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preface

how to succeed in calculus

I do use the textbook, however, I follow these notes. You should use both. From past experience
I can tell you that the students who excelled in my course were those students who both studied
my notes and read the text. They also came to every class and paid attention. I do not follow the
linear order of the text, if this is a problem for you then you should take calculus I with another
professor. Why do I not follow text directly? Simply this, precalculus is a prerequisite for this
course and you ought to already know what the sine, cosine, exponential and natural log are from
the outset. As such I integrate their discussion throughout the course. I recommend the following
course of study:

1. submit yourself to learn, keep a positive attitude. This course is a lot of work. Yes, probably
more than 3 others for most people. Most people have a lot of work to do in getting up to
speed on real mathematical thinking. There is no substitute for time and effort. If you're
complaining in your mind about the workload etc... then you’re wasting your time.

2. read the assigned reading ( will have short quizzes to check you've read).
3. come to class, take notes, think.

4. attempt Problem Sets, you will likely find forming a study group is essential for success here.
I ask some very hard questions. The majority of the hwk grade comes from Problem Sets.

practical philosophy for this course
Let’s begin with several questions:

1. what is math?
2. how should we understand math?

3. how should we do math?

I’ll begin with 1, if you listen to the general public you’ll get the idea that math is about numbers.
For this reason people are often puzzled when they hear about people who are "mathematicians”.
Can you really make a living just from studying numbers? Well, yes. However, most practicing
mathematicians study more abstract aspects of mathematics. We’ll just scratch the surface of
modern math in the calculus sequence. At this time in history you could spend your whole life
studying nothing but math and you would still be missing large portions of mathematics. In a
typical math major you’'d take courses in: calculus I, II and III, differential equations, complex
variables, probability and statistics, discrete math, proofs and logic, linear algebra, abstract alge-
bra and real analysis. In addition, if you're a bit more ambitious you might like to study manifold
theory, measure theory, fiber bundles, Lie algebras, Lie groups, topos theory, point-set topology,
algebraic topology, homology, category theory, quivers, algebraic geometry, noncommuative ge-
ometry, Riemannian geometry, semi-groups, complex analysis, vertex operator algebras, tropical



geometry, set theory, modules, inverse problems, variational calculus, differential Galois theory,
Galois theory, number theory, combinatorics, partial differential equations, symmetry methods in
DEqns, tensor calculus, differential forms, vector bundles, gauge theory, poisson algebras, homo-
topy, Atiyah-Singer index theorem, nonstandard analysis, construction of the real numbers... If
you searched online you could add to my list. My point? This list is just a tiny subset of the
topics which mathematicians continue to actively study. Math is not done. Math is much more
than numbers. I'll not attempt a definition of math here, however the concept of definition is
probably the most crucial distinguishing feature of math from other fields of study. Mathemati-
cal definitions cut much more finely than other fields of study. To know math is to know definitions.

That brings us to item 2, my last sentence needs clarification. Knowledge and understanding are
not necessarily the same thing. Many people of knowledge of Christ, few people understand who
He is in their heart. Knowledge is necessary but it is not sufficient. How then should we understand
mathematics? What process is needed? There is no one answer to this question. Answers include:
analyzing historical story which led to the current definition, consistency with other mathematics,
seeing how the math is applied in the real world, working out examples of a general definition
in specific contexts, develop an algebraic or geometric intuition,... Generally, is it better to give
the definition then show examples which illustrate a concept, or is it better to give examples then
provide the general definition at the end of the story? To summarize, basically all these suggestions
boil down to spending time with the math.

Finally we get to the real point here. I suspect you think of math primarily as item 3. Nothing
wrong with that based on your experience thus far in math. I'd be surprised if you had a teacher
before who emphasized the "why” rather than the "how” of mathematics. This is perhaps the
primary distinguishing feature of university calculus: we aspire to calculate with maximal under-
standing. We ought not use a theorem unless we have an idea of how to prove it. This is our
goal. In all the courses I teach in mathematics I attempt to provide proofs for those theorems and
propositions which I claim to be true. Granted, there is not always enough time, but we should be
ready to give a defense for those truths which we hold dear.

Humility is required from the outset. Some things we cannot understand completely with the tools
which are currently at our disposal. Calculus is built with real numbers. I will not attempt to
construct real numbers from first principles. Instead, our starting point is to assume that real
numbers exist, replete with their standard properties. From those rules we will build the calculus.

format of my notes

These notes were prepared with IATEX. You'll notice a number of standard conventions in my notes:
1. definitions are in green.

2. remarks are in red.



. theorems, propositions, lemmas and corollaries are in blue.

. proofs start with a Proof: and are concluded with a [J.

. often figures in these notes were prepared with Graph, a simple and free math graphing

program.

Notation | Meaning of Notation

§ section

3 there exists

b there does not exist

w.r.t. with respect to

Lh.s left hand side

r.h.s. right hand side

rel the element x 1s inside the set B
A= B | AimpliesB

A <= B | A and B are equivalent statements
therefore

Y for all

= definition

~ approximately

eqa equation

soln solution

N natural numbers; 1,2 3, ...
Q rational numbers

R real numbers

C complex numbers

Z Integers

R? the Cartesian plane

Finally, please be warned these notes are a work in progress. I look forward to your input on how
they can be improved, corrected and supplemented. This is my third set of notes for calculus I. I
have given up on the Microsoft Word edition because it has a file size of over 100Mb and K TEXtakes
only about a tenth the space. Also, i TEXautomatically numbers sections, chapters and creates hy-
perlinks in the table of contents. If you read the pdf you ought to be able to navigate by clicking on
the links in the table of contents. I plan to add an index as well once these notes mature a bit more.



You are free to read whatever you wish about calculus, but keep in mind that this current version
of notes is closest to my expectations of argument and logic for this course. I have been sloppier in
previous offerings, I am refining the course this semester. In particular I intend to treat the so-called
ed-type arguments with much additional rigor. I also plan to include a more systematic discussion
of limits and the major existence theorems in this course. What this means for you is that as
you look over old tests you ought not make too much of them. To whom much is given much is
required, I will be giving much more detail this semester on topics which I have previously neglected.

James Cook, August 12, 2010.
version 3.0

Calculus II notes are now added. Although, only about 100pages. This means the remaining half
of the Math 132 notes remain in the 2009/2010-format. Also, be warned the section on asymptotics
needs work in the calculus I notes. The condition necessary for proper understanding is more subtle
than my current notes indicate. I haven’t had time to fix that yet.

James Cook, January 13, 2011.

No major changes since Calculus II edit, however, removed asymptotic section for time being. Hope
to add improved section later in Fall 2011 semester.

James Cook, August 18, 2011.
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Chapter 1

history and applications of calculus

1.1 geometry

The ancient Chinese, Greeks, Egyptians and Babylonians all had some understanding of numbers
and geometry. Apparently the pythagorean theorem a? + b?> = ¢?> was known to Babylonians as
early as 1700 B(ﬂ Pythagorus was one of the earliest Greek mathematicians (572-497 BC) and his
followers the pythagoreans were an interesting bunch. They elevated math to a form of mysticism.
Their creed was that numbers were the substance of all things. Calculations were tied to music to
make the mystic connection between numbers and reality and they used special geometric patterns
to aid arithmetic calculations. Plato(429-348 BC) and Aristotle(387-322 BC) advanced the cause
of axiomatic reasoning. For mathematics this probably was a good thing. For physics, not so
much. Aristotle’s flawed physical ideas were so philosophically appealing that we were unable to
escape them for over a milennia. Of course, all physical ideas are flawed at some level, Aristotle’s
physics did explain much, but the explanations were hardly what we could call mathematical. That
said, the axiomatic approach did inspire Euclid to make his book of elements at a level of rigor
which was valuable to many future generations of mathematicians. Geometry is the perhaps the
earliest example of an accurate mathematical model of reality. In fact, for about 2000 years no
one could convincingly imagine any other idea of geometry. The study of physics for things which
don’t move is called statics. The architecture of ancient societies speak to the fact that mathe-
matics were known to at least some in those societies. Probably much has been lost. The history
of mathematics is full of multiple discoveries of mathematical theorems, it is common for different
mathematicians to find the same theorems even though they never met, or perhaps even lived in
the same time.

see pg. 30 of Katz’ History of Mathematics second ed., page 45 has nice summary of different societies respective
mathematical achievements

13



14 CHAPTER 1. HISTORY AND APPLICATIONS OF CALCULUS

1.2 numbers

What about numbers? The ancients certainly knew about whole numbers and fractions. The
phythagoreans took it a step further and realized that there must be more than just numbers of
that type. They proved that the hypotenuse of a triangle had a length that need not be a fraction.
For example, if you consider a right triangle with side lengths 1 and 1 then the hypotenuse must
have length v/2. They actually proved that v/2 could not have the form p/q for a pair of whole
numbers p,q. One way to understand the development of numbers is to understand the questions
which prompted their discovery:

1. enumeration or counting leads us to natural numbers and zero.
2. accounting leads us to negative numbers since you can either make money or lose it.
3. fractions also come from commerce or manufacture; you take a pie and cut it into fractions.

4. analytic two-dimensional geometry leads us to irrational numbers; triangles can have irrational
side-lengths.

5. algebra leads us to complex numbers. The solution to the cubic equation necessitates complex
numbers even in the case that the solutions are real.

6. three dimensional geometry leads us to quaternions. Hamilton showed how to use quaternions
to describe motion in three dimensions. Later, Gibbs and others supplanted this formalism
with the notation of vectors which we still use to this day.

7. quantum mechanics for fields leads us to super numbers. Berezin invoked mathematics which
demanded the variables anticommute. Such variables can be thought of as taking values in
the super numbers.

There are dozens if not hundreds of other types of numbers. This list is merely reflects my interest
in physics. In almost every case when a new type of number was discovered it would be relegated
to a lesser status than those earlier known numbers. There was a time when mathematicians
would not count negative solutions because they weren’t ”real” solutions. Later, Kronecker and
his followers eschewed use of non-rational numbers. To them the worth of transcendental numbers
was in doubt. In my experience students rarely doubt the validity of real numbers. The decimal
expansion is quite convincing and we have machines which say it’s true so it must be, right? Those
same machines will sometimes closemindedly say that 22 + 1 = 0 has no solution. But, 22 +1 =0
does have solution. It’s just an imaginary solution. Gauss proved that imaginary numbers exist in
about 1800. Of course, mathematicians had used complex numbers in one way another for about
200 years before Gauss. This course is primarily focused on real numbers however I will spend
some time discussing complex numbers from time to time. Quaternions and supernumbers are less
likely to arise this semester.
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1.3 algebra and physics

The connection between physics and algebra is profound. It is this connection that allowed Galileo
and Newton to push past the ”common sense” of Aristotle. Galileo(1554-1642) studied Archimedes
and Aristotle, but he found the later to be illogical. His reaction to his doubt is what changed
things, rather than being content to make purely philosophical objections he took it a step further
and investigated through experiments to deduce what the correct rules were. For example, through
the study of balls rolling down inclines he was able to deduce the formula y = %th, the height
dropped is proportional to the square of the time, independent of weight. Galileo’s work helped
provide a back-drop for Newton and others who were able to explain how Galileo’s equations arose
from basic physics. Kepler(1571-1630) also used math to study astronomical data collected by
Tycho Brahe over several decades. Upon Brahe’s death Kepler tried to fit the data to show the
planets traveled in circles around the sun (the heliocentric circular model was proposed to Europe
by Nicolaus Copernicus(1473-1543)). However, the data forced Kepler to admit that the planets
actually travel in ellipse according to what we now call it Kepler’s Laws. In a nutshell, Kepler
observed the planets orbit in ellipses while sweeping out equal areas in equal times such that the
square of the semi-major axis was proportional to the cube of the period. Obviously, to understand
these statements you need to have the idea of Cartesian coordinates. Interestingly, Kepler actually
was not so happy about the data’s seeming departure from the supposed perfect symmetry of
circles. He spend a large amount of his later years trying to fit the solar system into his system
of platonic solids. Platonic solids are regular polyhedra which can be inscribed in a sphere: these
are associated to the four basic elementals of the ancient greeks: the cube of earth, fire of the
tetrahedron, air of the octahedron, water of the icosahedron and over them all the universe of
the dodecahedron. Kepler wanted to somehow use the platonic solids to model space. It didn’t
work. All of this laid the foundation for the discovery of calculus. I suppose there were two major
changes that were in motion at the time just before and including Newton. First, flat earth or
earth-centered cosmology was being more and more doubted as evidence mounted for Copernican
heliocentric models. The observations of Galileo of moons orbiting Jupiter made the possibility of
orbital motion undeniable. Second, the idea that math should be used to phrase physical ideals was
encouraged by the methodology of Galileo, Kepler and others. The physical question that would
lead Newton to calculus was prompted by all of these events.

1.4 discovery of calculus

The term ”calculus” apparently originates from the ancient Romans practice of using tiny pebbles
to calculate. A calculus was one such pebble. The greeks, chinese and probably others discovered
portions of calculus, but none of them possessed a notation which made the ideas accessible to
anyone except experts. In contrast, we ordinary mortals can understand calculus without making
it our life’s work (although, you may feel that way at certain points this semester). Archimedes(287-
212 BC) made arguments that very much mirror arguments we have only formalized in the 19-th
century. His argument to determine the value for 7 shows he had an idea much like we will formalize
with limits. Beyond limits calculus is largely motivated by two problems:
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1. what is the tangent line to a given shape?
2. what is the area of some shape?

Both of these will be solved carefully this semester by applying appropriate limiting processes. The
ancients had no formal method for limits, but they did have some intuitive grasp of limits. The
idea of dividing an area into smaller pieces to add together to find the net-area is hardly new to
Newton’s time. Solutions to various tangent problems also existed before calculus. Isaac Barrow
was Newton’s teacher before his great discoveries and Barrow did important work on the tangent
problem. In fact, Barrow had some understanding of the fundamental theorem of calculus. He
understood something about the connection between tangents and areas, however he did not ap-
preciate the importance enough to push the theory forward.

Sir Isaac Newton(1642-1727) was the first to see clearly the connection between these seemingly
disparate problems of areas, tangents and physics. In physics, Newton insisted his answers were
mathematically phrased. He took Galileo’s ideal to a whole new level. He was also unkind to those
who refused to follow this route, apparently Hooke said he solved some of the problems Newton
solved concerning gravitation. However, Hooke’s solution lacked mathematical clarity so Newton
rejected his ideas and went so far as to eliminate mention of Hooke in his Principia. Newton insisted
physical law must be mathematical.

Let me say just a bit more about what distinguished Newton’s historical period from that of
say Galileo(1554-1642). The representation of irrational numbers by decimal expansions was ap-
parently due to work by the French mathematician Viete (1540-1603), the Dutch mathematician
Stevin(1548-1620) and the Scottish mathematician John N apier(1550—1617)ﬂ Modern symbolism
for algebra was not known to the ancients as far as we know. The compact notation we use today
was arrived at through a progression of steps. See Katz’ text for details. In a nutshell our notation
is due to Viete(1540-1603), Descartes(1596-1650) and Fermat(1601-1665). Descartes’ master work
set forth a framework in which Newton was free to conduct concrete geometric experiments while
the number system put forth by Stevin gave a notation to think about numbers of arbitrarily small
magnitude. Basically, the mathematics needed to make calculus happen only arose in the 50 years
or so before Newton made his great advancesﬂ By the time Newton came of age the ideas of analytic
geometry and unending decimal expansions of numbers were taught in the university. In retrospect,
Descartes and Fermat were close to the discovery, but they were missing the fundamental theorem
of calculus. They understood parts of the puzzle, but Newton and Leibniz grasped the big picture.

Despite the great success of Newton’s version of calculus, it was not entirely rigorous. His argu-
ments involved the use of fluxions which were strange quantities which were not zero but were
really really small. How small you ask? Well, if you divided one by a fluxion then you’d obtain co.

Zpage 418 of Katz’ text

3a point made by Joseph L. McCauley in his historical section of Classical Mechanics. If you want to read a really
bitter history of what the church did wrong to science then this is not a bad source. The bias is glaring, I can respect
that.
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What were these fluxions and what is co? It was easy to set aside these worries because the list of
problems that Newton solved grew ever larger as his discoveries came to light in the 17-th century.
After postulating his laws of mechanics he was able to derive the formula found by Galileo. Then,
prompted by Edmund Halley, he proved Kepler’s Laws follow from his universal law of gravitation.
Anyway, we could go on about Newton for many pages. Even after all this success there were those
mathematicians who were unhappy because at the base of it all these fluxions seemed ad-hoc and
not so well-posed mathematically.

Gottfried Wilhelm Leibniz(1646-1716) independently discovered calculus after Newton but pub-
lished it before him. Leibniz also lacked formal rigor at the base of his theory, but his notation
was superior to Newton’s and for that reason we still use many notations first introduced by Leibniz.

If you’d like to see more about fluxions or early history of calculus there are many good books. Or,
you could just download the original works from the internet. Much is available for download at
this time. Beware historians, all too often they have some ulterior motive in their story telling. Of
course the history I give here is purely objectiveﬂ

1.5 a selection of mathematical stories

Mathematics has enjoyed an incredible expansion of thought since the time of Newton. I'll just
say a word or three about some of the more notable names. There are two sort of developments in
this list, First, there are mathematicians who see past the ad-hoc methods of earlier generations to
put in place a better explaination which has more logical consistency. Second, there are those who
push forward to solve or ask new problems which generalize the method.

1. The Bernoulli family solved or were involved in the solution of many of the most difficult
problems of Newton’s time. The main three you hear about are the brothers Jakob(1654-
1705) and Johann(1667-1748) and Daniel(1700-1782). The problem you often hear about is
the following: what shape will a chain hang if suspended between two points? DiVinci and
Galileo tried unsuccessfully to solve it. Galileo though hanging chain should take shape of
parabola, but was proven wrong by a Jesuit priest Ignatius Pardies(1636-1673). Apparently,
Jakob raised the problem again around 1690, but his brother Johann solved it. He had good
company, Leibniz and Christiaan Huygens(1629-1695) also solved the problem, apparently
Leibniz solved it first but gave notice in a popular journal that he would withhold his solu-
tion to give other mathematicians a chance to solve it as well. Daniel and the brothers Jakob
and Johann made significant contributions to differential equations and solve the problem of
motion through a medium with friction.

4ust joking, this history is a work in progress, I welcome corrections if there are mistakes concerning content
(grammatical mistakes are for your amusement).
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. Pierre-Simon de Laplace(1749-1827) in his Celestial Mechanics (english translation, the orig-

inal title in French since Laplace was very French) put forth nearly complete solutions for
the motion of planets. He founded a method called perturbation theory which would prove
necessary to correctly apply Newtonian mechanics to the solar system as a whole. Laplace
also was very proud to abandon God as an explanation for physics. It is sad that so many
people still accept the flawed logic of Laplace in this sense: God was not invented to ex-
plain things. More than that, why should there be one explanation for everything? Is it
not possible that God did something and physics explains how He did it? But, I believe in
God, so I guess that is why I differ with Laplace. Laplace also popularized one of the ear-
lier versions of the naturalist’s creation myth: he put forth the ”nebular hypothesis” which
basically says the solar system formed from a giant cloud of gas shrinking to form planets etc...

. Jean D’Alembert(1717-1783) was one of the first people to think of time as a fourth dimension

in 1754. He also found interesting solutions to a variety of physical problems.

. Joseph-Louis Lagrange(1736-1813) was a contemporary of Laplace, but in contrast did be-

lieve that God could and should have a place in explaining events in nature. He did agree
with D’Alembert. Lagrange’s work in physics combined the genius of Newton with the vari-
ational calculus pioneered by Euler to produce what is now known as Lagrangian mechanics.
Classical field theories are largely based on generalizations of Lagrange’s formalism. Lagrange
attempted to give a treatment of calculus free of fluxions in 1797. His fundamental assumption
was that all functions could be written as a power series. It’s interesting that this assumption
is still made in many contexts by modern authors as a method to get past difficulties. It
turns out not all functions are analytic, but honestly, not too many in my experience.

. William Rowan Hamilton(1805-1865) quaternions and physics.

. Leonhard Euler(1707-1783) was a prolific mathematician who spent the later years of his life

completely blind. However, his capacity to calculate without writing meant that blindness
was not so much of a hindrance to his work. His memory was apparently amazing, he com-
mitted to memory all the powers up to order 6 for the numbers from 1 to 100 just for the sake
of quizzing his grandchildren. His blindness is thought to stem from a period of over exertion
on some astronomical calculation. You can read more in the 1801 translation of FKuler’s text
on algebra. It’s free to download as a pdf. In it you will find solutions to an impressive
array of algebra problems. For example, he shows how to solve quadric equations. Euler
did many of the things we find in modern texts. For example, Euler introduced notation for
the functions sine and cosine and presented the calculus of these trigonometric functions in
1739. He introduced the word ”function” in a sloppy way, more or less he said the function
was the formula of the function, an abuse of terminology we still advocate for convenience.
He studied double integrals and coordinate change. He found the fundamental equations of
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10.

11.

12.

13.

14.

15.

variational calculus through some, in retrospect, questionable methods. Early in life he was
tutored by Johann Bernoulli who recognized his genius and later the Bernoulli’s helped him
secure a position in the newly opened Russian school in St. Petersburg. Catherin Gsell was
married Euler in 1733 and in all they had 13 children.

Hermann Gunther Grassmann(1809-1877) in 1844 discovered exterior algebra. He put forth
an operation which satisfied the weird relation AB = —BA. Ok, admittedly this has little to
do with calculus. On the other hand, it was probably the earliest example of super math.

. Jean Baptiste Joseph Fourier (1768-1830) introduces sums of sines and cosines to solve heat

diffusion problems in physics. These Fourier series helped bring new questions to analysis
that were only answered in the late 19-th century.

. Carl Friedrich Gauss(1777-1855) did everything. Complex variable foundations, algebra, num-

ber theory, physics, noneuclidean geometry, ...

Bernhard Bolzano(1781-1848) independently discovered foundational ideas about continuity
similar to Cauchy’s.

Karl Weierstrauss(1815-1897) very popular teacher. Pushed forward theory of convergence of
functions by introducing concept of uniform convergence.

Niels Henrik Abel(1802-1829) proved that quintic equations could not be solved by radicals.
In other words, there is no quintic formula in the same sense that we know a quadratic for-
mula. His proof involved the permutation groups studied by Cauchy and also Lagrange.

Evariste Galois(1811-1832) found methods which said which quintic equations allowed solu-
tions by radicals and which did not. Galois’ work was so deep that we still only typically
cover it in the second semester of abstract algebra.

Camille Jordan(1838-1922) wrote the first book on Galois theory. Did foundational work in
linear algebra and helped launch the imaginations of Klein and Lie. Developed a classification
of matrices which we now call the Jordan-form-decomposition.

Augustin-Louis Cauchy(1789-1857) permutation groups, introduced term ”determinant” and
wrote the foundational work on the topic in 1815. Also, found early example of eigenvalues
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and vectors for 2 x 2 system. In about 1820 showed Lagrange’s approach was based on an as-
sumption which was not reasonable for some functions. In 1823 introduced limits, continuity
and much of what we will study early in this course. In complex variables he proved useful
theorems about complex integration.

Arthur Cayley(1821-1895) foundations of group theory, theory of determinants. Beginning
work in linear algebra. In 1858, promoted notation for matrix in terms of single letter.

Adrien Marie Legendgre(1752-1833) wrote understandable treatment for the method of least
squares in 1805. In 1809 Gauss claimed to have invented it himself and have used it since
1795. Not surprisingly, Legendre was not happy about this. From what I read in Katz’ text
it’s not so easy to really pin down who first thought of least squares.

Kronecker(1823-1891) fundamental theorem of finite Abelian groups. Not a fan of Cantor’s
ideas about infinite sets.

George Green(1793-1841) found and published in 1828 what Russians classically called Os-
trogradsky’s theorem.

George Stokes(1819-1903) generalization of Green/Ostrogradsky theorem.

Mikhail Ostrogradsky(1801-1861) found and proved in 1826 what we usually call Green’s the-
orem.

James Clerk Maxwell(1831-1901) used quaternionic notation, unified electricity and mag-
netism by adding a correction term, one of the greatest physicists of all time.

Georg Bernhard Riemann(1826-1866) complex variables, analysis, integration and noneu-
clidean geometry.

Nikolai Ivanovich Lobachevsky(1792-1856) noneuclidean geometry.

Janos Bolyai(1802-1860) noneuclidean geometry.

James Joseph Sylvester(1814-1897) coined the term ”matrix”.
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27. Richard Dedekind(1831-1916) ideals for abstract algebra and construction of real numbers
through what we now call Dedekind cuts.

28. Georg Frobenius(1849-1917) gave general proof of the Cayley Hamilton theorem. In 1878
wrote the book on matrix math.

29. Heaviside(1850-1925) popularized the vector notation.

I should mention my use of the word ”discovered” begs a philosophical question: is mathematics
discovered or created? Plato and his followers would emphatically claim it is discovered. They
believed in the existence of mathematical theorems and objects in some sort of metaphysical reality.
When we prove a theorem we merely find aspects of that reality. On the other hand, other philoso-
phers of mathematics emphatically state that math is merely a human invention. The critics of the
platonic school believe there is no world of platonic forms, instead, math is what we make of it.
Noneuclidean geometry is often held up as an apt example of the invention of math. Bolyai, Gauss,
Lobachetsky and Riemann turned the tide against the most simplistic form of platonic thought.
Many thinkers found the uniqueness of Euclidean geometry as evidence for the existence of math
outside the physical realm. From another perspective, mathematicians discovered Euclidean ge-
ometry because there was no other geometry to discover. However, Euclidean geometry was not
unique or even necessary to model the world. Euclidean geometry had such an elevated status
in the minds of mathematicians that Gauss actually held back his work in the discovery for fear
of being critized by his small-minded peers. It didn’t help that famous philosopher Kant offered
?proofs” that only Euclidean geometry could be conceived in the mind of man.

Well, Kant was dead wrong. Riemann gave us the framework to create literally thousands of dif-
ferent geometries. I guess the nail in the coffin of the Euclidean-only crowd must have been when
Hilbert proved through careful arguments that consistency of Euclidean geometry was equivalent to
consistency of a certain noneuclidean geometry. That means both Euclidean geometry and noneu-
clidean geometry are reasonable or both are not. But, does this disprove Platonic philosophy of
math? Not really. The world of platonic ideals just got a little bigger. Personally, I think the
question of whether math is created or discovered is wrong. But, I'll leave it at that for here.

Remark 1.5.1.

I’'m not a math historian. But, I do like math history and I'm trying to learn more. This chapter is
in part just an exercise towards that end. I don’t expect you study this, or even read it necessarily.
Read it if you wish, ignore it if you want. I will likely talk about part of this the first day of class.
What follows from here is much more serious.

1.6 a short overview of calculus in basic physics

T’ll speak to what I know a little about.
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. Newtonian Mechanics is based on Newton’s Second Law which is stated in terms of a time derivative

of three functions. We use vector notation to say it succinctly as

P

dt net

where P is the momentum and ﬁmt is the force applied.

. Lagrangian Mechanics is the proper way of stating Newtonian mechanics. It centers its focus

on energy and conserved quantities. It is mathematically equivalent to Newtonian Mechanics for
some systems. The fundamental equations are called the Euler Lagrange equations they follow from
Hamilton’s principle of least action 65 =46 [ L dt =0,

dfoL] _ oL
dt| oy | oy’

Lagrangian mechanics allows you to derive equations of physics in all sorts of curvy geometries. Ge-
ometric constraints are easily implemented by Lagrange multipliers. In any event, the mathematics
here is integration, differentiation and to see the big picture variational calculus (I sometimes cover
variational calculus in the Advanced Calculus course Math 332)

. Electricity and Magnetism boils down to solving Maxwell’s equations subject to various boundary

conditions:

5_ i P 5 T O s_ OB
ViB=0, V-E=Z. VxBe=pd-peys  VxE=-50

Again, the mathematics here is calculus of several variables and vector notations. In other words, the
mathematics of electromagnetism is vector calculus.

. Special Relativity also uses vector calculus. However, linear algebra is really needed to properly

understand the general structure of Lorentz transformations. Mathematically this is actually not so
far removed from electromagnetism. In fact, electromagnetism as discovered by Maxwell around 1860
naturally included Einstein’s special relativity. In relativitic coordinate free differential form language
Maxwell’s equations are simply stated as

dF =0, dxF =xJ.

Newtonian mechanics is inconsistent with these equations thus Einstein’s theory was inevitable.

. General Relativity uses calculus on manifolds. A manifold is a curved surface which allows for

calculus in local coordinates. The geometry of the manifold encodes the influence of gravity and
conversely the presence of mass curves space and time.

. Quantum Mechanics based on Schrodinger’s equation which is a partial differential equation (much

like Maxwell’s equations) governing a complex wave function. Alternatively, quantum mechanics can
be formulated through the path integral formalism as championed by Richard Feynman.

. Quantum Field Theory is used to frame modern physics. The mathematics is not entirely under-

stood. However, Lie groups, Lie algebras, supermanifolds, jet-bundles, algebraic geometry are likely
to be part of the correct mathematical context. Physicists will say this is done, but mathematicians
do not in general agree. To understand quantum field theory one needs to master calculus, differential
equations and more generally develop an ability to conquer very long calculations.
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I speak of basic physics simply to illustrate how correct Galileo was when he said that mathemtatics was the
langauge of nature. In fact, all modern technical fields in one way or another have calculus-based models at
their core. This is why you are expected to take calculus in a proper university education.
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Chapter 2

foundations of mathematics

2.1 set theory

A set is a collection of objects called elements. We denote the sentence "z is an element of S” by the
short-hand symbolic sentence; "z € S”. The sentence " € S” can also be read "z is in S”. A common
notation to characterize the elements of a set is simply to list the elements: for example, S = {A, B,C}
means that S is a set which contains the objects A, B and C'. The ordering of the elements is not special for
a general set, this means S = {B, A,C} = {C, A, B} etc... Often it is difficult or impossible to list all the
elements is a set. In such a case we may be able to use roster notation to define a set.

S = {z | x has property P }.

For example, the open interval (1,00) = { | v € R, = > 1}. We may also use the equivalent notation
(1,00) = {z € R | 2 > 1}. The set with no elements is called the empty set and it is denoted by {} or 0.
We say that two sets S and T are equal when they have identical elements, this is what S = T is meant to
denote when S and T are sets.

Definition 2.1.1. subset

We say S is a subset of T and denote S C T if for each s € S we can show s € T

Notice that set-equality can be conveniently characterized by the concept of a subset. Think about it: S =T
means that S CT and T'C S.

Definition 2.1.2. union, intersection and difference of sets

Let S and T be sets,

SuT={z|zeSorzeT} SNT={z|zecSandzeT} S-T={seS|s¢T}

Set theory is a deep and interesting subject, however we will conclude our discussion here.

25
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2.2 numbers

Real numbers can be constructed from set theory and about a semester of mathematics. We will accept the
following as axiomsEl

Definition 2.2.1. real numbers

The set of real numbers is denoted R and is defined by the following axioms:
(A1) addition commutes; a + b =b+ a for all a,b € R.

A2) addition is associative; (a +b) +c=a+ (b+ ¢) for all a,b,c € R.

A3) zero is additive identity; a +0 =0+ a = a for all a € R.

A4) additive inverses; for each a € R there exists —a € R and a + (—a) = 0.

>

5

A6

(
(
(
(A5) multiplication commutes; ab = ba for all a,b € R.

(A6) multiplication is associative; (ab)c = a(be) for all a,b, ¢ € R.
(A7) one is multiplicative identity; al = a for all a € R.

(A8)

multiplicative inverses for nonzero elements;
for each a # 0 € R there exists 2 € R and al = 1.

(A9) distributive properties; a(b+ ¢) = ab + ac and (a + b)c = ac + be for all a,b,c € R.
(A10) totally ordered field; for a,b € R:

(i) antisymmetry; if a < b and b < a then a = b.

(ii) transitivity; if @ < b and b < ¢ then a < c.

(iii) totality; a <borb<a

(A11) least upper bound property: every nonempty subset of R that has an upper bound, has a
least upper bound. This makes the real numbers complete.

Modulo A1l and some math jargon this should all be old news. An upper bound for a set S C R is a
number M € R such that M > s for all s € S. Similarly a lower bound on S is a number m € R such
that m < s for all s € S. If a set S is bounded above and below then the set is said to be bounded. For
example, the open set (a,b) is bounded above by b and it is bounded below by a. In contrast, rays such as
(0,00) are not bounded above. Closed intervals contain their least upper bound and greatest lower bound.
The bounds for an open interval are outside the set.

