
Chapter 4

differentiation

In single variable calculus we learn from the outset that the derivative of a function describes the
slope of the function at a point. On the other hand, we also learned that the derivative at a point
can be used to construct the best linear approximation to the function. In particular, the deriva-
tive at a point shows how the change in the independent variable ∆x gives an approximate change
∆y = f ′(a)∆x. This characterization of the derivative is the one which most readily generalizes to
many dimensions. In particular, we generalize ∆y and ∆x to become vectors and f ′(a) is a matrix
when f : Rn → Rm. I’ll explain how the derivative matrix1 f ′(a) is the natural extension of our
single-variable calculus to the general case.

The nuts and bolts of this derivative matrix are made from what we call partial derivatives of the
component functions. The partial derivative in turn is naturally defined in the context of direc-
tional derivatives. The directional derivative takes the multivariate function and restricts it to a
particular line in the domain. By making this restriction we find a way to do single variable-type
calculations on a multivariate function. Much of the calculation presented in this chapter is little
more than single-variable calculus with a few simple rules adjoined. However, connecting the partial
derivatives to the general derivative involves multivariate limits and some analysis that is beyond
the required content of this course. That said, I include some of those arguments in these notes in
the interest of logical completeness.

Most modern treatments ignore the need to discuss the general concept of differentiation and
instead just show students an assortment of various partial derivative calculations. I’ve found
students who are thinking are usually unsatisfied with the popular approach because there is no
big picture behind the partial differentiation. It’s just a seemingly random collection of adhoc rules.
This need not be. If we submit ourselves to a little linear algebaic terminology there is a beautiful
and quite general context in which all the partial derivatives find a natural purpose.

1often called the Jacobian matrix
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4.1 directional derivatives

We begin our discussion with a function f : dom(f) ⊆ R 2 → R. Consider a fixed point (xo, yo) ∈
dom(f). Furthermore, picture û = 〈a, b〉 as a unit-vector (it’s green) in the domain of f attached
to (xo, yo) and construct the path in dom(f) with direction 〈a, b〉 and base-point (xo, yo):

~r(t) = 〈xo + ta, yo + tb〉

If we feed this path (the orange line) to the function f then we can construct a curve in R 3 which
lies on the graph z = f(x, y) and passes through the point (xo, yo, f(xo, yo)). In particular,

~γ(t) =

(
xo + ta, yo + tb, f(xo + ta, yo + tb)

)
parametrizes the curve (in blue) formed by the intersection of the graph z = f(x, y) and the vertical
plane which contains ẑ and a x̂+ b ŷ.

In the picture above you can see that we identify the xy-plane embedded in R 3 with the plane R 2

which contains dom(f). A natural choice of coordinates on vertical slice containing 〈a, b, 0〉 and
〈0, 0, 1〉 is given by t, z. For the sake of discussion let g(t) = f(xo + ta, yo + tb) and consider the
graph z = g(t). This is a context to which ordinary single-variate calculus applies. The derivative
g′(0) describes the slope of the tangent line in the tz-plane at (0, g(0)). Of course, from the three-
dimensional perspective, g′(0) gives the z-component of the velocity-vector (the red arrow) to the
path t 7→ ~γ(t). So what? Well, what is that quantity’s meaning for z = f(x, y)? It’s simply the
following:

The value of d
dt

[
f(xo + ta, yo + tb)

] ∣∣
t=0

describes the rate of change in f(x, y)
in the direction 〈a, b〉 at the point (xo, yo).

This is why we are interested in this calculation. The directional derivative of f in the 〈a, b〉
direction at (xo, yo) is precisely the slope described above.
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Definition 4.1.1.

Let f : dom(f) ⊆ R 2 → R be a function with ~po = (xo, yo) ∈ dom(f) and suppose û = 〈a, b〉
is a unit-vector. If the limit below exists, then we define the directional derivative of f
at ~po in the û-direction by

Dûf(~po) = lim
t→0

[
f( ~po + tû )− f( ~po )

t

]
= lim

t→0

[
f(xo + ta, yo + tb)− f(xo, yo)

t

]
.

The definition above can also be written in terms of a derivative followed by an evaluation:

Dûf(~po) =
d

dt

[
f(xo + ta, yo + tb)

]∣∣∣∣
t=0

.

We pause to look at a few examples.

Example 4.1.2. Problem: Suppose f(x, y) = 25xy and calculate the rate of change in f at (1, 2)
in the direction of the 〈3, 4〉-vector.

Solution: we identify this is a directional derivative problem. We need a point and a unit vector.
The point is po = (1, 2). However, ||〈3, 4〉|| =

√
9 + 16 = 5 hence we need to rescale the given vector

before we calculate. Just divide by 5 to obtain û = 〈3/5, 4/5〉. Calculate,

f( ~po + tû ) = f(1 + 3t/5, 2 + 4t/5) = 25(1 + 3t/5)(2 + 4t/5) = (5 + 3t)(10 + 4t)

Differentiate, and then evaluate,

Dûf(~po) =
d

dt

[
(5 + 3t)(10 + 4t)

]∣∣∣∣
t=0

=

[
3(10 + 4t) + 4(5 + 3t)

]∣∣∣∣
t=0

= 30 + 20 = 50.

Naturally if you would rather calculate the difference quotient and take the limit you are free to
do that. I choose to use the tools we’ve already developed, no sense in reinventing the wheel here.
Incidentally, we will find a better way to package this calculation so you should look at this example
as a means to better understand the definition. It is not computationally ideal. Neither is what
follows, but these help bring understanding to later calculations so here we go.

Example 4.1.3. Problem: Suppose f(x, y) = 25xy and calculate the rate of change in f at (1, 2)
in the direction of the ( a.) 〈1, 0〉-vector, (b.) 〈0, 1〉-vector.

Solution of (a.): I’ll get straight to it here, identify û = 〈1, 0〉 and ~po = (1, 2) and calculate

f(~po + t x̂) = f(1 + t, 2) = 25(1 + t)(2) = 50 + 50t

Therefore,

D x̂f(~po) =
d

dt

[
50 + 50t

]∣∣∣∣
t=0

= 50.
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Solution of (b.): Identify û = 〈0, 1〉 and ~po = (1, 2) and calculate

f(~po + t ŷ) = f(1, 2 + t) = 25(1)(2 + t) = 50 + 25t

Therefore,

D ŷf(~po) =
d

dt

[
50 + 25t

]∣∣∣∣
t=0

= 25.

Notice 50 = 3
5(50) + 4

5(25) hence the previous examples are related in a curious manner:

Dûf(~po) =
3

5
D x̂f(~po) +

4

5
D ŷf(~po).

In other words, the pattern we see is:

D〈a,b〉f(~po) = 〈a, b〉 • 〈D x̂f(~po), D ŷf(~po)〉.

The directional derivatives in the coordinate directions are apparently important. We may be able
to build the directional derivative in other directions2. This leads us to the topic of the next section.
However, for the sake of logical completeness I define directional derivatives for functions of more
than two variables. The visualization of the slopes implicit in the definition below are beyond most
of our visual acumen.

Definition 4.1.4.

Let f : dom(f) ⊆ Rn → R be a function with ~po ∈ dom(f) and suppose û ∈ Rn is a
unit-vector. If the limit below exists, then we define the directional derivative of f at ~po
in the û-direction by

Dûf(~po) = lim
t→0

[
f( ~po + tû )− f( ~po )

t

]
=

d

dt

[
f( ~po + tû )

]∣∣∣∣
t=0

.

We will calculate a few such directional derivatives in the section after the next once we understand
the two-dimensional case in some depth.

2it turns out this is not generally true, but the exceptions are rare in applications
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4.2 partial differentiation in R 2

We continue the discussion of the last section concerning the change in functions of two variables.
The formulas and concepts readily generalize to n ≥ 3 however we postpone such discussion until
we have settled the n = 2 theory.

Definition 4.2.1.

Let f : dom(f) ⊆ R 2 → R be a function with (xo, yo) ∈ dom(f). If the directional derivative
below exists, then we define the partial derivative of f at (xo, yo) with respect to x by

∂f

∂x
(xo, yo) = (D x̂f)(xo, yo).

Likewise, we define the partial derivative of f at (xo, yo) with respect to y by

∂f

∂y
(xo, yo) = (D ŷf)(xo, yo)

provided the directional derivative (D ŷf)(xo, yo) exists.

Notice that (xo, yo) 7→ ∂f
∂x (xo, yo) and (xo, yo) 7→ ∂f

∂y (xo, yo) define new multivariate functions pro-
vided the given function f possesses the necessary directional derivatives. We define higher deriva-

tives by successive partial differentiation in the natural way: ∂2f
∂x2

= ∂
∂x

[∂f
∂x

]
. Derivatives such as

∂2f
∂y2

and ∂2f
∂x∂y and ∂2f

∂y∂x are similarly defined. A brief notation for partial derivatives is as follows:

fx =
∂f

∂x
, fy =

∂f

∂y
, fxx =

∂2f

∂x2
, fxy = (fx)y =

∂2f

∂y∂x
, etc...

It is usually the case that fxy = fyx but the proof of that statement is nontrivial and can be found
in most advanced calculus texts. Given the connection of the partial derivative and the directional
derivative we have the following conceptual guidelines:

fx gives the rate of change in f in the x-direction.
fy gives the rate of change in f in the y-direction.

It is also useful to rewrite the definition of the partial derivatives explicitly in terms of derivatives.

∂f

∂x
(xo, yo) =

d

dt

[
f(xo + t, yo)

]∣∣∣∣
t=0

∂f

∂y
(xo, yo) =

d

dt

[
f(xo, yo + t)

]∣∣∣∣
t=0

.
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The geometry is revealed in the diagram below:

Well, how do these really work? The proposition below explains the working calculus of partial
derivatives. It is really very simple.

Proposition 4.2.2.

Assume f, g are functions from R 2 to R whose partial derivatives exist. Then for c ∈ R,

1. (f + g)x = fx + gx and (f + g)y = fy + gy.

2. (cf)x = cfx and (cf)y = cfy.

3. (fg)x = fxg + fgx and (fg)y = fyg + fgy.

Moreover, if h : dom(h) ⊆ R→ R is a differentiable function then (4.)

∂

∂x

[
h(f(x, y))

]
=
dh

dt

∣∣∣∣
f(x,y)

∂f

∂x
=
dh

df

∂f

∂x
and

∂

∂y

[
h(f(x, y))

]
=
dh

dt

∣∣∣∣
f(x,y)

∂f

∂y
=
dh

df

∂f

∂y
.

5.
∂x

∂x
= 1,

∂x

∂y
= 0,

∂y

∂x
= 0,

∂y

∂y
= 1.

Proof: the proofs of 1,2,3 follow immediately from the corresponding properties of single-variable
differentiation. Let’s work on the x-part of (4.)

∂

∂x

[
h(f(x, y))

]
=

d

dt

[
h(f(xo + t, yo))

]∣∣∣∣
t=0

=

(
dh

dt

∣∣∣∣
f(xo+t,yo)

d

dt

[
f(xo + t, yo)

])∣∣∣∣
t=0

=
dh

dt

∣∣∣∣
f(x,y)

∂f

∂x
.



4.2. PARTIAL DIFFERENTIATION IN R 2 155

We find that (4.) follows from the chain-rule of single-variable calculus. The proof in the y-variable
is nearly the same. The proof of (5.) requires understanding of the definition. Let F (x, y) = x and
calculate

∂F

∂x
=

d

dt

[
F (x+ t, y)

])∣∣∣∣
t=0

=
d

dt

[
x+ t

])∣∣∣∣
t=0

= 1.

∂F

∂y
=

d

dt

[
F (x, y + t)

])∣∣∣∣
t=0

=
d

dt

[
x

])∣∣∣∣
t=0

= 0.

Likewise, let G(x, y) = y and calculate,

∂G

∂x
=

d

dt

[
G(x+ t, y)

])∣∣∣∣
t=0

=
d

dt

[
y

])∣∣∣∣
t=0

= 0.

∂G

∂y
=

d

dt

[
G(x, y + t)

])∣∣∣∣
t=0

=
d

dt

[
y + t

])∣∣∣∣
t=0

= 1.

Which concludes the proof of (5.) �

Example 4.2.3. Can you identify which property of the proposition I use in each line below?

∂

∂x

[
2x

2+y2
]

= ln(2)2x
2+y2 ∂

∂x
(x2 + y2)

= ln(2)2x
2+y2

[
∂

∂x
(x2) +

∂

∂x
(y2)

]
= ln(2)2x

2+y2
[
2x
∂x

∂x
+ 2y

∂y

∂x

]
= 2 ln(2)x2x

2+y2 .

Example 4.2.4. Can you identify which property of the proposition I use in each line below?

∂

∂x

[
sin(x2y)

]
= cos(x2y)

∂

∂x

[
x2y

]
= cos(x2y)

[
∂

∂x

[
x2
]
y + x2

∂y

∂x

]
= cos(x2y)

(
2x
∂x

∂x
y

)
= 2xy cos(x2y).

Similarly, you can calculate:
∂

∂y

[
sin(x2y)

]
= x2 cos(x2y).

In practice I rarely write as many steps as I just offered in the examples above.
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Example 4.2.5. Power functions and exponential functions are different.

∂

∂x

[
xy
]

= yxy−1 whereas
∂

∂y

[
xy
]

= ln(x)xy

∂

∂y

[
yx
]

= xyx−1 whereas
∂

∂x

[
yx
]

= ln(y)yx.

Example 4.2.6.

∂

∂x

[
xy

2 ]
= y2xy

2−1 whereas
∂

∂y

[
xy

2 ]
= ln(x)xy

2 ∂y2

∂y
= 2y ln(x)xy

2
.

Example 4.2.7.

∂

∂x

[
sin
(
x2y cosh(x)

) ]
= cos

(
x2y cosh(x)

) ∂
∂x

(
x2y cosh(x)

)
.

=
(
2xy cosh(x) + x2y sinh(x)

)
cos
(
x2y cosh(x)

)
.

Can I skip the middle step in the example above? Some days yes. Should you? Probably not.

Example 4.2.8.

∂

∂y

[
sin
(
cos(
√
xy)
) ]

= cos
(
cos(
√
xy)
) ∂
∂y

(
cos(
√
xy)
)
.

= cos
(
cos(
√
xy)
)(
− sin(

√
xy)
) ∂
∂y

√
xy.

= cos
(
cos(
√
xy)
)(
− sin(

√
xy)
) 1

2
√
xy

∂

∂y
[xy].

= −1

2

√
x

y
sin
(√

xy
)

cos
(

cos(
√
xy)

)
.

Example 4.2.9. .
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Example 4.2.10. .

Example 4.2.11. .

Example 4.2.12. .
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Example 4.2.13. .

Example 4.2.14. .
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Example 4.2.15. .

Example 4.2.16. .

Example 4.2.17. .

Example 4.2.18. .
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Example 4.2.19. .

Example 4.2.20. .
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4.2.1 directional derivatives and the gradient in R 2

Now that we have a little experience in partial differentiation let’s return to the problem of the
directional derivative. We saw that

D〈a,b〉f(xo, yo) = 〈 fx(xo, yo), fy(xo, yo) 〉 • 〈a, b〉

for the particular example we considered. Is this always true? Is it generally the case that we can
build the directional derivative in the 〈a, b〉-direction from the partial derivatives? If you just try
most functions that come to the nonpathological mind then you’d be tempted to agree with this
claim. However, many counter-examples exist. We only need one to debunk the claim.

