
Chapter 2

calculus and geometry of curves

2.1 calculus for curves

In this section we describe the calculus for functions with a domain of real numbers and a range of
vectors. It is possible to define the derivative in terms of a limiting process, but, little is gained by
doing so in this section so I make a more pragmatic definition1. We’ll begin with R 3,

Definition 2.1.1. calculus of 3-vector-valued functions.

Suppose ~F (t) = 〈F1(t), F2(t), F3(t)〉 then

1. If F1, F2 and F3 are differentiable functions near t we define

d~F

dt
=

d

dt

〈
F1, F2, F3

〉
=

〈
dF1

dt
,
dF2

dt
,
dF3

dt

〉
.

2. If F1, F2 and F3 are integrable functions on [a, b] then we define∫ b

a

~F (t)dt =

∫ b

a

〈
F1, F2, F3

〉
dt =

〈∫ b

a
F1(t)dt,

∫ b

a
F2(t)dt,

∫ b

a
F3(t)dt

〉
.

3. We write
∫
~f(t)dt = ~F (t) + ~c iff d~F

dt = ~f(t) and ~c = 〈c1, c2, c3〉 is a constant vector.
Equivalently, ∫

~f(t)dt =

〈∫
f1(t)dt,

∫
f2(t)dt,

∫
f3(t)dt

〉
.

1for the purist you can skip ahead to the chapter on differentiation where I describe how to differentiate a general
function from Rn to Rm, this is definition can be derived from that definition with a few basic theorems of advanced
calculus.
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92 CHAPTER 2. CALCULUS AND GEOMETRY OF CURVES

We also use the prime notation for differentiation of vector valued functions if it is convenient; this

means ~A ′(t) = d ~A/dt = d ~A
dt . Higher derivatives are also denoted in the same manner as previously;

for example, d2 ~A
dt2

= d
dt

[
d ~A
dt

]
. The geometric meaning of the definition is encapsulated in the picture

below:

If t 7→ ~r(t) is some parametrized curve and to ∈ dom(~r) such that ~r ′(to) 6= 0 defines the tangent
vector to the curve at ~r(to). Moreover, a natural parametrization of the tangent line is given by
~l(s) = ~ro + s~r ′(to). Recall that the parametric view is natural one in this context. Hopefully we
learned this already in the first chapter of these notes.

Example 2.1.2. .
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Example 2.1.3. .

Example 2.1.4. .
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Example 2.1.5. .

Example 2.1.6. .
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Example 2.1.7. .

Example 2.1.8. Let ~F (t) = 〈1, t, cos(t)〉.

d~F

dt
=

〈
d

dt
(1),

d

dt
(t),

d

dt
(cos(t))

〉
= 〈0, 1, − sin(t)〉.

∫
~F (t)dt =

〈∫
dt,

∫
tdt,

∫
cos(t)dt

〉
=

〈
t+ c1,

1

2
t2 + c2, sin(t) + c3

〉
.∫ 1

0

~F (t)dt =

〈∫ 1

0
dt,

∫ 1

0
tdt,

∫ 1

0
cos(t)dt

〉
=

〈
1,

1

2
, sin(1)

〉
.

The derivative of an n-vector valued functions of a real variable is likewise calculated component
by the component.

Definition 2.1.9. calculus of n-vector-valued functions.

Suppose ~F (t) = 〈F1(t), F2(t), . . . , Fn(t)〉 then

1. If F1, F2, . . . , Fn are differentiable functions near t we define

d~F

dt
=

d

dt

〈
F1, F2, . . . , Fn

〉
=

〈
dF1

dt
,
dF2

dt
, . . . ,

dFn
dt

〉
.

2. If F1, F2, . . . , Fn are integrable functions on [a, b] then we define∫ b

a

~F (t)dt =

∫ b

a

〈
F1, F2, . . . , Fn

〉
dt =

〈∫ b

a
F1(t)dt,

∫ b

a
F2(t)dt, . . . ,

∫ b

a
Fn(t)dt

〉
.

3. We write
∫
~f(t)dt = ~F (t) + ~c iff d~F

dt = ~f(t) and
~c = 〈c1, c2, . . . , cn〉 is a constant vector. Equivalently,∫

~f(t)dt =

〈∫
f1(t)dt,

∫
f2(t)dt, . . . ,

∫
fn(t)dt

〉
.
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In summation notation the definitions translate to:

d

dt

[ n∑
j=1

Fj x̂j

]
=

n∑
j=1

dFj
dt

x̂j and

∫ b

a

[ n∑
j=1

Fj x̂j

]
dt =

n∑
j=1

[∫ b

a
Fj dt

]
x̂j

We differentiate and integrate componentwise.

Example 2.1.10. Let ~F (t) = 〈t, t2, . . . , tn〉. It follows that,

d~F

dt
= 〈 1, 2t, . . . , ntn−1 〉

and, for constants c1, c2, . . . , cn,∫
~F (t)dt = 〈 1

2
t2 + c1,

1

3
t3 + c2, . . . ,

1

n+ 1
tn+1 + cn 〉.

Or we could calculate via summation notation, note that ~F (t) =
∑n

j=1 t
j x̂j hence,

d~F

dt
=

d

dt

n∑
j=1

tj x̂j =
n∑
j=1

d

dt
(tj) x̂j =

n∑
j=1

jtj−1 x̂j .

Likewise, ∫
~F (t)dt =

∫ n∑
j=1

tj x̂jdt =
n∑
j=1

∫
tjdt x̂j =

n∑
j=1

(
1

j + 1
tj+1 + cj

)
x̂j .

We usually find ourselves working problems with n = 1, 2 or 3 in this course. Many of the theorems
known to us from calculus I apply equally well to vector-valued functions of a real variable. The
key is that the differentiation concerns the domain whereas the range just rides along. If there was
somehow a time-dependence for x̂, ŷ, ẑ then the story would change, but we inist that x̂, ŷ, ẑ are
the unit-vectors of a fixed x, y, z-coodinate system2.

2In physics one might consider moving coordinate systems and in such a context the rules are a bit more interesting.
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Theorem 2.1.11. fundamental theorems of calculus for space curves.

(I.)
d

dt

∫ t

a

~F (τ)dτ = ~F (t)

(II.)

