Chapter 4

differentiation

In single variable calculus we learn from the outset that the derivative of a function describes the
slope of the function at a point. On the other hand, we also learned that the derivative at a point
can be used to construct the best linear approximation to the function. In particular, the deriva-
tive at a point shows how the change in the independent variable Ax gives an approximate change
Ay = f'(a)Az. This characterization of the derivative is the one which most readily generalizes to
many dimensions. In particular, we generalize Ay and Az to become vectors and f/(a) is a matrix
when f : R® — R™. T'll explain how the derivative matrix! f’(a) is the natural extension of our
single-variable calculus to the general case.

The nuts and bolts of this derivative matrix are made from what we call partial derivatives of the
component functions. The partial derivative in turn is naturally defined in the context of direc-
tional derivatives. The directional derivative takes the multivariate function and restricts it to a
particular line in the domain. By making this restriction we find a way to do single variable-type
calculations on a multivariate function. Much of the calculation presented in this chapter is little
more than single-variable calculus with a few simple rules adjoined. However, connecting the partial
derivatives to the general derivative involves multivariate limits and some analysis that is beyond
the required content of this course. That said, I include some of those arguments in these notes in
the interest of logical completeness.

Most modern treatments ignore the need to discuss the general concept of differentiation and
instead just show students an assortment of various partial derivative calculations. I've found
students who are thinking are usually unsatisfied with the popular approach because there is no
big picture behind the partial differentiation. It’s just a seemingly random collection of adhoc rules.
This need not be. If we submit ourselves to a little linear algebaic terminology there is a beautiful
and quite general context in which all the partial derivatives find a natural purpose.

Loften called the Jacobian matrix
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4.1 directional derivatives

We begin our discussion with a function f : dom(f) € R? — R. Consider a fixed point (z,,v,) €
dom(f). Furthermore, picture © = (a,b) as a unit-vector (it’s green) in the domain of f attached
to (Zo,Yo) and construct the path in dom(f) with direction (a,b) and base-point (z,,y,):

—

7(t) = (xo + ta, y, + tb)

If we feed this path (the orange line) to the function f then we can construct a curve in R? which
lies on the graph z = f(x,y) and passes through the point (x,, Yo, f (%0, ¥,)). In particular,

y(t) =<fvo+ta, Yo +tb, f(xo+ta, yo+tb)>

parametrizes the curve (in blue) formed by the intersection of the graph z = f(x,y) and the vertical
plane which contains z and aZ + b7.

C ={xf{y
/ c=efl)
x/ } Do f (x9,) = V-2

In the picture above you can see that we identify the zy-plane embedded in R? with the plane R?
which contains dom(f). A natural choice of coordinates on vertical slice containing (a,b,0) and
(0,0,1) is given by t,z. For the sake of discussion let g(t) = f(z, + ta, y, + tb) and consider the
graph z = g(t). This is a context to which ordinary single-variate calculus applies. The derivative
¢'(0) describes the slope of the tangent line in the tz-plane at (0, g(0)). Of course, from the three-
dimensional perspective, ¢’(0) gives the z-component of the velocity-vector (the red arrow) to the
path ¢ — 4(t). So what? Well, what is that quantity’s meaning for z = f(x,y)? It’s simply the
following:

The value of %[ f(xo +ta, yo+ tb)] ‘t:O describes the rate of change in f(z,y)
in the direction (a,b) at the point (z,,y,).

This is why we are interested in this calculation. The directional derivative of f in the (a,b)
direction at (z,,y,) is precisely the slope described above.
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Definition 4.1.1.

Let f : dom(f) C R? — R be a function with p, = (o, yo) € dom(f) and suppose @ = (a, b)
is a unit-vector. If the limit below exists, then we define the directional derivative of f
at p, in the u-direction by

[f(ﬁo+tat)f(ﬁo):|

= lim

[f(xo +ta, yo + tb) - f(xo: yo)
t—0 '

t

The definition above can also be written in terms of a derivative followed by an evaluation:

D;f(po) = i[f(:co~l—ta, Yo + tb) ]

t=0

We pause to look at a few examples.

Example 4.1.2. Problem: Suppose f(x,y) = 25xy and calculate the rate of change in f at (1,2)
in the direction of the (3,4)-vector.

Solution: we identify this is a directional derivative problem. We need a point and a unit vector.
The point is p, = (1,2). Howewver, ||(3,4)|| = v/9 + 16 = 5 hence we need to rescale the given vector
before we calculate. Just divide by 5 to obtain u = (3/5,4/5). Calculate,

F(Po+t0) = f(1+3t/5,2+4t/5) = 25(1 + 3t/5)(2 + 4t/5) = (5 + 3t)(10 + 4t)

Differentiate, and then evaluate,

= 30 + 20 = 50.

Dot = L] (5430010 + 41) ]
t=0

dt

— [ 3(10 + 4¢) + 4(5 + 3t) ]

t=0

Naturally if you would rather calculate the difference quotient and take the limit you are free to
do that. I choose to use the tools we’ve already developed, no sense in reinventing the wheel here.
Incidentally, we will find a better way to package this calculation so you should look at this example
as a means to better understand the definition. It is not computationally ideal. Neither is what
follows, but these help bring understanding to later calculations so here we go.

Example 4.1.3. Problem: Suppose f(z,y) = 25zy and calculate the rate of change in f at (1,2)
in the direction of the ((a.) (1,0)-vector, (b.) (0,1)-vector.

Solution of (a.): I'll get straight to it here, identify u = (1,0) and p, = (1,2) and calculate
f(Bo+1tZ) = f(1+1,2) = 25(1 +1)(2) = 50 + 50t

Therefore,

= 50.

Df(p,) = 4 [ 50 + 50t ]
t=0

dt
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Solution of (b.): Identify u = (0,1) and p, = (1,2) and calculate
FPo+17) = f(1,241) = 25(1)(24t) = 50 + 25¢

Therefore,

= 25.

Dyf (o) = d[ 50 + 25t }
t=0

dt

Notice 50 = %(50) + %(25) hence the previous examples are related in a curious manner:

Daf(5) = D7) + £ D3l (7).

In other words, the pattern we see is:

D(a,b)f(ﬁo) = (a, b) * <D5:\f(ﬁ0)7 Dﬂf(ﬁo»

The directional derivatives in the coordinate directions are apparently important. We may be able
to build the directional derivative in other directions®. This leads us to the topic of the next section.
However, for the sake of logical completeness I define directional derivatives for functions of more
than two variables. The visualization of the slopes implicit in the definition below are beyond most
of our visual acumen.

Definition 4.1.4.

Let f : dom(f) € R™ — R be a function with p, € dom(f) and suppose u € R" is a
unit-vector. If the limit below exists, then we define the directional derivative of f at p,
in the u-direction by

NET f(ﬁo"‘ta)_f(ﬁo)
Dﬁf(po) = hm :| dt

t—0 t

d[f(ﬁoﬂa)]

t=0

We will calculate a few such directional derivatives in the section after the next once we understand
the two-dimensional case in some depth.

2it turns out this is not generally true, but the exceptions are rare in applications
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4.2 partial differentiation in R?

We continue the discussion of the last section concerning the change in functions of two variables.
The formulas and concepts readily generalize to n > 3 however we postpone such discussion until
we have settled the n = 2 theory.

Definition 4.2.1.

Let f : dom(f) C R? — R be a function with (x,,,) € dom(f). If the directional derivative
below exists, then we define the partial derivative of f at (z,,¥,) with respect to = by

of :
%(:Eov Yo) = (Dzf) (o, Yo)-
Likewise, we define the partial derivative of f at (x,,y,) with respect to y by

of

af'y(xoayo) = (Dﬂf)(mo’ yo)

provided the directional derivative (Dgf)(zo, o) exists.

Notice that (x,,y,) — %(wo,yo) and (zo,Y,) %(%7%) define new multivariate functions pro-

vided the given function f possesses the necessary directional derivatives. We define higher deriva-
2

tives by successive partial differentiation in the natural way: gTJ; = 3 [g£ ] Derivatives such as

gz and aaxafy and 8y8 are similarly defined. A brief notation for partial derivatives is as follows:

of
ox

of O*f

%
8797 fmza 2 fzy (fa:)

Oyox’

fz= , y = ete...
It is usually the case that f;, = f, but the proof of that statement is nontrivial and can be found
in most advanced calculus texts. Given the connection of the partial derivative and the directional

derivative we have the following conceptual guidelines:

fz gives the rate of change in f in the z-direction.
fy gives the rate of change in f in the y-direction.

It is also useful to rewrite the definition of the partial derivatives explicitly in terms of derivatives.

of

%(l’o;yo): ;f[f(xo"f't yo)] 8f

d
@(anyo) dt |: f(xmyo + t) ]

t=0 t=0
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The geometry is revealed in the diagram below:

Slope =~g—§ 0,9} Slope = {g< )
Ky = x4 £ 050)) @(%)2(&,% £ >
i &lb(a)' % = Pa‘c ()\)[\{\) \g,(fﬂg) ’% = %%\f‘e \&g)

Well, how do these really work? The proposition below explains the working calculus of partial
derivatives. It is really very simple.

Proposition 4.2.2.
Assume f, g are functions from R? to R whose partial derivatives exist. Then for ¢ € R,

L (f+9)e=/fe+gsand (f+9)y=fy+9y
2. (¢f)s = cfy and (cf)y = cfy.
3. (fg)m = fz9 + fgr and (fg)y = fyg7L fgy-

Moreover, if h : dom(h) C R — R is a differentiable function then (4.)

o dh|  8f dhof ) dh|  8f dnof
e =G| =g = gvenw| =G| L-F5
ox ox y oy
7:1 —_— = _— = 7:1_
Ox " Oy 0 Ox 0 oy

Proof: the proofs of 1,2,3 follow immediately from the corresponding properties of single-variable

differentiation. Let’s work on the z-part of (4.)

9 [h(f(m,y))} = % [ h(f(wo+t,90)) }

O t=0
dh d [
ot t) |)
<dt f(@ott,y0 )dt =0
dh of
f(z.y) 0z
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We find that (4.) follows from the chain-rule of single-variable calculus. The proof in the y-variable
is nearly the same. The proof of (5.) requires understanding of the definition. Let F'(x,y) = = and

calculate GF J J
F t t =1.
=l e )| al o))l
oF d d
F t =—|x =0.
0y dt[ @y ):|>t0 dt{T}> t=0 '
Likewise, let G(x,y) = y and calculate,
oG d d
t = — = 0.
o dt[G(T+ y)]>to dt|:y:|>t0 ’
oG d d
oy oo ] mal L

Which concludes the proof of (5.) O

Example 4.2.3. Can you identify which property of the proposition I use in each line below?

0
Oz

x24y2 _ x2+y22 2 2
[2 ] In(2)27 4 = (2% + 3/

—m@2 | L)+ )]
ox ay]

_ z2+y? Yy
In(2)2 [2 5 T2

= |21n(2)z2* Y’

Example 4.2.4. Can you identify which property of the proposition I use in each line below?

%[ sin(z%y) | = cos(z?y) 88 [ 2%y ]

0
—Cosmy[ y—|—x2y]
Ox
= cos( 2y (2:10 )
= | 2zy cos( z?

Similarly, you can calculate:

;y[ sin(z?y) | =|2? cos(z%y).

In practice I rarely write as many steps as I just offered in the examples above.
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Example 4.2.5. Power functions and exponential functions are different.

0 0
Y] — gyl v ] = Y
B [2Y ]| =yz whereas 3y [2Y | =In(z)z
0 0
éTy[ y® ] =2y* ! whereas %[ y* ] = In(y)y”.
Example 4.2.6.
R I S | 9 w2 2 — v?
8x[x | =y whereas 8y[x | = In(z)z 2y 2y In(z)zY".
Example 4.2.7.
o | sin(az2y cosh(z)) | = cos (3323/ cosh(z)) Oax (ach cosh(z)).

= | (2zy cosh(z) + 2y sinh(z)) cos (a:2y cosh(z)).

Can I skip the middle step in the example above? Some days yes. Should you? Probably not.
Example 4.2.8.

0
aay[ sin(cos(v/zy)) | = cos(cos(@))a—y(cos(\/@)).

= cos(cos(v/zy)) (— s1n(\/:Ty))68y\/aTy
Lo

2,/xy Oy
1

— —2\/;sin( \/@) cos(cos(J:Ty) )

= cos(cos(v/zy)) (— sin(y/zy)) [zy].

Example 4.2.9. .

Flxe) = x+u,

E.E = _a_ 2 2 ) r o

P 2% [X + %J = &'[xzf + a%iyff: 2 Y s conhad
- with respect 4o x
L = 8 = .

2% P [xz“aej ' fowe regord X ar concduch ar we

IOerA/m ~/4\,¢ %g O)DefM"bn_
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Example 4.2.10. .

Flxy) = xe*v

°F __3_. 9 X
2 = B = B xGeY] s probek ook
E = ex“‘ - X%ex“a s chain rule ,femwm-(:er “4

is regurdd onstecd

here I wrefe oub She chain
fwu, net a/w«zu need, bud !

}'lfp in Messe,  coceo,

Example 4.2.11. .

2 .
ES] =" = sin(x9) + x + D (9) . Soppere thb x 33
oce indeperderh and B i dependand SO T 3 xe) . We
Use ;mph'co'f diflecenthion Ho Hind ;'m;a/rm'v‘ formudas  for i I %‘2,

=(¥]=2322

%{smwn X + ﬁn(%):\ = Ycor(x9) + |

: eghgn ¢ wih
So ?';% = al‘%‘[%c"s(x'ﬁ) + \-J J ie Hais impliet 2

Bud Ahese  are
Fleewise we Cw\cw\mj
2% A - _9_} . | ‘ o
;‘??f:ga‘; = Xesxo) + & |55 T 3% [XCor(X‘é)-l- ‘éﬂ

Example 4.2.12. .

fh  £lx9) = X49°,

¥XX‘.—:2;ZE£<—[§£] :% ‘92]”:0

T = %{ - %[%j = %[‘zxﬂ =27 NN N
Em e = i[i“ = 2] ] = 2% >ﬁ,{r\;ﬁ:n§,u

Ry Y IX By ’be oY [ K ] [ coe .y»\?;b 5

ORI EE T L S A
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CHAPTER 4. DIFFERENTIATION
Example 4.2.13. .

?(X,z") = Kze—cf whece C 11 e« conrfond,

fue =9t 3¢ 3 (<€)
= o -g_af( et e—c*‘)

I
g

n
Yo
~~

o X
ml
o
-
b S

1]
i
&
()]
1
o
pan
il
4
¥
i

Example 4.2.14. .

Let £or) = bo(x+ X257 ) Had £ (2%

=2 [In(xs ) |
ot
| 2 —— |
K+ Jxc+V? ’;g[x‘kn\('xzﬂﬁzl

{ i 2 z 2)
X+ fFrge <' +Q:l><‘+u32 ox (x +%)

! < X
o —_— e L —
(1 =)
Thus,

3

'Px (‘3}61} = ?+|W(\+ -Hé) =3‘l[é+i}

- Een==
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Example 4.2.15. .
Flxy) = xX°y° + ax"y
e = 3x79° 4 8xTy A =5xY"+ ox7

Foe = 6XY° £ 29x7Y = 30x%’
fy =I5X78 o b A =15y o

H

I

Example 4.2.16. .

f&8) = s6?/(s+4)

L2 S < (- S - ‘[ s*+t*- as-s ot (tr-s2
as S ] ' G+ | (e
% 2 ¢ at(su,m P 3
=t o= S = |

5 -] < o 2. G

Example 4.2.17. .

flxy) = S: @)t = FO=F () whee Flu) = cos (u?).

%% = «I??[Sxﬂ"fledf} = ;j—l F{x)—p(vs = %sz) = Cos (xX°).
?
% Svmitz]df] = _5-*2— (% F—'f)‘) %E(y) = oos (¥2),

Example 4.2.18. .

b w = sinx cos @
2 = Blsine o) = cxp 2 0] -
%{Pl s QQ[Smat Cws‘?] = Sina “D%‘[m FJ m
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Example 4.2.19.

£rd 9Z%x and 9?/9“3;
x-z7 = ton' (%2)
Dillendiodts wih respedt o x (hold Y ‘pixec'),

2 (x-2z) = i@aw"(%z)z

X
) — — [2__|2z
L= 33‘ - |+@z)9 = L] = Lw‘z’]ax
— | 4 22 . loz _ '
= [ we EX ‘*Tﬁ?)
Z/‘ /teW/.Sé/ ) COm,/J ﬂm/:%/f%
9 (w—2) = 2 [ 4ty p ot nre
a7 (x=2) = 5 (e e
-5z _ 1 ir‘é?} | ®x 921y
cCa ‘lwfz2 'atal. '
22
- 22 = Zz + Y J
29 t+'a 2° [ *v
- o2 , % __ 2z
_I-E?"z? = %% " Eor

32_=( ' \—z
7% AT AN R

22 - _-% ]
Y 1+%* 2% + 9

Example 4.2.20.

fid 2% portino of 2= ¥Yun (2zx)

-~ o7 _ 2f
= = ton (2%) Fham W“;[mtlejz

9 .. 2 e B
= = QY% — = =
Y Sect(ax)  Ahew == ax[w sec’(zx):(
= 3Y - asec(ax) - 2= [sec(2x)]
= YY sec(ax) seclex) tun(zx)- 2

Y sec’(zx) ton(zx) = :a]

Lgou can enlenlete Ahe (f.mu&m'na 5 ovelen VR L0 = i YT 7y Ry ?xy

W
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4.2.1 directional derivatives and the gradient in R?

Now that we have a little experience in partial differentiation let’s return to the problem of the
directional derivative. We saw that

D(a,b)f(foa Yo) = ( fz(T0:Yo), fy($0790) ) {a,b)

for the particular example we considered. Is this always true? Is it generally the case that we can
build the directional derivative in the (a, b)-direction from the partial derivatives? If you just try
most functions that come to the nonpathological mind then you’d be tempted to agree with this
claim. However, many counter-examples exist. We only need one to debunk the claim.

Example 4.2.21. Suppose that

r+1 y=0
0 xy # 0
Clearly f,(0,0) =1 and fy(0,0) = 1 however the directional derivative is given by
Pran 0.0 =iy === = 1

which diverges. The directional derivative in any non-coordinate direction does not exist since the
function jumps from 0 to 1 at the origin along any line except the axes.

1 y=0
Example 4.2.22. This example is even easier: let f(z,y) =<1 x =0 . In this case I can graph
0 zy#0

the function and it is obvious that f;(0,0) = 0 and f,(0,0) = 0 yet all the directional derivatives
in non-coordinate directions fail to exist.

We can easily see the discontinuity of the function above is the source of the trouble. It is sometimes
true that a function is discontinuous and the formula holds. However, the case which we really
want to consider, the type of functions for which the derivatives considered are most meaningful,
are called continuously differentiable. You might recall from single-variable calculus that when
a function is differentiable at a point but the derivative function is discontinuous it led to bizzare
features for the linearization. That continues to be true in the multivariate case.
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Definition 4.2.23.