Example 4.2.21. Suppose that

f(x, y) =


x+ 1 y = 0

y + 1 x = 0

0 xy 6= 0

Clearly fx(0, 0) = 1 and fy(0, 0) = 1 however the directional derivative is given by

D〈a,b〉f(0, 0) = lim
t→0

f(ta, tb)− f(0, 0)

t
= lim

t→0

−1

t

which diverges. The directional derivative in any non-coordinate direction does not exist since the
function jumps from 0 to 1 at the origin along any line except the axes.

Example 4.2.22. This example is even easier: let f(x, y) =


1 y = 0

1 x = 0

0 xy 6= 0

. In this case I can graph

the function and it is obvious that fx(0, 0) = 0 and fy(0, 0) = 0 yet all the directional derivatives
in non-coordinate directions fail to exist.

We can easily see the discontinuity of the function above is the source of the trouble. It is sometimes
true that a function is discontinuous and the formula holds. However, the case which we really
want to consider, the type of functions for which the derivatives considered are most meaningful,
are called continuously differentiable. You might recall from single-variable calculus that when
a function is differentiable at a point but the derivative function is discontinuous it led to bizzare
features for the linearization. That continues to be true in the multivariate case.



162 CHAPTER 4. DIFFERENTIATION

Definition 4.2.23.

A function f : dom(f) ⊆ R 2 → R is said to be continuously differentiable at (xo, yo)
iff the partial derivative functions ∂f

∂x ,
∂f
∂y are continuous at (xo, yo). We say f ∈ C1(xo, yo).

If all the second-order partial derivatives of f are continuous at (xo, yo) then we say
f ∈ C2(xo, yo). If continuous partial derivatives of arbitrary order exist at (xo, yo)
then we say f is smooth and write f ∈ C∞(xo, yo).

The continuity of the partial derivative functions implicitly involves multivariate limits and this is
what ultimately makes this criteria quite strong.

Proposition 4.2.24.

Suppose f is continuously differentiable at (xo, yo) then the directional derivative at (xo, yo)
in the direction of the unit vector 〈a, b〉 is given by:

D〈a,b〉f(xo, yo) = 〈 fx(xo, yo), fy(xo, yo) 〉 • 〈a, b〉

Proof: delayed until the next section. �

At this point it is useful to introduce a convenient notation which groups all the partial derivatives
together in a particular vector of functions.

Definition 4.2.25.

If the partial derivatives of f exist then we define

∇f = 〈fx, fy〉 = x̂
∂f

∂x
+ ŷ

∂f

∂y
.

we also use the notation grad(f) and call this the gradient of f .

The upside-down triangle ∇ is also known as nabla. Identify that ∇ = x̂∂x + ŷ∂y is a vector of
operators, it takes a function f and produces a vector field ∇f . This is called the gradient vector
field of f . We’ll think more about that after the examples. For a continuously differentiable
function we have the following beautiful formula for the directional derivative:

D〈a,b〉f(xo, yo) = (∇f)(xo, yo) • 〈a, b〉.

This is the formula I advocate for calculation of directional derivatives. This formula most elegantly
summarizes how the directional derivative works. I’d make it the definition, but the discontinuous3

counter-Example 4.2.21 already spoiled our fun.

3I don’t mean to say there are no continuous counter examples,I’d wager there are examples of continuous functions
whose partial derivatives exist but are discontinuous. Then the formula fails because some non-coordinate directions
fail to possess a directional derivative.
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Example 4.2.26. Suppose f(x, y) = x2 + y2. Then

∇f = 〈2x, 2y〉.

Calculate the directional derivative of f at (xo, yo) in the 〈a, b〉-direction:

D〈a,b〉f(xo, yo) = 〈2xo, 2yo〉 • 〈a, b〉 = 2xoa+ 2yob.

It is often useful to write D〈a,b〉f(xo, yo) = (∇f)(xo, yo) • 〈a, b〉 in terms of the angle θ between the
∇f(xo, yo) and 〈a, b〉:

D〈a,b〉f(xo, yo) = ||(∇f)(xo, yo)|| cos θ.

With this formula the following are obvious:

1. (θ = 0) when 〈a, b〉 is parallel to (∇f)(xo, yo) the direction
〈a, b〉 points towards maximum increase in f

2. (θ = π) when 〈a, b〉 is antiparallel to (∇f)(xo, yo) the direction
〈a, b〉 points towards maximum decrease in f

3. (θ = π/2) when 〈a, b〉 is perpendicular to (∇f)(xo, yo) the direction
〈a, b〉 points towards where f remains constant.

Example 4.2.27. Problem: if f(x, y) = x2 + y2. Then in what direction(s) is(are) f
(a.) increasing the most at (2, 3), (b.) decreasing the most at (2, 3), (c.) not increasing at (2, 3)?

Solution of (a.): f increases most in the (∇f)(2, 3)-direction. In particular, (∇f)(2, 3) = 〈4, 6〉.
If you prefer a unit-vector then rescale 〈4, 6〉〉 to û = 1√

13
〈2, 3〉. The magnitude ||(∇f)(2, 3)|| =

√
13

is the rate of increase in the û = 1√
13
〈2, 3〉-direction.

Solution of (b.): f decreases most in the −(∇f)(2, 3)-direction. In particular, −(∇f)(2, 3) =
〈−4,−6〉. If you prefer a unit-vector then rescale 〈−4,−6〉〉 to û = 1√

13
〈−2,−3〉. The rate of de-

crease is also
√

13 in magnitude.

Solution of (c.): f is constant in directions which are perpendicular to (∇f)(2, 3). A unit-vector
which is perpendicular to (∇f)(2, 3) = 〈4, 6〉 satisfied two conditions:

(∇f)(2, 3) • 〈a, b〉 = 4a+ 6b = 0 and a2 + b2 = 1

These are easily solved by solving the orthogonality condition for b = −2
3a and substituting it into

the unit-length condition:

1 = a2 + b2 = a2 +
4

9
a2 =

13

9
a2 ⇒ a2 =

9

13
⇒ a = ± 3√

13
⇒ b = ∓ 2√

13
.

Therefore, we find f is constant in either the 〈3/
√

13,−2/
√

13〉 or the 〈−3/
√

13, 2/
√

13〉 direction.
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Example 4.2.28. Problem: find a point (xo, yo) at which the function f(x, y) = x2 + y2 is con-
stant in all directions.

Solution: We need to find a point (xo, yo) at which (∇f)(xo, yo) is perpendicular to all unit-vectors.
The only vector which is perpendicular to all other vectors is the zero vector. We seek solutions to
(∇f)(xo, yo) = 〈2xo, 2yo〉 = 〈0, 0〉. The only solution is xo = 0 and yo = 0. Apparently the graph
z = f(x, y) levels out at the origin since f(x, y) stays constant in all directions near (0, 0).

Definition 4.2.29.

We say (xo, yo) is a critical point of f if (∇f)(xo, yo) does not exist or (∇f)(xo, yo) = 〈0, 0〉.

The term critical point is appropriate here since these are points where the function f may have a
local maximum or minimum. Other possibilities exist and we’ll spend a few lectures this semester
developing tools to carefully discern what the geometry is near a given critical point.

Example 4.2.30. .
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Example 4.2.31. .

Example 4.2.32. .
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Example 4.2.33. .

Example 4.2.34. .
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4.2.2 gradient vector fields

We’ve seen that the value of ∇f at a particular point reveals both the magnitude and the direction
of the change in the function f . The gradient vector field is simply the vector field which a
differentiable function f generates through the gradient operation.

Definition 4.2.35.

If f is differentiable on U ⊆ R 2 then ∇f defines the gradient vector field on U . We assign
to each point ~p ∈ U the vector ∇f(~p).

Example 4.2.36. Let f(x, y) = x2 + y2. We calculate,

∇f(x, y) = 〈∂x(x2 + y2), ∂y(x
2 + y2)〉 = 〈2x, 2y〉

This gradient vector field is easily described; at each point ~p we attach the vector 2~p.

Example 4.2.37. Let f(x, y) = x2 − y2. We calculate,

∇f(x, y) = 〈∂x(x2 − y2), ∂y(x2 − y2)〉 = 〈2x,−2y〉

This gradient vector field is not so easily described, however, most CAS will provide nice plots if
you are willing to invest a little time.
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Example 4.2.38. Let f(x, y) = x. We calculate,

∇f(x, y) = 〈∂x(x), ∂y(x)〉 = 〈1, 0〉 = x̂

Therefore, ∇x = x̂. Interesting. The gradient operation reproduces the unit-vector in the direction
of increasing x.

Example 4.2.39. Let f(x, y) = y. We calculate,

∇f(x, y) = 〈∂x(y), ∂y(y)〉 = 〈0, 1〉 = ŷ

Therefore, ∇y = ŷ. Interesting. The gradient operation reproduces the unit-vector in the direction
of increasing y.

Naturally, we are tempted to derive other unit-vector-fields by this method. In the examples above
we were a bit lucky, generally when you take the gradient of a coordinate function you’ll need to
normalize it. But, this is a very nice algebraic method to derive the frame of a non-cartesian
coordinate system. In particular, if y1, y2 are coordinates then there exist differentiable functions
f1, f2 such that y1 = f1(x, y) and y2 = f2(x, y) we can calculate the unit-vectors

ŷ1 =
∇f1
||∇f1||

and ŷ2 =
∇f2
||∇f2||

.

Let’s see how this method produces the frame for polar coordinates. I initially claimed it could be
derived from geometry alone. That is true, but this is also nice:
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Example 4.2.40. Consider polar coordinates r, θ, these were defined by r =
√
x2 + y2 and

θ = tan−1
[
y/x

]
for x > 0. Calculate,

∇r =

〈
∂

∂x

√
x2 + y2,

∂

∂y

√
x2 + y2

〉
=

〈
x√

x2 + y2
,

y√
x2 + y2

〉
=

〈
x

r
,
y

r

〉
But, x = r cos θ and y = r sin θ thus we derive ∇r = 〈cos θ, sin θ〉. Since ||∇r|| = 1 we find

r̂ = 〈cos θ, sin θ〉. The unit-vector in the direction of increasing θ is likewise calculated,

∇θ =

〈
∂

∂x
tan−1

[
y/x

]
,
∂

∂y
tan−1

[
y/x

] 〉
=

〈
−y

x2 + y2
,

x

x2 + y2

〉
=

〈
−y
r2
,
x

r2

〉
.

In this case we find ∇θ = 1
r 〈− sin θ, cos θ〉. Gradients and level curves of r and θ are plotted below4:

The gradient of θ is not a unit-vector so we have to normalize. Since ||∇θ|| = 1
r we derive

θ̂ = 〈− sin θ, cos θ〉.

This is a very nice calculation for coordinates which are not easy to visualize.

Another nice application of the gradient involves level curves. Consider this: a level curve is the
set of points which solves f(x, y) = k for some value k. If we consider a point (xo, yo) on the level
curve f(x, y) = k then the gradient vector (∇f)(xo, yo) will be perpendicular to the tangent line of
the level curve. Remember that when θ = π/2 we find a direction in which f(x, y) stays constant
near (xo, yo). What does this mean? Let’s summarize it:

The gradient vector field ∇f is perpendicular to the level curve f(x, y) = k.

If you are less than satisfied with my geometric justification for this claim then you’ll be happy to
hear we can prove it with a simple calculation. However, we need a chain-rule which we have yet
to justify. Therefore, further justification is postponed until a later section. That said, let’s look
at a few examples to appreciate the power of this statement:

4notice how the software chokes on x = 0
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Example 4.2.41. Suppose V (x, y) = 1√
x2+y2

represents the voltage due to a point-charge at the

origin. Electrostatics states that the electric field ~E = −∇V . Geometrically this has a simple mean-
ing; the electric field points along the normal direction to the level-curves of the voltage function. In
other words, the electric field is normal to the equipotential lines. What is an ”equipotential line”,
it’s a line on which the voltage assumes a constant value. This is nothing more than a level-curve
of the voltage function. For the given potential function, using r =

√
x2 + y2,

∇V = 〈∂x(1/r), ∂y(1/r)〉 = 〈(−1/r2)∂xr, (−1/r2)∂yr〉 =
−1

r2
〈∂xr, ∂yr〉 = − 1

r2
r̂.

Equipotentials V = Vo = 1/r are simply circles r = 1/Vo and the electric field is a purely radial
field ~E = 1

r2
r̂.

Example 4.2.42. Consider the ellipse f(x, y) = x2/a2 + y2/b2 = k. At any point on the ellipse
the vector field

∇f =
2x

a2
x̂+

2y

b2
ŷ

points in the normal direction to the ellipse.

Example 4.2.43. Consider the hyperbolas g(x, y) = x2y2 = k. At any point on the hyperbolas the
vector field

∇g = 2xy2 x̂+ 2x2y ŷ

points in the normal direction to the hyperbola. Notice that for k > 0 we have y2 = k/x2 hence
y = ±

√
k/x. When k = 0 we find solutions x = 0 and y = 0. The gradient vector field is identically

zero on the coordinate axes in this case. I plot it after the next example for the sake of side-by-side
comparison

Example 4.2.44. Suppose we have a level curve f(x, y) = xy = k. This either gives a hyperbola
(k 6= 0) or the coordinate axes (k = 0). The gradient vector field is a bit more descriptive in this
case:

∇f = y x̂+ x ŷ.

In this case the exceptional solution x = 0 has ∇f
∣∣
x=0

= y x̂ and y = 0 has ∇f
∣∣
y=0

= x ŷ. The

origin (0, 0) is the only critical point for f in this example.

I plot ∇f on the left and ∇g on the right together with a few level curves. The picture in the
middle has z = x2y2 in red and z = xy in blue with z = 0 in green for reference.
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The last pair of examples goes to show that a given set of points can be described by many different
level-functions. In particular notice that xy = 1 is covered by x2y2 = 1 but the level functions
f(x, y) = xy and g(x, y) = x2y2 change to other levels in rather distinct fashions. Just compare
the gradient vector fields. Or, use a CAS5 to graph z = f(x, y) and z = g(x, y). Those graphs will
intersect along the curve (x, 1/x, 1) for x > 0. Do they intersect anywhere else?

4.2.3 contour plots

Perhaps you’ve studied a topographical map before. The topographical map uses a two-dimensional
chart to plot a three-dimensional landscape. We can make a similar diagram for graphs of the form
z = f(x, y). To form such a plot we simply imagine projecting the graph at a few representative
z-values down or up to the xy-plane. This is an invaluable tool since we have much better two-
dimensional visualization than we do three. Few people can draw excellent three dimesnional
perspective, but the contour plot requires no understanding of perspective. We just slice and
project. Moreover, we can use the gradient vector field as a sort of compass6. The gradient vector
field in the domain of f(x, y) points toward higher contours. I use the term higher with the idea
of traveling from f(x, y) = k1 to f(x, y) = k2 where k1 < k2. If f(x, y) was actually the altitude
function then the term upward would be literally accurate. Usually the term has nothing to do
with an actual height, that’s just a mental picture for us to help think through the math.

Example 4.2.45. Suppose f(x, y) = 2x + 3y. The graph z = f(x, y) is the plane z = 2x + 3y.
Contours are level curves of the form 2x+3y = k. These contours are simply lines with x-intercept
k/2 and y-intercept k/3. See the plot and graph below to appreciate how the contour plot and graph
complement one another. Also, note there is no critical point in this example and the gradient
vector field ∇f = 〈2, 3〉 is constant in the domain of f .

Example 4.2.46. Suppose f(x, y) = x2 +y2. The graph z = f(x, y) is the quadratic surface known
as a paraboloid. Contours are level curves of the form x2 + y2 = k. These solutions of x2 + y2 = k
form circles of radius

√
k for k > 0 and a solitary point (0, 0) for k = 0. There are no contours

5I used Maple to create these graphs, of course you could use Mathematica or any other plotting tool, I have links
to free ones on my website... I do expect you use something to aid your visualization.