∫ b

a

d~G

dt
dt = ~G(b)− ~G(a)

Proof: Apply the FTC part I componentwise as shown below:

d

dt

∫ t

a

~F (τ)dτ =
d

dt

∫ t

a

[ n∑
j=1

Fj(τ) x̂j

]
dτ =

d

dt

n∑
j=1

[∫ t

a
Fj(τ) dτ

]
x̂j

=

n∑
j=1

[
d

dt

∫ t

a
Fj(τ) dτ

]
x̂j

=

n∑
j=1

Fj(t) x̂j = ~F (t).

thus (I.) holds true. Next apply FTC part II componentwise as shown below:∫ b

a

d~G

dt
dt =

∫ b

a

d

dt

[ n∑
j=1

Gj(t) x̂j

]
dt =

∫ b

a

[ n∑
j=1

dGj
dt

x̂j

]
dt

=
n∑
j=1

[∫ b

a

dGj
dt

dt

]
x̂j

=
n∑
j=1

[
Gj(b)−Gj(a)

]
x̂j

=
n∑
j=1

Gj(b) x̂j +
n∑
j=1

Gj(a) x̂j

= ~G(b)− ~G(a).

Therefore, part (II.) is true. �
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Example 2.1.12. .

Many other properties of differentiation and integration hold for vector-valued functions.

Theorem 2.1.13. rules of calculus for space curves.

Let ~A, ~B : J ⊆ R→ Rn and f : J ⊆ R→ R are differentiable functions and c ∈ R,

(1.)
d

dt

[
~A+ ~B

]
=
d ~A

dt
+
d ~B

dt
(3.)

∫ [
~A+ ~B

]
dt =

∫
~Adt+

∫
~Bdt

(2.)
d

dt

[
c ~A

]
= c

d ~A

dt
(4.)

∫
c ~Adt = c

∫
~Adt

Proof: The proof of the theorem above is easily derived by simply expanding what the vector no-
tation means and borrowing the corresponding theorems from calculus I to simplify the component
expressions. I might ask for this in homework so I’ll not offer details here. �.

There are several types of products we can consider for vector-valued function. Each has a natural
product rule.
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Theorem 2.1.14. product rules of calculus for space curves.

Let ~A, ~B : J ⊆ R→ Rn and f : J ⊆ R→ R are differentiable functions and c ∈ R,

(1.)
d

dt

[
f ~A

]
=
df

dt
~A+ f

d ~A

dt

(2.)
d

dt

[
~A • ~B

]
=
d ~A

dt
• ~B + ~A •

d ~B

dt

(3.) for n = 3,
d

dt

[
~A× ~B

]
=
d ~A

dt
× ~B + ~A× d ~B

dt

Proof: let ~A and f be differentiable near t and suppose ~A =
∑n

j=1Aj x̂j . Note f ~A =
∑n

j=1 fAj x̂j
and calculate

d

dt

[
f ~A

]
=

d

dt

[ n∑
j=1

fAj x̂j

]

=
n∑
j=1

d

dt

[
fAj

]
x̂j

=
n∑
j=1

[
df

dt
Aj + f

dAj
dt

]
x̂j

=
df

dt

n∑
j=1

Aj x̂j + f

n∑
j=1

dAj
dt

x̂j

=
df

dt
~A+ f

d ~A

dt
.

The proof of (1.) is complete. Now consider the dot-product of ~A with ~B,

d

dt

[
~A • ~B

]
=

d

dt

[ n∑
j=1

AjBj

]

=

n∑
j=1

d

dt

[
AjBj

]
=

n∑
j=1

[
dAj
dt

Bj +Aj
dBj
dt

]

=

n∑
j=1

dAj
dt

Bj +

n∑
j=1

Aj
dBj
dt

=
d ~A

dt
• ~B + ~A •

d ~B

dt
.
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The proof of (2.) is complete. Only in n = 3 do we have a binary operation which is a cross-product,
fortunately we have an easy notation so this will not be much harder than (2.).

d

dt

[
~A× ~B

]
=

d

dt

[ n∑
i,j,k=1

AiBjεijk x̂k

]

=
n∑
k=1

d

dt

[ 3∑
i,j=1

AiBjεijk

]
x̂k

=
n∑
k=1

[ 3∑
i,j=1

εijk
d

dt

[
AiBj

] ]
x̂k

=

n∑
k=1

[ 3∑
i,j=1

εijk

[
dAi
dt

Bj +Ai
dBj
dt

] ]
x̂k

=
3∑

i,j,k=1

εijk
dAi
dt

Bj x̂k +

3∑
i,j,k=1

εijkAi
dBj
dt

x̂k

=
d ~A

dt
× ~B + ~A× d ~B

dt
.

The proof of (3.) is complete. I know some students don’t care for the use of summations in
calculus , but I would encourage such students to work this out without sums and reconsider your
thinking. In the proof above you would have 6 products which would yield 12 terms and then those
have to be rearranged to see the cross-products. Not that its impossible, or even too difficult, it’s
just that the summation notation is much cleaner. �

In the prime notation the product rules for vector products are

( ~A • ~B) ′ = ~A ′ • ~B + ~A • ~B ′ ( ~A× ~B) ′ = ~A ′ × ~B + ~A× ~B ′.

We use these in future section to help uncover the geometry of curves.
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Example 2.1.15. This short calculation shows that torque is the time-rate of change of the angular
momentum.

Example 2.1.16. This short calculation shows that a time varying unit-vector perpendicular to
it’s tangent vector. (since it is a unit-vector the only thing that changes is it’s direction)
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Theorem 2.1.17. chain rule of calculus for space curves.

Let g : K ⊆ R→ R be differentiable near t and ~F : J ⊆ R→ Rn be differentiable near g(t)
then near t we have

d

dt

[
~F (g(t))

]
=
d~F

dt
(g(t))

dg

dt
.

Proof: let ~F = 〈F1, F2, . . . , Fn〉 and calculate,

d

dt

[
~F (g(t))

]
=

d

dt

〈
F1(g(t)), F2(g(t)), . . . , Fn(g(t))

〉
=
〈 d

dt
F1(g(t)),

d

dt
F2(g(t)), . . . ,

d

dt
Fn(g(t))

〉
=
〈 dF1

dg

dg

dt
,
dF2

dg

dg

dt
, . . . ,

dFn
dg

dg

dt

〉
=
dg

dt

〈 dF1

dg
,
dF2

dg
, . . . ,

dFn
dg

〉
=
dg

dt

dF1

dt
(g(t)

where I have used the notation
dFj
dg =

dFj
dt (g(t)) which you might recall from calculus I. As usual,

the proof amounts to sorting through a little notation and quoting the basic result from calculus I. �

We can use the notation d~F
dg in place of the clumsy, but more technically accurate, d~F

dt (g(t)). With
this notation the chain-rule looks nice:

d

dt

[
~F (g(t))

]
=
d~F

dg

dg

dt
.