A function f : dom(f) C R? — R is said to be continuously differentiable at (x,,,)
iff the partial derivative functions %7 g—; are continuous at (z,,y,). We say f € Cc! (Zos Yo)-
If all the second-order partial derivatives of f are continuous at (z,,¥y,) then we say

f € C?(x,,y,). If continuous partial derivatives of arbitrary order exist at (x,, o)

then we say f is smooth and write f € C*(z,,y,).

The continuity of the partial derivative functions implicitly involves multivariate limits and this is
what ultimately makes this criteria quite strong.

Proposition 4.2.24.

Suppose f is continuously differentiable at (x,,y,) then the directional derivative at (x,, y,)
in the direction of the unit vector (a,b) is given by:

D(a,b)f(‘rovyo) = < fx(xwyO)v fy(xoayo) >' <a7b>

Proof: delayed until the next section. [J

At this point it is useful to introduce a convenient notation which groups all the partial derivatives
together in a particular vector of functions.

Definition 4.2.25.

If the partial derivatives of f exist then we define

_of _of

i = iy ) = 1% + y@.

we also use the notation grad(f) and call this the gradient of f.

The upside-down triangle V is also known as nabla. Identify that V = 20, + y0, is a vector of
operators, it takes a function f and produces a vector field V f. This is called the gradient vector
field of f. We’ll think more about that after the examples. For a continuously differentiable
function we have the following beautiful formula for the directional derivative:

Diap) f(%0,50) = (V) (@0, Yo) + (a, b).-

This is the formula I advocate for calculation of directional derivatives. This formula most elegantly
summarizes how the directional derivative works. I’d make it the definition, but the discontinuous?
counter-Example 4.2.21 already spoiled our fun.

31 don’t mean to say there are no continuous counter examples,I’d wager there are examples of continuous functions
whose partial derivatives exist but are discontinuous. Then the formula fails because some non-coordinate directions
fail to possess a directional derivative.
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Example 4.2.26. Suppose f(z,y) = 2% +y>. Then
Vf=(2z2y).
Calculate the directional derivative of f at (x,,Y,) in the {(a,b)-direction:
Doy f(To;Yo) = (220, 2yo) * (@, b) = 2x,a 4 2yob.

It is often useful to write D44 f (70, Yo) = (Vf)(T0, o) * (a,b) in terms of the angle & between the
V f(xo,Yo) and (a, b):

Diapy f(To,Yo) = [|(V f) (0, Yo)|| cos b.

With this formula the following are obvious:

1. (# =0) when (a,b) is parallel to (Vf)(z,,y,) the direction

a,b) points towards maximum increase in f

6 = m) when (a, b) is antiparallel to (V f)(x,,y,) the direction
a, b) points towards maximum decrease in f

(
(
- (
(
(0 = 7/2) when (a,b) is perpendicular to (V f)(zs,y,) the direction
(a,b) points towards where f remains constant.
Example 4.2.27. Problem: if f(z,y) = 2? + y. Then in what direction(s) is(are) f
(a.) increasing the most at (2,3), (b.) decreasing the most at (2,3), (c.) not increasing at (2,3)?

Solution of (a.): f increases most in the (V f)(2,3)-direction. In particular, (V f)(2,3) = (4, 6).
If you prefer a unit-vector then rescale (4,6)) tou = \/%(2, 3). The magnitude ||(V £)(2,3)|| = V13
is the rate of increase in the u = \/%@, 3)-direction.

Solution of (b.): f decreases most in the —(V f)(2,3)-direction. In particular, —(V f)(2,3) =

(—4,—6). If you prefer a unit-vector then rescale (—4,—6)) to u = ﬁ(—Q, —3). The rate of de-

crease is also v/13 in magnitude.

Solution of (c.): f is constant in directions which are perpendicular to (Vf)(2,3). A unit-vector
which is perpendicular to (Vf)(2,3) = (4,6) satisfied two conditions:

(Vf)(2,3)s(a,b) =4a+6b=0  and a*+b*=1

These are easily solved by solving the orthogonality condition for b = —%a and substituting it into
the unit-length condition:

4 13 9 2
l=a? 4+ =a>+-ad>="0d* = *== = a=+ =>b=F—.

9 9 13 V13 V13
Therefore, we find f is constant in either the (3/v/13,—2/v/13) or the (—3/+/13,2/+/13) direction.
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Example 4.2.28. Problem: find a point (z,,y,) at which the function f(x,y) = x> + y? is con-
stant in all directions.

Solution: We need to find a point (z,,yo) at which (V f)(z0,Yo) is perpendicular to all unit-vectors.
The only vector which is perpendicular to all other vectors is the zero vector. We seek solutions to
(V) (0,Y0) = (220, 2y,) = (0,0). The only solution is x, = 0 and y, = 0. Apparently the graph
z = f(x,y) levels out at the origin since f(x,y) stays constant in all directions near (0,0).

Definition 4.2.29.

’We say (Zo, Yo) is a critical point of f if (V f)(z,, yo) does not exist or (V f)(xo,y,) = (0,0). ‘

The term critical point is appropriate here since these are points where the function f may have a
local maximum or minimum. Other possibilities exist and we’ll spend a few lectures this semester
developing tools to carefully discern what the geometry is near a given critical point.

Example 4.2.30. .

Let £lx9) = 97k and Gosiden £=(1,a)
an‘[ #_9 uﬂl;z \/ec#ﬁur 6\(, = <?/3;E/3> 74'»'10/

a) Vf = L&, > A
\vF = e, 94
b)) V(LA = <Y, > = K9 9S = V(L)
) (DQ‘F)(P) = Qf ) U
= <-4, <V, B0
=% v N

“ElE-9]
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Example 4.2.31. .

b flxy) = Bx-q3 Rad Df b C41) s © = ~T/s directien
- -2 _
(QF)W}_<NSX-W NS -w> > 9 ) =<3§ﬁ=") J%‘P

Thus W{‘)Qﬂt) =<5/a ""]'/a>_ N ow letr find ~the untr ve chor
in the © = “W/é .:l‘\t‘ec,hon; here © is +he usued Pnio..- coacinade

g
T
\chs(-‘-‘%}j s;ﬂ(-r/5}> = ; : ‘_}a_> _ f[.

Daf () = Of)un e E 2>
=% 70T D

= |99 L L
6 Ty

Example 4.2.32. .

fob fe¥) = Sxy® — Yl
Vf = (% E) = S8-13¢%, 10xy - D>
5 (V-F){a,z) = <26 - 1a(3) p 100)ia) =4(i) > = <.que>
e tody of chanse of £ b dhe point P = (1,2) n the a\=<‘—5= 12
ditedtion s hgtal:fec;h:ar\ag decivotive , we should Chech -Hxa.ﬁij I?>
u = ﬁ noia ICH = '\I—l“ g* -23 = —te 169 1 A a " um%——
vedboe,  Thug, e Vi )
(D, 6)e = ¢)peu
=M YL Y, D)

= 35(-30 + 193 =

i
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Example 4.2.33. .
Fb £ = () Bl (Dpf)ey Be V= <o,z
Notia Hod [VI=LB dhus V= 35<1, 9%, Dun can check [0l =1,
. o T,
WE = {57y 2 x’w’>
(V)2 =< &, v

(W)Eallo(;‘-g(—\,@) = gl = se(-irq) =0
Thws we Fnd (D, £)(3,1) = 0]

Example 4.2.34. .

Find  direchsnr in  whih fixy) = X%+ sin (x3)
hog directined derivetive P) [{,a) with  sdaa f. Theb o ﬁnd’

n

U Such thd (Pﬁf)(a,g) = 1. e oid Eepsiiilence Ve ur
cheina Gk'b unltnewns  gu th M 4{:{ - <°\,b>_ (aa+bz= lw}

VF =< & [X2+§m(xﬁﬁ)]j 2xtesnon]d  — el
= A% + o5 bog) 2= ey i cas(x'a).;%[xva]> /
= %+ oo (xa) | Xeostxe))
Now CF)(10)= <9, We wih + shdy (Dﬁ)(u} =1, Yhb i,
(V)60 0cap> =L3,1> =<a, b> = Da+b = 1
The e4” Durb has aly many Wl Buxp we aso  dewand Yhab

0%+b? =1 gine we wish b find the diredions ia which ("{.&FJ(gra} =1.
b

P ateht=)| e Yow cen See we ra:i\ Hwo  sul™%
R '?(o.‘. Aha 'a/raplq,
& . ol?bf_ﬁ_i( wia €ind them as 'cn”auug

1= a®+b° =+ (1-2q)" « subdtiding
= 0\1_‘__\__;_!0\ I'I-.L{ﬂ\z
= Sa'-Ya+|

. Sa*-Ya = a(5a-4)=0
ek N

Thas Q=<q,6>=<a,1~a¢> showld  be l<o,;> or <5, 3/5>j‘
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4.2.2 gradient vector fields

We’ve seen that the value of V f at a particular point reveals both the magnitude and the direction
of the change in the function f. The gradient vector field is simply the vector field which a
differentiable function f generates through the gradient operation.

Definition 4.2.35.

If f is differentiable on U C R? then V f defines the gradient vector field on U. We assign
to each point p'€ U the vector V f(p).

Example 4.2.36. Let f(x,y) = 2% +y>. We calculate,
Vi(a,y) = (0a(a® + %), 8y (a® + %)) = (22, 2y)

This gradient vector field is easily described; at each point p we attach the vector 2p.

N
Example 4.2.37. Let f(x,y) = 2% — y>. We calculate,

Vf(x,y) = <890(x2 - y2)> ay(xQ - y2)> = <2£L‘, _2y>

This gradient vector field is not so easily described, however, most CAS will provide nice plots if

you are willing to invest a little time.
%
] /' %
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Example 4.2.38. Let f(x,y) = z. We calculate,
Vf(z,y) = (0(2),0y(z)) = (1,0) = &

Therefore, Vo = . Interesting. The gradient operation reproduces the unit-vector in the direction
of increasing x.

— —_ b — b T —&
— - 1o —1 i —&
—s & |5plTo e T —
— e T — i —&
— — T+ — +—f —&
—3p Jel kel Bd s
x
— - 1o —1 i —&
— - T+ — 8 —&
— e T — i —&
—t e el Ll y &

Example 4.2.39. Let f(z,y) =y. We calculate,
Vf(@,y) =(0:(y),0(y)) =0, 1) =¥y

Therefore, Vy = y. Interesting. The gradient operation reproduces the unit-vector in the direction
of increasing y.

by e

b — T —
| —p —H —>
-+ —p —H —>
-+ — 4 —>
| — 4 —>
4o o o —»
b — 4 —>
| —p —H —>
Al Ayl

4| —f>

I I B
I

R ARG R
EEEE TR EE

Naturally, we are tempted to derive other unit-vector-fields by this method. In the examples above
we were a bit lucky, generally when you take the gradient of a coordinate function you’ll need to
normalize it. But, this is a very nice algebraic method to derive the frame of a non-cartesian
coordinate system. In particular, if 41,92 are coordinates then there exist differentiable functions
f1, f2 such that y; = fi(x,y) and y2 = fa(x,y) we can calculate the unit-vectors

i = Vi an i = V fa ‘

IV fll IV fall
Let’s see how this method produces the frame for polar coordinates. I initially claimed it could be
derived from geometry alone. That is true, but this is also nice:

?EF

—
—++
—»
—
1
—
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Example 4.2.40. Consider polar coordinates r,0, these were defined by r = \/x2 + y2 and
9 =tan![y/z] for x > 0. Calculate,

o . ) i k)< (2 1)

Va2 42 x4 2 o

But, x = rcosf and y = rsin thus we derive Vr = (cosf,sin@). Since ||Vr|| = 1 we find

"?: (cos 8, sin 9)‘ The unit-vector in the direction of increasing 0 is likewise calculated,

. E -1 2 -1 _ -y L /¥
V0—< &Etan [y/az], 8ytan [y/a:] >—< T i >—< 3 3 >

In this case we find VO = %(— sinf,cos ). Gradients and level curves of r and 0 are plotted below* :

S S
%

The gradient of 6 is not a unit-vector so we have to mormalize. Since ||[VO|| = % we derive

= (—sin6,cosb).

This is a very nice calculation for coordinates which are not easy to visualize.

Another nice application of the gradient involves level curves. Consider this: a level curve is the
set of points which solves f(x,y) = k for some value k. If we consider a point (z,,y,) on the level
curve f(z,y) = k then the gradient vector (V f)(x,,y,) will be perpendicular to the tangent line of
the level curve. Remember that when 6 = 7/2 we find a direction in which f(z,y) stays constant
near (Z,,Yo). What does this mean? Let’s summarize it:

’The gradient vector field Vf is perpendicular to the level curve f(z,y) = k‘

If you are less than satisfied with my geometric justification for this claim then you’ll be happy to
hear we can prove it with a simple calculation. However, we need a chain-rule which we have yet
to justify. Therefore, further justification is postponed until a later section. That said, let’s look
at a few examples to appreciate the power of this statement:

“notice how the software chokes on z = 0
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Example 4.2.41. Suppose V(z,y) = L represents the voltage due to a point-charge at the
2+ 2
Vaity

origin. Electrostatics states that the electric field E=-VV. Geometrically this has a simple mean-
ing; the electric field points along the normal direction to the level-curves of the voltage function. In
other words, the electric field is normal to the equipotential lines. What is an ”equipotential line”,
1t’s a line on which the voltage assumes a constant value. This is nothing more than a level-curve
of the voltage function. For the given potential function, using r = \/x2 + 12,

V= (0,(1/1),0,(1/) = {(~1/r)r, (~1/r)0yr) = 5 {0ur, Oyr) = — 57

Equipotentials V- =V, = 1/r are simply circles r = 1/V, and the electric field is a purely radial
field E = 7%2?
Example 4.2.42. Consider the ellipse f(x,y) = x2/a® + y?/b> = k. At any point on the ellipse

the vector field
20 . 2y .

points in the normal direction to the ellipse.

Example 4.2.43. Consider the hyperbolas g(x,y) = x?y? = k. At any point on the hyperbolas the
vector field

Vg =2xy* T + 222y 7
points in the normal direction to the hyperbola. Notice that for k > 0 we have y* = k/z% hence
Yy = :l:\/%/x When k = 0 we find solutions © = 0 and y = 0. The gradient vector field is identically
zero on the coordinate axes in this case. I plot it after the next example for the sake of side-by-side
comparison

Example 4.2.44. Suppose we have a level curve f(x,y) = zy = k. This either gives a hyperbola
(k # 0) or the coordinate azxes (k =0). The gradient vector field is a bit more descriptive in this
case:

Vi=yZ+zy.
In this case the exceptional solution x = 0 has Vf‘:c:() =yZ and y = 0 has Vf‘y:() =axy. The
origin (0,0) is the only critical point for f in this example.

I plot Vf on the left and Vg on the right together with a few level curves. The picture in the

middle has z = 2292 in red and z = zy in blue with z = 0 in green for reference.
% N
ba 3
- "
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The last pair of examples goes to show that a given set of points can be described by many different
level-functions. In particular notice that zy = 1 is covered by z2y? = 1 but the level functions
f(z,y) = zy and g(z,y) = 22y? change to other levels in rather distinct fashions. Just compare
the gradient vector fields. Or, use a CAS® to graph z = f(z,y) and z = g(z, y). Those graphs will
intersect along the curve (z,1/x,1) for x > 0. Do they intersect anywhere else?

4.2.3 contour plots

Perhaps you've studied a topographical map before. The topographical map uses a two-dimensional
chart to plot a three-dimensional landscape. We can make a similar diagram for graphs of the form
z = f(z,y). To form such a plot we simply imagine projecting the graph at a few representative
z-values down or up to the zy-plane. This is an invaluable tool since we have much better two-
dimensional visualization than we do three. Few people can draw excellent three dimesnional
perspective, but the contour plot requires no understanding of perspective. We just slice and
project. Moreover, we can use the gradient vector field as a sort of compass®. The gradient vector
field in the domain of f(z,y) points toward higher contours. I use the term higher with the idea
of traveling from f(z,y) = k1 to f(x,y) = ko where k1 < ko. If f(z,y) was actually the altitude
function then the term upward would be literally accurate. Usually the term has nothing to do
with an actual height, that’s just a mental picture for us to help think through the math.

Example 4.2.45. Suppose f(x,y) = 2x + 3y. The graph z = f(x,y) is the plane z = 2z + 3y.
Contours are level curves of the form 2x+ 3y = k. These contours are simply lines with x-intercept
k/2 and y-intercept k/3. See the plot and graph below to appreciate how the contour plot and graph
complement one another. Also, note there is no critical point in this example and the gradient
vector field V f = (2,3) is constant in the domain of f.

7

/

7,

Example 4.2.46. Suppose f(x,y) = x> +y%. The graph z = f(x,vy) is the quadratic surface known
as a paraboloid. Contours are level curves of the form x% +y? = k. These solutions of > +y? =k
form circles of radius vk for k > 0 and a solitary point (0,0) for k = 0. There are no contours

°T used Maple to create these graphs, of course you could use Mathematica or any other plotting tool, I have links
to free ones on my website... I do expect you use something to aid your visualization.
Sthanks to Dr. Monty Kester for this particular slogan
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with k < 0. Once more see how the graph a contour plot complement one another. Furthermore,
observe that Vf = (2x,2y) is zero at the origin which is the only critical point. It’s clear from

the contours or the graph that f(0,0) is a local minimum for f. In fact, it’s clear it is the global
minimum for the function.

\ J///

Example 4.2.47. Suppose f(x,y) = 2? — y%. The graph z = f(x,y) is the quadratic surface
known as a hyperboloid. Contours are level curves of the form z? —y?> = k. These solutions of
22 — 9% =k form hyperbolas which open up/down for k < 0 and open left/right for k > 0. If k=0
the 2 — y? = 0 yields the special case y = +x, these are asymptotes for all the hyperbolas from
k # 0. Once more see how the graph and contour plot complement one another. Furthermore,

observe that NV f = (2x,—2y) is zero at the origin which is the only critical point. It’s clear from

the contours or the graph that f(0,0) is a not a local minimum or mazimum for f. This sort of
critical point is called a saddle point.

%/( 1

N
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Example 4.2.48. Suppose f(x,y) = cos(x). The graph z = f(x,y) is sort-of a wavy plane.
Contours are solutions of the level curve equation cos(x) = k. In this case y is free, however we
only find non-empty solution sets for —1 < k < 1. For a particular k € [—1,1] we have the level-
curve {(z,y) | cos(x) = k}. Note that the cosine curve will reach k twice for each 2w interval in
x. Let me pick on a few special values,
k=0, solve cos(x)=0, to obtain x = :I:E,jzg—w,:t@, .
272 2

The k = 0 contours are of the form x = 5 (2n—1) for n € Z, there are infinitely many such contours
and they are disconnected from one another. Another case which is easy to think through without
a calculator,

k=1/2, solve cos(x)=1/2, to obtain == —g +2mn, or = g +2mn
forn € Z. Once more the level-curves are vertical lines. Continuing, study k =1,

k=1, solve cos(x)=1, to obtain x = 2mn,for n € Z.