'an axiom is a basic belief which cannot be further reduced in the conversation at hand. If you’d like to see a
construction of the real numbers from other math, see Ramanujan and Thomas’ Intermediate Analysis which has the
construction both from the so-called Dedekind cut technique and the Cauchy-class construction.
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Definition 2.2.2. standard subsets of real numbers

e natural numbers (positive integers); N = {1,2,3,...}.
e integers; Z ={...,—2,-1,0,1,2,...}. Note, Z~o = N.
e non-negative integers; Z>o = {0,1,2,...} = NU{0}.

e negative integers; Z.g = {—1,-2,-3,...} = —N.

e rational numbers; Q = {f}] | p,q € Z, q# 0}.

e irrational numbers; J = {x € R | « ¢ Q}.

e open interval from a to b; (a,b) = {z|a < x < b}.

half-open interval; (a,b] = {z | a < 2 < b}. (oposed interval)
e half-open interval; [a,b) = {z | a < x < b}. (clopen interval)

e closed interval; [a,b] = {x | a < z < b}.

The cartesian product of R and R gives us R?> =R x R = {(z,y) | 2,y € R}. In this context (z,y) is called
an ordered pair of real numbers. Notice that the notation (a,b) could refer to a point in R? or it could
refer to a open interval. These are very different objects yet we use the same notation for both. The point
(a,b) € R? whereas the interval (a,b) C R. Question: is (4,3) a point or an open interval? Why is there no
danger of ambiguity in this case?

The real numbers and rational numbers are examples of fields. A field is a set which satisfies axioms A1-A9.
In fact, both Q and R are ordered fields which means follow axioms A1-A10. However, the rational numbers
are not complete. To complete the rational numbers you have to throw in the irrational numbers which gives
the whole real number system. Beyond the real and rational fields we can consider the complex number
field.

Definition 2.2.3. complex numbers

C={a+ib|a,becRandi*= -1}

The complex numbers are not ordered, however they are algebraically complete this means we can factor
any polynomial into linear factors with complex numbers. In contrast, the real numbers only allow us to
factor a polynomial into linear factors together with irreducible quadratic factors. For example, 22 + 1
cannot be factored over R but 22 +1 = (z +i)(x —4). The proof that the complex numbers are algebraically
complete was provided by Gauss in the nineteenth century. We often prove it in the complex variables (Math
331) course here at LU. We will find many occasions to use complex numbers in calculus and differential
equations. Like it or not real problems often have complex solutions. Take the quadratic formula as a prime
example of this phenomenon. The concept of a variable is so fundamental it bears mention at this juncture
(I already used this concept in the definition of R if you think about it):

Definition 2.2.4. variable

A real variable z is a symbol which is allowed to assume any value in R. A complex variable z
is a symbol which is allowed to assume any value in C.
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Other types of variables are interesting but these two are the primary types we’ll be interested in for this
semester. In addition, usually these variables are not entirely free. Typically a variable is restricted by some
equality or inequality. Another ubigitous concept is the number lineﬂ
some of the standard intervals. We use solid bold dots to indicate the point is included in the set, whereas
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an open dot indicates that point is excluded.

A B

i e (AB)
A B

- ® e [AB)
A B

- & & - [A,B]

It is useful to catalogue the following properties of inequalities:

Theorem 2.2.5. properties of inequalities:

Let a,b,c,d € R,

. square of real number is non-negative; a® > 0,

. square zero only if number is zero; a? = 0 iff @ = 0,

. add or subtract from both sides at once; if a < b then a+c<b+cand a —c < b—c,

1
2
3
4.
5
6

add inequalities; a < b and ¢ < d implies a +c < b+ d,

. transitivity; a < b and b < ¢ implies a < ¢,

. if ab > 0 then a < b implies 1/a > 1/b.

The last statement ab > 0 is just a tricksy way of saying that a and b are either both positive or both
negative. This theorem can be proven from the axioms of the real numbers, but I will not offer those details
here. You should not be surprised to hear that a similar theorem also holds if we replace < with > or <

with >.

Definition 2.2.6. absolute value

The absolute value of a real number « is denoted |z| and is defined |z| = V22, Notice this formula
is equivalent to the case-wise formula:

—x ifx<0

T if >0
|z| =

This distance between a,b € R is denoted d(a,b) and it is defined by d = |[b — al.

2Rene’ Descartes popularized this concept in the early 17" century; the number line is the foundation of analytical
geometry. The fundamental idea in analytic geometry is that there is a 1-1 correspondence between lines and the

real numbers.

In the diagram below I picture
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We should recall that the square root function is by definition the positive root; v/z > 0. Therefore, we can
characterize a nonzero positive number by the equation x = |z| whereas a nonzero negative number x has
|x] = —a. It is useful to catalogue the following properties absolute values:

Theorem 2.2.7. properties of absolute value:

Let a,b,e € R with € > 0,
absolute value is non-negative; |a| > 0,

. absolute value is zero only if number is zero; |a| = 0 iff a = 0,

1.

2

3. absolute value of product is product of absolute values; |ab| = |a||b],

4. bounded absolute value same as double inequality; |a| < € & —e < a < ¢,
5

. triangle inequalities ;

(i) la+0| <lal + b (i) la—b] > |a| —[o] ~ (dii.) |la] — [b]] < |a —b|

Proof:

Item (1.) is immediately obvious from the definition |z| = V2.

To prove (2.) consider that if @ = 0 then clearly |0| = v/02 = 0. Conversely, Va2 = 0 implies a = 0.

To prove (3.) note that |ab] = 1/(ab)? = Va2b? = Va2Vb? = |a||b].

I leave (4.) for the reader to prove.

The proof of (5.) requires a bit more thought, I'll prove part (i.) and leave (ii.) and (iii.) for the reader.
Notice that |a + b|> = (a + b)?. Consider then

la 4+ b]? = (a +b)? = a® 4 2ab + b* = |a|* + 2ab + |b]?

To complete the proof of (4.) part (i.) we need to break into cases:

1. Ifa,b > 0 then |a| = a and |b] = b thus the equation above yields |a+b[? = |a|?*+2|a||b|+|b]* = (|a|+|b])?
hence |a + b|] = |a| + |b].

2. If both a,b < 0 then we have |a] = —a and |b] = —b thus 2ab = 2(—a)(—b) = 2|a||b| which gives us
that |a + b2 = (Ja| + |b])? which again yields |a + b] = |a| + |b].

3. If a > 0 and b < 0 then 2ab = —2a(—b) = —2|a||b| therefore |a + b|> = |a|? — 2|a||b| + |b|?>. Since
lal,|b] > 0 it is certainly true that adding 4|a||b] to the r.h.s. of the equality gives the following
inequality, |a+b[? = |a|? —2|a||b] + |b]? < |a|? +2|a|[b] + |b]? = (|a| + |b])%. Therefore, |a+b| < |a| + |b].

4. If a < 0 and b > 0 then by the argument above with a <> b shows |a + b| < |a| + |b].
5. If either @ = 0 or b = 0 then the (4.) is clearly true.

Thus |a + b| < |a| + |b] for all possible cases hence the proposition is trueﬂ O

3Note that in mathematics our standard for true and false is much stricter than other disciplines. When we ask
if something is true it is usually the case that we implicitly mean to ask ”is this true for all possible cases”. If we
wish to ask a question relative to a restricted set of cases then we are obligated to reduce the set of answers for the
question which is asked. This is often a source of confusion between professors and students. Typically I'll answer
the question which was literally asked whether or not that was the intended question.
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It is probably useful to study the geometric significance of the theorem on absolute values. Note that
|z| = |z — 0] = d(x,0) so the absolute value gives the distance to the origin. This makes (4.) easy to
understand: it simply says that if the distance of a to the origin is less than e then the point ¢ must reside
between —e and e.

Definition 2.2.8. neighborhoods

An open neighborhood centered at a with radius 6 > 0 is denoted Bjs(a) where
Bs(a) ={x € R | d(a,z) <6} = (a—J,a+9).
An deleted open neighborhood centered at a with radius § > 0 is denoted Bj(a), where

Bs(a)o ={z R |0<d(a,z) <0} = (a—0,a)U(a,a+9).

X € Bg,(a)

A
L )
| |
L

X € Ba(a)o

F
[ |
¥

The concept of a deleted neighborhood will be central to the study of limits. E|

4’'m using a B for neighborhood because it matches a notation I'll use later for studies of higher dimensional open
sets: generally, Bs(a) = {x € R" | ||z — a|| < 6} is an open-ball of radius ¢ in n-dimensional space. Also, be warned
that the concept of a neighborhood varies from text to text. Other texts merely insist that a neighborhood of a is a
set N such that there exists a 6 > 0 with Bs(a) C N. I don’t believe we’ll need such sophistication in this course.
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We would sometimes like to insist that a give set of real numbers has no holes. In other words, you can draw
the set as a connected line-segment or ray on the number line.

Definition 2.2.9. connected subsets of real numbers.

We say U C R is connected iff
U 6 {R’ (7(>O7 CL), (a7 (>O)7 (7003 a’]? [CL, OO)? [CL, b]7 ((L’ b]’ [CL, b)7 (CL, b)}

for some a,b € R where a < b.

The definition I gave above is rather clumsy, but I believe it should be readily understood by calculus
studentsﬂ Next, we sometimes need the concept of a boundary point. In a nut-shell a boundary point is a
point on the edge of a set.

Definition 2.2.10. boundary points.

We say p € U C R is a boundary point of U iff every open nbhd. centered at p intersects points in
R — U and U. In other words, boundary points of U are positioned so that they are close to points
both inside and outside U. We denote the boundary of U by oU.

Notice that a boundary point of U need not be in U; for example U = (0, 1] has U = {0,1} and 0 ¢ U. On
the other hand, it is possible for the whole set to be comprised of boundary points: ON = N. We can break
down any set of real numbers into two types of points:

1. boundary points
2. interior points

For example, [0,1) = {0,1} U (0,1). We have 9[0,1) = {0, 1} whereas int([0,1) = (0,1).

Definition 2.2.11. interior points.

Suppose U C R then we say p € U is an interior point of U if there exists ¢ > 0 such that
Nc(p) CU. The set of all interior points of U is denoted int(U).

Note int(N) = () whereas int(0,1) = (0,1). In contrast, ON = N and 9(0,1) = 0. Finally, we have all the
terminology necessary to carefully define an open set:

Definition 2.2.12. open sets, closed sets.

We say U C R is an open set iff each point in U is an interior point. Likewise, we say U is a closed

set iff U =U UQU.

A closed set contains all its boundary points whereas an open set contains only interior points.

SEquivalently, you could say U is connected iff there do not exist Uy, Us such that Uy NUz =@ and Uy U Uz = U.
A pair of sets like Uy, Us is called a separation of U.
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2.3 algebra

The fundamental rules of algebra were revealed in our definition of real numbers. Factoring follows from the
fact that if a,b € R and ab = 0 then a = 0 or b = 0. The factor theorem provides a simple test to check if a
factor appears in a particular polynomial.

Theorem 2.3.1. factor theorem

If p(z) is a polynomial and p(r) = 0 then there is another polynomial g(x) such that p(z) =
(x —r)q(x). The polynomials could have real or complex coefficients and the root r could either be
real or complex.

Actually, the theorem holds in a context which is more general than just R or C but we only need the result
claimed above. I will not provide a proof of this theorem here.

Example 2.3.2. Suppose f(x) = 233 +2%—1, is (x—1) a factor of f? Well, observe that f(1) =1+1—1=
1 # 0 hence (x — 1) is not a factor of f(x). In contrast, if g(x) = 233 + 2% — 2 then we could calculate
that g(1) = 14+ 1 —2 = 0 so the factor theorem tells us that we can write g(x) = (x — 1)h(zx) where
h(x) = 232 + -+ + 2. If you really want to you could use long division to calculate that:

g(:l?) _ (QZ _ 1) <1‘32 + 1331 + xSO + 1,29 +£E28 + 1‘27 + 1726 +£C25 + 1’24 + .1723
+ IL’22 + z21 + 5020 + 3319 + {1118 + l‘17 + :1716 + $15 + IL’14 + zlS

+m12+x11—|—x10—i—xg+m8+x7+x6+x5+x4+x3+x2+2x+2>

Theorem 2.3.3. fundamental theorem of algebra

If p(x) is a polynomial with real coefficients then it can be factored into a product of linear and
irreducible quadratic factors. Each irreducible quadratic factor can be split into a pair of linear
factors corresponding to a conjugate pair of complex zeros to the equation p(z) = 0.

Example 2.3.4.

pz)=at—1=(@*+1)(@*-1)= (@®+1) @+1)(@—1)=(@+i)(z—i)(z+1)(z—1)

irred. quad. linear complex linear factorization

Example 2.3.5.

pr) =2 +4r+13=(z+2)*+9= (z+2)* - (3i)> = (v +2— 3i)(z + 2+ 3i)

irred. quad difference of squares conjugate factors

Example 2.3.6.
p(x) = 2* + 423 + 327 = 2%(2® + 42 + 3) = 2%(z + 1) (= + 3)

There is more to say, but this will suffice for the moment.
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2.4 analytical geometry

The difference between analytic geometry and the formal geometry of Euclid is that analytic geometry is
based primarily on numbers and algebra whereas the method of Euclid involves mainly straight-edge and
compass constructions. Analytic geometry is far more useful. As a concrete example, it is impossible to
trisect an angle in general using constructive methods however, in analytic geometry trisecting an angle is
as easy as dividing by three and using your handy-dandy protractor. Of course the history and beauty of
FEuclidean geometry ought not be neglected, you'll see the beauty in our course on modern geometry here
at LU. Also, abstract algebra has much to say about the non-existence of certain constructions in Euclidean
geometry, take Math 422 to see about that.

The geometry of the plane is easily described by various operations on the set R? = RxR = {(z,y) | z,y € R}.
If p = (a,b) € R? then we say that the x-coordinate of p is a and the y-coordinate of p is b. Typically we
call the y direction the vertical and the z direction the horizontal. If we are given two points, say p = (a1, az)
and ¢ = (b1, ba) then the distance between them is given by the distance formula

d(p,q) = /(b1 — a1)? + (a1 — az)?

Notice the distance to the origin to a point p = (z,y) is given by d(p,0) = y/z2 + y2, you can appreciate
the similarity to the distance in the one-dimensional case where d(x,0) = |z| = V22. We can also calculate
the midpoint of p, ¢ € R? by simply calculating their average; m = %(p + ¢). We define addition of points in
the natural manner: if p = (p1,p2) and ¢ = (g1, ¢2) then p+ g = (p1 + ¢1,p2 + ¢2) and multiplying by % is
likewise defined to mean %(p +q) = ( %(pl +q1), %(pg + q2) )

midpoint of p and q

L W2 pra)

The angle between two rays or line segments is often of interest. The sine, cosine and tangent functions are
key tools in such analysis. A right triangle is one which has a right-angle at one corner (a right angle is
measured to be 90 degrees or 7/2 radians.) I have provided a quick reminder of how sine, cosine and tangent
are defined in for a right triangle in the diagram above. This concludes our short tour of analytic geometry.
We will find occasion to use these tools throughout this course.
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2.5 functions

The term function is about a third of a milennia old. It was first used by Leibniz in about 1700. More
recently the term function has gained a rigorous and precise meaning. To say f is a function from A to
B means that for each a € A the function f assigns a particular element b € B. We denote this by saying
that f(a) = b or we can equivalently denote a — f(a).

Definition 2.5.1. function

We say f is a function from A to B if f(a) € B for each a € A and the value f(a) is a single
value. We denote f : A — B in this case and we say that A = domain(f) and B = codomain(f).
Furthermore, we say that f is an B-valued function of A. If A = B then we may say that f is a
function on A. If A C R then f is said to be a function of a real variable. If B C R then f is
said to be a real-valued function. If B C C then f is said to be a complex-valued function.

Often it is convenient to put the subset notation together with the function notation: f: U CR — V CR

means that f: U — V and U C R and V C R. Additionally, it is a common abuse of terminology to refer

to the formula of the function as the function: for instance consider f : R — R with f(x) = 2%

1. 7the function is f 7
2. ”the function is 2 ”

usually there is no danger of confusion provided we all understand that the function actually is a rule which
maps points from one set to another.

Definition 2.5.2. implicit domain for function defined by formula

If only a formula f(x) is given then it is customary to choose domain(f) to be the largest set of
values for which the formula f(x) is well-defined.

Let f(z) = +/z, this function has implicit domain dom(f) = [0,00) since otherwise the formula would not
yield a real number. Naturally we can always choose a smaller domain by an additional statement; g(z) = /z
with dom(g) = [0, 1] has same formula as f but obviously the domain is smaller. One application that might
make you choose the domain [0, 1] would be if 2 was a probability.

Definition 2.5.3. function equality

We say two functions f and g are equal iff dom(f) = dom(g) and for all @ € dom(f) we have

f(@) = g(@).

If two functions disagree at even just one point then we say they are not equal. For example, f(z) = =
and g(z) = 2%/ are not the same function since they do not share the same domain, dom(f) = R whereas
dom(g) = R — {0} = (—00,0) U (0,00). If we define h : (—00,0) U (0,00) — R by h(z) = x then it is true
that g = h since g(v) = 2% /2 = x for each z # 0.
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Definition 2.5.4. graph and range of a function

Suppose f: U CR — V C R then
1. graph(f) = {(x,y) € R? | z € dom(f) and y = f(x)}
2. range(f) = f(U) ={y € R | Iz € dom(f) s.t. y = f(x)}.

Notice that the codomain and the range are not necessarily the same set. What we can say is that the range
is the smallest possible codomain for a given domain and formula. Furthermore, you should recall that the
graph of a function is severely limited in the possible shapes it can assume. The vertical line test states
that if you draw a vertical line through the graph then it may hit at most one point on the graph of a
function. We can also discuss graphs of equations. The graph of 22 4 32 = 1 is the unit-circle, clearly it fails
the vertical line test and so we can conclude it is not the graph of a single functiorﬁ Generally the graph of
an equation can be most anything you can think of. Consider,

(x—4)(y —3)(2® +y*> - 1)(2* + 32y + 49> —8) =0

has graph as follows:

e

~
|/
\/>

Clearly this fails the vertical line test}

Sometimes a function may be defined by a graph. A graph is simply a visual representation of a table of
values. If the point (a,b) is on the graph then that tells us that f(a) = b. This is good news since we may
not want to write the formula for certain functions, for example:

i

5 in fact it can be described as x = cos(t) and y = sin(t) for 0 < ¢ < 27 this is a parametrization of the circle.
Parametric curves provide a better geometric framework, we will use them at times.

"can you see how I made the equation work? If you understand my silly trick you can build a lot of pictures with
equations.
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Remark 2.5.5.

Finding the domain and range of a given function requires thinking. Tools you should already have
at your disposal are sign-charts, graphs of polynomials and rational functions without the help of a
graphing calculator. You should be able to solve the inequality x? + 5x + 6 > 0. You should also be
able to graph those basic transcendental functions such as sine, cosine and the exponential function.
Please understand the purpose of this chapter is to remind and reinforce. If you need more examples
then you should come to office hours or perhaps review your precalculus text. That said, I will give
a few examples which illustrate the main algebraic techniques for algebra and graphing in the next
section. If you need a review of long-division, sign-charts and so forth you could read my college
algebra notes. They’re easily downloaded from my website at your convenience.

Given two functions f and g we can create new functions by adding, subtracting, dividing or multiplying by
a constant.

Definition 2.5.6. new functions from old.

function | defining formula domain of new function
f+g | (f+9)(x) = f(x) +9(r) | dom(f) N dom(g)
f—g |(f—9g)(x) = f(z)—g() | dom(f) N dom(g)

fg (f9)(x) = f(z)g(x) dom(f) N dom(g)
fla (f/9)(x) = f(z)/g(x) dom(f) Ndom(g) N {z | g(x) # 0}
cf (cf)(z) = cf(x) dom(f)

These formulas go to show that functions are a lot like numbers, we can add, subtract, multiply and even
divide functions and the result will be a function. Functions are different than numbers of course, for
example, I'm not sure what the analogue for the following would be in terms of numbers

Definition 2.5.7. composite function

Suppose f : U — V and g : W — U then we define fog : W — V by (fog)(z) = f(g(x))
for each z € W. If no domains are explicitly given for f and g then it is customary to take

dom(fe-g) =dom(g) N{z | g(z) € dom(f)}

Here’s a silly picture to explain why we may need to exclude part of the domain of the inside function. The
flamingo might not be covered by the domain of the outside function.
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Consider g(x) = 22 and f(x) = v/x — 1. The domain of g is R however the domain of fog is necessarily
smaller. We need g(x) —1 > 0 for g(z) € dom(f). That is, 2> — 1 = (x — 1)(x + 1) > 0. This inequality has
solution & < —1 or x > 1 therefore, dom(f°g) = (—o0, —1] U [1,00). In this case, the natural domain of the

formula (f°g)(z) = Va2 — 1 is also (—oo, —1] U [1, 00).

Suppose g(z) = L and f(z) = 1. Calculate that (fog)(z) = f(1/z) = é = z. The domain suggested by
(fog)(x) = z is R, however that is incorrect. The true domain is R — {0}, the simplification + = = fails

to be correct when & = 0. Moral of story? Be careful when you simplify to keep track of cases that are
excluded from the algebraic steps you perform.

Definition 2.5.8. even or odd functions

1. f:UCR—Riseveniff f(—z) = f(z) for all —z,z € U,
2. f:UCR—=Risoddiff f(—z) =—f(x) for all —z,z € U,

Some functions are even, for example f(z) = 2 (see how it mirrors the y-axis). Other functions are odd,
for example g(7) = = (see how it reflects through the origin) . We can also have functions which are neither
even nor odd, for example h(r) = f(z) + g(x) = x + 22 (no simple symmetry evident) .

Perhaps you’ll be surprised to hear that any function defined on a domain which is symmetric about zero
(which means that if z € dom(f) then —z € dom(f) for each z € dom(f)) can be written as a sum of an
even function and an odd function. Don’t believe it? Consider:

f@) = 3(f(@) + f(-2)] + 3[f (@) — f(-2)]

even odd

you can verify that the terms are correctly labeled, the even part is an even function and the odd part is an
odd function. All I did was to add zero and use 1 = % + %
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2.6 graphing and inequalities

The logical justification for the techniques used in this section is provided later in this course when we
study continuity. It turns out that a theorem due to a 19-th century Jesuit priest named Bolzano justifies
carefully how a function may change signs from positive to negative. Long story short, if we are dealing with
a polynomial or a rational function then the sign changes can only occur at vertical asymptotes, holes in
the graph or simply a zero of the function. We call numbers where the function is either zero or undefined
algebraic critical numbers.

Definition 2.6.1. algebraic critical numbers.

Suppose f : dom(f) C R — R is a function then we say ¢ € dom(f) U d(dom(f)) is an algebraic
critical number iff either ¢ ¢ dom(f) or f(c) = 0.

I have added the qualifier ” algebraic” to distinguish this concept from a later technical meaning we ascribe
to the term critical pointEl

The guiding principle of this section is that a function can only change signs at algebraic critical numbers.
Therefore, if we draw a number line with the algebraic critical points labeled and draw little £’s to indicate
the sign of the function then we can roughly sketch the function and also quickly read solutions to inequalities.
That’s the big idea, let’s see how it is implemented.

Example 2.6.2. Suppose f(z) = 2% + x — 6. Find solution of x> + x — 6 > 0. Notice that we can factor
f(z) = (z+3)(x — 2) thus f(—3) =0 and f(2) = 0. Pick tests points to the left and right of each algebraic
critical number and evaluate the function. In this case, easy choices are

hence the following sign chart is derived:

.3 )
AidBEEEENEEEE NN L&

- | | - f(X)

We find 22 +x — 6 > 0 if v € (=00, —3] U [2,00). As an additional application of this sign chart, suppose
you were asked to find the domain of g(x) which is defined implicitly by the following formula:

1
W=

We would require x € dom(g) iff 6 —x —x% > 0. But, this is the same as stating x € dom(g) iff 2> +1—6 <0
hence, by the sign chart, dom(g) = (—3,2).

The other way to attack such problems is to tackle the nonlinear inequalities one case at a time until the
possibilities are exhausted. For some of you who are gifted in that vein of thought I do not discourage your
line of thinking. However, I believe the sign-chart will aid understanding for many. In particular, it helps
me sort things out when the expression is less than trivial. Notice that we don’t even have to graph the
function. The sign chart captures all the data we need for the solution of inequalities.

8critical numbers are algebraic critical numbers of the derivative function, but you're not allowed to know that
just yet... oops.
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Example 2.6.3. Solve the following inequality:

(22 + 3z) (2% + 42 + 5)
x? — 2z

<0.

We define f(xz) = w and factor the formula as much as possible,

@+ 3)((z+2)%+1)  (z+3)((z+2)2+1)
flz) = z(x — 2) B T —2

for x # 0. The quadratic factor is irreducible. I completed the square to make it explicitly clear that the
quadratic could not be factored EI We have three algebraic critical numbers: ¢ = —3,0,2. Again, pick test
points to the left and right of each algebraic critical number,

(—44+3)((=4+2)2+1)

& 4 4 | = = = =

R (69

f(—4)= Eyp) >0
F(=2) = (-2 +3)(_(2—3-|2- 2)241) -0
1) = (1+3)(§17+22)2+1) “0
1(3) = (3+3)(é3_+22)2+1) ~ 0
Hence,
-3 0 2
== = + + +
I

F

From which we deduce &30 +42+5) <0 forx € [3,0)U(0,2]. Notice we had to exclude x =0 since f(0)

; 2 —2x
is undefined.

+++I_—________I___=f(x)

F 3

9completing the square on a quadratic for numerically reasonable quadratics is almost always the fastest way
to find the roots in the complex case. Given (z 4+ 2)> + 1 = 0 I can read the solution is x = —2 + i without
further calculation. This is much faster than the quadratic formula. If the quadratic was factorable over R then
completing the square gives a minus instead of a plus. For example, 2% 4+ 6z +5 = (z + 3)? — 4. Then I can read
the solution is z = —3 + 2 = —1,—5. Obviously factoring is also a good way to solve in the case of real zeros;

224624+ 5= (x4 1)(z +5) = 0 implies © = —1, —5.
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2.7 local inverses

Notice that the concepts of even and odd are global concepts for a given function, they apply to the whole
domain of the function. Increasing and decreasing are local concepts. A function might increase on one
interval and decrease on another. For example, the function f(z) = m—g decreases on (0,00) and it increases
on (—00,0). Of course, a function could increase on all of R, for example: the cubic function g(z) = 2? is

increasing everywhere.

Definition 2.7.1. increasing or decreasing

1. f:U CR — Ris increasing on I C U iff for all a,b € T with a < b we can show f(a) < f(b),

2. f:U CR — R is strictly increasing on I C U iff for all a,b € I with a < b we can show
fla) < f(b),
3. f:UCR— Risdecreasing on I C U iff for all a,b € I with a < b we can show f(a) > f(b),

4. f:U CR — R is strictly decreasing on I C U iff for all a,b € I with a < b we can show

fla) > f(b),

If f is either increasing, strictly increasing, decreasing or strictly decreasing on I = dom(f) then
we say that f is respectively increasing, strictly increasing, decreasing or strictly decreasing. If f is
either increasing or decreasing then we say f is monotonic.

If f(x) = ¢ for all z € I then we say f is constant on I. In view of our definition a constant function is
both increasing and decreasing.

Remark 2.7.2.

’CAUTION: I disagree with the text on this definition. Please use my definition.

Notice that increasing and decreasing are most meaningful with respect to some connected interval I. Con-
nected means that the interval can be written as either an open, closed, clopen or oposed possibly infi-
nite interval. A connected interval on the number line is one for which we can sketch the whole interval
without ever lifting our pencil. A singleton is a set containing just one element, if you take a singleton
I ={a} C dom(f) then the we find that f is both increasing and decreasing on I (the conditions are trivially
satisfied).
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We will later learn how to use calculus to characterize if a function increases or decreases, for now all we can
do is use graphing or argument from explicit inequalities. One thing worth noticing is that if a function is
strictly increasing or decreasing on a connected interval then it will pass a horizontal line test. If you draw
a horizontal line then it will hit at most one point in the graph. The cubic function passes the horizontal
line test. The volcano graph does not have a connected domain, but if you just look at the right or left half
of f(x) = 1/2? then those parts separately pass the test. If a piece of a function can pass a horizontal line
test then we’d like to have some term to quantify that behavior. For our future reference I define precisely
what I mean by "part” of a function.

Definition 2.7.3. restriction and extension

Let f: U CR — R be a function the we say that g is the restriction of f to V C U iffg: V — R
and g(x) = f(z) for all x € V. We use the notation g = f|y to indicate that g is the restriction of
f to the set V. Generally, if g is a restriction of f then we say that f is an extension of g.

A restriction is just a part of a function. An extension makes a given function bigger. If the restriction of a
function to V passes the horizontal line test then that function is said to be injective on V.

Definition 2.7.4. injective or 1-1

Let f be a function, if U C dom(f) and for all a,b € U we find f(a) = f(b) implies a = b then
we say f is injective on U. If f is injective on its domain then we say f is injective. The terms
one-to-one or 1-1 are synonymous with injective.

When a function is injective on U we can prove that there is an inverse function for the restriction of the
function to U. If we define f~!(y) = x such that f(x) = y then this provides a single-valued inverse
function. Why? Suppose that f~1(y) = z1 and f~'(y) = 22 then by our definition f(z1) = f(x2) = y
hence by the 1-1 property x; = xo. This little argument goes to show that the inverse function below is
well-defined. We say a function is well-defined if it is single-valued and it has a rule which makes the output
unambiguous.

Definition 2.7.5. local inverse

We say that f has a local inverse f~! on U C dom(f) if it satisfies the following two equations,
FFHf@) =2

for each x € U, and
FUw =y

for each y € f(U) where f(U) ={y | 3z € U s.t. f(z) = y}. If the set U = dom(f) then we say
that f~! is a global inverse of f and the function f is said to be invertible.

It does seem geometrically obvious that if the restriction of a function passes the horizontal line test with
respect to a connected set then the same function ought to be either strictly decreasing or strictly increasing
on that set.
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Proposition 2.7.6. if f is strictly increasing or decreasing then f is 1-1.

‘ Suppose [ is either strictly increasing or strictly decreasing on U C R then f is injective on U. ‘

Proof: assume that f is strictly increasing on U then for all z,y € U such that © < y we have that
f(@) < f(y). Let a,b € U and suppose f(a) = f(b) ( we seek to show a = b since that proves that f is injec-
tive on U). If a = b then we're done. Suppose that @ < b then f(a) < f(b) which contradicts f(a) = f(b).
Likewise, if b < a then f(b) < f(a) which contradicts f(a) = f(b). Therefore, since otherwise we find a con-
tradiction, the only possibility is that a = b. Thus f is 1-1 on U. If f is decreasing then the proof is similar. [J

I would like to offer a converse to this proposition. If a function is 1 — 1 then it is either increasing or
x 0<x <1,
decreasing, however, there are counter-examples. For example, f(z) = ¢ —x 1 <z <2 is injective but is

T 2<x<3
neither increasing nor decreasing on [0, 3]. Here is a graph of this funny function:

/

T

If we wish to obtain a converse to the proposition then we will need to add additional hypothesis to avoid
the counter-examples like the one offered above.

Proposition 2.7.7. inverse functions also increase or decrease.

Suppose f : U — V is either strictly increasing or strictly decreasing on U C R then f=!:V — U
is likewise either strictly increasing or decreasing on V.

Proof: suppose f : U — V is strictly increasing with inverse f~! : V' — U. Suppose a,b € V such that
a < b and suppose f~!(a) = z and f~'(b) = y. There exist three possibilities:

1. f~Y(a) = f~1(b) which implies f(f~'(a)) = f(f~1(b)) thus a = b which contradicts our assumption
a <b.

2. f~Ya) > f~1(b) which implies f(f~'(a)) > f(f~1(b)) thus a > b which contradicts our assumption
a <b.

3. f~Ya) < f~(b) which implies f(f~1(a)) < f(f~1(b)) thus a < b which is without contradiction of
our assumption a < b.

Therefore, we find for all a,b € V, if a < b then f~'(a) < f~1(b) which proves f~! is strictly increasing.
The proof for the strictly decreasing case is similar. [
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We now examine a number of examples to elaborate on the concept of a local inverse. We should see the
propositions above made manifest in each case.