Example 2.1.18. .
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2.2 geometry of smooth oriented curves

If the curve is assigned a sense of direction then we call it an oriented curve. A particular curve
can be parametrized by many different paths. You can think of a parametrization of a curve as a
process of pasting a flexible numberline onto the curve.

Definition 2.2.1.

Let C ⊆ Rn be an oriented curve which starts at P and ends at Q. We say that ~γ : [a, b]→
Rn is a smooth non-stop parametrization of C if ~γ([a, b]) = C, ~γ(a) = P , ~γ(b) = Q,
and ~γ is smooth with ~γ ′(t) 6= 0 for all t ∈ [a, b]. We will typically call ~γ a path from P to
Q which covers the curve C.

I have limited the definition to curves with endpoints however the definition for curves which go
on without end is very similar. You can just drop one or both of the endpoint conditions.

2.2.1 arclength

Let’s begin by analyzing the tangent vector to a path in three dimensional space. Denote ~γ =
(x, y, z) where x, y, z ∈ C∞([a, b],R) and calculate that

~γ ′(t) = d~γ
dt = 〈dxdt ,

dy
dt ,

dz
dt 〉.

Multiplying by dt yields
~γ ′(t)dt = d~γ

dt dt = 〈dxdt ,
dy
dt ,

dz
dt 〉dt.

The arclength ds subtended from time t to time t + dt is simply the length of the vector ~γ ′(t)dt
which yields,

ds = ||~γ ′(t)dt|| =
√

dx
dt

2
+ dy

dt

2
+ dz

dt

2
dt

You can think of this as the length of a tiny bit of string that is laid out along the curve from the
point ~γ(t) to the point ~γ(t+ dt).

Of course this infinitesimal notation is just shorthand for an explicit limiting processes. If we sum
together all the little bits of arclength we will arrive at the total arclength of the curve. In fact,
this is how we define the arclength of a curve. The preceding discussion was in 3 dimensions but
the formulas stated in terms of the norm generalizes naturally to Rn.
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Definition 2.2.2.

Let ~γ : [a, b] → Rn be a smooth, non-stop path which covers the oriented curve C. The
arclength function of ~γ is a function s~γ : [a, b]→ R where

s~γ =

∫ t

a
||~γ ′(u)|| du

for each t ∈ [a, b]. If γ̃ is a smooth non-stop path such that ||γ̃′(t)|| = 1 then we say that γ̃
is a unit-speed curve. Moreover, we say γ̃ is parametrized with respect to arclength.

The examples below illustrate how we calculate arclength and also, for reasonable arclength func-
tions, how we can explicitly reparametrize the path with respect to arclength. Sorry the notation
in the examples below does not match the definition above. The connection is simple though, just
think ~r = ~γ. This notational divide continues throughout my work, I sometimes use ~r for a path
and sometimes ~γ. Sometimes, I’ll use another letter. Context is important and this is one of the
reasons it is important to declare the domain and range for functions in this course. If we declare
the domain and target spaces then the letter need not confuse us.

Example 2.2.3. .

Example 2.2.4. .
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Example 2.2.5. .

Explicit reparametrization of the curve below with respect to arclength is not a simple task. You’d
likely need to break into cases.

Example 2.2.6. .

The arclength function has many special properties. Notice that item (1.) below is actually just
the statement that the speed is the magnitude of the velocity vector.

Proposition 2.2.7.

Let ~γ : [a, b] → Rn be a smooth, non-stop path which covers the oriented curve C. The
arclength function of ~γ denoted by s~γ : [a, b]→ R has the following properties:

1. d
dt(s~γ(w)) = ||~γ ′(w)||dwdt ,

2.
ds~γ
dt > 0 for all t ∈ (a, b),

3. s~γ is a 1-1 function,

4. s~γ has inverse s−1~γ : s~γ([a, b])→ [a, b].
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Proof: We begin with (1.). We apply the fundamental theorem of calculus:

d

dt
(s~γ(w)) =

d

dt

∫ w

a
||~γ ′(u)|| du = ||~γ ′(w)||dw

dt

for all w ∈ (a, b). For (2.), set w = t and recall that ||~γ ′(t)|| = 0 iff ~γ ′(t) = 0 however we were

given that ~γ is non-stop so ~γ ′(t) 6= 0. We find
ds~γ
dt > 0 for all t ∈ (a, b) and consequently the

arclength function is an increasing function on (a, b). For (3.), suppose (towards a contradiction)
that s~γ(x) = s~γ(y) where a < x < y < b. Note that ~γ smooth implies s~γ is differentiable with
continuous derivative on (a, b) therefore the mean value theorem applies and we can deduce that
there is some point on c ∈ (x, y) such that s′~γ(c) = 0, which is impossible, therefore (3.) follows. If
a function is 1-1 then we can construct the inverse pointwise by simply going backwards for each
point mapped to in the range; s−1~γ (x) = y iff s~γ(y) = x. The fact that s~γ is single-valued follows
from (3.). �

If we are given a curve C covered by a path ~γ (which is smooth and non-stop but may not be
unit-speed) then we can reparametrize the curve C with a unit-speed path γ̃ as follows:

γ̃(s) = ~γ(s−1~γ (s))

where s−1~γ is the inverse of the arclength function.

Proposition 2.2.8.

If ~γ is a smooth non-stop path then the path γ̃ defined by γ̃(s) = ~γ(s−1~γ (s)) is unit-speed.

Proof: Differentiate γ̃(t) with respect to t, we use the chain-rule,

γ̃′(t) = d
dt(~γ(s−1~γ (t))) = ~γ ′(s−1~γ (t)) ddt(s

−1
~γ (t)).

Hence γ̃′(t) = ~γ ′(s−1~γ (t)) ddt(s
−1
~γ (t)). Recall that if a function is increasing on an interval then its

inverse is likewise increasing hence, by (2.) of the previous proposition, we can pull the positive
constant d

dt(s
−1
~γ (t)) out of the norm. We find, using item (1.) in the previous proposition,

||γ̃′(t)|| = ||~γ ′(s−1~γ (t))|| ddt(s
−1
~γ (t)) = d

dt(s~γ(s−1~γ (t))) = d
dt(t) = 1.

