − zo)k−n−1dz

)

=
∞∑

k=−∞
ak (2πiδk−n−1,−1)

= 2πian

2We already know for power series on a disk the coefficients are tied to the derivatives of the function at the center
of the expansion. However, in the case of the Laurent expansion we only have knowledge about the function on the
annulus centered at zo and zo may not even be in the domain of the function.
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Once again, we have used the uniform convergence of the given series which allows term-by-
term integration and the integral identity shown in Example 9.1.7. Notice the Kronecker delta

δk−n−1,−1 =

{
1 if k − n− 1 = −1

0 if k − n− 1 6= −1
which means the only nonzero term occurs when k−n−1 = −1

which is simply k = n. Of course, the integral is familar to us. We saw this identity for k ≥ 0 in
our previous study of power series. In particular, Theorem 9.4.2 where we proved the generalized
Cauchy integral formula: adapted to our current notation

1

2πi

∫
|z−zo|=r

f(z)

(z − zo)n+1
dz =

f (n)(zo)

n!
.

For the Laurent series we study on ρ < |z − zo| < σ we cannot in general calculate f (n)(zo).
However, in the case ρ = 0, we have f(z) analytic on the disk |z − zo| < σ and then we are able to
either calculate, for n ≥ 0 an by differentiation or integration. Let us collect our results for future
reference:

Theorem 11.1.8. Laurent Series Decomposition: Suppose 0 ≤ ρ < σ ≤ ∞, and suppose f(z)
is analytic for ρ < |z − zo| < σ. Then f(z) can be decomposed as a Laurent series

f(z) =
∞∑

n=−∞
an(z − zo)n

where the coefficients an are given by:

an =
1

2πi

∫
|z−zo|=r

f(z)

(z − zo)n+1
dz

for r > 0 with ρ < r < σ.

Notice the deformation theorem goes to show there is no hidden dependence on r in the formulation
of the coefficient an. The function f is assumed holomorphic between the inner and outer circles of
the annulus of convergence hence f(z)

(z−zo)n+1 is holomorpic on the annulus as well and the complex

integral is unchanged as we alter the value of r on (ρ, σ).

11.2 Isolated Singularities of an Analytic Function

A singularity of a function is some point which is nearly in the domain, and yet, is not. An isolated
singularity is a singular point which is also isolated. A careful definition is given below:

Definition 11.2.1. A function f has an isolated singularity at zo if there exists r > 0 such
that f is analytic on the punctured disk 0 < |z − zo| < r.

We describe in this section how isolated singularity fall into three classes where each class has a
particular type of Laurent series about the singular point. Let me define these now and we will
explain the terms as the section continues. Notice Theorem 11.1.8 implies f(z) has a Laurent
series in a punctured disk about singularity hence the definition below covers all possible isolated
singularities.

Definition 11.2.2. Suppose f has an isolated singularity at zo.
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(i.) If f(z) =

∞∑
k=0

ak(z − zo)k then zo is a removable singularity.

(ii.) Let N ∈ N. If f(z) =

∞∑
k=−N

ak(z − zo)k with a−N 6= 0 then zo is a pole of order N .

(iii.) If f(z) =
∞∑

k=−∞
ak(z − zo)k where ak 6= 0 for infinitely many k < 0 then zo is an essential

singularity.

We begin by studying the case of removable singularity. This is essentially the generalization of a
hole in the graph you studied a few years ago.

Theorem 11.2.3. Riemann’s Theorem on Removable Singularities: let zo be an isolated
singularity of f(z). If f(z) is bounded near zo then f(z) has a removable singularity.

Proof: expand f(z) in a Laurent series about the punctured disk at zo:

f(z) =

∞∑
n=−∞

an(z − zo)n

for 0 < |z − zo| < σ. If |f(z)| < M for 0 < |z − zo| < r then for r < min(σ, r) we may apply
the ML-theorem to the formula for the n-th coefficient of the Laurent series as given by Theorem
11.1.8

|an| =

∣∣∣∣∣ 1

2πi

∫
|z−zo|=r

f(z)

(z − zo)n+1
dz

∣∣∣∣∣ ≤ M(2πr)

2πrn+1
=
M

rn
.

As r → 0 we find |an| → 0 for n < 0. Thus an = 0 for all n = −1,−2, . . . . Thus, the Laurent series
for f(z) reduces to a power series for f(z) on the deleted disk 0 < |z − zo| < σ and it follows we
may extend f(z) to the disk |z − zo| < σ by simply defining f(zo) = ao. �

Example 11.2.4. Let f(z) = sin z
z on the punctured plane C×. Notice,

f(z) =
sin z

z
=

1

z

∞∑
j=0

(−1)j

(2j + 1)!
z2j+1 =

∞∑
j=0

(−1)j

(2j + 1)!
z2j = 1− 1

3!
z2 + · · · .

We can extend f to C by defining f(0) = 1.

To be a bit more pedantic, f̃ is the extension of f defined by f̃(z) = f(z) for z 6= 0 and f̃(0) = 1.
The point ? The extension f̃ is a new function which is distinct from f .

We now study poles of order N . Let us begin by making a definition:

Definition 11.2.5. Suppose f has a pole of order N at zo. If

f(z) =
a−N

(z − zo)N
+ · · ·+ a−1

z − zo
+
∞∑
k=0

ak(z − zo)k

then P (z) =
a−N

(z − zo)N
+ · · ·+ a−1

z − zo
is the principal part of f(z) about zo. When N = 1 then

zo is called a simple pole, when N = 2 then zo is called a double pole.
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Notice f(z)− P (z) is analytic.

Theorem 11.2.6. Let zo be an isolated singularity of f . Then zo is a pole of f of order N iff
f(z) = g(z)/(z − zo)N where g is analytic at zo with g(zo) 6= 0.

Proof: suppose f has a pole of order N at zo then by definition it has a Laurent series which
begins at n = −N . We calculate, for |z − zo| < r,

f(z) =

∞∑
k=−N

ak(z − zo)k =
1

(z − zo)N
∞∑

k=−N
ak(z − zo)k+N =

1

(z − zo)N
∞∑
j=0

aj−N (z − zo)j .

Define g(z) =
∑∞

j=0 aj−N (z − zo)j and note that g is analytic at zo with g(zo) = a−N 6= 0. We

know a−N 6= 0 by the definition of a pole of order N . Thus f(z) = g(z)/(z − zo)N as claimed.

Conversely, suppose there exists g analytic at zo with g(zo) 6= 0 and f(z) = g(z)/(z − zo)N . There
exist bo, b1, . . . with g(zo) = bo 6= 0 such that

g(z) =
∞∑
k=0

bk(z − zo)k

divide by (z − zo)N to obtain:

f(z) =
1

(z − zo)N
∞∑
k=0

bk(z − zo)k =

∞∑
k=0

bk(z − zo)k−N =

∞∑
j=−N

bj+N (z − zo)j

identify that the coefficient of the Laurent series at order −N is precisely bo 6= 0 and thus we have
shown f has a pole of order N at zo. �

Example 11.2.7. Consider f(z) =
ez

(z − 1)5
. Notice ez is analytic on C hence by Theorem 11.2.6

the function f has a pole of order N = 5 at zo = 1.

Example 11.2.8. Consider f(z) =
sin(z + 2)5

(z + 2)2
notice

f(z) =
1

(z + 2)5

(
(z + 2)3 − 1

3!
(z + 2)9 +

1

5!
(z + 2)15 + · · ·

)
=

simplifying yields

f(z) =
1

(z + 2)2

(
1− 1

3!
(z + 2)6 +

1

5!
(z + 2)12 + · · ·

)
︸ ︷︷ ︸

g(z)

which shows, by Theorem 11.2.6, the function f has a pole of order N = 2 at zo = −2.

Theorem 11.2.9. Let zo be an isolated singularity of f . Then zo is a pole of f of order N iff 1/f
is analytic at zo with a zero of order N .
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Proof: we know f has pole of order N iff f(z) = g(z)/(z − zo)N with g(zo) 6= 0 and g ∈ O(zo).
Suppose f has a pole of order N then observe

1

f(z)
= (z − zo)N ·

1

g(z)
.

hence 1/f(z) has a zero of order N by Theorem 10.8.9. Conversely, if 1/f(z) has a zero of order
N then by Theorem 10.8.9 we have 1

f(z) = (z − zo)Nh(z) where h ∈ O(zo) and h(zo) 6= 0. Define

g(z) = 1/h(z) and note g ∈ O(zo) and g(zo) = 1/h(zo) 6= 0 moreover,

1

f(z)
= (z − zo)Nh(z) ⇒ f(z) =

1

(z − zo)Nh(z)
=

g(z)

(z − zo)N

and we conclude by Theorem 11.2.6 that f has a pole of order N at zo. �

The theorem above can be quite useful for quick calculation.

Example 11.2.10. f(z) = 1/ sin z has a simple pole at zo = nπ for n ∈ N ∪ {0} since

sin(z) = sin(z − nπ + nπ) = cos(nπ) sin(z − nπ) = (−1)n(z − n)π − (−1)n

3!
(z − n)3 + · · ·

shows sin z has a simple zero at zo = nπ for n ∈ N ∪ {0}.

Example 11.2.11. You should be sure to study the example given by Gamelin on page 173 to 174
where he derives the Laurent expansion which converges on |z| = 4 for f(z) = 1/ sin z.

Example 11.2.12. Let f(z) =
1

z3(z − 2− 3i)6
then f has a pole of order N = 3 at zo = 0 and a

pole of order N = 6 at z1 = 2 + 3i

Definition 11.2.13. We say a function f is meromorphic on a domain D if f is analytic on
D except possibly at isolated singularities of which each is a pole.

Example 11.2.14. An entire function is meromorphic on C. However, an entire function may
not be analytic at ∞. For example, sin z is not analytic at ∞ and it has an essential singularity at
∞ so f(z) = sin z is not meromorphic on C ∪ {∞}.

Example 11.2.15. A rational function is formed by the quotient of two polynomials p(z), q(z) ∈
C[z] where q(z) is not identically zero; f(z) = p(z)/q(z). We will explain in Example 11.3.3 that
f(z) is meromorphic on the extended complex plane C ∪ {∞}.

Theorem 11.2.16. Let zo be an isolated singularity of f . Then zo is a pole of f of order N ≥ 1
iff |f(z)| → ∞ as z → zo.