6thanks to Dr. Monty Kester for this particular slogan
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with k < 0. Once more see how the graph a contour plot complement one another. Furthermore,
observe that ∇f = 〈2x, 2y〉 is zero at the origin which is the only critical point. It’s clear from
the contours or the graph that f(0, 0) is a local minimum for f . In fact, it’s clear it is the global
minimum for the function.

Example 4.2.47. Suppose f(x, y) = x2 − y2. The graph z = f(x, y) is the quadratic surface
known as a hyperboloid. Contours are level curves of the form x2 − y2 = k. These solutions of
x2 − y2 = k form hyperbolas which open up/down for k < 0 and open left/right for k > 0. If k = 0
the x2 − y2 = 0 yields the special case y = ±x, these are asymptotes for all the hyperbolas from
k 6= 0. Once more see how the graph and contour plot complement one another. Furthermore,
observe that ∇f = 〈2x,−2y〉 is zero at the origin which is the only critical point. It’s clear from
the contours or the graph that f(0, 0) is a not a local minimum or maximum for f . This sort of
critical point is called a saddle point.
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Example 4.2.48. Suppose f(x, y) = cos(x). The graph z = f(x, y) is sort-of a wavy plane.
Contours are solutions of the level curve equation cos(x) = k. In this case y is free, however we
only find non-empty solution sets for −1 ≤ k ≤ 1. For a particular k ∈ [−1, 1] we have the level-
curve {(x, y) | cos(x) = k}. Note that the cosine curve will reach k twice for each 2π interval in
x. Let me pick on a few special values,

k = 0, solve cos(x) = 0, to obtain x = ±π
2
,±3π

2
,±5π

2
, . . .

The k = 0 contours are of the form x = π
2 (2n−1) for n ∈ Z, there are infinitely many such contours

and they are disconnected from one another. Another case which is easy to think through without
a calculator,

k = 1/2, solve cos(x) = 1/2, to obtain x = −π
3

+ 2πn, or x =
π

3
+ 2πn

for n ∈ Z. Once more the level-curves are vertical lines. Continuing, study k = 1,

k = 1, solve cos(x) = 1, to obtain x = 2πn, for n ∈ Z.

Likewise:
k = −1, solve cos(x) = −1, to obtain x = (2n− 1)π, for n ∈ Z.

Observe the gradient ∇f = 〈− sin(x), 0〉 is zero along the k = ±1 contours. The points on k = 1
give a local maximum whereas the points on k = −1 give local minima for f . This is a special
sort of critical point since they are not isolated, no matter how close we zoom in there are always
infinitely many critical points in a neighborhood of a given critical point.
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Example 4.2.49. Suppose f(x, y) = cos(xy). Calculate ∇f = 〈−y sin(xy),−x sin(xy)〉 it follows
that solutions of xy = nπ for n ∈ Z give critical points of f . Contours are given by the level-curves
cos(xy) = k which have nonempty solutions for k ∈ [−1, 1]. For example, note that cos(xy) = 1
has solution xy = 2jπ for some j ∈ Z. In particular,

xy = 0, xy = ±2π, xy = ±4π, . . . ⇒ y = 0, x = 0, y = ±2π

x
, y = ±4π

x
, . . .

On the other hand, cos(xy) = −1 has solution xy = (2m− 1)π for some m ∈ Z. In particular,

xy = ±π, xy = ±3π, , xy = ±5π . . . ⇒ y = ±π
x
, y = ±3π

x
, y = ±5π

x
, . . .

The contours are simply a family of hyperbolas which take the coordinate axes as asymptotes. This
is a great example to see both why contour plots help us visualize the graph which we’d rather not
illustrate three-dimensionally. Of course we can use a CAS to directly picture z = f(x, y), but such
pictures rarely yield the same sort of detailed information a well-drawn contour plot.

Example 4.2.50. Nice CAS ( in this section I used Maple, but all mature CAS’s have built-in
contour tools) plots are a luxury we don’t always have. Notice we can do much just with hand-
drawn sketches. I trade color-coding for explicit level labels.
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4.3 partial differentiation in R 3 and Rn

Definition 4.3.1.

Let f : dom(f) ⊆ R 3 → R be a function with (xo, yo, zo) ∈ dom(f). If the directional
derivative below exists, then we define the partial derivative of f at ~po = (xo, yo, zo) with
respect to x, y, z by

∂f

∂x
(~po) = (D x̂f)(~po),

∂f

∂y
(~po) = (D ŷf)(~po),

∂f

∂y
(~po) = (D ẑf)(~po)

respective. We also use the notations ∂f
∂x = ∂xf = fx, ∂f

∂y = ∂yf = fy and ∂f
∂z = ∂zf = fz.

Generally, if f : dom(f) ⊆ Rn → R is a function with ~po ∈ dom(f) and the limit below
exists, then we define the partial derivative of f at ~po with respect to xj by

∂f

∂xj
(~po) = (D x̂jf)(~po).

The notation ∂f
∂xj

= ∂jf is at times useful.

Once more we have natural interpretations for these partial derivatives:

fx gives the rate of change in f in the x-direction.
fy gives the rate of change in f in the y-direction.
fz gives the rate of change in f in the z-direction.

It is useful to rewrite the definition of the partial derivatives explicitly in terms of derivatives.

∂f

∂x
(xo, yo, zo) =

d

dt

[
f(xo + t, yo, zo)

]∣∣∣∣
t=0

∂f

∂y
(xo, yo, zo) =

d

dt

[
f(xo, yo + t, zo)

]∣∣∣∣
t=0

∂f

∂z
(xo, yo, zo) =

d

dt

[
f(xo, yo, zo + t)

]∣∣∣∣
t=0

.

Partial differentiation is just differentiation where we hold all but one of the independent vari-
ables constant. Notice that z in the context above is an independent variable. In constrast, when
we studied z = f(x, y) the variable z was a dependent variable. The symbols x, y, z are not
reserved. They have multiple meanings in multiple contexts and you must have the correct con-
ceptual framework if you are to make the correct computations. When z, x are independent we
have ∂z

∂x = 0. If z, x are dependent then it is generally some function. In any event, the following
proposition should be entirely unsurprising at this point:
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Proposition 4.3.2.

Assume f, g are functions from R 3 to R whose partial derivatives exist. Then for c ∈ R,

1. (f + g)x = fx + gx and (f + g)y = fy + gy and (f + g)z = fz + gz.

2. (cf)x = cfx and (cf)y = cfy and (cf)z = cfz.

3. (fg)x = fxg + fgx and (fg)y = fyg + fgy and (fg)z = fzg + fgz.

Moreover, if h : dom(h) ⊆ R→ R is a differentiable and x1 = x, x2 = y, x3 = z,

4.
∂

∂xj

[
h(f(x1, x2, x3))

]
=
dh

dt

∣∣
f(x1,x2,x3)

∂f

∂xj
=
dh

df

∂f

∂xj

5.
∂xi
∂xj

= δij where x1 = x, x2 = y, x3 = z.

Proof: The proofs are nearly identical to those given in the n = 2 case. However, I will offer a
proof of (5.) for arbitrary n. Suppose f(x1, x2, . . . , xn) = xi = ~x • x̂i and calculate

∂f

∂xj
= lim

t→0

[
f(~x)− f(~x+ t x̂j)

t

]
= lim

t→0

[
xi − (~x+ t x̂j) • x̂i

t

]
= lim

t→0

[
xi − xi + tδij

t

]
= δij .

Therefore, ∂jxi = δij for all i, j ∈ Nn. In particular, this result applies to the case n = 3 hence
the proof of (5.) is complete. Naturally this proposition equally well applies to f : Rn → R. The
proofs are nearly identical to the n = 2 case, we just have a few sums to sort through. I leave those
to the reader. �

Example 4.3.3. . 1
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Example 4.3.4. . 2

Example 4.3.5. . 3

Example 4.3.6. . 4
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Example 4.3.7. . 5
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4.3.1 directional derivatives and the gradient in R 3 and Rn

The idea of Example 4.2.21 equally well transfer to functions of three or more variables. We
usually require the functions we analyze to be continuously differentiable since that avoids certain
pathological examples:

Definition 4.3.8.

A function f : dom(f) ⊆ Rn → R is said to be continuously differentiable at ~po ∈
dom(f) iff the partial derivative functions ∂f

∂x1
, ∂f∂x2 , . . .

∂f
∂xn

are continuous at ~po. We say

f ∈ C1(~po). If all the second-order partial derivatives of f are continuous at ~po then we say
f ∈ C2(~po). If continuous partial derivatives of arbitrary order exist at ~po then we say f is
smooth and write f ∈ C∞~po.

We’ll see an example in the next section where the formula below holds for a multivariate functions
which is not even continuously differentiable, however the geometric analysis which flows from this
formula is most meaningful for continuously differentiable functions.

Proposition 4.3.9.

Suppose f : dom(f) ⊆ Rn → R is continuously differentiable at ~po ∈ Rn then the directional
derivative at ~po in the direction of the unit vector û is given by:

Dûf(~po) =
〈
∂1f(~po), ∂2f(~po), . . . , ∂nf(~po)

〉
• û.

Proof: delayed until the next section. �

At this point it is useful to introduce a convenient notation which groups all the partial derivatives
together in a particular vector of functions. Notice that the length of the gradient vector depends
on the context in which it is used.

Definition 4.3.10.

If the partial derivatives of f exist then we define

∇f = 〈∂1f, ∂1f, . . . , ∂nf〉 = x̂1
∂f

∂x1
+ x̂2

∂f

∂x2
+ · · ·+ x̂n

∂f

∂xn
.

we also use the notation grad(f) and call this the gradient of f .

The upside-down triangle ∇ is also known as nabla. Identify that for R 3 ∇ = x̂∂x+ ŷ∂y+ ẑ∂z. The
operator ∇ takes a function f and produces a vector field ∇f . This is called the gradient vector
field of f . For a continuously differentiable function we have the following beautiful formula for
the directional derivative:

Dûf(~po) = (∇f)(~po) • û.



180 CHAPTER 4. DIFFERENTIATION

Technically this isn’t the definition, but pragmatically this is almost always what we use to work
out problems. We can also write the dot-product in terms of lengths and the angle between the
gradient vector (∇f)(~po) and the unit-direction vector û:

Dûf(~po) = ||(∇f)(~po)|| cos θ.

Just like the n = 2 case we can use the gradient vector field to point us in the directions in which
f either increases, decreases or simply stays constant.

Example 4.3.11. Problem: Suppose f(x, y, z) = x2 + y2 + z2. Does f increase at a rate of 10 in
any direction at the point (1, 2, 3)?

Solution: Note ∇f(x, y, z) = 〈2x, 2y, 2z〉 thus ∇f(1, 2, 3) = 〈2, 4, 6〉. The magnitude of ∇f(1, 2, 3)
is ||∇f(1, 2, 3)|| =

√
4 + 16 + 36 =

√
56 and that is the maximum rate possible. Therefore, the

answer is no. This function increases at a rate of
√

56 in the direction 1√
14
〈1, 2, 3〉.

Example 4.3.12. Problem: Suppose f(x, y, z) = 2x+ y + 2z. Does f increase at a rate of 2 in
any direction at the point (1, 1, 1)?

Solution: Note ∇f(x, y, z) = 〈2, 1, 2〉 thus ∇f(1, 1, 1) = 〈2, 1, 2〉. The magnitude ||∇f(1, 1, 1)|| =√
9 = 3 and that is the maximum rate possible. Therefore, the answer is yes. Now let’s find the

direction(s) in which this occurs. Solve:

D〈a,b,c〉f(1, 1, 1) = 〈2, 1, 2〉 • 〈a, b, c〉 = 2a+ b+ 2c = 2

subject the unit-vector condition a2 + b2 + c2 = 1. I’ll eliminate c by solving the linear equation for
c = 1

2(2− 2a− b) and substituting:

a2 + b2 +
1

4
(2− 2a− b)2 = 1.

This give an ellipse in a, b-space. Apparently there is not just one direction where f increases at a
rate of 2. There are infinitely many. For example, we can easily solve the ellipse equation for its
b-intercepts by putting a = 0,

b2 +
1

4
(2− b)2 = 1 ⇒ 4b2 + 4− 4b+ b2 = 4 ⇒ 5b2 − 4b = 0 ⇒ b(5b− 4) = 0.

We find the points (0, 0) and (0, 4/5) are on the ellipse. Returning to the plane equation we find
the c-value for these points by substituting them into the equation c = 1

2(2− 2a− b):

(0, 0) : c =
1

2
(2− 2a− b) = 1 & (0, 4/5) : c =

1

2
(2− 4/5) =

1

2
· 6

5
=

3

5
.

Thus, we find the direction vectors 〈0, 0, 1〉 and 〈0, 45 ,
3
5〉 point where f increases at a rate of 2. You

can probably see a few more possibilities by just thinking about (∇f)(1, 1, 1) = 〈2, 1, 2〉 directly. For
example, I see 〈1, 0, 0〉 also works.



4.3. PARTIAL DIFFERENTIATION IN R 3 AND RN 181

The two-dimensional analogue of this problem is much easier since we have to solve the intersection
of a line and the unit-circle. In that case there are either 0, 1 or 2 solutions. The three dimensional
case is much more interesting. If f models the temperature at the point (x, y, z) then this calcula-
tion shows there are many directions in which the temperature increases at a rate of 2.

Example 4.3.13. .

Example 4.3.14. .
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Example 4.3.15. .

Example 4.3.16. .

Moreover, we extend the definition of critical point to the general case in the obvious way:

Definition 4.3.17.

We say ~po is a critical point of f if (∇f)(~po) does not exist or (∇f)(~po) = ~0.

The function in Example 4.3.11 the origin (0, 0, 0) is the only critical point. On the other hand,
the function in Example 4.3.12 has no critical point.
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4.3.2 gradient vector fields in R 3 and Rn

We can calculate the gradient vector field for functions on Rn with n ≥ 1 but, visualization is
beyond most of us if n > 3. I mainly focus on the n = 3 case here and we see how the gradient aids
our understanding of non-cartesian coordinate systems. Then we examine how the gradient vector
field naturally provides a normal vector field to a level surface.

Definition 4.3.18.

If f is differentiable on U ⊆ Rn then ∇f defines the gradient vector field on U . We assign
to each point ~p ∈ U the vector ∇f(~p).

Example 4.3.19. If x, y, z denote the coordinate functions on R 3 then we find

∇x = 〈1, 0, 0, 〉 = x̂,

∇y = 〈0, 1, 0, 〉 = ŷ,

∇z = 〈0, 0, 1, 〉 = ẑ.

These define constant vector fields on R 3.
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Generally, the gradient vector fields of the coordinate functions of a non-cartesian coordinate system
provide a vector fields which point in the direction of increasing coordinates. To obtain unit-
vectors we simply normalize the gradient vector fields. In particular, if y1, y2, . . . yn are coordinates
on Rn then there exist differentiable functions f1, f2, . . . , fn such that yj = fj(x1, x2, . . . , xn) for
j = 1, 2, . . . , n. We can define:

ŷ1 =
∇f1
||∇f1||

and ŷ2 =
∇f2
||∇f2||

, . . . , ŷn =
∇fn
||∇fn||

.

I mention this general idea for the interested reader. We are primarily interested in the cylindrical
and spherical three dimensional coordinate systems. That’s just a custom, we could easily extend
these techniques to orthonormal coordinates based on ellipses or hyperbolas. If we are willing to
give up on nice distance formulas we could even use coordinates based on tilted lines which meet
at angles other than 90 degrees.