Example 2.7.8. Consider f(x) = x? with dom(f) = [-1,1]. We can argue algebraically that this function
is not one-one since f(a) = f(b) gives a®> = b> which implies a = +b (we needed a = b to obtain injectivity).
Or observe that it fails the horizontal line test:

\'|/

T Eg | 0 i

In contrast, the same formula with reduced domain [—1,0] or [0,1] will pass the horizontal line test,

y ¥y

| u
i i

1 a3 03 I 1 05 05 i

So then what is the formula for the inverse functions? We need,
@) fTHf@) = @) =2 (@) f(f @)= (@) =2

Notice that (ii.) gives f~1(x) = ++/x. Then substituting into (i.) yields: +vVx2 = x. But, recall that
Va2 = |x| so we can see that the two solutions are,

1. If x > 0 then Va2 = x so we choose the + solution; f~1(x) = \/z

2. If x <0 then Va2 = —x so we choose the - solution; f~1(z) = —\/x

We find that the inverse of f(z) = 2% on [0,1] is f~*(z) = \/z and the inverse of f(x) = x? on [—1,0] is
f~Yx) = —/x. Notice that the graphs of inverses (blue) are symmetric about the line ( ).
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Example 2.7.9. Let f(x) = cos(x). Recall the graph of the cosine function is:

AWAWAY
VAAVEAVARY

note that f cannot have a global inverse since it is not 1-1. However, if we reduce the domain to [0, 7] we
obtain a 1-1 function on that interval. I have graphed the local inverse in blue , and you can see that the
inverse is the reflection of the graph of cosine about the line y = x ( green ).

F'S

.‘.

It should be understood that when we speak of inverse cosine we actually refer the local inverse for cosine
on the interval [0, 7). The domain of inverse cosine is [—1,1] and the range is [0,x]. In principle one could
construct other inverses for cosine based on other intervals, the choice of is simply one of convention.

Example 2.7.10. Let f(x) = sin(z) with dom(f) = R . This is not 1-1 because sine oscillates just like
cosine. However, if we reduce the domain to [—m/2,7/2] we obtain a 1-1 function on that interval (red ), so
we can find an inverse function( blue ),

AT

-4t

pe

and you can see that the inverse is the reflection of the graph of sine about the line (green). The domain of
inverse sine is [—1,1] and the range is [—7/2,7/2]. In principle one could construct other inverses for sine
based on other intervals, the choice of [—7/2,7/2] is simply one of convention.
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Example 2.7.11. Let f(x) tan(z) with dom(f) =R —{nm+ /2 | n € Z}. This is not 1-1 because tangent
function oscillates just like sine and cosine. However, if we reduce the domain to |—m /2,7 /2] we obtain a
1-1 function on that interval (red ), so we can find an inverse function( blue ),

>

.V

v

15

and you can see that the inverse is the reflection of the graph of tangent about the line y = x (green ). The
domain of inverse tangent is (—oo,00) and the range is (—pi/2,7/2). I have added the vertical asymptotes
of tangent in cyan at x = 3 you can see that the inverse tangent has horizontal asymptotes at y = +3.
This illustrates a general pattern, vertical asymptotes for a function will morph into horizontal asymptotes
for the inverse function. We will make use of this example in later chapters. It helps us understand what
the limit of tan~'(z) is as x* — oo (its 7/2).

By now you should have noticed that we can construct the inverse function’s graph by reflection about the
line y = x (assuming that the function is 1-1 on the interval of interest ). T actually use this fact to construct
certain graphs.

fnix)

You can draw the graph y = e® (red) then draw the line y = x (green) and a bunch of perpendicular bisectors
(cyan ) then the graph of the inverse function y = In(z) follows. If we travel one unit from the red graph to
the green line along the cyan line then the corresponding point on the blue graph is one unit further past
the green line. That is the green line should intersect the cyan line at the midpoint between the intersection
points of the red and blue graphs. Now, I should warn you that this advice is given for graphs with horizontal
and vertical directions given the same scale. The cyan lines and the green line would take a different slant
if z-axis and y-axis used a different scale.
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2.8 elementary functions

The functions we discuss in this section are the most common functions used in calculus. We can model a
great variety of phenomena with these functions.

2.8.1 polynomial functions

We say p is a polynomial function of degree n if it has the form p(z) = a,2" + a,_12" 1 + - a12 + a,
where a,, # 0 and we call a,,a,_1,...,a, € R the coefficients of the polynomial. where and we call the
coefficients of the polynomial. The set of all polynomials in the variable  is denoted R[z]. To say p(z) € R[z]
is to say p(z) is a polynomial.

Formula Name Zeros Graph of p
plz) =c constant None, unless ¢ =0
function in which case there

are infinitely
many.

plz) =mz+b linear r=—1
function we assume m # 0.
p(z)=az*+bz+c quadratic ¢ = —bEYPdac
= i
function

if ¥ —dacz>0,a #0.

plz) = ard + b+ ex +d | cubie No simple formula.
function There is always one
zero. In some cases
there are 3 zeros.

2.8.2 power functions

We say f is a power function if f(z) = 2 where a is a fixed constant. There are a few special cases with
added labels,

1. a=n € N then f(z) = 2™ is a homogeneous polynomial.
1
2. a =1 with n € N then f(z) = zn = {/z is the n'"-root function.

3. a=—1then f(z) = 1 is the reciprocal function.
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2.8.3 rational functions

We say that f is a rational function if it has the form f(z) = p(z)/q(z) for a pair of polynomial functions
p and g. The zeros of f occur at the zeros of p if anywhere. However, it is possible that a zero of p is also a
zero of ¢ in which case the point could be a zero, a hole in the graph or a vertical asymptote. The domain
of a rational function is simply all the points where we avoid division by zero;

dom(i) = {z €R | q(z) # 0}.

The reciprocal function is a rational function. A typical example of a rational function is

z(x —1)(x —3)

f) = x(z? — bz +6)

this function has a hole in the graph at zero and three. It has a vertical asymptote at x = 2. It has a zero
at (1,0).

hole in graph
at(3,1)

hole in graph \¥
at(0,05)

vertical asymptote
x=2

Note, dom(f) = (—00,0) U (0,2) U (2,3) U (3,00) = R —{0,2,3}. Can you tell me the formula for a function
that agrees with f on R — {2} but has no holes? Its not a hard question (that function is often called the
reduced function in precalculus)

2.8.4 algebraic functions

We say that f is an algebraic function if it has a formula which is comprised of finitely many algebraic
operations. By algebraic we mean you may add, subtract, multiply, divide and raise to powers or take roots.
This category of functions includes all the preceding examples in 1,2 and 3. The domain for an algebraic
function is simply all the inputs which result in a real number output. That means we must avoid taking
the square root of a negative number and also division by zero. A silly example of an algebraic function is
f(x) = V/vx — /r. What is the difference between this function and g(z) = 07 Ill give you a clue, its just
the domain that is different.



48 CHAPTER 2. FOUNDATIONS OF MATHEMATICS

2.8.5 trigonometric functions

Trigonometric functions such as sine, cosine and tangent are based on the geometry of triangles. Recall
a right triangle is one for which an angle measures 90 degrees (or radians, or 100 grads, etc).

P
cos(f) = % = g—y‘;

sin(f) = 2 = ;:L;i

tan(f) = % = Z%";.’

A

In the picture above we assume that A, B,C > 0 and we have drawn the triangle so that 0 < 0 < 7/2, it is
an acute angle. You may recall that the side A is adjacent to the angle # while the side B is opposite the
angle 0. The longest side C' is called the hypotenuse.

Theorem 2.8.1. Pythagorean Theorem

Let A, B, C be the sides of a right triangle with hypotenuse C then A% + B? = C2.

We could go on and list many more facts that are known about triangles and the geometric ratios of sine,
cosine and tangent. Instead, I now introduce you to the functions which are defined for any value of 6.

notation | name Zeros graph
sin(z) sine r=0,4m £2m,... ~ N
Equivalently, '

r=nm,nez

cos(r) cosine | @ =43 £33 45 = ". ~

Equivalently,

r=nT+ 3. neEk

tan(z) tangent | Same as sine. The I F
green lines are the g |
vertical asymptotes 1/
which happen where | -~ 7 : dilkz
cosine 18 zero. S 3
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These functions extend the quadrant I geometric quantities to the other three quadrants. The definitions
also make polar coordinates work. The polar coordinates of P = (x,y) are r, 0 where

x = rcos(6)

y = rsin(0),

r

2:I2+y2,

tan(g) = 2

T

and we call r the radial coordinate and 6 is the standard angle. There are a number of conventions as
to what particular values the polar coordinates should be allowed to take. We usuallym insist that » > 0
but make no particular restriction on 6, this means that r = /22 + y? however 6 is not uniquely defined for
a given point because we can always add a integer multiple of 27 and still get the same point. The zy-plane
is divided into four quadrants. See below how the sine and cosine of the standard angle fmatches the signs

of sin(4) and cos(#).

¥ ¥
Guadeant 11 Guadrant |
x <=0 x =0 T o
g = =} i) =0 sin(@ >0
5 k cos{dy =} cos{B) =0
mW2=Bam 0=0<m2
x
sin(8) = (b sindB) = 1
uadrant 111 Quadrant IV cos(B) <0 cos(8) ; o
x <0 g =0 W= B<3mZ dmi =8« 2n
¥ =0 ¥ o= 1]
Or perhaps the following diagrams make more sense to you,
¥ ¥
Vel T, ' AT\
Vi | \ Fi h v =sin{x)
’; b ; ‘_.' '\‘_ Fl
e k ¥ = cosix) AL 0.6t \ g
iy /v 1 T A /
I / i \ /
L / X { 1) / X
nf I B2 2n i 2 hy T 20
L1 WU LY J | i |
il | I NI INT
1.5 \‘.\ E_if ;4’ X3 \'\\” !
‘-r_r' ._r'j "\\ ;’.
1 S 1 \\L _./

10admittedly , we do allow r < 0 when we discuss polar graphing later in the calculus sequence. There is some
ambiguity about what is meant by polar coordinates, I simply made a choice here.



50 CHAPTER 2. FOUNDATIONS OF MATHEMATICS

Since r = y/x2 4+ y? > 0 we see that the formulas x = rcos(f) and y = rsin(f) reproduce the correct signs
for the Cartesian coordinates  and y. My point here is simply that sine and cosine not only include basic
geometric ratios about triangles, they also encode the signs of the Cartesian coordinates in all four quadrants.

Remark 2.8.2.

Calculator Warning: Given the Cartesian coordinates of a point it is a common task to find
the standard angle 6 , we can solve tan(f) = £ for 6 by taking the inverse tangent to obtain
6 = tan~*(¥). Let me explain some of the dangers of this formula. Notice that tan(f) is positive in
quadrants I and IIT and is negative in quadrants IT and IV. If you try to solve for with a calculator it
cannot detect the difference between I and III or IT and IV. Lets see how the formula is ambiguous
if you are not careful,

i.) Suppose z = 1,y = 1 then tan(f) = 1/1 = 1. We can solve for § by taking the inverse tangent of
both sides, tan~!(tan(f)) = # = tan~1(1) now most scientific calculators will calculate the inverse
tangent to be tan=!(1) = /4. In this case the calculator has not misled, the standard angle is
0 =m/4.

ii.) Suppose x = —1,y = —1 then tan(f) = —1/ — 1 = 1. We can solve for 6 by taking the inverse
tangent of both sides, tan~!(tan()) = 6 = tan~!(1) and again the calculator will calculate the
inverse tangent to be tan~1(1) = 7/4. In this case the calculator might mislead us, the standard
angle is not ¢ = w/4. In fact the standard angle here lies in quadrant III and so we have to add =
to the angle the calculator found to get the correct angle of § = 57 /4.

2.8.6 reciprocal trigonometric functions

Reciprocal trigonometric functions: these appear quite often in difficult integrations. bf Secant, cosecant
and cotangent are defined to be one over the functions cosine, sine and tangent respectively. We use the
notation,

1 1 cos(0)

sec(f) = cos(6) cso(f) = sin(6) cot(6) = sin(6)

The graphs of these functions are given below:

Graph of y = sce(x) Graph of y = csc(x) Graph of y = cot(z)
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2.8.7 inverse trigonometric functions

Inverse trigonometric functions: we should be careful to distinguish the inverse trigonometric functions
from the reciprocal trig functions. The inverse trig functions are denoted by sin!, cos~! and tan—' which I
refer to as inverse sine, inverse cosine and inverse tangent respectively. They satisfy the equations,

sin(sin(x)) =& cos M(cos(y) =y tan”'(tan(z)) = 2|

forx e [-%,5],ye[0,7m] and z € (-3, F)

’sin(sinfl(x)) =z cos(cos ™ (y)) =y tan(tan™!(2)) = 2 ‘

For z € [-1,1], y € [-1,1] and z € R. Let us collect the graphs of the inverse trig functions for future
reference.

Graph of y = sin~!(z) Graph of y = cos™!(z) Graph of y = tan*(z)
- /-'
o e o
The green lines illustrate horizontal asymptotes of inverse tangent. The occur at y = 7/2 and y = —7/2.

These are all local inverses, this is the reason the ”inverse tangent” failed to provide us the correct angle
outside quadrants I and IV. The inverse tangent function is only truly the inverse of tangent in quadrants I
and IV for —7/2 < 0 < 7/2.

2.8.8 exponential functions

Exponential functions: let a > 0 then we say that is an exponential function if f(z) = a” for each
z € R. The fixed number a is called the base of the exponential function. Exponential functions are nonzero
everywhere. The graph below shows the three shapes an exponential function may take.

G N
fikiiksbT 7 ] h T Tl
=t t t t t t ==

I
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If a > 1 then f(z) = a” gives us exponential growth. If 0 < a < 1 then f(x) = a® gives us exponential decay.
The graph appears to get to zero, but this is not the case, exponential functions never reach zero. We see
that if a # 1,

’ dom(a”) = (—o0, 00) range(a”) = (0, 00) ‘

If f(x) = e” then this is the exponential function, more often than not we will work with this particular
base, the number e =~ 2.71... is called Eulers number in honor of the famous mathematician Euler. It is
a transcendental number which means it is defined by an equation which transcends simple algebra. We will
discuss e” is some depth in later chapters.

2.8.9 logarithmic functions

Logarithmic functions: these are the inverse functions of the exponential functions. Suppose a > 1, we
say that f(z) = log,(x) is a logarithmic function, and that the log base a of x (this is how we verbalize the
formula when were talking out the math) satisfies the following equations,

log,(a®) =z al°%a(®) = g

In this sense the logarithm and exponential functions cancel. An equivalent way to define the logarithm is
to say that if y = a” then log,(y) = . Notice that the input of the logarithm must be positive since al°8a ()
is positive; dom(log,(x)) = 0, c0).

| dom(log,(x)) = (0,00)  range(log,(x)) = (=00,00) |

The natural log function is denoted In(z), this the logarithmic function with base e = 2.71... that simply
means log, () = In(z). This particular logarithmic function is so important that it gets its own notation.
We will encounter it frequently in later chapters.

The graph of y = In(z) shows that the natural log has one zero at x = 1.

We can see that dom(In(x)) = (0, 00) and the range(In(z)) = (—o0, 00).
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The following table is full of things you should already know.

PROPERTIES OF EXPONENTIALS AND LOGARITHMS:

We assume that a,b > 0 in the equations that follow. I assume
that vou know these formulas and how to use them.
Technically there is no need for the equations in the bottom
two squares since they are the same as the top two once we set
a = ¢ .For your convenience I include them.

a*t¥ = a%aV. log,(zy) = log,(z) +log,(y)

(a*) = a™ log, () clog,(x)

a”t = L log,($) log,(7) —log,(y)

v o= & log,(a) = 1

ab)* = a*b* . log, (x)

(ab) log,(z) Ieils)

eV = %V, In(zy) In(z) + In(y)

(e*)Y = e In(z°) cln(x)

e = L ln(ﬁ) = In(z) — In(y)

efy = :—: In(e*) T

Jn{x) _ .. ]

¢ = log,(v) — B

93
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2.8.10 hyperbolic functions

Hyperbolic functions: these are little less common then some of the other functions we have discussed so

far, however they are useful both for certain questions of integration and also Einstein’s special relativity.
1. hyperbolic cosine: cosh(z) = 1(e” +¢e7%),

2. hyperbolic sine: sinh(z) = 3(e* — e™?),

3. hyperbolic tangent: tanh(z) = :2{112?)

At first glance it is a little strange to call these trigonometric, that label comes from an understanding
of cosine and sine in terms of imaginary exponentials e'* where ¢ = /—1. We will discuss imaginary
exponentials in due time. For now just observe that

cosh?(z) — sinh?(z) = 1.

This is clearly similar to the corresponding identity cos?(z) + sin?(xz) = 1. We also note that cosh(0) = 1
and sinh(0) = 0, these identities make hyperbolic cosine and sine a better choice of notation than e* and

e~ " for certain questions.

graph of y = cosh(z) oraph of y = sinh(z) graph of y = tanh(z)

The inverse hyperbolic functions are cosh™*(z),sinh ™ (z) and tanh™'(z). These satisfy the formulas,

cosh(cosh™!(z)) = z sinh(sinh ™ (y)) = y tanh(tanh™'(2)) = 2

for x € [1,00), y € R and z € (—1,1) and,

cosh ™ (cosh(z)) = z sinh ™! (sinh(y)) =y tanh ™' (tanh(z)) = z

for € [0,00), y € R and z € R. The hyperbolic sine and tangent functions are injective so they have a
global inverse. In contrast, the hyperbolic cosine is not injective and it is customary to let cosh™!(x) denote
the local inverse for hyperbolic cosine restricted to [0, c0).
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2.9 trigonometry

In this section I try to present most if not all the useful trigonometric identities for calculus. It is not too
hard to prove that the law of cosines follows from the Pythagorean Theorem: if A, B, C are the lengths of
the sides of a triangle with angle 6 opposite C' then

C? = A2 + B> — 2ABcosf

Note that when 6 = 7 we recover the usual identity C? = A? + B2. The law of cosines applies to arbitrary

triangles whereas the Pythagorean theorem only applies to right-triangles.

[C2 = A2+ B2 — 24Bcos )]

|4’ = B>+ C* — 2BC cosa

With a little trouble and ingenuity you can use the Law of cosines applied to certain pictures to deduce the
fundamental identities which I refer to as the adding angles identities

’cos(&—i—ﬁ) = cos@cosﬁ—sin@sinﬁ‘

’sin(@—i—ﬁ) = sin@cosﬁ—i—cos&sinﬂ‘

With these two identities we can derive most anything we want. The examples that follow are in no particular
order. I only use the adding angle identities and the definitions of tangent plus a little algebra.

Example 2.9.1.

sin(0 + B)
cos(f + B)
sin 6 cos 3 + cosfsin 3

cosf cos B — sinfsin 8

tan(6 + 5)

sin 6 cos B cos @ sin 3
__ cosfcosf3 + cos 0 cos 3 - t (9+6) o tane‘i‘tanﬁ
"~ cosfcos _ sinfsinf an - 1 ftanﬂtanﬂ
cos 0 cos B cos 6 cos 3

While we are on this example, note if 6 = 3 then we find

2tand

tan(20) = 5
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Example 2.9.2. The case § = 8 gives interesting formulas for sine and cosine,

cos(f 4 0) = cosfcosf —sinfsinf = ’ cos(20) = cos? § — sin® 6. ‘

Likewise,

sin(f 4+ 0) = sinf cosd + cosfsinf = ’ sin(20) = 2sin 6 cos 6. ‘

Since cos? @ + sin? @ = 1 thus sin® @ = 1 — cos? 0 it follows that cos(20) = 2cos® — 1 hence

1
cos? f = 3 (1 + cos(20)>

Similarly we can solve for sin® 6 to obtain,

sin? @ = % (1 - cos(29)>

Naturally, we can continue in this fashion to derive a great variety of trigonometric identities. There is some-

thing somewhat unsatisfying about this method. The calculation is indirect. Suppose we wanted to simplify

the expression sin(6) cos(40). How would we do it? To be fair, there are identities for sin(#) sin(53), cos(6) cos(3)
and sin(#) cos(5) so we could just look those up and go from there. But, is there a better way to remember all

these facts? Is there some elegant formula which encapsulates all these trigonometric identities and reduces

these problems to little more than algebra? In fact, yes. However, it comes at the price of understanding a

bit of basic complex variables. I would argue that this is a worthy price since most students need to learn

more about complex numbers anyway.

2.9.1 complex numbers

We usually denote a complex numbers a + ib for a,b € R. Alternatively, perhaps you've see the notation
a 4+ by—1. But, what is a complex numbe''f In terms of the axioms of real numbers we can prove
vV/—1 ¢ R. What then is this odd quantity of \/—1? Gauss gave an answer to this question in terms of
explicitly real mathematics. Gauss showed how to build complex numbers from real numbers. In particular,
he said complex numbers could be identified with pairs of real numbers that enjoy a certain rather beautiful
multiplication; C = R? where (a,b) * (¢,d) = (ac — bd, ad + bc). This is usually denoted

’(a—i—z’b)(c—l—id) = ac+iad+ibc—|—i2bd:ac—bd—l—i(ad—l—bc)‘

Where we denoted i = (0,1) hence i2 = (0,1) * (0,1) = —(1,0) and since (1,0) * (a,b) = (a,b) we denote
(1,0) = 1 hence the relation i = —1. In fact, that was the whole reason to define this funny multiplication
*, Gauss wanted a formal system to construct a number with the property 2 = —1. This number i was
termed ”imaginary” since it didn’t fall into the category of the real numbers, it has different properties. You
don’t need to remember a + ib = (a, b) for most questions and it is doubtful you’ll see it again until you take
the complex variables course. I include this somewhat nonstandard material here to drive home the point
that there is nothing at all imaginary about complex numbers.

"the answer I give here is just one of several popular constructions. We could also build complex numbers from
2 X 2 matrices or a rather abstract construction called a ”field extension”. This is the construction most accessible
at this point in your education
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Complex numbers can be added, subtracted, multiplied and divided just the same as real numbers. Complex
number have a real and imaginary part,

’Re(a7 b) = Re(a+1ib) =a Im(a,b) = Im(a+1ib) = b‘

In general if z € C then z = Re(z) + iIm(z). It should be emphasized that Re(z),Im(z) € R so there is
a natural correspondence between complex numbers and the Cartesian Plane R?; I use this correspondence
when I write (z,y) = x + iy. This plane is called the complex plane. The x-axis is called the real-axis, the
y-axis is called the imaginary-axis. Sometimes also called an Argand diagram,

T
E Q‘_[L“IT

% -

| ‘ ;‘ Fe

X+i'%r
L 4

Suppose z,y € R in what follows. Every complex number z = x + iy has a complex-conjugate z = = — iy.
In the complex plane the mapping z — z* is a reflection across the x-axis.

™

2=x-iy

Gauss proved that any polynomial with real-coefficients can be completely factored over the complex numbers
(his thesis work in about 1800). For example, we usually say that 22 + 1 is an irreducible quadratic. This is
true with respect to real numbers, however if we use complex numbers to assist with the factorization then
we can factor 22 + 1 = (x + i)(z — i). Generally, a quadratic polynomial az? + bz + ¢ with b* — dac < 0
is called irreducible because we cannot factor it over the real numbers. Notice that the quadratic formula
still makes sense in this case it just gives complex solutions. We can pulﬂ an i = v/—1 out of the square

root;
Vb2 — dac = /(—1)(4ac — b?) = V—1\/4ac — b? = ir/4ac — b2

where the quantity v/4ac — b2 € R since 4ac — b > 0. If az? + bx + ¢ = 0 then it can be shown,

. —b+Vb? —4dac  —b £ iv4ac — b

2a 2a

=a=xif

where I have defined Re(z) = a = —% and = 7%2;1’2. The quadratic polynomial factors as follows:

ax® + bz +c=alz — (a +if)][z — (a —ip)]

The roots a + i and o — i3 form a conjugate pair. Any polynomial with real coeflicients can be completely
factored with the help of complex numbers. When an irreducible quadratic appears in the factorization it
gives rise to a pair of linear factors whose roots form a conjugate pair.

Pgenerally /zw # /z/w for z,w € C. For example, 1 = (—1)(—1) but —1 = i = /=1/—1 # /(-1)(-1) =
V1 = 1. Laws of exponents are subtle in complex variables, rest assured the quadratic calculation is true for reasons
I’'m not going to expose here.
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2.9.2 the complex exponential*

It is likely you will motivate this formula in the complex variables course. Ultimately there are many ways
to understand the definition given below is the only definition which is natural, however most of those
explanations involve calculus. That said, we can understand the necessity of the definition from a purely
algebraic/geometric viewpoint: if the exponential function is to be defined on the complex plane then

1. any complex exponential function should restrict to the real exponential function on the real axis in

C.

2. rotations in the plane transform a point (z,y) to a new point (zcos@ — ysiné, xsinf + ycosd) and in
complex notation that factors to (z +iy)(cos @ +isin ). If we rotated again by angle 5 then the point
would be transformed to (x + iy)(cos(6 + 3) 4+ isin(f + 3)). This means the transformation is like the
real exponential function which also has e%e? = e®*?.

These two ingredients go together to suggest the following definition ( of course, definitions don’t have to be
motivated, 'm just trying to give you some idea of how you could derive such a rule).

Definition 2.9.3. complex exponential function.

We define exp : C — C by the following formula:

exp(z) = exp(Re(z) + iIm(z)) = efe®) [cos(Im(z)) + isin(Im(z))].

We can show that this definition yields the following desirable properties:
1. eft*(*) = Re(exp(2))
2. exp(iIm(z)) = cos(Im(z)) + isin(Im(z))
3. exp(0) =1

4. exp(z + w) = exp(z)exp(w)

1

5. exp(—z) = TIe)

6. exp(z) Z0 for all z € C

Here e*(*) denotes the plain-old real exponential function which we will investigate in depth as this course
progresses. Essentially, the second condition says that the complex exponential function must reproduce the
real exponential function when the input is a complex number with zero imaginary part. The proof of (1.) is
simple, just note cos(0) = 1 and sin(0) = 0 hence (2.) follows. Condition 2.) is called Euler’s identity. The
proof of (2.) is simple as well, just notice e” = 1 then observe that the definition reduces to Euler’s identity.
Again, the proof of (3.) is simple, € = €97 = €%(cos(0) + isin(0)) = 1.
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Let’s examine the proof of 4.). Suppose that z = z + iy and w = a + ib where z,y,a,b € R. Observe:

exp(z + w) = exp(x + iy + a + ib)
— exp(z +a+ily+b)

— (ota (cos(y +b) 4 isin(y + b)) defn. of complex exp.
=" (cosycosb — sinysinb + i[siny cos b + sin b cos y]) adding angles formulas
=e"t*(cosy + isiny) (cosb + isinb) algebra
=e%e? (cos y + isin y) (Cos b+ isin b) law of exponents
— et tiyatib defn. of complex exp.

= exp(z)exp(w).
To prove (5.) we can make use of (3.) and (4.),

1
exp(z)’

exp(z)erp(—z) = exp(z — z) = exp(0) =1 = exp(—z) =

Note that the equation above implies that exp(z) # 0 for all z € C so we have proof for (6.). I will use the
notation e = exp(z) from this point onward.

Remark 2.9.4.

I have emphasized the ways in which the complex exponential is similar to the real exponential, but
be warned there is much more to say. For example, exp(z + 2nmi) = exp(z) because the sine and
cosine functions are 2m-periodic. But, this means that the exponential is not 1-1 and consequently
one cannot solve the equation e* = e* uniquely. This introduces all sorts of ambiguities into the
study of complex equations. Given e* = e, you cannot conclude that z = w, however you can
conclude that there exists n € Z and z = w + 2nmi. In the complex variables course you’ll discuss
local inverses of the complex exponential function, instead of just one natural logarithm there are
infinitely many to use.

2.9.3 polar form of a complex number*

We argued that sine and cosine are defined in Quadrants ILIII and IV in order to extend right triangle
geometry from Quadrant I in the natural way. In other words, sine and cosine are defined to force the polar
coordinate formulas to be valid)

x =rcost y=rsinf

To make connection with complex numbers unambiguously let’s suppose we have r = y/x2 + y2 and 0 <
0 < 27. Consider a complex number z = x + iy, convert it to polar coordinates by substituting the polar
coordinate transformations above:

z=x+iy=rcosf+irsind = r(cosf + isinf) = re'.

3my viewpoint, it doesn’t have to be yours, there are lots of ways to think about sine and cosine
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Definition 2.9.5. polar form of complex number.

Suppose the Cartesian form of a complex number z is given z = x + iy then the polar form of the
complex number is z = rexp(if) where r = y/2:2 + y2 and 6 is the standard angle of (z,y) measured
counterclockwise from the positive real axis.

Example 2.9.6. Let z = 2 + 2i then r = /A + 4 = /8 whereas tan = I = % =1 hence 0 = 7. The polar
form is z = /8 e:rp( i )

Example 2.9.7. Let z = 2 + 2i and multiply by exp(if8). We found the polar form of z in the last example
= \/gexp( i% )
2w =138 exp( i )exp(iﬁ) =8 ea:p[ (5 +08) ]

Multiplication of a complex number z by exp(if3) rotates z by an angle of B in the counterclockwise direction.

21 = z,exp(iff) = 2exp(] + B)

In electrical engineering complex numbers are used to represent the impedance of some circuit. Inductance
and capacitance are give a complex resistance which depends on the frequency of the current present in the
circuit. This phasor method allows you to solve alternating current problems as if they were direct current.
Beware, j = v/—1 in their formalism because i is used for current. If I was a ECE major then I would make
it a point to take linear algebra and complex variables and differential equations as soon as possible. It
would help you to see past the math and focus on the engineerinﬁ

1of course, given all that you might as well add a math major so you have more options later in life.
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2.9.4 the algebra of sine and

Euler’s identity is beautiful on its own, b

to type up these notes. Simply add and subtract e’ = cos@ + isinf and e

61

cosine®

ut the following formulas are the most of the reason I'm bothering
—10 = cosf — isinf to obtain,

1 .
cosf = 3 (eZ

4 e_’9> sinf = — (ew - e_“g)
21

Example 2.9.8. Suppose you want to derive a nice formula for the square of cosine. Just plug in the boxed
formula and use the laws of exponents we proved for the complex exponential:

cos? ) =

N = N = H>\>—‘ »P\

)]

1(9 10+267,0 i6+6i06w)

( 246 +2+€—219>
4= 2 2 (621'9 + e—ZiG)

5 cos 20

1
3 (1 + cos 29).

Example 2.9.9. Suppose you want to derive a nice formula for the square of sine. Just plug in the bozxed
formula and use the laws of exponents we proved for the complex exponential:

sin? 0 =

[\:)M—lm\»—t DO |

2
1 . .
|:2Z <610 o 6—19):|
- (610610 . 26196710 + 61967,9>
4
—1 . .
T <6219 —24 e210>
1 . .
§ (6219 4 6—21,9)

cos 20

(1 — cos 20)

w\»—ﬂ N =

The identities above you should have memorized anyway, but I don’t have to memorize them since I can
derive them in a pinch. In contrast, the next example is not one for which I could typically quote the answer

off the top of my head:
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Example 2.9.10. Same method again. Covert given functions to imaginary exponentials and do algebra
until you see sines and cosines again. Simple as that.

1/, N\ 1 ) )
cos(z) sin(4z) = 3 (em _ ew:) = (e4m _ e47,x>
i

1 . o . e
== 657,:6 —e 3ix 63295 +e S5ix
43

1 ; . 1 . _
- |:2Z (eEnm _ e—51z> + % <631z _ e—3zx):|

1
= sin(bx) + 3 sin(3x)

[t

Il Il
— N

[\)

You could calculate identities for cos(ax) cos(bz),sin(ax)sin(bz) by much the same calculation and you’d
find a sum of cosines for each:

cos(ax) cos(bx) = %cos[(a +b)x] + % cos[(a — b)z]

sin(ax) sin(bx) = % cos[(a + b)z] — %cos[(a —b)x]

On the other hand, generally cos(ax)sin(bz) yields a sum of sines,

cos(ax) sin(bx) = % sin[(a + b)x] + % sin[(a — b)x]

Naturally, we could also apply the method to calculate formulas for higher powers or products of sine and
cosine. Just for a flavor:

Example 2.9.11.