Likewise:
k= —1, solve cos(z)=—1, to obtain = = (2n — 1)m, for n € Z.

Observe the gradient V f = (—sin(x),0) is zero along the k = £1 contours. The points on k = 1
give a local mazximum whereas the points on k = —1 give local minima for f. This is a special
sort of critical point since they are not isolated, no matter how close we zoom in there are always
infinitely many critical points in a neighborhood of a given critical point.

6z
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Example 4.2.49. Suppose f(x,y) = cos(xy). Calculate Vf = (—ysin(xy), —xsin(xy)) it follows
that solutions of xy = nw for n € Z give critical points of f. Contours are given by the level-curves
cos(xy) = k which have nonempty solutions for k € [—1,1]. For example, note that cos(zy) = 1
has solution xy = 2j7 for some j € Z. In particular,

2 4
zy =0, xy =27, xy =44n, ... = y=0, =0, yz:l:—w, y::t—w,
x x
On the other hand, cos(xy) = —1 has solution xy = (2m — 1)w for some m € Z. In particular,
3 )
zy==m, zy==+3r,, zy==L57m ... = y::tz, yz:l:l, yz:l:—ﬂ,...
x T x

The contours are simply a family of hyperbolas which take the coordinate azxes as asymptotes. This
s a great example to see both why contour plots help us visualize the graph which we’d rather not
illustrate three-dimensionally. Of course we can use a CAS to directly picture z = f(x,y), but such
pictures rarely yield the same sort of detailed information a well-drawn contour plot.

Example 4.2.50. Nice CAS ( in this section I used Maple, but all mature CAS’s have built-in
contour tools) plots are a luzury we don’t always have. Notice we can do much just with hand-
drawn sketches. I trade color-coding for explicit level labels.

ELS) F649) = ~%3 [3+47) And dom (L So e hawe 4o
Yheow oud Hhe o€ iggian Yo owoid ¥ 5‘3 2eco »  Then wue
nesd XP > O =D edhen X>0 and ¥F0 or X0 wd ¥< O,

& - Xhe dem (¥)
% congicts of
_Atx two dic connected Poff’s.
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4.3 partial differentiation in R? and R”

Definition 4.3.1.

Let f : dom(f) € R3® — R be a function with (z,,%, 20) € dom(f). If the directional
derivative below exists, then we define the partial derivative of f at p, = (o, Yo, 2o) With
respect to x,y, z by

respective. We also use the notations a— = Chif = Jiag 6£ = 0yf = fy and af =0.f = f..
Generally, if f : dom(f) C R™ — R is a function with p, € dom( f) and the limit below
exists, then we define the partial derivative of f at p, with respect to x; by

of

TJ,j(ﬁO) = (D@ F) (@)

The notation 5% = 0; f is at times useful.

Once more we have natural interpretations for these partial derivatives:

fz gives the rate of change in f in the z-direction.
fy gives the rate of change in f in the y-direction.
f» gives the rate of change in f in the z-direction.

It is useful to rewrite the definition of the partial derivatives explicitly in terms of derivatives.

of

d
(1'07y07zo) = dt |: f(xo +t, y07zo) ]

ox t=0
of d
Dy (%0, Yo, 20) = I [ f(@o, 90 +1,20) ] o
0 d
D2 (vxmymzo) = dt |: f(xmymzo"{'t) :| o

Partial differentiation is just differentiation where we hold all but one of the independent vari-
ables constant. Notice that z in the context above is an independent variable. In constrast, when
we studied z = f(x,y) the variable z was a dependent variable. The symbols z,y, z are not
reserved. They have multiple meanings in multiple contexts and you must have the correct con-
ceptual framework if you are to make the correct computations. When z,z are independent we
have % = 0. If z,z are dependent then it is generally some function. In any event, the following
proposition should be entirely unsurprising at this point:
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Proposition 4.3.2.

Assume f, g are functions from R?3 to R whose partial derivatives exist. Then for ¢ € R,
L (f+9)e=/fe+9gsand (f+g)y=fy+gyand (f+9):=f: + g
2. (¢f)z = cfz and (cf)y = cfy and (cf), = cf..
3. (f9)x = fog + f9o and (fg)y = fyg + fgy and (f9). = f29+ fg-.

Moreover, if h : dom(h) C R — R is a differentiable and z1 = z, 23 =y, 3 = z,

) dh of  dh of
4. %j[h(f(m,m,m))] = %|f(x1,x2,m3)a—% = f oz,

Bl
5. ﬂz(% where 1 = z, 19 = y, 23 = 2.
&rj
Proof: The proofs are nearly identical to those given in the n = 2 case. However, I will offer a
proof of (5.) for arbitrary n. Suppose f(x1,x2,...,2,) = x; = ¥+ T; and calculate
a—f = lim /() - f(f—i_t@) = lim T (f—i_t@). Ti = lim w = 0;j.
Oxj =0 t t—0 t t—0 t

Therefore, 0jx; = 0;; for all ¢,j7 € N,,. In particular, this result applies to the case n = 3 hence
the proof of (5.) is complete. Naturally this proposition equally well applies to f : R™ — R. The
proofs are nearly identical to the n = 2 case, we just have a few sums to sort through. I leave those

to the reader. OJ

Example 4.3.3. . 1

S F(x0,3) = x9* 2 + sin(X9%)  Hhen
D = 93?1 %% cos(x23%) %3 Areaked ar  conrdends
¥y = x93+ X3 cos(x93) PX T treded ar gapfeatr.
D5 = 3xy3® + XY o5 (x93) : XD trenked ar  Gardants,
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Example 4.3.4. . 2

b flxy2) = XA 8y - Bod f(za = aﬁ)

= oY
(3,2,1)
P o =X = =3 -3 |
32|, Y+ ;_2)2 B0 Tl = | =L
30 (3,3,1) (Q'.H) =t -

Example 4.3.5. . 3

Suppeu | & ':-ﬁ]xz +VY%4 3%

Q_ = l ‘"?‘ }(24'-"321“ 'zj ————-——-—-—--->< - X
IX 2T "}"l 7= N ryii gt r

Likewise ou =Y ond 43 = ¥/

Example 4.3.6. . 4

u="><42”92f”-*><: . JLob l<bh=n Fhan
U <

=
A N EEe ey
\ G . 2
——— i 45 ."‘2(" Y ..,dff
N el LR A ks X3

-:———---—-.X-h___

1]

]
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Example 4.3.7. . 5

CHAPTER 4. DIFFERENTIATION

Vgnf = !
* TSR e YUyl =0,
. X
o W =
2 |
el
-1 aw
wE X
=1 on
* w
—%

\NG
W+ 3N - Uy = =W+ 3?
Ny & w e

QLMUJ‘I&@./ u\” and U.“_, have Samg ’Lfm wiith X=> Y or 2/

T +Ugy H Uy = "WEEIE | -+ 30° | -w?s 32°

W we w*
= —=3W? + 3Py 2°)
wSs .
= =30CHeE) ¢ 3Gy )
WS ;

.M

= Q. 2. \u Sclves Uy Uy, lhy, = vzu - Ol

}Pm k: Tom /wc;i/-dr.—.rwe #W‘{: iﬂfreafuama W rekes lofe eacior Aece.
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4.3.1 directional derivatives and the gradient in R3 and R"

The idea of Example 4.2.21 equally well transfer to functions of three or more variables. We
usually require the functions we analyze to be continuously differentiable since that avoids certain
pathological examples:

Definition 4.3.8.

A function f : dom(f) € R™ — R is said to be continuously differentiable at p, €
dom(f) iff the partial derivative functions %, (%;, . % are continuous at p,. We say
f € CY(p,). If all the second-order partial derivatives of f are continuous at {5, then we say
f € C?(p,). If continuous partial derivatives of arbitrary order exist at p, then we say f is

smooth and write f € C*p,.

We’ll see an example in the next section where the formula below holds for a multivariate functions
which is not even continuously differentiable, however the geometric analysis which flows from this
formula is most meaningful for continuously differentiable functions.

Proposition 4.3.9.

Suppose f : dom(f) C R™ — R is continuously differentiable at p, € R™ then the directional
derivative at p, in the direction of the unit vector u is given by:

Daf(fo) = ( 01f (o), 02f(Po);-- -+ 0nf(Po) ) = T.

Proof: delayed until the next section. [J

At this point it is useful to introduce a convenient notation which groups all the partial derivatives
together in a particular vector of functions. Notice that the length of the gradient vector depends
on the context in which it is used.

Definition 4.3.10.

If the partial derivatives of f exist then we define
of of

. of _
—.’131871;]+.T207$2++ .Tnaixn.

Vf=(0f Of, ..., Ounf)

we also use the notation grad(f) and call this the gradient of f.

The upside-down triangle V is also known as nabla. Identify that for R3 V = 20, + 50, + 20,. The
operator V takes a function f and produces a vector field V f. This is called the gradient vector
field of f. For a continuously differentiable function we have the following beautiful formula for
the directional derivative:

| Daf (o) = (V)() @
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Technically this isn’t the definition, but pragmatically this is almost always what we use to work
out problems. We can also write the dot-product in terms of lengths and the angle between the
gradient vector (V f)(p,) and the unit-direction vector u:

| Daf () = I(V.1)(5o)]| cos. |

Just like the n = 2 case we can use the gradient vector field to point us in the directions in which
f either increases, decreases or simply stays constant.

Example 4.3.11. Problem: Suppose f(x,y,2) = 2? +y*+ 2. Does f increase at a rate of 10 in
any direction at the point (1,2,3)7

Solution: Note Vf(x,y,z) = (2x,2y,2z) thus Vf(1,2,3) = (2,4,6). The magnitude of V f(1,2,3)
is ||V £(1,2,3)|| = VA +16 436 = /56 and that is the mazimum rate possible. Therefore, the

answer is no. This function increases at a rate of v/56 in the direction ——(1,2,3).

V14

Example 4.3.12. Problem: Suppose f(x,y,z) = 2x +y + 2z. Does f increase at a rate of 2 in
any direction at the point (1,1,1)7

Solution: Note Vf(z,y,z) = (2,1,2) thus Vf(1,1,1) = (2,1,2). The magnitude ||V f(1,1,1)|| =
V9 = 3 and that is the mazimum rate possible. Therefore, the answer is yes. Now let’s find the
direction(s) in which this occurs. Solve:

Dy f(1,1,1) = (2,1,2) e (a,b,c) =2a+ b+ 2c =2

subject the unit-vector condition a® 4 b% + c? = 1. Ill eliminate ¢ by solving the linear equation for
c=1(2—2a—b) and substituting:

1
a2—|—b2+1(2—2a—b)2 =1.
This give an ellipse in a, b-space. Apparently there is not just one direction where f increases at a
rate of 2. There are infinitely many. For example, we can easily solve the ellipse equation for its
b-intercepts by putting a = 0,

1
b?+jz—w2:1 = 4 +4—4b+b* =4 = 50 —4b=0 = b(b—4)=0.

We find the points (0,0) and (0,4/5) are on the ellipse. Returning to the plane equation we find
the c-value for these points by substituting them into the equation ¢ = %(2 —2a—b):

_

3

(Qm:c:%@—m—@:1 & (QM@:c:%@—MQZ -

1.6_
2 5
Thus, we find the direction vectors (0,0, 1) and (0, %, %> point where f increases at a rate of 2. You
can probably see a few more possibilities by just thinking about (Vf)(1,1,1) = (2,1,2) directly. For
example, I see (1,0,0) also works.
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The two-dimensional analogue of this problem is much easier since we have to solve the intersection
of a line and the unit-circle. In that case there are either 0,1 or 2 solutions. The three dimensional
case is much more interesting. If f models the temperature at the point (x,y, z) then this calcula-
tion shows there are many directions in which the temperature increases at a rate of 2.

Example 4.3.13. .

find CDQ'F)(FO od P=(00,c) in V=<S,I,-3D
y 2 x direction
fixv,2) = xe'+ ve® + Ze"
) 2, 2.5 2 VR I - PR A
9§ = 5 (xe¥s VetrZe )p 5“%(’(‘9 = *267;72 (Xe*-Ye+ze’)>
- Y
Thus  we con calondede N
@710)(0,0;0) = {1+0,.04, 0t ) = <oy
r——,:m.%( we reed o (\ormdfge 7
~

2
I r [
‘:_:—V=MT—‘~" s:-:>=r_5‘1~a
V ‘V, ‘as'+l+|-[<ll ?O<,’ >

Tﬂ,wsf
- i
(Dgf) 0,0 = (0F)Ce,00 o[ <5, -2> |

!
= <1,1,10<5,1,-> =
E | 2 L

Example 4.3.14. .
fb V=<izey dhn U= gl 123> b [=1,
Suppete £ (x,9, ) = x/ G J
PP % (9+2) . Find CDG“F)(R"'J‘JI
& o el - =
f = < 2, B+ 4 Zhafz)‘&>
C‘{?‘F)(H;I,I) = < Va, “'i/q/ ey = Vz<| ,—3,-'&_>

(V{: [‘-I',J,JJ-Q g (e N =

Theeehre we Find ‘(’Dcf)i‘t'. )= Vs
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Example 4.3.15.

Let £lxye) = JxZrgir28  Find +he max. rete
of chanee ob (3,6,-2) and the direction ia which it eccur.

V'F = <-Fx/’(\Y, ‘F2>

X ) z
< xryit gz 2 Xyt 27 ? ~Ergtige >
_ |

- r——\xa%u?z <X/ '@, ?>

%ﬁu— for (9, 6, =) we hlawve »\[Xz-ftyﬁga-;; 94 36+9 = P

 (3,6,-2) = :’}-_<?, ¢, -a>

[Vhis] = & NF7T = (1 P60 )

of (harge
774/, occw_r in Ha Vf/? é -2) d//g;:%z\j( E:jf,c,;

P l =<3 6,-2> - d//ecﬁw

Example 4.3.16.

Con.u'dm ;(&%!)=X2+Y1+ ?‘. F_mcﬁ -Hf\a Jirechma-? defiud‘im ﬂ&
£ at (3,1, 3) n Ahe diccdhon of Mo Or.'rg;n Thed s Hha (-9, 3)

d”ed\on we nreed o unit ve chur S A b'a L&\N@W‘\m ']‘0 M#’M

~

" m_(a ~3)
We Rad the agedient  of F

= <2x,'?-Y, 2> = (v{)'{zr‘x?} Le <L"f 3, 6>

H'E.m(_g_,

(rbﬁg)(a 3) = —+<"I 3,652, | 2> = =i (i+a+\e) %

Sine = BT < o we f (O fz,unmam'

Moreover, we extend the definition of critical point to the general case in the obvious way:
Definition 4.3.17.

We say P, is a critical point of f if (Vf)(p,) does not exist or (Vf)(5,) = 0.

The function in Example 4.3.11 the origin (0,0,0) is the only critical point. On the other hand,
the function in Example 4.3.12 has no critical point.
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4.3.2 gradient vector fields in R? and R"

We can calculate the gradient vector field for functions on R™ with n > 1 but, visualization is
beyond most of us if n > 3. I mainly focus on the n = 3 case here and we see how the gradient aids
our understanding of non-cartesian coordinate systems. Then we examine how the gradient vector
field naturally provides a normal vector field to a level surface.

Definition 4.3.18.

If f is differentiable on U C R” then V f defines the gradient vector field on U. We assign
to each point p'e U the vector V f(p).

Example 4.3.19. If z,y, 2z denote the coordinate functions on R3 then we find
Vz =(1,0,0,) = Z,
Vy = (0,1,0,) = 7.
Vz=1(0,0,1,) ==

These define constant vector fields on R3.
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Generally, the gradient vector fields of the coordinate functions of a non-cartesian coordinate system
provide a vector fields which point in the direction of increasing coordinates. To obtain unit-
vectors we simply normalize the gradient vector fields. In particular, if y1, 2, ...y, are coordinates
on R™ then there exist differentiable functions fi, fa,..., fn such that y; = fj(x1,22,...,z,) for
7=1,2,...,n. We can define:

. Vfi

7= vf? ~ vfn
IV fil] ’

N 7 N A

I mention this general idea for the interested reader. We are primarily interested in the cylindrical
and spherical three dimensional coordinate systems. That’s just a custom, we could easily extend
these techniques to orthonormal coordinates based on ellipses or hyperbolas. If we are willing to
give up on nice distance formulas we could even use coordinates based on tilted lines which meet
at angles other than 90 degrees.

Example 4.3.20. For cylindrical coordinates r,0,z we can easily derive (following the same cal-
culational steps as the polar two-dimensional case)

= HVervr 7 = (cos(0),sin(#), 0)
g = 12 QHVG (—sin(0), cos(d), 0)
Z= Hvlznw (0,0,1)

The difference between the calculations above and the polar coordinate case is that cylindrical coordi-
nates are three dimensional and that means the gradient vector fields of the coordinate functions are
three dimensional vector fields. I advocated a geometric derivation of these cylindrical unit vectors
earlier in this course, but we now have computational method which requires almost no geometric
ntuition.

— ]
=L i é*“;\,a
3 g A
T
[ A
:'-K ¢ } ™ :‘ nri"‘?‘:!h-x
S o] e e g A
S (e —r st s(g.
o[y P L (A
--S 2| [ 9 14 g i % 1A
_ ExsEE N T -;E Ef//‘
+ | % [ e
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Example 4.3.21. Suppose p, ¢,0 denote spherical coordinates. Recall’

p=z2+y?+ 22 ¢:cos_1<2222>, Hztan_l(
Vi +y + 2

] |
S~

You can calculate that

9o VP = sin(¢) cos(0) T + sin(¢) sin(6) § + cos(¢) 2
WV@& = —cos(¢) cos(0) T — cos(¢) sin(0) y + sin(¢) z
oy VO = —sin(6) T + cos(6) 3.

) 0y D)
I

I'll walk you through the p calculation. To begin you can show that Vp = (x/p, y/p, z/p). Bul,
we also know x = pcosfsing, y = psinfsin¢ and z = pcos ¢. Therefore,

Vp = (cosfsin ¢, sinfsin@, cos ).

But, |[Vp|| = 1. We derive that p = (cosfsin ¢, sinfsin, cos¢). Perhaps I asked you to verify
the formulas for ¢,60 in your homework. Making nice pictures of the spherical frame is an art I
have yet to master... here’s my best for now:

"these formulas only apply for certain octants, however, the ambiguity for the remaining octants only involves
shifting the angular formulas by a constant. As you continue to read you’ll notice that differentiation ultimately will
kill any such constant so these formulas suffice.
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Another nice application of the gradient involves level surfaces. Consider this: a level surface is
the set of points which solves f(x,y, z) = k for some value k. If we consider a point (z,, Yo, zo) On
the level surface f(z,y,z) = k then the gradient vector (V f)(zo, Yo, 2o) Will be perpendicular to
the tangent plane of the level surface. Remember that when 6 = 7/2 we find a direction in which
f(z,y, z) stays constant near (z,, Yo, 2,). What does this mean? Let’s summarize it:

’The gradient vector field Vf is normal to the level surface f(z,y,z2) = k‘

I use geometric intuition to make this claim here. We will offer a better proof later in this chapter.