Example 4.3.20. For cylindrical coordinates r, θ, z we can easily derive (following the same cal-
culational steps as the polar two-dimensional case)

r̂ = 1
||∇r||∇r = r̂ = 〈cos(θ), sin(θ), 0〉

θ̂ = 1
||∇θ||∇θ = 〈− sin(θ), cos(θ), 0〉

ẑ = 1
||∇z||∇z = 〈0, 0, 1〉

The difference between the calculations above and the polar coordinate case is that cylindrical coordi-
nates are three dimensional and that means the gradient vector fields of the coordinate functions are
three dimensional vector fields. I advocated a geometric derivation of these cylindrical unit vectors
earlier in this course, but we now have computational method which requires almost no geometric
intuition.
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Example 4.3.21. Suppose ρ, φ, θ denote spherical coordinates. Recall7

ρ =
√
x2 + y2 + z2, φ = cos−1

(
z√

x2 + y2 + z2

)
, θ = tan−1

(
y

x

)

You can calculate that

ρ̂ = 1
||∇ρ||∇ρ = sin(φ) cos(θ) x̂+ sin(φ) sin(θ) ŷ + cos(φ) ẑ

φ̂ = 1
||∇φ||∇φ = − cos(φ) cos(θ) x̂− cos(φ) sin(θ) ŷ + sin(φ) ẑ

θ̂ = 1
||∇θ||∇θ = − sin(θ) x̂+ cos(θ) ŷ.

I’ll walk you through the ρ calculation. To begin you can show that ∇ρ = 〈x/ρ, y/ρ, z/ρ〉. But,
we also know x = ρ cos θ sinφ, y = ρ sin θ sinφ and z = ρ cosφ. Therefore,

∇ρ = 〈cos θ sinφ, sin θ sinφ, cosφ〉.

But, ||∇ρ|| = 1. We derive that ρ̂ = 〈cos θ sinφ, sin θ sinφ, cosφ〉. Perhaps I asked you to verify
the formulas for φ̂, θ̂ in your homework. Making nice pictures of the spherical frame is an art I
have yet to master... here’s my best for now:

7these formulas only apply for certain octants, however, the ambiguity for the remaining octants only involves
shifting the angular formulas by a constant. As you continue to read you’ll notice that differentiation ultimately will
kill any such constant so these formulas suffice.
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Another nice application of the gradient involves level surfaces. Consider this: a level surface is
the set of points which solves f(x, y, z) = k for some value k. If we consider a point (xo, yo, zo) on
the level surface f(x, y, z) = k then the gradient vector (∇f)(xo, yo, zo) will be perpendicular to
the tangent plane of the level surface. Remember that when θ = π/2 we find a direction in which
f(x, y, z) stays constant near (xo, yo, zo). What does this mean? Let’s summarize it:

The gradient vector field ∇f is normal to the level surface f(x, y, z) = k.

I use geometric intuition to make this claim here. We will offer a better proof later in this chapter.
For now, let’s try to appreciate the geometry.
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Example 4.3.22. Suppose V (x, y, z) = 1√
x2+y2+z2

represents the voltage due to a point-charge at

the origin. Electrostatics states that the electric field ~E = −∇V . Geometrically this has a simple
meaning; the electric field points along the normal direction to the level-surfaces of the voltage
function8. In other words, the electric field vectors are normal to the equipotential surfaces where
they are attached. What is an ”equipotential surface”, it’s a surface on which the voltage assumes
a constant value. This is nothing more than a level-surface of the voltage function. For the given
potential function, using ρ =

√
x2 + y2 + z2,

∇V = 〈∂x(1/ρ), ∂y(1/ρ), ∂z(1/ρ)〉
= 〈(−1/ρ2)∂xρ, (−1/ρ2)∂yρ, (−1/ρ2)∂zρ〉

=
−1

ρ2
〈∂xρ, ∂yρ, ∂zρ〉

= − 1

ρ2
ρ̂.

Equipotentials V = Vo = 1/ρ are simply spheres ρ = 1/Vo and the electric field is a purely radial
field ~E = 1

r2
ρ̂.

Example 4.3.23. Consider the ellipsoid f(x, y, z) = x2/a2 + y2/b2 + z2/c2 = k. At any point on
the ellipse the vector field

∇f =
2x

a2
x̂+

2y

b2
ŷ +

2z

c2
ẑ

points in the normal direction to the ellipsoid.

It amazes me how easy it is to find a formula to assign a normal-vector to an arbitrary point on an
ellipse. Imagine solving that problem without calculus.

8The voltage function is the electric potential or simply the potential function in this context
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4.4 the general derivative

Thus far we have primarily discussed partial derivatives in their connection to the rate of change
of a given function in a particular direction. However, we would like to characterize the change
in the function as a whole. Moreover, even in the one-dimensional case the derivative was closely
tied to the best linear approximation to the function. In the single variable case it is as simple as
this: the best linear approximation to a differentiable function at a point is the linearization of the
function at that point whose graph is the tangent line. The slope of the tangent line is the value
of the derivative function at the point. How do these ideas generalize? I take an n-dimensional
approach in the beginning of this section because little is gained by talking in lower dimensions for
the basic definitions.

Definition 4.4.1.

Suppose that U is open and ~F : U ⊆ Rn → Rm is a mapping the we say that ~F is
differentiable at ~a ∈ U iff there exists a linear mapping ~L : Rn → Rm such that

lim
~h→0

~F (~a+ ~h)− ~F (~a)− ~L(~h)

||~h||
= 0.

In such a case we call the linear mapping ~L the differential at ~a and we denote ~L = d~F~a.
The matrix of the differential is called the derivative of ~F at ~a and we denote [d~F~a] =
~F ′(~a) ∈ R m×n which means that d~F~a(~v) = ~F ′(~a)~v for all ~v ∈ Rn.

4.4.1 matrix of the derivative

If we know a function is differentiable at a point then we can calculate the formula for ~L in terms
of partial derivatives. In particular, if ~F : U ⊆ Rn → Rm is differentiable at ~a ∈ U then the
differential d~F~a has the derivative matrix ~F ′(~a) which has components expressed in terms of partial
derivatives of the component functions:

[
d~F~a

]
ij

= ∂jFi =
∂Fi
∂xj

(~a )

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. This result is proved in advanced calculus. Let me expand this claim
in detail for a few common cases: in each case we note ~L(~a+ ~h) ≈ ~F (a) + ~F ′(~a)~h

1. function on R, f : R → R, L(a+ h) ≈ f(a) + f ′(a)h the derivative matrix is just the

derivative f ′(a) at the point.

2. path into Rn, ~r : R → Rn, ~r(a+ h) ≈ ~r(a) + ~r′(a)h . The derivative matrix is just the

velocity vector ~r′(a) viewed as an n× 1 matrix ( it’s a column vector).
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3. multivariate real-valued function, f : Rn → R, f(~a+ ~h) ≈ f(~a) + (∇f)(~a)~h . The

derivative matrix is just the gradient vector (∇f)(~a) viewed as an 1 × n matrix ( it’s a
row vector).

4. coordinate change mapping, ~T : R 3 → R 3, ~T (~a+ ~h) ≈ ~T (~a) + ~T ′(~a)~h . The derivative

matrix is a 3× 3 matrix. In particular, if we denote ~T = 〈x, y, z〉 and use u, v, w for cartesian
coordinates in the domain of ~T

~T ′(~a) = [∂u ~T |∂v ~T |∂w ~T ] =


∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w


For two-dimensional coordinate change, ~T : R 2 → R 2 we again write

~T (~a+ ~h) ≈ ~T (~a) + ~T ′(~a)~h but the matrix ~T ′(~a) is just a 2× 2 matrix

~T ′(~a) = [∂u ~T |∂v ~T ] =

 ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v


Example 4.4.2. Let f(x) =

√
x. The linearization at x = 4 is given by L(x) = 2 + 1

4(x− 4) since
f ′(4) = 1

2
√
4

= 1
4 . We could also express L by L(4 + h) = 2 + h/4. As an application, note the

approximation
√

5 ≈ 2 + 1/4 = 2.25.

Example 4.4.3. Let ~r(t) = 〈t, t2, sin(10t)〉 for t ∈ [0, 2]. The linearization of ~r at t = 1 is given
by ~L(1 + h) = ~r(1) + h~r ′(1). In particular,

~L(1 + h) = 〈1 + h, 1 + 2h, sin(10) + 10hcos(10)〉.

Example 4.4.4. .
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Example 4.4.5. .

4.4.2 tangent space as graph of linearization

In the section after this I wrestle with why these are good definitions. For now I’ll state them
without justification.

1. f : R→ R has tangent line at (a, f(a)) with equation y = f(a) + f ′(a)(x− a).

2. ~r : R→ Rn has tangent line at ~r(a) with natural parametrization ~l(h) = ~r(a) + ~r′(a)h.

3. f : R 2 → R has tangent plane at (a, b, f(a, b) with equation z = f(a, b) + (∇f)(a, b) • 〈x −
a, y − b〉.

These are the cases of interest, in case 2 we usually deal with n = 2 or n = 3 in this course. The
following triple of examples mirror those given in the last section. The overall theme is simple: the
tangent space to a graph of a function is the graph of the linearization of that function. There are
several other viewpoints on the tangent space of a surface and we devote an entire section to that
a little later in this chapter. Here I just want you to get what we mean when we say a derivative
gives the best linear approximation to a function.

Example 4.4.6. We continue Example 4.4.2, f(x) =
√
x and the linearization at x = 4 is given

by L(x) = 2 + 1
4(x − 4). The tangent line is the graph y = L(x) which is in green, whereas the

y = f(x) is in red.
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Example 4.4.7. We continue Example 4.4.3, ~r(t) = 〈t, t2, sin(10t)〉 for t ∈ [0, 2] and the lineariza-
tion of ~r at t = 1 is given by ~L(1 + h) = 〈1 + h, 1 + 2h, sin(10) + 10hcos(10)〉. Once more we plot
the curve in red and the tangent line parametrized by ~L in green:

Example 4.4.8. Continue Example 4.4.4, f(x, y) = x/y and the tangent plane to z = x/y at (6, 3)
is the solution set of z = x/3 − 2y/3 + 2. Below I illustrate the tangent plane, the blue line goes
through the point of tangency. See how the surface is locally flat, note the right picture is zoomed
further in towards the point of tangency.

Example 4.4.9. Continue Example 4.4.5, f(x, y) = x2 + y2 and the tangent plane to z = x2 + y2

at (1, 2) is the solution set of z = 5 + (x− 1) + 4(y − 2). Below I illustrate the tangent plane, the
blue line goes through the point of tangency. See how the surface is locally flat, these are just two
views of the same scale, I put a rotating animation of this on the webpage, take a look.
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4.4.3 existence and connections to directional differentiation

Existence is usually more troublesome than calculation. But, that is no reason to ignore it. In this
subsection I attempt to give you a better sense of what it means for a function to be differentiable at
a point. Geometrically we eventually come to the simple realization that a function is differentiable
iff it is well-approximated by its linearization. This in turn is tied to the proper definition of the
tangent plane. We already gave formulas for important cases in the last subsection, my goal here is
to explain why we use those definitions and not something else. Before we get to those more subtle
topics, I begin by demonstrating the general derivative recovers single-variable differentiation:

Example 4.4.10. Suppose f : dom(f) ⊆ R → R is differentiable at x. It follows that there exists
a linear function dfx : R→ R such that9

lim
h→0

f(x+ h)− f(x)− dfx(h)

|h|
= 0.

Since dfx : R → R is linear there exists a constant matrix m such that dfx(h) = mh. In this silly
case the matrix m is a 1× 1 matrix which otherwise known as a real number. Note that

lim
h→0

f(x+ h)− f(x)− dfx(h)

|h|
= 0 ⇔ lim

h→0±

f(x+ h)− f(x)− dfx(h)

|h|
= 0.

In the left limit h→ 0− we have h < 0 hence |h| = −h. On the other hand, in the right limit h→ 0+

we have h > 0 hence |h| = h. Thus, differentiability suggests that limh→0±
f(x+h)−f(x)−dfx(h)

±h = 0.

But we can pull the minus out of the left limit to obtain limh→0−
f(x+h)−f(x)−dfx(h)

h = 0. Therefore,

lim
h→0

f(x+ h)− f(x)− dfx(h)

h
= 0.

We seek to show that limh→0
f(x+h)−f(x)

h = m.

m = lim
h→0

mh

h
= lim

h→0

dfx(h)

h

A theorem from calculus I states that if lim(f − g) = 0 and lim(g) exists then so must lim(f) and

lim(f) = lim(g). Apply that theorem to the fact we know limh→0
dfx(h)
h exists and

lim
h→0

[
f(x+ h)− f(x)

h
− dfx(h)

h

]
= 0.

It follows that

lim
h→0

dfx(h)

h
= lim

h→0

f(x+ h)− f(x)

h
.

Consequently,

dfx(h) = lim
h→0

f(x+ h)− f(x)

h
defined f ′(x) in calc. I.

9unless we state otherwise, Rn is assumed to have the euclidean norm, in this case ||x||R =
√
x2 = |x|.
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Therefore, dfx(h) = f ′(x)h . In other words, if a function is differentiable in the sense we defined

at the beginning of this section then it is differentiable in the terminology we used in calculus I.
Moreover, the derivative at x is precisely the matrix of the differential. If we use the notation
y = f(x) and h = dx then we recover formula for the differential often taught in first semester
calculus:

dyx(dx) =
dy

dx
(x)dx

Or, more compactly, dy = dy
dxdx where dy is the change in y corresponding to the change dx in x.

These seemingly heuristic statements take a rigorous meaning in the boxed equation above.

Of course, what really makes the general derivative interesting is its ability to tackle problems such
as given below:

Example 4.4.11. Suppose F : R 2 → R 3 is defined by F (x, y) = (xy, x2, x+3y) for all (x, y) ∈ R 2.
Consider the difference function 4F at (x, y):

4F = F ((x, y) + (h, k))− F (x, y) = F (x+ h, y + k)− F (x, y)

Calculate,

4F =
(
(x+ h)(y + k), (x+ h)2, x+ h+ 3(y + k)

)
−
(
xy, x2, x+ 3y

)
Simplify by cancelling terms which cancel with F (x, y):

4F =
(
xk + hy, 2xh+ h2, h+ 3k)

)
Identify the linear part of 4F as a good candidate for the differential. I claim that:

L(h, k) =
(
xk + hy, 2xh, h+ 3k

)
.

is the differential for f at (x,y). Observe first that we can write

L(h, k) =

 y x
2x 0
1 3

[ h
k

]
.

therefore L : R 2 → R 3 is manifestly linear. Use the algebra above to simplify the difference quotient
below:

lim
(h,k)→(0,0)

[
4F − L(h, k)

||(h, k)||

]
= lim

(h,k)→(0,0)

[
(0, h2, 0)

||(h, k)||

]
Note ||(h, k)|| =

√
h2 + k2 therefore we fact the task of showing that (0, h2/

√
h2 + k2, 0)→ (0, 0, 0)

as (h, k) → (0, 0). Recall from our study of limits that we can prove the vector tends to (0, 0, 0)
by showing the each component tends to zero. The first and third components are obviously zero
however the second component requires study. Observe that

0 ≤ h2√
h2 + k2

≤ h2√
h2

= |h|
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Clearly lim(h,k)→(0,0)(0) = 0 and lim(h,k)→(0,0) |h| = 0 hence the squeeze theorem for multivariate

limits shows that lim(h,k)→(0,0)
h2√
h2+k2

= 0. Therefore,

dF(x,y)(h, k) =

 y x
2x 0
1 3

[ h
k

]
.