Proof: if zo is a pole of order N then f(z) = g(z)/(z − zo)N for g(zo) 6= 0 for 0 < |z − zo| < r for
some r > 0 where g is analytic at zo. Since g is analytic at zo it is continuous and hence bounded
on the disk; |g(z)| ≤M for |z − zo| < r. Thus,

|f(z)| = |g(z)(z − zo)−N | ≤M(z − zo)−N →∞

as z → zo. Thus |f(z)| → ∞ as z → zo.
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Conversely, suppose |f(z)| → ∞ as z → zo. Hence, there exists r > 0 such that f(z) 6= 0 for
0 < |z − zo| < r. It follows that h(z) = 1/f(z) is analytic in for 0 < |z − zo| < r. Note that
|f(z)| → ∞ as z → zo implies h(z) → 0 as z → zo. Thus h(z) is bounded near zo and we find by
Riemann’s removable singularity Theorem 11.2.3 there exist an for n = 0, 1, 2, . . . such that:

h(z) =

∞∑
n=0

an(z − zo)n

However, h(z)→ 0 as z → zo hence the extension of h(z) is zero at zo. If the zero has order N then
h(z) = (z − zo)Nb(z) where b ∈ O(zo) and b(zo) 6= 0. Therefore, we obtain f(z) = g(z)/(z − zo)N
where g(z) = 1/b(z) where g ∈ O(zo) and g(zo) 6= 0. We conclude zo is a pole of order N by
Theorem 11.2.6.

Example 11.2.17. Let f(z) = e
1
z = 1 + 1

z + 1
2z2 + 1

6z3 + · · · . Clearly zo = 0 is an essential
singularity of f . It has different behaviour than a removable singularity or a pole. First, notice for
z = x > 0 we have f(z) = e1/x → ∞ as x → 0+ thus f is not bounded at zo = 0. On the other

hand, if we study z = iy for y > 0 then |f(z)| = |e
1
iy | = 1 hence |f(z)| does not tend to ∞ along

the imaginary axis.

Theorem 11.2.18. Casorati-Weierstrauss Theorem: Let zo be an essential isolated singularity
of f(z). Then for every complex number wo, there is a sequence zn → zo such that f(zn)→ wo as
n→∞.

Proof: by contrapositive argument. Suppose there exists a complex number wo for which there
does not exist a sequence zn → zo such that f(zn)→ wo as n→∞. It follows there exists ε > 0 for
which |f(z)− wo| > ε for all z in a small punctured disk about zo. Thus, h(z) = 1/(f(z)− wo) is
bounded close to zo. Consequently, zo is a removable singularity of h(z) and h(z) = (z − zo)Ng(z)
for some N ≥ 0 and some analytic function g such that g(zo) 6= 0. But, this gives:

1

f(z)− wo
= (z − zo)Ng(z) ⇒ f(z) = wo +

b(z)

(z − zo)N

where b = 1/g ∈ O(zo) and b(zo) 6= 0. If N = 0 then f extends to be analytic at zo. If N > 0 then
f has a pole of order N at zo. In all cases we have a contradiction to the given fact that zo is an
essential singularity. The theorem follows. �

Gamelin mentions Picard’s Theorem which states that for an essential singularity at zo, for all
wo except possibly one value, there is a sequence zn → zo for which f(zn) = wo for each n. In our
example e1/z the exceptional value is wo = 0.

11.3 Isolated Singularity at Infinity

As usual, we use the reciprocal function to transfer the definition from zero to infinity.

Definition 11.3.1. We say f has an isolated singular point at ∞ if there exists r > 0 such that f
is analytic on |z| > r. Equivalently, we say f has an isolated singular point at ∞ if g(w) = f(1/w)
has an isolated singularity at w = 0. Furthermore, we say that the isolated singular point at ∞ is
removable singularity, a pole of order N or an essential singularity if the corresponding singularity
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at w = 0 is likewise a removable singularity, pole of order N or an essential singular point of g. In
particular, if ∞ is a pole of order N then the Laurent series expansion:

f(z) = bNz
N + · · ·+ b1z + bo +

b−1

z
+
b−2

z2
+ · · ·

has principal part

P∞(z) = bNz
N + · · ·+ b1z + bo

hence f(z)− P∞(z) is analytic at ∞.

This section is mostly a definition. I now give a few illustrative examples, partly following Gamelin.

Example 11.3.2. The function ez = 1 + z+ z2/2! + z3/3! + · · · has an essential singularity at ∞.
This implies that while ez is meromorphic on C, it is not meromorphic on C ∪ {∞} as it has a
singularity which is not a pole or removable.

Example 11.3.3. Let p(z), q(z) ∈ C[z] with deg(p(z)) = m and deg(q(z)) = n such that m > n.
Notice that long-division gives d(z), r(z) ∈ C[z] for which deg(d(z)) = m − n and deg(r(z)) < m
such that

f(z) =
p(z)

q(z)
= d(z) +

r(z)

q(z)

The function r(z)
q(z) is analytic at ∞ and d(z) serves as the principal part. We identify f has a pole of

order m−n at ∞. It follows that any rational function is meromorphic on the extended complex
plane C ∪ {∞}

Example 11.3.4. Following the last example, suppose m = n then d(z) = 0 and the singularity at
∞ is seen to be removable. If p(z) = amz

m+ · · ·+ao and q(z) = bnz
n+ · · ·+ bo then we can extend

f analytically at ∞ by defining f(∞) = am/bn.

Example 11.3.5. Consider f(z) = (e1/z − 1)/z for z > 0. Observe

f(z) = (e1/z − 1)/z =

(
1

z
+

1

2!

1

z2
+

1

3!

1

z3
+ · · ·

)
hence the singularity at∞ is removable and we may extend f to be analytic on the extended complex
plane by defining f(∞) = 0.

11.4 Partial Fractions Decomposition

In the last section we noticed in Example 11.3.3 that rational functions were meromorphic on the
extended complex plane C∗ = C∪{∞}. Furthermore, it is interesting to notice the algebra of mero-
morphic functions is very nice: sums, products, quotients where the denominator is not identically
zero, all of these are once more meromorphic. In terms of abstract algebra, the set of meromorphic
functions on a domain forms a subalgebra of the algebra of holomorphic functions on D. See pages
315-320 of [R91] for a discussion which focuses on the algebraic aspects of meromorphic functions.

It turns out that not only are the rational functions meromorphic on C∗, in fact, they are the only
meromorphic functions on C∗.

Theorem 11.4.1. A meromorphic function on C∗ is a rational function.
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Proof: let f(z) be a meromorphic function on C∗. The number of poles of f must be finite
otherwise they would acculumate to give a singularity which was not isolated. If f is analytic at
∞ then we define P∞(z) = f(∞). Otherwise, f has a pole of order N and P∞(z) is a polynomial
of order N . In both cases, f(z) − P∞(z) is analytic at ∞ with f(z) − P∞(z) → 0 as z → ∞. Let
us label the poles in C as z1, z2, . . . , zm. Furthermore, let Pk(z) be the principal part of f(z) at zk
for k = 1, 2, . . . ,m. Notice, there exist α1, . . . , αnk such that

Pk(z) =
α1

z − zk
+

α2

(z − zk)2
+ · · ·+ αnk

(z − zk)nk

for each k. Notice Pk(z)→ 0 as z →∞ and Pk is analytic at∞. We define (still following Gamelin)

g(z) = f(z)− P∞(z)−
m∑
k=1

Pk(z).

Notice g is analytic at each of the poles including ∞. Thus g is an entire function and as g(z)→ 0
as z → ∞ it follows g is bounded and by Liouville’s Theorem we find g(z) = 0 for all z ∈ C.
Therefore,

f(z) = P∞(z) +

m∑
k=1

Pk(z).

This completes the proof as we already argued the converse direction in Example 11.3.3. �

The boxed formula is the partial fractions decomposition of f . In fact, we have shown:

Theorem 11.4.2. Every rational function has a partial fractions decomposition: in particular, if
z1, . . . , zm are the poles of f then

f(z) = P∞(z) +

m∑
k=1

Pk(z)

where P∞(z) is a polynomial and Pk(z) is the principal part of f(z) around the pole zk.

The method to obtain the partial fractions decomposition of a given rational function is described
algorithmically on pages 180-181. Essentially, the first thing to do is to we can use long-division
to discover the principal part at ∞. Once that is done, factor the denominator to discover the
poles of f(z) and then we can simply write out a generic form of

∑m
k=1 Pk(z). Then, we determine

the unknown coefficients implicit within the generic form by algebra. I will illustrate with a few
examples:

Example 11.4.3. Let f(z) =
z3 + z + 1

z2 + 1
. Notice that z3 + z + 1 = z(z2 + 1) + 1 hence

f(z) = z+
1

z2 + 1
. We now focus on

1

z2 + 1
notice z2 + 1 = (z− i)(z+ i) hence each pole is simple

and we seek complex constants A,B such that:

1

z2 + 1
=

A

z + i
+

B

z − i
.

Multiply by z2 + 1 to obtain:
1 = A(z − i) +B(z + i)
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Next, evaluate at z = −i and z = i to obtain 1 = −2iA and 1 = 2iB hence A = −1/2i and
B = 1/2i and we conclude:

f(z) = z − 1

2i

1

z + i
+

1

2i

1

z − i
.

Example 11.4.4. Let f(z) =
2z + 1

z2 − 3z − 4
notice z2 − 3z − 4 = (z − 4)(z + 1) hence

2z + 1

z2 − 3z − 4
=

A

z − 4
+

B

z + 1
⇒ 2z + 1 = A(z + 1) +B(z − 4)

Evaluate at z = −1 and z = 4 to obtain:

−1 = −5B & 9 = 5A ⇒ A = 9/5, B = 1/5.

Thus,

f(z) =
1

5

(
5

z − 4
+

1

z + 1

)
Example 11.4.5. Suppose f(z) =

1 + z

z4 − 3z3 + 3z2 − z
. Long division is not needed as this is

already a proper rational function. Notice

z4 − 3z3 + 3z2 − z = z(z3 − 3z2 + 3z − 1) = z(z − 1)3.

Thus we seek: complex constants A,B,C,D for which

1 + z

z4 − 3z3 + 3z2 − z
=
A

z
+

B

z − 1
+

C

(z − 1)2
+

D

(z − 1)3

Multiplying by the denominator yields,

1 + z = A(z − 1)3 +Bz(z − 1)2 + Cz(z − 1) +Dz, ?

which is nice to write as

1 + z = A(z3 − 3z2 + 3z − 1) +B(z3 − 2z2 + z) + C(z2 − z) +Dz

for what follows. Differentiating gives

1 = A(3z2 − 6z + 3) +B(3z2 − 4z + 1) + C(2z − 1) +D,
d?

dz

differentiating once more yields

0 = A(6z − 6) +B(6z − 4) + C(2),
d2?

dz2

differentiating for the third time:
0 = 6A+ 6B

Thus A = −B. Set z = 1 in ? to obtain 2 = D. Once again, set z = 1 in d?
dz to obtain 1 = C(2−1)+2

hence C = −1. Finally, set z = 1 in d2?
dz2 to obtain 0 = 2B − 2 thus B = 1 and we find A = −1 as

a consequence. In summary:

1 + z

z4 − 3z3 + 3z2 − z
= −1

z
+

1

z − 1
− 1

(z − 1)2
+

2

(z − 1)3
.
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Perhaps you did not see the technique I used in the example above in your previous work with
partial fractions. It is a nice addition to the usual algebraic technique.