For now, let’s try to appreciate the geometry.
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Example 4.3.22. Suppose V (z,y,z) = represents the voltage due to a point-charge at

1
the origin. Electrostatics states that the electric field E=-VV. Geometrically this has a simple
meaning; the electric field points along the normal direction to the level-surfaces of the wvoltage
function®. In other words, the electric field vectors are normal to the equipotential surfaces where
they are attached. What is an ”equipotential surface”, it’s a surface on which the voltage assumes
a constant value. This is nothing more than a level-surface of the voltage function. For the given

potential function, using p = \/m;

VV = (8:(1/p), 8,(1/p), 0-(1/p))
= ((=1/p*)0up, (=1/p")0yp, (~1/p")0:p)

-1
= F(a:vpv aypa azp)
1.
pe
Equipotentials V.=V, = 1/p are simply spheres p = 1/V,, and the electric field is a purely radial
field E = T%ﬁ

Example 4.3.23. Consider the ellipsoid f(x,y,z) = 22/a® + y*/b* + 22/c? = k. At any point on
the ellipse the vector field

20 . 2y . 2z
points in the normal direction to the ellipsoid.

It amazes me how easy it is to find a formula to assign a normal-vector to an arbitrary point on an
ellipse. Imagine solving that problem without calculus.

8The voltage function is the electric potential or simply the potential function in this context



188 CHAPTER 4. DIFFERENTIATION

4.4 the general derivative

Thus far we have primarily discussed partial derivatives in their connection to the rate of change
of a given function in a particular direction. However, we would like to characterize the change
in the function as a whole. Moreover, even in the one-dimensional case the derivative was closely
tied to the best linear approximation to the function. In the single variable case it is as simple as
this: the best linear approximation to a differentiable function at a point is the linearization of the
function at that point whose graph is the tangent line. The slope of the tangent line is the value
of the derivative function at the point. How do these ideas generalize? I take an n-dimensional
approach in the beginning of this section because little is gained by talking in lower dimensions for
the basic definitions.

Definition 4.4.1.

Suppose that U is open and F:UCR' > R"isa mapping the we say that F is
differentiable at @ € U iff there exists a linear mapping L : R™ — R such that

— — —

F(a —F@) - L
lim (@+h) (@) (h)

| 2 = 0.
b0 |||

In such a case we call the linear mapping L the differential at @ and we denote L = dF}.
The matrix of the differential is called the derivative of F' at @ and we denote [dFz] =
F'(d@) € R ™*™ which means that dF3(v) = F'(@)v for all 7 € R™.

4.4.1 matrix of the derivative

If we know a function is differentiable at a point then we can calculate the formula for L in terms
of partial derivatives. In particular, if F : U C R" - R™ is differentiable at @ € U then the
differential dﬁa has the derivative matrix £/ (@) which has components expressed in terms of partial
derivatives of the component functions:

_ OF,
- 8.%']'

[dﬁﬁ]ij‘:ajFi

(@)

for 1 <7< mand 1l < j <n. This result is proved in advanced calculus. Let me expand this claim
in detail for a few common cases: in each case we note L(d@ + h) ~ F'(a) + F'(d@)h

1. function on R, f : R — R, |L(a+ h) =~ f(a) + f'(a)h| the derivative matrix is just the
derivative f’(a) at the point.

2. path into R", ¥ : R — R", |7(a+ h) ~ 7(a) + 7 (a)h| The derivative matrix is just the

velocity vector 7 (a) viewed as an n x 1 matrix ( it’s a column vector).
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3. multivariate real-valued function, f : R® — R, |f(@+h)~ f(@) + (Vf)(@h| The
derivative matrix is just the gradient vector (Vf)(d@) viewed as an 1 x m matrix ( it’s a
row vector).

4. coordinate change mapping, T : R? — R3 |T(@ + h) ~ T(@) + T'(@)h | The derivative

a
matrix is a 3 X 3 matrix. In particular, if we denote T' = (z,y, z) and use u, v, w for cartesian
coordinates in the domain of T’

oz  Odz Oz
ou ov ow
(@ FloT\o. T dy dy 9
T/(a) = [0,T)0,T)0,T] = 87% 8% %
9z 0z Oz
ou ov Ow

For two-dimensional coordinate change, T : R2 — R2 we again write
ge, g

T(@+ h) ~ T(@) + T'(@h | but the matrix T(a@) is just a 2 x 2 matrix

- N N u v
T'(@) = [0,T)0,T] =
9y Oy
ou Ov

Example 4.4.2. Let f(x) = \/z. The linearization at x = 4 is given by L(z) = 2+ (z — 4) since

(4 = ﬁ = %. We could also express L by L(4+ h) = 2+ h/4. As an application, note the

approzimation /5 ~ 2+ 1/4 = 2.25.
Example 4.4.3. Let 7(t) = (t,t2,5in(10t)) for t € [0,2]. The linearization of ¥ at t = 1 is given
by L(1+ h) =7(1) + h7'(1). In particular,

L(1+ h) = (14 h,1 + 2h, sin(10) + 10hcos(10)).

Example 4.4.4. .

End  laenei 2ofion of ‘IC(’Q v) = )?’(-3, s (C;/ #).

Notiw %{ = y% end '5?'5 = _X/fa" o Thete ace

wnPaveus o (6,3) s Flgg) s diffecentroble ob (63).
Lixv) = fle3)+ 2 (x-6) + 2] (9-3)

43) %32)
= % ¥ 208 5 -8

_ ’%x—%%‘ + 3 =L(>ﬂ)
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Example 4.4.5. .

Eind +he //hearfaa};‘an o/ 70()? g/ ‘:XQ—chl)z 2t ( 5 9)' 72544
appeoximede £ (3,2) and  wmpace fp Ahe red-vodog, We Hand
%Q +‘*”}¢m§é P/Aﬂ?j’ e'j}g . va [EF] Se e @/fé'édlg ﬂillew

L(x9) = 5+ ax-1)+9(3-3)]
We approximete £ via L

£(s8) & L(z2) = 9+2(a~1) +Y(e) = 7
Of cowrce we  cun }uﬁ‘ evo.lw:-‘&v -F‘Cﬁ,g) = 2%2%= § =
cea we hove an obgelvda ecror of -7 = 1.

4.4.2 tangent space as graph of linearization

In the section after this I wrestle with why these are good definitions. For now I'll state them
without justification.

1. f:R — R has tangent line at (a, f(a)) with equation y = f(a) + f'(a)(x — a).

—

2. 7: R — R™ has tangent line at 7(a) with natural parametrization I(h) = 7(a) + 7 (a)h.

3. f:R? = R has tangent plane at (a,b, f(a,b) with equation z = f(a,b) + (V.f)(a,b)s (z —
a,y —b).

These are the cases of interest, in case 2 we usually deal with n = 2 or n = 3 in this course. The
following triple of examples mirror those given in the last section. The overall theme is simple: the
tangent space to a graph of a function is the graph of the linearization of that function. There are
several other viewpoints on the tangent space of a surface and we devote an entire section to that
a little later in this chapter. Here I just want you to get what we mean when we say a derivative
gives the best linear approrimation to a function.

Example 4.4.6. We continue Example 4.4.2, f(x) = \/z and the linearization at x = 4 is given
by L(z) = 2+ 1(z — 4). The tangent line is the graph y = L(z) which is in green, whereas the
y = f(x) is in red.
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Example 4.4.7. We continue Example 4.4.3, ¥(t) = (t,t%, sin(10t)) fort € [0,2] and the lineariza-
tion of ¥ at t =1 is given by L(1+ h) = (1 + h,1 + 2h, sin(10) + 10hcos(10)). Once more we plot
the curve in red and the tangent line parametrized by L in green:

Example 4.4.8. Continue Example 4.4.4, f(x,y) = x/y and the tangent plane to z = x/y at (6, 3)
is the solution set of z = x/3 — 2y/3 + 2. Below I illustrate the tangent plane, the blue line goes

through the point of tangency. See how the surface is locally flat, note the right picture is zoomed
further in towards the point of tangency.

Example 4.4.9. Continue Example 4.4.5, f(z,y) = 2% + y* and the tangent plane to z = 2% + y?
at (1,2) is the solution set of z =54+ (x — 1) +4(y — 2). Below I illustrate the tangent plane, the
blue line goes through the point of tangency. See how the surface is locally flat, these are just two
views of the same scale, I put a rotating animation of this on the webpage, take a look.
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4.4.3 existence and connections to directional differentiation

Existence is usually more troublesome than calculation. But, that is no reason to ignore it. In this
subsection I attempt to give you a better sense of what it means for a function to be differentiable at
a point. Geometrically we eventually come to the simple realization that a function is differentiable
iff it is well-approximated by its linearization. This in turn is tied to the proper definition of the
tangent plane. We already gave formulas for important cases in the last subsection, my goal here is
to explain why we use those definitions and not something else. Before we get to those more subtle
topics, I begin by demonstrating the general derivative recovers single-variable differentiation:

Example 4.4.10. Suppose f : dom(f) C R — R is differentiable at x. It follows that there exists
a linear function df, : R — R such that’

o S h) = F@) = df(h)

h—0 |h|

=0.

Since df, : R — R is linear there exists a constant matriz m such that dfy(h) = mh. In this silly
case the matrix m is a 1 x 1 matriz which otherwise known as a real number. Note that

o S = f@) =) e et f@) = dh)

=0.
h—0 |k h—0% |h

In the left limit h — 0~ we have h < 0 hence |h| = —h. On the other hand, in the right limit h — 0T
f(:v+h)*i(;f)*dfz(h) —0.

we have h > 0 hence |h| = h. Thus, differentiability suggests that limj,_, o+

But we can pull the minus out of the left limit to obtain lim,_,q- f(x+h)_f}§x)_dfm(h) = 0. Therefore,
L f )~ f@) —diah)
h—0 h

We seek to show that limy,_,q w =m.

mh _ . dfs(h)
h—0 h h—0 h

A theorem from calculus I states that if im(f — g) = 0 and lim(g) exists then so must lim(f) and

lim(f) = lim(g). Apply that theorem to the fact we know limy_ dsz(h) exists and

fla+h) = f@)  dfa(h)

li = 0.

B30 h h 0
It follows that

() S h) — f@)

h—0 h h—0 h

Consequently,
dfa(h) = lim flx+h)— f(z)

! ; . L
Jim A defined f'(x) in calc

“unless we state otherwise, R™ is assumed to have the euclidean norm, in this case ||z||r = V22 = |z|.
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Therefore, | dfz(h) = f'(x)h | In other words, if a function is differentiable in the sense we defined
at the beginning of this section then it is differentiable in the terminology we used in calculus I.
Moreover, the derivative at x is precisely the matrix of the differential. If we use the notation
y = f(x) and h = dz then we recover formula for the differential often taught in first semester
calculus:

dy
dy,(dz) = %(x)dx
dy

Or, more compactly, dy = 52dx where dy is the change in y corresponding to the change dx in x.
These seemingly heuristic statements take a rigorous meaning in the boxed equation above.

Of course, what really makes the general derivative interesting is its ability to tackle problems such
as given below:

Example 4.4.11. Suppose F : R? — R3 is defined by F(z,y) = (xy, 22, x+3y) for all (z,y) € R2.
Consider the difference function AF at (x,y):

AF = F((z,y) + (h,k)) — F(x,y) = F(x + h,y + k) — F(x,y)
Calculate,
AF = ((x+h)(y+k), (@+h)? a+h+3y+k)— (zy, 2, 2+ 3y)
Simplify by cancelling terms which cancel with F(x,y):
AF = (zk + hy, 2xh+ h%, h+ 3k))
Identify the linear part of AF as a good candidate for the differential. I claim that:
L(h, k) = (ark + hy, 2xh, h+ 3k).
is the differential for f at (x,y). Observe first that we can write
v oz,
L(h,k)=1| 2z 0 [k:]
1 3
therefore L : R? — R3 is manifestly linear. Use the algebra above to simplify the difference quotient

below:
i [ AF — L(h, k) ] . [(O,hQ,O)]
(k=00 L [[(h, K)| (hk)=0.0) | [| (7, F)]
Note ||(h, k)|| = Vh? + k2 therefore we fact the task of showing that (0, h?/v/h2 + k2, 0) — (0,0,0)
as (h,k) — (0,0). Recall from our study of limits that we can prove the vector tends to (0,0,0)

by showing the each component tends to zero. The first and third components are obviously zero
however the second component requires study. Observe that

h?2 h2
0< < —— =l
2+ k2~ Vh2
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Clearly lim, 1)—,0,0)(0) = 0 and lim, 1)0,0) |R| = 0 hence the squeeze theorem for multivariate
2

limits shows that limj, 1) (0,0) ﬁ = 0. Therefore,

v ox ],
dF () (hok) = | 22 0 [ }

Fortunately we can usually avoid explicit limit calculations due to the nice proposition below.

Example 4.4.12. Again consider F(x,y) = (vy, 22, x+3y). Identify Fi(z,y) = 2y, Fy(x,y) = 2°

and F3(x,y) = x + 3y. Calculate,

0.F1 0,F, y oz
[F'(z,y)] = | 0.F2 OyF> | =| 2z 0
0 Fy 0P 13

In single-variable calculus we learn that differentiability implies continuity. However, continuity
does not imply differentiability at a given point. The same is true for multivariate functions.

Proposition 4.4.13.

If F:U CR" — R™ is differentiable at @ € U then F is continuous at a.

The proof is given in advanced calculus. It’s not too difficult. OJ

The general derivative also reproduces all the directional derivatives we previously discussed.

Proposition 4.4.14.

If F: U C R® — R™ is differentiable at @ € U then the directional derivative DyzF (@) exists
for each v € R" and DzF(a) = dF3(7).

The proof is given in advanced calculus. It’s not terribly difficult. [J

We should consider the example below. It may challenge some of your misconceptions. It shows
that directional differentiation at a point does not give us enough to build the derivative. In fact,
the example below has all directional derivatives and yet the function is not even continuous.

Example 4.4.15. Let f : R? = R be defined by f(z,y) = xfg/g for (z,y) # (0,0) and f(0,0) = 0.
We proved in Example 3.3.4 that this function is not continuous at (0,0). Given the proposition
above we also may infer the function is not differentiable at (0,0). You might expect this indicates

at least some directional derivative fails to exist. Let’s investigate. We turn to the problem of
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calculating the directional derivative of this function in the unit-vector {(a,b) direction, suppose
b #£ 0 to begin,

B d[ a’bt3 ] B [a2b(a4t2 + b?) —azbt(Qta‘L)}

o dtlaftt+ 02|, (a*t? + b2)?

On the other hand, if b = 0 then we know a # 0 since (a,b) is a unit-vector'® hence f(at,bt) =
aZbt 0 and it follows D 0)f(0,0) = 0. We find the directional derivatives of f ewist in all

af I b%2
directions.

D(a,b)f(0> O) = % |:f(ata bt):|

t=0

Notice that the directional derivatives do jump from one value to another as we travel around the
unit-circle. In particular, as we traverse the arc of the circle through the point (1,0) we have (a, b)
go from vectors with b > 0 which have % — 00 to vectors with b < 0 which have % — —oo.
In the middle, we hit (1,0) where D, ) f(0,0) = 0. These directional derivatives may exist but
they certainly do not continuously paste together. It turns out that continuity of the directional
derivatives in the coordinate directions is a sufficient condition to eliminate the trouble of the

previous example.

Definition 4.4.16.

A mapping F': U C R" — R™ is continuously differentiable at a € U iff all the partial
derivative mappings 0F;/0x; exist on an open set containing a and are continuous at a.

Continuous differentiability is typically easier than differentiability to check. The reason is that
partial derivatives are straightforward to calculate. On the other hand, it is sometimes challenging
to find the linearization and actually check the appropriate limit vanishes. It follows that the
proposition below is welcome news:

Proposition 4.4.17.

If F'is continuously differentiable at a then F' is differentiable at a

The proof is somewhat involved. The main construction involves breaking a vector into a sum of
vector components. Then continuity of the partial derivatives paired with a mean value theorem
argument goes to prove the differentiability of the mapping. Again, details are given in my ad-
vanced calculus notes (or any good text on the subject). [

There do exist functions which are differentiable at a point and yet fail to be continuously dif-
ferentiable at that point. In single variable calculus I usually present the example: Let f(0) = 0
and .

f(z) = g —|—xzsin;
for all x # 0. I can be shown that the derivative f/(0) = 1/2. Moreover, we can show that f’(z)
exists for all x # 0, we can calculate:
1

1 1
/ .
= — + 2zsin — — cos —
fi(zx) 5 xlnx .

Yif ¢ = 0 and b = 0 then |[|{a,b)|| =0 # 1
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Notice that dom(f’) = R. Note then that the tangent line at (0,0) is y = x/2.

y = f(x)
red graph

green graph;

\ |
y=didx | . H
|

The lack of continuity for the derivative means that the tangent line at the origin does not well-
approximate the graph near the point of tangency. In other words, the linearization is not a
good approximation near the point of tangency. This is not just a single-variable phenonmenon.
Pathological multivariate examples exist. For example,

Example 4.4.18. Let f(0,y) =0 and

1
f(.y) = 2 sin -
X

for all (x,y) € R? such that x # 0. You can show that Dgf(0,0) = 0 for all unit vectors u. This
means that the tangent vectors to any path t — (at,bt, f(at,bt)) reside in the xy-plane. It appears
the set of all tangent vectors fill out the xy-plane. However, I'm not sure what happens with non-
linear paths in the domain. I suspect the curves on the graph z = f(x,y) built from composing
a smooth, but non-linear, path v : R — R? with f might result in a path f o~ which is not even
differentiable at the origin.

Let’s investigate the differentiability of f at (0,0). Given the triviality of all the directional deriva-
tives we suspect L(h,k) = 0. Consider,

(k) = £(0.0) = L R)| _ A2 sin(U/m)| _ JhsinQ/]

[I(h, K)] COVRZ+ER2 1+ RN

It follows that f is differentiable at (0,0) since we have |h| — 0 as (h,k) — (0,0) along any path.
Therefore, my suspicion was incorrect. Fven nonlinear paths composed with f yield a differentiable
path. However, this does give us another example of a function which is differentiable at (0,0) but
is not continuously differentiable. If you’re wondering it is clear that f, is not continuous along
the entire y-axis. Given our experience in the single variable case we suspect the linearization does
not approximate the function in a natural way as we leave the point of tangency. We need the
continuity of the partial derivatives to insure the function does not wildly misbehave in the locality
of the tangent point.
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I haven’t proved it yet but I suspect the function below is not differentiable. It gives and example
of a function which is continuous but is not differentiable at zero. However, both partial derivatives
exist at (0,0), they’re just not continuous.