Fortunately we can usually avoid explicit limit calculations due to the nice proposition below.

Example 4.4.12. Again consider F (x, y) = (xy, x2, x+3y). Identify F1(x, y) = xy, F2(x, y) = x2

and F3(x, y) = x+ 3y. Calculate,

[F ′(x, y)] =

 ∂xF1 ∂yF1

∂xF2 ∂yF2

∂xF3 ∂yF3

 =

 y x
2x 0
1 3


In single-variable calculus we learn that differentiability implies continuity. However, continuity
does not imply differentiability at a given point. The same is true for multivariate functions.

Proposition 4.4.13.

If ~F : U ⊆ Rn → Rm is differentiable at ~a ∈ U then ~F is continuous at ~a.

The proof is given in advanced calculus. It’s not too difficult. �

The general derivative also reproduces all the directional derivatives we previously discussed.

Proposition 4.4.14.

If ~F : U ⊆ Rn → Rm is differentiable at ~a ∈ U then the directional derivative D~v
~F (~a) exists

for each ~v ∈ Rn and D~v
~F (~a) = d~F~a(~v).

The proof is given in advanced calculus. It’s not terribly difficult. �

We should consider the example below. It may challenge some of your misconceptions. It shows
that directional differentiation at a point does not give us enough to build the derivative. In fact,
the example below has all directional derivatives and yet the function is not even continuous.

Example 4.4.15. Let f : R 2 → R be defined by f(x, y) = x2y
x4+y2

for (x, y) 6= (0, 0) and f(0, 0) = 0.

We proved in Example 3.3.4 that this function is not continuous at (0, 0). Given the proposition
above we also may infer the function is not differentiable at (0, 0). You might expect this indicates
at least some directional derivative fails to exist. Let’s investigate. We turn to the problem of
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calculating the directional derivative of this function in the unit-vector 〈a, b〉 direction, suppose
b 6= 0 to begin,

D〈a,b〉f(0, 0) =
d

dt

[
f(at, bt)

]∣∣∣∣
t=0

=
d

dt

[
a2bt3

a4t4 + b2t2

]∣∣∣∣
t=0

=

[
a2b(a4t2 + b2)− a2bt(2ta4)

(a4t2 + b2)2

]∣∣∣∣
t=0

=
a2

b
.

On the other hand, if b = 0 then we know a 6= 0 since 〈a, b〉 is a unit-vector10 hence f(at, bt) =
a2bt3

a4t4+b2t2
= 0 and it follows D〈a,0〉f(0, 0) = 0. We find the directional derivatives of f exist in all

directions.

Notice that the directional derivatives do jump from one value to another as we travel around the
unit-circle. In particular, as we traverse the arc of the circle through the point 〈1, 0〉 we have 〈a, b〉
go from vectors with b > 0 which have a2

b → ∞ to vectors with b < 0 which have a2

b → −∞.
In the middle, we hit 〈1, 0〉 where D〈a,0〉f(0, 0) = 0. These directional derivatives may exist but
they certainly do not continuously paste together. It turns out that continuity of the directional
derivatives in the coordinate directions is a sufficient condition to eliminate the trouble of the
previous example.

Definition 4.4.16.

A mapping F : U ⊆ Rn → Rm is continuously differentiable at a ∈ U iff all the partial
derivative mappings ∂Fi/∂xj exist on an open set containing a and are continuous at a.

Continuous differentiability is typically easier than differentiability to check. The reason is that
partial derivatives are straightforward to calculate. On the other hand, it is sometimes challenging
to find the linearization and actually check the appropriate limit vanishes. It follows that the
proposition below is welcome news:

Proposition 4.4.17.

If F is continuously differentiable at a then F is differentiable at a

The proof is somewhat involved. The main construction involves breaking a vector into a sum of
vector components. Then continuity of the partial derivatives paired with a mean value theorem
argument goes to prove the differentiability of the mapping. Again, details are given in my ad-
vanced calculus notes (or any good text on the subject). �

There do exist functions which are differentiable at a point and yet fail to be continuously dif-
ferentiable at that point. In single variable calculus I usually present the example: Let f(0) = 0
and

f(x) =
x

2
+ x2 sin

1

x

for all x 6= 0. I can be shown that the derivative f ′(0) = 1/2. Moreover, we can show that f ′(x)
exists for all x 6= 0, we can calculate:

f ′(x) =
1

2
+ 2x sin

1

x
− cos

1

x
10if a = 0 and b = 0 then ||〈a, b〉|| = 0 6= 1
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Notice that dom(f ′) = R. Note then that the tangent line at (0, 0) is y = x/2.

The lack of continuity for the derivative means that the tangent line at the origin does not well-
approximate the graph near the point of tangency. In other words, the linearization is not a
good approximation near the point of tangency. This is not just a single-variable phenonmenon.
Pathological multivariate examples exist. For example,

Example 4.4.18. Let f(0, y) = 0 and

f(x, y) = x2 sin
1

x

for all (x, y) ∈ R 2 such that x 6= 0. You can show that Dûf(0, 0) = 0 for all unit vectors u. This
means that the tangent vectors to any path t→ (at, bt, f(at, bt)) reside in the xy-plane. It appears
the set of all tangent vectors fill out the xy-plane. However, I’m not sure what happens with non-
linear paths in the domain. I suspect the curves on the graph z = f(x, y) built from composing
a smooth, but non-linear, path γ : R → R 2 with f might result in a path f ◦ γ which is not even
differentiable at the origin.

Let’s investigate the differentiability of f at (0, 0). Given the triviality of all the directional deriva-
tives we suspect L(h, k) = 0. Consider,

|f(h, k)− f(0, 0)− L(h, k)|
||(h, k)||

=
|h2 sin(1/h)|√

h2 + k2
=
|h sin(1/h)|√

1 + k2/h2
≤ |h sin(1/h)| ≤ |h|.

It follows that f is differentiable at (0, 0) since we have |h| → 0 as (h, k) → (0, 0) along any path.
Therefore, my suspicion was incorrect. Even nonlinear paths composed with f yield a differentiable
path. However, this does give us another example of a function which is differentiable at (0, 0) but
is not continuously differentiable. If you’re wondering it is clear that fx is not continuous along
the entire y-axis. Given our experience in the single variable case we suspect the linearization does
not approximate the function in a natural way as we leave the point of tangency. We need the
continuity of the partial derivatives to insure the function does not wildly misbehave in the locality
of the tangent point.
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I haven’t proved it yet but I suspect the function below is not differentiable. It gives and example
of a function which is continuous but is not differentiable at zero. However, both partial derivatives
exist at (0, 0), they’re just not continuous.

Example 4.4.19. Let us define f(0, 0) = 0 and

f(x, y) =
x2y

x2 + y2

for all (x, y) 6= (0, 0) in R2. It can be shown11 that f is continuous at (0, 0). Moreover, since
f(x, 0) = f(0, y) = 0 for all x and all y it follows that f vanishes identically along the coordinate
axis. Thus the rate of change in the x̂ or ŷ directions is zero. We can calculate that

∂f

∂x
=

2xy3

(x2 + y2)2
and

∂f

∂y
=
x4 − x2y2

(x2 + y2)2

Consider the path to the origin t 7→ (t, t) gives fx(t, t) = 2t4/(t2 + t2)2 = 1/2 hence fx(x, y)→ 1/2
along the path t 7→ (t, t), but fx(0, 0) = 0 hence the partial derivative fx is not continuous at (0, 0).
Therefore, this function has discontinuous partial derivatives. It is not continuously differentiable.

Let’s return to the question of directional derivatives and differentiability. It is tempting to think
that the reason the function in Example 4.4.15 failed to be differentiable is that the tangent vectors
to the curves t 7→ (at, bt, f(at, bt)) failed to fill out a plane. This suspicion is further encouraged
by Example 4.4.18 where we see the function is differentiable and the tangent vectors to the curves
t 7→ (at, bt, f(at, bt)) do fill out the xy-plane. However, this suspicion is false. Think back to our
experience with multivariate limits in Example 3.3.2. Differentiability also concerns a multivariate
limit so intuitively we may expect something could be hidden if we only think about straight-line
approaches to the limit point. I suspect that if we had that the tangents to t 7→ (~r(t), f(~r(t))) fill
out a plane for all differentiable paths ~r with ~r(0) = 〈0, 0〉 then it would follow f is differentiable.
I don’t have a proof of this claim in the notes at the present time.

Why all this fuss? Let me try to clarify the confusion which pushed me to this discussion:

1. some authors define the tangent plane to be the union of all tangent vectors at a point.

2. other authors say the tangent plane is a plane which well-approximates the graph of the
function near the point of tangency.

Item (2.) begs some questions, what exactly do we mean by ”well-approximates”. Is the nearness
to the graph the concept captured by mere differentiability or is it the stronger version captured by
continuous differentiability? Item (1.) is dangerous since it would seem that looking at all possible
directional derivatives should give a complete picture of the tangent vectors at a point. We just

11you did this one in homework... or at least you were supposed to...
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argued this is not the case12. It is possible for all tangents to curves built from linear paths to exist
whereas the tangent vectors to a path built from a nonlinear path may not even exist. If we are to
use item (1.) as a definition we must clarify it a bit:

The tangent plane to the graph z = f(x, y) is formed by the union of all
possible tangent vectors of curves f ◦~γ where ~γ is a smooth curve in dom(f)
which pass at t = 0 through the xy-coordinates of the point of tangency. If
there exists a smooth curve ~γ such that f ◦~γ is not differentiable at t = 0
then the tangent plane fails to exist.

This is just my comment here, I haven’t seen this elsewhere. Most authors don’t bother with
these details or deliberations. In fact, many authors assume continuous differentiability in their
definitions. In any event, it seems clear to me that we should prefer a slightly more careful version
of (2.) since it has far less technical trouble. With all of this in mind we define ( I expand on the
most important case to this course after this general definition),

Definition 4.4.20. general tangent space to a graph.

Suppose that U is open and ~F : U ⊆ Rn → Rm is a mapping which is differentiable at
~a ∈ U then the linear mapping ~L : Rn → Rm such that

lim
~h→0

~F (~a+ ~h)− ~F (~a)− ~L(~h)

||~h||
= 0.

defines the tangent space at (~a, ~F (~a)) to graph(~F ) = {(~x, ~F (~x)) | dom(~F )} with equations
~z = ~F (~a) + ~L(~x − ~a) in Rn × Rm. We use the notation ~z ∈ Rm whereas ~x,~a ∈ Rn in the
equation above.

In particular, for f : R 2 → R we have L(x − xo, y − yo) = (∇f)(xo, yo) • 〈x − xo, y − yo〉 and the
tangent plane has equation:

z = f(xo, yo) + (x− xo)fx(xo, yo) + (y − yo)fy(xo, yo).

The assumption of differentiability of f at (xo, yo) insures that the tangent plane z = f(xo, yo) +
L(x, y) ≈ f(x, y) for points near (xo, yo). In other words, the graph z = f(x, y) looks like a plane if
we zoom in close to the point (xo, yo, f(xo, yo)). In fact, many authors simply define differentiability
in view of this concept:

A function is differentiable at ~p iff it has a tangent plane at ~p.

This is less than satisfactory if the text you’re reading nowhere defines the tangent plane. I won’t
name names. The boxed statement is true, but it is not a definition. Not here at least.

12I have an example if you ask
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In the case a function is differentiable but not continuously differentiable we have the situation that
there is a tangent plane, but it fails to well-approximate the graph near the point of tangency.

Continuous differentiability is needed for many of the calculations we perform in the remainder of
this course. I conclude this section with an example of how it may happen that fxy 6= fyx at a
point which is merely differentiable. On the other hand, Clairaut’s Theorem states that fxy = fyx
for continuously differentiable functions.

Example 4.4.21. .

Theorem 4.4.22. Clairaut’s Theorem:

If f : dom(f) ⊆ R 2 → R is a function where dom(f) contains an open disk D centered at
(a, b) and the function fxy and fyx are both continuous on D then

fxy(a, b) = fyx(a, b).
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The proof is found in most advanced calculus texts. Finally, I should mention that the concerns
and examples of this section readily generalize to functions from Rm to Rn.

4.4.4 properties of the derivative

Suppose ~F1 : U ⊆ Rn → Rm and ~F2 : U ⊆ Rn → Rm are differentiable at ~a ∈ U then ~F1 + ~F2 is
differentiable at ~a and d(~F1 + ~F2)a = (d~F1)a + (d~F2)a which means for the Jacobian matrices we
also have (~F1 + ~F2)

′(~a) = ~F ′1(~a) + ~F ′2(~a). Likewise, if c ∈ R then d(c ~F1)a = c(d~F1)a hence for the
Jacobian matrices we have (c ~F1)

′(~a) = c(~F ′1(~a). Nothing terribly surprising here. What is much
more fascinating is the following general version of the chain rule:

Proposition 4.4.23.

If ~F : U ⊆ Rn → Rp is differentiable at ~a and ~G : V ⊆ Rp → Rm is differentiable at
~F (~a) ∈ V then ~G ◦ ~F is differentiable at ~a and d(~G ◦ ~F )~a = (d~G)~F (~a)

◦ d~F~a. Moreover, in
Jacobian matrix notation,

(~G ◦ ~F ) ′(~a) = ~G ′(~F (~a))~F ′(~a).

In words, the Jacobian matrix of the composite of ~G with ~F is simply the matrix product of the Ja-
cobian matrices of ~G with the Jacobian matrix of ~F . Unfortunately, not all students really learned
matrix algebra in highschool so this statement lacks the power it should have in your mind. This
proposition builds the foundation for the multivariate version of u-substution. All the chain rules
in the next section are derivable from this general proposition. For this reason I offer no proofs in
the next section. The calculations in the next section all follow from the calculation below13:

Proof: ≈ Suppose ~F : dom(~F ) ⊆ Rn → Rp and ~G : dom(~G) ⊆ Rp → Rm. Let ~xo ∈ Rn for which
~F (~xo) = ~yo ∈ dom(~G) and suppose that ~F is differentiable at ~xo and ~G is differentiable at ~yo. We
seek to show that ~G ◦ ~F is differentiable at ~xo with Jacobian matrix ~G ′(~yo)~F

′(~xo). Observe that
the existence of ~G ′(~yo) ∈ R m×p and ~F ′(~xo) ∈ R p×n follow from the differentiability of ~G at ~yo
and ~F at ~xo. In particular, if ||~k|| ≈ 0 then

~G(~yo + ~k) ≈ ~G(~yo) + ~G ′(~yo)~k.

Likewise, if ||~h|| ≈ 0 then
~F (~xo + ~h) ≈ ~F (~xo) + ~F ′(~xo)~h.

Suppose ~h is given such that ||~h|| ≈ 0. It follows that ~F ′(~xo)~h ≈ 0. Let ~k = ~F ′(~xo)~h and note that

~G(~F (~xo + ~h) ≈ ~G(~F (~xo) + ~F ′(~xo)~h)︸ ︷︷ ︸
continuity of G at yo

= ~G(~yo + ~k) ≈ ~G(~yo) + ~G ′(~yo)~k

13this is a plausibility argument, not a formal proof, all the ≈ symbols are shorthands for a more detailed estimation
which is not given in these notes, however, you guessed it, can be found in a good advanced calculus text.
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Therefore, for ||~h|| ≈ 0,

~G(~F (~xo + ~h)) ≈ ~G(~F (~xo)) + ~G ′(~F (~xo))~F
′(~xo)~h.