Example 11.4.6. On how partial fractions helps us find Laurent Series in the last example
we found:

f(z) =
1 + z

z4 − 3z3 + 3z2 − z
= −1

z
+

1

z − 1
− 1

(z − 1)2
+

2

(z − 1)3
.

If we want the explicit Laurent series about z = 1 we simply need to expand the analytic function
−1/z as a power series:

−1

z
=

−1

1 + (z − 1)
=
∞∑
n=0

(−1)n+1(z − 1)n

thus for 0 < |z − 1| < 1

f(z) =
2

(z − 1)3
− 1

(z − 1)2
+

1

z − 1
+
∞∑
n=0

(−1)n+1(z − 1)n.

This is the Laurent series of f about zo = 1. The other singular point is z1 = 0. To find the Laurent
series about z1 we need to expand 1

z−1 −
1

(z−1)2 + 2
(z−1)3 as a power series about z1 = 0. To begin,

1

z − 1
=
−1

1− z
= −

∞∑
n=0

zn.

Let g(z) = − 1
(z−1)2 and notice

∫
g(z)dz = C + 1

z−1 = C −
∑∞

n=0 z
n thus

g(z) =
d

dz

[∫
g(z)dz

]
=

d

dz

[
C −

∞∑
n=0

zn

]
= −

∞∑
n=1

nzn−1 = −
∞∑
j=0

(j + 1)zj .

Let h(z) = 2/(z − 1)3 notice
∫
h(z)dz = −1/(z − 1)2 and

∫
(
∫
h(z)dz)dz = 1/(z − 1) = −

∑∞
n=0 z

n.
I have ignored the constants of integration (why is this ok?). Observe,

h(z) =
d

dz

d

dz

[∫ (∫
h(z)dz

)
dz

]
=

d

dz

d

dz

[
−
∞∑
n=0

zn

]
=

d

dz

[
−
∞∑
n=1

nzn−1

]

= −
∞∑
n=2

n(n− 1)zn−2

= −
∞∑
j=0

(j + 2)(j + 1)zj .

Thus, noting f(z) = −1/z + 1/(z − 1) + g(z) + h(z) we collect our calculations above to obtain:

f(z) =
−1

z
−
∞∑
j=0

(1 + (j + 1) + (j + 2)(j + 1)) zj =
−1

z
−
∞∑
j=0

(
j2 + 4j + 4

)
zj .

Neat, j2 + 4j + 4 = (j + 2)2 hence:

f(z) =
−1

z
−
∞∑
j=0

(j + 2)2 zj =
−1

z
+ 4 + 9z + 16z2 + 25z3 + 36z4 + · · · .

Term-by-term integration and differentiation allowed us to use geometric series to expand the basic
rational functions which appear in the partial fractal decomposition. I hope you see the method I
used in the example above allows us a technique to go from a given partial fractal decomposition
to the Laurent series about any point we wish. Of course, singular points are most fun.
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Chapter 12

The Residue Calculus

In this chapter we collect the essential tools of the residue calculus. Then, we solve a variety of
real integrals by relating the integral of interest to the residue of a complex function. The method
we present here is not general. Much like second semester calculus, we show some typical examples
and hold out hope the reader can generalize to similar examples. These examples date back to the
early nineteenth or late eighteenth centuries. Laplace, Poisson and ,of course, Cauchy were able to
use complex analysis to solve a myriad of real integrals. That said, according to Remmert [R91]
page 395:

Nevertheless there is no cannonical method of finding, for a given integrand and interval
of integration, the best path γ in C to use.

And if that isn’t sobering enough, from Ahlfors:

even complete mastery does not guarantee success

Ahlfors was a master so this comment is perhaps troubling. Generally, complex integration is an
art. For example, if you peruse the answers of Ron Gordon on the Math Stackexchange Website
you’ll see some truly difficult problems solved by one such artist.

Some of the examples solved in this chapter are also solved by techinques of real second semester
calculus. I include such examples to illustrate the complex technique with minimal difficulty.

Keep in mind I have additional examples posted in NotesWithE100toE117. I will lecture some from
those examples and some from these notes.

191

http://math.stackexchange.com/users/53268/ron-gordon
http://www.supermath.info/NotesWithE100to%20E1174_2_2013.pdf
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12.1 The Residue Theorem

In Theorem 11.1.8 we learned that a function with an isolated singularity has a Laurent expansion:
in particular, if 0 ≤ ρ < σ ≤ ∞, and f(z) is analytic for ρ < |z − zo| < σ. Then f(z) can be
decomposed as a Laurent series

f(z) =
∞∑

n=−∞
an(z − zo)n

where the coefficients an are given by:

an =
1

2πi

∫
|z−zo|=r

f(z)

(z − zo)n+1
dz

for r > 0 with ρ < r < σ. The n = −1 coefficient has special significance when we focus on the
expansion in a deleted disk about zo.

Definition 12.1.1. Suppose f(z) has an isolated singularity zo and Laurent series

f(z) =
∞∑

n=−∞
an(z − zo)n

for 0 < |z − zo| < ρ then we define the residue of f at zo by

Res [f(z), zo] = a−1.

Notice, the n = −1 coefficient is only the residue when we consider the deleted disk around the
singularity. Furthermore, by Theorem 11.1.8, for the Laurent series in the definition above we have

a−1 =
1

2πi

∮
|z−zo|=r

f(z) dz

where r is any fixed radius with 0 < r < ρ.

Example 12.1.2. Suppose n 6= 1,

Res

[
1

z − zo
, zo

]
= 1 & Res

[
1

(z − zo)n
, zo

]
= 0.

Example 12.1.3. In Example 11.4.3 we found

f(z) =
z3 + z + 1

z2 + 1
= z − 1

2i

1

z + i
+

1

2i

1

z − i
.

From this partial fractions decomposition we are free to read that

Res [f(z), i] =
1

2i
& Res [f(z),−i] =

−1

2i
.

Do you understand why there is no hidden 1/(z − i) term in f(z) − 1
2i

1
z−i? If you don’t then you

ought to read §V I.4 again.
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Example 12.1.4. In Example 11.4.4 we derived:

f(z) =
2z + 1

z2 − 3z − 4
=

1

5

(
5

z − 4
+

1

z + 1

)
From the above we can read:

Res [f(z), 4] = 1 & Res [f(z),−1] =
1

5
.

Example 12.1.5. In Example 11.4.5 we derived:

f(z) =
1 + z

z4 − 3z3 + 3z2 − z
= −1

z
+

1

z − 1
− 1

(z − 1)2
+

2

(z − 1)3

By inspection of the above partial fractal decomposition we find:

Res [f(z), 0] = −1 & Res [f(z), 1] = 1.

Example 12.1.6. Consider (sin z)/z6 observe

1

z6

(
z − 1

6
z3 +

1

120
z5 + · · ·

)
=

1

z5
− 1

6z3
+

1

120z
+ · · · .

In view of the expansion above, we find:

Res

[
sin z

z6
, 0

]
=

1

120

Theorem 12.1.7. Cauchy’s Residue Theorem: let D be a bounded domain in the complex
plane with a piecewise smooth boundary ∂D. Suppose that f is analytic on D ∪ ∂D, except for a
finite number of isolated singularities z1, . . . , zm in D. Then∫

∂D
f(z) dz = 2πi

m∑
j=1

Res [f(z), zj ] .

Proof: this follows immediately from m-applications of Theorem 11.1.8. We simply parse D into
m simply connected regions each of which contains just one singular point. The net-integration
only gives the boundary as the cross-cuts cancel. The picture below easily generalizes for m > 3.

Of course, we could also just envision little circles around each singularity and apply the deforma-
tion theorem to reach the ∂D. �

Our focus has shifted from finding the whole Laurent series to just finding the coefficient of the
reciprocal term. In the remainder of this section we examine some useful rules to find residues.
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Proposition 12.1.8. Rule 1: if f(z) has a simple pole at zo, then

Res [f(z), zo] = lim
z→zo

(z − zo)f(z).

Proof: since f has a simple pole at zo we have:

f(z) =
a−1

z − zo
+ g(z)

where g ∈ O(zo). Hence,

lim
z→zo

[(z − zo)f(z)] = lim
z→zo

[a−1 + (z − zo)g(z)] = a−1. �

Example 12.1.9.

Res

[
z3 + z + 1

z2 + 1
, i

]
= lim

z→i
(z − i) z3 + z + 1

(z − i)(z + i)
= lim

z→i

z3 + z + 1

z + i
=
−i+ i+ 1

i+ i
=

1

2i
.

You can contrast the work above with that which was required in Example 12.2.2.

Example 12.1.10. Following Example 12.1.4, let’s see how Rule 1 helps:

Res

[
2z + 1

z2 − 3z − 4
,−1

]
= lim

z→−1
(z + 1)

2z + 1

(z + 1)(z − 4)
=

2(−1) + 1

−1− 4
=

1

5
.

Proposition 12.1.11. Rule 2: if f(z) has a double pole at zo, then

Res [f(z), zo] = lim
z→zo

d

dz

[
(z − zo)2f(z)

]
.

Proof: since f has a double pole at zo we have:

f(z) =
a−2

(z − zo)2
+

a−1

z − zo
+ g(z)

where g ∈ O(zo). Hence,

lim
z→zo

d

dz

[
(z − zo)2f(z)

]
= lim

z→zo

d

dz

[
a−2 + (z − zo)a−1 + (z − zo)2g(z)

]
= lim

z→zo

[
a−1 + 2(z − zo)g(z) + (z − zo)2g(z)

]
= a−1. �

Example 12.1.12.

Res

[
1

(z3 + 1)z2
, 0

]
= lim

z→0

d

dz

[
z2

(z3 + 1)z2

]
= lim

z→0

[
−3z2

(z3 + 1)2

]
= 0.

Let me generalize Gamelin’s example from page 197. I replace i in Gamelin with a.

Example 12.1.13. keep in mind z2 − a2 = (z + a)(z − a),

Res

[
1

(z2 − a2)2
, a

]
= lim

z→a

d

dz

[
(z − a)2

(z2 − a2)2

]
= lim

z→a

[
1

(z + a)2

]
=

2

(z + a)3

∣∣∣∣
z=a

=
−2

8a3
.
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In the classic text of Churchill and Brown, the rule below falls under one of the p, q theorems. See
§57 of [C96]. We use the notation of Gamelin here and resist the urge to mind our p’s and q’s.

Proposition 12.1.14. Rule 3: If f, g ∈ O(zo), and if g has a simple zero at zo, then

Res

[
f(z)

g(z)
, zo

]
=
f(zo)

g′(zo)
.