DeMoivres’ theorem in complex notation is simply (e?)™ = €?. When you unfold this into sines and cosines
the result is amazing:

(cos @ + isin @)™ = cos(nb) + isin(nh)

You can try plugging in n = 2 or n = 3 and you’ll find yet more identities which are less than obvious from
other approaches.
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2.9.5 superposition of waves and the method of phasors*
Sinusoidal waves on a string have the form y = Asin(kz — wt) + ¢). This wave has amplitude A, wave

number k, angular frequency w and phase ¢. If we have two such waves on a string or some other medium
then they combine to create a new wave. The mathematics of a simple case is encapsulated in the following

trigonometric identity:
b —-b
sin(a) + sin(b) = ZSin(a;) cos(a 5 )

Suppose we have two waves of equal amplitude (A; = Ay = A), frequency (w) and wavenumber (k) traveling
in opposite directions, y; travels right and y, travels left,

= A;sin [k:z: —wt + (;51] and Yo = Agsin [ka: + wt + ¢2}
Consider the superposition of these waves,

Y1+ Y2 = Asm[ko: — wt + gbl]JrA sm[k:r + wt + (;52

= 2Asin [(kz —wt + é1) + (ko + wt + o) ] {kx_wt+¢1)_(/€x+wt+¢2)
L 2 5

= 2Asin kx+¢1;¢2]co { wt]

= 2Asin kx-l-qsl_;@]cos[wt ]

This is a standing wave with amplitude 2A. The shape of the wave is given by the sine factor then as time
evolves the second factor oscillates between —1 and 1. Perhaps you’ve see such a pattern, if you fix a rope
to a wall then swing the free end you can set up two waves, one created by your waving, the other created
by the reflection of your wave off the wall. The net result is the appearance of a wave that stands still. A
standing wave. Similar mathematics applies to the patterns of pressure variation in pipe organs. Again a
addition of sines or cosines will describe how the notes combine within the instrument.

What about two arbitrary sine waves or cosine waves of the same wave number but possibly different phases.
T’ll eliminate the time term to reduce clutter. I think once we solve this problem it’s easy to add time to our

result.

Problem: find the amplitude and phase of y; + y» given that y; = A;sin(kx + ¢1) and y, =
Ay sin(kx + ¢2). Also, derive a similar result for cosine.

Solution: Define ; = A e'(F*+91) and g5 = Ase’(F*+%2) Notice that these complex functions contain both
the sine and cosine functions we wish to add: in particular

y1 = Im(y1) = Ay sin(kx + ¢1), y2 = Im(y2) = Agsin(kx + ¢2)

The real parts will give us cosines instead. We can calculate the sum of the sine functions by instead adding
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the corresponding complex functions,

i+ g = Are!EEO) o Ayelheten)
= A1t 4 AyethTeit2
= [Alei¢1 + A26i¢2]eika:
— At ik (A and v from picture)
— Aei[karW]
= Acoslkz + 7] + iAsin[kz + 7]

As is often the case with complex variables we solved two real problems at once. Equating the real and
imaginary parts of the equation above yields

’ Ay sin(kx 4+ ¢1) + Agsin(kx + ¢2) = Asinlkz + 7] ‘

’ Aj cos(kx 4+ ¢1) + Ag cos(kx + o) = Acos[kx + 7] ‘

where + is implicitly defined by
Aj sin(¢1) + Az sin(g2)

fany = Ay cos(¢r) + Ag cos(ga)

And A is defined by

A= /A1 cos(¢1) + Az cos(¢2)]2 + [A1 sin(h1) + Ag sin(¢2)]?

I’ve drawn the picture in quadrants I and II but the argument is general.

v
n=4A exp(i(bl) =A COS(¢1) +idy Sill(¢l)
2=Ay oxp(i¢2) = Ay cos(dy) +id, sill((bz)

Ay
Ay sin(ez)
..... %
T
, Ay cos(¢2)
2=+ 2 = Aexp(iv)
) .
A= /Ay cos(dy) + Aycos(6r) )2 + (Arsin(gy) + Azsin(n)? 1 o
tan(y) = Ay cos(6) + Ay cos(6y) fy
Ay cos(¢1)
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If you had highschool physics you should recognize the construction above as the so-called ”tip-2-tail” method
of vector addition. Have no fear, it’s just trigonometry. Moreover, it is no hard to see the calculation above
easily generalizes to three or more vectors.

Theorem 2.9.12. superposition of waves.

Two waves with identical wave number will combine when added to give another wave with the
same wave number and an amplitude which is between zero and the sum of the individual wave
amplitudes.

It’s tempting to say more here, but I'll leave it for physics. My intention here was merely to explore a difficult
problem in trigonometry to help you push some boundaries of your knowledge. This treatment of waves is
neither clever nor comprehensive. If you think about it you could just as well apply the calculation to waves
traveling in time in the same direction or opposite directions. You’d recover the boxed formula earlier in
this section as a special case. Also, you could consider waves of different frequencies w; # ws interfering, the
result is a wave of frequency % modulated by a beat frequency of “*5*2. Pictures of these phenomena
may be found at:

http://paws.kettering.edu/ drussell/Demos/superposition/superposition.html

Finally, I would just mention that sines and cosines are important even though most waves are not sinu-
soidal. Typically waves come in finite packets and their precise mathematical account requires much more
sophisticated terminology. The Fourier decomposition breaks down a waveform into a sum of sines or cosines.
Most digital formats of music are based on transforming the music into its Fourier equivalent then devising
clever methods to compress this data. In contrast, compression of visual data is better accomplished with
something called wavelets. The popular jpg-format is based on wavelets. Fourier analysis is heavily calculus-
based. In contrast, from what I can gather from a talk I heard last year, the Wavelet method for visual data
is primarily linear algebra.

Remark 2.9.13.

The sections marked with a * are optional in the following sense:
1. you could do the analysis using sines and cosines with no mention of complex exponentials,
2. complex exponentials are not on tests except possibly as a bonus question,

I happen to think this material should be integrated in precalculus mathematics and consequently
we should weave a certain amount of complex variables throughout the calculus sequence. It’s not
that hard if you work on it a little. However, most instructors disagree with me on this point so I
behave and just write these sections for the most elusive creature: the interested readerlEl
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Chapter 3
limits

There are two major questions we must answer in this chapter
1. what is a limit of a function? In other words, how should the limiting process be carefully defined?

2. how do we calculate limits in the most efficient and reliable fashion? If rigor is not required how should
we allow intuition to guide our thoughts?

I begin with a few pictures and words to set-up the idea of a limit. Then we give a careful definition.
After that we’ll build the theory from scratch theorem by theorem. Once the theory is settled then we’ll
turn our focus to item (2.). Limits are important because all of calculus is traditionallyﬂ formulated at its
foundation by limiting processes. The tangent line is the limit of secant lines, the Riemann integral can be
viewed as the limit of an approximating sum. Therefore, to understand calculus properly we will need a
good understanding of the limit.

3.1 graphical motivation of limit

At this point I suspect words are uneccessary, they can only do harm. Instead some pictures should illustrate
what is meant by the terms:

1. 7taking the limit from the left at x = o”
2. "taking the limit from the right at = o”

3. 7taking the limit at x = a”

it may be worth mentioning that there is a formulation of calculus which does not use limits and yet reproduces
the same theorems and results. It’s called non-standard analysis. The text is free online if you're curious.

67
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(I.) The function f(x) graphed below has
1. 7 f(z) — 2 as a approaches 0 from the right”

2. 7 f(z) = —2 as x approaches 0 from the left”

do not exist”

3. 7the limit of f(x) as x approaches 0 does not exist because the left and right limits at zero

It may not be entirely clear to you if the function is defined at z = 0 in the picture. It actually would not
change the result if both the left and right graphs had open circles at (0, —2) and (0,2) respective. The
idea of the limit is to look at values of the function near the limit point, but not at the limit point. In this

discussion the limit point was = = 0.

( The function f(z) graphed below has

IL.)
1. 7 f(x) — 4 as x approaches 2 from the right”
2. 7 f(z) — 4 as x approaches 2 from the left”
38

limits both exist and are also equal to 4.”

"the limit of f(x) as x approaches 2 does exist and is equal to 4 because the left and right

7

The little black circle is meant to denote the fact that 2 ¢ dom(f). We can take the limit at 2 even though
f(2) is not defined. To say that f(xz) — 4 as © — 2 means that as we take values of f(z) close to 4 we can

find x near 2 which give those values close to 4.
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Warning: you cannot reverse the sentence above. The idea is that as we take values close to
the alleged limiting value L we can find inputs near the limit point which returns values close
to the limit

However, even my warning fails to capture part of the idea. Let’s look at a picture, this is called the Dirchlet

function; f(z) = {(1) z; i E 3?: R—Q

. The best I can do to the limit of the resolution is as follows:

Dirichlet Function:
> zero for rational inputs
P one for irrational inputs

This function misbehaves. Don’t misunderstand my graph. I don’t mean to say that f is not single-valued.
It truly is since either € Q or « ¢ Q hence the value of the function is either 1 or 0. Think about f(z) — L
as x — 0. Should we expect that L = 1 or L = —17 Certainly if we look at values close to L = 1, for
example L = 1 we can find z, close to z = 0 such that f(z,) = 1. However, no matter how close z, is to
zero we can always find z; ¢ Q which is closer to zero and has f(z1) = 0. Therefore, it’s not enough for
values of the function near the limit point to take values close to L. We need the values ”close” to the limit
point to be reached by all the points near to the limit point. Perhaps you can start to see we need to use
the concept of a set to properly understand the limit.

The terms oo or —oo are simply nice notation for expressing a certain type of behavior in a graph. I introduce
them here because they help us discuss limits. The examples up to now all involved jump-discontinuities or
removable-discontinuities. The example below has vertical asymptotes which spoil the limits in question.

(III.) The function f(x) graphed below has

1. 7 f(x) — oo as x approaches 2 from the right”
2. 7 f(x) — —oo as x approaches 2 from the left”

3. 7the limit of f(z) as x approaches 2 does not exist because the left and right limits do not
agree.”

But, in contrast,
1. 7 f(x) — oo as x approaches —2 from the right”
2. 7 f(z) — oo as x approaches —2 from the left”

3. 7the limit of f(x) as x approaches —2 does not exist in R, and it is oo because the left and
right limits both are co.”
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When we say ”does not exist in R” we mean just that; oo is not a number. When a limit is ”equal to infinity”
that is simply a way of communicating that the limit does not exist as a real number and it does so in a
particular manner. We saw before there are other ways the limit may fail to exist. Let us examine one more

misbehaving function.

limit point”

point”

(IV.) The function f(z) graphed below has
1. "the limit of f(z) as x approaches 0 from the right does not exist due to oscillation at the

2. 7the limit of f(x) as x approaches 0 from the left does not exist due to oscillation at the limit

3. 7the limit of f(x) as x approaches 0 does not exist due to oscillation at the limit point”

You could also imagine an example where we has oscillation just on the left or just on the right.

oscillates wildly at zero

The

examples given thus far should serve to illustrate the typical ways which limits either exist or d.n.e. as real
numbers. Let me conclude this section with a less exciting, but far more common situation,
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( The function f(z) graphed below has

V.)
1. 7 f(z) — f(a) as x approaches a from the right”
2. 7 f(z) = f(a) as x approaches a from the left”
3.

"the limit of f(x) as x approaches a exists and is equal to f(a) because the left and right
limits exist and are equal to f(a).”

/\ M
Iy o 0

In the graph above any point a € dom(f) has values near f(a) which are close to f(a), there are no jumps,
asymptotes or oscillations which get bunched up on some point. This function is called continuous because
it has a connected graph which could be drawn with one uninterrupted stroke of a pen. This graphical
definition of continuous is not the one I wish to see on the exam. We will soon offer a better description
in terms of limits. But, first we need to settle just what a limit is. Remember, this section was simply to
motivate the one that follows. We usually have more than a graph to reason with so we can give better
arguments than the ones offered in this section. In fact, to be honest, I have yet to give an argument about
a limit. This section was basically just a bunch of name-calling ( but in a good way).
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3.2 definition of the limit

I am certainly indebted to the excellent text Calculus by Apostol. A worthy purchase if you're a math major.

3.2.1 two-sided limit

Recall that Bs(a) = {x € R | d(a,z) < 6} = (a—3J,a+0) is a neighborhoodﬂ centered at a with radius 6 > 0.
Likewise, Bs(a)o ={r € R | 0 < d(a,z) <0} = (a — J,a) U (a,a + 9) is a deleted nbhd. centered at a.

Definition 3.2.1. limit

Let f be a function and a, L € R. We say that f(z) — L as  — a iff for each nbhd. B.(L) centered
at L there exists a deleted nbhd. Bs(a), centered at a such that f(Bs(a),) € Be(L). In the case
that the condition above is met we say that the limit exists and denote this by

lim f(z) = L.

Tr—ra

This definition emphasizes the geometry of the limit. To understand this, meditate on the following diagram:

L

L-e<y<L+e
2e-width band centered

v/iy:_l-/

a-o0<x<a+o
2¢0-width band centered
about x=a. This band is
made narrow enough to
fit graph in intersection
with green band.

Basically the idea is just that if we zoom in on an e-band centered about L then the limit exists if we can
find a d-band centered about a such that the box made from the intersection of these bands captures the
graph of the function for all the values in (a — §,a) U (a,a + §). Pragmatically, we would like an easier
formulation of the limit to prove theorems and solve problems. For that end we restate the definition in
terms of inequalities and absolute values. I invite the reader to verify this is nothing more than a change of
notation from Definition [3.2.11

2clearly an abbreviation is warranted here, we’ll use nbhd. from here on out
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Definition 3.2.2. limit

Let f be a function and a, L € R. We say that f(z) — L as  — a iff for each ¢ > 0 there exists
d > 0 such that for all € R with 0 < |2 — a| < § it follows |f(x) — L| < e. In the case that the
condition above is met we say that the limit exists and denote this by

lim f(z) = L.

T—ra

Sometimes the condition that must be met by the function is instead stated:
"|f(z) — L| < € whenever 0 < |z —a| < ¢”

This is equivalent to the language in my definition provided the reader realizes that we must have this con-
dition hold for all € R that meet the condition 0 < |z — a| < §. If even one value fails then you have to
find a better ¢ or perhaps give up and prove the limit does not existﬂ

We will eventually have theorems which do the calculations that follow in this section with ease. However,
do not ignore the calculations that follow. This material is challenging and required. Most students have to
really do some thinking to become proficient in the arguments which are offered in the upcoming examples.

Example 3.2.3. Problem: prove lim,_,2(3z + 2) = 8 directly by the definition of the limit.

Preparatory calculations: We need to show that |z — 2| < § implies | f(x) — L| < € for f(x) =3z +2 and
L =8 and a particular choice of §. Consider then

|f(z) =L =13z +2—-8|=3z—6|=1|3(z —2)| =3z — 2| < 3) =e.

So, we should choose 6 = €/3 since € > 0 it is clear that § = €/3 > 0. In view of these calculations we are
ready to state the proof.

Proof: Let € > 0 and choose § = ¢/3. Suppose x € R such that 0 < |x — 2| < §. Observe that
Bz +2—8|=3(x—2)| =3|z — 2| <3) =e.

Thus 0 < |z — 2| < & implies |3z + 2 — 8| < € and it follows by the definition of the limit that
lim, 23z +2)=8. O

Students sometimes ask me which part is the answer. My answer is that the whole proof is the answer. It
is important that it contains all the proper logical statements put in the logical order. Basically, a ”proof”
is simply a complete explanation of why some statement is true. I will admit there is ambiguity as to what
constitutes a ”complete” proof in general. However, in the context of this course there is less ambiguity since
I am giving you examples which show you how much detail is required.

3remember, ”exist” in this context means ”exist as a real number”, it certainly could be argued that all limits
exist in the sense of being a concept held by many rational beings.
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Example 3.2.4. Problem: prove lim,_,5(2 — ) = —1 directly by the definition of the limit.

Preparatory calculations: We need to show that |x — 3| < & implies |f(x) — L| < € for f(z) =2 —x and
L = —1 and a particular choice of 6. Consider then

f@) =Ll =2—2—(-1)|=|—a+3| = |- 1&—3)| = [t —3| <6 =«

So, we should choose § = e.

Proof: Let € > 0 and choose § = €. Suppose v € R such that 0 < |x — 3| < 0. Observe that
2—z—(-1)|=|-z+3)|=|z-3|<d=¢e

Thus 0 < |z — 3| < § implies |2 — x — (—1)| < € and it follows by the definition of the limit that
lim,,3(2 —x)=-1. O

Example 3.2.5. Problem: prove lim, .q(2?) = 0 directly by the definition of the limit.

Preparatory calculations: We need to show that |x — 0| < & implies |f(x) — L| < € for f(z) = 2* and
L =0 and a particular choice of 6. Consider then

|f(x) —L|=|2* = 0| =|z|* < 6* =«

So, we should choose 6 = \/e. Since € > 0 we can be assured that the squareroot gives § > 0.

Proof: Let € > 0 and choose 6 = \/e. Suppose € R such that 0 < |z — 0] < §. Observe that
|22 = 0] = |z]* < (Ve)* =e.

Thus 0 < |z—0| < & implies |2®>—0| < € and it follows by the definition of the limit that lim, o (z?) =
0. O

Example 3.2.6. Problem: prove lim, ,3(z?) = 9 directly by the definition of the limit.

Preparatory calculations: We need to show that |x — 3| < & implies |f(x) — L| < € for f(x) = 2 and
L =9 and a particular choice of §. Consider then

|[f(z) = L| = |a* = 9] = [(z — 3)(z + 3)| < 8z + 3|

Ok, so |x+3| is annoying. But, have no fear, we control the §. Note that 0 < |x—3| < 0 gives 3—0 < & < 3+J
50 6—0 < x+3 < 6+0. Suppose § < 1 then we certainly have that5 < x+3 < 7 which gives =7 <5 < z+3 <7
so |z + 3| < 7 which is very nice because, given our assumption 6 < 1 we find:

f(x) — L| =< d| + 3| < 6.

now the choice should be clear, we use 6 = ¢/7. However, we do need that €¢/7 < 1, remember we don’t
control €, all we know is that € > 0. The solution is simple, to be careful about the possibility of large € we
choose 6 = min(e/7,1). If § = 1 then we still find |z + 3| < 7 and so |f(z) — L| < 7§ < € provide that
d =min(e/7,1) so we knew § < ¢/7 hence 7§ < €.
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Proof: Let ¢ > 0 and choose 6 = min(e/7,1). Suppose x € R such that 0 < |x — 3| < §. Observe
that § <1 thus 0 < |z — 3| < § <1 yields —1 < x—3 <1 from which it follows 5 < x +3 < 7 hence
—7<x+4+3<7sol|x+3|<7. Therefore,

22 — 9] = |(z — 3)(z + 3)| = |z — 3||z + 3| < 8z + 3| < 7

Moreover, as § < €/7 we have 76 < €. Thus, 0 < |z — 3| < § implies that |z — 9] < € and it follows
by the definition of the limit that lim,_3(2?) = 9. O

Example 3.2.7. Problem: prove lim,_,5 |z| =5 directly by the definition of the limit.

Preparatory calculations: We need to show that |v — 5| < & implies |f(z) — L| < € for f(z) = |z| and
L =5 and a particular choice of §. I find that ||x| — 5| is best covered by forcing 6 < 1 for convenience:
notice that § < 1 and the assumption 0 < |z —5| < § yields =1 < =0 <z —5 < 0 <1 hence 4 < x < 6 which
is nice because that means that x is positive so |x| = x. Suppose 6 < 1 and 0 < |z — 5| < ¢ it follows that

[|z] = 5] = |x — 5| < 0.

we can choose € = §. However, you might worry, what if € > 17 In that case we can just choose 6 =1 then
llz] = 5] = |z — 5] < §d =1 < e. So, to take care of both cases we should simply choose § = min(1l,¢). The
notation "min” means to take the minimum of the values.

Proof: Let e > 0 and choose § = min(1,€). Suppose x € R such that 0 < |x — 5| < §. Observe that
we have § <1 hence 0 < |z —5| <0 <1 yields —1 < x—5 <1 hence 4 <z <6 so |z| = z. Consider
then,

llz| = 5| =z —5| <0 <e

Thus 0 < |z —5| < § implies ||x| —5| < € and it follows by the definition of the limit that lim,_,5 |z| =
5. O

Example 3.2.8. Problem: Let f(x) = x|z — 2|, prove lim,_,3 f(z) = 3 directly by the definition of
the limit.

Preparatory calculations: We need to show that |x — 3| < § implies | f(x) — L| < € for f(z) = x|z — 2|
and L = 3 and a particular choice of 6. Consider then

@)~ 1] = o2 -3
< |zl —2||+]| -3 triangle inequality
= |z|jlz —2|| + 3 used |ab| = |a||b] and ||a|| = |a| since |a] >0
=lz—34+3|lr—3+1]+3 usedr —2=x—3+1
<(Jz—3]+3)|(Jr — 3|+ 1)+ 3 triangle inequality twice
=lz—-3*+4|z-3|+6 Just algebra
=624+45+6 supposing |z — 3| < ¢

So, we should insist thaté? + 46 + 6 < e. This is a quadratic equation in 6. If I tinker with the 4 I can make
it factor. If § > 0 it is clear that

2 4+454+6<8+554+6=(6+2)(5+3) < (6+3)>
We can solve (6 + 3)% =€ for § = \/e — 3.



76 CHAPTER 3. LIMITS

Question: why will my choice § = \/e — 3 fail? The point of this example it to show you that we can make
correct steps and not find our way to a correct choice of §. Maybe you can repair my argument and find a
better choice for 6.

Sometimes we are called upon to calculate a limit which has an arbitrary limit point. In the example below

” 7

the limit point is denoted by ”a”. We must make arguments which hold for all possible values of a since no
particular restriction on a is offered.

Example 3.2.9. Problem: prove lim,_,,(3z 4+ 2) = 3a + 2 directly by the definition of the limit.

Preparatory calculations: We need to show that |z — a| < & implies |f(x) — L| < € for f(x) =3z +2 and
L =3a+ 2 and a particular choice of §. Consider then

lf(x) =L =3z+2—(3a+2)|=3(z—a)|=3|lz—a| <3 =e

So, we should choose 6 = ¢/3 since € > 0 it is clear that § = ¢/3 > 0. In view of these calculations we are
ready to state the proof.

Proof: Let e > 0 and choose § = €/3. Suppose x € R such that 0 < |x — a| < d. Observe that
Bz +2—Ba+2)|=|3(x—a)|=3|z—a|] <35 ==e.

Thus 0 < |z —a| < § implies |3z 4+ 2 — (3a + 2)| < € and it follows by the definition of the limit that
lim, .32z +2)=3a+2. O

The preceding example was no harder with arbitrary a then it was with a = 2 in Example In contrast,
we’ll have to think a bit more in the next example. The arguments given in Example will need some
tweaking.

Example 3.2.10. Problem: prove lim,_,,_ |z| = |z,| directly by the definition of the limit.

Preparatory calculations: We need to show that |x — xz,| < & implies |f(x) — L| < € for f(x) = |z
and L = |z,| and a particular choice of 6. 1 find that ||x| — |z,|| is best covered by forcing 6 < 1 for
convenience: notice that § < 1 and the assumption 0 < |z — x,| < § yields —1 < =6 < —x, < J < 1 hence
2o — 1<z <x,+ 1. Before we were able to conclude that x is positive so |x| = x, but x, = —2 is possible
now and in that case x < 0. We need to break-up into cases:

1. ifxe>1thenax,—1>0and 0 <z, — 1 < x <z + 1 yields x > 0 hence |z| =z
2. ifx, < —1lthenx,+1<0thenx,— 1<z <z,+1<0 yields x <0 hence |z| = —x

3. if =1 <z, <1 then z, — 1 < 0 whereas 0 < g+ 1 thus x, — 1 <z < x, + 1 has no solutions since
we cannot have both x > 0 and x < 0. In this case we cannot assume § < 1. Apparently some other
argument s needed here.

Case (1.)(assume z, > 1) follows the same pattern as in Example we can simply use 6 = min(1,¢€)
and as o, —1 > 0 and 0 < z, — 1 < & < z, + 1 yields x > 0 hence |x| = =z therefore we’ll find
[lz] = |xo|| = |2 — o] < 0 < €.

Case (2.)(assume x, < —1) also follows a similar argument. Use 6 = min(1l,€) again and note x, +1 < 0
then x, —1 <z < x,+1 <0 yields x < 0 hence |z| = —zx therefore we’'ll find ||x| — |zo|| = | — 2 — (—z,)| =
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|z — o] <0 <e.

Case (3.)(assume —1 < x, < 1) left to reader.

Proof: partly left to reader, I'll cover cases 1 and 2. Suppose |x,| > 1. Let € > 0 and choose
0 = min(1l,€). Suppose x € R and 0 < |z — x,| < §. Since |x,| > 1 it follows that either x, > 1 or
z, < —1. We treat each case separately:

1. if x, > 1 then |zo| = x,. Notice that 6 < 1 and the assumption 0 < | — z,| < & yields
“l<-d<z—az,<d<1lhencex,—1<x<x,+1andas0<xyg—1 we find < x so
|x| = z. Thus,

[|z] = 2ol = |2 — xo| < 0 < e
2. if ¢, < —1 then |z,| = —x,. Notice that § < 1 and the assumption 0 < |z — x,| < § yields
—l<-d<z—z,<d<1lhencex,—1<x<zxz,+1andasxo+1<0 we findx <0 so
|x| = —z. Thus,
lz] = lzol| = [ =& — (=zo)| = [z — 20| <d <.

Therefore we have shown in the case |x,| < 1 that for each € > 0 we can choose 6 > 0 such that
0 < |z—x,| < & implies ||z|—|x,|| < € and it follows by the definition of the limit that lim,_,, |z| = x,.
O

3.2.2 one-sided limits

If you examine the definition of limit in the preceding section you’ll notice it doesn’t make much sense for
boundary points of the dom(f). We say p € R is a boundary point of dom(f) iff every deleted open
interval centered at p intersects points in R — dom(f) and dom(f). In other words, boundary points are
positioned so that they are close to points both inside and outside dom(f). We can define one-sided limits
at boundary points.

Definition 3.2.11. limit

Let f be a function and a, L € R. We say that f(z) — L as x — a™ iff for each ¢ > 0 there exists
0 > 0 such that for all z € R with a < < a + ¢ it follows |f(z) — L| < e. In the case that the
condition above is met we say that the right limit exists and denote this by

lim f(z) = L.

z—at
Likewise, we say that f(z) — L as @ — a~ iff for each € > 0 there exists § > 0 such that for all
x € Rwitha— 4§ < 2 < a it follows |f(x) — L| < e. In the case that the condition above is met we
say that the left limit exists and denote this by

lim f(z)=L.

T—a—

The logic is very similar to the two-sided examples. I'll just do this example.
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Example 3.2.12. Problem: prove lim,_,;+(v/z — 1) = 0 directly by the definition of the limit.

Preparatory calculations: We need to show that 1 < x < 140 implies |f(xz) — L| < € for f(z) =z —1
and L =0 and a particular choice of 6. Consider then

[f(z) Ll =V —1-0/= Ve ~1] = ]z — 1],

where we used 1 < x < 1+ 6 to deduce 0 < x — 1 hence |x — 1| = x — 1. We should choose § = €2.

Proof: Let € > 0 and choose § = €2. Suppose x € R such that 0 < x — 1 < §. Observe that
Wz —1l=+]z -1 <Vi=Ve =«

Thus 0 < x — 1 < § implies |[v/x — 1| < € and it follows by the definition of the right-sided limit that
lim, ,1+ vz —1=0.0

Notice that f(x) = /& — 1 has implicit domain dom(f) = [1,00) and = = 1 is the boundary point of the
domain. We could not consider a two-sided limit at one because the function is not real-valued for z < 1.

Proposition 3.2.13. two-sided limit holds iff both left and right limits hold.

Let f: dom(f) € R — R be a function and suppose a € dom(f) is not a boundary point so both
the left and right limits of f can be defined at a.

lim f(z) =L & { lim f(z)=L and lim f(x):L}

T—a z—at T—a~

Proof: to prove < we must show both = and <.

(=) Begin by assuming lim,_,, f(z) = L then for each ¢ > 0 there exists § > 0 such that 0 < |z —a| < §
implies |f(z) — L| < e. Note for each € > 0 that if 0 <z —a < ¢ it follows 0 < |z —a| < d so |f(x) — L| < e
hence lim, ..+ f(x) = L. Likewise, note for each € > 0 that if —6 <z —a < 0 it follows 0 < |z — a| < J so
|f(z) — L| < € hence lim,_,,- f(z) = L.

(<) We assume that both lim,_,,+ f(z) = L and lim,_,,— f(x) = L. Let € > 0 and choose 6 = min(dy,d_)
where we use the givens to choose §;,d_ > 0 such that

1. 0 <z —a < dy implies |f(z) — L| <,

2. —d_ <x—a<0implies |f(x) — L| <€
Therefore, if € R such that 0 < |[z—a| < § < d4,0_ theneither0 <z—a<d <dpor —d_ < - <x—a <0
so by (1.) or (2.) it follows |f(z) — L| < e. Therefore, the two-sided limit exists and f(z) — L as x — a. O

Half the reason I include this proof is to get the math majors thinking about how to unfold the logic of the
symbol <.
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Example 3.2.14. Problem

We want to show

The natural thing to try here is contradiction, we suppose that

Preparatory calculations: think about it. What do we need to show to show it is impossible for any real
number to be the limit of % as © — 02. By the proposition we just proved it would suffice to show that the

right-limit failed to exist no matter what our choice of L is. Let’s proceed from that angle.

= L and then we hunt for something insane. Once we find the

insanity we see that believing in the existence of L € R is madness so we can safely assume L ¢ R. This is

1
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the outline of the logic. Let’s get into the details:

cannot be a real number.

there does exist L € R such that lim,_,q+
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We seek a contradiction, suppose € = L
< 0 so it follows that

and let 6 > 0 be some number such that all x € R satisfying 0 < x < § force |

1_
@

< 6. Clearly 0 < z,

and x,

1
2(L+e

<

) thus ,

g
2

)

1

—e< ——L<e

Lo

On the other hand, we have constructed x, to satisfy

< 2e.

1
Zo

and as € = L we add € to find 0 <
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does not exist. These limits diverge.

v—0+ + does not exist, hence lim,_,q L

we conclude that the lim

O

re wondering how I thought of the argument in the last example then perhaps the following picture

)

will help you understand why I chose x, as I did. In fact, the picture is what I used to think of the proof.

Pictures are often helpful, you ought not forget that graphing can be a powerful tool for analysis.

If you

L+e
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3.2.3 divergent limits
Definition 3.2.15. limit

Let f be a function and a € R. We say that f(x) — oo as & — a iff for each M > 0 there exists
0 > 0 such that f(z) > M whenever 0 < |x —a| < ¢. In the case that the condition above is met we
say that the limit diverges to oo and denote this by

lim f(z) = oo.

r—a
If for each M > 0 there exists § > 0 such that f(z) > M whenever a < z < a + ¢ then we say
f(x) 2 o0asx—a'.

Likewise, if for each M > 0 there exists § > 0 such that f(z) > M whenever ¢ —§ < z < a then we
say f(z) > o0 asx —a”.

The definitions of f(z) — —00 as  — a or x — a* are very similar we just replace the condition f(x) > M
with f(z) < N for N < 0. It is also interesting that the proposition given in the last section also applies in
this context:

Proposition 3.2.16. two-sided limit diverges to oo iff both left and right limits diverge to +oo.

311_131 f(z) = o0 = { lim f(@)==+0c0 and lim f(z)= ioo}

The proof is similar to that given in the last section, the details are left to the reader. Notice that the
notation + is meant to denote case-wise logic. I mean to state that either both limits are +o00 or both limits
are —oo if they are to match the two-sided limit.

One satisfying aspect of carefully defining divergent limits is that we can give a concrete definition of a vertical
asymptote. In fact, we should pause and note that we now have a non-graphical method of distinguishing
between vertical asymptotes, holes in the graph and jump-discontinuities of a function. All three can arise
from formulas which fail if evaluated at the point in question. The concept of a limit helps us to carefully
distinguish what algebra alone cannot hope to detect.

Definition 3.2.17. wvertical asymptotes (VA), holes and jumps.

Let f be a function and a € R.

1. We say that f has a vertical asymptote x = a iff either of the left or right limits diverge to
+oo. That is, z = a is a VA iff lim,_,,+ f(z) = £oo.

2. We say that f has a hole in the graph at (a, L) iff a ¢ dom(f) and lim,_,, f(z) = L

3. We say that f has a finite jump-discontinuity at = = a iff both the left and right limits of
f(z) exist and do not agree; lim,_,,+ f(z) = Ly € R and lim,_,,- f(x) = L_ and Ly # L_.
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Example 3.2.18. Problem: prove lim,_,+ % = 00..