Thus ~G(~F (~xo + ~h)) − ~G(~F (~xo)) − ~G ′(~F (~xo))~F
′(~xo)~h ≈ 0. In fact, if we worked out the careful

details we could show that

lim
~h→0

~G(~F (~xo + ~h))− ~G(~F (~xo))− ~G ′(~F (~xo))~F
′(~xo)~h

||~h||
= 0

and it follows that (~G ◦ ~F ) ′(~xo) = ~G ′(~F (~xo))~F
′(~xo). Technically, this is not a proof, but per-

haps it makes the rule a bit more plausible. The chain rule is primarily a consequence of matrix
multiplication when we look at it the right way. �.

Example 4.4.24. . 14
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Example 4.4.25. . 13
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4.5 chain rules

In this section we explain how the chain rule generalizes to functions of several variables. Before I
get to that, recall we already learned one new chain-rule for space curves:

d

dt

[
~r(u(t))

]
=
d~r

du

du

dt
.

For example, if ~r(t) = 〈t, t2, t3〉 and u(t) = sin t then

d

dt

[
~r(u(t))

]
= 〈1, 2u, 3u2〉 cos t = 〈cos t, 2 sin t cos t, 3 sin2 t cos t〉.

This chain rule was important to understand how the Frenet Serret formulas are reformulated for
non-unit-speed curves. It was the source of the speed factors ds/dt in those equations.

Next consider the composite of f : R 2 → R and ~r : R→ R 2 where ~r = 〈x, y〉. Here’s the rule:

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
= ∇f • d~r

dt

In this case the independent variable is t and the intermediate variables are x, y. All of the
expressions above are understood to be functions of t. A more pedantic statement of the same rule
is as follows:

d

dt
f(~r(t)) =

∂f

∂x
(~r(t))

dx

dt
+
∂f

∂y
(~r(t))

dy

dt
.

Example 4.5.1. Suppose f(x, y) = x2 − xy and x = et, y = t2 then

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
= (2x− y)et − x(2t) = (2et − t2)et − 2tet.

Now, some of you will doubtless note that we could just as well subsitute x = et and y = t2 at the
outset and just do ordinary differentiation on g(t) = (et)2− t2et. Will you obtain the same answer?
Yes. Is that the right method to count on generally? No. Otherwise, why would I teach you the
new rule?

Example 4.5.2. Suppose f : R 2 → R is differentiable and t 7→ ~r(t) = 〈x(t), y(t)〉 defines a smooth
path. What is the geometric relation between the tangent vector to the path and the gradient vector
field of f? Use the chain rule,

d

dt

[
f(~r(t))

]
=
∂f

∂x
(~r(t))

dx

dt
+
∂f

∂y
(~r(t))

dy

dt
= ∇f(~r(t)) •

〈
dx

dt
,
dy

dt

〉
= ∇f(~r(t)) •

d~r

dt
.

This doesn’t really tell us much of anything for an arbitrary function and path. However, if we
suppose the path parametrizes a level curve f(x, y) = k then we find something nice. To say ~r
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parametrizes f(x, y) = k is to insist f(~r(t)) = k for all t. Differentiate this equation and we again
use the chain rule on the l.h.s. whereas d

dt(k) = 0. Thus,

∇f(~r(t)) •
d~r

dt
= 0.

We find the gradient vector field is normal to the tangent vector field of the level curve. The chain
rule has given us the calculational tool to verify what we argued geometrically earlier in this chapter.

Notice we can’t just substitute in the formulas for x(t) and y(t) in the example above. Why?
Because we are not given them. The chain rule allows us to discover general relationships which
may not be obvious if we always just work at the level of the independent variable.

Example 4.5.3. . 7

Example 4.5.4. . 26

Example 4.5.5. . 27
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The chain rule below is a natural generalization of what we just discussed: if ~r = 〈x, y, z〉 and14

f = f(x, y, z) then

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
= ∇f • d~r

dt
.

In this case the independent variable is t and the intermediate variables are x, y, z. All of
the expressions above are understood to be functions of t. A more pedantic statement of the same
rule is as follows:

d

dt
f(~r(t)) =

∂f

∂x
(~r(t))

dx

dt
+
∂f

∂y
(~r(t))

dy

dt
+
∂f

∂z
(~r(t))

dz

dt
.

Example 4.5.6. Suppose ~r(t) = 〈cos t sin t, sin t sin t, cos t〉 and f(x, y, z) = x2 + y2 + z2. This
means x = cos t sin t, y = sin2 t and z = cos t. Calculate,

d

dt
f(~r(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt

= 2x(cos2 t− sin2 t) + 2y(2 sin t cos t) + 2z(− sin t)

= 2 cos t sin t(cos2 t− sin2 t) + 2 sin2 t(2 sin t cos t) + 2 cos t(− sin t)

= 2 cos t sin t(1− 2 sin2 t) + 2 sin2 t(2 sin t cos t) + 2 cos t(− sin t)

= 0.

Why is this? Simple. The path given by x = cos t sin t, y = sin2 t and z = cos t parametrizes a
curve which lies on the sphere x2 + y2 + z2 = 1. It follows that f(cos t sin t, sin2 t, cos t) = 1 hence
differentiation by t yields zero. Geometrically we find the gradient vector field ∇f = 〈2x, 2y, 2z〉 is
normal to the tangent vector field of the curve wherever they intersect.

Of course there are many other curves which reside in the level surface f(x, y, z) = 1. I just picked
one to illustrate that the gradient vectors are normal to the curves on the surface. We can argue
this in general.

Example 4.5.7. Suppose f : R 3 → R is differentiable and t 7→ ~r(t) = 〈x(t), y(t), z(t)〉 defines a
smooth path. Use the chain rule, omitting explicit point dependence on the partials,

d

dt

[
f(~r(t))

]
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
= ∇f(~r(t)) •

〈
dx

dt
,
dy

dt
,
dz

dt

〉
= ∇f(~r(t)) •

d~r

dt
.

If we suppose the path t 7→ ~r(t) parametrizes a curve which is on the level surface f(x, y, z) = k
then f(~r(t)) = k for all t. Differentiate this equation and we again use the chain rule on the l.h.s.
whereas d

dt(k) = 0. Thus,

∇f(~r(t)) •
d~r

dt
= 0.

We find the gradient vector field is normal to the tangent vector field of an arbitrary curve on the
surface. If the function f is continuously differentiable then it follows that the union of all such

14 this notation means that f : R 3 → R, it is a bit sloppy, but it is also popular and I suppose I should expose you
to it.
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tangent vectors forms the tangent space to the level surface. The gradient vector at the point of
tangency gives the normal to the tangent plane.

For example, a sphere of radius R centered at (a, b, c) has equation (x−a)2+(y−b)2+(z−c)2 = R2.
This sphere is naturally viewed as a level surface of F (x, y, z) = (x− a)2 + (y − b)2 + (z − c)2. We
calculate,

∇F (x, y, z) = 〈2(x− a), 2(y − b), 2(z − c)〉

The equation of the tangent plane at (xo, yo, zo) on this sphere is

2(xo − a)(x− xo) + 2(yo − b)(y − yo) + 2(zo − c)(z − zo) = 0.

In particular, if a = b = c = 0 then we have a tangent plane

2xo(x− xo) + 2yo(y − yo) + 2zo(z − zo) = 0.

For this case the vector pointing to (xo, yo, zo) and the normal vector 〈2xo, 2yo, 2zo〉 point along the
same line.

Example 4.5.8. . 25

Moving on to our next case, if ~r = 〈x1, x2, . . . , xn〉 and15 f = f(x1, x2, . . . , xn) then

df

dt
=

∂f

∂x1

dx1
dt

+
∂f

∂x2

dx2
dt

+ · · ·+ ∂f

∂xn

dxn
dt

= ∇f • d~r
dt
.

In this case the independent variable is t and the intermediate variables are x1, x2, . . . , xn.
All of the expressions above are understood to be functions of t. I’m not a big fan, but, another
trick to remember the chain-rules above is given by the mneumonic device below:

15 this notation means that f : Rn → R.
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Example 4.5.9. Suppose f(~x) = ~x • ~x where ~x ∈ Rn. Moreover, suppose ~r : R→ Rn is a path which
parametrizes the level set f(~x) = R2 (this is a higher-dimensional sphere). We have f(~r(t)) = R2

for all t. Differentiate to find

∇f(~r(t)) •
d~r

dt
= 0.

Once more we find the tangents to curves on the level set are orthogonal to the gradient vector field.
Don’t ask me to draw the picture here. The tangent space is an (n − 1)-dimensional hyperplane
embedded in Rn, the normal vector field ∇f always points in the one remaining dimension if there
are no critical points for f .

Another case16 is ~F = ~F (x1, x2, . . . , xn) composed with a path. In particular, if ~F = 〈F1, F2, . . . , Fm〉 :
Rn → Rm is composed with ~r = 〈x1, x2, . . . , xn〉 : R→ Rn then we have the chain rule

d~F

dt
=
∂ ~F

∂x1

dx1
dt

+
∂ ~F

∂x2

dx2
dt

+ · · ·+ ∂ ~F

∂xn

dxn
dt

=

〈
∇F1 •

d~r

dt
, ∇F2 •

d~r

dt
, . . . ,∇Fm •

d~r

dt

〉
.

Another nice way to think of this rule is as follows:

d

dt
〈F1, F2, . . . , Fm〉 =

〈
dF1

dt
,
dF2

dt
, . . . ,

dFm
dt

〉
=

〈
∂F1

∂x1

dx1
dt

+ · · ·+ ∂F1

∂xn

dxn
dt

, . . . ,
∂Fm
∂x1

dx1
dt

+ · · ·+ ∂Fm
∂xn

dxn
dt

〉

16somewhat rare
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Example 4.5.10. Suppose ~F (x, y, z) = 〈xy, y + z2〉 and suppose x = t, y = t2, z = t3. Calculate,

d~F

dt
=

〈
∂F1

∂x

dx

dt
+
∂F1

∂y

dy

dt
+
∂F1

∂z

dz

dt
,
∂F2

∂x

dx

dt
+
∂F2

∂y

dy

dt
+
∂F2

∂z

dz

dt

〉
=

〈
y
dx

dt
+ x∂y

dy

dt
+ 0

dz

dt
, 0

dx

dt
+
dy

dt
+ 2z

dz

dt

〉
=
〈
y + x(2t), 2t+ 2z(3t2)

〉
=
〈
3t2, 2t+ 6t5

〉
All of the examples up to this point have considered chain rules for functions of just one indpen-
dent variable which we have denoted by t for the sake of conceptual uniformity. We now consider
differentiation of composite functions of two or more independent variables.

Suppose f = f(x, y) and x = x(u, v) and y = y(u, v). This means f : R 2 → R and x : R 2 → R and
y : R 2 → R. We have two interesting partial derivatives to compute:

∂f

∂u
=
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u
&

∂f

∂v
=
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v
.

In this case the independent variables are u, v and the intermediate variables are x, y. All
of the expressions above are understood to be functions of u, v. To be a bit more pedantic we can
use ~r(u, v) = 〈x(u, v), y(u, v)〉 and write

∂

∂u

[
f(~r(u, v))

]
= ∇f(~r(u, v)) •

∂~r

∂u
&

∂

∂v

[
f(~r(u, v))

]
= ∇f(~r(u, v)) •

∂~r

∂v
.

Notation aside, these rules are very natural extensions of what we have already seen.

Example 4.5.11. Suppose z = exy and x = u2 + v2 and y = uv. Calculate,

∂z

∂u
=
∂z

∂x

∂x

∂u
+
∂z

∂y

∂y

∂u
= yexy(2u) + xexy(v) =

[
3u2v + v3

]
eu

3v+uv3 .

∂z

∂v
=
∂z

∂x

∂x

∂v
+
∂z

∂y

∂y

∂v
= yexy(2v) + xexy(u) =

[
3uv2 + u3

]
eu

3v+uv3 .

Once more, if we ignored the chain rule and instead directly substituted the expressions for u, v at
the outset then we will still obtain the same result. However, if we are faced with extremely ugly
formulas for x(u, v) or y(u, v) then this is a useful organizaing principle. Or we could encounter the
situtation that formulas for x(u, v) and y(u, v) are not given and the chain rule still helps uncover
general patterns.
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Example 4.5.12. Another application of the chain rule is coordinate change for the differentiation
operators. For example, suppose x = r cos θ, y = r sin θ. How do we convert a partial derivative
with respect to x for an equivalent differentiation in terms of the polar coordinates? Suppose f is
an arbitrary function on R 2, notice by the chain rule,

∂f

∂r
=
∂f

∂x

∂x

∂r
+
∂f

∂y

∂y

∂r
= cos θ

∂f

∂x
+ sin θ

∂f

∂y

∂f

∂θ
=
∂f

∂x

∂x

∂θ
+
∂f

∂y

∂y

∂θ
= −r sin θ

∂f

∂x
+ r cos θ

∂f

∂y
.

But, these relations hold for any function f hence we find the following operator equations:

∂

∂r
=

x√
x2 + y2

∂

∂x
+

y√
x2 + y2

∂

∂y

∂

∂θ
= −y ∂

∂x
+ x

∂

∂y

Algebra challenge: solve the operator equations above for ∂/∂x and ∂/∂y. Then compare your
answers to what we obtain from the chain rules below:

∂f

∂x
=
∂f

∂r

∂r

∂x
+
∂f

∂θ

∂θ

∂x
&

∂f

∂y
=
∂f

∂r

∂r

∂y
+
∂f

∂θ

∂θ

∂y

We need the formulas r =
√
x2 + y2 and θ = tan−1(y/x) + c where c is a constant that is either

zero for x > 0 or π for x < 0. ( ok, maybe constant is the wrong word, but it certainly differentiates
to zero at most points). Calculate that ∂r

∂x = x
r = cos θ and ∂r

∂y = y
r = sin θ. Also,

∂θ

∂x
=

∂

∂x

[
tan−1(y/x) + c

]
=

1

1 + y2/x2
· −y
x2

=
−y

x2 + y2
= −sin θ

r

∂θ

∂y
=

∂

∂y

[
tan−1(y/x) + c

]
=

1

1 + y2/x2
· 1

x
=

x

x2 + y2
=

cos θ

r
.

Now substitute these back into the chain rules,

∂f

∂x
=
∂f

∂r
cos θ − ∂f

∂θ

sin θ

r
&

∂f

∂y
=
∂f

∂r
sin θ +

∂f

∂θ

cos θ

r

We obtain,

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
&

∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
.

We may also be faced with the problem of changing coordinates for higher derivatives. The differen-
tiatial equation ∇2Φ = 0 is called Laplace’s equation. It is important to the theory of electrostatics
as well as fluid flow. In cartesian coordinates ∇ = x̂∂x + ŷ∂y and it follows that the Laplacian
operator ∇ •∇ = ∂2x + ∂2y . (we’ll explore this sort of differentiation more at the end of this course).
The example below builds off the results of the previous example, keep that in mind.
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Example 4.5.13. Problem: Write Laplace’s equation in polar coordinates.

∇2Φ =
∂2Φ

∂x2
+
∂2Φ

∂y2

=
∂

∂x

[
∂Φ

∂x

]
+

∂

∂y

[
∂Φ

∂y

]
=

[
cos θ

∂

∂r
− sin θ

r

∂

∂θ

][
cos θ

∂Φ

∂r
− sin θ

r

∂Φ

∂θ

]
+

[
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

][
sin θ

∂Φ

∂r
+

cos θ

r

∂Φ

∂θ

]
=

∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂θ2

I invite the reader to fill in the details missing in the last step.