Proof: if f has a zero of order N ≥ 1 then f(z) = (z − zo)Nh(z) and g(z) = (z − zo)k(z) where
h(zo), k(zo) 6= 0 hence

f(z)

g(z)
=

(z − zo)Nh(z)

(z − zo)k(z)
= (z − zo)N−1h(z)

k(z)

which shows limz→zo
f(z)
g(z) = 0 if N > 1 and for N = 1 we have limz→zo

f(z)
g(z) = h(zo)

k(zo)
. In either case,

for N ≥ 0 we find f(z)
g(z) has a removable singularity hence the residue is zero which is consistent

with the formula of the proposition as f(zo) = 0. Next, suppose f(zo) 6= 0 then by Theorem 11.2.6
we have f(z)/g(z) has a simple pole hence Rule 1 applies:

Res [f(z)/g(z), zo] = lim
z→zo

(z − zo)
f(z)

g(z)
=

f(zo)

limz→zo

(
g(z)−g(zo)
z−zo

) =
f(zo)

g′(zo)
.

where in the last step I used that g(zo) = 0 and g′(zo), f(zo) ∈ C with g′(zo) 6= 0 were given. �

Example 12.1.15. Observe g(z) = sin z has simple zero at zo = π since g(π) = sinπ = 0 and
g′(π) = cosπ = −1 6= 0. Rule 3 hence applies as ez ∈ O(π),

Res

[
ez

sin z
, π

]
=

eπ

cosπ
= −eπ.

Example 12.1.16. Notice g(z) = (z− 3)ez has a simple zero at zo = 3. Thus, noting cos z ∈ O(3)
we apply Rule 3.

Res

[
cos z

(z − 3)ez
, 3

]
=

cos(z)

ez + (z − 3)ez

∣∣∣∣
z=3

=
cos(3)

e3
.

One more rule to go:

Proposition 12.1.17. Rule 4: if g(z) has a simple pole at zo, then

Res

[
1

g(z)
, zo

]
=

1

g′(zo)
.

Proof: apply Rule 3 with f(z) = 1. �

I’ll follow Gamelin and offer this example which does clearly show why Rule 4 is so nice to know:

Example 12.1.18. note that g(z) = z2 + 1 has g(i) = 0 and g′(i) = 2i 6= 0 hence g has simple
zero at zo = i. Apply Rule 4,

Res

[
1

z2 + 1
, i

]
=

1

2z

∣∣∣∣
z=i

=
1

2i
.
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12.2 Integrals Featuring Rational Functions

Let R > 0. Consider the curve ∂D which is formed by joining the line-segment [−R,R] to the
upper-half of the positively oriented circle |z| = R. Let us denote the half-circle by CR hence
∂D = [−R,R]∪CR. Notice the domain D is a half-disk region of radius R with the diameter along
the real axis. If f(z) is a function which is analytic at all but a finite number of isolated singular
points z1, . . . , zk in D then Cauchy’s Residue Theorem yields:∫

CR

f(z) dz = 2πi
k∑
j=1

Res [f(z), zj ]

In particular, we find ∫
[−R,R]

f(z) dz +

∫
CR

f(z) dz = 2πi
k∑
j=1

Res [f(z), zj ]

But, [−R,R] has z = x hence dz = dx and f(z) = f(x) for −R ≤ x ≤ R and

∫ R

−R
f(x) dx+

∫
CR

f(z) dz = 2πi
k∑
j=1

Res [f(z), zj ] .

The formula above connects integrals in the real domain to residues and the contour integral along
a half-circle CR. We can say something interesting in general for rational functions.

Suppose f(z) = p(z)
q(z) where deg(q(z)) ≥ deg(p(z)) + 2. Let deg(q(z)) = n and deg(p(z)) = m

hence n − m ≥ 2. Also, assume q(x) 6= 0 for all x ∈ R so that no1 singular points fall on
[−R,R]. In Problem 44 of the homework, based on an argument from page 131 of [C96], I showed
there exists R > 0 for which q(z) = anz

n + · · · + a2z
2 + a1z + ao is bounded below |an|Rn/2

for |z| > R; that is |q(z)| ≥ |an|
2 Rn for all |z| > R. On the other hand, it is easier to argue that

p(z) = bmz
m+· · ·+b1z+bo is bounded for |z| > R by repeated application of the triangle inequality:

|p(z)| ≤ |bmzm|+ · · ·+ |b1z|+ |bo| ≤ |bm|Rm + · · ·+ |b1|R+ |bo|.

Therefore, if |z| > R as described above,

|f(z)| = |p(z)|
|q(z)|

≤ |bm|R
m + · · ·+ |b1|R+ |bo|

|an|
2 Rn

≤ M

Rn−m

1in §V II.5 we study fractional residues which allows us to treat singularities on the boundary in a natural manner,
but, for now, they are forbidden
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where M is a constant which depends on the coefficients of p(z) and q(z). Applying the ML-
estimate to CR for R > 0 for which the bound applies we obtain:∣∣∣∣∫

CR

f(z) dz

∣∣∣∣ ≤ M(2πR)

Rn−m
=

2Mπ

Rn−m−1

This bound applies for all R beyond some positive value hence we deduce:

lim
R→∞

∣∣∣∣∫
CR

f(z) dz

∣∣∣∣ ≤ lim
R→∞

2Mπ

Rn−m−1
= 0 ⇒ lim

R→∞

∫
CR

f(z) dz = 0.

as n−m ≥ 2 implies n−m−1 ≥ 1. Therefore, the boxed formula provides a direct link between the
so-called principal value of the real integral and the sum of the residues over the upper half-plane
of C:

lim
R→∞

∫ R

−R
f(x) dx = 2πi

m∑
j=1

Res [f(z), zj ] .

Sometimes, for explicit examples, it is expected that you show the details for the construction of
M and that you retrace the steps of the general path I sketched above. If I have no interest in that
detail then I will tell you to use the Proposition below:

Proposition 12.2.1. If f(z) is a rational function which has no real-singularities and for which
the denominator is of degree at least two higher than the numerator then

lim
R→∞

∫ R

−R
f(x) dx = 2πi

k∑
j=1

Res [f(z), zj ] .

where z1, . . . , zk are singular points of f(z) for which Im(zj) > 0 for j = 1, . . . , k.

Example 12.2.2. We calculate limR→∞
∫ R
−R

dx
x2+1

by noting the complex extension of the integrand

f(z) = 1
z2+1

satisfies the conditions of Proposition 12.2.1. Thus,

lim
R→∞

∫ R

−R

dx

x2 + 1
= 2πiRes

[
1

z2 + 1
, i

]
=

2πi

2z

∣∣∣∣
z=i

=
2πi

2i
= π.

Thus2

∫ ∞
−∞

dx

x2 + 1
= π.

2so, technically, the double infinite double integral is defined by distinct parameters tending to ∞ and −∞
independent of one another, however, for this integrand there is no difference between

∫ b
a

dx
x2+1

with a → ∞ and
b→ −∞ verses a = −b = R tending to ∞. Gamelin starts to discuss this issue in §V II.6
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You can contrast the way I did the previous example with how Gamelin presents the work.

Example 12.2.3. Consider f(z) = 1
z4+1

notice singularities of this function are the fourth roots

of −1; z4 + 1 = 0 implies z ∈ (−1)1/4 = {eiπ/4, ieiπ/4,−eiπ/4,−ieiπ/4}. Only two of these fall in
the upper-half plane. Thus, by Proposition 12.2.1

lim
R→∞

∫ R

−R

dx

x4 + 1
= 2πiRes

[
1

z4 + 1
, eiπ/4

]
+ 2πiRes

[
1

z4 + 1
, ieiπ/4

]
.

=
2πi

4z3

∣∣∣∣
eiπ/4

+
2πi

4z3

∣∣∣∣
ieiπ/4

=
2πi

4ei3π/4
+

2πi

4i3e3iπ/4

=
π

2ei3π/4

[
i+

i

i3

]
=
−π

2ei3π/4
[1− i] =

−π
2ei3π/4

√
2e−iπ/4 =

π√
2
.

where we noted e−iπ/4/ei3π/4 = 1/eiπ = −1 to cancel the −1. It follows that:

∫ ∞
−∞

dx

x4 + 1
=

π√
2

.

Wolfram Alpha reveals the antiderivative for the previous example can be directly calculated:∫
dx

x4 + 1
= (− log(x2−

√
2x+1)+log(x2+

√
2x+1)−2 tan−1(1−

√
2x)+2 tan−1(

√
2x+1))/(4

√
2)+C.

Then to calculate the improper integral you just have to calculate the limit of the expression above
at ±∞ and take the difference. That said, I think I prefer the method which is more complex.

The method used to justify Proposition 12.2.1 applies to non-rational examples as well. The key
question is how to bound, or more generally capture, the integral along the half-circle as R →∞.
Sometimes the direct complex extension of the real integral is not wise. For example, for a > 0,
when faced with ∫ ∞

−∞

p(x)

q(x)
cos(ax)dx

we would not want to use f(z) = p(z) cos(az)
q(z) since cos(aiy) = cosh(ay) is unbounded. Instead,

we would consider f(z) = p(z)eiaz

q(z) from which we obtain values for both
∫∞
−∞

p(x)
q(x) cos(ax)dx and∫∞

−∞
p(x)
q(x) sin(ax)dx. I will not attempt to derive an analog to Proposition 12.2.1. Instead, I consider

the example presented by Gamelin.
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Example 12.2.4. Consider f(z) = eiaz

z2+1
. Notice f has simple poles at z = ±i, the picture of

Example 12.2.2 applies here. By Rule 3,

Res

[
eiaz

z2 + 1
, i

]
=
eiaz

2z

∣∣∣∣
i

=
e−a

2i
.

Let D be the half disk with ∂D = [−R,R] ∪ CR then by Cauchy’s Residue Theorem∫
[−R,R]

eiaz

z2 + 1
dz +

∫
CR

eiaz

z2 + 1
dz =

2πie−a

2i
= πe−a ? .

For CR we have z = Reiθ for 0 ≤ θ ≤ π hence for z ∈ CR with R > 1,

|f(z)| =
∣∣∣∣ eiazz2 + 1

∣∣∣∣ =
1

|z2 + 1|
≤ 1

||z|2 − 1|
=

1

R2 − 1

Thus, by ML-estimate,∣∣∣∣∫
CR

eiaz

z2 + 1
dz

∣∣∣∣ ≤ 2πR

1−R2
⇒ lim

R→∞

∫
CR

eiaz

z2 + 1
dz = 0.

Returning to ? we find:

lim
R→∞

∫
[−R,R]

eiax

x2 + 1
dx = πe−a ⇒

∫ ∞
−∞

cos(ax)

x2 + 1
dx+ i

∫ ∞
−∞

sin(ax)

x2 + 1
dx = πe−a.