Example 4.4.19. Let us define f(0,0) =0 and

$2y

2 + 92

f(xay) =

for all (z,y) # (0,0) in R% It can be shown'! that f is continuous at (0,0). Moreover, since
f(x,0) = f(0,y) =0 for all x and all y it follows that f vanishes identically along the coordinate
axis. Thus the rate of change in the T or y directions is zero. We can calculate that

af 2293 p of  at—a%y?

O (2% +y?)? gy (2?2 +y?)?
Consider the path to the origin t — (t,t) gives fi(t,t) = 2t*/(t> + )2 = 1/2 hence f.(z,y) — 1/2
along the path t — (t,t), but f,(0,0) = 0 hence the partial derivative f, is not continuous at (0,0).
Therefore, this function has discontinuous partial derivatives. It is not continuously differentiable.

Let’s return to the question of directional derivatives and differentiability. It is tempting to think
that the reason the function in Example 4.4.15 failed to be differentiable is that the tangent vectors
to the curves t — (at,bt, f(at,bt)) failed to fill out a plane. This suspicion is further encouraged
by Example 4.4.18 where we see the function is differentiable and the tangent vectors to the curves
t — (at,bt, f(at,bt)) do fill out the xy-plane. However, this suspicion is false. Think back to our
experience with multivariate limits in Example 3.3.2. Differentiability also concerns a multivariate
limit so intuitively we may expect something could be hidden if we only think about straight-line
approaches to the limit point. I suspect that if we had that the tangents to ¢t — (7(t), f(7(¢))) fill
out a plane for all differentiable paths 7 with #(0) = (0,0) then it would follow f is differentiable.
I don’t have a proof of this claim in the notes at the present time.

Why all this fuss? Let me try to clarify the confusion which pushed me to this discussion:
1. some authors define the tangent plane to be the union of all tangent vectors at a point.

2. other authors say the tangent plane is a plane which well-approximates the graph of the
function near the point of tangency.

Item (2.) begs some questions, what exactly do we mean by ”well-approximates”. Is the nearness
to the graph the concept captured by mere differentiability or is it the stronger version captured by
continuous differentiability? Item (1.) is dangerous since it would seem that looking at all possible
directional derivatives should give a complete picture of the tangent vectors at a point. We just

"you did this one in homework... or at least you were supposed to...
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argued this is not the case!?. It is possible for all tangents to curves built from linear paths to exist
whereas the tangent vectors to a path built from a nonlinear path may not even exist. If we are to
use item (1.) as a definition we must clarify it a bit:

The tangent plane to the graph z = f(z,y) is formed by the union of all
possible tangent vectors of curves f-4 where 7 is a smooth curve in dom(f)
which pass at t = 0 through the xy-coordinates of the point of tangency. If
there exists a smooth curve ¥ such that f-% is not differentiable at ¢t = 0
then the tangent plane fails to exist.

This is just my comment here, I haven’t seen this elsewhere. Most authors don’t bother with
these details or deliberations. In fact, many authors assume continuous differentiability in their
definitions. In any event, it seems clear to me that we should prefer a slightly more careful version
of (2.) since it has far less technical trouble. With all of this in mind we define ( I expand on the
most important case to this course after this general definition),

Definition 4.4.20. general tangent space to a graph.

Suppose that U is open and F:UCR" -5 R™isa mapping which is differentiable at
a € U then the linear mapping L : R® — R such that

— —

. F(@+h) — F(@) — L(h)

-0 I

= (0

defines the tangent space at (@, F(@)) to graph(F) = {(Z, F()) | dom(F)} with equations
Z = F(d) + L(Z — @) in R™ x R™. We use the notation z' € R" whereas #,d € R" in the
equation above.

In particular, for f : R2 — R we have L(z — Zo,¥ — %o) = (V) (T, Yo) * (T — To,y — Yo) and the
tangent plane has equation:

z = f(xmyo) + (SL‘ - xo)f:]c(xmyo) + (y - yo)fy(xm yo)'

The assumption of differentiability of f at (z,,y,) insures that the tangent plane z = f(x,,y,) +
L(z,y) = f(z,y) for points near (z,,y,). In other words, the graph z = f(z,y) looks like a plane if
we zoom in close to the point (zo, Yo, f (%0, Yo)). In fact, many authors simply define differentiability
in view of this concept:

‘A function is differentiable at p iff it has a tangent plane at p. ‘

This is less than satisfactory if the text you're reading nowhere defines the tangent plane. I won’t
name names. The boxed statement is true, but it is not a definition. Not here at least.

12T have an example if you ask
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In the case a function is differentiable but not continuously differentiable we have the situation that
there is a tangent plane, but it fails to well-approximate the graph near the point of tangency.

Continuous differentiability is needed for many of the calculations we perform in the remainder of
this course. I conclude this section with an example of how it may happen that f,, # fy. at a

point which is merely differentiable. On the other hand, Clairaut’s Theorem states that f., = fyz
for continuously differentiable functions.

Example 4.4.21. .

A CuRlovs EX:‘}M,’?LE,‘ Wﬁ'f‘y’ 7@,' ff;x Abwayse

“F(X,y) - {(Xguo‘ =~ X‘ég)/(xzwa’) o (Xy)# (o, 0)

o o xv) = (o,0)

When (%,9) # (6,0) #s a rimple motter fo d(/ﬁ*‘fﬁ‘m'ﬁ%

o= G699 )08nw?) - ax(ouoxel) = X'+ Wxtet- g
X (xz&—%")z <X2+ %2)2
£ o= x5 o 4y oyl
Y sz_ev%i)z
& 4y 244 3
= _f_,’_*.u‘;_____:___ _-r
‘ny )sz*yzq);( S L. i (38) Fe (x9) # o,

At the or,b.}n we rezd do  ure Ha det® of ,Dw*f?i,ﬁ dv‘ﬁ%fﬁwﬁi"kf’wﬂf
£, (v,0) —.-h&,:[vc(/ﬂ,o)h‘{’fo,o)] _ j’(m[_?.gzé o

h-sg

¥

= Jim | flo W) =£Ba _ g, [o-07_
‘(Y (0,0) p\{n[ iy - b-f?-»o h e
S/ 242
. -  [Rlo,h) = flo,a) 1~ Jim :_V’_/{QL,)__;P;]: -
ylo0) = %%“‘("’q =hﬁ—‘-;»o[£_ﬁ%_—x~)] . —-!o[ h 3
/01 -
. o [Relho) =fy(00) 1 = him [RZH1=CT = 4,
7C~/x (0/0) = %‘f‘(‘(o/o) —v&;\;[f O)h ao}j Vg%a[ W 1

There fore 74;? 74.[)‘”( ¢lhe o (o,c:) 'ffa-eé? a/f,z'aggfﬂ*’«« lﬁwi

migh object thot this B prchy on oar poct  well sery s ot

The Areile here is et Fuy i ot entinves oF (0], €10y huy
clee 4 i and 1» Al Hhore ,9/&&44 K{y (XV):-{;,X (xy) Yix9) #(90).

Theorem 4.4.22. Clairaut’s Theorem:

If f:dom(f) CR? — R is a function where dom(f) contains an open disk D centered at
(a,b) and the function f;, and f,, are both continuous on D then

fxy(aa b) = fya:(aa b)
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The proof is found in most advanced calculus texts. Finally, I should mention that the concerns
and examples of this section readily generalize to functions from R™ to R".

4.4.4 properties of the derivative

Suppose ﬁl : U CR® — R™ and ﬁg : U CR® - R™ are differentiable at @ € U then ﬁl + ﬁg is
differentiable at @ and d(ﬁl + ﬁQ)a = (dﬁl)a + (dﬁg)a which means for the Jacobian matrices we
also have (F| + Fy) (@) = F|(a a) + F}(@). Likewise, if ¢ € R then d(c¢F}), = ¢(dF}), hence for the
Jacobian matrices we have (cF}) (@) = ¢(F|(d@). Nothing terribly surprising here. What is much

more fascinating is the following general version of the chain rule:

Proposition 4.4.23.

IfF:U C R™ — RP is differentiable at @ and G:V C RP — R™ is differentiable at
F(@) € V then G+ F is differentiable at @ and d(G o F)z (dG)ﬁ(d) odFz. Moreover, in
Jacobian matrix notation,

—

(G- F)'(a@) = G'(F(a))F'(@).

In words, the Jacobian matrix of the composite of G with F is simply the matrix product of the Ja-
cobian matrices of G with the Jacobian matrix of F. Unfortunately, not all students really learned
matrix algebra in highschool so this statement lacks the power it should have in your mind. This
proposition builds the foundation for the multivariate version of u-substution. All the chain rules
in the next section are derivable from this general proposition. For this reason I offer no proofs in
the next section. The calculations in the next section all follow from the calculation below!?

Proof: ~ Suppose . F : dom(F) C R* — R? and G : dom(G) C R? — R™. Let &, € R" for which
F(Z,) =7, € dom(G) and suppose that F is differentiable at 7, and G is differentiable at 7,. We
seek to show that Go F is differentiable at ¥, with Jacobian matrix G'(,)F'(i,). Observe that
the existence of G'(7,) € R ™ and F'(Z,) € R P*" follow from the differentiability of G at 7,
and F at Z,. In particular, if ||k|| ~ 0 then

N

é(% + k) é( o) + G’ (Yo)

Likewise, if ||k|| ~ 0 then

—

F(zo + h) (TO) + F:/('f())h'
Suppose h is given such that ||h|| ~ 0. It follows that F’/(Z,)h ~ 0. Let k = F'(Z,)h and note that

G(F(&, + h) = G(F(Z,) + F'(@,)h) = G(§, + k) = G(5) + C'(§)k

continuity of G at yo

13this is a plausibility argument, not a formal proof, all the ~ symbols are shorthands for a more detailed estimation
which is not given in these notes, however, you guessed it, can be found in a good advanced calculus text.
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Therefore, for ||h]| = 0,

— —

G(F(Z, + h)) = G(F(,)) + G'(F(Z,))F' (Z,)h.

Thus G(F(Z, + h)) — G(F(Z,)) — G'(F(&,))F'(Z,)h ~ 0. In fact, if we worked out the careful
details we could show that

i G(F(Zy + 1)) — G(F(Z,)) — G'(F(&,))F'(Z,)h .
Fis0 |7

and it follows that (G F)'(Z,) = G'(F(Z,))F'(Z,). Technically, this is not a proof, but per-
haps it makes the rule a bit more plausible. The chain rule is primarily a consequence of matrix
multiplication when we look at it the right way. .

Example 4.4.24. . 1}

E69 Suppose £:R*— [ ts differondfoble, Defima - poler
coocdinate. dr\m\%ﬁ Mag - X(r,e) T (resy, rsin®) M
wmeans X: R —> 2% it Aekesr (¥,8) 1—> (x(r,0), 9(r,0) . Consldder
A=fo¥ . Then D) = DFDX wheu X=(%1%)
W=[Z% & DX=[3§‘ ‘3‘?]:[0”9 -""WJ

2 22 Sin® TeasE

UHenee W W= {"X:% .
V90 = [ ¥ 2—‘51{‘” '”“‘6}

I sing  TeesO

of o 2b e 2f fé_{]
3 é%v“] - [C% S5 v S8y IO G ey
Thas, W IV ) "0 2]
W 2 i 22 - £ %
%‘F ) 5t sin© Ty ¢sS e';)x s 5y
2w ino 2% w = 060 2 + rlos O
&= -rsing 2 +resd =5 \"Sxﬂ@,ax + TPz
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Example 4.4.25. . 13

Zb 3= F(gy) = x°= 3% and lt X= UV § y=usv®
Ca/tm/ﬁﬂ 9%/9\4 and ’33’/9\/.

2% - 2 p(xyv,umy)] = L+ 2En
M Du[‘c(xw/ )’WM'V” = Wf}% = @) -65(1).

2% 2 (
N N[ )= % FE = - csen

Mis s simple enum%v\} you n Ofe & Aree —d\‘a%mm e Qo \\'Lu/ bud

T/ve wnever Wa& ’H\ﬂ”\a\ . uam,\ a}&;{f '\:QM'\’\"F\Z e lf&ermealfe&‘ VU.\VIMLEO
and  cork-ef tenserue p ortialo 7, fads see hew Phu “
dore i e medtrix /}awbi'ﬁh A’mdl.}m, We Jzﬁu

Xuv) = (X(u,v)} ‘Q(U,V)) = (uv, u+v?).
Tnus aokice X =W ad =V while x:{" w4, ond X=F
! - ax

DX={:§ jg} whie  DE = [& ]
M )]

Traw T =% so 3=73(Vv)
'D—?.:[& 22 | = M)(DX):[%& %J

Y )'a\l
- % 2X
=[&,2]8 ]
>

' o
_ x . AW 2£2>i+3;£.29_J
'[%"W*’wau)?"a a\aav

N e et
T

g
2%
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4.5 chain rules

In this section we explain how the chain rule generalizes to functions of several variables. Before 1
get to that, recall we already learned one new chain-rule for space curves:

dr du
£[ Flu(t)) | = Tudi

For example, if 7(t) = (¢,1?,t3) and u(t) = sint then

d

ﬁ[ F(u(t)) ] = (1,2u, 3u?) cost = (cost, 2sint cost, 3sin® ¢ cos ).

This chain rule was important to understand how the Frenet Serret formulas are reformulated for
non-unit-speed curves. It was the source of the speed factors ds/dt in those equations.

Next consider the composite of f: R? — R and 7: R — R? where ¥ = (x,7). Here’s the rule:

d_0fde 0fdy . dr
dt  Oxdt Oydt dt

In this case the independent variable is ¢t and the intermediate variables are x,y. All of the
expressions above are understood to be functions of t. A more pedantic statement of the same rule
is as follows:

d . _ of . .dx Of _ . .dy
G0 = 5L aen G + 3 ren .

Example 4.5.1. Suppose f(x,y) = 2> — zy and v = ety = t* then

& _ofde  ofdy _

- - = — et — — (9t _ 42\t _ ot
B dsdr Toyar — 2 we —a(2t) = (2¢ — D)’ —2te”

Now, some of you will doubtless note that we could just as well subsitute z = e’ and y = t* at the
outset and just do ordinary differentiation on g(t) = (e')? —t?e’. Will you obtain the same answer?
Yes. Is that the right method to count on generally? No. Otherwise, why would I teach you the
new rule?

Example 4.5.2. Suppose f : R? — R is differentiable and t — 7(t) = (z(t),y(t)) defines a smooth
path. What is the geometric relation between the tangent vector to the path and the gradient vector
field of f? Use the chain rule,

)] = SLee S+ F oy = e (5.5 ) = i)

This doesn’t really tell us much of anything for an arbitrary function and path. However, if we
suppose the path parametrizes a level curve f(xz,y) = k then we find something nice. To say 7



204 CHAPTER 4. DIFFERENTIATION

parametrizes f(x,y) =k is to insist f(F ( )

=k for all t. Differentiate this equation and we again
use the chain rule on the l.h.s. whereas dt( )=

0. Thus,

V() 5 = 0.

We find the gradient vector field is normal to the tangent vector field of the level curve. The chain
rule has given us the calculational tool to verify what we argued geometrically earlier in this chapter.

Notice we can’t just substitute in the formulas for x(t) and y(¢) in the example above. Why?

Because we are not given them. The chain rule allows us to discover general relationships which
may not be obvious if we always just work at the level of the independent variable.

Example 4.5.3. . 7

feh 2 = % Jn(x+ 3"&) 3 X =13int 3\*&:@:»{'
dz _ 2% dx + 2Z

dt = X dt % 9t

= [Rn(X-i-'Bla) ><+'9'-6:{§%E + [_3'):-—?_‘& (.:T%

1

e e

[‘Qn(sint ¥ Act) + _Eiﬂi______] cosh - _2Sind
Sint + dcac Xt Sind + anst

Example 4.5.4. . 26

b 2 =y and ogunm Sppen X=el § g-sind
0% _ 23 dx . 23 97 _[ohg _ d3
ok X ok 555 =(e'sint +efent = G

Faber o5 +he o/egendw variable . Other
‘%f ,x wdc G 0’7%”&2‘//6\-& \/c\n“wéée,

. gome‘i?'mex

dimes B is plaging Tha sle
Example 4.5.5. . 27

:Ebj) W= X4 and Suppese X= et wd ¢ =sint
W 2w dx %—ad; Mel+ x cost “-=L€t$fﬂf + ettt = %V?

J+ ™ oF
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The chain rule below is a natural generalization of what we just discussed: if ¥ = (z,y, z) and'4
f=f(z,y,2) then

& _0fde 0fdy 0fde _ o, dF
dt  Oxdt Oydt Ozdt dt’

In this case the independent variable is ¢ and the intermediate variables are x,y,z. All of
the expressions above are understood to be functions of . A more pedantic statement of the same

rule is as follows: p of p of p of p
7)) = 2L (7 (1) = + 27 (1) 2 + 2L (7(t)) =
GI0) = SHE G+ 5 + SN S

Example 4.5.6. Suppose 7(t) = (costsint,sintsint,cost) and f(x,y,2) = 2% + y? + 2. This
means x = costsint, y = sin®t and z = cost. Calculate,

d . ofde Ofdy Ofdz

Sy =Lt o Al

dt Ordt Oydt Ozdt
= 22(cos? t — sin®t) 4 2y(2sint cost) + 2z(—sint)
= 2costsint(cos?t —sin?t) + 2sin?¢(2sint cost) + 2 cos t(— sint)
= 2costsint(l — 2sin’t) 4+ 2sin? t(2sint cost) + 2 cos t(— sint)
=0.

Why is this? Simple. The path given by x = costsint, y = sin?t and z = cost parametrizes a
curve which lies on the sphere 2% + y? + 22 = 1. It follows that f(costsint,sin?t,cost) = 1 hence
differentiation by t yields zero. Geometrically we find the gradient vector field V f = (2x,2y,2z) is
normal to the tangent vector field of the curve wherever they intersect.

Of course there are many other curves which reside in the level surface f(x,y,z) = 1. T just picked
one to illustrate that the gradient vectors are normal to the curves on the surface. We can argue
this in general.

Example 4.5.7. Suppose f : R3 — R is differentiable and t — 7#(t) = (x(t),y(t), 2(t)) defines a
smooth path. Use the chain rule, omitting explicit point dependence on the partials,

d . _Ofdxr  Ofdy Ofdz N dz dy dz\ _ . .ﬁ’
Gl = S8 L S v (5 ) = vr)- G

If we suppose the path t — 7(t) parametrizes a curve which is on the level surface f(x,y,z) = k
then f(7(t)) = k for all t. Differentiate this equation and we again use the chain rule on the l.h.s.
whereas %(k:) = 0. Thus,

. dr
VD)
We find the gradient vector field is normal to the tangent vector field of an arbitrary curve on the
surface. If the function f is continuously differentiable then it follows that the union of all such

=0.