Preparatory calculations: we need to find § such that M > % for all z € R such that 0 < z < §. Note
M > % implies % < x. Looks like § = ﬁ will do nicely.

Proof: suppose M > 0 and let § = ﬁ Ifo<z<d= ﬁ then % > 2M > M. Therefore, for

each M > 0 there exists § > 0 such that % > M whenever 0 < x < §. It follows by definition that
lim,, o+ % =—o0. U

We learned in Example [3:2.14] this limit does not exist in R. Now we have shown that it actually diverges
to co. Notice that co ¢ R, rather, co is simply a notation to indicate a function has a particular behavior at
a point.

Remark 3.2.19.

Another concept of infinity is discussed in the study of cardnality. Intuitively speaking the card-
nality of a set describes the size of the set. For example, S = {1, 2,3} has cardnality 3. The natural
numbers have cardnality X, which is infinite. Then the real numbers are even larger, the cardnality
of R is called the continuum c¢. Some authors denote the continuum by ¢ = X; and it does make
sense to say that N, < c. However, the idea that the continuum is the nezt infinity past X, is called
the continuum hypothesis.

Here are three other cases we might encounter:

|
‘ right of zero

\ \ /
‘ \

|

1. the left graph has f(x) — 0 as ¢ — 0~ whereas the right limit fails to exist due to oscillation to the
right of zero.

2. the middle has f(z) — oo as © — 0~ whereas the f(z) = 0 as z — OT.

3. the right graph has f(x) — 0 as z — 0~ and also f(z) — 0 as z — 0". In fact, f(z) > 0asz — 0
since both the left and right limits agree.

Don’t mistake this short list for a complete list of possible types of limits. There possibilities are too numerous
to list. Generally, we just have to THINK.
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3.3 continuity and limit laws

The definition of the limit is important, however, if the only way to calculate limits was with direct €, d
arguments then I doubt the concept of a limit would enjoy much interest from the mathematical community.
The properties we discover in this section go to show that the definition given in the last section was the
proper, natural definition.

You were probably told that a continuous function was one for which the graph could be drawn without
lifting the pencil. There are no vertical asymptotes, jump-discontinuities or holes in the graph of a continuous
function. We are now able to give a precise definition:

Definition 3.3.1. continuity at a point, on a set, and for a function.

Suppose f : dom(f) CR — R and U C dom(f). We say that f is continuous at a € int(U) iff
lim,, f(z) = f(a). If a € U is a boundary point of U such that [a,a + ¢) C U for some € > 0 then
we say [ is continuous at a iff lim,_,,+ f(z) = f(a). Likewise, if a € U is a boundary point of U
such that (a —¢,a] C U for some € > 0 then we say f is continuous at a iff lim,_,,— f(z) = f(a).
If f is continuous for each a € U and U C dom(f) then we say that f is continuous on U. Moreover,
if f is continuous on dom(f) then we say that f is a continuous function.

I should caution you that it is often the case that you want to affix the qualifier connected to the domain of
the function to to avoid jumps in the graph. Technically, this definition does allow for jumps in the graph if
the domain is not connected?

Proposition 3.3.2. additivity of the limit.

Let a € R. Suppose f, g are functions and lim,_,, f(z) = Ly and lim,_,, g(z) = Ly then

lim [£(2) + g(«)] = lim f(2) + lim g(x).

r—a r—a

Proof: we are given that lim,_,, f(z) = Ly and lim,_,, g(x) = Ly. Let € > 0, because of the given limits
for f and g, we can find d¢,d, > 0 such that |f(x) — Ly| < €/2 whenever z € Bs,(a), and |g(z) — Ly| < €/2
whenever x € Bs, (a),. We would like for both conditions to hold at once so we choose § = min(dy,dg).
Suppose then z € R and 0 < |z — a| < ¢ it follows that |f(z) — Ls| < €/2 and |g(z) — Ly| < /2. Consider
that

|f(z) +9(@) = (Ly+ Lg)| = |f(x) — Ly + g(x) — Lg| < [f(x) — Ly +[g(z) — Lg| <e€/2+€/2=€.
Therefore, by the definition of the limit, lim,_,q[f(x) + g(x)] = limy—q f(x) + lim, 4 g(z). O.

Corollary 3.3.3. sum of continuous functions is continuous.

‘ If dom(f) = dom(g) and f, g are continuous functions then f + ¢ is a continuous function. ‘

A 7corollary” to a proposition is simply a fact which is so connected to the proposition that it follows with
almost no proof. The proof of this corollary follows immediately once you see continuity gives that Ly = f(a)
and L, = g(a).

4in particular, if the domain is just a set of disconnected points then this definition says the function is continuous
by default.
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Proposition 3.3.4. homogeneity of the limit.

Let a,c € R. Suppose f is a function and lim,_,, f(x) = L then

lim cf(x) = ¢ lim f(x).

rT—a r—a

Proof: we are given that lim,_,, f(z) = L.

First, suppose ¢ # 0. Let € > 0 and choose § > 0 such that |f(z) — L| < €/|c| whenever 0 < |x —a| < d. We
can choose such a § because ¢/|¢| > 0 and lim,_,, f(z) = L means we can choose a small enough nbhd of a
to obtain values for f(z) as close as we wish to L ( in this case we wish the values to be within €/|c|-units.
Suppose that = € R such that 0 < |z — a| < 4,

lef(z) = cL| = |e(f(2) = L)| = le[[f(x) = L] < |c[(¢/]c]) = e

Therefore, by the definition of the limit, if ¢ # 0 then lim,_,, cf(z) = clim,_,, f(z).
Second, consider the case ¢ = 0. Let € > 0 and note that c¢f(x) = 0 for all = € dom(f). Choosdﬂ 0=1and
suppose 0 < |z — a|] < §. Note

lef(z) —cL|=10-0]=0<e.

Hence, if ¢ = 0 then lim,_,, ¢f(z) = clim,_, f(x). Therefore the theorem holds true for all possible values
ofce R. O

I often collectively refer to the previous two theorems as the linearity of the limit. In calculus we will learn
that most major constructions obey the linearity rules.

Corollary 3.3.5. constant multiple of continuous function is continuous.

‘ If f is a continuous function then cf is also continuous.

Proof: since f is continuous lim,_,, f(z) = f(a) for each a € U then by the homogeneity of the limit,
lim,_,, c¢f(x) = ¢f(a). Therefore, cf is continuous at each point in its domain. O

Proposition 3.3.6. limit of composites.

Suppose f and g are functions such that lim, ., f(z) = L; and lim, .7, g(y) = Lo then
limg ., g(f(z)) = Lo.

Proof: let € > 0 and choose § > 0 such that if 0 < |z — a| < ¢ then |f(x) — L1| < J2 where d2 > 0 is small
enough to force |g(y) — L2| < € for all y € R such that 0 < |y — L1| < d3. We can choose d; > 0 as above
because we were given that lim, 7, g(y) = Lo and we can choose § > 0 to force |f(x) — Li| < d2 because
we were also given that lim,_,, f(z) = L;. Suppose that z € R such that 0 < |z — a| < § and observe that
lg(f(z)) — La| < e. Therefore, by the definition of the limit, lim,_,, g(f(z)) = Ly. O

I was tempted to relabel the proposition above ”limit of composites(sometimes)”. The term ”sometimes”
might be included to encourage the reader to think about cases other than the one covered by this proposition.
For example, if one of the factors in the product has a divergent limit is this proposition true? More generally,

®Note that any choice of § > 0 will suffice in this trivial case, I use 1 for no particular reason. You could just as
well make § = 42.
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can this proposition be extended to the case that the one or more of the factors has a limit which does not
exist? In any event, we should always be mindful of what presuppositions are made in the statement of some
theorem.

Corollary 3.3.7. composite of continuous functions is continuous.

’If fog is well-defined and f and g are continuous functions then f e g is a continuous function. ‘

Proof: Note that continuity of ¢ yields lim,_,, g(z) = g(a). Since f g is well-defined I know g(a) € dom(f)

hence lim,_,4.,) f(y) = f(g(a)). By the preceding proposition lim, ,.(f°g)(z) = f(g(a)) thus fog is a
continuous function since this holds for each point in the domain of fog. [J

Proposition 3.3.8. limit of product is product of limits.

Let a € R. Suppose f, g are functions and lim,_,, f(z) = Ly € R and lim,_,, g(z) = Ly € R then

iy [/ (0)o(o)] = (Jim £(2) ) (1m o) ).

r—a r—a T—ra

Proof: Counsider that we wish to find § > 0 that forces x € Bs(a), to satisfy
|f(z)g(z) — LyLg| <€

we have control over |f(x) — Ly| and |g(z) — L,|. If we can somehow factor these out then we have something
to work with. Add and subtract Lyg(z) towards that goal:

|f(x)g(x) — LyLg| = [f(2)g(x) — Lyg(x) + Lyg(x) — LyLy|
<|f(x) = Lyllg(x)] + |Ls||g(x) — Ly

Very well, most things above are easy to control, however the |g(x)| requires a bit of thought. Not too much
though, since lim,_,, g(z) = L, it follows that |g(z)| can be made close to |L, for a particularly small nbhd
of a. In fact, combining Proposition and Example we have a proof that lim,_,q |g(z)| = |Ly|
(take the outside function to be the absolute value function in the proposition). After a little scratch work
I found the following argument:

Let € > 0, observe that since lim,_,, |g(x)| = |L,|, limgy_q g(x) = Ly and lim,_,, | f(z)| = |Ls| we can choose
O1g],0g,0¢ > 0 such that @ € Bs , (a), implies |g(x) — |Ly[| < B, € Bs,(a), implies [g(z) — Ly| < B and
r € Bs,(a), implies |f(x) — Ly| < 8. Simply choose § = min(d4|,0y,dy) to obtain that x € Bs(a), implies
|f(x) — Lgl, |g(x) — Lg|, |g(x) — | Lg|| < B for any B > 0. I propose we choose 6 > 0 such that

_ (L + LgD) + /(I Ls] + [Lg])? + 4e

B

2
I leave it to the reader to convince themself that 8 > 0. Suppose that 2 € Bs(a), then,

F(@)9(x) — LyLy| = |£(2)g(x) — Lyg(w) + Lyg(x) — LyLy| added zero
< 1f(@) — Lyllg@)| + |Lsllg(@) - L| triangle inequality
< Blg(z)| + |Ls|B construction of §
< B(ILg| +B) + | Lyl B note |g(z)| < |Lg|+ 8

= B2+ (ILs] + | Lg|)B

= €
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€
note 32+ (|Ls|+|Ly|)3 — € = 0 has solution 3 = —(Ls L, D+ 0 (LI HIE P 4o solve for e to understand
the last step above. To summarize, we have shown for each € > 0 that there exists a 6 > 0 such that
x € Bs(a), implies | f(x)g(x) — LyLy| < e. The proposition follows. O

The proof given above can be shortened by a few clever moves. See Apostle for another way to attack the
proof. The proof given in Appendix F of Stewart’s Calculus is similar to the proof I gave here.

Corollary 3.3.9. product of continuous functions is continuous.

‘ If dom(f) = dom(g) and f, g are continuous functions then fg is a continuous function. ‘

Proof: Note that continuity of f and g yields lim,_,, f(z) = f(a) and lim,_,, g(z) = g(a) respective. By

the preceding proposition lim,_,, f(z)g(x) = limy_, f(2)limz—q g(z) = f(a)g(a) = (fg)(a) thus fg is a
continuous function since this holds for each point in the domain of fg. O

Proposition 3.3.10. limit of quotient is quotient of limits.

Let a € R. Suppose f,g are functions and lim, ,, f(z) = Ly € R and lim, ,,g(z) = L, # 0 € R
with Ly # 0 then

i £ @) _ lime o f(2)
ema g(z)  limgag()

Proof: note that if we show that lim,_,; % = % then the proposition follows since h(x) = is the composite

g(:v)

of g and the reciprocal function and f(x)h(z) = g ((;g and we already proved the product of existent limits it

the limit of the product. I leave the proof that lim,_.; i = % as a problem in your homeworkﬁ .0

Corollary 3.3.11. quotient of continuous functions is continuous.

If dom(f) = dom(g) and f, g are continuous functions then 5 is a continuous function on connected
subsets of dom(g) — {z € R | g(x) = 0}.

Proof: Note that continuity of f and g yields lim,_,, f(x) = f(a) and lim,_,, g(z) = g(a) respective. If
g(a) # 0 then By the preceding proposition
1. T a
o 1) T f) @) f
r—a g(l‘) limg 4 g(.l?) g(a) g

thus 5 is a continuous function on each connected subset of dom( 5) since this holds for each point in the

domain of %

Remark 3.3.12.

The concept of continuity can be extended to non-connected sets, however the interesting theorems
in this course all assume continuity of a function with respect to some connected subset of the real
numbers. For this reason I refuse to discuss continuity beyond that context. This is why I did not
say the quotient was continuous function. If U C R is disconnected then I have yet to provide a
definition for continuity with respect to U. Most rational functions have dis-connected domains; for
example f(z) = 1 has dom(f) = (—o0,0) U (0, 00).

5Stewart has a self-contained proof in Appendix F for the proof of Law 5. You might be able to twist his argument
to do this homework problem.
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Beyond these rules you will find a number of other ”limit laws” in various texts. In one way or another they
boil down to proving a particular function has a natural limit then you combine that data together with
the composite limit law. So, to complete our catalog of basic limit math we ought to calculate limits of the
elementary functions.

Proposition 3.3.13. limit of constant is the constant.

Let a,c € R, lim,_,,c=c.

Proof: let ¢ > 0 choose § = 2 and note 0 < |z — a| < ¢ implies |¢ — ¢| = |0] = 0 < e. Therefore, by the
definition of the limit, lim,_,,c = c. [.

Hopefully at this point you know how to prove the following corollary.

Corollary 3.3.14. constant functions are continuous.

’If dom(f) is connected and f(z) = ¢ for all x € dom(f) then f is a continuous function. ‘

Proposition 3.3.15. limit identity function returns the limit point.

Let a € R, lim,_,, z = a.
| , |

Proof: let € > 0 choose § = ¢ and note 0 < |z — a| < § implies [z — a|] < § = e. Therefore, by the definition
of the limit, lim,_,, c = ¢. .

The function id(z) = x is called the identity function because it returns an output of x which is identical
to its input x. Also, geid = g, so it behaves like the number 1 which is the multiplicative identity for R.
Again, given the proposition above the following corollary is obvious:

Corollary 3.3.16. constant functions are continuous.

The identity function f(x) =« is a continuous function.

Naturally, the restriction of the identity function to any connected subset of R is also continuous. Moving
on,

Proposition 3.3.17. power function limit ( for powers n € N).

Let a ¢ R and n € N, lim,_,, 2™ = a".

Proof: whenever we want to show something is true for arbitrary n € N we use a proof method called
induction. The way it works is that we have to show the statement is true for n = 1, which we already
proved in our last theorem. Then we must show that if the statement is true for n € N then it is also true for
n+ 1. If we can make that ”induction step” then proof by mathematical induction applies and the theorem
is valid for all n € N. You can look at the appendix on induction if you want to see more about induction
for inductions sake. Let’s assume this theorem holds for n € N then lim,_,, 2™ = a™. Consider the (n + 1)
case,

lim 2"t = lim 2"z = (hm w") (lim m) =a"q = q" 1!

T—a r—a r—a T—a
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where I used the product of limits theorem and the identity function limit theorem once more. We find the
statement true for n implies it is likewise true for n + 1 hence the theorem is true for all n € N by proof by
mathematical induction. OJ

Corollary 3.3.18. continuity of integer power functions.

Let n € Z, a power function f(z) = 2™ is continuous at each point in the interior of its domain.

Proof: notice that dom(2™) = R if n > 0 whereas dom(z™) = (—00,0) U (0,00) if n < 0. In the case n € N
we have n > 0 and the proposition preceding this coro. gives lim,_,, 2™ = a™ hence f(z) = 2™ is continuous
on R. In contrast, if n < 0 then —n > 0 thus f(z) = 2" = x}" is the quotient of continuous functions thus

f is continuous on (—o0,0) and (0, 00). O

Proposition 3.3.19. root function limit ( power function with power 1/n for n € N).

Let a € R with @ > 0 and n € N, lim,_,, ¥z = {/a. ‘

Proof: Let € > 0 and choose § = min(a/2,e%/a). Suppose z € Bs(a), then we have 0 < |z — a|] < § hence
0 <a—6 <z <a+d. Note that our construction of ¢ insures that § < a/2 < a hence 0 < a—¢. Continuing,

x—a |z — al |gc—a|< )] <e\/§:

Vi+ el WEeva S Ve S Was e

To summarize, for each € > 0 we have shown there exists 6 > 0 such that 0 < |x—a| < § implies | /z— {/a| < €
hence lim,_,, ¥z = /a. O

€.

|/~ v/l =

For n = 2k € 2N an even power we can consider right limits at @ = 0 and a argument similar to the one
offered above will prove %/z — 0 as z — 0. However, for an even power the root function is not real-valued
to the left of the origin so the double sided limit at zero does not exist. In contrast, the proposition above
could be extended for all a € R if it is the case that n = 2k + 1 € 2N 4+ 1 is an odd power. Moreover,
given the limit law about composite limits and our previous work on the reciprocal function we can prove
the following:

Proposition 3.3.20. rational power limit ( power function with power m/n for m,n € N).

m m
n

’Let a € Rwitha>0andn eN, lim, ,,x7» =an

2

should ask yourself what domain would you assign f(z) = #3? What about g(z) = #23? What about
h(z) = (vZ)3? 1 would argue that dom(f) = R whereas dom(h) = [0, 00). But, the only difference between
these formulas is that I applied the exponent law a*t = (a®)!. My point? Laws of exponents presuppose a
positive base a. In fact, h and f are different functions because the ”law” I used was incorrect for the base
considered. Another good example of laws of exponents breaking down is the following:

—l=V-IW-1=/(-1)(-1)=V1=1

oops. Exponential functions for negative bases are meaningful from the viewpoint of complex variables,
1

however it comes at the cost of losing the function property. For example, (—1)z = {4, —i} where ¢ is the

imaginary unit classically denoted v/—1 = i. Enough about that, I'm just trying to make you aware of some

Notice that fractional powers are problematic for negative numbers. If you agree that % = %% then you
1
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boundaries in our thinking about exponents. Hopefully you’ll get a chance to take Math 331 sometime soon
and all the mysteries of complex arithmetic will become clear.

From this point we could go on and prove dozens of propositions about limits of your favorite algebraic
functions. Let me summarize: if you can plug in the limit point and avoid division by zero or an even
root of a negative number then the formula of the function gives the output of the limit by simple function
evaluation. In other words:

Theorem 3.3.21. continuity of algebraic functions.

Let f(x) be defined by a finite number of algebraic operations (possibly including addition, multipli-
cation, division, taking integer or fractional roots) then f is continuous at each point in the interior
of its domain.

I think we’ve seen enough detail in this direction so we now turn to limits of sine and cosine.

Proposition 3.3.22. limits of sine and cosine.

Let a € R, lim,_,, sin(z) = sin(a) and lim,_,, cos(z) = cos(a). ‘

Proof: in your homework you will prove that if 0 < || < 7/2 then |sin(x)| < |z|. To begin this proof we
show that lim,_,¢sin(z) = sin(0) = 0.

Let € > 0 and choose 6 = min(e, 7/4). Suppose that € R such that 0 < | — 0| < §. Since 6 < w/4 < 7/2
your homework gives us the result |sin(z) — 0] = |sin(z)| < |z] < § < e. Therefore, for each € > 0 we have
shown there exists ¢ > 0 such that 0 < |z — 0| < § implies | sin(xz) — 0| < € hence lim,_,¢ sin(z) = 0.

. _ T 1— ) io. i .
ill)% cos(z) ili%[ 2sin”(x/2)] trig. identity
= }13% 1- 2}_1_% sin(z/2) il—>mo sin(z/2) limit laws
=1 — 2sin(lim 2/2) sin(lim z/2) composition limit law
z—0 z—0

_ _ . l . . l . . . .
=1—2sin(5 ill)% ) sin(3 ili% x) homogeneity limit law
=1 — 2sin(0) sin(0) limit of identity function
=1 definition of sine function

Lemma 3.3.23. substitution of limiting variable.

lim f(z) e R & lim f(a+h). €R
h—0

r—a

Proof of lemma: suppose lim,_,, f(x) = L2 € R. Let g(h) = a+h and note g(h) — a as h — 0. Therefore,
limp_y0 feg(h) =limp_o f(a+ h) = Ly by the limit of composites law.

Conversely, suppose limy,_,o f(a + h) = Ly € R. Let p(h) = f(a + h) hence limy,_,o p(h) = Lo. Furthermore,
define ¢(x) = x — a. Observe that ¢(z) — 0 as x — a. Consider then

lim f(x) = lim f(a-+ 2 —a) = lim f(a+ q(z)) = lim pla(x) = Lo

T—ra T—ra
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where the last step again uses the limit composition lawm v

Finally, using the facts already proven together with the adding angle formulas suffices to complete the proof:
:llir(ll cos(z) = }llli% cos(a + h)
= lim cos(a) cos(h) — sin(a) sin(h)
h—0
_ I Y lim si
cos(a) Lim cos(h) — sin(a) Lim sin(h)
= cos(a).

I leave the proof that lim,_,, sin(z) = sin(a) as a homework probleIrEl This completes the proof of proposi-
tion [3.3.22] [

Remark 3.3.24.

It is sometimes quite annoying how difficult it is to prove something as graphically obvious as the
preceding proposition. Of course the sine and cosine function have limits which are nothing more
than the sine or cosine function evaluated at the limit point. Make no mistake, the preceding proof
was not superfluous, if we skip it then something is missing. We’re laying a foundation currently.
Once it’s built then we we’ll just use it.

In our lexicon of basic functions there are two things we have yet to cover in this section:
1. exponential functions
2. inverse functions

Once we have the exponential function and the inverse function then we can pretty much complete our list
of basic limits. For example, f(z) = 2™ = e™™™®) can be taken as the definition of 2™ for z > 0. Currently
we have only covered fractional power functions.

Proposition 3.3.25. limit of exponential function.

\Let b>0, limg ., b% = b°.

Proof: We begin by proving lim,_,02% = 1. Let € > 0 and choose 6 = log,(1 + €). Note that 1 +¢ > 1
hence log,(1 + €) > 0. Suppose that x € R such that 0 < |z| < §, it follows that

1
—logy(1+¢€) = log2<1+6> < x <logy(l+e)

but surely’] z < y implies 2 < 2¥ thus

<2 <1+e
1+e

subtracting one from each inequality yields,

—1<2"—-1<e

1+e

"the upside-down triangle indicates the proof of the lemma is complete however the proposition’s proof is still
unfinished. The method of proof we just used here is called a ”biconditional proof’. To prove < we proved = and
=.

8it should be easy if you understand the argument we just made for cosine here!

Yadmitably there is a gap here, I invite the reader to supply a proof
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Note that -~ —1 = — & > —e thus —e < 2” — 1 < € which is equivalent to [2* — 1| < e. Hence, 0 < |z| < §
implies |2% — 1| < e. Therefore, lim,_,¢ 2% = 1.

To cover other bases than 2 we can use the identity b = 21°82(0") = 21°8:())% for any b > 0. Since logy(2) is a
constant we can deduce that log,(b)x — 0 as  — 0. Moreover, using the composition of limits proposition
we find that b% = 21°82()* _ 1 a5 22 — 0. Thus, lim,_,b® = 1.

The laws of exponents complete the proof for limit points other than zero:

lim (b**") = lim (b%0") = b® lim b" = b°.

h—0 h—0 h—0
Then by Lemma [3.3.23] lim,_,,(b*) = b*. O

The use of 2% was simply a choice on my part. We could just as well have used the identity 2P = 3%1°83(P) to
drive the proof. The interesting thing about this proof is that in retrospect we can replace the proof for the
root, function, reciprocal function, identity function and natural number power function with this one proof.

Proposition 3.3.26. continuous injections are strictly monotonic.

If U is connected and f : U — V is continuous then f is 1-1 iff f is either strictly increasing or
strictly decreasing on U.

Remark 3.3.27.

You can skip the proof of this proposition until later. It would be better to read this after you read
the section on the intermediate value theorem. I'm leaving it here because I aim to state an important
theorem at the end of this section which is not possible without the last couple propositions in this
section.

Proof: if we drop the condition of continuity then we could jump from increasing to decreasing on different
components of U. However, continuity should keep f from jumping so if f is increasing on part of U it
should continue to increase over the whole set. This is not a proof, rather just an argument for plausibility.
The proof is somewhat technical but the key is the intermediate value theorem (IVT). Forgive me if we don’t
prove the IVT just yet.

Suppose f : U — V is continuous and strictly increasing or decreasing. We have shown before that strict
monotonacity implies injectivity. See prop. [2.7.6]

Conversely, suppose f : (a,b) — (¢, d) is continuous and 1-1. We seek to show that f is either increasing
or decreasing. Suppose f is strictly increasing on the connected subsets U; C U for j = 1,2,.... Likewise,
suppose f is strictly decreasing on connected subsets Vi, C U for £ = 1,2,.... The union of sets U; and V},
for all 7,k should yield U. Of particular interest are the points which are on the edge between U; and V.
Suppose in particular that U,V are two subsets such that U NV = {z,} and U is to the left of V on the
number line. I continue to use the notation U indicates strictly increasing and V strict decrease of f. We
can show that f is not 1-1 if there exists such a point. We choose sets small enough such that [w,, z,] C U
whereas [z,, ¢,] C V. By construction w, < z, and as f increases on U it follows that f(w,) < f(2,). By the
continuity of f the intermediate value theorem yields [f(w,), f(2,)] C flw,, 2o]. Likewise, by construction
2o < go and as f decreases on V' it follows f(2,) > f(g,). Again, by the continuity of f the intermediate value

theorem yields [f(qo), f(20)] € f[20s o). Suppose that p € [f(w,), f(20)] N [f(40), f(26)] such that p # f(z,)
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then we have both p < f(z,) and p > f(x,) which is a contradiction. It follows that we either have disjoint
intervals of increase and decrease or we have just one interval of strict increase or decrease. Our assumption
that U is connected rules out the possibility of disjoint subsets whose union cover the whole set. Therefore,
we have shown that f is either strictly increasing or strictly decreasing. [

Proposition 3.3.28. invertible continuous function have continuous inverses.

‘ Let U,V CR, if f: U — V is continuous with inverse f~':V — U then f~! is continuous. ‘

Proof: we seek to show f~! is continuous at y, € V. Let € > 0 and suppose ¥, = f~1(y,), choose
§ = min[f(z,) — f(wo —€), f(o + €) — f(x,)] and suppose 0 < |y — y,| < 8. Note that

y<yo+5Sf(x0)+[f(xo+€)_f(xo)] :f(‘r0+6)
Then on the other side,
Y>Yo— 062> f(x0) = [f(w0—€) — flzo)] = f(T0 —€)

Putting together the inequalities above yields f(x, —€) < y < f(x,+€). Since f is continuous and invertible
it follows from the previous proposition (and ultimately the IVT) that f~! and f are either strictly increasing
or strictly decreasing on U. Suppose f~! is strictly increasing then it follows:

To—e<fHy) <mote = |[fTW)—zo|l<e = [f'W)—f W) <e

If f=1 is strictly decreasing then we again find that 0 < |y — y,| < 6 implies |f~!(y) — yo| < €. Therefore,
lim, ., f~*(y) = f~*(yo) for each y, € V hence f~! is continuous. OJ

Proposition 3.3.29. continuity of power function for arbitrary power.

‘ Let p € R and a > 0 then lim,_,, 2P = a”. ‘

Proof: the following identity could be used as the definition if p > 0, zP = 2P1°82(*) By prop. [3.3.28 we
know logarithms are continuous since each logarithm is inverse function of an exponential function which we
already proved was continuous. Note that,

lim (CU‘D) = lim (2p logQ(w)) _ 21imwﬂa(p log, () _ op logy(a) _ aP. 0
T—a r—a

Remark 3.3.30.

The beauty of the logarithm is that it changes products to sums: log(fg) = log(f) + log(g). Note
that fg = 2'°82(f9) = 2losa(f)+loe2(9) Tf we knew that f(z) = log,(x) was a continuous function
then we would have a proof that the product of two continuous function is continuous since it is
built using the composite and the sum of continuous functions. In other words, continuity of the
logarithm yields an easy proof of that the product of continuous functions is continuous. A similar
proof is possible for the quotient. However, these proofs are not as general as the one already offered
since we can only make these arguments for functions with positive outputs.

The functions listed in chapter 2 are called elementary functions. Perhaps the best summary of this section
is as follows:
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Proposition 3.3.31. most elementary functions are continuous on the interior of their domain.

Polynomial, rational, power, trigonometric, hyperbolic as well as their respective local inverse func-
tions are continuous on the interior of their respective domains.

I’'m sometimes tempted to say that all functions whose formula is constructed from finitely many elementary
functions are continuous at each point in the interior of their domains. However, I think a clever student
could find a counter-example. This much is almost always true:

Remark 3.3.32.

If a function is defined at the limit point then the value of the function at the limit point is simply
given by function evaluation. In other words, functions are usually continuous.

3.4 limit calculation

In the preceding section we made painstaking arguments to prove most of the basic theorems about limits.
Fortunately we will not usually find that level of detail is necessary to calculate a given limit. In fact, the
point of this section is that we don’t have to use the definition to calculate most limits. Rigorous arguments
can be built via combining the propositions of the preceding section together with some crafty algebraic
techniques. Non-rigorous, intuitive arguments are also possible through either numerical calculation (table
of values) or by leading term analysis. Which argument is best depends on your audience.

Example 3.4.1. In each of the limits below the limit point is on the interior of the domain of the elementary
function so we can just evaluate to calculate the limit.

i.) limg_,3(sin(x)) = sin(3)

N T Va?—3 -3 _ 1
i1.) hmajﬁg( T3 ): Yo =3

iii.) limy, o(sin~*(h)) = sin™*(0) = 0

iv.)limg o (23 + 322 —2+3) = a®+3a®> —a+3.

We did not even need to look at a graph to calculate these limits. Of course it is also possible to evaluate
most limits via a graph or a table of values, but those methods are less reliable.

Example 3.4.2.

lim,_,o(sin(z) + cos(e®)) = limg_o(sin(x)) + lim,_o(cos(e*)), (additivity.)

sin(0) 4 cos(lim,—,0 €*),  (continuity of sine and cosine.)

= sin(0) + cos(e®)  (continuity of exponential.)

= cos(1).

I may ask you to calculate a particular limit a particular way. However, if I don’t say one way or the other
you are free to think for yourself. Sometimes a graph is a good solution, sometimes a table of values is
convenient, sometimes we can use propositions from section The example below illustrates the table of
values idea.
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Example 3.4.3. The following table of values indicates that lim,_,q+ sin@) _

T

X sin(x)/x
0.5 0.958851
0.2 0.993347
0.1 0.998334
0.01 0.999983
0.001 | 0.999999

Now the limit consider in Example is not nearly as obvious as the limits in Example I should
mention that the limit has indeterminant form of type 0/0 since both sin(z) and z tend to zero as = goes to
zero. One of main goals in this chapter is to learn how to analyze indeterminant forms. Thus far we have
only encountered case (1.) of the definition below. The reason these are called ”indeterminant forms” is
simply that the value of the limit with an indeterminant form is not known without further analysis. Limits
with these forms might diverge to infinity, simply not exist or even converge to any number of finite values.

Definition 3.4.4. indeterminant forms.

% is of ”type 8” iff lim f =0 and limg =0

1. we say lim

5 e B &b S ©
2. we say lim g is of "type 227

iff lim f = +00 and limg = +o00
3. we say lim fg is of ”type 0c0” iff lim f = 0 and lim g = o0

4. we say lim f — g is of ”type oo — o0” iff lim f = oo and lim g = oo

Now it is time for us to test our algebraic might. The examples given in this section illustrate all the basic
algebra tricks to unravel undetermined limits. I like to say we do algebra to determine the limit. The limits
are not just decoration, many times an expression with the limit is correct while the same expression without
the limit is incorrect. On the other hand we should not write the limit if we do not need it in the end. How
do we know when and when not? We practice.

x+2

Example 3.4.5. Calculate limwﬁg< P

). Notice that this limit is of type 0/0 since the numerator

and denominator are both zero when take the limit at -2.

lim _zt2 ) lim _r+2
es—2\22+3x+2/) a2\ (z+2)(z+1)

' < 1 >
= lim
z——-2\2x+1

The second step where we cancelled (x + 2) with (z + 2) is valid inside the limit because we do not have
x = —2 in the limit. We get very close, but that is the difference, this is not division by zero.
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Example 3.4.6. The limit below is also type 0/0 to begin with
. 3z + 22 . z(xz + 3)
lim| —4———| = lim| —5—7—"—
z—0\ 23 + 222 4+ z—0\ z(x2 + 2z + 1)

0+3
0+0+1
= 3.