The real and imaginary parts of the equation above reveal:∫ ∞
−∞

cos(ax)

x2 + 1
dx = πe−a &

∫ ∞
−∞

sin(ax)

x2 + 1
dx = 0.

In §V II.7 we learn about Jordan’s Lemma which provides an estimate which allows for integration
of expressions such as sinx

x .

12.3 Integrals of Trigonometric Functions

The idea of this section is fairly simple once you grasp it:

Given an integral involving sine or cosine find a way to represent it as the formula for
the contour integral around the unit-circle, or some appropriate curve, then use residue
theory to calculate the complex integral hence calculating the given real integral.

Let us discuss the main algebraic identities to begin: if z = eiθ = cos θ + i sin θ then z̄ = e−iθ =
cos θ− i sin θ hence cos θ = 1

2

(
eiθ + e−iθ

)
and sin θ = 1

2i

(
eiθ − e−iθ

)
. Of course, we’ve known these

from earlier in the course. But, we also can see these as:

cos θ =
1

2

(
z +

1

z

)
& sin θ =

1

2i

(
z − 1

z

)
moreover, dz = ieiθdθ hence dθ = dz/iz. It should be emphasized, the formulas above hold for the
unit-circle.
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Consider a complex-valued rational function R(z) with singular points z1, z2, . . . zk for which |zj | 6= 0
for all j = 1, 2, . . . , k. Then, by Cauchy’s Residue Theorem∫

|z|=1
R(z) dz = 2πi

∑
|zj |<1

Res (R(z), zj)

In particular, as z = eiθ parametrizes |z| = 1 for 0 ≤ θ ≤ 2π,∫ 2π

0
R(cos θ + i sin θ) ieiθdθ = 2πi

∑
|zj |<1

Res (R(z), zj)

In examples, we often begin with
∫ 2π

0 R(cos θ+i sin θ) ieiθdθ and work our way back to
∫
|z|=1R(z) dz.

Example 12.3.1. ∫ 2π

0

dθ

5 + 4 sin θ
=

∫
|z|=1

dz/iz

5− 4 · i2
(
z − 1

z

)
=

∫
|z|=1

1

i
· dz

5z − 2i (z2 − 1)

=

∫
|z|=1

dz

2z2 − 2 + 5iz

Notice 2z2 + 5iz− 2 = (2z+ i)(z+ 2i) = 2(z+ i/2)(z+ 2i) is zero for zo = −i/2 or z1 = −2i. Only
zo falls inside |z| = 1 therefore, by Cauchy’s Residue Theorem,∫ 2π

0

dθ

5 + 4 sin θ
=

∫
|z|=1

dz

2z2 + 5iz − 2

= 2πiRes

[
1

2z2 + 5iz − 2
,−i/2

]
= (2πi)

1

4z + 5i

∣∣∣∣
z=−i/2

=
2πi

−2i+ 5i

=
2π

3
.

The example below is approximately borrowed from Remmert page 397 [R91].

Example 12.3.2. Suppose p ∈ C with |p| 6= 1. We wish to calculate:∫ 2π

0

1

1− 2p cos θ + p2
dθ.

Converting the integrand and measure to |z| = 1 yields:

1

1− p
(
z + 1

z

)
+ p2

dz

iz
=

[
1

z − pz2 − p+ p2z

]
dz

i
=

[
1

(z − p)(1− pz)

]
dz

i
.
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Hence, if |p| < 1 then z = p is in |z| ≤ 1 and it follows 1− pz 6= 0 for all points z on the unit-circle
|z| = 1. Thus, we have only one singular point as we apply the Residue Theorem:∫ 2π

0

1

1− 2p cos θ + p2
dθ =

∫
|z|=1

[
1

(z − p)(1− pz)

]
dz

i
= 2πRes

[
1

(z − p)(1− pz)
, p

]
By Rule 1,

Res

[
1

(z − p)(1− pz)
, p

]
= lim

z→p
(z − p) 1

(z − p)(1− pz)
=

1

1− p2

and we conclude: if |p| < 1 then∫ 2π

0

1

1− 2p cos θ + p2
dθ =

2π

1− p2
.

Suppose |p| > 1 then z − p 6= 0 for |z| = 1 and 1− pz = 0 for zo = 1/p for which |zo| = 1/|p| < 1.
Thus the Residue Theorem faces just one singularity within |z| = 1 for the |p| > 1 case:∫ 2π

0

1

1− 2p cos θ + p2
dθ =

∫
|z|=1

[
1

(z − p)(1− pz)

]
dz

i
= 2πRes

[
1

(z − p)(1− pz)
, 1/p

]
By Rule 1,

Res

[
1

(z − p)(1− pz)
, 1/p

]
= lim

z→1/p
(z − 1/p)

1

(z − p)(z − 1/p)(−p)
=

1

(1/p− p)(−p)
=

1

p2 − 1
,

neat. Thus, we conclude, for |p| > 1,∫ 2π

0

1

1− 2p cos θ + p2
dθ =

2π

p2 − 1
.

12.4 Integrands with Branch Points

Cauchy’s Residue Theorem directly applies to functions with isolated singularities. If we wish to
study functions with branch cuts then some additional ingenuity is required. In particular, the
keyhole contour is often useful. For example, the following template could be used for branch
cuts along the positive real, negative imaginary and negative real axis.
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Example 12.4.1. Consider

∫ ∞
0

xa

(1 + x)2
dx where a 6= 0 and −1 < a < 1. To capture this

integral we study f(z) = za

(1+z)2 where za = |z|aexp(aLog0(z)) is the branch of za which has a jump-

discontinuity along θ = 0 which is also at θ = 2π. Let ΓR be the outside circle in the contour
below. Let Γε be the small circle encircling z = 0. Furthermore, let L+ = [ε + iδ, R + iδ] and
L− = [R − iδ, ε − iδ] where δ is a small positive constant3 for which δ → 0 and ε → 0. Notice, in
the limits ε→ 0 and R→∞, we have L+ → [0,∞] and L− → [∞, 0]

The singularity zo = −1 falls within the contour for R > 1 and ε < 1. By Rule 2 for residues,

Res

(
za

(1 + z)2
,−1

)
= lim

z→−1

d

dz
[za] = lim

z→−1

(
aza−1

)
= a(−1)a−1 = −a(eiπ)a = −aeiπa.

Cauchy’s Residue Theorem applied to the contour thus yields:∫
ΓR

f(z) dz +

∫
L−

f(z) dz +

∫
Γε

f(z) dz +

∫
L+

f(z) dz = −2πiaeiπa

If |z| = R then notice: ∣∣∣∣ za

(1 + z)2

∣∣∣∣ ≤ Ra

(R− 1)2
.

Also, if |z| = ε then ∣∣∣∣ za

(1 + z)2

∣∣∣∣ ≤ εa

(1− ε)2
.

In the limits ε→ 0 and R→∞ we find by the ML-estimate∣∣∣∣∫
ΓR

f(z) dz

∣∣∣∣ ≤ Ra

(R− 1)2
(2πR) =

2πRa−1

(1− 1/R)2
→ 0

as −1 < a < 1 implies a− 1 < 0. Likewise,as a+ 1 > 0 we find:∣∣∣∣∫
Γε

f(z) dz

∣∣∣∣ ≤ εa

(1− ε)2
(2πε) =

2πεa+1

(1− ε)2
→ 0.

We now turn to unravel the integrals along L±. For z ∈ L+ we have Arg0(z) = 0 whereas z ∈ L−
we have Arg0(z) = 2π. In the limit ε→ 0 and R→∞ we have:∫

L+

za

(1 + z)2
dz =

∫ ∞
0

xa

(1 + x)2
dx & −

∫
L−

za

(1 + z)2
dz =

∫ ∞
0

xae2πia

(1 + x)2
dx

3we choose δ as to connect L± and the inner and outer circles
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where the phase factor on L− arises from the definition of za by the Arg0(z) branch of the argument.
Bringing it all together,∫ ∞

0

xa

(1 + x)2
dx− e2πia

∫ ∞
0

xa

(1 + x)2
dx = −2πiaeiπa.

Solving for the integral of interest yields:∫ ∞
0

xa

(1 + x)2
dx =

−2πiaeiπa

1− e2πia
=

πa
1
2i (eiπa − e−iπa)

=
πa

sin(πa)

At this point, Gamein remarks that the function g(w) =
∫∞

0
xwdx

(1+x)2 is analytic on the strip

−1 < Re(w) < 1 as is the function πw
sinπw thus by the identity princple we find the integral

identity holds for −1 < Re(w) < 1.

The following example appears as a homework problem on page 227 of [C96].

Example 12.4.2. Show that

∫ ∞
0

dx√
x(x2 + 1)

=
π√
2

.

Let f(z) =
z−1/2

z2 + 1
where the root-function has a branch cut along [0,∞]. We use the keyhole

contour introduced in the previous example. Notice z = ±i are simple poles of f(z). We consider
z−1/2 = |z|−1/2exp

(−1
2 Log0(z)

)
. In other words, if z = re−θ for 0 < θ ≤ 2π then z−1/2 = 1√

reiθ/2
.

Thus, for z = x in L+ we have z−1/2 = 1/
√
x. On the other hand for z = x in L− we have

z−1/2 = −1/
√
x as ei(2π)/2 = eiπ = −1. Notice, z2 + 1 = (z − i)(z + i) and apply Rule 3 to see

Res (f(z), i) =
i−1/2

2i
=
e−iπ/4

2i
& Res (f(z),−i) =

(−i)−1/2

−2i
=
e−3πi/4

−2i

Consequently, assuming4 the integrals along ΓR and Γε vanish as R→∞ and ε→ 0 we find:

∫ ∞
0

dx√
x(x2 + 1)

−
∫ ∞

0

dx

−
√
x(x2 + 1)

= 2πi

(
e−iπ/4

2i
+
e−3πi/4

−2i

)

Notice −1 = eiπ and eiπe−3πi/4 = eπi/4 hence:

2

∫ ∞
0

dx√
x(x2 + 1)

= 2π

(
e−iπ/4

2
+
eπi/4

2

)
= 2π cosπ/4 ⇒

∫ ∞
0

dx√
x(x2 + 1)

=
π√
2
.

The key to success is care with the details of the branch cut. It is a critical detail. I should mention
that E116 in the handwritten notes is worthy of study. I believe I have assigned a homework
problem of a similar nature. There we consider a rectangular path of integration which tends to
infinity and uncovers and interesting integral. There are also fascinating examples of wedge-shaped
integrations and many other choices I currently have not included in this set of notes.

4 I leave these details to the reader, but intuitively it is already clear the antiderivative is something like
√
x at

the origin and 1/
√
x for x→∞.
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12.5 Fractional Residues

In general when a singularity falls on a proposed path of integration then there is no simple method
of calculation. Generically, you would make a little indentation and then take the limit as the
indentation squeezes down to the point. If that limiting process uniquely produces a value then
that gives the integral along such a path. In the case of a simple pole there is a nice reformulation
of Cauchy’s Residue Theorem.