14 this notation means that f : R® — R, it is a bit sloppy, but it is also popular and I suppose I should expose you
to it.
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tangent vectors forms the tangent space to the level surface. The gradient vector at the point of
tangency gives the normal to the tangent plane.

For example, a sphere of radius R centered at (a,b,c) has equation (x—a)?+(y—b)?+(z—c)? = R.
This sphere is naturally viewed as a level surface of F(z,y,2) = (x —a)?> + (y — b)? + (2 — ¢)2. We
calculate,

VE(z,y,z) = (2(x —a),2(y — b),2(z — ¢))
The equation of the tangent plane at (o, Yo, 20) on this sphere is
2o — @) (& — 20) + 200 — B)(Y — o) + 2(z0 — €)(z — 2,) = 0.
In particular, if a = b= c = 0 then we have a tangent plane
22,(x — 2o) + 2o (Y — Yo) + 220(2 — 2,) = 0.

For this case the vector pointing to (o, Yo, 2o) and the normal vector (2x,,2y,,2z,) point along the
same line.

Example 4.5.8. . 25

Lbh W= X9%F ond sype X=1, 4=t 34T
3,:7/. - & & W (X&), v, %(-};))]
— AW ox Qw dy _“.1.’
S NG
= 9% + %3 01) + x49(34)
— {-s-p at® + 31‘5 ¢ . s
, = €1
= (wh/ck /s 3«»0;’/ sthe W =1t % 7 /
di
Moving on to our next case, if ¥ = (x1, 29, ...,z,) and®® f = f(x1,22,...,2,) then
df  0f de1  Of dxo of dxy dr
5 20, Y02, = Vfe—
it~ owdt Tomdat T oma VT
In this case the independent variable is ¢t and the intermediate variables are x1,x9,...,z,.

All of the expressions above are understood to be functions of . I'm not a big fan, but, another
trick to remember the chain-rules above is given by the mneumonic device below:

!5 this notation means that f : R™ — R.
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§0 ople [;‘!J ﬂ\! A/Awl}; \7;& .qu romy " a fl?e/ n 7@ wria
ouémempe /Z,ouw; chein fuds. 6}%“ may Zun Fhem & &A? hz,;, o
Jow "‘”“‘H?\? duwn Aren od d %éﬂ.ker,—%\a diffeech branches,

W N

W dependent
ow oW w
% 2w 3
' g 5 / ;’?,: N inter ke

ax
. o ? X independondt
%
4y dW _ oW ow gy ., 2w dE
Ji O HoFEdEwEeE

Example 4.5.9. Suppose f(Z) = &+ & where & € R™. Moreover, suppose 7 : R — R™ is a path which
parametrizes the level set f(¥) = R? (this is a higher-dimensional sphere). We have f(7(t)) = R?
for all t. Differentiate to find

V£ (7(t)) ar_ 0.

L] a g
Once more we find the tangents to curves on the level set are orthogonal to the gradient vector field.
Don’t ask me to draw the picture here. The tangent space is an (n — 1)-dimensional hyperplane
embedded in R™, the normal vector field V f always points in the one remaining dimension if there
are no critical points for f.

Another case!6 is F = ﬁ(ml, x9,...,Zy) composed with a path. In particular, if F = (F1,Fy, ..., Fy):

R™ — R™ is composed with ¥ = (x1,x9,...,2,) : R = R™ then we have the chain rule
dF  9F dz;  OF duy OF day, 7 7 dF
e e SRl Ry (B v AN vJ WO 7 O
dt Oz dt | Omy dt * o, dt Ya VT e T g

Another nice way to think of this rule is as follows:

d dFy dFy dF,,
— (P, Fy,....Fp))=(—,—,...,—
g 1 F2 oo Fn) <dt dt dt>

BFl dl‘l 8F1 d.Tn 8Fm d:l?l 6Fm dl’n

=(—— 4. === ..y n

Ory dt Ox, dt Oxy dt ox, dt

1
Ssomewhat rare
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Example 4.5.10. Suppose ﬁ(:ﬂ, y,2) = (zy, y+ 22) and suppose x = t,y = t2,z = t3. Calculate,

dF OFide OF dy O0Fidz 0Fydx N Oy dy  O0Fydz
dt ~ \ Oz dt ay dt =~ Oz dt’ Ox dt Oy dt Oz dt
dz _dr dy dz>

da
<dt+ ay +od 0+ 22

= (y + x(2t), 2t + 22(3t%))
= (3%, 2t + 6t°)
All of the examples up to this point have considered chain rules for functions of just one indpen-

dent variable which we have denoted by ¢ for the sake of conceptual uniformity. We now consider
differentiation of composite functions of two or more independent variables.

Suppose f = f(x,y) and x = z(u,v) and y = y(u,v). This means f : R? = R and z : R? = R and
y:R? — R. We have two interesting partial derivatives to compute:

af 8f(31:+8f8y & of 6f8:v+(9f8y
u Oz du Oy du v Oz dv  dyov

In this case the independent variables are u,v and the intermediate variables are x,y. All
of the expressions above are understood to be functions of u,v. To be a bit more pedantic we can
use 7(u,v) = (x(u,v),y(u,v)) and write

O )] = V) o & )] = V) - o

Notation aside, these rules are very natural extensions of what we have already seen.

Example 4.5.11. Suppose z = €”¥ and x = u® + v? and y = wv. Calculate,

0z 0z0x 0z0y , o )
Juou 2 Y = U v+uv )
ou 8x8u+3y3u ye™ (2u) + xe™ (v) = [3uv + v’]e

0z 0z0x 0z0y 3 3
=22 = ye™(20) + ze™ (u) = [3uv? + u]e vt
v 3x5‘v+5‘y8v yer (2v) + (u) [ + ]
Once more, if we ignored the chain rule and instead directly substituted the expressions for u, v at
the outset then we will still obtain the same result. However, if we are faced with extremely ugly
formulas for z(u, v) or y(u,v) then this is a useful organizaing principle. Or we could encounter the
situtation that formulas for x(u,v) and y(u,v) are not given and the chain rule still helps uncover

general patterns.
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Example 4.5.12. Another application of the chain rule is coordinate change for the differentiation
operators. For example, suppose x = rcosf,y = rsinf. How do we convert a partial derivative
with respect to = for an equivalent differentiation in terms of the polar coordinates? Suppose f is
an arbitrary function on R2, notice by the chain rule,

of _0fox  ofdy _  ,Of . ,Of
or Oz or + oy or COSQ(‘):E +Sm98y
8f_8f@ 8f@_ of af

—rsinf—— + rcos6

00 0z 90 ' oyoe Ox oy’

But, these relations hold for any function f hence we find the following operator equations:

0 x 9 n Y 0 0 0 n 0
or Va2 4+y20r /22 4420y 00 7oz oy
Algebra challenge: solve the operator equations above for 0/0x and 0/0y. Then compare your
answers to what we obtain from the chain rules below:

of _ofor  0f 00 & of _ofor of o

or  Ordx 000z

oy an %87;

We need the formulas r = \/22 + y2 and 0 = tan~(y/z) + ¢ where ¢ is a constant that is either
zero for x > 0 orm for x < 0. ( ok, maybe constant is the wrong word, but it certainly differentiates

to zero at most points). Calculate that % =< =cosf and g—; =4 =sind. Also,

00 0 1 1 —y —y sin 6
ox O:U[ an” (y/x) + c] 1+y2/22 22 22492 r
00 0 1 1 xr  cosf

[tan_l(y/x) +c| =

dy oy Ty2a? o 224y v
Now substitute these back into the chain rules,

of _of Of sind af of . Of cosf

oo™ Y T ™
We obtain,

89520089;«_8120;9 & g;zsinﬁga—kmfege.

We may also be faced with the problem of changing coordinates for higher derivatives. The differen-
tiatial equation V2® = 0 is called Laplace’s equation. It is important to the theory of electrostatics
as well as fluid flow. In cartesian coordinates V = 20, + 0, and it follows that the Laplacian
operator VeV = 02 + 83. (we’ll explore this sort of differentiation more at the end of this course).
The example below builds off the results of the previous example, keep that in mind.
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Example 4.5.13. Problem: Write Laplace’s equation in polar coordinates.

e o
02 Oy?

0 [0D 0 [0

"o [a] "oy [ay]

= [cos Gg — sinﬁﬁ] [cos 08—@ — sin&@@]
or r 00 or r 00

+[ 0 00508}[ 0P cos@(?q)]

V2o

R 7] | R T

7o oo 1w
or2  ror r?062

I invite the reader to fill in the details missing in the last step.

Example 4.5.14. . 9

deb W(s,2) = F(usb, vis)
whae F, u, v are ditterentinble and

U(he) = 3 Vi) =3 Fa (3,3) = -1
U G, 0) = -3 V(o) =S (33 =10
U (1, 0) =6 Vil(l,0) =4

Flend Wg(';o] :M*J W*(',UJ UIt'ma %‘49"" A-Qi"&«/

W _ 3 7 _ »Fou , F vV -
2 %[F(u(’fﬁﬂf‘,f))] = 9w 8s T v @S Fulk + R Y

W Gho) = 2Y) = B (ul0),v0,0) Ulio) + Fo(utm), vim) %L}o)
(1,0}

= R (3,3)-(3) + R(3,3)-(5)

EVE3) +(o)(s)
92 = W (1,0)

Jﬁv\rcawii-‘é.}
W0 = K (33 U lhe) + F, (5,3) V, (1,0)
= €1)(6) + (10)(4)
= (3‘:’ = W, (r{o)j
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Example 4.5.15. . 5

Rnd a%x ond a?/'_ma via implicd A{C@E('&hﬁé‘l"d\'gn_
SVP‘PGSA‘. Fhh x* +¥Y* 4 ?2 - “Exaaz, OS5 U, E:‘Z(k,y)}
2

2
'bx[x *"’21‘?2] = 5?;[ Ex\gz‘?
2Z(P2-3x4) = z-2x ~ P_g_ - evaz-sz
L AZ — 3X%
L&\-cnmu.g
oz
2o r 925y = g4z

22 (37 -3x4) = 3xz - (22 _ 3xz - 29
gy(gz '3xié) -— 3)(2 B‘La' [ [‘%%‘ = W

Example 4.5.16. . 23

ISU?‘PM& thd = f9) hes danbinvens ‘F,‘/‘p-,/ 'P"?/K?X/‘Q‘x ete...
w=ries® and 4= 205 Y note,

&J
: 3 2%
3 _ 2% 2X 2% 2% = Q[r22 + A5 22
2‘( - DX Y 7 °% 9r 2% ¥

We wish *o  wmpwia 7Y

- 2 22 4 gs22]
Ex = ar[w ax v |

52 ox ?
' 2°%3 2Y

; 3 2°% 2 2% x|, 28 _,}
=2%$+2[2§??2§+ 372)("5%]"’25{7))(9‘!9?‘ DY or
2 ‘3 28, 2% .,

= 2%%* 2[’§X"2r * ;?yax'zs]+ ¢s [axay awr T 5E S]

‘&-Fx + L!Y"Fxx ¥ LiS'ny + ‘-?sr-F;x + L,Sz'(;'Y

P N r
= Eﬁx U, +uUsth, ‘45(1-_*")1%‘] Vi ing Clairnd & Th"
(771,3 i:%\g best we can ofo w/b on e”?’f""’l ﬁ'm“—lf*" vju}, 7(‘(*, @j‘)
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Example 4.5.17. . 2/

Suppesa W = sin(y) e G=St X =fa(S- %)

oo 2w s P—W%Y— s identBed thd W s Fanehon of xdy.
95 @x o8 Y 9%
s % 9 4 NP e I
= Xsin(y) oo * e @t . nede e¥=e -4
= EnGFI = GAF @s(t) = B
W o osw o 2x 2w Y
% T X U N of
X
= exsin(ﬂé‘; ) + est(y)(asx) ¢ oagoin @ = s-#,

= F%in (s42) + 9si (s-%) ces(st?) = %:tx

Next, consider F' = F(z,y,z) and ¥ = 7(u, v). In particular, we wish to differentiate the composite
of F: R3 — R with 7: R? — R3. The chain rules in this case are as follows:

OF _OF0c  OFdy  OF 0 OF _OF0s  OFdy , OF 0:
ou Oxdu Oyou 0z 0u ov  Oxdv Oyodv 0z0v

You can write these rules in terms of gradients and partial derivatives of vectors,

oF _
ou

or
ov’

I explained in the preceding section that we can derive chain rules from the general derivative. For
example,

or  or _
ou ov

VF((u,v)) e

F=F &2
B = T (s,4) = {xsH, %68, 25,40

ok
2%
5 %k
i 2
= | ¥ R
w7 o2
s 5
Is! _ [o2F DF _D_E]’dl 2
F-x)= F'E=[% %525 =
°F 3%
Lﬁ. 2z |
% %)
! oF X . 23, 2F2% QF BX . OF oy . OF 97 )
(FaX) = [ xas*%a;*azasyaxa?"' %5 tITeE |
S N . S
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Some people would rather use these silly tree diagrams to remember the chain rule

g W= F (x(54),30.K, 2(55) l

2R %ﬁg— olx

Personally, I much prefer to calculate with understanding as opposed to inventing new and unec-

essary mnuemonics. To each his own, you just need to find the way that works for you. Context is
everything with chain rules.

Example 4.5.18. . &

ICA - AR 4
r 2r 24 28 o

o)

i1
O
N
)
3
N\
N
\

D

= ko)t - (grsm@) _\5-5-—?5-2;‘
eSt( Aeos [s%gz ~ {?i%-; Sih~s%#

\9‘0 QJIQ)
vl N
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Example 4.5.19. . 4

Z o= x%+ xy®

X = uv? + w?

% = u+ yve"”

Find 2u/ ?v,, 2. when U= a, V=1, w=0o0
Le%fr SEL wie i’?’ /L%/ 7{22 e

%’_{i — Y2+W9 X, (240 = 1
= By X, (3,4,0) = Y
% - ng X, (%1,0)= ©
= Y (51,6)= [
%’3:‘79\” Y, (310)= e® = 1
g‘% = ve" G (3 L0) = o' = 1

Abs  poba  X(340) =2 ond Y340 =73
ard  Zo(2,0,0) = ax+9’ = Y+ a7 =3,
Zy (3,,0) = xY® = 3(N(N = s5Y,

Fin b Hha pont (3,1,0) 10 UVW —Space

’ %92 p/ e ) 5

+ 2, ;g—} = 61)+64) = (35= ;—f/w

2

2 — 2X 29 —(3) =178 =55

W — 2)( -év + Zy E}i\; —(’3’}‘/4-(%#— I?g - 9\//(3,‘4)
2 - - 29 = =jov - 22
5 T Zx e * 2y SH =C)e) “
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Example 4.5.20. . 10

2 3
vofd 22 waxtexg® @ KXW w
T Gd 22 fr 2 + X9 w Y = w4 veW

wham u=a, v={ and W=0,
% - %(2 (x (v, W), Y(“;V:W)))

= 2% X 4 22 Y
A 2U ey U

@xual‘)\fz + (3x97)- 1
N&Hu’ X(g,lro} = 'Q(l]+o? =‘°~ oond \/(é,ljo) = a2t € = 3,

Example 4.5.21. . 2

2
el Ul "\85’ on|
W0 ;
E Y
z =x%y° Fe = X477, = 3x7Y
K == gcq;f stéﬁsf ){,bz—S.Sl}yf
% = s sh Ys = sink Ye = Scos
V' _ 22 X 4 22 2%
? Ox ot o9 of

= <'3><‘63)(—55M76) - (gxz%z)(Scmf)

- aéw/f)[svmt)y,l- 3[&.%}/ 2(’5@124.) 3
(55' ["‘ aC@S’i‘anwt + 3$f‘n2t¢o_:?f ] =

QU
N
|

_ 22 X |, 22 2y

2% X D8 29 2F

(axy 3)&;?& + (3>< 9 /Smf

%@52 Mssind)3cast + 3(s cost) ﬁrmz‘/’ _rm,f

vn

[ Qees’tsin’dt + 3cas®™sin it [ = gfj

215
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Example 4.5.22. . 6
X=2 = 4un"'(Yz e 22 22,
J nad /ax el ,/5.9}

[x- zj =2 [—h oz
|-22 = _\ __ 2 = 9 oz
W | +loz) ax[%zj 1+ @z° ox
971 _%
| e T '] =
22 _ * - Et_‘éj___ = &7
X T?Eﬁ): + | B+ |+ g2 2X
Nesd  tube a/M,
- 22 _ | 2
0 i+ 25 (92)
_—— o2
|+ 4%2? [2 % 'a»a]
;ai _ -
= 2% [ 1+ % 22 +l] |+..a"z

> 22 (g4 14wz?) = -2
@\_z ___.2___]

M B

Example 4.5.23. . 12
2 7 x = uvi+ew?
/ 22 & it N
I find ZE for 2 =X+ X9 by = s veW

wham u=a, v={( and W=0,

9Z _ ;a_ga(z (',((u,v!vv], Y(“.er»)

22U
2F W 4 22 Y
A U o U

('Sxx“a'l‘)vz + (?,X‘&z)'l
Noriw X (3,1,0) = N+t =Y and Y@ = 97 &= 3,
Ll = (a6 + 31+ o0 "K%‘ 3'(2.”]

W e

(o,
1 %) ‘3‘-{
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Example 4.5.24. . [

Example 4.5.25. . 11

2 3
’ \ 2% & 2 3 A ¥ =Uy + W
Il fod 22 for 2 =X +X9 Y = usveW
wham Uu=a, v=| and W=0,

PZ _ 2
gz — 'SJ(Z (x(u,v,w], \{(u,v,w)))

22U
= T X L 2z 9
% 2U oY U

(3x+9*)Vv? + (3x9) 1
Nﬂ}rfu. X(gplro} = 'fa(l)+o’? =1 M-\_,ﬁ Y{é,l,o) = 2t e = 3,

2
M

= (2 + ¥)F +‘5{1(3} --\‘35*= 31

U
£ (2,1,0)
(3,0) \_'HV—_ '

E ¥
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4.6 tangent spaces and the normal vector field

In this section we wish to analyze the tangent space for a smooth surface. We assume the surface
in consideration is smooth so that the calculations are not complicated by exceptional cases. In
particular, we wish to analyze a surface S in three particular views:

1. as a level surface the set S is the solution set of F(z,y,2) =0

2. as a parametrized surface we see S as the image of 7¥: D C R? — R?

3. as a graph we see S as the solution set of z = f(z,y)

As we have discussed previously it is only sometimes possible to cover all of S as a graph. Moreover,
each view has it’s advantages. My goal in this section is to explain how to find the tangent space
and normal vector field for S in each of these views. We’ve already done a lot of calcation towards
these questions in the last section.