I reiterate, we can cancel the x/x inside the limit because x # 0 within the limit. Again we see that factoring
and cancellation has allowed us to modify the limit so that we could reasonably plug in the limit point in the
simplified limit. This is often the goal.

We observe that algebraic manipulations may change an undetermined form to a determined form which
does not violate the laws of real arithmetic when you plug in the limit point.

Example 3.4.7. This limit also has form 0/0 to begin.

%g<§§3)£%gji$§@i@)

Example 3.4.8. The first step is a time-honored trick, it is nothing more than multiplication by 1. So if
you encounter a similar problem try a similar trick.

@a+h—m@M+h+m>
2

i Va+h—2 i
m|{ ——— | = lm
h—0 h h—0 VA+h+2)

A+h+2V/E+h— 2\/4+h—4>
h(VA+Th+2)

)

F+2>

i
oy

(
i
(s
(
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Example 3.4.9. Here the trick is to combine the fractions in the numerator by finding the common denom-

inator of 4x
1,1 z + 4
= + =
lim (4 T) = lim < Ao >
r——4 4+£L‘ r——4 4+£L‘

Example 3.4.10.

. ((x — 3)cos(z — 3)) . <(x — 3)cos(z — 3))

z—3\  x(x? — bz +6) z—3\ z(x —3)(z —2)
. (cos(zx—3)
i1_1>113< x(x —2) >
_cos(3—-13)
- 3(3-2)
1
= 3

Example 3.4.11. Piecewise defined functions can require a bit more care. Sometimes we need to look at

one-sided limits.
lim{ m ] = 7
x—0 €T

recall that the notation |z| is the absolute value of x, it is the distance from zero to x on the number line.

—x :x<O.
|z| = ,
T x> 0.

In the left limit © — 0~ we have x < 0 so |z| = —x thus,
- 1
lim {'“T'} — lim [q — lim {] - -1
z—0-| T z—0-| z—0—| 1

In the right limit © — 07 we have x > 0 so |z| = z thus,
1
lim [9”'] — lim {x} — lim [} — 1
r—0~ x z—=0-| T z—0—| 1

Consequently we find that the left and right limits disagree hence limwﬁo{ lz| } = d.n.e..

x

The function we just looked at in preceding is a step function. They are very important to engineering since
they model switching. The graph y = |z|/z looks like a single stair step,
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Example 3.4.12. Good to know your trig. identities:

Jimy (s,1n(2jcl)nfiua(x)) =l (2 sin(z) cS;Isl((j)) + sin(a:)>

N———

~ lim (1
z—0\ 2cos(z) + 1
1
g.
Example 3.4.13. This limit below is not indeterminant, the type oo/0 will diverge. The question is merely
how does it diverge? It becomes clear this limit is positive after we simplify,

i (22 g ()

= OoQ.

Example 3.4.14. This limit below is not indeterminant, the type co/0 will diverge. The question is merely

how does it diverge?
| <€m + 3)
lim - = —o0.
x—0- \ sin(z)

I knew it diverged to —oo since the values of the function are negative for inputs just a little to the left of
zero.

Example 3.4.15. This limit exhibits yet another case that can arise, notice we start with the indeterminant
form 0/0 but in the next to last line we have reduced to the problem to 0/oc which intuitively must yield zero.

T+ = T+ =
lim ( 1\/5) lim( 1ﬁ)
z—0t z—0t

N Va?
oy /T +

a 1:i>0Jr vV

Var
oy (2

r—0t 1
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We may make the result obvious without appeal to intuition. Just make one more step, multiply the by

V[V

S

lim <x+1 ): lim (xﬁ‘Lﬁ)

z—0t Vo re z—0t

I would not fuss as much at you skipping the last step as I would if you skipped the earlier steps. Again,
the point of the earlier steps was to remove the indeterminancy whereas the point of the later steps was to
clarify that the limit did indeed converge to zero.

Remark 3.4.16.

Intuition is very important. One of the main reasons to do a lot of homework is that it refines and
sharpens your intuition. Whenever a person with experience is faced with a limit problem the usual
first step we make is to decide what we think the answer ought to be. Then we supply algebra to
confirm our suspicion. If the function is complicated I often plug in points really close to the limit
point to get a feel for the problem. This approach will fail for a certain class of sarcastically crafted
pathological problems but it is successful for almost all problems assigned in this introductory course.
My point? You can figure out what the answer is often even when you can’t show your work. This
will earn you some partial credit, but the idea here is not just to find an answer. The steps showing
how the answer is deduced are important. At a minimum you ought to show how indeterminancy is
removed for a given problem. I did that in every example in this section.




98 CHAPTER 3. LIMITS

3.5 squeeze theorem

There are limits not easily solved through algebraic trickery. Sometimes the ”Squeeze” or ”Sandwich”
Theorem allows us to calculate the limit.

Proposition 3.5.1. squeeze theorem.

Let f(z) < g(z) < h(x) for all z near a then we find that the limits at a follow the same ordering,

lim f(z) < lim g(x) < lim h(z).

T—ra T—ra r—a

Moreover, if lim,_,, f(z) = lim,_,, h(z) = L € R then lim,_,, f(z) = L.

Proof: Suppose f(x) < g(z) for all € B;, (a), for some §; > 0 and also suppose lim,_,, f(z) = Ly € R and
lim,_,, g(x) = Ly, € R. We wish to prove that Ly < L,. Suppose otherwise towards a contradiction. That is,
suppose Ly > Lg. Note that lim,_,,[g(z) — f(x)] = Ly — Ly by the linearity of the limit. It follows that for
€= 1(Ly—Ly) > 0 there exists d, > 0 such that x € By, (a), implies |g(z)— f(2)—(Ly—Ly)| < € = 3(Ly—Ly).
Expanding this inequality we have

~5(Lr = L) < g@) ~ @)~ (Ly — L) < 5(Ls — Ly)

adding Ly — Ly yields,
3 1
2Ly~ Ly) < g(a) = () < —5(Lg = Ly) <0.

Thus, f(x) > g(x) for all € Bs,(a),. But, f(x) < g(x) for all x € By, (a), so we find a contradiction for
each « € Bs(a) where § = min(d1,02). Hence Ly < L,. The same proof can be applied to g and & thus the
first part of the theorem follows.

Next, we suppose that lim,_,, f(z) = lim,—, h(z) = L € R and f(z) < g(x) < h(z) for all x € By, (a) for
some 01 > 0. We seek to show that lim,_,, f(z) = L. Let € > 0 and choose d; > 0 such that |f(z) — L| < e
and |h(z) — L| < € for all x € Bs(a),. We are free to choose such a d; > 0 because the limits of f and h are
given at = a. Choose § = min(d1,d2) and note that if x € Bs(a), then

f(z) < g(x) < h(z)

hence,
f@) = L < gla) — L < h(z) — L

but |f(z) — L| < e and |h(z) — L] < € imply —e < f(x) — L and h(z) — L < € thus
—e< f(x)—L<g(x)—L<h(z)—L<e.

Therefore, for each € > 0 there exists § > 0 such that « € Bs(a), implies |g(z) — L| < €so lim,_,, g(z) = L. O

We can think of h(z) as the top slice of the sandwich and f(x) as the bottom slice. The function g(z)
provides the BBQ or peanut butter or whatever you want to put in there.
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Example 3.5.2. Use the squeeze theorem to calculate lim,_o( 2?sin(L) ). Notice that the following in-
equality is suggested by the definition or graph of sine

—1<sin(d) <1

Substitute § = 1/x and multiply by x® which is positive if x # 0 so the inequality is maintained,
2 2 1 2
—x* <z%sin| — | <=z
x

We identify that f(z) = —z? and h(z) = 2? sandwich the function g(z) = 2?sin(1) near = 0. Moreover,
it 1s clear that

. 2y _ 2y
ilg})(ac)—o i;rr%)( x® ) =0.

Therefore, by the squeeze theorem, lim,_q( 2 sin(i) ) = 0. Graphically we can see why this works,

A\ ow g(z) = purple
= wy AT e h(:r') grcen

104 L

Il

18

Perhaps, you're wondering why we could not just use the limit of product proposition lim fg = lim f lim g.
The problem is that since the limit of sin(1) at zero does not exist due to wild oscillation at zero. Therefore,

x

we have no right to apply the limit proposition.

Example 3.5.3. Suppose that all we know about the function f(x) is that it is sandwiched by 1 < f(x) <
2%+ 22+ 2 for all x. Can we calculate the limit of f(z) as x — —12 Well, notice that

. _ . 2 _
lim (1) =1 Ilggl(x +2r+2)=1.

z——1

Therefore, by the Squeeze Theorem, lim,_,_; f(x) = 1.

3.6 intermediate value theorem

The proof of the intermediate value theorem is given at the conclusion of this section.

Theorem 3.6.1. intermediate value theorem (IVT).

Suppose that f is continuous on an interval [a, b] with f(a) # f(b) and let N be a number such that
N is between f(a) and f(b) then there exists ¢ € (a,b) such that f(c) = N.

Notice that this theorem only tells us that there exists a number ¢, it does not actually tell us how to find
that number. This theorem is quite believable if you think about it graphically. Essentially it says that if you
draw a horizontal line y = N between the lines y = f(a) and y = f(b) then since the function is continuous
we must cross the line y = N at some point. Remember that the graph of a continuous function has no
jumps in it so we cant possibly avoid the line y = N. Let me draw the situation for the case f(a) < f(b),
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Green line isy = IN. Purple lines are
y = f(a) andy = f(b). In this
example there is more than one point
¢ such that f(¢) = N. There must
Sl \/ T be at least one such point provide

that the function is continuous.

The IVT can be used for an indirect manner to locate the zeros of continuous functions. The theorem
motivates an iterative process of divide and conquer to find a zero of the function. Essentially the point is
this, if a continuous function changes from positive to negative or vice-versa on some interval then it must
be zero at least one place on that interval. This observation suggests we should guess where the function is
zero and then look for smaller and smaller intervals where the function has a sign change. We can just keep
zooming in further and further and getting closer and closer to the zero. Perhaps you have already used the
IVT without realizing it when you looked for an intersection point on your graphing calculator.

Example 3.6.2. Show that there exists a zero of the polynomial P(x) = 43 — 622 + 3z — 2 on the interval
[1,2]. Observe that,

P(1)=4-6+3-2=-1<0

P(2)=32-244+6-2=12>0

We know that P is continuous everywhere and clearly P(1) < 0 < P(2) so by the IVT we find there exists
some point ¢ € (1,2) such that P(c) = 0. To find the precise value of ¢ would require more work.

Example 3.6.3. Does tan~!(z) = —cos(x) for some z € (—2,2) ? Let’s rephrase the question. Does
f(z) = tan=1(z) + cos(x) = 0 for some = € (—2,2)? This is the same question, but now we can use the IVT
plus the sign change idea. Observe,

an~!(—2) + cos(—2) = —1.52

an~'(2) + cos(2) = 0.691

=t

(3.1)

Obviously f(—2) < 0 < f(2) and both tan=!(z) and cos(x) are continuous everywhere so by the IVT there
is some ¢ € (—2,2) such that f(c) = 0. Clearly ¢ has tan~'(¢) = —cos(c). If you examine the graphs of
y =tan"(z) and y = — cos(x) you will find that they intersect at c = —0.82 (approximately).
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Remark 3.6.4. root finder for continuous functions.

Let me take a moment to write an algorithm to find roots. Suppose we are given a continuous
function f, we wish to find ¢ such that f(c) = 0.

1. Guess that f is zero on some interval (a,, b,).

2. Calculate f(a,) and f(b,) if they have opposite signs go on to 3.) otherwise return to 1.) and
guess differently.

3. Pick ¢1 € (a,,b,) and calculate f(cq).

4. Tf the sign of f(c;) matches f(a,) then say a; = ¢; and let by = b,. If the sign of f(¢1)
matches f(b,) then say by = ¢ and let a1 = a,

5. Pick ¢o € (a1,b1) and calculate f(c2).

6. If the sign of f(cg) matches f(a;) then say as = ¢y and let by = by. If the sign of f(c2)
matches f(by) then say by = ¢y and let as = aq

And so on If we ever found f(cy) = 0 then we would stop there. Otherwise, we can repeat this
process until the subinterval (ax,bx) is so small that we know the zero to some desired accuracy.
Say you wanted to know 2 decimals with certainty, if you did the iteration until the length of the
interval (ag,br) was 0.001 then you would be more than certain. Of course, a careful analysis of
this algorithm and its limitations would also need to consider rounding errors and the inherent
limitations of machine arithmetic. Beware the machine e.

3.6.1 a deeper look at the intermediate value theorem

Proposition 3.6.5.

Let f be continuous at ¢ such that f(c) # 0 then there exists 6 > 0 such that either f(x) > 0 or
f(z) <0 for all z € (¢ —d,c+9).

Proof: we are given that lim,_,. f(z) = f(a) # 0.

g

1.) Assume that f(a) > 0. Choose ¢ = f(; and use existence of the limit lim,_,. f(z) = f(a) to select

§ > 0 such that 0 < |z — ¢ < & implies |f(z) — f(a)] < £2 hence —£2 < f(2) — f(a) < L. Adding f(a)

across the inequality yields 0 < @ < flz) < 3f2(a).

2.) If f(a) < 0 then we can choose € = —@ > 0 and select § > 0 such that 0 < |z — ¢| < ¢ implies
|f(z) — fla)] < —@ hence @ < f(x)— fla) < —@. It follows that %(a) < f(z) < @ < 0.

The proposition follows. [

Bolzano understood there was a gap in the arguments of the founders of calculus. Often, theorems like those
stated in this section would merely be claimed without proof. The work of Bolzano and others like him
ultimately gave rise to the careful rigorous study of the real numbers and more generally the study of real
analysis 1]

10the Bolzano-Weierstrauss theorem is one of the central theorems of real analysis, in 1817 Bolzano used it to
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Proposition [3.6.5]is clearly extended to sets which have boundary points. If we know a function is continuous
on [a,b) and f(a) # 0 then we can find 6 > 0 such that f([a,a+9)) > 0. ( This is needed in the proof below
in the special case that ¢ = a and a similar comment applies to ¢ = b.)

Theorem 3.6.6. Bolzano’s theorem

‘Let f be continuous on [a.b] such that f(a)f(b) < 0 then there exists ¢ € (a,b) such that f(c) = 0. ‘

Proof: suppose f(a) < f(b) then f(a)f(b) < 0 implies f(a) < 0 and f(b) > 0. We can use axiom All for
the heart of this proof. Our goal is to find a nonempty subset S C R which has an upper bound. Axiom
A11 will then provides the existence of the least upper bound. We should like to construct a set which has
the property desired in this theorem. Define S = {z € [a,b] | f(z) < 0}. Notice that a € S since f(a) <0
thus S # (). Moreover, it is clear that x < b for all z € S thus S is bounded above. Axiom A1l states that
there exists a least upper bound ¢ € S. To say c is the least upper bound means that any other upperbound
of S is larger than c.

We now seek to show that f(c¢) = 0. Consider that there exist three possibilities:

1. if f(c¢) < 0 then the continuous function f has f(c) # 0 so by prop. there exists § > 0 such that
x € (c—4d,¢+d)N|a,b] implies f(z) < 0. However, this implies there is a value z € [¢,c+0) such that
f(z) < 0 and > ¢ which means x is in S and is larger than the upper bound ¢. Therefore, ¢ is not
an upper bound of S. Obviously this is a contradiction therefore f(c) £ 0.

2. if f(¢) > 0 then the continuous function f has f(c) # 0 so by prop. there exists 4 > 0 such
that z € (¢ — d,¢+ 0) N [a,b] implies f(z) > 0. However, this implies that all values z € (¢ — 4, ]
have f(z) > 0 and thus x ¢ S which means ¢ = ¢ — 6/2 < ¢ is an upper bound of S which is smaller
than the least upper bound c¢. Therefore, ¢ is not the least upper bound of S. Obviously this is a
contradiction therefore f(c) # 0.

3. if f(¢) = 0 then no contradiction is found. The theorem follows. [

My proof here essentially follows Apostol’s argument, however I suspect this argument in one form or another
can be found in many serious calculus texts. With Bolzano’s theorem settled we can prove the IVT without
much difficulty.

(IVT): Suppose that f is continuous on an interval [a,b] with f(a) # f(b) and let N be a number
such that N is between f(a) and f(b) then there exists ¢ € (a,b) such that f(c) = N.

Proof: let N be as described above and define g(z) = f(x) — N. Note that ¢ is clearly continuous.
Suppose that f(a) < f(b) then we must have f(a) < N < f(b) which gives f(a) — N <0 < f(b) — N
hence g(a) < 0 < g(b). Applying Bolzano’s theorem to g gives ¢ € (a,b) such that g(¢) = 0. But,
g(c) = f(¢) — N = 0 therefore f(c) = N. If f(a) > f(b) then a similar argument applies. 0.

prove the IVT. It states every bounded sequence contains a convergent subsequence. Sequences can also be used to
formulate limits and continuity. Sequential convergence is dealt with properly in Math 431 at LU.



Chapter 4

differential calculus

We will define the derivative of a function in this chapter. The need for a derivative arises naturally within
the study of the motion of physical bodies.

You are probably already familiar with the average velocity of a body. For example, if a car travels 100 miles
in two hours then it has an average velocity of 50 mph. That same care may not have traveled the same
velocity the whole time though, sometimes it might have gone 70mph at the bottom of a hill, or perhaps
Omph at a stoplight. Well, this concept I just employed used the idea of instantaneous velocity. It is the
velocity measured with respect to an instant of time.

How small is an ”instant”? Well, it’s pretty small. You might imagine that this ”instant” is some agreed
small unit of time. That is not the case, there is no natural standard for all processes. I suppose you could
argue with the policeman that your average rate of speed to school was 30mph (taking the ”instant” to be
10 minutes for me) but I bet all he’ll care about is the 40mph you did through the 20mph school zone. The
”velocity” of a car as measured by radar is essentially the instantaneous velocity. It is the time rate change
in distance for an arbitrarily small increment of time. It seems intuitive to want such a description of motion,
I have a hard time thinking about how we would describe motion without instantaneous velocity. But, then
I have ( we all have ) grown up under the influence of Isaac Newton’s ideas about motion. Certainly he
was not alone in the development of these ideas, Galileo, Kepler and a host of others also pioneered these
concepts which we take for granted these days. Long story short, differential calculus was first motivated
by the study of motion. Our goal in this chapter is to give a precise meaning to such nebulous phrases as
7instant” of time. The limits of the previous chapter will aid us in this description.

Generally, the derivative of a function describes how the function changes with respect to its independent
variable. When the independent variable is time then it is a time-rate of change. But, that need not always
be the case. I believe that Newton first thought of things changing with respect to time, he had physics on
the brain. In contrast, Leibniz considered more abstract rates of change and the modern approach probably
is closer to his work. We use Leibniz’ notation for the most part. Anyway, I digress as usual.

Let me briefly describe the content of this chapter. We begin by defining tangent lines and infinitesimal
rates of change. Then the derivative as a function is defined and several examples exhibiting the tangent line
construction are given. Next, linearity and the power rule are developed. Breaking from logical minimalism
for the sake of pedagogical efficiency we then find derivatives of exponential, sine and cosine functions. In-
clusion of that material at that point allows us to integrate those important transcendental function in the

103
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later sections of the chapter. Finally, we conclude the chapter by working out the major rules of differential
calculus: the product, quotient and chain rules and their beautiful applications in the techniques of loga-
rithmic and implicit differentiation.

Finally, I cannot overstate the importance of this chapter. The derivative forms the core of the calculus
sequence. And it describes much more than velocity, that is just one application. Basically, if something
changes then a derivative can be used to model it. It’s ubiquitous.

4.1 tangent lines

Let a be a fixed number throughout this discussion. Let h be an number which we allow to vary. Then a
secant line at (a, f(a)) is simply a line which connects (a, f(a)) to another point (a + h, f(a + h)) which is
also on the graph of the function. I have pictured a particular secant line below,

\f M \.fll = Mx + b 4"-%":“/1 }-"aux_"ﬁ?jalr.- __-_a...-i'}“_ .I/
: who® v oand b Showld ¢
, I lee ‘E’ r s 1dg
+"-_,< T % en
! *-r deda 7 ,)f
e e

—>y

You can imagine that as h increases or decreases we will get a different secant line. In fact, there are infinitely
many secant lines. Notice that the slope of the pictured secant line is just the rise over the run, that is

Ay flath) -~ fl) _ flath)~ f(a)

m_ﬂ_ a+h—a h

This may look familiar to you. it is the so-called ” difference quotient” some of you may have seen in your
precalculus course. We should also realize the slope of the secant line gives the average rate of change of
y with respect to z.

Now imagine that h — 0. As we take that limit we will get the tangent line which just kisses the function
at the point (a, f (a))ﬂ Moreover, we should notice that in the limit as h — 0 the average rate of change is
replaced with the instantaneous rate of change of y with respect to z, this is precisely what the slope
of the tangent line means from an analytical standpoint.

The interpretations of y and x are too numerous to list. However, the most important case is arguably y = s
(position) and = = ¢ (time). In that context the slope of a secant line between (¢1,s1) and (1, s1) is called
the average velocity; v,vg = % = 22251 whereas the slope of the tangent line is called the instantaneous

to—1t1
velocity. Let me be precise,

it may however intersect the graph elsewhere depending on how the graph curves away from the point of tangency
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Definition 4.1.1. tangent line.

The tangent line to y = f(z) is the line that passes through (a, f(a)) and has the slope

o= () = }133%( fla+h) - f(a) )

h

if the limit exists, otherwise we say there is no tangent line at that point. If there is a tangent line
through (a, f(a)) to the curve y = f(z) then the equation for the tangent line is

‘y = f(a) + m(z — a). ‘

the notation f’(a) draws our attention to the fact that the quantity m is also ”the derivative at a
point”. We define the slope of a function at a point to be the derivative of the function at that
point (when it exists).

Continuing our discussion about velocity, the instantaneous velocity at time t for position s is thus defined,

< s(t+ 1) = s(t) >

v(t) = lim W

h—0
No qualifier is placed on v(t) because it is understood from here on out that unless qualified the ”velocity” is
the ”instantaneous velocity”. The necessity of this concept led Newton and others interested in the physics
of motion to the mathematics of calculus. The interplay between mathematics and physics continues to this
day. Anyway, let’s get back to the math...

The tangent line is unique when it exists because limits are unique when they exist. There are other
equivalent ways of looking at the limit which gives the slope of the tangent line. For examples:

1)
m= lim (Hmh‘w F{'«;)

h—o h

)
m= il_m F{xﬂxx}- 'F(rxj
by—sp B
L)

m= Lim (;wr m])

K—a

I reiterate, the slope of the tangent line characterizes how quickly ¥ is changing with respect to z. The slope
of the tangent line gives us the instantaneous rate of change of y with respect to z.
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Example 4.1.2. Find the slope of the parabolic function f(x) = x? at x = 1. In other words, find the slope
of the graph y = f(x) = x> when x =1 . We defined the slope of the graph at a point to be the slope of the
tangent line at that point. So we calculate,

h—0 h
2 12
:hm<(1+h) 1)
h—0 h
. <1+2h—|—h2—1>
:hm B
h—0 h

. ( 2h + h? )
= lim
h—0 h

= lim (2 + h)
h—0
=2.
I have listed more steps than I typically do for such limits. Notice the critical thing here is that once the 1
cancels with -1 then all terms have a factor of h so it cancels with the h in the denominator. We see that the

slope of the parabola at the point (1,1) is f'(0) = 2. Moreover, we can even find the equation of the tangent
line follows,

y=f)+f(O0)(z—-1)=1+2(x—1)=2r—1.
It is possible to find the tangent line approximately through drawing a careful graph and using a ruler and
graph paper. But, our results are not approximate. We found the exact result using calculus. Here is what it

looks like,

You may be wondering, when does the derivative at a point fail to exist? What sort of function would make
that happen? The example that follows illustrates one culprit, a "kink” or ”corner” in the graph. This
means that a function does not have a well-defined slope at a kink or corner in the graph because the left
and right tangents have different slopes (see picture below).

Example 4.1.3. The absolute value function is f(x) = |z|. As we have discussed it is really a piece-wise
defined function. We have
X x>0
|z| =
-z x<0

It turns out that this function has a kink at zero where it changes from a negative slope to a positive slope.
This means that the difference quotient has different left and right limits at zero. In particular,
. |0+n|—|0] m B

lim
h—0— h h—0— h h—0- h h—0—
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Notice that we replace |h| with h because in this left limit we allow values to the left of zero on the number
line, those are negative numbers. Similarly,

o 0+h[—JO] . |A A
1 — tim = g 2= dm (1) = 1.
T T e A
Therefore we can conclude,
iy e JO+R)—f(0) o [h]
I

Geometrically this is evidenced in our inability to pick a unique tangent line at the origin. Which should we
choose, the positive (purple) or the negative (green) sloped tangent line?

v

-8 -6 -4 -2 2 4 G 8

Another way the derivative at a point can fail to exist is for the function to have a vertical tangent. A
popular example of that is f(z) = y/z. If you look at the graph the tangent line is vertical. Vertical lines do
not have a well-defined slopd?]

We saw in the previous example that a function can be continuous at a point yet fail to be differentiable at
that same point. In contrast, if a function is differentiable at a point it must be continuous at that point.

Proposition 4.1.4.

If f'(a) exists for a function f then lim,_,, f(z) = f(a). In other words, differentiability of f at a
implies continuity of f at a.

Proof: Now, our goal is to show that limj,_o f(a + h) = f(a) since the substitution lemma stated
limy, o f(a + h) = lim,_,, f(z). We are given that f'(a) = limy_0 w
we have two limits which exist. Consider then

. . fla+h)—fla) . flat+h)—fla) .
) R - UG LEED)

Thus, limp_o(f(a + h)) = lim—o(f(a)) hence limp o f(a + h) = f(a). O

and clearly limp_,0h = 0 so

Notice that the equality above only holds true because we know the limit of the difference quotient exists.
In the case of a function like f(z) = |x| the limit of that product is not necessarily the product of the limits;
remember lim fg = lim flim g only if both lim f and lim g exist.

2 that is more a deficiency of our current formalism than anything else. If we adopt a parametric viewpoint
then the difference between horizontal and vertical tangents is washed away and much more general curves are easily
described. We defer discussion of parametric curves until later in the calculus sequence. For now we focus on the
special case of functions and graphs.
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4.2 definition of the derivative function

The derivative of a function f is simply the function f’ which is defined point-wise by the slope of the tangent
line to the function f at the given point.

Definition 4.2.1. derivative as a function.

If a function f is differentiable at each point in U C R then we define a new function denoted f’
which is called the derivative of f. It is defined point-wise by,

(f(fﬂ“b)f(l’))

J'(@) = lim )

h—0
We also may use the notation f' = df/dx = ﬁ Let U C R. When a function is has a derivative f’
which is continuous on U we say that f € C’l( ). If the derivative has a continuous derivative f”
on U then we say f € C?(U). If we can take arbitrarily many derivatives which are continuous on
U then we say that f is a smooth function and we denote this by f € C(U).

The notation % gives one the idea of taking the infinitesimal change dy and dividing by the infinitesimal
change dx. There are times when it is quite useful to think of dy/dz as the quotient of infinitesimals but
that time is not now. For now the symbol dy/dx is simply a notation to implicit the limiting process we just
defined. Geometrically, it is clear that df /dx should give us a function whose values are the slope of f at
each point where such slope is well-defined. The symbol C'!(U) represents a set of functions, each function
in this set is said to be continuously differentiable. There are functions which are differentiable but not

continuously differentiable at a given point.

Example 4.2.2. Suppose f(x) = /x. Calculate f'(x) directly from the definition. By definition,

8

f’(m)z}%(W)
- i (YRR
(T R
:}llin<h(;£_+x\)f)>
B (h(\/#+f)>
fllln(\/:ﬁlhf)

In other notation,

foa o o

The notation di 1s read ”derivative with respect to x” or often in conversation Ill just say "d-d-z of square

root of x minus three is one over two times the square root of x minus three”. I'm sure glad we have algebraic
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language for calculation, good notation is the starting point of much good mathematics. Note that f'(x) is
continuous on (0,00) and we may rightly conclude that f € C*(0,0).

Let me make a few more comments about our calculation: notice that the h is not present in the final answer,
the h is a variable which should go away after we complete the limiting process. Moreover, note that the
difference quotient was an indeterminant form of type 0/0 for most of the calculation. If you think about it
that will almost always be the case for any derivative calculation. For this reason the limit must be defined
carefully. The indeterminant form case is not the exception to the rule, rather it is the primary case of
interest to differential calculus. The purpose of this example is not that you should always calculate from the
definition. I merely include it to illustrate the definition explicitly, the purpose of similar homework problems
is the same. Obviously if you are instructed to calculate from the definition then you must do such, but if
allowed to use properties and power rules then you would be foolish to use the definition. That said, we must
use the definition for now since that’s all we knouﬂ.

Example 4.2.3. Suppose f(x) = ?12 Calculate f'(z) directly from the definition, assume x # 0. By
definition,

h
11
= lim( oth @ >
h—0 h
EGD)
:E%( h )
= lim ( —h )
h—0\ hx(z + h)
= lim < -1 >
h—0\ x(xz + h)
-1
z2’
In other notation,
df -1 d 1] -1
i R M =

Let’s take a moment to appreciate that the formula above allows us to set-up many different tangent lines
for the graph y = % For example,

fi(=2)=-1/9 f(-)=-1 f(1)=-1 f(2)=-1/4

Tell us the slopes of the tangent lines at (—2,—1/2),(—1,-1),(1,1) and (2,1/2) respective. We find tangent

lines:
11
y=—5-5@+2), y=-1-(z+1), y=1-(z-1), y=

Here’s how they graph:

(z —2)

NN
=

3sorry if you remember the ”easy” way from highschool, we have not earned the right to use such short-cut
formulae yet.
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4.3 linearity of the derivative and the power rule

These properties are crucial. Happily they’re also way easier than our previous methods! I begin with
linearity, we then work out the power rule for natural number powers.

Proposition 4.3.1.

The derivative d/dx is a linear operator. If ¢ € R and the functions f and g are differentiable then

d, o _.df
Llefy=e(f)=ca
d d d d
L(Fte) = ()t a(g)=S 4+ &
We also can write f'(z) = % and

(cf) (@) =cf(x) (f+9)()=[(2)+g ()

Proof: follows easily from the definition of the derivative. Additivity:

(£ +9)'() = lim h

flx+h)+ +h)—f(a:)—g(a:)>

< (f+g)@+h)—(f+g)(z) >
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Likewise, homogeneity:

1) =y LD —(eT)e))
_ %E%( cf(x+h}i—cf(w) )
e Lot 1) )
= cf'(z).

111

While proofs may not excite you, I hope you can see that these are really very simple proofs. We didn’t do
anything except apply the properties of the limit itself ( namely lim(f+g¢) = lim f+lim g and lim(cf) = c¢lim f

) to the definition of the derivative for the functions f and g respective. O

Rather than stating the power rule from the outset we will examine a number of cases to suggest the rule.
This will help us get more practice with the definition and perhaps a deeper appreciation for the power rule

itself. In each case I will again emphasize the utility of the d/dx notation.

4.3.1 derivative of a constant

Suppose f(z) = c for all z € R then calculate,

In operator notation we may write this result as follows:

d
a(c):()

Here we think of the operator % acting on a constant function to return the zero function.

4.3.2 derivative of identity function

Let f(z) =z for all z € R,

Il
=
LE

N
8
+
> S
|
53
N———



112 CHAPTER 4. DIFFERENTIAL CALCULUS

In operator notation we may write this result as follows:

Which also show you that Z—'; = 1 which helps reinforce my claim that thinking of dx as a tiny increment of
x is not totally off base. We ought to have dz cancelling dx. Beware, this sort of thinking is not without
peril.