Therefore, the curve γ̃ is unit-speed. We have ds/dt = 1 when t = s (this last sentence is simply a
summary of the careful argument we just concluded). �

Remark 2.2.9.

While there are many paths which cover a particular oriented curve the unit-speed path is
unique and we’ll see that formulas for unit-speed curves are particularly simple.
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Example 2.2.10. .

2.2.2 vector fields along a path

Definition 2.2.11.

Let C ⊆ R3 be an oriented curve which starts at P and ends at Q. A vector field along
the curve C is a function which attaches a vector to each point on C.

The tangent (~T ), normal( ~N) and binormal ( ~B) vector fields defined below will allow us to identify
when two oriented curves have the same shape.
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Definition 2.2.12.

Let ~γ : [a, b] → R3 be a path from P to Q in R3. The tangent vector field of ~γ is given
by

~T (t) =
1

||~γ ′(t)||
~γ ′(t)

for each t ∈ [a, b]. Likewise, if ~T ′(t) 6= 0 for all t ∈ [a, b] then the normal vector field of
~γ is defined by

~N(t) =
1

||~T ′(t)||
~T ′(t)

for each t ∈ [a, b]. Finally, if ~T ,′ (t) 6= 0 for all t ∈ [a, b] then the binormal vector field of
~γ is defined by ~B(t) = ~T (t)× ~N(t) for all t ∈ [a, b]

Example 2.2.13. Let R > 0 and suppose ~γ(t) = (R cos(t), R sin(t), 0) for 0 ≤ t ≤ 2π. We can
calculate

~γ ′(t) = 〈−R sin(t), R cos(t), 0〉 ⇒ ||~γ ′(t)|| = R.

Hence ~T (t) = 〈− sin(t), cos(t), 0〉 and we can calculate,

~T ′(t) = 〈− cos(t),− sin(t), 0〉 ⇒ ||~T ′(t)|| = 1.

Thus ~N(t) = 〈− cos(t),− sin(t), 0〉. Finally we calculate the binormal vector field,

~B(t) = ~T (t)× ~N(t) = [− sin(t)e1 + cos(t)e2]× [− cos(t)e1 − sin(t)e2]
= [sin2(t)e1 × e2 − cos2(t)e2 × e1
= [sin2(t) + cos2(t)]e1 × e2
= e3 = 〈0, 0, 1〉

Notice that ~T • ~N = ~N • ~B = ~T • ~B = 0. For a particular value of t the vectors {~T (t), ~N(t), ~B(t)}
give an orthogonal set of unit vectors, they provide a comoving frame for ~γ. It can be shown that
the tangent and normal vectors span the plane in which the path travels for times infintesimally
close to t. This plane is called the osculating plane. The binormal vector gives the normal to the
osculating plane. The curve considered in this example has a rather boring osculating plane since
~B is constant. This curve is just a circle in the xy-plane which is traversed at constant speed.
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Example 2.2.14. Notice that s~γ(t) = Rt in the preceding example. It follows that
γ̃(s) = (R cos(s/R), R sin(s/R), 0) for 0 ≤ s ≤ 2πR is the unit-speed path for curve.
We can calculate

γ̃′(s) = 〈− sin(s/R), cos(s/R), 0〉 ⇒ ||γ̃′(s)|| = 1.

Hence T̃ (s) = 〈− sin(s/R), cos(s/R), 0〉 and we can also calculate,

T̃ ′(s) = 1
R〈− cos(s/R),− sin(s/R), 0〉 ⇒ ||T̃ ′(t)|| = 1/R.

Thus Ñ(s) = 〈− cos(s/R),− sin(s/R), 0〉. Note B̃ = T̃ × Ñ = 〈0, 0, 1〉 as before.

Example 2.2.15. Let m,R > 0 and suppose ~γ(t) = (R cos(t), R sin(t),mt) for 0 ≤ t ≤ 2π. We
can calculate

~γ ′(t) = 〈−R sin(t), R cos(t),m〉 ⇒ ||~γ ′(t)|| =
√
R2 +m2.

Hence ~T (t) = 1√
R2+m2

〈−R sin(t), R cos(t),m〉 and we can calculate,

~T ′(t) = 1√
R2+m2

〈−R cos(t),−R sin(t), 0〉 ⇒ ||~T ′(t)|| = R√
R2+m2

.

Thus ~N(t) = 〈− cos(t),− sin(t), 0〉. Finally we calculate the binormal vector field,

~B(t) = ~T (t)× ~N(t) = 1√
R2+m2

[−R sin(t)e1 +R cos(t)e2 +me3]× [− cos(t)e1 − sin(t)e2]

= 1√
R2+m2

〈m sin(t),−m cos(t), R〉

We again observe that ~T • ~N = ~N • ~B = ~T • ~B = 0. The osculating plane is moving for this curve,
note the t-dependence. This curve does not stay in a single plane, it is not a planar curve. In fact
this is a circular helix with radius R and slope m.
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Example 2.2.16. Lets reparametrize the helix as a unit-speed path. Notice that s~γ(t) = t
√
R2 +m2

thus we should replace t with s/
√
R2 +m2 to obtain γ̃(s). Let a = 1/

√
R2 +m2 and

γ̃(s) = (R cos(as), R sin(as), ams) for 0 ≤ s ≤ 2π
√
R2 +m2. We can calculate

γ̃′(s) = 〈−Ra sin(as), Ra cos(as), am〉 ⇒ ||γ̃′(s)|| = a
√
R2 +m2 = 1.

Hence T̃ (s) = a〈−R sin(as), R cos(as),m〉 and we can calculate,

T̃ ′(s) = Ra2〈− cos(as),− sin(as), 0〉 ⇒ ||T̃ ′(s)|| = Ra2 = R
R2+m2 .

Thus Ñ(s) = 〈− cos(as),− sin(as), 0〉. Next, calculate the binormal vector field,

B̃(s) = T̃ (s)× Ñ(s) = a〈−R sin(as), R cos(as),m〉 × 〈− cos(as),− sin(as), 0〉
= 1√

R2+m2
〈m sin(as),−m cos(as), R〉

Hopefully you can start to see that the unit-speed path shares the same ~T , ~N, ~B frame at arclength
s as the previous example with t = s/

√
R2 +m2.