For your viewing enjoyment I have included a few figures of surfaces which have coordinate
curves in gray and little normal vectors in black. I have animations of these on the webpage,
perhaps it helps bring to life the fact the normals pick out a side of orientable surfaces.
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Our goal in this section is to find formulas for the little black arrows.

4.6.1 level surfaces and tangent space

In Example 4.5.7 we proved that curves in the solution set of F(z,y,z) = k have tangent vec-
tors which are perpendicular to VF. It follows that the normal vector for the tangent plane at
(Zo, Yo, 20) € S is simply VF(x,, Yo, 2). The tangent plane has equation:

’VF(xmymzo)'(x_xmy_ymz_Zo> :0-‘

The normal vector field on S is given by the assignment
(z,y,2) = VF(z,y,2)
for each (z,y,z2) € S.

Remark 4.6.1.

The choice of level function matters. If we multiply the equation by a negative quantity the
direction of the gradient flips over and hence the normal vector field flips to the other side
of the surface. As an example, F(z,y, z) = 22+ 4% + 22 = 1 has VF = (2, 2y, 2z) whereas
G(z,y,2) = —2% —y? — 22 = —1 has VG = (—2z, 2y, —22). We say F = 1 is the sphere
oriented outwards whereas G = —1 is the sphere oriented inwards.
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Example 4.6.2. .

{L_'r"J E'Ef’t "fr 'fhﬂayvqﬁ f/#m ﬂf\b" dg,rmJ /“1{ -A,
Hhe Suha xP-29%+ 2P 4yz =3 ob (3,1,-1)

Nobw 32=20F @) +0)t1) = 4=-3+i-1= 3 s, Ha posat
i indeed o the fucdia ar elamed, T hir ir a leved rurfec

let fo,?;i‘)= X2_2{91+22+(,32_r& 'n'&u F=0 :'.r'—”ufuﬂ!;-d.

VF = ax -9+, AT
(VF)a, 1) = <4 ,-4=1, -3+ 19 =<4,=5, =),

Thie s A formed o tha level furfoe B (3,1,-1). Honu
t{(x-a)~€(%~-1) -(2+1) =0 gwﬂw fo F=o]

(‘;a v <)
We have & direchun  £4,=5, 1D and & paent (9,1,=1] the Il _ﬁ,m/,
Hhic pont with P ditedron s J‘rm/pfa

\rlt) = (3,1,-1)+ t(q;—st—l\)’/

4.6.2 parametrized surfaces and tangent space

Suppose a surface S can either be viewed as a level surface F(z,y,z) = k or as a parametrized
surface by the mapping 7 : D C R? — R3. In particular, if we denote the parameters by w,v
and write 7 = (z,y, z) then these viewpoints are connected by the equation F(7(u,v)) = k for all
u,v € D. The chain rules in this case are as follows:

OF _OF0s  OF0y OF 0 OF _OF0s  OF0y  OF0:
ou Oxrdu Oy odu 0z Ou ov  Oxdv Oyodv 0z0v

You can write these rules in terms of gradients and partial derivatives of vectors,

oF _ VF(7(u, v)) » or OF _ VF(7(u, v)) - or

u ou v ov’

Differentiate F'(7(u,v)) = k with respect to u or v to obtain,

oF . or or . or
Evi VF(r(u,v))s o 0 i VE(r(u,v))s 50

=0.

The vectors g—z and %5 are perpendicular to VF(7(u,v)). We envision all three of these vectors

attached at the point 7(u,v) of S. The curves
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are the coordinate curves through 7(u,,v,). The tangent vectors at 7(u,,v,) to these curves are
given by

. d . or > d or

al(uo) = % [T(u, Uo)]uo = %(uo) & B/(vo) = % [T(umv)] Vo %(UO)
Therefore, the tangent vectors to the coordinate curves are perpendicular to the gradient vector
of the corresponding level curve. In three dimensional space it follows that the cross product of
a’(ue) with 87(v,) must be colinear to VF(7(u,,v,)). Therefore, we define
= or  or
N(u,v) = — X —.

(1, 0) ou "~ Ov

The vector field #(u,v) — N(u,v) defines the normal vector field of 7. If a surface S has a
non-vanishing normal vector field then it is said to be oriented. Clearly it is easier to calculate the
normal in the level surface formulation since gradients are way easier than cross products. However,
we will find that the parametric viewpoint is an essential part of the definition of the surface integral
for a vector field. The diagram below indicates how a particular vector in the normal vector field
is calculated in the parametric setting:

Remark 4.6.3.

The ordering of the parameters matters. If we swap the order of the parameters it flips
the normal vector field. Suppose S; is oriented by 7 (u,v) = (f(u,v), g(u,v), h(u,v)) and
72 (v, u) = (f(u,v), g(u,v), h(u,v)). The normal vector field induced from 7 by our conven-
tions is ]\71 = 0,71 X 0,71 whereas the normal vector field induced from 7% is ]\72 = OyTo X Oy 7.
Since 7 (u, v) = 7 (v, u) it follows that N; = —N,. My point? Beware the order.
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Example 4.6.4. .

C&uppog,g we houe g parametric 4 ole}me(f SU\PEICQ
?‘(uj V) = <u2 AU sia v U@S:Q;a /
/ )
ficd e Hunopwch plare  ab F(I,o) =1, 0, 1>, Thi
Case s differents Ahen Mmfr Sectron.
basic% 'H;. pictace s Some“H’\}n:a like ha ‘QJ”\’-WMIQ»

N R —

_ 2r

W= %

= or

v

v
», .
I"\J=‘I’M'>-:{"\‘r

®

Now ELM m? ‘H’\if should be dera oi) ‘H\& Pei'\i d"
intersest whane U=| and V=0, Colindete Heom

A _ ; C

o {au, ’C)Sm\/, Cos VD %:(l,a} = g, o, 1>

X _ . , r

B o, ducesV ~usinvy E(g=<a, 2,0

(uxrv),'= ?oo [ = i+l =<-3,0,4>
(1) o 2 o

We  have +ha  normed TT= £4-3,0,3% and o peint (1,0,1)
ha ] R
tha ﬁn%ﬂvdb plane ¢ Ak ey®

F(x—\\ + Y(z-1) = 07

Example 4.6.5. Suppose the plane F(x,y,z) = a(x —x,) + b(y — yo) + c(z — 2o) = 0 contains non-
colinear vectors A and B. Note VF = (a,b, c), the normal derived from the level function matches
the natural normal suggested by the equation for the plane. Next, consider the parametrization

naturally induced from A, B and the base-point (Zoy Yoy 20),

(u, v) = (To, Yo, 20) + uA +vB.

In this case calculation of the tangent vectors to the coordinate curves is easy:

or - or =
ou ov
B. The normal vector field to a plane is a constant vector field. Geometry

Thus N (u,v) X
B = Xa,b, c) for some nonzero constant \.

= A
indicates that A x
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Example 4.6.6. .

Considan 4he povamettized surdeca
r(yv) = <, ,ﬁn(uv), Vv

r = |
e & b, e, 9F = I, 5 0%
v = <9, _\IT,i>

¢ a A

= = _ 1V & ke .

R HE 0 BRI O
o A |

we  Could find the Yongentd plane  moct onguha now, bub
\ete  consider U= V=) whane ’

N = < S = <1, 8,1,

ﬁ(ljx) = <‘,"1, >
H‘ehc& 'Jr‘f\l "‘fu.l\%m\i. F‘G'M i.f}
B"I -4-0) + 2-1=0 = x-4+2=7 l

4.6.3 tangent plane to a graph

The graphical viewpoint is connected to the level-surface view and the parametric view by the
following: given that S is the solution set of z = f(x,y) we can

1. write S as the level surface F(z,y,2) =0 for F(x,y,z) =z — f(z,y).
2. write S as a parametrized surface with parameters x,y and 7(z,y) = (z,y, f(z,y)).

Notice there is some ambiguity in the normal vectors which are induced. If we chose —F = 0 then
that flips over the normal and if we swapped the order of the parameters x,y then that would also
flip the normal vector N (z,y). These ambiguities must be dealt with as we do calculations on
surfaces. Picking an orientation specifies a side to the surface. Equivalently, an oriented surface
is a set of points paired with a normal vector field on the surface.
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Remark 4.6.7.

Question: if S is oriented and we describe Sy by F(z,y,2) =0 for F(z,y,2) = z — f(x,y)
then is the same oriented surface as the parametrized surface So with parameters =,y and
F(.’E, y) = <$, Y, f(]:, y)>?

Solution: to begin note that as point-sets it is clear that S; = S so the question reduces
to the problem of ascertaining if the normal vector fields match-up. Calculate, from the
level-surface viewpoint the normal vector field at (z,y, z) on Sy is

—

N(z,y,2z) =VF = {(—fz,— fy, 1)

On the other hand, from the parametric viewpoint we calculate for (z,y) € dom(f),

or or
— =1 T = 5 17
and the cross-product
= or  or
N =— X —
(z,9) = 5 % 2y

=(Z+ fo2) x (U+ fy2)
=TX Y+ [T X2+ foZxy
=ZzZ- fy Z'/J\ — Jfa T
= <_fw7 _fya 1>
Therefore, if we change viewpoints as advocated at the beginning of the subsection we will

maintain the natural orientation. This is the reason I wrote F(z,y,z) = z — f(x,y) as
opposed to G(z,y,2) = f(x,y) — .

Example 4.6.8. .
- Find the eg? of +he 7’&’)934&25 f/ffu o (/, 2, 5)
for  £Ux,%) =$Xz+"*zv We calinlets £ (1,2) and 4 (1,2),
£ (12) = X, = 3 Flie)=142"=5
'FY (t3) = Zy/(:,z) = 9
Thus the Aungpt plane is (2= 5 +3(X=1)¥ 4(9-3) ]
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Example 4.6.9. .

Congiedas B = axp(xz--g‘) Fnd Fngenb plane +o

sucfoace  ab CL=ty 1), We exlealate
P
B% w aoogbtd) o 38 adts
Ix CRPEST & ’@Ju,-ﬁ' = mEe R
23 = . i B
B = -awerly s B L acens g

0,-1)
Then +he e,;"" of  the ""‘-“W plare +y %""F{)‘:V) '“'i’(xo_,‘ﬂn)

P
B-% = 2 (xex) + 2E (4-y,
DX 0 %) ) B?J“’M )

ITn ?Nﬁr_wul’j for (%o, 4., B) = (1, -1, N,
=1 = 3(x-)* a(F+1)]
Remorlke: T P(‘?-'{'Er 4o losk ob F—‘(X,v,z}= €><P(><3-V’)"'?‘
fhen VF = <%<E, %&E, %;.> oyl ves the normed
to the -‘ron%me planes  of Ahe fwche F =0,
Ta 4his problem, we've olrendy caladotad B and Fy

0*: (‘,'lji) and F; e "1 ‘HN&F
NEL s =€2,2,-15
Hren the Plam oh (1,"",1) (e Il'MP{\a.--

a(x=) +2Mm+) -@F-1)=0
s e sarme ar we furd Vio."H\-Q text © foroante.

which

Example 4.6.10. .

- Find g plare F Bo= UCoy Loy b (ray
Let: % = fxy) = ¢x3-y2, 2y o

%‘% = ¥x £ (L3 = -3

F _

v - T ra Ha) = -g
Thws 2 = £(-,3) + £ (-13) (x+1) + £,(1,3) (4-3)
Gives |3 = Y-30x+) —3(9=-3)]
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4.7 partial differentiation with side conditions

Every chain rule in the preceding section follows as a subcase of the chain rule for the general
derivative. In this section the rigorous justification is given by the implicit or inverse function
theorems. I will not even state those here!”. I discuss them in advanced calculus and those notes
are available if you’d like to read about the theoretical underpinning for the calculations in this
section. I will show how to formally calculate in this section. In other words, I will teach you
symbol pushing techniques. To begin, we define the total differential.

Definition 4.7.1.

If f = f(z1,22,...,2,) then df = ZLdwy + ZLdwy + - + 2L dxy,.

Example 4.7.2. Suppose E = pv +t? then dE = vdp + pdv + 2tdt. In this example the dependent
vartable is E whereas the independent variables are p,v and t.

Example 4.7.3. Problem: what are OF/0x and OF/dy if we know that F = F(z,y) and

dF = (2% + y)dz — cos(xy)dy.

Solution: if F' = F(x,y) then the total differential has the form dF = Fydx + Fydy. We simply
compare the general form to the given dF = (2% + y)dx — cos(xy)dy to obtain:

a—F—x2+ 6)—F——cos(as)

Example 4.7.4. .

u = e't S'iﬂ(S‘* at) Se U it o '{\ncf" e.‘C f ﬁ/w/S}
du = Mg + 24 4
% ot

il

&t e (s+9¢) ds + [-€%sin(s+a2) + ety cos(s+34) de
%‘*m(w o) ds + e’*[am{s»fgt) - Sin(staz) |dt = dbj_{

W = XY exp(x%) Fnd the htal - cdiflerentiod
dw = %l:—o\x + AW dy 4 .%.'\%dg

——

= [4opx3) + Xy v ooke)]dx + [xexp(x3)]dy + % explxe]dz
i Le"?*{('-w X9%)dx + xd% + %‘adz} =dw‘/

17T do give the easiest version of the implicit function theorem later in this section, but it does not really play a
computational role beyond the question of existence
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Example 4.7.5. Differentials are useful for error estimation.

resithey ane 19

' Hhe
F g’ . 7?\«2‘ i atsnml
@ ﬂ"-é 7 = ';?’*'2? = 9( Shir (oL,

series Fid dA in
drp = dR + dA,
33?, (1,3) /(/v 2)
= dR, + d,
= [ +0.5

Example 4.7.6. Here’s another error estimation calculation.

T4 s Wnewn Hhed i we plaw rerds R, and R, in
rcodall Anem she eblective rens{w\ce R of tha S'\a,s’—@-em, ir

L, o
Rt %)
we  ewn view R=F(R,R) RN IEN fanchon of o Variukler,
Now coppose R, = 102 £ 1@ ond R, =22 £0SR, here

ond  gue'll dlcP Hhom for waveniena Sehe. Inderprefachon;

CJR"’:\ oand dR‘OS

w
= Okm "

Jhod i the seder of our uncerteun R Fhen 2 Escorh
(L;:Jp'/’o au anvan‘}lan of Fwe 1/:r #-/\2 4&/;1 d/%/&v\iﬁoﬂ MR
= 2 dr + 2/ Jp
dR Al * %],
e ; g ‘
= (Gl )PR *( L ?/Jﬂ’
- dm L _dR
T (e PRy (16, (R/R + 1) ¢ro,=)

= e+ (8)es) = 25 =[o33 (777,14 /ff-m 8A;.)

36



228 CHAPTER 4. DIFFERENTIATION

Example 4.7.7. What? You want more error estimation? Here, take this.

| — .
TQ_— l?\ R* RS‘
L,ul'\eié F\) = QS_Q Rz = VO.SZ, R, =500 tw ity Erters
of ©0.5% in eac«_/v cace, Ertmetle mede €ffer in
ColewleTad volre of R ,

Stodenst If flxyz) Hhen df = fdx+fdy + £z
is ‘ﬁ’\k ‘h‘\'ﬁ«o &\‘@eleﬂhul 0\(2 'F 'Ti\l: %,\m us ! “H\n YA
cecor o be df bosed on ascumed ercers of
de, d9 dz2 i X9, 2 Terpechue. In s
problem X~HK  , 9~F 2 ~p F£~R

/
K = A, o L
A

/
A 7,

Coleuhts: +or B =133,
9 _ =1 = f_i_ . L. _L/
?Rk (‘;?'—‘#?f_) R R, f?; Rg

b

= - =L -1 - L . 9k .
R [ﬁz glé gzz 2k /?32 53\4/ - -9—'?;;:-”:5;(/f

Thus, losk «b each cate and  obtam < Jok
! (A s"o sk
28 - R 2R _ KK A
2R, R: 7 & kT oR, R

- 2r 2% OR

1}

z
R [ (Re)or + (Ves)or + (/r2)dRy ]

We had K° in esch PBhp 5o T fochred
/‘1( ot



4.7. PARTIAL DIFFERENTIATION WITH SIDE CONDITIONS 229

NoAe AR = 000K , 4K, = 00054,

ard AR = 0. ces Re %o Usm;» 4 mr/ew/ of d rew 7
+o @m/’/fﬁf’ée bate fneremendts

AR ——R/’_anf"?,-ﬁé/;o,aofﬂf 0005;?/

= 0.005»?2/ %? + Ve, /73) 0.005 8 =
7
AVIJ we é/?aw }Z = 25—(2/ ,?2 = Yo _c? , % = S0 S
/
Re T3 = 262

——

?-\'KL.' Yoru ’ So.

T hos,

AR = (-005)(1i72) = [ 05339 2 = AR
Of Course we Owa/fxié 4o pa,;; igﬁ %’ca,\)}z%wre’; o
[i#le re;PeJ Aere So [A:‘? 0.0‘39,(.1) which

amow’l/} ﬂto o Monec  erfor af = 0.05% jna M.a
bl vesishnce .

It is very likely I will do something different in lecture.

Example 4.7.8. Suppose w = zyz then dw = yzdzr + xzdy + xydz. On the other hand, we can
solve for z = z(z,y,w)

P = dz:——da:——dy—i——dw *
zy z%y ry?

If we solve dw = yzdx + xzdy + xydz directly for dz we obtain:

dz = ——d:v — fdy + —dw * %,
Y Ty
Are x and x* consistent? Well, yes. Note xTwy = % =Z and x“’? = %3 =z,

Which variables are independent/dependent in the example above? It depends. In this initial
portion of the example we treated x,y, z as independent whereas w was dependent. But, in the
last half we treated z,y,w as independent and z was the dependent variable. Consider this, if I
ask you what the value of % is in the example above then this question is ambiguous!

0z 0z —z
— =0 verses _— =
ox ox T

——— ——

z indpendent of x z depends on x
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Obviously this sort of ambiguity is rather unpleasant. A natural solution to this trouble is simply
to write a bit more when variables are used in multiple contexts. In particular,

0z 0z —z
92l = 0 is different than r = —
x Y,z € Y, w T
means x,y,z independent means x,y,w independent

The key concept is that all the other independent variables are held fixed as an indpendent variable
is partial differentiated. Holding y, z fixed as = varies means z does not change hence % v = 0.
On the other hand, if we hold y,w fixed as x varies then the change in z need not be trivial;

%‘y w = = Let me expand on how this notation interfaces with the total differential.

Definition 4.7.9.

If w, x,y, z are variables then
0 0 0
dw = 2% d:t:—l——w dy—l——w dz.
Alternatively,
dm:a—x dw+% dy+% dz.
ow e oy w0 0z wy

The larger idea here is that we can identify partial derivatives from the coefficients in equations
of differentials. I'd say a differential equation but you might get the wrong idea... Incidentally,
there is a whole theory of solving differential equations by clever use of differentials, it’s called the
method of characteristics. 1 have books if you are interested.