Theorem 12.5.1. If zo is a simple pole of f and Cε is an arc of |z − zo| = ε of angle α then

lim
ε→0

∫
Cε

f(z) dz = αiRes (f(z), zo) .

Proof: since f has a simple pole we have:

f(z) =
A

z − zo
+ g(z)

where, by the definition of residue, A = Res (f(z), zo). The arc |z−zo| = ε of angle α is parametrized
by z = zo + εeiθ for θo ≤ θ ≤ θo + α. As the arc is a bounded subset and g is analytic on the arc it
follows there exists M > 0 for which |g(z)| < M for |z − zo| = ε. Furthermore, the integral of the
singular part is calculated:∫

Cε

Adz

z − zo
=

∫ θo+α

θo

Aiεeiθdθ

εeiθ
= iA

∫ θo+α

θo

dθ = iαA. �

Of course this result is nicely consistent with the usual residue theorem if we consider α = 2π and
think about the deformation theorem shrinking a circular path to a point.

Example 12.5.2. Let γ = CR ∪ [−R,−1− ε] ∪ Cε ∪ [−1 + ε, R]. This is a half-circular path with
an indentation around zo = −1. Here we assume Cε is a half-circle of radius ε above the real axis.

The aperature is π hence the fractional residue theorem yields:

lim
ε→0

∫
Cε

dz

(z + 1)(z − i)
= −πiRes

(
1

(z + 1)(z − i)
,−1

)
= −πi

(
1

−1− i

)
=
π(1 + i)

2

For |z| = R > 1 notice
∣∣∣ 1

(z+1)(z−i)

∣∣∣ ≤ ∣∣∣ 1
||z|−|1||·||z|−|i||

∣∣∣ = 1
(R−1)2 = M . Thus, |

∫
CR

dz
(z+1)(z−i) | ≤

πR
(R−1)2 → 0 as R→∞. Cauchy’s Residue Theorem applied to the region bounded by γ yields:∫

γ

dz

(z + 1)(z − i)
= 2πiRes

(
1

(z + 1)(z − i)
,−i
)

=
2πi

−i+ 1
= π(i− 1)

Hence, in the limit R→∞ and ε→ 0 we find:

P.V.

∫ ∞
−∞

dx

(x+ 1)(x− i)
+
π(1 + i)

2
= π(i− 1)
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Therefore,

P.V.

∫ ∞
−∞

dx

(x+ 1)(x− i)
=
π

2
(i− 3).

The quantity above is called the principle value for two reasons: first: it approaches x = ∞ and
x = −∞ symmetrically, second: it approaches the improper point x = −1 from the left and right at
the same rate. The integral (which is defined in terms of asymmetric limits) itself is divergent in
this case. We define the term principal value in the next section.

Example 12.5.3. You may recall: Let γ(t) = 2
√

3eit for π/2 ≤ t ≤ 3π/2. Calculate

∫
γ

dz

z + 2
. A

wandering math ninja stumble across your path an mutters tan(π/3) =
√

3.

Residue Calculus Solution: if you imagine deforming the given arc from z = 2i
√

3 to z = −2i
√

3
into curves which begin and end along the rays connecting z = −2 to z = ±2i

√
3 then eventually

we reach tiny arcs Cε centered about z = −2 each subtending 4π/3 of arc.

Now, there must be some reason that this deformation leaves the integral unchanged since the
fractional residue theorem applied to the limiting case of the small circles yields:

lim
ε→0

∫
Cε

dz

z + 2
=

4π

3
iRes

(
1

z + 2
,−2

)
=

4πi

3
.

Of course, direct calculation by the complex FTC yields the same:∫
γ

dz

z + 2
= Log0(z + 2)

∣∣∣∣−2i
√

3

2i
√

3

= Log0(−2i
√

3 + 2)− Log0(2i
√

3 + 2)

= Log0(2(1− i
√

3))− Log0(2(1 + i
√

3))

= ln |2(1− i
√

3|+ iArg0(4 exp(5πi/3))− ln |2(1 + i
√

3|+ iArg0(4 exp(πi/3))

=
5πi

3
− πi

3

=
4πi

3

It must be that the integral along the line-segments is either zero or cancels. Notice z = −2 + t(2±
2i
√

3) for ε ≤ t ≤ 1 parametrizes the rays (−2,±2i
√

3] in the limit ε → 0 and dz = (2 ± 2i
√

3)dt
thus ∫

(−2,±2i
√

3]

dz

z + 2
=

∫ 1

ε

dt

t
= ln 1− ln ε = − ln ε.

However, the direction of the rays differs to complete the path in a consistent CCW direction. We
go from −2 to 2i

√
3, but, the lower ray goes from 2i

√
3 to −2. Apparently these infinities cancel

(gulp). I think the idea of this example is a dangerous game.
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I covered the example on page 210 of Gamelin in lecture. There we derive the identity:∫ ∞
0

ln(x)

x2 − 1
dx =

π2

4
.

by examining a half-circular path with indentations about z = 0 and z = −1.

12.6 Principal Values

If
∫∞
−∞ f(x) dx diverges or

∫ b
a f(x)dx diverges due to a singularity for f(x) at c ∈ [a, b] then it

may still be the case that the corresponding principal values exist. When the integrals converge
absolutely then the principal value agrees with the integral. These have mathematical application
as Gamelin describes briefly at the conclusion of the section.

Definition 12.6.1. We define P.V.

∫ ∞
−∞

f(x) dx = lim
R→∞

∫ R

−R
f(x) dx. Likewise, if f is continuous

on [a, c) and (c, b] then we define

P.V.

∫ b

a
f(x) dx = lim

ε→0+

(∫ c−ε

a
f(x) dx+

∫ b

c+ε
f(x) dx

)
In retrospect, this section is out of place. We would do better to introduce the concept of principal
value towards the beginning. For example, in [C96] this is put forth at the outset. Thus I am
inspired to present the following example stolen from [C96].

Example 12.6.2. We wish to calculate
∫∞

0
x2

x6+1
dx. The integral can be argued to exist by compar-

ison with other convergent integrals and, as the integrand is non-negative, it converges absolutely.
Thus we may find P.V.

∫∞
0

x2

x6+1
dx to calculate

∫∞
−∞

x2

x6+1
dx. The integrand is even thus:∫ ∞

0

x2

x6 + 1
dx =

1

2

∫ ∞
−∞

x2

x6 + 1
dx =

1

2
P.V.

∫ ∞
−∞

x2

x6 + 1
dx.

Observe f(z) = z2

z6+1
has singularities at solutions of z6 + 1 = 0. In particular, z ∈ (−1)1/6.

(−1)1/6 = eiπ/6{1, e2πi/6, e4πi/6,−1,−e2πi/6,−e4πi/6}
= {eiπ/6, e3πi/6, e5πi/6,−eiπ/6,−e3πi/6,−e5πi/6}
= {eiπ/6, i, e5πi/6,−eiπ/6,−i,−e5πi/6}

We use the half-circle path ∂D = CR ∪ [−R,R] as illustrated below:
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Application of Cauchy’s residue theorem requires we calculate the residue of z2

1+z6 at w = eiπ/6, i

and e5πi/6. In each case we have a simple pole and Rule 3 applies:

Res

(
z2

1 + z6
, w

)
=

w2

6w5
.

Hence,

Res

(
z2

1 + z6
, eiπ/6

)
=

(eiπ/6)2

6(eiπ/6)5
=

1

6e3iπ/6
=

1

6i
,

and

Res

(
z2

1 + z6
, i

)
=

(i)2

6(i)5
= − 1

6i
,

and

Res

(
z2

1 + z6
, e5iπ/6

)
=

(e5iπ/6)2

6(e5iπ/6)5
=

1

6e15iπ/6
=

1

6i
.

Therefore, ∫
∂D

z2

z6 + 1
dz = 2πi

(
1

6i
− 1

6i
+

1

6i

)
=
π

3
.

Notice if |z| = R > 1 then
∣∣∣ z2

z6+1

∣∣∣ ≤ R2

R6−1
hence the ML-estimate provides:

∣∣∣∣∫
CR

z2

z6 + 1
dz

∣∣∣∣ ≤ R2

R6 − 1
(πR)→ 0

as R→∞. If z ∈ [−R,R] then z = x for −R ≤ x ≤ R and dz = dx hence∫
[−R,R]

z2

z6 + 1
dz =

∫ R

−R

x2

x6 + 1
dx.

Thus, noting ∂D = CR ∪ [−R,R] we have:

lim
R→∞

∫ R

−R

x2

x6 + 1
dx =

π

3
⇒ P.V.

∫ ∞
−∞

x2

x6 + 1
dx =

π

3
⇒

∫ ∞
0

x2

x6 + 1
dx =

π

6
.

12.7 Jordan’s Lemma

Lemma 12.7.1. Jordan’s Lemma: if CR is the semi-circular contour z(θ) = Reiθ for 0 ≤ θ ≤ π,

in the upper half plane, then

∫
CR

|eiz||dz| < π.

Proof: note |eiz| = exp(Re(iz)) = exp(Re(iReiθ)) = e−R sin θ and |dz| = |iReiθdθ| = Rdθ hence
the Lemma is equivalent to the claim: ∫ π

0
e−R sin θ dθ <

π

R
.

By definition, a concave down function has a graph that resides above its secant line. Notice
y = sin θ has y′′ = − sin θ < 0 for 0 ≤ θ ≤ π/2. The secant line from (0, 0) to (π/2, 1) is y = 2θ/π.
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Therefore, it is geometrically (and analytically) evident that sin θ ≥ 2θ/π. Consequently, following
Gamelin page 216, ∫ π

0
e−R sin θ dθ = 2

∫ π/2

0
e−R sin θ dθ ≤ 2

∫ π/2

0
e−2Rθ/π dθ

make a t = 2Rθ/π substitution to find:∫ π

0
e−R sin θ dθ <

π

R

∫ 1/R

0
e−tdt <

π

R

∫ ∞
0

e−t dt =
π

R
. �

Jordan’s Lemma allows us to treat integrals of rational functions multiplied by sine or cosine where
the rational function has a denominator function with just one higher degree than the numerator.
Previously we needed two degrees higher to make the ML-estimate go through nicely. For instance,
see Example 12.2.4.

Example 12.7.2. To show
∫∞

0
sinx
x dx = π

2 we calculate the integral of f(z) = eiz

z along an indented
semi-circular path pictured below:

Notice, for |z| = R we have:∣∣∣∣∫
CR

eiz

z
dz

∣∣∣∣ ≤ ∫
CR

∣∣∣∣eizz
∣∣∣∣ |dz| = 1

R

∫
CR

∣∣eiz∣∣ |dz| < π

R

where in the last step we used Jordan’s Lemma. Thus as R→∞ we see the integral of f(z) along
CR vanishes. Suppose R → ∞ and ε → 0 then Cauchy’s residue and fractional residue theorems
combine to yield:

lim
R→∞

∫ R

−R

eix

x
dx− πiRes

(
eiz

z
, 0

)
+ lim
R→∞

∫
CR

eiz

z
dz = 0

hence, noting the residue is 1,

lim
R→∞

∫ R

−R

eix

x
dx = iπ ⇒ lim

R→∞

∫ R

−R

(
cosx

x
+ i

sinx

x

)
dx = iπ.