4.3.3 derivative of quadratic function
Let f(z) = 2? for all z € R,

J'(x) = lim

f($+h)—f($)>
h

(x—|—h})L - )
<z2+2zh+h2x2>

= lim
h—0

/N 7N

= lim

h—0 h

=lm(2z+h)
h—0

= 2.

In operator notation we may write this result as follows:

d
ﬁ(x2):2x

4.3.4 derivative of cubic function

Let f(z) =22 for all z € R,

f(w) = nm( (@ +h)S — o )

h—0 h
) ( 23+ 32%h + 3xh? + b3 — 23 )
= lim
h—0 h
= lim ( 32 4 3zh + h?)
h—0
= 322,
In operator notation we may write this result as follows:
d
ﬁ( 3 ) = 322




4.3. LINEARITY OF THE DERIVATIVE AND THE POWER RULE 113

4.3.5 power rule

We should start to notice a pattern here: the derivative always returns a function with one less power than
we put into the derivative. Let’s list them to ponder the pattern,

1. 4(1)= 4(2% = 0201 = 0.

dzx dx
2. L(2)=L(z) =1zt =2
3. L(a?) =222 =22 =2z,
4. 2 (23) = 32371 =322

I bet most of you could guess that - (2#) = 42° (and you would be correct). We can summarize:

Proposition 4.3.2. power rule

Suppose n € R then,

The proof I give below is for the case that n € N meaning n =1,2,3,... (we already proved n = 0,1/2 and
—1 in previous arguments). We begin by recalling the binomial theorem,

n __ - n n—k1k _ .n n—1 n(n_l) n—=212 n
(x 4+ h) —kZ_O(k>x hY =2 +nx h—|—72 " ThE 4+ -+ A"

The symbol (}) = "("_,1256":1?)3(; IkH) is read ”"n choose k” due to its application and interpretation in basic
counting theory. They are also called the ”binomial coefficients”. There is a neat construction called Pascal’s
triangle which allows you to calculate the binomial coefficients without use of the formula just stated. If you
look in my college algebra notes you’ll find some examples of how to use Pascal’s triangle to multiply things

like (x +y)7 quickly.

Proof: of power rule for n € N follows from definition and binomial theorem:
d h)™ — ™
D) = i ( w )

i ( "+ nwn—lh + 7L("2_1)xn—1h2 4 B — g )
= 1m
h

n(n_l)xn—lh+_._+hn—l)

=nz" L. O

This proof is no good if n = 1/2 since we have no binomial theorem in that casdﬂ However, we proved in
Example that %(\/E) = ﬁ In other words, %(I%) = %xk% (power rule works). You should also
note we also proved the case n = —1 in Example In fact, the power rule is still true in the case that
ne€R-N EL we just need another method of proof. I will give the general proof towards the end of this
chapter.

4We will learn in a later calculus course that the binomial expansion has infinitely many terms when n ¢ N.
*for example, d%(y”“) = (74 2)y" T ~ 5.142y* 14
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Example 4.3.3. Using the power rule correctly mostly boils down to you having a good grasp of laws of
exponents.

d
= %(275) = 5‘7}4
Example 4.3.4. We can use linearity in conjunction with the power rule for added fun,
d [ 32° d d 2 1
— | = +Viz| =3—(a? 2— = 3(2 — =6 —.
dx[ s x] dx(x)+ d:v(\/%) (m>+2\/5 x+\/5

Example 4.3.5. Sometimes the independent variable is not "z ”, rather t, or c or even

d d
ttt ) = —(t%) = 3t°.
gl ttt) =2 ()
d
Z(e)=1
7.
d , . _
@(Mk) k!
Proposition 4.3.6. extended linearity.
If functions f1, fo,..., f, are differentiable and ¢y, co, ... ¢, are constant then
_dh dfa dfn
dx{61f1+02f2+ +Cnfn}01dx+02dx+ +Cndx

Or, using summation notation,

d n n df'
dx{zckfk} Z;Ck72~

k=1

Proof: by induction. Left to reader in homework exercise.

Example 4.3.7.

d 5 _d d, 4 d ..
dx(x—i—x +3)_dx($)+dx(x )+dx(3)—1+2m.

Or, suppose a,b,c € R then

d b 1 1
%(ax2+§x37;+03):20,x+bx2+ﬁ.
Why didn’t I include a 3¢ in the answer above?

Example 4.3.8. We will find other ways to do this one later, but now algebra is our only hope.

d 1 d 1
N I e T4 _ 6 1 1475
o ﬁ(x )+ dm(ﬁ x )+ Tx NG + Tx
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Example 4.3.9. What is the slope of the line y = mx + b at the point (x,, mx, + b)? Consider that,

d d
%( mx+b):m£+0:m.

We find that the slope of the function f(x) = mx +b is the same at all points along the line, it is simply m.
This is good news, it verifies that there is no disagreement between our new calculus-based definition of the
slope and the old standard definition we used in algebra and precalculus. Guess what the tangent line to the
line is?

y = f(xo) + f'(x0)(x — 1) = mzo + b+ m(x —x,) = mz + b.

Of course graphically this is obvious, but it is nice to see the algebra works out.

Example 4.3.10. What is the slope of y = f(x) = ax?® + bx + ¢ at the point (z, f(x))? Lets calculate the
derivative at x,

f'(m)z%( ax® +bx +c ) = 2ax + b.

We see that a parabola will have different slopes at different points. Where is the slope zero ¢ Well we can
Just set 2ax + b = 0 and solve to find x = —b/2a. If you are familiar with the formulas from algebra for
the vertex of a parabola you’ll recall that h = —b/2a which makes a lot of sense. The vertex will have a
horizontal tangent line.

What is the equation of the tangent line at x, ? The derivative at x, is f'(x,) = 2ax, + b. Therefore, the
equation of the tangent line is

Yy = f(xo) + f/(l‘o)(l’ - xo)
= ax? + bz, + ¢+ (2az, + b)(z — ).

Why did I avoid asking you what the tangent line was at (x, f(x)) ? (subtle)
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4.4 the exponential function

Transcendental numbers cannot be defined in terms of a solution to an algebraic equation. In contrast, you
could say that v/2 is not a transcendental number since it is a solution to z2 = 2 (it turns out V2 has a
finite expansion in terms of continued fractions, it is a quadratic irrational). Mathematicians have shown
that there exist infinitely many transcendental numbers, but there are precious few that are familiar to us.
Probably m = 3.1415. .. is the most famous. Next in popularity to m we find the number e named in honor
of Euler. I can think of at least four seemingly distinct ways of defining e = 2.718.... We choose a definition
which has the advantage of not using any mathematics beyond what we have so far discussed.

Let f(z) = a” for some a > 0, a # 1. Lets calculate the derivative of this exponential function, we’ll use this
calculation to define e in a somewhat indirect manner.

d . aw—i—h —a®

el = 1

da:( a*) hlg%)( h
i a*a" — a*
a0 h

We will learn that this limit is finite for any a > 0. Thus the derivative of an exponential function is
proportional to the function itself. We can define a = e to be the case where the derivative is equal to the
function.

Definition 4.4.1. FEuler’s number; e.

The number e is the real number such that
h
-1
hm( ¢ ) —1.
h—0 h

It is not at all obvious how to calculate that e = 2.718... directly from this definition. This definition
implicitly defines the number e. Notice that the calculation preceding the definition simplifies for this very
special base; if a = e then

d

%(e ) =e€".

The exponential function f(xz) = e” = f'(x) is a very special function, it has the unique property that its
output is the same as the slope of its tangent line at that point. I have pictured a few representative tangents
along with y = e*.
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By the way, I sometimes use the alternate notation e* = exp(zx).

Remark 4.4.2.

In case you are curious and impatient I include a list of all the ways to define the exponential function
and the number e in turn:

1. We could define e” to be the function such that d%(e”c) = ¢” then the number e would be
defined by the function: e*|,—; = e* = e. This is essentially what we did in this section.

2. The following limit is a more direct description of what the value of e is,

' 1 n
e = lim (1 + )
n—oo n

notice that this limit is type 1°° and we have yet to discuss the tools to deal with such limits.
Many folks take this as the definition of e, so be warned. It turns out that I’'Hopital’s Rule
connects this definition and our definition. (there is another argument in Stewart’s calculus
on page 444 which is closely related). This definition arises naturally in the study of repeated
multiplication, or continuously compounded interest.

3. The natural logarithm f(2) = In(z) arises in the study of integration in a very special role.
You could define f~!(z) = e® and then e = f~1(1).

4. The exponential could be defined by e =1+ = + %xQ + %x?’ + --- and again we could just
sete=14+1+ % + % + .-+, perhaps this is the easiest to find e since with just the terms listed
we get e=1+14+0.54+0.16+ -+ ~ 2.66 not too far off the real value e = 2.71.... This
definition probably raises more questions than it answers so we’ll just leave it at that until we
discuss Taylor series.

By the way, the limj_,q “hh_l is not easily calculated with the methods so far at our disposal. If you could

show me how to calculate this limit by using the definition of e given in this section then I would probably
award you some bonus points.
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4.5 derivatives of sine and cosine

There are a few basic nontrivial limits which we need to derive in order to calculate the derivatives of sine
and cosine. To begin we must establish the following for the radian-based sine function:

sin(x)

x

Observe that if we can prove lim,_,q+ = 1 then the double sided limit follows naturally since sine is an

odd function and

lim sin(x) ~ lim sin(—x) ~ lim sin(y)
z—0— X z—0— —T y—0t Yy
where in the last step we made the substitution y = —z which naturally changes the left-limit of x — 0~ to

the right limit y — 0. If you require a more formal proof of this substitution rule then you should think

about the composition of limits rule. Composition of limits justifies substitutions like this and others. I'll
sin(z)

~— = 1. One intuitive, the other with mathematically rigor.

give two arguments which show lim,_,q+

Intuitive Proof: imagine a tiny triangle in the unit circle. In such a case the arclength subtended and
the vertical leg of the triangle are ~ equal and the limit follows:

L] . 1 -
“FraoF:/ Comgidan o nfinibegiomad *rim%h wseriwed a dhy wrdt Cirele

Fuow __:'{":?
wi X 5
®
o

* Hinking of N a5 redly gendl g Hot
i il b e bub e g

Se we b X= @ ar T affume by

Pivhare,
With x chie % 2era, s (x) =ﬂ‘r;_":_x_‘r from Ha Feianghe. Contider Ahey
Pim (M) = [ . |
(59 k(e b ) - 1,

Proof: in the diagram below we consider a triangle inscribed in the unit circle (dotted-red) with angle

6 > 0 as pictured. The arclength subtended is given by s = 7 = 6 (bold red). Then the larger triangle has

adjacent side-length of one unit thus tan(f) = ‘E%’ solves to yield opp = tan(0).
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Y
(1,tan0)

the following inequality
should be geometrically
evident from the diagram:

( sin0, cosO®

/

tan® .
9 an sinf < O < tan®

sin@

i(1,0)

Continuing, notice that sin() < < tan(f) = (S)IOI;((Z; = 1< % < m = cos(f) < % < 1. We
proved previously that limgy_,q+ cos(f) = 1 and limg_,g+ 1 = 1 hence be the squeeze theorem it follows that

limg_,o+ 20 — 1. O

Some mathematicians would perceive a gap in the argument above. However, other mathematicians would
accept this sort of minor geometric leap as a reasonable proof step. Rest assured that you can prove the red
arclength is indeed sandwiched between sin(f) and tan(#). If you would like to see a more detailed argument
feel free to consult the Appendix in Stewart. I learned the argument above from Dr. Honore Mavinga and
it is found in many calculus texts, it’s better than my initial physicsy argument since it only makes obvious
statements about a finite triangle. The limiting is all handled by the squeeze theorem. In contrast my
physicsy ”proof” selectively ignored certain infinitesimals while emphasizing others.

x—0 x

Next we show that, lim< % ) = 0] Observe,

hm<w8<x>—1):hm

x—0

cos(z) —1 cos(z) +1 )
x cos(z) +1

— lim — sin®(z) >
=0 a:.(cos(x) +1) .
=t () ()
_ —sin(0)
cos(0) + 1

We now have all the tools we need to derive the derivatives of sine and cosine. I should mention that I
assume you know the ”adding angles” formulas for sine and cosine: sin(a £ b) = sin(a) cos(b) = sin(b) cos(a)
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and cos(a £ b) = cos(a) cos(b) F sin(a) sin(b),

d, . . sin(z + h) — sin(x)
_ sin(x) cos(h) + sin(h) cos(x) — sin(x)
= S0 h
L . cos(h) —1 sin(h)
= %gr})( sin(z) - — + cos(x) N
o : cos(h) — 1 , sin(h)
= sin(x) - %ﬂ)( — ) + cos(x) - %11)1%)( N
=sin(z) -0 + cos(x) -1
= cos(x).
I think it is interesting that we had to use both of the limits we just found.
d L cos(z + h) — cos(x)
, ( cos(x) cos(h) — sin(h) sin(z) — cos(x) )
= lim
h—0 h
L cos(h) —1 ) sin(h)
= %%( cos(z) - — sin(z) - y
B . cos(h) —1 . ) sin(h)
= cos(z) - }lllg%< — ) — sin(z) - }ILI_%( h
=cos(z) -0 — sin(x)-1

= —sin(x).

I think you will agree with me that these were harder to derive than the power rule. The neat thing is
that armed with the few basic derivatives we have derived so far we will be able to differentiate just about
anything once we learn a few more tools such as the product, quotient and chain rules. Barring the deriva-
tion of those rules this will be one of the last times we use the definition of the derivative to calculate a
derivative. You see ultimately our goal is to calculate things without doing these tiresome limits. What I
find really interesting is that after we get further into the subject we can make the limits disappear. Now,
don’t misunderstand me here. The limiting concept is important. There are even certain applications where
you don’t even have a formula for the function, all you have is raw data from some experiment. In those sort
of cases you might need to apply the definition directly through some numerical methods. In this course we
are mostly interested with those less interesting problems which allow pen and paper solutions. So-called
analytic problems. Ok, enough philosophy of calculus, let’s get back to work.
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To summarize this section so far it’s pretty simple,

Proposition 4.5.1. derivatives of (radian-based) sine and cosine.

%( sin(x) ) = cos(x) %( cos(z) ) = —sin(z)

The function called ”sine” for degree measure of angles is not the same function as the ”sine” for radian-
measured angle. We can relate them by a simple conversion: sin(f) = sindegmes(li—oa). For example,
sin(w/2) = Sildegrees (90). Even your calculator knows these are different functions, that is why you have to
change modes to clarify if you are using radians or degrees. Let it be understood that in calculus we always

use radian-based sine and cosine.

Let’s examine how this plays out graphically,

3
¥

AN

I have graphed in red y = f(z) = sin(x) and in green y = f’(z) = cos(z). Can you see that where the
sine has a horizontal tangent the cosine function is zero? On the other hand whenever sine crosses the
x-axis the cosine function is at either one or minus one. Question, what is the quickest that sine can possi-
bly change? Notice that the slope of the sine function characterizes how quickly the sine function is changing.

The graph below has y = g(x) = cos(z) in red and y = ¢'(x) = —sin(z) in green.

I hope you see how the derivative and the function are related.
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4.6 product rule

It is often claimed by certain students that d%( fg) = %Z—g but this is almost never the case. Instead, you
should use the product rule.

Proposition 4.6.1. product rule.

Let f and g be differentiable functions then

L oy d
%(fg)—dngrfdx

which can also be written (fg)' = f'g + f¢'.

Proof: start with the definition of the derivative and then after a sneaky step or two we’ll have it.

_ o fle+h)g(z+h) - f(2)g(z)

- %ﬂ%( h )

_ Hm( fl@+h)g(z+h) - f(z)g(z +h) + f(z)g(x + h) — f(z)g(z) )
h—0 h

_Aig})< {f(x+h})l—f(x)} gz +h) + fz)- {W} >

%%{W] Jim(g(e+h)) + f(z).%%{g(erh})Lg(x)]

= f'(x)9(z) + f(2)g (2).

I added zero in the third line, a very sneaky move. Then in the next to last step I pulled out f(z) which
is sensible since it does not depend on h. Then in the very last step I used that limp_,0 g(x + h) = g(x)
which is true since g is a continuous function. I know g is continuous at = as we were given ¢’'(z) exists and
differentiability at = implies continuity at « for g. O

Example 4.6.2. Lets derive the derivative of £2 a new way,

d , 4 d dz dz
%(CE )= —(ax) = —Ix—i—x—x = 2z.

We derived this fact from the definition before, I think this way is easier. Anyway, I always recommend
knowing more than one way to understand a mathematical truth, it helps when doubt ensues.

Example 4.6.3. Identify that in the problem that follows f(x) = x and g(x) = €* thus by the product rule,

Ty (ze’) = et Fr—r = =" e’
Example 4.6.4. Observe that f(x) = sin(x) and g(x) = cos(x) so by the product rule,
d(sin(z)) d(cos(z))

%(sin(a:) cos(z)) = cos(z) + sin(x)

dzx dxr

= cos?(x) — sin’(x).
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You might wonder what happens if we have a product of three things, suppose that are differentiable then,

d d(fg) dh

I (Foh) = = =h+ foo
(df +f ) +fg@
S U @

so the rule for products of three functions follows from the product rule for two functions. You could likewise
derive that (fghj) = f'ghj + fg'hj + fgh'j + fghj’ by the same logic.

Example 4.6.5.

——(z%sin(z)e”) = (dxx) sin(z)e” + xQW

= 2z sin(x)e” + 2% cos(x)e” + % sin(x)e”.

d(e*)
dx

T e” 4 % sin(x)

Example 4.6.6. You can combine the product rule with linearity,

d o d d 3.4

T (VE + 3a%e) = —(Va) + 3 (a%")
1 d@®) ,d(e”)
_F 3( € + 2® e

— 4+ 922" + 3",

Q\f

4.7 quotient rule

Proposition 4.7.1. product rule.

Let f and g be differentiable functions with g # 0,

() _m9—SE
dr \ g g2

this is called the quotient rule. In the prime notation,
(f)’ _J9-1g
g 92

Proof: This rule actually follows from the product rule. Let Q(x) = f(z)/g(x) then since g(z) # 0 it follows
that f(z) = Q(x)g(z). That’s a product so we can use the product rule; f' = (Qg) = Qg + Qg’. Solve this
for ',

f
R el F'=59 _fa-1g
g g 9
But, Q' = (f/g)’ so the proof is complete. O
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Example 4.7.2. We already know the derivatives of sine and cosine, with the help of the quotient rule we
can differentiate the tangent function.

imﬂ@ﬁ3i628)

_ i (sin(e)) cos(x) — sin(z) £ (cos(x))
cos?(z)
_ cos?(z) + sin®(z)
cos?(x)
. 1
cos?(x)
= sec?(x).

This is the secant function squared. I expect you to remember this derivative. You are of course free to derive
it if you have time.

Example 4.7.3.

d x3 _ 322(a? +7) —2*(2z) 2t + 2127
247

dz (22 +7)2 T @ran?

Example 4.7.4.

d( 1 ) 0(3z +5) — 1(3) -3
(3z +5)2 (3z+5)%

dr \3x+5 - B

Example 4.7.5. The reciprocal trigonometric functions’ derivatives all follow from the quotient rule,

%(Sec(x)) = % (COSl(x)>

4 (1) cos(x) — 1%(008(:10))

_ dz
cos?(x)
_ sin(x)
cos?(x)
1 sin(x)

Likewise the derivative of the cosecant follows from the quotient rule

%(Csc(x)) = % (Slnl(w)>

d (1) sin(z) — lﬁ(sin(x))

_ i
sin’(x)
_ —cos(x)
sin?(z)
1 cos(x)
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Example 4.7.6. the quotient rule is used in conjunction with other rules sometimes, here I use linearity to

start,
d (, z+2? d, . d (x+ 22
de +3x>—um@>+dm 52
Lz +a?)3—1)— (r+2)L(3—2)
(3—a)?
. (1+22)3—2)— (x+2?)(-1)
e’ +
(3 —2)?
+3—x—|—6x—2x2—|—x—|—x2
22 —6x+9
3+ 6z — z2
2 —6x+9

Il
S

_

The last couple lines were just algebraic simplification, the most important thing here was that you understood
how the quotient rule was applied.

4.8 chain rule

If T were to pick a name for this rule it would be the composite function rule because the ”chain rule” actually
just tells us how to differentiate a composite function. Of all the rules so far this one probably requires the
most practice. So be warned. Also, let me warn you about notation.

d d d
pay=T Ty I

x

We have suppressed the (x) up to this point, reason being that it was always the same so we’d get tired of
writing the (x) everywhere. Now we will find that we need to evaluate the derivative at things other than
just (z). For example suppose that f(z) = 22 so we have f’(z) = 2x then

af , 3 _ a4 (3
a(x +7)—dx =2(z>47)

(2347)

We substituted 23 + 7 in the place of z. I sometimes avoid the notation %(az) because it might be confused
with multiplication by x. The difference should be clear from the context of the equation. Sometimes the
substitution could be more abstract, again suppose f(z) = 22 so we have f'(r) = 2z then

G4

= =2
dzr dr Y

(u)

u
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Proposition 4.8.1. chain rule.

The Chain Rule states that if h = fow is a composite function such that f is differentiable at u(x)
and u is differentiable at x then

d
L (Fou) = (fouy(@) = f/lul))u(a)
df du
= %(u(x))%
_df| du
C dx » 4T
_drdu
C dudz’
In words, the derivative of a composite function is the product of the derivative of the outside
function (f) evaluated at the inside function (u) with the derivative of the inside function.

Please don’t worry too much about all the notation, you are free to just use one that you like (provided it
is correct of course). Anyway, let’s look at an example or two before I give a proof.

Example 4.8.2. Consider h(x) = (3x + 7)° we can identify that this is a composite function with inside
function u(z) = 3z + 7 and outside function f(x) = x°.

d df d
— Bz +7)°=— 3z 47 4.2
O = e (1.2)
= 5z* 3 (4.3)
3x+7
=15(3z + 7)* (4.4)
(4.5)
I could also have written my work in the last example as follows,
d 5 d s 4du 4 4
. Bz +7) . (u’) = 5u In 5Bz +7)*-3=153x+7)

Or you could even suppress the u notation all together and just write

d d
—@Br+7)° =53z + 7)4d (3z +7) = 15(3z + 7)™

dz dx
I just recommend writing at least one middle step, if you try to do it all at once in your head you are likely
to miss something generally speaking.

Example 4.8.3.

= 2z cos(x?).
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Example 4.8.4.

%(exp(3x2 +x)) = %(exp(u))

= cap(u) 5

= exp(32? + x)%(SxQ + z)
= (6x + 1) exp(32? + z).

Proof of the Chain Rule: The proof I give here relies on approximating the function by its tangent line,

this is called the linearization of the function. Observe that u'(z) = limhﬁo(w) and we can rewrite

the Lh.s. in terms of a matching limit u'(x) = limh_)o(W). Thus

i () = ()

This shows that if A — 0 then v/ (z)h ~ u(x + h) — u(x) which says that u(x + h) ~ u(z) + v'(z)h . We can
make the same argument to show that f(u+ ) =~ f(u) + f/(u)d for small § ( the § = u/(x)h which is small
in the argument below since u'(x) is finite and h — 0 ). Consider then,

d A Jouwz+h) = (fou)(z)
d(fou)hm( )

. fu(z +h)) — flu))
- ;?3%( h )
o (@) +d (@)h)) — fu(z))
- }LLHB( h )
[ flu(@) +u (@)hf (u(®) — fu(z))
- ;lﬂb( h )
= lim (' (2) ' (u(x)))

So the proof of the chain rule relies on approximating both the inside and outside function by their tangent
line. Let’s get back to the examples.

Example 4.8.5.

d d du d 1
dovay_ 4wy _ o _ md — s
dx(e ) dx(e) “dr ¢ dm(ﬁ) ¢ 2\/x

Example 4.8.6. Let a be a constant,
%(sin(ax)) = ﬁ(sin(u)) = cos(u)ﬁ = cos(ax)ﬁ(ax) = acos(azx).

Example 4.8.7. Let a be a constant,

d amid u\ __ diui i _ azx
%(e )7dx(e)7e dxie dx(a:c)fae
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Example 4.8.8. Let a be a constant,

d d d d

T (flax) = () = F'w) 5 = ['(ax) 7 () = af (az).
I let the function f be arbitrary just to point out the past two examples can be generalized to any expression
of this type. We must have a function which is differentiable at ax in order for the calculation to hold true.
I will neglect the extra u notation past this point unless I think it is helpful,

Example 4.8.9. Let a,b,c be constants,

d \/27) L
— ar?+br+c | = ax® + bz +c
d95< 2\/ax2 +bx+c dm( )

2ax +b
War? +br +c

I admit that all the examples up to this point have been fairly mild. The remainder of the section I give
examples which combine the chain rule with itself and the product or quotient rules.

Example 4.8.10.

d< x2+\/x2+3) ! (m + 3)

dx o0/22 + x2+3 Cdx
d
)

T+
2 x2+\/x2+ ( 2\/5102 3dx

=)
20 4+ —— ).
2v/ 22 + Va2 + 3 z?+3
Example 4.8.11. Let a,b, c be constants,

d . . . d .
%( cos(asin(bx + ¢)) ) = —sin(asin(bz + c)) - . (asin(bx + c))

= —sin(asin(bz + ¢)) - acos(bx + c) d (bx +0)
= —absin(asin(bz + ¢)) cos(bzx + ¢).

We have to work outside in, one step at a time. Both of these examples followed the pattern (fogoh)(x) =

f(g(h(x))) which has the derivative (fogoh)' (x) = f'(g(h(x)))g’ (h(x))h'(x). Of course, in practice I do not

try to remember that formula, I just apply the chain rule repeatedly until the problem boils down to basic

derivatives.

Example 4.8.12.
d

%(x?’e% cos(x?)) =

d

d—(xB)ezw cos(z?) +
x

d, ., z d
3%(62 ) cos(z?) + a3e? e — (cos(z?%))
5 cos(x2) + z3e? (— sm(x2) dr )

= 32%e? cos(z?) + 22°e*” cos(2?) — 22%e*” sin(2?).

U

= 327" cos(z?) + z®e*”

We can rearrange this expression using sin®(z?) = 1 — cos?(z?)

d
d—(zse% cos(x?)) = x2e?® <cos(:172)[3 + 2 + 227] — 2z2) .
x
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Example 4.8.13.

o x 2\2 T
= 3(e"z%) ( P +e .
= 3(e"2?)? (z%e” + 2ze”).

)

2

The better way to think about this one is that (e*x?)3 = e3*a% then the differentiation is prettier in my

opinion
d

7(€3xx6) —_

3x 6
de) o, sed(®)
dx

dxr dx
= 3e3715 4+ 62°¢37.

Example 4.8.14.

d (sin(39)) ~ 3cos(30) V0 +4 - sin(30) i
do \/m N (M)Q
3cos(30) V8 + 40 + 4 — sin(30) 2L

e
_ 6(6 + 4) cos(36) — sin(30)

200 +4)3
Example 4.8.15. Observe we can derive the power rule from the product rule.
d, ., d _dx de ,_, n_1dx
d:v(m )_d:c(xm JE)_dgcas +xdacx oot dx
— mnfl _’_xnfl 4. +l‘n71
=na" L

Example 4.8.16.

%(sin(\/% —1)) = cos(v2t — 1)%
1 d2t-1)
= cos(V/2t 1)2m o
~ cos(v/2t — 1)
V21

Example 4.8.17.

%(t2 cos(sin(t)) = 2t cos(sin(t)) + ¢ (— sin(sin(t))%(sin(t)))

= 2t cos(sin(t)) — t? sin(sin(t)) cos(t).

In most of the examples we have been able to reduce the answer into some expression involving no derivatives.
This is generally not the case. As the next couple of examples illustrate, we can have expressions that once
differentiated yield a new expressions which still contain derivatives.
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Example 4.8.18. Suppose that c and f are functions of t then,

: P d - d d
Notice that if c is a constant then 77 = 0 so in that case we have that E(cf) = cd—];.

Example 4.8.19. Suppose that a particle travels on a circle of radius R centered at the origin. The particle
has coordinates (x,y) that satisfy the equation of a circle; x®+y? = R2. Moreover, both x and y are functions
of time t. What can we say about dz/dt and dy/dt ?

dy

d d
@(:172 + y2) =2 % + 2y—

Notice since the radius R is constant it follows that R? is also constant thus %(Rz) = 0. Apparently the

derivatives dz/dt and dy/dt must satisfy

dx dy
20— 4+ 2y— =0
at TV
Now this says that ‘;—f = _Ty% ( for points with x # 0 ). The position vector is ¥ = (x,y) and velocity vector
is U= (‘fl—f, %’) . The dot-product is

Lo dr dy, dz dy
U= () () =e gty

We will learn that when 7+ U = 0 the vectors 7 and ¥ are perpendicular. So the equation we found involving
dx/dt and dy/dt expresses that particles traveling in a circle have velocity vectors which are tangent to the
circle. (Tangents to a circle meet radial vectors at right angles)

4.9 higher derivatives

Higher derivatives are defined iteratively.

Definition 4.9.1. the n-th derivative of a function.

Suppose f : dom(f) CR — R and U C dom(f). We define f(O(z) = f(z) and fM(z) = % for all
such @ € dom(f) that f/(z) € R. Furthermore, for each n € N we define f("+1)(z) = L[f)(z)]
for all such z € dom(f) that f(®*D(z) € R. If f has continuous derivatives f', f”,..., f*) on
U C dom(f) then f € C*(U). If we can take arbitrarily many derivatives of f and those derivatives
are continuous on U C dom(f) then we say f is smooth. The set of all smooth functions on U C R
is denoted C'*°(U).

Many elementary functions are smooth over large subsets of R.
Example 4.9.2. Suppose f(z) =% + 2t + 23 + 22 + 2+ 1

d
d—[f(x)] =5zt +4a® + 327 + 22+ 1
T

%[%[f(m)]] = %[5:# + 423 + 327 + 22 + 1] = 202° + 1222 + 62 + 2
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[f(z)] = ip()aa3 + 1222 + 62 + 2] = 6022 + 242 + 6

da3 dzr

d* d )
@[f(x)] = %[603: + 242 + 6] = 120z + 24

d5 d
—[f(@)] = 120z +24] = 120

Note that f*)(x) =0 for all k > 6. It follows that f € C°(R).

Geometrically the second derivative of a function is connected to the curvature of the graph. The third, fourth
and higher derivatives also contain geometric information about a function. If we are given all derivatives of
a smooth function it is often possible to recreate the function everywhere with a formula built using those
derivatives. Using the last example, you might notice that

7(@) = FO)+ PO+ 300 + 25" (0)* + 5 FOO)a + s FO(0)a?.

Knowledge of the derivatives at zero gives global information about f in the equation above. This is an
interesting pattern which we will explore in more depth later.

Physically the higher derivatives are also of great importance. For mechanics only a few derivatives are
typically required.

Example 4.9.3. Suppose s : R — R is the position of some particle as a function of time t. The velocity
at time t is defined to be (the dot-notation is still prevalent in modern classical mechanics courses, it dates
back to Newton whereas the d/dx notation is due to Leibniz)

The second derivative with respect to time is called the acceleration at time t and it is defined by

d*s .
(I(t) = ﬁ = S.

Notice we can equivalently state a(t) = % = 0. If the particle has mass m then Newton’s Second Law states

that Frer = ma where Fpep is the total force placed on the mass m. Beyond acceleration we have the jerk
3
which is the instantaneous rate of change of the acceleration j(t) = % = %. If you’ve ever rode a train

and transitioned from a straight track to a half-circle track then you’ve felt the jerk. The jerk will be big if
there is a discontinuity in the acceleration. We cannot complete these thoughts this semester. To correctly
discuss mechanics we need three dimensional mathematics. We need vectordd]

H differentiable at zer? Calculate,
3 -1

T2

4

Example 4.9.4. How many times is f(x)

=z
Fla)=Set @)

Sthere is no reason you can’t learn vectors now. It is merely the custom of mathematics departments to make you
wait until calculus III to see the neat part. One could envision a calculus education which simultaneously implemented
the first third of calculus IIT throughout the earlier topics. True multivariate calculus really only begins when you
discuss multivariate functions in my mind. The calculus of space curves is just calculus I together with vectors.

"In such a case we ask only that the right limit of the difference quotient exists. We define that f’(0) =
limy, o+ w in the case 0 € d(dom(f))
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Notice that f(0) = 4%/6 ¢ R. The second derivative of f is not defined at zero. We say that f is differentiable

at zero, but f is not twice differentiable at zero. The source of this difficulty is that f' has a vertical tangent
at zero.

y =1(x)

red graph
y = d?/dx2
purple graph
y = df/dx
green graph

On the other hand it is not hard to see that f € C>(0,00) since differentiating n-times we’ll find f) (x) =
kxs—n for some constant k. The formula for ™ (z) is clearly well-defined for = > 0.