2.2.3 Frenet Serret equations

We now prepare to prove the Frenet Serret formulas for the ~T , ~N, ~B frame fields. It turns out that
for nonlinear curves the ~T , ~N, ~B vector fields always provide an orthonormal frame. Moreover, for
nonlinear curves, we’ll see that the torsion and curvature capture the geometry of the curve.

Proposition 2.2.17.

If ~γ is a path with tangent, normal and binormal vector fields ~T , ~N and ~B then
{~T (t), ~N(t), ~B(t)} is an orthonormal set of vectors for each t ∈ dom(~γ).

Proof: It is clear from ~B(t) = ~T (t) × ~N(t) that ~T (t) • ~B(t) = ~N(t) • ~B(t) = 0. Furthermore, it is
also clear that these vectors have length one due to their construction as unit vectors. In particular
this means that ~T (t) • ~T (t) = 1. We can differentiate this to obtain ( by the product rule for
dot-products)

~T ′(t) • ~T (t) + ~T (t) • ~T ′(t) = 0 ⇒ 2~T (t) • ~T ′(t) = 0

Divide by ||~T ′(t)|| to obtain ~T (t) • ~N(t) = 0. �

We omit the explicit t-dependence for the dicussion to follow here, also you should assume the
vector fields are all derived from a particular path ~γ. Since ~T , ~N, ~B are nonzero and point in three
mutually distinct directions it follows that any other vector can be written as a linear combination
of ~T , ~N, ~B. This means3 if ~v is a vector then there exist c1, c2, c3 such that v = c1T + c2N + c3B.
The orthonormality is very nice because it tells us we can calculate the coefficients in terms of
dot-products with ~T , ~N and ~B:

~v = c1 ~T + c2 ~N + c3 ~B ⇒ c1 = ~v • ~T , c2 = ~v • ~N, c3 = ~v • ~B

3You might recognize [v]β = [c1, c2, c3]T as the coordinate vector with respect to the basis β = {~T , ~N, ~B}
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We will make much use of the observations above in the calculations that follow. Suppose that

~T ′ = c11 ~T + c12 ~N + c13 ~B
~N ′ = c21 ~T + c22 ~N + c23 ~B
~B ′ = c31 ~T + c32 ~N + c33 ~B.

We observed previously that ~T ′ • ~T = 0 thus c11 = 0. It is easy to show ~N ′ • ~N = 0 and ~B ′ • ~B = 0
thus c22 = 0 and c33. Furthermore, we defined ~N = 1

||~T ′||
~T ′ hence c13 = 0. Note that

~T ′ = c12 ~N = c12
||~T ′||

~T ′ ⇒ c12 = ||~T ′||.

To summarize what we’ve learned so far:

~T ′ = c12 ~N
~N ′ = c21 ~T + c23 ~B
~B ′ = c31 ~T + c32 ~N.

We’d like to find some condition on the remaining coefficients. Consider that:

~B = ~T × ~N ⇒ ~B ′ = ~T ′ × ~N + ~T × ~N ′ a product rule

⇒ ~B ′ = [c12 ~N ]× ~N + ~T × [c21 ~T + c23 ~B] using previous eqn.

⇒ ~B ′ = c23 ~T × ~B noted ~N × ~N = ~T × ~T = 0

⇒ ~B ′ = −c23 ~N you can show ~N = ~B × ~T .

⇒ c31 ~T + c32 ~N = −c23 ~N refer to previous eqn.
⇒ c31 = 0 and c32 = −c23. using LI of {T,N}

The ”LI” is linear independence. The fact that ~T , ~N are LI follows from the fact that they form a
nonzero and orthogonal set of vectors. We can equate coefficients of LI sums of vectors. This is the
principle I’m using. Alternatively, you can just take the dot-product of the next to last equation
with ~N and then ~T and use ~T • ~N = 0 to obtain the final line. We have reduced the initial set of
equations to the following:

~T ′ = c12 ~N
~N ′ = c21 ~T + c23 ~B
~B ′ = −c23 ~N.

The equations above encourage us to define the curvature and torsion as follows:
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Definition 2.2.18.

Let C be a curve which is covered by the unit-speed path γ̃ then we define the curvature κ
and torsion τ as follows:

κ(s) =

∣∣∣∣∣∣∣∣dT̃ds
∣∣∣∣∣∣∣∣ τ(s) = −dB̃

ds
• Ñ(s)

One of your homework questions is to show that c21 = −c12. Given that result we find the famous
Frenet-Serret equations:

dT̃
ds = κÑ dÑ

ds = −κT̃ + τB̃ dB̃
ds = −τÑ .

We had to use the arclength parameterization to insure that the formulas above unambiguously
define the curvature and the torsion. In fact, if we take a particular (unoriented) curve then there
are two choices for orienting the curve. You can show that that the torsion and curvature are
independent of the choice of orientation. Naturally the total arclength is also independent of the
orientation of a given curve.

Example 2.2.19. .
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Example 2.2.20. .

Curvature, torsion can also be calculated in terms of a path which is not unit speed. We simply
replace s with the arclength function s~γ(t) and make use of the chain rule. Notice that

d~F/dt = (ds/dt)(dF̃ /ds) hence,

d~T
dt = ds

dt
dT̃
ds ,

d ~N
dt = ds

dt
dÑ
ds ,

d ~B
dt = ds

dt
dB̃
ds

Or if you prefer, use the dot-notation ds/dt = ṡ to write:

1
ṡ
d~T
dt = dT̃

ds ,
1
ṡ
d ~N
dt = dÑ

ds ,
1
ṡ
d ~B
dt = dB̃

ds

Substituting these into the unit-speed Frenet Serret formulas yield:

d~T
dt = ṡκ ~N d ~N

dt = −ṡκ~T + ṡτ ~B d ~B
dt = −ṡτ ~N.
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where T̃ (s~γ(t)) = ~T (t), Ñ(s~γ(t)) = ~N(t) and B̃(s~γ(t)) = ~B(t). Likewise deduce4 that

κ(t) =
1

ṡ

∣∣∣∣∣∣∣∣d~Tdt
∣∣∣∣∣∣∣∣ τ(t) = −1

ṡ

(
d ~B

dt
• ~N(t)

)

Let’s see how these formulas are useful in an example or two.

Example 2.2.21. .