Note, cosx
x is an odd function hence the principal value of that term vanishes. Thus,

lim
R→∞

i

∫ R

−R

sinx

x
dx = iπ ⇒ P.V.

∫ ∞
−∞

sinx

x
dx = π ⇒

∫ ∞
0

sinx

x
dx =

π

2
.
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Example 12.7.3. We can calculate

∫ ∞
0

x sin(2x)

x2 + 3
by studying the integral of f(z) =

ze2iz

z2 + 3
around

the curve γ = CR ∪ [−R,R] where CR is the half-circular path in the CCW-direction. Notice
z = ±i

√
3 are simple poles of f , but, only z = i

√
3 falls within γ. Notice, by Rule 3,

Res

(
ze2iz

z2 + 3
, i
√

3

)
=
i
√

3e−2
√

3

2i
√

3
=
e−2
√

3

2
.

Next, we consider |z| = R, in particular notice:∣∣∣∣∫
CR

ze2iz

z2 + 3
dz

∣∣∣∣ ≤ ∫
CR

∣∣∣∣ ze2iz

z2 + 3

∣∣∣∣ |dz| ≤ R

R2 − 3

∫
CR

∣∣e2iz
∣∣ |dz| ≤ R

R2 − 3

∫
CR

∣∣eiz∣∣ ∣∣eiz∣∣ |dz|
Notice, Jordan’s Lemma gives∫

CR

∣∣eiz∣∣ |dz| < π = π · 1

πR

∫
CR

|dz| =
∫
CR

1

R
|dz|

hence,

R

R2 − 3

∫
CR

∣∣eiz∣∣ ∣∣eiz∣∣ |dz| ≤ R

R2 − 3

∫
CR

∣∣eiz∣∣ 1

R
|dz| = 1

R2 − 3

∫
CR

∣∣eiz∣∣ |dz| < π2

R2 − 3
.

Clearly as R→∞ the integral of f(z) along CR vanishes. We find the integral along [−R,R] where
z = x and dz = dx must match the product of 2πi and the residue by Cauchy’s residue theorem

lim
R→∞

∫ R

−R

xe2ix

x2 + 3
dx = (2πi)

e−2
√

3

2
= πie−2

√
3.

Of course, e2ix = cos(2x) + i sin(2x) and the integral of x cos(2x)
x2+3

vanishes as it is an odd function.
Cancelling the factor of i we derive:

lim
R→∞

∫ R

−R

x sin(2x)

x2 + 3
dx = πe−2

√
3 ⇒

∫ ∞
0

x sin(2x)

x2 + 3
dx =

π

2
e−2
√

3

We have shown the solution of Problem 4 on page 214 of [C96]. The reader will find more useful
practice problems there as is often the case.

12.8 Exterior Domains

Exterior domains are interesting. Basically this is Cauchy’s residue theorem turned inside out.
Interestingly a term appears to account for the residue at ∞. We decided to move on to the next
chapter this semester. If you are interested in further reading on this topic, you might look at: this
MSE exchange or this MSE exchange or this nice Wikipedia example or this lecture from Michael
VanValkenburgh at UC Berkeley. Enjoy.

http://math.stackexchange.com/q/385598/36530
http://math.stackexchange.com/q/385598/36530
http://math.stackexchange.com/q/428432/36530
http://en.wikipedia.org/wiki/Methods_of_contour_integration#Example_.28VI.29_.E2.80.93_logarithms_and_the_residue_at_infinity
http://math.berkeley.edu/~mjv/Lecture38.pdf
http://math.berkeley.edu/~mjv/Lecture38.pdf
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Chapter 13

The Logarithmic Integral

We just cover the basic part of Gamelin’s exposition in this chapter. It is interesting that he pro-
vides a proof of the Jordan curve theorem in the smooth case. In addition, there is a nice couple
pages on simply connected and equivalent conditions in view of complex analysis. All of these are
interesting, but our interests take us elsewhere this semester.

The argument principle is yet another interesting application of the residue calculus. In short,
it allows us to count the number of zeros and poles of a given complex function in terms of the
logarithmic integral of the function. Then, Rouché’s Theorem provides a technique for counting
zeros of a given function which has been extended by a small perturbation. Both of these sections
give us tools to analyze zeros of functions in surprising new ways.

13.1 The Argument Principle

Let us begin by defining the main tool for our analysis in this section:

Definition 13.1.1. Suppose f is analytic on a domain D. For a curve γ in D such that f(z) 6= 0
on γ we say:

1

2πi

∫
γ

f ′(z)

f(z)
dz =

1

2πi

∫
γ
d log f(z)

is the logarithmic integral of f(z) along γ.

Essentially, the logarithmic integral measures the change of log f(z) along γ.

Example 13.1.2. Consider f(z) = (z − zo)n where n ∈ Z. Let γ(z) = zo +Reiθ for 0 ≤ θ ≤ 2πk.
Calculate,

f ′(z)

f(z)
=
n(z − zo)n−1

(z − zo)n
=

n

z − zo
thus,

1

2πi

∫
γ

f ′(z)

f(z)
dz =

1

2πi

∫
γ

ndz

z − zo
=

n

2πi

∫ 2πk

0

Rieiθdθ

Reiθ
=

n

2π

∫ 2πk

0
dθ = nk.

The number k ∈ Z is the winding number of the curve and n is either (n > 0) the number of
zeros or (n < 0) −n is the number of poles inside γ. In the case n = 0 then there are neither
zeros nor poles inside γ. Our counting here is that a pole of order 5 counts as 5 poles and a zero
repeated counts as two zeros etc..
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The example above generalizes to the theorem below:

Theorem 13.1.3. argument principle I: Let D be a bounded domain with a piecewise smooth
boundary ∂D, and let f be a meromorphic function on D that extends to be analytic on ∂D, such
that f(z) 6= 0 on ∂D. Then

1

2πi

∫
∂D

f ′(z)

f(z)
dz = N0 −N∞,

where N0 is the number of zeros of f(z) in D and N∞ is the number of poles of f(z) in D, counting
multiplicities.

Proof: Let zo be a zero of order N for f(z) then f(z) = (z− zo)Nh(z) where h(zo) 6= 0. Calculate:

f ′(z)

f(z)
=
N(z − zo)N−1h(z) + (z − zo)Nh′(z)

(z − zo)Nh(z)

=
N

z − zo
+
h′(z)

h(z)

likewise, if zo is a pole of order N then f(z) =
h(z)

(z − zo)N
= (z − zo)−Nh(z) hence

f ′(z)

f(z)
=
−N(z − zo)−N−1h(z) + (z − zo)−Nh′(z)

(z − zo)−Nh(z)

=
−N
z − zo

+
h′(z)

h(z)

Thus,

Res

(
f ′(z)

f(z)
, zo

)
= ±N

where (+) is for a zero of order N and (−) is for a pole of order N . Let z1, . . . , zj be the zeros
and poles of f , which are finite in number as we assumed f was meromorphic. Cauchy’s residue
theorem yields:∫

∂D

f ′(z)

f(z)
dz = 2πi

j∑
k=1

Res

(
f ′(z)

f(z)
, zo

)
= 2πi

j∑
k=1

Nk = 2πi(N0 −N∞). �

To better understand the theorem is it useful to break down the logarithmic integral. The calcu-
lations below are a shorthand for the local selection of a branch of the logarithm

log(f(z)) = ln |f(z)|+ i arg(f(z)),

hence
d log(f(z)) = d ln |f(z)|+ id arg(f(z))

for a curve with f(z) 6= 0 along the curve it is clear that ln|f(z)| is well-defined along the curve
and if z : [a, b]→ γ then ∫

γ
d ln |f(z)| = ln |f(b)| − ln |f(a)|.

If the curve γ is closed then f(a) = f(b) and clearly∫
γ
d ln |f(z)| = 0.
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However, the argument cannot be defined on an entire circle because we must face the 2π-jump
somewhere. The logarithmic integral does not measure the argument of γ directly, rather, the
arguments of the image of γ under f :∫

γ
d arg(f(z)) = arg(f(γ(b)))− arg(f(γ(a))).

For a piecewise smooth curve we simply repeat this calculation along each piece and obtain the
net-change in the argument of f as we trace out the curve.

Theorem 13.1.4. argument principle II: Let D be a bounded domain with a piecewise smooth
boundary ∂D, and let f be a meromorphic function on D that extends to be analytic on ∂D, such
that f(z) 6= 0 on ∂D. Then the increase in the argument of f(z) around the boundary of D is 2π
times the number of zeros minus the number of poles in D,∫

∂D
d arg(f(z)) = 2π(N0 −N∞).

We have shown this is reasonable by our study of d log(f(z)) = d ln |f(z)|+ id arg(f(z)). Note,

d

dz
log(f(z)) =

f ′(z)

f(z)
⇒ d log(f(z)) =

f ′(z)

f(z)
dz.

Thus the Theorem 13.1.4 is a just a reformulation of Theorem 13.1.3.

Gamelin’s example on page 227-228 is fascinating. I will provide a less sophisticated example of
the theorem above in action.

Example 13.1.5. Consider f(z) = z3 + 1. Let γ(t) = zo + Reit for R > 0 and 0 ≤ t ≤ 2π. Thus
[γ] is |z − zo| = R given the positive orientation. If R = 2 and zo = 0 then

f(γ(t)) = 8e3it + 1

The points traced out by f(γ(t)) above cover a circle centered at 1 with radius 8 three times. It
follows the argument of f(z) has increased by 6π along γ thus revealing N0 −N∞ = 3 and as f is
entire we know N∞ = 0 hence N0 = 3. Of course, this is not surprising, we can solve z3 + 1 = 0
to obtain z ∈ (−1)1/3. All of these zeros fall within the circle |z| = 2.

Consider R = 1 and zo = −1. Then γ(t) = −1 + eit hence

f(γ(t)) =
(
eit − 1

)3
+ 1 = e3it − 3e2it + 3eit − 1 + 1

If we plot the path above in the complex plane we find:

Which shows f(γ(t)) increases its argument by 2π hence just one zero falls within [γ] in this case.
I used Geogebra to create the image above. Notice the slider allows you to animate the path which
helps as we study the dynamics of the argument for examples such as this. To plot, as far as I
currently know, you’ll need to find Re(γ(t)) and Im(γ(t)) then its pretty straightforward.

http://www.geogebra.org/
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13.2 Rouché’s Theorem

This is certainly one of my top ten favorite theorems:

Theorem 13.2.1. Rouché’s Theorem: Let D be a bounded domain with a piecewise smooth
boundary ∂D. Let f and h be analytic on D ∪ ∂D. If |h(z)| < |f(z)| for z ∈ ∂D, then f(z) and
f(z) + h(z) have the same number of zeros in D, counting multiplicities.