Example 4.7.10. Suppose w = x+y+ z and x+y = wz then calculate g—”‘; ” and %—;” - Notice we
must choose dependent and independent variables to make sense of partial derivatives in question.

1. suppose w, z both depend on x,y. Calculate,
ow 0

x|, " o

0
Ly
Yy

s
y ox

—1404
y ox

3}
(x+y+2)= °

*
y ox

Y

To calculate further we need to eliminate w by substituting w = x + y + z into x + y = wz;
thus x +y = (x +y + 2)z hence de + dy = (de + dy + dz)z + (x + y + 2)dz

2z+z+y)dz=(1—2)de+ (1—2)dy xx*

Therefore,
1— 1-— 0 0 0 1-—
dz = : dx + : dy:—z daz—f——z dy = Cl-_——%
224+ x4y 2z+ x4y &Uy 0y |, axy 2z+x+y
Returning to x we derive
ow| 1—=2
&cy_ 2z+x+y
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2. suppose w,y both depend on x,z. Calculate,

8£
ox

0z

_ 9 (z+ —i—z)—@ +
_8$Z Y _833Z

B,

z

To complete this calculation we need to eliminate w as before, using xx,

(1—2)dy=(1—-2)de— (2z4+z+y)dz = gy =1.
€ z
Therefore,
ow
| QR §
or |,

I hope you can begin to see how the game is played. Basically the example above generalizes the
idea of implicit differentiation to several equations of many variables. This is actually a pretty
important type of calculation for engineering. The study of thermodynamics is full of variables
which are intermittently used as either dependent or independent variables. The so-called equation
of state can be given in terms of about a dozen distinct sets of state variables.

Example 4.7.11. The ideal gas law states that for a fixred number of particles n the pressure P,
volume V' and temperature T are related by PV = nRT where R is a constant. Calculate,

or| 0 [nRT] __nRT
ovVip oV V ||p V2’
ov| _ 0 [nRT)| _uR
or\, or| P ||, P’
oy _ o PVl _V
OP|,, OP|nR||; nR
You might expect that %‘Tgwpg% v = 1. Is it true?
OP| OV| OT| _ nRT nR V _-nRT _ |
ov |poT P@PV_ v2 P nR PV

This is an example where naive cancellation of partials fails.

The example above is merely a special case of a general result shown below.
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Example 4.7.12. You can repeat the example above for x,y,z constrained by F(z,y,z) = 0. The

differential of F is
dF = Fydx + Fydy + F.dz

Solve for dx,dy or dz to derivatives of v = x(y, 2), y = y(x, z) or z = z(z,y),

F, F ox F, ox F.
de = —Ydy — 24 O T .
TTTRYTERY ay|.” F. 0z|, R
dy = —~Zdz — 24 A A .
V=ORYTR” ox|,  F, 02|, F,

F F 9z F 92 F,
dz = —~2dy — 24 O N I
FTTERYTRY oz|, . ayl, ~ F.

Notice that the factors will cancel if we choose the right triple from the list above:

0z

L0

oz
oy

dy

L0z

F, F, F,

—_y.E2.r_ g
F, F, F.

Y

The identity above reliably holds if all the partial derivatives of F are nonzero. We need F, #
0,F, # 0 and F, # 0. Incidentally, and not coincidentally, the implicit function theorem'® needs
precisely these three conditions to solve for x = x(y, z), y = y(x, z) and z = z(x,y) respective.

Example 4.7.13. Here’s a different take on the example as above.

Show i {0y9,3) = 0 thn (3 @) (5= -1. we

hW é? QX/’I‘WI/‘@ 7[’()9"/3)'—‘0 7o gjvc a Few q//#e/arﬂ'?«j /e,/v/'laﬂl’

Yy
™ _ o0, 2w, e . (32 - 2 (B
x -0 T % tfax Tmx X, R )
of _ = 2fox , o . 22 Lo(X) = =2y 22 -
oy a >xw Tt =y " (%Y s F/ox (3 =)
A o = XX, 20, f - [2Y Lo
- = £ £ 4 gL = P X, = ‘—é& 2x =
92 X 22 2y 22 92 (3-5),( 3‘/9)' (33 o)
Thus

() (2.2 = (B2 - -1

1 .
8covered in advanced calculus
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Example 4.7.14. . 21

@ _SE‘T-UP 3 gquose F&y2z) =0

~ 3 —
‘m')h'll‘}g de«"[’l}ie.f 2= -P(X,V)} Se
b F(x, v £&v) = 0. Then

dF _p= & , oEdy , oFee (22 . K
o o % oy e X 5
aL(teu/Ue we  tan derwe ﬁ'\uﬁ |
dF = ég 2F 22 . _;)_;a - = Fy
% © 2 22 oY . e
E6Q Considen x2+y?+ 3°= | And 2—2— ond —:7 , We supoie
/\1/\«1) % =3(X,y) ; GQE‘(’\M = (% Y%): ><2+y2+’5".. ] ’n\u/\/
T - "___rx - __ZX = —_& = —-a——}:
%—f - Fy 22 2%
Y - -5 = 2 [ - 2=
Y | oM 2 .1 2Y

You might be curious above level curves or volumes given the interesting results above for the level

surface F'(z,y,z) = 0. Consider the curve case first. Here we recover the implicit differentiation of
single-variable calculus.

Example 4.7.15. Suppose F(x,y) = 0 then dF = Fydx+ F,dy = 0 and it follows that dx = —&dy

F,
E oz _ _Fy By — _ I
ordy = — C”d:lc Hence, = T F and FZ Therefore,

dzdy F, F,

— =1
8y or F, F

for (z,y) such that F, # 0 and F,, # 0. The condition F, # 0 suggests we can solve for y = y(x)
whereas the condition F, # 0 suggests we can solve for x = x(y).
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If you pause to think about the geometry of F'(z,y) = 0 as it relates to VF = (F,, F};) you can see
why the conditions F, # 0 and F, # 0 are necessary.

M

vfl,= <o, 'C%‘(AD
Vf g = <49, 0%
Ve =<0, £ e
Ve, = <Koy, 0)

There is no way to find y as single-valued function of x on a open set about the point where Fy, = 0.
Likewise, when F; = 0 this means that there may be no way to find = as a single-valued function
of y for a neighborhood centered at the point in question. If the point where F), = 0 or Fy, = 0 is
on the edge of an interval then there is still hope, but the implicit function theorem does not apply.
For example, y — 22 = 0 for 2 > 0 can be solved for = as a function of y by x = VY- On the other
hand, we cannot solve y — 2 = 0 for x as a function of 3 in an open set centered about = 0, each
y value must return two z-values and that is not a function. Ok, enough about this.

Example 4.7.16. .

Given  Flxyy= 0 we an show +hbd
av — 9F _ :
3% = 7,,-‘/%- . M F(xy) = Sialx)degy) = Sin (x) = Cos (¥),
Codevdodn Aam,

~

2F = (os ()cos(Y) = Cos (X) 29F = —inbysin(Y) + sin(¥)
9K Y

Thecebsce,

dy __  =—ces(x)ess(y) + cos(x/ — | Los6o [ § o a:(y)] - dj_ﬂm
ax — —sinlsinly) + sia(e) Sinly) [\ = sincy) ax
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Example 4.7.17. . 22

Eé6o sinx)cos(y) + Y2 = x° ° sopese YV=Y&) fnd %(Z

Cas (x) cos(y) —sTa () 50 () jg + 'ZY;’—:: = 3x?
dy _ 33— cos(x)cos(9)

X T T2Y - sinx)sin(49)
arive 055 Mi.r (e_rw/¥ /ﬂ\ﬂ‘*ﬁt‘ ur\aﬂwr o\/:/J/oaoA} ye/Aa/n gasior,

We  muy

ooeé\’x\e; % = ’P(X) Swoh

V) Ser-up ¢ §uppau Flx,9)=0 (MP\(L;"’Ié Ur\ \\i“”")()
ere =

Trod  F(X,£6) = 0. Now diffveicl wrnt X

F - n = QFd RF Yy _ RF, 2FdY
%’ﬁ@)'o‘s’;ﬁ*wa&“g—x*avw ©
- BF
LldY o T |
eeo & = _'bi
v
EGi Lets revisiF W) +o (99-94'7 deﬁu F‘(x/y)-_-xg—;{h[X)CaI[y)-Y==O/
' dy - Fx _ -(3)(2’-60!()()05[)/)) - Ix? - cof (x) cosly) .
>x ~ FK T sinX)sin(v) =3y 2Y - sialx)sin(y)

The solution set of F'(z,y,z,w) = 0 gives a volume embedded in four-dimensional space. In invite
the reader to demonstrate

ow

m’y ax

0z

ox oy 0z _1
e Oow '

oy o 0z e
Again, this formula is only valid if all the partial derivatives of F' are nontrivial at the point in
question. In the next example we see why this identity holds in thermodynamics:

Example 4.7.18. . 19

@ Aguin  seppesa PV = NRT  bub 4his hma Suppese
o onshat o PV, N, T ore  veariocbles.

6,\5\,& R s

@, - 31,z

"b—‘F' LV llyNhw V

<3T) _a_[f_z’? - P

v (AN Wy J BW Fixed Rk

(—"3\’—) - EE_N_RJ:} — RT

G L WL P T I ¢

(:au) - 9..{.?.!.” o

P'r,v 2F L RT w0 ded RT

(i.) (s_v) (3!) (_ay_) = M€ P RT Y o g
), \oOV \N for \?P /5y v uR PAT
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Example 4.7.19. . 18

- ﬁp/}a U= £(PV,7T) = intensd ernecyy of a
20.! nwjb 06335 m Idex,j Gt: Luw PV =nﬁ7_ /Ii,/? enr-r/szf),

U P) 1 -
(%P— = 5—?—{ V'T')“ = 2f 20 . of 9T
_f2m

W W DT @
'3_‘/.> 2
( T = [F(HV,T)
T/, El ]V‘M CICI

The ved T =Pfap and P=nAT/y + cadekts Top & 26/,

d Hs be He 2V L UM _ (oU 2Unk 2v _ (ov
And s befler 4 we 5 t STar = (37, and el '[F)T)V.

ETE
2 BT hR

I

_.i

Example 4.7.20. . 20

¥ k

az

Given ‘ = 'éf”mvz shew Aheh gm W = K To
[,&9,‘,}, lets ok 4his problem tatement nacce precice, Show

QK) (2%
{("57%)1 av‘ KJ
very well, lets éeym
('?EK) = =2 J-mvzk/ = +v?
v

.:Q_K._ 9\ L 2
('av/)m 5"\7{2"“’}

(s‘w ) % f o
w), =[]
) S - fixed

Thecehie we find +hot W =

4

= myv (W&omew\um Ly

1
3

( (avz - ”].

Example 4.7.21. . 17

.YV,P,P'A.&E b Xz-f'az:rz and X = r‘axgi‘?=r§in6/
— Ccrf@

(%;)e = '()l' [Y‘Ca’e‘( © Fned

3%, = 20| - 2]

»J/w} 4/9/,7} o ewlieideds H4ha  netabion.

Pa
N

Y- Fixed
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Finally, for the unsatisfied reader I remind you once more that these calculations are justified by
the implicit function theorem of advanced calculus. Here is a brief discussion of the simplest version
of the theorem:

Theorem 4.7.22. sometimes a level curve can be locally represented as the graph of a function.

Suppose (Z,,Y,) is a point on the level curve F(z,y) = k hence F(z,,y,) = k. We say
the level curve F'(z,y) = k is locally represented by a function y = f(x) at (z,,y,) iff
F(x, f(x)) = k for all z € Bs(x,) for some ¢ > 0. Claim: if

£0

Y=Yo

o) = (4P

and the %—5 is continuous near (z,,¥y,) then F(x,y) = k is locally represented by some
function near (z,, o).

The theorem above is called the implicit function theorem and its proof is nontrivial. Its
proper statement is given in Advanced Calculus (Math 332). T’ll just illustrate with the circle:

F(z,y) = 2 + y?> = R? has %—5 = 2y which is continuous everywhere, however at y = 0 we have

%—5 = 0 which means the implicit function theorem might fail. On the circle, y = 0 when z = +R
which are precisely the points where we cannot write y = f(x) for just one function. For any other

point we may write either y = vV R2 — 22 or y = —v R? — 22 as a local solution of the level curve.

]

y=-—VR -2
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4.8 gradients in curvelinear coordinates

In this section we derive formulas for the gradient in polar, cylindrical and spherical coordinates.
These formulas are important since many problems are more naturally phrased in polar, cylindrical
or spherical coordinates.

4.8.1 polar coordinates

~

Our goal is to convert Vf = x% + 372—5 to polar coordinates. The unit-vectors for polar coordinates
are given by

=cosfT +sinfy

,,/)
—~ 4.1
; (4.1)

= —sinfZT + cos 7.

We need to solve the equations above for T, y. I'll use multiplication by inverse:
7] [ cosf sind T N z | | cosf —sind 7] | cos@r —sind )
| | —sin® cosb 7| | sinf cosf 6 | | sinf@r+cosff

Therefore, T = cosO7 — sinf 6 and y = sinf7 + cosf 0. Recall that we worked out in the chain

rule section that 8% = cos 9% - Siﬁe% and 8% = sin 9% + 0.0 Tet’s put these together,

AP

r 00"
_of _of
Vf—xaeryay
P 0 sinf 9 PN . 0 cosf 0
—(COSQT’—SIH@@) 00895— Y f—l—(smﬁr—i—cosﬂ@ SIHGE+T% f
. _Of ~1 . af
o 2 2 Y - 2 29\ 2
f(cos 0 + sin 0)rar+9T(cos 0 4+ sin 6)89
__of  ~10f
=T 950
0510 _0F 5101
Therefore, V—rar+9T89 and Vf—rar—i— v E

Example 4.8.1. Suppose f(r,0) =13 then Vr3 = ?%Lf + @\%%L; = 3772,
The geometry of the function above is fairly clear in polar coordinates. If we did the same

calculation in cartesians then you’d face the trouble of sorting through the derivatives of f(x,y) =
(2% + y*)3/2 paired with sorting out the radial pattern hidden in the Z, 7 notation.

~00 |, p199 1y
Example 4.8.2. Suppose f(r,0) =0 then V0 =75 + 0 55 = 0.
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4.8.2 cylindrical coordinates

There is not much to do here. We follow the same calculations as in the polar case with the slight

modication of adjoining a z coordinate. It’s not hard to see that we’ll find Vf = a:gg + yag + 2% f

converts to

;10f _of
“Tor Vv 00 " oz

Example 4.8.3. Suppose f(r,0,z) = rz0 then we calculate,

L0(rz0)  ~>10(rz0) = _0(rz0)
o Y0 T o

=207+ 20 + 1%

4.8.3 spherical coordinates

We could derive the formula for V f in spherical coordinates in the same way as we did for polar
and cylindrical coordinates. However, I take a different approach to illustrate a few calculation
techniques. The basic observation is this: V f is a vector field and we can write it as a sum of the
spherical unit-vector fields at each point in space;

~

V= (VD) p+(Vfed)d+ (Vfe

~

0)0

Hence the problem reduces to converting V fep, Vfe $ and Vfe 9 to spherical coordinates. Recall
that unit vectors in the direction of increasing p, ¢, € by p, ¢, 0 are given by:

p:: in(¢) cos(f) T + sin(¢) sin(f) y + cos(¢) z
quS = —cos(¢) cos(0) T — cos(¢) sin(f) y + sin(¢) z (4.2)
f = —sin(0) x + cos(0) y.

We calculate: (remember z = pcosfsing, y = psinfsin¢ and z = pcos ¢ in order to understand
the chain rule calculation below)

V. 5:< af+ afyc v 3 8J; ).<Sm(¢)cos(e)55+sin(¢) sin(6) § + cos(¢) 2)

= sin(¢) cos(ﬁ)gf + sin(¢) sin(ﬁ)g‘;j + Cos(qﬁ)g‘z
0z df 9ydf  0z0f
8/) Ooxr  Jpy 8/) 0z

_9f

=3



240 CHAPTER 4. DIFFERENTIATION

Continuing, calculate the ¢-component of V f

Vfe 5 = < ? + g‘;; + gﬁ) . <— cos(¢) cos(0) T — cos(¢) sin(0) y + sin(¢) 2)
d 0 0

= —cos(¢) cos(ﬂ)a—i — cos(¢) Sin(G)a‘;r + sin(gb)a—ﬁ

_loxof 1oyof 10z0f

Cp0dxr  pdpdy  pOP Iz
10f
T 0

One more component to go:
0 0 . ~ Y
Vel = < a—i + ya‘§ + Z@i) . <s1n(9)m+cos(¢9)y>
= — Sin(ﬁ)% + COS(H)Z@J;
_ —psin(¢)sin(0) df —psin(¢) cos(d) O f
~ psin(9) Oz psin(e) Oy
1 oxzof 1 oxof 1 oyof 1 0z0f
~ psin(¢) 00 oz * psin(¢) 00 dx * psin(¢) 00 dy  psin(¢p) 00 0z
__ 1 o
~ psin(¢) 99"
Therefore, we find
8f ~1 Bf 1 of
V= 05006 e o0

Spherical coordinate formulas are important for studying applications with spherical symmetry.

Example 4.8.4. In spherical coordinates the potential due to a point charge is simply V(p, ¢,0) =
%. The theory of electrostatics says this generates an electric field E = —VV. We find the field
easily using our formula for the gradient in sphericals,

LoV ~1 0V~ 1 ov 1.
BV =05 0 Y 91, R
~~ ~

More generally, the spherical gradient formula allows us to evaluate how a given function changes
in spherical coordinates.

Example 4.8.5. Suppose f(z,y,z) = y/x. To find how f changes in spherical coordinates we
convert to sphericals'®; f(p,¢,0) = tanf. It is clear that f is constant in p and ¢. In particular,

.0 0 1 0 _ sec’(0)
Vf= ,08 [tan&] +¢;a—¢[tan9] +9psm(d>)%[tan ] = sin(o)

9¢his is a slight abuse of notation, the function is not really f with this modication. Instead, we should perhaps

6.
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sec2(0)
psin(9)

This means that tan 6 increases at the rate in the O-direction.

Remark 4.8.6.

There are other slicker methods to derive the formulas in this section. My goal here is
not to be particularly clever. I merely wish to obtain these formulas for our future use
and hopefully to illustrate once more the structure of vector algebra and the chain rules of
multivariate calculus. If you'd like to know about alternate ways to derive these formulas I
have a source or two for further reading.

denote it f where to be technical f(p,¢,0) = f(pcos0sin ¢, psinsin ¢, pcos ¢). The underlying motivation for this
abuse is the idea that f is really an object which exists w/o regard to the particulars of the coordinate system we
use, so it’s appropriate to use the same letter for both the cartesian and spherical. Well, perhaps, but they are not
the same actual function. This is similar to the problem of the sine function. sin(90) and sin(w/2) are usually both
taken to be 1 but this is an overloading of the symbol sin. The degree-based sine function and the radian-based sine
function are in fact different functions on R.
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