Example 4.5.14. . 9
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Example 4.5.15. . 5

Example 4.5.16. . 23
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Example 4.5.17. . 24

Next, consider F = F (x, y, z) and ~r = ~r(u, v). In particular, we wish to differentiate the composite
of F : R 3 → R with ~r : R 2 → R 3. The chain rules in this case are as follows:

∂F

∂u
=
∂F

∂x

∂x

∂u
+
∂F

∂y

∂y

∂u
+
∂F

∂z

∂z

∂u
&

∂F

∂v
=
∂F

∂x

∂x

∂v
+
∂F

∂y

∂y

∂v
+
∂F

∂z

∂z

∂v
.

You can write these rules in terms of gradients and partial derivatives of vectors,

∂F

∂u
= ∇F (~r(u, v)) •

∂~r

∂u

∂F

∂v
= ∇F (~r(u, v)) •

∂~r

∂v
.

I explained in the preceding section that we can derive chain rules from the general derivative. For
example,
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Some people would rather use these silly tree diagrams to remember the chain rule:

Personally, I much prefer to calculate with understanding as opposed to inventing new and unec-
essary mnuemonics. To each his own, you just need to find the way that works for you. Context is
everything with chain rules.

Example 4.5.18. . 3
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Example 4.5.19. . 4
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Example 4.5.20. . 10

Example 4.5.21. . 2
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Example 4.5.22. . 6

Example 4.5.23. . 12
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Example 4.5.24. . 1

Example 4.5.25. . 11
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4.6 tangent spaces and the normal vector field

In this section we wish to analyze the tangent space for a smooth surface. We assume the surface
in consideration is smooth so that the calculations are not complicated by exceptional cases. In
particular, we wish to analyze a surface S in three particular views:

1. as a level surface the set S is the solution set of F (x, y, z) = 0

2. as a parametrized surface we see S as the image of ~r : D ⊆ R 2 → R 3

3. as a graph we see S as the solution set of z = f(x, y)

As we have discussed previously it is only sometimes possible to cover all of S as a graph. Moreover,
each view has it’s advantages. My goal in this section is to explain how to find the tangent space
and normal vector field for S in each of these views. We’ve already done a lot of calcation towards
these questions in the last section.

For your viewing enjoyment I have included a few figures of surfaces which have coordinate
curves in gray and little normal vectors in black. I have animations of these on the webpage,
perhaps it helps bring to life the fact the normals pick out a side of orientable surfaces.
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Our goal in this section is to find formulas for the little black arrows.

4.6.1 level surfaces and tangent space

In Example 4.5.7 we proved that curves in the solution set of F (x, y, z) = k have tangent vec-
tors which are perpendicular to ∇F . It follows that the normal vector for the tangent plane at
(xo, yo, zo) ∈ S is simply ∇F (xo, yo, zo). The tangent plane has equation:

∇F (xo, yo, zo) • 〈x− xo, y − yo, z − zo〉 = 0.

The normal vector field on S is given by the assignment

(x, y, z)→ ∇F (x, y, z)

for each (x, y, z) ∈ S.

Remark 4.6.1.

The choice of level function matters. If we multiply the equation by a negative quantity the
direction of the gradient flips over and hence the normal vector field flips to the other side
of the surface. As an example, F (x, y, z) = x2 + y2 + z2 = 1 has ∇F = 〈2x, 2y, 2z〉 whereas
G(x, y, z) = −x2 − y2 − z2 = −1 has ∇G = 〈−2x,−2y,−2z〉. We say F = 1 is the sphere
oriented outwards whereas G = −1 is the sphere oriented inwards.
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Example 4.6.2. .

4.6.2 parametrized surfaces and tangent space

Suppose a surface S can either be viewed as a level surface F (x, y, z) = k or as a parametrized
surface by the mapping ~r : D ⊆ R 2 → R 3. In particular, if we denote the parameters by u, v
and write ~r = 〈x, y, z〉 then these viewpoints are connected by the equation F (~r(u, v)) = k for all
u, v ∈ D. The chain rules in this case are as follows:

∂F

∂u
=
∂F

∂x

∂x

∂u
+
∂F

∂y

∂y

∂u
+
∂F

∂z

∂z

∂u
&

∂F

∂v
=
∂F

∂x

∂x

∂v
+
∂F

∂y

∂y

∂v
+
∂F

∂z

∂z

∂v
.

You can write these rules in terms of gradients and partial derivatives of vectors,

∂F

∂u
= ∇F (~r(u, v)) •

∂~r

∂u

∂F

∂v
= ∇F (~r(u, v)) •

∂~r

∂v
.

Differentiate F (~r(u, v)) = k with respect to u or v to obtain,

∂F

∂u
= ∇F (~r(u, v)) •

∂~r

∂u
= 0

∂F

∂v
= ∇F (~r(u, v)) •

∂~r

∂v
= 0.

The vectors ∂~r
∂u and ∂~r

∂v are perpendicular to ∇F (~r(u, v)). We envision all three of these vectors
attached at the point ~r(u, v) of S. The curves

~α(u) = ~r(u, vo) ~β(v) = ~r(uo, v)
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are the coordinate curves through ~r(uo, vo). The tangent vectors at ~r(uo, vo) to these curves are
given by

~α ′(uo) =
d

du

[
~r(u, vo)

]
uo

=
∂~r

∂u
(uo) & ~β ′(vo) =

d

dv

[
~r(uo, v)

]
vo

=
∂~r

∂v
(vo)

Therefore, the tangent vectors to the coordinate curves are perpendicular to the gradient vector
of the corresponding level curve. In three dimensional space it follows that the cross product of
~α ′(uo) with ~β ′(vo) must be colinear to ∇F (~r(uo, vo)). Therefore, we define

~N(u, v) =
∂~r

∂u
× ∂~r

∂v
.

The vector field ~r(u, v) → ~N(u, v) defines the normal vector field of ~r. If a surface S has a
non-vanishing normal vector field then it is said to be oriented. Clearly it is easier to calculate the
normal in the level surface formulation since gradients are way easier than cross products. However,
we will find that the parametric viewpoint is an essential part of the definition of the surface integral
for a vector field. The diagram below indicates how a particular vector in the normal vector field
is calculated in the parametric setting:

Remark 4.6.3.

The ordering of the parameters matters. If we swap the order of the parameters it flips
the normal vector field. Suppose S1 is oriented by ~r1(u, v) = 〈f(u, v), g(u, v), h(u, v)〉 and
~r2(v, u) = 〈f(u, v), g(u, v), h(u, v)〉. The normal vector field induced from ~r1 by our conven-
tions is ~N1 = ∂u~r1×∂v~r1 whereas the normal vector field induced from ~r2 is ~N2 = ∂v~r2×∂u~r2.
Since ~r1(u, v) = ~r2(v, u) it follows that ~N1 = − ~N2. My point? Beware the order.
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Example 4.6.4. .

Example 4.6.5. Suppose the plane F (x, y, z) = a(x−xo) + b(y− yo) + c(z− zo) = 0 contains non-
colinear vectors ~A and ~B. Note ∇F = 〈a, b, c〉, the normal derived from the level function matches
the natural normal suggested by the equation for the plane. Next, consider the parametrization
naturally induced from ~A, ~B and the base-point (xo, yo, zo),

~r(u, v) = 〈xo, yo, zo〉+ u ~A+ v ~B.

In this case calculation of the tangent vectors to the coordinate curves is easy:

∂~r

∂u
= ~A

∂~r

∂v
= ~B

Thus ~N(u, v) = ~A × ~B. The normal vector field to a plane is a constant vector field. Geometry
indicates that ~A× ~B = λ〈a, b, c〉 for some nonzero constant λ.
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Example 4.6.6. .

4.6.3 tangent plane to a graph

The graphical viewpoint is connected to the level-surface view and the parametric view by the
following: given that S is the solution set of z = f(x, y) we can

1. write S as the level surface F (x, y, z) = 0 for F (x, y, z) = z − f(x, y).

2. write S as a parametrized surface with parameters x, y and ~r(x, y) = 〈x, y, f(x, y)〉.

Notice there is some ambiguity in the normal vectors which are induced. If we chose −F = 0 then
that flips over the normal and if we swapped the order of the parameters x, y then that would also
flip the normal vector ~N(x, y). These ambiguities must be dealt with as we do calculations on
surfaces. Picking an orientation specifies a side to the surface. Equivalently, an oriented surface
is a set of points paired with a normal vector field on the surface.
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Remark 4.6.7.

Question: if S is oriented and we describe S1 by F (x, y, z) = 0 for F (x, y, z) = z− f(x, y)
then is the same oriented surface as the parametrized surface S2 with parameters x, y and
~r(x, y) = 〈x, y, f(x, y)〉?

Solution: to begin note that as point-sets it is clear that S1 = S2 so the question reduces
to the problem of ascertaining if the normal vector fields match-up. Calculate, from the
level-surface viewpoint the normal vector field at (x, y, z) on S1 is

~N(x, y, z) = ∇F = 〈−fx,−fy, 1〉

On the other hand, from the parametric viewpoint we calculate for (x, y) ∈ dom(f),

∂~r

∂x
= 〈1, 0, fx〉 &

∂~r

∂y
= 〈0, 1, fy〉

and the cross-product

~N(x, y) =
∂~r

∂x
× ∂~r

∂y

= ( x̂+ fx ẑ)× ( ŷ + fy ẑ)

= x̂× ŷ + fy x̂× ẑ + fx ẑ × ŷ

= ẑ − fy ŷ − fx x̂
= 〈−fx,−fy, 1〉.

Therefore, if we change viewpoints as advocated at the beginning of the subsection we will
maintain the natural orientation. This is the reason I wrote F (x, y, z) = z − f(x, y) as
opposed to G(x, y, z) = f(x, y)− z.

Example 4.6.8. .
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Example 4.6.9. .

Example 4.6.10. .
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4.7 partial differentiation with side conditions

Every chain rule in the preceding section follows as a subcase of the chain rule for the general
derivative. In this section the rigorous justification is given by the implicit or inverse function
theorems. I will not even state those here17. I discuss them in advanced calculus and those notes
are available if you’d like to read about the theoretical underpinning for the calculations in this
section. I will show how to formally calculate in this section. In other words, I will teach you
symbol pushing techniques. To begin, we define the total differential.

Definition 4.7.1.

If f = f(x1, x2, . . . , xn) then df = ∂f
∂x1

dx1 + ∂f
∂x2

dx2 + · · ·+ ∂f
∂xn

dxn.

Example 4.7.2. Suppose E = pv+ t2 then dE = vdp+ pdv+ 2tdt. In this example the dependent
variable is E whereas the independent variables are p, v and t.

Example 4.7.3. Problem: what are ∂F/∂x and ∂F/∂y if we know that F = F (x, y) and
dF = (x2 + y)dx− cos(xy)dy.
Solution: if F = F (x, y) then the total differential has the form dF = Fxdx + Fydy. We simply
compare the general form to the given dF = (x2 + y)dx− cos(xy)dy to obtain:

∂F

∂x
= x2 + y,

∂F

∂y
= − cos(xy).

Example 4.7.4. .

17I do give the easiest version of the implicit function theorem later in this section, but it does not really play a
computational role beyond the question of existence
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Example 4.7.5. Differentials are useful for error estimation.

Example 4.7.6. Here’s another error estimation calculation.
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Example 4.7.7. What? You want more error estimation? Here, take this.
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It is very likely I will do something different in lecture.

Example 4.7.8. Suppose w = xyz then dw = yzdx + xzdy + xydz. On the other hand, we can
solve for z = z(x, y, w)

z =
w

xy
⇒ dz = − w

x2y
dx− w

xy2
dy +

1

xy
dw. ?

If we solve dw = yzdx+ xzdy + xydz directly for dz we obtain:

dz = − z
x
dx− z

y
dy +

1

xy
dw ? ?.

Are ? and ?? consistent? Well, yes. Note w
x2y

= xyz
x2y

= z
x and w

xy2
= xyz

xy2
= z

y .

Which variables are independent/dependent in the example above? It depends. In this initial
portion of the example we treated x, y, z as independent whereas w was dependent. But, in the
last half we treated x, y, w as independent and z was the dependent variable. Consider this, if I
ask you what the value of ∂z

∂x is in the example above then this question is ambiguous!

∂z

∂x
= 0︸ ︷︷ ︸

z indpendent of x

verses
∂z

∂x
=
−z
x︸ ︷︷ ︸

z depends on x
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Obviously this sort of ambiguity is rather unpleasant. A natural solution to this trouble is simply
to write a bit more when variables are used in multiple contexts. In particular,

∂z

∂x

∣∣∣∣
y,z

= 0︸ ︷︷ ︸
means x,y,z independent

is different than
∂z

∂x

∣∣∣∣
y,w

=
−z
x︸ ︷︷ ︸

means x,y,w independent

.

The key concept is that all the other independent variables are held fixed as an indpendent variable
is partial differentiated. Holding y, z fixed as x varies means z does not change hence ∂z

∂x

∣∣
y,z

= 0.
On the other hand, if we hold y, w fixed as x varies then the change in z need not be trivial;
∂z
∂x

∣∣
y,w

= −z
x . Let me expand on how this notation interfaces with the total differential.

Definition 4.7.9.

If w, x, y, z are variables then

dw =
∂w

∂x

∣∣∣∣
y,z

dx+
∂w

∂y

∣∣∣∣
x,z

dy +
∂w

∂z

∣∣∣∣
x,y

dz.

Alternatively,

dx =
∂x

∂w

∣∣∣∣
y,z

dw +
∂x

∂y

∣∣∣∣
w,z

dy +
∂x

∂z

∣∣∣∣
w,y

dz.

The larger idea here is that we can identify partial derivatives from the coefficients in equations
of differentials. I’d say a differential equation but you might get the wrong idea... Incidentally,
there is a whole theory of solving differential equations by clever use of differentials, it’s called the
method of characteristics. I have books if you are interested.

Example 4.7.10. Suppose w = x+ y+ z and x+ y = wz then calculate ∂w
∂x

∣∣
y

and ∂w
∂x

∣∣
z
. Notice we

must choose dependent and independent variables to make sense of partial derivatives in question.

1. suppose w, z both depend on x, y. Calculate,

∂w

∂x

∣∣∣∣
y

=
∂

∂x

∣∣∣∣
y

(x+ y + z) =
∂x

∂x

∣∣∣∣
y

+
∂y

∂x

∣∣∣∣
y

+
∂z

∂x

∣∣∣∣
y

= 1 + 0 +
∂z

∂x

∣∣∣∣
y

?

To calculate further we need to eliminate w by substituting w = x + y + z into x + y = wz;
thus x+ y = (x+ y + z)z hence dx+ dy = (dx+ dy + dz)z + (x+ y + z)dz

(2z + x+ y)dz = (1− z)dx+ (1− z)dy ? ?

Therefore,

dz =
1− z

2z + x+ y
dx+

1− z
2z + x+ y

dy =
∂z

∂x

∣∣∣∣
y

dx+
∂z

∂y

∣∣∣∣
x

dy ⇒ ∂z

∂x

∣∣∣∣
y

=
1− z

2z + x+ y
.

Returning to ? we derive

∂w

∂x

∣∣∣∣
y

= 1 +
1− z

2z + x+ y
.
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2. suppose w, y both depend on x, z. Calculate,

∂w

∂x

∣∣∣∣
z

=
∂

∂x

∣∣∣∣
z

(x+ y + z) =
∂x

∂x

∣∣∣∣
z

+
∂y

∂x

∣∣∣∣
z

+
∂z

∂x

∣∣∣∣
z

= 1 +
∂y

∂x

∣∣∣∣
z

+ 0

To complete this calculation we need to eliminate w as before, using ??,

(1− z)dy = (1− z)dx− (2z + x+ y)dz ⇒ ∂y

∂x

∣∣∣∣
z

= 1.