Proof: by assumption |h(z)| < |f(z)| we cannot have a zero of f on the boundary of D hence
f(z) 6= 0 for z ∈ ∂D. Moreover, it follows f(z) + h(z) 6= 0 on ∂D. Observe, for z ∈ ∂D,

f(z) + h(z) = f(z)

[
1 +

h(z)

f(z)

]
,

We are given |h(z)| < |f(z)| thus
∣∣∣h(z)
f(z)

∣∣∣ < 1 and we find Re
(

1 + h(z)
f(z)

)
> 0. Thus all the values of

1 + h(z)
f(z) on ∂D fall into a half plane which permits a single-valued argument function throughout

hence any closed curve gives no gain in argument from 1 + h(z)
f(z) . Moreover,

arg (f(z) + h(z)) = arg (f(z)) + arg

[
1 +

h(z)

f(z)

]
hence the change in arg (f(z) + h(z)) is matched by the change in arg (f(z)) and by Theorem 13.1.4,
and the observation that there are no poles by assumption, we conclude the number of zeros for f
and f + h are the same counting multiplicities. �

Once you understand the picture below it offers a convincing reason to believe:

The red curve we can think of as the image of f(z) for z ∈ ∂D. Note, ∂D is not pictured. Con-
tinuing, the green curve is a perturbation or deformation of the red curve by the blue curve which
is the graph of h(z) for z ∈ ∂D. In order for f(z) + h(z) = 0 we need for f(z) to be cancelled by
h(z). But, that is clearly impossible given the geometry.

Often the following story is offered: suppose you walk a dog on a path which is between R1 and
R2 feet from a pole. If your leash is less than R1 feet then there is no way the dog can get caught
on the pole. The function h(z) is like the leash, the path which doesn’t cross the origin is the red
curve and the green path is formed by the dog wandering about the path while being restricted by
the leash.
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Example 13.2.2. Find the number of zeros for p(z) = z11+12z7−3z2+z+2 within the unit circle.
Let f(z) = 12z7 and h(z) = z11− 3z2 + z+ 2 observe for |z| = 1 we have |h(z)| ≤ 1 + 3 + 1 + 2 = 7
and |f(z)| = 12|z|7 = 12 hence |h(z)| ≤ f(z) for all z with |z| = 1. Observe f(z) = 12z7 has a zero
of multiplicity 7 at z = 0 hence by Rouché’s Theorem p(z) = f(z) +h(z) = z11 + 12z7− 3z2 + z+ 2
also has seven zeros within the unit-circle.

Rouché’s Theorem also has great application beyond polynomial problems:

Example 13.2.3. Prove that the equation z+3+2ez = 0 has precisely one solution in the left-half-
plane. The idea here is to view f(z) = z + 3 as being perturbed by h(z) = 2ez. Clearly f(−3) = 0
hence if we can find a curve γ which bounds Re(z) < 0 and for which |h(γ(t))| ≤ |f(γ(t))| for all
t ∈ dom(γ) then Rouché’s Theorem will provide the conclusion we desire.

Therefore, consider γ = CR ∪ [−iR, iR] where CR has z = Reit for π/2 ≤ t ≤ 3π/2.

Consider z ∈ [−iR, iR] then z = iy for −R ≤ y ≤ R observe:

|f(z)| = |iy + 3| =
√

9 + y2 & |h(z)| = |2eiy| = 2

thus |h(z)| < |f(z)| for all z ∈ [−iR, iR]. Next, suppose z = x + iy ∈ CR hence −R ≤ x ≤ 0 and
−R ≤ y ≤ R with x2 + y2 = R2. In particular, assume R > 5. Note:

|f(z)| = |x+ iy + 3| ⇒ R− 3 ≤ |f(z)| ≤
√

9 +R2.

the claim above is easy to see geometrically as |z + 3| is simply the distance from z to −3 which
is smallest when y = 0 and largest when x = 0. Furthermore, as −R ≤ x ≤ 0 and ex is a strictly
increasing function,

|h(z)| =
∣∣2exeiy∣∣ = 2ex < 2 < R− 3 < |f(z)|

where you now hopefully appreciate why we assumed R > 5. Consequently |h(z)| ≤ |f(z)| for all
z ∈ CR with R > 5. We find by Rouché’s Theorem f(z) and f(z) +h(z) = z+ 3 + 2ez has only one
zero in γ for R > 5. Thus, suppose R → ∞ and observe γ serves as the boundary of Re(z) < 0
and so the equation z + 3 + 2ez = 0 has just one solution in the left-half plane.

Notice, Rouché’s Theorem does not tell us what the solution of z + 3 + 2ez = 0 with Re(z) < 0 is.
The theorem merely tells us that the solution uniquely exists.

Example 13.2.4. Consider p(z) = anz
n+an−1z

n−1 + · · ·+a1z+ao where an 6= 0. Let f(z) = anz
n

and h(z) = an−1z
n−1 + · · · + a1z + ao then p(z) = f(z) + h(z). Moreover, if we choose R > 0

sufficiently large then |h(z)| ≤ |an−1|Rn−1 + · · ·+ |a1|R + |ao| < |an|Rn = |f(z)| for |z| = R hence
Rouché’s Theorem tells us that there are n-zeros for p(z) inside |z| = R as it is clear that z = 0 is
a zero of multiplicity n for f(z) = anz

n. Thus every p(z) ∈ C[z] has n-zeros, counting multiplicity,
on the complex plane.

The proof of the Fundamental Theorem of Algebra above is nicely direct in contrast to other proofs
by contradiction we saw in previous parts of this course.
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Algebrization of Nonautonomous Differential Equations, Journal of Applied Mathemat-
ics Volume 2015, Article ID 632150, 10 pages (2015)

[good] I.J. Good, A simple generalization of analytic function theory, Expositiones Mathemat-
icae, Vol. 6, 289-311 (1988)

[haus] F. Hausdorff, Zur Theorie der Systeme complexer Zahlen, Berichte uber die Verhandlu-
gen der SLchisischen Akademie der Wissenschaften zu Leipzig. Mathematisch-physikalische
Klasse. 52, 43–61 (1900)

[cartan4beginners] T. A. Ivey, J.M. Landsberg, Cartan For Beginners: Differential Geometry via
Moving Frames and Exterior Differential Systems, Graduate Studies in Mathematics,
vol. 61 (2003)

[jonasson] J. Jonasson, Multiplication for solutions of the equation gradf = M gradg, arXiv:0803.2797v1
(2008)

[ketchum] P. W. Ketchum, Analytic Functions of Hypercomplex variables, Transactions of the
American Mathematical Society. 30, 641–667 (1928)

[ketchum2] P. W. Ketchum, T. Martin, Polygenic Functions of Hypercomplex Variables, 66-74
(1929)

[ketchum3] P. W. Ketchum, Solution of Partial Differential Equations by Means of Hypervariables,
American Journal of Mathematics, Vol. 54, No. 2, 253-264 (1932)

[khrennikov] A. Khrennikov, G. Segre, An Introduction to Hyperbolic Analysis, arXiv:math-ph/0507053v2
(2005)



218 CHAPTER 13. THE LOGARITHMIC INTEGRAL

[konderak] J. J. Konderak, A Weierstrass Representation Theorem for Lorentz Surfaces, Complex
Variables, Theory And Application: An International Journal Vol. 50 , Iss. 5, 319-332
(2005)

[kravchenkoI] V. V. Kravchenko, D. Rochon and S. Tremblay, On the Klein-Gordon equation
and hyperbolic pseudoanalytic function theory, Journal of Physics A: Mathematical and
Theoretical, Vol. 41, No. 6, 065205 (2008)

[kravchenkoII] V. G. Kravchenko, V. V. Kravchenko and S. Tremblay, Zakharov-Shabat system
and hyperbolic pseudoanalytic function theory, Mathematical Methods in the Applied
Sciences, Volume 33, Issue 4 15, pp 448-453 (2010)

[kunz] K.S. Kunz, Application of an Algebraic Technique to the Solution of Laplace’s Equation
in Three Dimensions, Siam Journal Applied Mathematics, Vol. 21, No. 3, 425-441
(1971)

[lorch] E. R. Lorch, The Theory of Analytic Functions in Normed Abelian Vector Rings, Trans-
actions of the American Mathematical Society, vol. 54, pp. 414–425 (1943)

[Dicky] S. V. Ludkovsky, Differentiable functions of Cayley-Dickson numbers and line integra-
tion, Springer. Journal of Mathematical Sciences. 141(3), 1231–1298 (2007)

[MotterRosa] A. E. Motter, M. A. F. Rosa, Hyperbolic calculus, Adv. Appl. Clifford Algebras, 8,
1, 109-128 (1998).

[price] G.B. Price, An Introduction to Multicomplex Spaces and Functions, Monographs and
Textbooks in Pure and Applied Mathematics, 140, Marcel Dekker, Inc., New York
(1991)

[pedersenI] P. S. Pedersen, A function theory for finding all polynomial solutions to a linear con-
stant coefficient PDE’s of homogeneous order, J. Complex Variables 24, 79-87 (1993).

[pedersenII] P. S. Pedersen, Cauchy’s Integral Theorem on a Finitely Generated, Real, Commu-
tative, and Associative Algebra, Advances in Mathematics 131, Article No. AI971671,
344-356 (1997)

[plaksa] S. A. Plaksa and R. P. Pukhtaievych, Monogenic functions in a finite-dimensional
semi-simple commutative algebra, Versita, Vol. 22 (1), pp 221-235 (2014)

[Rinehart] R.F. Rinehart, Extension of the Derivative Concept for Functions of Matrices, Pro-
ceedings of the American Mathematical Society, Vol. 8, pp. 329-335 (1957)

[ringleb] Friedrich Ringleb, Beitrage zur Funktionentheorie in hyperkomplexen Systemen I., Ren-
diconti del Circolo Matematico di Palermo. 57, 311–340 (1933)

[Rosenfeld] Boris Rosenfeld, Differentiable functions in associative and alternative algebras and
smooth surfaces in projective spaces over these algebras, Publications De L’institut
Mathematique. Nouvelle serie. 62(82), 67-71 (2000)

[scheffers] G. Scheffers, Verallgemeinerung der Grundlagen der gew hnlich complexen Funktionen,
I, II, Berichte uber die Verhandlugen der SLchisischen Akademie der Wissenschaften
zu Leipzig. Mathematisch-physikalische Klasse. 46, 120–134 (1894)
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