4I’m using the somewhat ambiguous notation κ(t) = κ(sγ(t)) and τ(t) = τ(sγ(t)). We do this often in applications
of calculus. Ask me if you’d like further clarification on this point.
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We’ve seen in this section how calculus and vector algebra encourage us to define curvature and
torsion. It remains to examine the geometric significance of those definitions. We pursue that
geometry in the remainder of this section.
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2.2.4 curvature

Let use begin with the curvature. Assume ~γ is a non-stop smooth path,

κ =
1

ṡ

∣∣∣∣∣∣∣∣d~Tdt
∣∣∣∣∣∣∣∣

Infinitesimally this equation gives ||d~T || = κṡdt = κdsdtdt = κ ds. But this is a strange equation

since ||~T || = 1. So what does this mean? Perhaps we should add some more detail to resolve this
puzzle; let d~T = ~T (t+ dt)− ~T (t).

Notice that
||d~T ||2 = [~T (t+ dt)− ~T (t)] • [~T (t+ dt)− ~T (t)]

= ~T (t+ dt) • ~T (t+ dt) + ~T (t) • ~T (t)− 2~T (t) • ~T (t+ dt)

= ~T (t+ dt) • ~T (t+ dt) + ~T (t) • ~T (t)− 2~T (t) • ~T (t+ dt)
= 2(1− cos(φ)))

where we define φ to be the angle between ~T (t) and ~T (t + dt). This angle measures the change
in direction of the tangent vector at t goes to t + dt. Since this is a small change in time it is
reasonable to expect the angle φ is small thus cos(φ) ≈ 1− 1

2φ
2 and we find that

||d~T || =
√

2(1− cos(φ) =
√

2(1− 1 + 1
2φ

2) =
√
φ2 = |φ|

Therefore, ||d~T || = κ ds = |φ| and we find κ = ± ds
dφ

.
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Example 2.2.22. .

Example 2.2.23. .
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Example 2.2.24. .

Remark 2.2.25.

The curvature measures the infinitesimal change in the direction of the unit-tangent vector
to the curve. We say the the reciprocal of the curvature is the radius of curvature r = 1

κ .
This makes sense as ds = |1/κ|dφ suggests that a circle of radius 1/κ fits snuggly against
the path at time t. We form the osculating circle at each point along the path by
placing a circle of radius 1/κ tangent to the unit-tangent vector in the plane
with normal ~B(t). Here’s a picture, the red-vector is the tangent, the blue the binormal,
the green the normal and the black circle is in the grey osculating plane. I have an animated
version on my webpage, go take a look.
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2.2.5 osculating plane and circle

It was claimed that the ”infinitesimal” motion of the path resides in a plane with normal ~B. Suppose
that at some time to the path reaches the point ~γ(to) = Po. Infinitesimally the tangent line matches
the path and we can write the parametric equation for the tangent line as follows:

~l(t) = ~γ(to) + t~γ ′(to) = Po + tvo ~To

where we used that ~γ ′(t) = ṡT (t) and we evaluated at t = to to define ṡ(to) = vo and ~T (to) = ~To.
The normal line through Po has parametric equations (using ~No = ~N(to)):

~n(λ) = Po + λ ~No

We learned in the last section that the path bends away from the tangent line along a circle whose
radius is 1/κo. We find the infinitesimal motion resides in the plane spanned by ~To and ~No which
has normal ~To× ~No = ~B(to). The tangent line and the normal line are perpendicular and could be
thought of as a xy-coordinate axes in the osculating plane. The osculating circle is found with its
center on the normal line a distance of 1/κo from Po. Thus the center of the circle is at:

Qo = Po − 1
κo
~No

I’ll think of constructing x, y, z coordinates based at Po with respect to the ~To, ~No, ~Bo frame. We
suppose ~r be a point on the osculating circle and x, y, z to be the coefficients in ~r = Po + x~To +
y ~No + z ~Bo. Since the circle is in the plane based at Po with normal ~Bo we should set z = 0 for our
circle thus ~r = x~T + y ~N .

||~r −Qo||2 = 1
κ2o
⇒ ||x~To + (y + 1

κo
) ~No]||2 = 1

κ2o
.

Therefore, by the pythagorean theorem for orthogonal vectors, the x, y, z equations for the oscu-
lating circle are simply5 :

x2 + (y + 1
κo

)2 = 1
κ2o
, z = 0.

5Of course if we already use x, y, z in a different context then we should use other symbols for the equation of the
osculating circle.
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Example 2.2.26. .

Finally, notice that if the torsion is zero then the Frenet Serret formulas simplify to:

d~T
dt = ṡκ ~N d ~N

dt = −ṡκ~T d ~B
dt = 0.

we see that ~B is a constant vector field and motion will remain in the osculating plane. The change
in the normal vector causes a change in the tangent vector and vice-versa however the binormal
vector is not coupled to ~T or ~N .
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Remark 2.2.27.

The torsion measures the infinitesimal change in the direction of the binormal vector relative
to the normal vector of the curve. Because the normal vector is in the plane of infinitesimal
motion and the binormal is perpendicular to that plane we can say that the torsion measures
how the path lifts or twists up off the plane of infinitesimal motion. Furthermore, we can
expect path which is trapped in a particular plane (these are called planar curves) will
have torsion which is identically zero. We should also expect that the torsion for something
like a helix will be nonzero everywhere since the motion is always twisting up off the plane
of infinitesimal motion. It is probable you will explore these questions in your homework.

Finally, I quote a theorem from Colley’s Vector Calculus.

If you are really interested in digging deeper then my suggestion would be to take linear algebra
(Math 321) and then pursue an independent study in elementary differential geometry. There are
many nice books suitable for self-study of the topic. For example, Opreas’ Differential Geometry
and its Applications. I will probably survey a swath of the subject in the Advanced Calculus course,
but my focus is more towards calculations and the structure of calculus. A course focused on
differential geometry would dig much deeper. It is a rich subject full of interesting history and
calculation.
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2.3 physics of motion

In this section we study kinematics. That is, we study how position, velocity and acceleration are
related for physical motions. We do not ask where the force comes from, that is a question for
physics. Our starting point is the equation of motion ~F = m~A which is called Newton’s Second
Law. Given the force and some initial conditions we can in principle integrate the equations of
motion and derive the resulting kinematics. We have already, in the LU calculus sequence, twice
studied kinematics. In calculus I for one-dimensional motion, in calculus II for two-dimensional
motion. I recycle some examples for our current discussion. However, some comments are added
since we now have the proper machinery to break-down vectors along a physical path. Let’s see
how the preceding section is useful in the analysis of the motion of physical objects. The solution
of Newton’s equation ~F = m~A is a path t 7→ ~r(t). It follows we can analyze the velocity and
acceleration of the physical path in terms of the Frenet Frame {T,N,B}. To keep it interesting
we’ll assume the motion is non-stop and smooth so that the analysis of the last section applies.