Therefore,

∂w

∂x

∣∣∣∣
z

= 2.

I hope you can begin to see how the game is played. Basically the example above generalizes the
idea of implicit differentiation to several equations of many variables. This is actually a pretty
important type of calculation for engineering. The study of thermodynamics is full of variables
which are intermittently used as either dependent or independent variables. The so-called equation
of state can be given in terms of about a dozen distinct sets of state variables.

Example 4.7.11. The ideal gas law states that for a fixed number of particles n the pressure P ,
volume V and temperature T are related by PV = nRT where R is a constant. Calculate,

∂P

∂V

∣∣∣∣
T

=
∂

∂V

[
nRT

V

]∣∣∣∣
T

= −nRT
V 2

,

∂V

∂T

∣∣∣∣
P

=
∂

∂T

[
nRT

P

]∣∣∣∣
T

=
nR

P
,

∂T

∂P

∣∣∣∣
V

=
∂

∂P

[
PV

nR

]∣∣∣∣
T

=
V

nR
.

You might expect that ∂P
∂V

∣∣
T
∂V
∂T

∣∣
P
∂T
∂P

∣∣
V

= 1. Is it true?

∂P

∂V

∣∣∣∣
T

∂V

∂T

∣∣∣∣
P

∂T

∂P

∣∣∣∣
V

= −nRT
V 2
· nR
P
· V
nR

=
−nRT
PV

= −1.

This is an example where naive cancellation of partials fails.

The example above is merely a special case of a general result shown below.
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Example 4.7.12. You can repeat the example above for x, y, z constrained by F (x, y, z) = 0. The
differential of F is

dF = Fxdx+ Fydy + Fzdz

Solve for dx, dy or dz to derivatives of x = x(y, z), y = y(x, z) or z = z(x, y),

dx = −Fy
Fx
dy − Fz

Fx
dz ⇒ ∂x

∂y

∣∣∣∣
z

= −Fy
Fx

&
∂x

∂z

∣∣∣∣
y

= −Fz
Fx

dy = −Fx
Fy
dx− Fx

Fy
dz ⇒ ∂y

∂x

∣∣∣∣
z

= −Fx
Fy

&
∂y

∂z

∣∣∣∣
x

= −Fz
Fy

dz = −Fx
Fz
dx− Fy

Fz
dy ⇒ ∂z

∂x

∣∣∣∣
y

= −Fx
Fz

&
∂z

∂y

∣∣∣∣
x

= −Fy
Fz

Notice that the factors will cancel if we choose the right triple from the list above:

∂x

∂y

∣∣∣∣
z

∂y

∂z

∣∣∣∣
x

∂z

∂x

∣∣∣∣
y

= −Fy
Fx
· Fz
Fy
· Fx
Fz

= −1.

The identity above reliably holds if all the partial derivatives of F are nonzero. We need Fx 6=
0,Fy 6= 0 and Fz 6= 0. Incidentally, and not coincidentally, the implicit function theorem18 needs
precisely these three conditions to solve for x = x(y, z), y = y(x, z) and z = z(x, y) respective.

Example 4.7.13. Here’s a different take on the example as above.

18covered in advanced calculus
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Example 4.7.14. . 21

You might be curious above level curves or volumes given the interesting results above for the level
surface F (x, y, z) = 0. Consider the curve case first. Here we recover the implicit differentiation of
single-variable calculus.

Example 4.7.15. Suppose F (x, y) = 0 then dF = Fxdx+Fydy = 0 and it follows that dx = −Fy
Fx
dy

or dy = −Fx
Fy
dx. Hence, ∂x

∂y = −Fy
Fx

and ∂y
∂x = −Fx

Fy
. Therefore,

∂x

∂y

∂y

∂x
=
Fy
Fx
· Fx
Fy

= 1

for (x, y) such that Fx 6= 0 and Fy 6= 0. The condition Fx 6= 0 suggests we can solve for y = y(x)
whereas the condition Fy 6= 0 suggests we can solve for x = x(y).
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If you pause to think about the geometry of F (x, y) = 0 as it relates to ∇F = 〈Fx, Fy〉 you can see
why the conditions Fx 6= 0 and Fy 6= 0 are necessary.

There is no way to find y as single-valued function of x on a open set about the point where Fy = 0.
Likewise, when Fx = 0 this means that there may be no way to find x as a single-valued function
of y for a neighborhood centered at the point in question. If the point where Fx = 0 or Fy = 0 is
on the edge of an interval then there is still hope, but the implicit function theorem does not apply.
For example, y − x2 = 0 for x ≥ 0 can be solved for x as a function of y by x =

√
y. On the other

hand, we cannot solve y−x2 = 0 for x as a function of y in an open set centered about x = 0, each
y value must return two x-values and that is not a function. Ok, enough about this.

Example 4.7.16. .
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Example 4.7.17. . 22

The solution set of F (x, y, z, w) = 0 gives a volume embedded in four-dimensional space. In invite
the reader to demonstrate

∂x

∂y

∣∣∣∣
z,w

∂y

∂z

∣∣∣∣
x,w

∂z

∂w

∣∣∣∣
x,y

∂w

∂x

∣∣∣∣
y,z

= 1.

Again, this formula is only valid if all the partial derivatives of F are nontrivial at the point in
question. In the next example we see why this identity holds in thermodynamics:

Example 4.7.18. . 19
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Example 4.7.19. . 18

Example 4.7.20. . 20

Example 4.7.21. . 17
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Finally, for the unsatisfied reader I remind you once more that these calculations are justified by
the implicit function theorem of advanced calculus. Here is a brief discussion of the simplest version
of the theorem:

Theorem 4.7.22. sometimes a level curve can be locally represented as the graph of a function.

Suppose (xo, yo) is a point on the level curve F (x, y) = k hence F (xo, yo) = k. We say
the level curve F (x, y) = k is locally represented by a function y = f(x) at (xo, yo) iff
F (x, f(x)) = k for all x ∈ Bδ(xo) for some δ > 0. Claim: if

∂F

∂y
(xo, yo) =

(
d

dy
F (xo, y)

)∣∣∣∣
y=yo

6= 0

and the ∂F
∂y is continuous near (xo, yo) then F (x, y) = k is locally represented by some

function near (xo, yo).

The theorem above is called the implicit function theorem and its proof is nontrivial. Its
proper statement is given in Advanced Calculus (Math 332). I’ll just illustrate with the circle:
F (x, y) = x2 + y2 = R2 has ∂F

∂y = 2y which is continuous everywhere, however at y = 0 we have
∂F
∂y = 0 which means the implicit function theorem might fail. On the circle, y = 0 when x = ±R
which are precisely the points where we cannot write y = f(x) for just one function. For any other
point we may write either y =

√
R2 − x2 or y = −

√
R2 − x2 as a local solution of the level curve.
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4.8 gradients in curvelinear coordinates

In this section we derive formulas for the gradient in polar, cylindrical and spherical coordinates.
These formulas are important since many problems are more naturally phrased in polar, cylindrical
or spherical coordinates.

4.8.1 polar coordinates

Our goal is to convert ∇f = x̂∂f∂x+ ŷ ∂f∂y to polar coordinates. The unit-vectors for polar coordinates
are given by

r̂ = cos θ x̂+ sin θ ŷ

θ̂ = − sin θ x̂+ cos θ ŷ.
(4.1)

We need to solve the equations above for x̂, ŷ. I’ll use multiplication by inverse:

[
r̂

θ̂

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x̂
ŷ

]
⇒

[
x̂
ŷ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
r̂

θ̂

]
=

[
cos θ r̂ − sin θ θ̂

sin θ r̂ + cos θ θ̂

]

Therefore, x̂ = cos θ r̂ − sin θ θ̂ and ŷ = sin θ r̂ + cos θ θ̂. Recall that we worked out in the chain
rule section that ∂

∂x = cos θ ∂∂r −
sin θ
r

∂
∂θ and ∂

∂y = sin θ ∂∂r + cos θ
r

∂
∂θ . Let’s put these together,

∇f = x̂
∂f

∂x
+ ŷ

∂f

∂y

=
(
cos θ r̂ − sin θ θ̂

)[
cos θ

∂

∂r
− sin θ

r

∂

∂θ

]
f +

(
sin θ r̂ + cos θ θ̂

)[
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

]
f

=
(
cos2 θ + sin2 θ

)
r̂
∂f

∂r
+ θ̂

1

r

(
cos2 θ + sin2 θ

)∂f
∂θ

= r̂
∂f

∂r
+ θ̂

1

r

∂f

∂θ

Therefore, ∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
and ∇f = r̂

∂f

∂r
+ θ̂

1

r

∂f

∂θ
.

Example 4.8.1. Suppose f(r, θ) = r3 then ∇r3 = r̂ ∂r
3

∂r + θ̂ 1
r
∂r3

∂θ = 3r̂ r2.

The geometry of the function above is fairly clear in polar coordinates. If we did the same
calculation in cartesians then you’d face the trouble of sorting through the derivatives of f(x, y) =
(x2 + y2)3/2 paired with sorting out the radial pattern hidden in the x̂, ŷ notation.

Example 4.8.2. Suppose f(r, θ) = θ then ∇θ = r̂ ∂θ∂r + θ̂ 1
r
∂θ
∂θ = 1

r θ̂.
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4.8.2 cylindrical coordinates

There is not much to do here. We follow the same calculations as in the polar case with the slight
modication of adjoining a z coordinate. It’s not hard to see that we’ll find ∇f = x̂∂f∂x + ŷ ∂f∂y + ẑ ∂f∂z
converts to

∇f = r̂
∂f

∂r
+ θ̂

1

r

∂f

∂θ
+ ẑ

∂f

∂z
.

Example 4.8.3. Suppose f(r, θ, z) = rzθ then we calculate,

∇f = r̂
∂(rzθ)

∂r
+ θ̂

1

r

∂(rzθ)

∂θ
+ ẑ

∂(rzθ)

∂z
= zθ r̂ + zθ̂ + rθ ẑ.

4.8.3 spherical coordinates

We could derive the formula for ∇f in spherical coordinates in the same way as we did for polar
and cylindrical coordinates. However, I take a different approach to illustrate a few calculation
techniques. The basic observation is this: ∇f is a vector field and we can write it as a sum of the
spherical unit-vector fields at each point in space;

∇f = (∇f • ρ̂) ρ̂+ (∇f • φ̂) φ̂+ (∇f • θ̂) θ̂

Hence the problem reduces to converting ∇f • ρ̂, ∇f • φ̂ and ∇f • θ̂ to spherical coordinates. Recall
that unit vectors in the direction of increasing ρ, φ, θ by ρ̂, φ̂, θ̂ are given by:

ρ̂ = sin(φ) cos(θ) x̂+ sin(φ) sin(θ) ŷ + cos(φ) ẑ

φ̂ = − cos(φ) cos(θ) x̂− cos(φ) sin(θ) ŷ + sin(φ) ẑ

θ̂ = − sin(θ) x̂+ cos(θ) ŷ.

(4.2)

We calculate: (remember x = ρ cos θ sinφ, y = ρ sin θ sinφ and z = ρ cosφ in order to understand
the chain rule calculation below)

∇f • ρ̂ =

(
x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z

)
•

(
sin(φ) cos(θ) x̂+ sin(φ) sin(θ) ŷ + cos(φ) ẑ

)
= sin(φ) cos(θ)

∂f

∂x
+ sin(φ) sin(θ)

∂f

∂y
+ cos(φ)

∂f

∂z

=
∂x

∂ρ

∂f

∂x
+
∂y

∂ρ

∂f

∂y
+
∂z

∂ρ

∂f

∂z

=
∂f

∂ρ
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Continuing, calculate the φ-component of ∇f

∇f • φ̂ =

(
x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z

)
•

(
− cos(φ) cos(θ) x̂− cos(φ) sin(θ) ŷ + sin(φ) ẑ

)
= − cos(φ) cos(θ)

∂f

∂x
− cos(φ) sin(θ)

∂f

∂y
+ sin(φ)

∂f

∂z

=
1

ρ

∂x

∂φ

∂f

∂x
+

1

ρ

∂y

∂φ

∂f

∂y
+

1

ρ

∂z

∂φ

∂f

∂z

=
1

ρ

∂f

∂φ

One more component to go:

∇f • θ̂ =

(
x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z

)
•

(
− sin(θ) x̂+ cos(θ) ŷ

)
= − sin(θ)

∂f

∂x
+ cos(θ)

∂f

∂y

=
−ρ sin(φ) sin(θ)

ρ sin(φ)

∂f

∂x

−ρ sin(φ) cos(θ)

ρ sin(φ)

∂f

∂y

=
1

ρ sin(φ)

∂x

∂θ

∂f

∂x
+

1

ρ sin(φ)

∂x

∂θ

∂f

∂x
+

1

ρ sin(φ)

∂y

∂θ

∂f

∂y
+

1

ρ sin(φ)

∂z

∂θ

∂f

∂z

=
1

ρ sin(φ)

∂f

∂θ
.

Therefore, we find

∇f = ρ̂
∂f

∂ρ
+ φ̂

1

ρ

∂f

∂φ
+ θ̂

1

ρ sin(φ)

∂f

∂θ
.

Spherical coordinate formulas are important for studying applications with spherical symmetry.

Example 4.8.4. In spherical coordinates the potential due to a point charge is simply V (ρ, φ, θ) =
1
ρ . The theory of electrostatics says this generates an electric field ~E = −∇V . We find the field
easily using our formula for the gradient in sphericals,

~E = ∇V = ρ̂
∂V

∂ρ
+ φ̂

1

ρ

∂V

∂φ︸︷︷︸
zero

+θ̂
1

ρ sin(φ)

∂V

∂θ︸︷︷︸
zero

= − 1

ρ2
ρ̂.

More generally, the spherical gradient formula allows us to evaluate how a given function changes
in spherical coordinates.

Example 4.8.5. Suppose f(x, y, z) = y/x. To find how f changes in spherical coordinates we
convert to sphericals19; f(ρ, φ, θ) = tan θ. It is clear that f is constant in ρ and φ. In particular,

∇f = ρ̂
∂

∂ρ

[
tan θ

]
+ φ̂

1

ρ

∂

∂φ

[
tan θ

]
+ θ̂

1

ρ sin(φ)

∂

∂θ

[
tan θ

]
=

sec2(θ)

ρ sin(φ)
θ̂.

19this is a slight abuse of notation, the function is not really f with this modication. Instead, we should perhaps
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This means that tan θ increases at the sec2(θ)
ρ sin(φ) rate in the θ̂-direction.

Remark 4.8.6.

There are other slicker methods to derive the formulas in this section. My goal here is
not to be particularly clever. I merely wish to obtain these formulas for our future use
and hopefully to illustrate once more the structure of vector algebra and the chain rules of
multivariate calculus. If you’d like to know about alternate ways to derive these formulas I
have a source or two for further reading.

denote it f̃ where to be technical f̃(ρ, φ, θ) = f(ρ cos θ sinφ, ρ sin θ sinφ, ρ cosφ). The underlying motivation for this
abuse is the idea that f is really an object which exists w/o regard to the particulars of the coordinate system we
use, so it’s appropriate to use the same letter for both the cartesian and spherical. Well, perhaps, but they are not
the same actual function. This is similar to the problem of the sine function. sin(90) and sin(π/2) are usually both
taken to be 1 but this is an overloading of the symbol sin. The degree-based sine function and the radian-based sine
function are in fact different functions on R.
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