In this section the notations ~r, ~v and ~a are special and set-apart. I don’t use these as abstract
variables here with no set meaning. Instead, these are connected as is described in the definition
that follows:

Definition 2.3.1. position, velocity and acceleration.

The position, velocity and acceleration of an object are vector-valued functions of time and
we define them as follows:

1. ~r(t) is the position at time t. (we insist physical paths are parametrized by time)

2. ~v(t) = d~r
dt is the velocity at time t.

3. ~a(t) = d~v
dt is the acceleration at time t.

We also define the tangential and normal accelerations of the motion by

~aT = ~a • ~T ~aN = ~a • ~N note: ~a = ~aT ~T + ~aN ~N.

We know from our study of the geometry of curves that the binormal component of the acceleration
is trivial. Acceleration must lie in the osculating plane and as such is perpendicular to the binormal
vector which is the normal to the osculating plane. If you’re curious, the position vector itself can
have nontrivial components in each direction of the Frenet frame whereas the velocity vector clearly
has only a tangential component; ~v = v ~T .

If we are given the position vector as a function of time then we need only differentiate to find
the velocity and acceleration. On the other hand, if we are given the acceleration then we need to
integrate and apply initial conditions to obtain the velocity and position.
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Example 2.3.2. Suppose R and ω are positive constants and the motion of an object is observed
to follow the path ~r(t) = 〈R cos(ωt), R sin(ωt)〉 = R〈cos(ωt), sin(ωt)〉. We wish to calculate the
velocity and acceleration as functions of time.

Differentiate to obtain the velocity

~v(t) = Rω〈− sin(ωt), cos(ωt)〉.

Differentiate once more to obtain the acceleration:

~a(t) = Rω〈−ω cos(ωt),−ω sin(ωt)〉 = −Rω2〈cos(ωt), sin(ωt)〉.

Notice we can write that ~a(t) = −ω2~r(t) = Rω2 ~N in this very special example. This means the
acceleration is opposite the direction of the position and it is purely normal. Furthermore, we can
calculate

r = R, v = Rω, a = Rω2

Thus the magnitudes of the position, velocity and acceleration are all constant. However, their
directions are always changing. Perhaps you recognize these equations as the foundational equations
describing constant speed circular motion. This acceleration is called the centripetal or center-
seeking acceleration since it points towards the center. Here we imagine attaching the acceleration
vector to the object which is traveling in the circle.

Incidentally, you might wonder how the binormal should be thought of in the example above. We
should adjoin a zero to make the vectors three-dimensional and then the cross-product of ~T × ~N
points in the direction given by the right-hand-rule for circles. Curl your right hand around the
circle following the motion and your thumb will point in the binormal direction. You can calculate
that the binormal is constant:

~B = ~T × ~N = 〈− sin(ωt), cos(ωt)〉 × 〈− cos(ωt),− sin(ωt)〉 = 〈0, 0, 1〉
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Often when we consider planar motion we omit the third dimension in the vectors since those
components are zero throughout the whole discussion. That said, if we wish to properly employ
the Frenet Frame analysis then we must think in three dimensions. The next example is also
two-dimensional6.

Example 2.3.3. Suppose that the acceleration of an object is known to be ~a = 〈0,−g〉 where g is
a positive constant. Furthermore, suppose that initially the object is at ~ro and has velocity ~vo. We
wish to calculate the position and velocity as functions of time.

Integrate the acceleration from 0 to t,∫ t

0

d~v

dτ
dτ =

∫ t

0
a(τ)dτ ⇒ ~v(t)− ~v(0) =

∫ t

0
〈0,−g〉dτ ⇒ ~v(t) = ~vo + 〈0,−gt〉

Integrate the velocity from 0 to t,∫ t

0

d~r

dτ
dτ =

∫ t

0
v(τ)dτ ⇒ ~r(t)− ~r(0) =

∫ t

0

(
~vo + 〈0,−gt〉

)
dτ ⇒ ~r(t) = ~ro + t~vo + 〈0,−1

2
gt2〉

I’m curious how the decomposition of the acceleration into normal and tangential components works
out for the example above. Maybe I’ll make it a homework.

The best understanding of Newtonian Mechanics is given by a combination of both vectors and
calculus. We need vectors to phrase the geometry of force addition whereas we need calculus to
understand how the position, velocity and acceleration variables change in concert.

6all motion generated from Newtonian gravity alone is planar. A more general result states all central force motion
lies in a plane, probably a homework of yours
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2.3.1 position vs. displacement vs. distance traveled

The position of an object is simply the (x, y, z) coordinates of the object. Usually it is convenient
to think of the position as a vector-valued function of time which we denote ~r(t). The displacement
is also a vector, however it compares two possibly distinct positions:

Definition 2.3.4. displacement and distance traveled.

Suppose ~r(t) is the position at time t of some object.

1. The displacement from position ~r1 to position ~r2 is the vector ∆~r = ~r2 − ~r1.

2. The distance travelled during the interval [t1, t2] along the curve t 7→ ~r(t) is given
by

s12 =

∫ t2

t1

v(t)dt =

∫ t2

t1

√
dx

dt

2

+
dy

dt

2

+
dz

dt

2

dt

where v(t) = ||d~r/dt||.

Note that the position is the displacement from the origin. Distance travelled is a scalar quantity
which means it is just a number or if we think of an endpoint as variable it could be a function.

Definition 2.3.5. arclength function and speed.

We define

s(t) =

∫ t

t1

v(τ)dτ =

∫ t

t1

√
dx

dτ

2

+
dy

dτ

2

+
dz

dτ

2

dτ

to be the arclength travelled from time t1 to t along the parametrized curve t 7→ ~r(t).
Futhermore, we define the speed to be the instantaneous rate of change in the arclength;
speed is ds/dt.

Notice it is simple to show that the speed is also equal to the magnitude of the velocity; ds/dt = v.
Also, note that we drop the z-terms for a typical two-dimensional problem. If you insist on being
three dimensional you can just adjoin a bunch of zeros in the examples below. There are unavoidably
three dimensional examples a little later in the section.

Example 2.3.6. Let ω,R > 0. Suppose ~r(t) = 〈R cos(ωt), R sin(ωt)〉 for t ≥ 0. We can calculated
that

d~r

dt
= 〈−Rω sin(ωt), Rω cos(ωt)〉 ⇒ v(t) =

√
(−Rω sin(ωt))2 + (Rω cos(ωt))2 =

√
R2ω2 = Rω.

Now use this to help calculate the distance travelled during the interval [0, t]

s(t) =

∫ t

0
v(τ)dτ =

∫ t

t1

Rωdτ = Rωτ

∣∣∣∣t
0

= Rωt.
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In other words, ∆s = Rω∆t. On a circle the arclength subtended ∆s divided by the radius R is
defined to be the radian measure of that arc which we typically denote ∆θ. We find that ∆θ = ω∆t
or if you prefer ω = ∆θ/∆t.

Circular motion which is not at a constant speed can be obtained mathematically by replacing the
constant ω with a function of time. Let’s examine such an example.

Example 2.3.7. Suppose ~r(t) = 〈R cos(θ), R sin(θ)〉 for t ≥ 0 where θo, ωo, α are constants and
θ = θo + ωot+ 1

2αt
2. To calculate the distance travelled it helps to first calculate the velocity:

d~r

dt
= 〈−R(ωo + αt) sin(θ), R(ωo + αt) cos(θ)〉

Next, the speed is the length of the velocity vector,

v =
√

[−R(ωo + αt) sin(θ)]2 + [R(ωo + αt) cos(θ)]2 = R
√

(ωo + αt)2 = R|ωo + αt|.

Therefore, the distance travelled is given by the integral below:

s(t) =

∫ t

0
R|ωo + ατ |dτ

To keep things simple, let’s suppose that ωo, α are given such that ωo+αt ≥ 0 hence v = Rωo+Rαt.
To suppose otherwise would indicate the motion came to a stopping point and reversed direction,
which is interesting, just not to us here.

s(t) = R

∫ t

0
(ωo + ατ)dτ = Rωot+

1

2
Rαt2.

Observe that θ(t) − θo = (s(t) − s(0))/R thus we find that ∆θ = ωot + 1
2αt

2 which is the formula
for the angle subtended due to motion at a constant angular acceleration α. In invite the reader
to differentiate the position twice and show that

~a(t) =
d2~r

dt2
= −Rω2

〈
cos(θ(t)), sin(θ(t))

〉︸ ︷︷ ︸
centripetal

+Rα
〈
− sin(θ(t)), cos(θ(t))

〉︸ ︷︷ ︸
tangential

where ω = ωo + αt.
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Distance travelled is not always something we can calculate in closed form. Sometimes we need
to relegate the calculation of the arclength integral to a numerical method. However, the example
that follows is still calculable without numerical assistance. It did require some thought.

Example 2.3.8. We found that ~a = 〈0,−g〉 twice integrated yields a position of
~r(t) = ~ro + t~vo + 〈0,−1

2gt
2〉 for some constant vectors ~ro = 〈xo, yo〉 and ~vo = 〈vox, voy〉. Thus,

~r(t) =
〈
xo + voxt, yo + voyt−

1

2
gt2
〉

From which we can differentiate to derive the velocity,

~v(t) =
〈
vox, voy − gt

〉
.

If you’ve had any course in physics, or just a proper science education, you should be happy to
observe that the zero-acceleration in the x-direction gives rise to constant-velocity motion in the
x-direction whereas the gravitational acceleration in the y-direction makes the object fall back down
as a consequence of gravity. If you think about voy− gt it will be negative for some t〉0 whatever the
initial velocity voy happens to be, this point where voy−gt = 0 is the turning point in the flight of the
object and it gives the top of the parabolic7 trajectory which is parametrized by t → ~r(t). Suppose
xo = yo = 0 and calculate the distance travelled from time t = 0 to time t1 = voy/g. Additionally,
let us assume vox, voy ≥ 0.

s =

∫ t1

0
v(t)dt =

∫ t1

0

√
(vox)2 + (voy − gt)2dt

=

∫ 0

voy

√
(vox)2 + (u)2

(
du

−g

)
u = voy − gt

=
1

g

∫ voy

0

√
(vox)2 + (u)2du

7no, we have not shown this is a parabola, I invite the reader to verify this claim. That is find A,B,C such that
the graph y = Ax2 +Bx+ C is the same set of points as ~r(R).
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Recall that a nice substitution for an integral such as this is provided by the sinh(z) since 1 +
sinh2(z) = cosh2(z) hence a u = vox sinh(z) subsitution will give

(vox)2 + (u)2 = (vox)2 + (vox sinh(z))2 = v2ox cosh2(z)

and du = vox cosh(z)dz thus,
∫ √

(vox)2 + (u)2du =
∫ √

v2ox cosh2(z)vox cosh(z)dz =
∫
v2ox cosh2(z)dz.

Furthermore, cosh2(z) = 1
2(1 + cosh(2z)) hence∫ √

(vox)2 + (u)2du =
v2ox
2

[
z +

1

2
sinh(2z)

]
+ c =

v2ox
2

[
z + sinh(z) cosh(z)

]
+ c

Note u = vox sinh(z) and voxcosh(z) =
√

(vox)2 + (u)2 hence substituting,∫ √
(vox)2 + (u)2du =

1

2

[
v2ox sinh−1

(
u

vox

)
+ u
√
v2ox + u2

]
+ c

Well, I didn’t think that was actually solvable, but there it is. Returning to the definite integral
to calculate s we can use the antiderivative just calculated together with FTC part II to conclude:
(provided vox 6= 0)

s =
1

2g

[
v2ox sinh−1

(
voy
vox

)
+ voy

√
v2ox + v2oy

]
If vox = 0 then the problem is much easier since v(t) = |voy − gt| = voy − gt for 0 ≤ t ≤ t1 = voy/g
hence

s =

∫ t1

0
v(t)dt =

∫ t1

0
(voy − gt)dt =

[
voyt−

1

2
gt2
]∣∣∣∣voy/g

0

=
v2oy
2g

Interestingly, this is the formula for the height of the parabola even if vox 6= 0. The initial x-velocity
simply determines the horizontal displacement as the object is accelerated vertically by gravity.
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Example 2.3.9. .

Example 2.3.10. .

Example 2.3.11. .
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Example 2.3.12. .
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Example 2.3.13. .
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