Example 4.9.5. Another interesting function which fails to be smooth is f(x) = x|z|. The graph resembles

a cubic function but it is actually a pair of half-parabolas glued at the origin. For x > 0 we have f(x) = x2
and for x < 0 we have f(z) = —x?. It follows that

f’(x):{Zx x>0

—2r <0
In this case f'(0) = 0 since limy, _,o- M = limy,_,o+ w = 0. Consider the second derivative,
2 x>0
" o
fla) = {2 <0’

In this case f(0) does not exist since limy,_,q- w w = 2. The

source of this difficulty is the kink in the graph of f’ at zero.

= —2 whereas lim;,_,o+

.

y = df/dx
green graph

y = d?f/dx?
purple graph
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If you want a function which is just k-times differentiable at zero you could use f(x) = 2*|z|. Notice that
in all the examples I've given thus far if the function was differentiable on some interval then the derivative
function was also continuous. In other words, you might wonder if the distinction between differentiable and
continuously differentiable is a meaningful distinction. Since I'm posing this question by now you probably
know the answer is yes.

Example 4.9.6. [ found this example in Hubbard’s advanced calculus text(see Ex. 1.9.4, pg. 123). It is a
source of endless odd examples, notation and bizarre quotes. Let f(x) =0 and

1
flz) = g —&—xzsin;
for all x # 0. I can be shown that the derivative f'(0) = 1/2 (hard to see from the green graph !). Moreover,
we can show that f'(x) exists for all x # 0, we can calculate:

1 1 1
’ — C 4 9rsin- — -+
f(x) 2+ zsin — — cos —
Notice that dom(f') = R. Note then that the tangent line at (0,0) is y = /2. You might be tempted to say
then that this function is increasing at a rate of 1/2 for x near zero. But this claim would be false since you
can see that f'(x) oscillates wildly without end near zero.

N AL C)
[ / red graph

y=dyan | a /H

green graph

We have a tangent line at (0,0) with positive slope for a function which is not increasing at (0,0) (recall
that increasing is a concept we must define in a open interval to be careful). This function has infinitely
many critical points in a nbhd. of zero. You couldn’t even draw a sign-chart for the derivative if you wanted.
Continuity of the derivative helps eliminate pathological examples.

This sort of example is likely to occur to mathematicians but not so likely to occur to anyone else. Usually
if a function is differentiable at a point is also continuously differentiable. For functions of several variables
the story is much more involved |§|

8Continuity of the derivative function is later replaced with the requirement that the partial derivatives of a
multivariate function are continuously differentiable. It is a fortunate accident of one-dimensional mathematics that
the tangent line is well-defined in the case the derivative is not continuous (and yet exists). For functions of several
variables lack of continuous differentiability usually signifies a lack of a well-defined tangent space. I discuss this in
some depth in the advanced calculus course
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4.10 implicit differentiation and derivatives of inverse functions

Up to this point we have primarily dealt with expressions where it is convenient to just differentiate what
we are given directly. We just wrote down our f(x) and proceeded with the tools at our disposal, namely
linearity, the product, quotient and chain rules. For the most part this direct approach will work, but there
are problems which are best met with a slightly indirect approach. We typically call the thing we want to
find y then we’ll differentiate some equation which characterizes y and usually we get an equation which
implicitly yields %. This technique will reward us with the formulas for the derivatives of all sorts of inverse
functions. Before we get to the inverse functions let’s start with a few typical implicit derivatives.

Example 4.10.1. Observe that the equation x* + y* = e¥ implicitly defines y as a function of x (locally).
Let’s find Z—Z. Differentiate the given equation on both sides.

d, o 3 d o
@) = 2 ()

now differentiate and use the chain rule where appropriate,

dy dy
2z +3y°—= = eV =
Ty dx ¢ dx
Now solve for %,
dy dy 2z
V3L =21 = |- = —"
(e Y )dm v dr  e¥ — 3y?

Notice that this equation s a little unusual in that the derivative involves both x and y.

Example 4.10.2. Observe that the equation xy + sin(z) = e®¥ implicitly defines y as a function of x. Let’s

find %.
d . d .
%(:cy+sm(x)) = %(e v)
d d d
= ﬁy + x% + cos(z) = e™¥ - (zy)
d d
= Y+ xé + cos(z) = e (y + xdi)
Now solve for %7
d d . _ Y
st et — st [ g ]

You might question why such differentiation is interesting. One good reason is that it is what we use to
solve related rates problems.

Example 4.10.3. Suppose that we know the radius of a spherical hot air balloon is expanding at a rate of
1 meter per minute due to an inflating fan. At what rate is the volume increasing if the radius R is at 10
meters ¢ To begin we need to recall that the volume V is related to the radius R by the equation V = %’TRS
for the sphere. Then,

dv d (47 4 5dR 9, m m3
- = — | — = _— ~ 1 .
dt dt( 3 R ) Akt dt 4m(10m) min 200min

We’ll do more of these in a later section.
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I hope you get the idea about these sort of problems. I'm going to shift back to the other type of problem
that implicit differentiation is great for. That is the problem of calculating the inverse function’s derivative.
We know the derivatives of e?, cos(x), sin(x), tan(z), sec(x). I will now systematically derive the derivatives
of In(x), cos™*(z),sin"*(z), tan~* (z), sec ™! (x) using essentially the same technique every time.

Example 4.10.4. Let y = In(z) we wish to derive 2= (In(z)). To begin we take the exponential of both sides
of y = In(z) to obtain
eV — eln(w) -

Now differentiate with respect to x and solve for %,
d d 1
W dy _ 1
dx de e¥

Now remember that we found e¥ = x so we have shown that

d

1
—(In(z) ) =~

Example 4.10.5. Let y = cos™'(z) we wish to derive “(cos™(z)). To begin we take the cosine of both
sides of y = cos~1(x) to obtain

cos(y) = cos(cos 1(x)) =z
Now differentiate with respect to x and solve for %

dy -1

. dy
—sm(y)@ T T W sin(y)

Now sin®(y) 4 cos?(y) = 1 thus sin(y) = /1 — cos2(y) but remember that we found cos(y) = z so sin(y) =
V1 — 22 thus we find

ﬂ( cos™'(z) ) = Wit

Example 4.10.6. Let y = sin™ ' (z)) we wish to derive L (sin™(z)). To begin we take the sine of both sides

dx
of y = sin~ () to obtain

sin(y) = sin(sin"(z)) = 2

Now differentiate with respect to x and solve for Z—Z

dy dy 1
_ = 1 _ =
cos(y) dx ey cos(y)

Now sin®(y) 4 cos?(y) = 1 thus cos(y) = /1 — sin?(y) but remember that we found sin(y) = z so cos(y) =
V1 — 22 thus we find
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Example 4.10.7. Let y = tan™'(x) we wish to derive %(tan’l(x)). To begin we take the tangent of both
sides of y = tan~!(z) to obtain
tan(y) = tan(tan~'(z)) = z

Now differentiate with respect to x and solve for %

d
Y_1

dy y _ 1
de

dr  sec2(y)

sec?(y)

Now sin®(y) + cos?(y) = 1 thus if we divide this equation by cos®(y) we’ll obtain the less familiar identity
tan?(y) + 1 = sec?(y) . But we know that in this example tan(x) = y hence sec®(y) = 1+ 22. To conclude,

d

e (tan"'(z) )

- 1
1422

Example 4.10.8. Let y = sec™ ! (x) we wish to derive -+ (sec™(z)). To begin we take the secant of both

dx
sides of y = sec™1(x) to obtain
sec(y) = sec(sec™ () =z
Now differentiate with respect to x and solve for %

sec(y) tan(y) dr dr — sec(y) tan(y)

Now tan?(y) + 1 = sec?(y) tells us that tan(y) = y/sec2(y) — 1. But we know that in this example sec(y) =
hence tan(y) = vVa? — 1. Thus,

I hope you can see the pattern in the last five examples. To find the derivative of an inverse function we
simply need to know the derivative of the function plus a little algebra. The same technique would allow us
to derive the derivatives of cosh ™ (z),sinh ™! (), tanh™*(z), csc™*(2), cot ' (z). T have not included those in
these notes because we have yet to calculate the derivatives of cosh(z), sinh(x), tanh(x), csc(z), cot(x). Rest
assured these functions can be dealt with by the same techniques we thus far exhibited in these notes. The
next examples follow the same general idea, but the pattern differs a bit.

Example 4.10.9. Suppose that y = a® we have yet to calculate the derivative of this for arbitrary a > 0
except the one case a = e. Turns out that this one case will dictate what the rest follow. Take the natural
log of both sides to obtain In(y) = In(a®) = x1n(a). Now differentiate, by Example|4.10.4

d 1dy d

— (1 =-—=—(zl =1 .

T (n() = 54 = T @in(@) = n(a)

dy
Now solve for 32,

dy d

g In(a)y =In(a)a® = %(aw) = In(a)a®.

I should mention that I know another method to derive the boxed equation. In fact I prefer the following
method which is based on a useful purely algebraic trick: a® = exp(xIn(a)) so we can just calculate

%(am) — di(ez ln(a)) — 7 In(a) d(l‘ hl(a)) — In(a) ln(a) — 1n(a)am.

iy dx
but beware the sneaky step, how did I know to insert the expein ? I just did.
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Example 4.10.10. Suppose that y = x®. This is not a function we have encountered before. It is neither a
power nor an exponential function, it’s sort of both. I'll admit the only place I've seen them is on calculus
tests. Anyway to begin we take the natural log of both sides; In(y) = In(z*) = xIn(x). Differentiate w.r.t x,
dy

ldy 1
ydr In(z) + o= o= y(In(z) +1)

Therefore we find,

a
dx

(z%) = (In(z) 4+ 1)z".

If you have a problem with an unpleasant exponent it sometimes pays off take the logarithm. It may change
the problem to something you can deal with. The process of morphing an unsolvable problem to one which
is solvable through known methods is most of what we do in calculus. We learn a few basic tools then we
spend most of our time trying to twist other problems back to those simple cases. I have one more basic
derivative to address in this section.

Example 4.10.11. Let y = log,(x) we can exponentiate both sides w.r.t. base a which cancels the log, in
the sense al°8.(®) = g,

dy 1

dr  In(a)a¥

d
a =r = ln(a)ayﬁ =1

But then since a¥ = x therefore we conclude,

2 (tog, () =

In(a)x

Notice in the case a = e we have log,(x) = In(z) and In(e) = 1. Therefore, this result agrees with Example

4 10. 4

At this point I have derived almost every elementary function’s derivative. Those which I have not calculated
so far can certainly be calculated using nothing more than the strategies and methods advertised thus far.

4.11 logarithmic differentiation

The idea of logarithmic differentiation is fairly simple. When confronted with a product of bunch of things
one can take the logarithm to convert it to a sum of things. Then you get to differentiate a sum rather than
a product. This is a labor saving device.

Example 4.11.1. Find the derivative of y = er2+9\/3x + 7 wusing logarithmic differentiation. Toke the
natural log to begin,

In(y) = ln(xex2+9\/ 3x+7)=In(x) + ln(ex2+9) +In(v3z +7)

1
=In(z) + 2%+ 9+ 5 Bz +7),

We used the properties of the natural log to simplify as best we could before going on to the mext step:

differentiate w.r.t.
Ldy 1 oy
2 4o 2
ydr =z 23z +7)
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dy_ 249 1 3
= g e \/3m+7(x+2x+2(3x+7)>.

This is much easier than the 3-term product rule for this problem.

Example 4.11.2. Find g—g via logarithmic differentiation. Let.

y = (Qix) ( +32)7 (2® — 3)*

Take the natural log to begin,
In(y) =In(2 —z)~" +In(z + 32)% + In(z? — 3)*

=—In(2—2x)+ %ln(x +32) + 41n(2?* - 3).

We used the properties of the natural log to simplify as best we could before going on to the next step:

differentiate w.r.t. x
ldy 1 n 1 4(2x)
yde 2—z  4(x+32) 22-3
dy 1 Ly a1 1 8z
A 32 3 .
- (2z>(x+ e T PR ) R

dx
Again, this is much easier than the 3-term product rule for this problem

Example 4.11.3. Let a,b, c be constants. Differentiate y.

= () G5) ()

In(y) = —In(z —a) — 2In(z — b) — 3In(x — ¢)

Take the natural log to begin,

We used the properties of the natural log to simplify as best we could before going on to the next step:

2 3

differentiate w.r.t. x
ldy -1
yde x—a x—-b x—c
Ly _ (1 1\ 1\’ 1 2 3
de  \z—a)\z—0b T —c r—a xT—-b xz-c)|

Example 4.11.4. Differentiate y.
y= (2?4 1)(x —3)%(3 + 2)3(z — 1)*

Take the natural log to begin,

In(y) = In(z? + 1) + 2In(x — 3) + 3In(2® + z) + 4In(z — 1)

2 332241 4
(32> +1)

ldy 2z

yde 2241 -3 3+ x—1

dy 2z 2 3(32% 4+ 1) 4

— =y + + 3 + .
T2+ r—1

dr  “\224+1 x-3
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Example 4.11.5. Sometimes we might have a to start with, but the same algebraic wisdom applies, simplify

sin(z)v/T )
z24+3x—2/"

products to sums then differentiate. Find Z—Z fory =1In(

sin(z)y/x

x2+3m—2)

= In(sin(z)) + % In(x) — In(z? + 3z — 2).

y = In(

Now differentiate w.r.t. x and we’re done.

dy cos(z) 1 2x +3
dr sin(z) 2z 22+43zx-—2

Example 4.11.6. What about
y=In((z +1)* +2)

We cannot simplify this one because we do not have a product inside the natural log. Just differentiate w.r.t
x

d 1 d 30(x +1)%°

dr  (x+1)30+2dzx (x+1)30 42
Knowing what you cannot do is sometimes the more important thing.

I wish there was some nice simple formula to break apart In(A + B) but as far as I know In(4 + B) =
?. by this I simply mean that there is no simple formula to split it up. On the other hand we have used
In(AB) = In(A) 4 In(B) together with In(A€) = cIn(A).

4.11.1 proof of power rule
Finally we return to the power rule. As we mentioned from the start the power rule %(:ﬂ") = na"~! holds
for all n € R. Now we have the tools to prove it.
Proof: Let y = 2™ and take the natural log to obtain In(y) = In(2™) = nln(x). Differentiate,
1dy
y dx

n d n nx™
Lt
T dzr T T

This proof (in contrast to our earlier proof ) works in the case that n ¢ N. Somehow these curious little
logarithms have circumvented the whole binomial theorem. We conclude that for any n € R

4
dzx

(") = na" L.

Note, if n < 0 and n € Z then f(x) = 2" = L is a function which has domain R — {0}. The proof offered

xr
above fails for < 0 since In(x) is not real in such case. However, for cases of interest such as n = —2, =3, ...
the argument can be modified. I leave this as an exercise for the reader. [J
d

Another method to derive rules such as E(;) = —71 is apply the product rule n-times for the reciprocal
1 -1

2

function for which we have already shown - (1) =
Example 4.11.7.
d d

(YE) = (@) = (32 =

1
3x2/3°
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Example 4.11.8.

d
I(yﬂ+2) — (7'(' 4 2)y7'r+1 ~ 5.1422/4.142
Y

4.12 summary of basic derivatives

I collect all the basic derivatives for future reference.

f(z) % Comments about f(z) | Formulas I use
¢ 0 constant function
T 1 line i = I has slope 1
T2 2T

= 1
VE e
" pan—1 power rule
e* ax the exponential
5 n(5)5%
a* ]nl:n,)a*’: an ex ponential
In(x) 1 the natural log n(e®) = 7, @ =

— =] -
logx {0 log base 10
log, (z) W]"ﬂ? log base @ log, (a%) = z, @%@ = 1
sin(z) cos(z) sing(:r] +cos?(z) =1
cos(r) —sin(z)
tan(x) sec? (z) tan®(z) + 1 = sec?(z)
sec(T) sec(z) tan(z) | reciprocal of cosine sec(r) = 1/ cos(x)
cot(x) — esc?(x) reciprocal of tangent | cot(z) = cos(z)/ sin(z)
csc(z) — cscx) cot(z) | reciprocal of sine csc(z) = 1/ sin(z)

=1 1 inverse sine g i
sin™' () =2 sin(sin™"'(z)) =z

-1 i inverse cosine B 7 .
cos'(x) — 1 1 cos '(cos(z)) =z
tan~'(z} |y inverse tangent
sinh(z) cosh(x) hyperbolic sine cosh(z) = 5(e* + )
cosh(z) sinh(z) hyperbolic cosine sinh(r) = 1(e” —e™)
tanh(z) | sech?(x) hyperbolic tangent

inh~! 1 inverse sinh

sinh™ (z) Nare=
cosh™ () ?E':'_—_l inverse cosh
tanh™* (z) l_l,d, inverse tanh

Finally, let us conclude this chapter with a list of useful rules of differentiation. These in conjunction with
the basic derivatives we listed earlier in this section will allow us to differentiate almost anything you can
imagine. ( this is quite a contrast to integration as we shall shortly discover )
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name of property | operator notation prime notation
Linearity
d d = d (f+ U)’ = f’ + Ir)r’
ff-,fi' U g2 q] ,r” U] T da [;]
o , ¢ . Y = o f!
Zlef] = c—1f] (cf) =cf

Product Rule

E[Jy] = iy (fa) = f'g+ fd
Quotient Rule
¢ o g ! + r }
d[f]_ dg—fo (f) _fa-1tg
di | g ¢ g g

Chain Rule
d [J'O' } _df du
E S OU = EE (fo u_]J('.r'] = f’{-u(.a:))-u’(‘::)

Beyond these basic properties we have seen in this chapter that the technique of implicit differentiation helps
extend these simple rules to cover the inverse functions. It all goes back to the definition logically speaking,
but it is comforting to see that once we have established the derivatives of the basic functions and these
properties we have little need of applying the definition directly. I would argue this is part of what separates
modern (say the last 400 years) mathematics from ancient mathematics. We have no need to calculate limits
by some exhaustive numerical method. Instead, for a wealth of examples, we can find tangents through what
are essentially algebraic calculations. This is an amazing simplification. However, more recent times have
shown computers can model problems which defy algebraic description. A student of mathematics would be
wise to study computer aided solutions. Not so much for the purpose of gaining ease with homework, but
rather to gain skills which many employers seek and needﬂ

9you can ask Dr. Wang about his numerical method course
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4.13 related rates

Given some algebraic relation that connects different dynamical quantities we can differentiate implicitly.
This relates the rates of change for the various quantities involved. Such problems are called ”related rates
problems”.

Example 4.13.1. Problem: Imagine a circular oil slick which continuous to grow as oil is added by the
EPA. If the EPA adds oil at a rate such that 8 square meters is added every second then how quickly is the
radius of the oil slick increasing when r = 10m?

Solution: since the oil slick is circular we know that the area of the slick (call it A) is related to the radius
of the slick (call it r) by A = wr?. In this context both A and r are functions of time so we may differentiate
implicitly to find
dA d
dt — dt

d
(mr?) = 27r7“d—:

‘ A
We were given that dd—t = 3m?/2 thus,
2

dr 1 m 3 m
—|r=10m = =—=+—3— = —— =~ 0.0159 .
dt| 10 2 (10m) = s 207 s

Example 4.13.2. Problem: Suppose you add water to a rectangular bathtub at a rate of 5 cubic feet per
minute. If the dimensions of the tub are 5ft by 3ft then how quickly does the water rise?

Solution: We should define the variables; call the volume of water in the tub V and the area of the base A
and the height of water in the tub h. Since the tub is rectangular we have V. = Ah where A = 15ft%. We
can relate the time-rate of change of V' and h:

dVv dh dh  1dV
dt dt dt  Adt’
. ) dh 1 ft
v _ 3 o - Ju
We were given % = 5ft° /min thus i 3min

Example 4.13.3. Problem: Suppose you add water to a triangular water trough built such that it has
equilateral triangular ends with side length 2ft and a length of 4ft. If the water is added at a rate of 5 cubic
feet per minute then how quickly does the water level rise if the water is at a height of 1ft from the base?
You may assume the trough is set-up on level ground such that the water level is parallel to the base of the
trough.

Solution: We should define the variables and draw a picture; call the volume of water in the trough V' and
the height of water in the trough h. Since the trough is triangular we have a typical vertical cross section of
area A = %BaseHeight = %%h The volume V = Al where | = 4, thus V = h?. We can relate the time-rate
of change of V' and h:

dv d 9 dh dh 1 dV
- aM)=?y T w T wma
dh ft

We were given % = 5ft3/min thus| — = 2.5——.
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Example 4.13.4. Problem: If the sun travels across the sky over a period of 12 hrs and the distance to
the sun is known to be 93 million miles then how fast is the sun going? Suppose that the earth is fixed and
the sun is traveling in a circle at a constant rate. Also, for convenience you may neglect the size of the earth
relative to your observation.

Solution: The equation relating arclenth to angle 0 subtended is s = RO. The sun goes from § =0 to 0 =7
in the course of the given 12hr day. Since the rate at which the sun travels is constant the instantaneous
rate of change matches the average rate of change:

@ _20_ =
dt — At 12hrs’

Differentiating the arclength relation we find % =
thus % = (93,000, 000miles) R~ ’ 24,300, 000mp

dt

a
dt
h.

_m
12hrs

(RO) = RL. We were given R = 93,000,000 miles

We know that the perception of the sun travelling across the sky is actually due to the earth spinning.
The speed at which the earth rotates relative to its center is roughly v = W ~ 1050mph (at the
equator). The circumference at the equator is about 25,000 miles. In contrast, the land at the North of South
poles rotates at a much slower tangential speed. For this reason the Earth is actually an oblate spheroidm
because the equator is spun further away from the center due to the centripetal force. If you consider the last
example you can see why it was easy to give up on the idea of the earth being at the center and everything
else rotating around us. Stars further away than the sun would have to go even faster. You might wonder
how it can be determined the sun is 93 million miles away. The answer is trigonometry. I'll leave it at that
for here.

Example 4.13.5. Problem: If a 10ft ladder slides down a wall without slipping such that the top of the
ladder slides down the wall at 3ft/s then how fast is the base of the ladder sliding away from the wall when
the ladder is 4ft from the wall ?

Solution: We label the distance from the ground to the top of the ladder to be y and the distance from the
base of the wall to the base of the ladder to be x. We are given that dy/dt = —3ft/s. On the other hand, by
the pythagorean theorem xz* + y? = 100. Differentiating with respect to time we find

dx dy
2: 0 42y =
Tar TV

Solve for dxz/dt and note that if x = 4ft then y = /84 thus

d d 1, _ft t
R S \/87(—3];)% 6.9%

dt~  axdt 4 S

Notice that common sense also suggests that if dy/dt < 0 then dx/dt > 0.

Example 4.13.6. Problem: If a 10ft ladder slides down a parabolic wall (with equation y = 6 — x2)
without slipping such that the top of the ladder slides down the wall at 1ft/s (dy/dt) then how fast is the
base of the ladder sliding away from the wall when the ladder is at x = 2ft ¢

Owhich is basically just a squished sphere
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Solution: the problem statement tells us y = 6 — 2? thus %’ = —2:5% thus we may solve for dx/dt: (I omit
units, we agree to work in ft and s)
dr  —ldy -1

—_ = — = —-1)=0.2
dt 2x dt 4( )=0.25

d
Thus, bringing back the units, d—f = 0.25ft/s.

Remark 4.13.7.

Units are important however, writing explicit units is not always the best approach. A common
technique is to state from the outset which units you intend to use then you may add them back
at the end of the calculation. The answer should have units. To be honest, the last example is
not even well-posed if you are a stickler for units. I cannot write such an equation as y = 6 — 2
unless I assume that x and y are dimensionless. To be careful I'd need to write something like
y=06ft— (#)J‘Q if both z, y are written in terms of ft. But, that equation is uglier than y = 6 — 22
so we prefer to write less and just be careful to put given numerical data into our set of chosen units.
We chose [z] = [y] = ft and [t] = s in the last example (I use [f] to denote the customary units of

f)-

Example 4.13.8. Problem: Imagine two cars begin traveling from a point which we label as the origin.
If car A travels at 30mph along the direction 04 = 7/6 and if car B travels at 4/0mph along the direction
Op = 5w /4 then how quickly is the distance s between them increasing at time t? What is ds/dt at t = 1hr ¢

Solution: we should imagine a triangle at time t. One vertez is at the origin and the other two are at cars
A and B respective. The angle at the origin is calculated to be f =0p —04 = 5n/4—7/6 = (30 —4)w/24 =
267 /24. Notice that as the cars travel along the straight lines the triangle gets bigger and the angles at A
and B are changing whereas the angle B is independent of time. We can write the law of cosines for the

angle 3, note the opposite side is the distance between A and B which we labeled s:
52 = 5% + 5% — 2545 cos(f).

Where sa, sp are the distances from the origin to cars A and B respective. Since the cars travel at constant
speed we can relate the distance to the time by the equations s4 = 30t and sp = 40t. Thus,

52 =900t + 1600t> — 2400t cos(B).

Differentiate with respect to time,

d
25£ = 1800¢ + 3200t — 4800¢ cos(B).

Note s = 1/900¢2 + 1600t2 — 2400¢2 cos(B) hence

ds 1
dt — 2,/900¢% + 16002 — 2400¢2 cos(267/24)

1800t + 3200t — 4800¢ cos(267r/24)] .

To calculate s'(1) we need only evaluate the expression above at t = 1; hence ’ (1) = 69.41mph‘

Remark 4.13.9.

I will likely add pictures as I lecture on this material. You can also consult Stewart §3.8 or the
previous edition of my notes for additional examples.




Chapter 5

derivatives and linear approximations

Linearization of a function is the process of approximating a function by a line near some point. The tangent
line is the graph of the linearization. The differential is closely connected with the linearization. In short,
the difference between the concepts is as follows:

1. the linearization is an approximates the function near a given point.
2. the differential approximates the change in the function at a given point.

We examine how to apply linearizations to approximate nonlinear functions. We also consider how the
differential is useful in the analysis of error propagation. Finally, we use derivatives in the formulation of
Newton’s method. This iterative method allows us to use the power of calculus to find approximate solutions
to algebraic or even transcendental equations.

5.1 linearizations
We have already found the linearization of a function a number of times. The idea is to replace the function

by its tangent line at some point. This usuallyE] provides a good approximation if we are near to the point.
The linearization of a function f at a point a € dom(f) is denoted by L% or simply Ly in this course,

Li(x) = f(a) + f'(a)(z — a)

The graph of L$ is the tangent line to y = f(z) at (a, f(a)).

Example 5.1.1. Suppose the singularity has occurred and the robot holocaust has cast doubt on the service
of all machines. You need to calculate a squareroot but you can’t trust your calculator. What to do? Let
f(z) = \/x and use the linearization. Take the number you wish to find the root for and pick the closest easy
root you can find center the linearization. Then the linearization of the number will give a close estimate of
the root you wish to find. For example, v/4.01. Notice, 4.01 = 4 4+ 0.01 and we know V4 = 2 thus we use

a =4 as the center of the approzimation. Calculate that f'(x) = 2\1/5 hence,

fla) m 4(@) = F) + F@)w—4) =2+ {(— 4).

lwe discuss limitations of the tangent line approximation at the conclusion of this section

145
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Therefore,

4.01 -4
V4.0l ~ 2 4 — " 2+ 0.0025 = 2.0025.

Since Wolfram-alpha is still free and fairly benevolent I believe that in truth
V4.01 = 2.00249843945007857276972121483226054214864513129159...

As you can easily see we did very well considering the crudeness of our method (in fact the error is only
about 0.0001% ). Is a line a parabola? Certainly not. But that is the heart of what I just did. I said you
can replace a curve with a line locally and get good approzimations. But, what is "local” how far does this
linearization give ”good” results? Just for perspective I list a few less accurate results from this linearization:

1
Vo2 4 19— 4) =13.25 (8.33% error)
1
V16~ 2+ 1(16 —4) =5 (25% error)

1
V25~ 2+ 1(25 —4)="7.25 (45% error)

Here’s a picture of what just happened.

o
)
Y%} N=ls
€T Yeix
g+
L ™ '
/ J. ' ; ' ' s X
i lo i5 20 28 I

Many authors would replace z with 4+h and use g(h) = v/4 + h in which case the center of the approximation
is naturally taken to be zero thus v4 + h ~ 2+ %. It’s just a matter of notation. In the same sense your text
has more to say about the ”differential”, however if you examine the mathematics closely you’ll learn that
the differential and the linearization are being used to accomplish the same goal. I will discuss both just to
be safe. In a nutshell, the differential approximates the change in the function near some base point whereas
the linearization approximates the function itself near the base point. By ”base point” I simply mean the
point at which the approximation is based. In the last example we had base point a = 4.

5.2 differentials and error

The change in the function between a and a + h is denoted Af = f(a + h) — f(a) and if y = f(x) then
we may likewise state Ay = f(a + h) — f(a). Likewise, the change in x with respect to these two points
is Az = a+ h —a = h. The linearization based at a for f is given by L$(z) = f(a) + f'(a)(z — a). If we
substitute = a + h into the formula for the linearization we find L¢(a + h) = f(a) + f'(a)h which gives
that L(a +h) — f(a) = f'(a)h. If h ~ 0 then we expect L¢(a + h) ~ f(a + h) thus it follows that

Af ~ f'(a)h.
The notation is deceptively simple here: Af = Ay, f'(a) = % (a) and h = Az. This gives:

dx
Ay =~ %(a)Aw.
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Definition 5.2.1.

Suppose f: U C R — R then if f has a derivative at a then it also has a differential df, : R — R
at a which is a function defined by df,(h) = hf’(a).

Notice that the derivative at a point (f/(a)) is a number whereas the differential at a point (df,) is a linear
function. The linearization (L}) of the function at (a, f(a)) is actually an affine function which just means
it has a graph which is a line with a possibly nonzero y-intercept.

Example 5.2.2. Estimate the uncertainty in the volume of a cubical box if you measure the length of the
side to be 20in £ 0.2in. Let x© denote the length of the side and V the volume of the box then

V=23

Thus % = 3z2. We find,
_av

AV ~ 2
v dxr

(a)Awx.
We are given a = 20in and Az = 0.2in thus,
AV 2 3(20)2(0.2)in® = 240in>.

Thus the uncertainty in the volume of the cubical box is approzimately | £240in>

Example 5.2.3. Suppose that we have 5 resistors all given to have a resistance of R = 102. Furthermore,
we know that the given resistance values are known to within 5% by the resistors color coding. If the resistors
are arranged so that 2 of the resistors are in series and the other 3 are in parallel with the series combination
then what is the error in the equivalent resistance Req? In second semester physics you can learn to calculate

that L )
R.. = l + l + l + # B — l R — @

“ IR R R R+R 2R T

We calculate ARy = %AR = 0.286AR. Since 5% of 10Q is 0.5Q we are given that AR = 0.5Q thus
AR, = (0.286)(0.5)Q2 = 0.143€Q2. Notice that R = 10Q gives Ry, = 2.86€ so we have R, = 2.86 £ 0.143().

The uncertainty in the value of the equivalent resistance is [0.143/2.86][100%)] = 5%.

It should be mentioned that the total and correct analysis of error propagation is more involved that this
section indicates. If you want to see more you might look at Data Reduction and Error Analysis for the
Physical Sciences by Bevington and Robinson.

Remark 5.2.4.

It is also true that df, = % (a)dx,, but beware this equation is not just multiplication and division of
tiny variables. Let g(x) = x for all x € R. Note that ¢’(x) = 1 and it follows that dg,(z) =1-z ==
for all z € R. Therefore, dg = g. If we denote g = = so that dz = x in this notation. Note then we

can write the differential in terms of the derivative function:
df (a)(h) = df.(h) = f'(a)h = f'(a)dz.(h) for all h € R

Hence df (a) = f'(a)dz, for all @ € R hence df = f'dz or we could denote this by the deceptively
simple formula df = %day

Most elementary calculus texts give you the idea that f’(a) is primary and df, is just some application
tacked on at the end, however it turns out that in the big scheme of things df, is the primary
object and it has a definition which generalizes even to infinite dimensional calculus. In general the
differential is a linear operator and the derivative is the matrix of that operator. See my advanced
calculus notes or Edward’s excellent text for a deeper perspective on the concept of a differential.
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5.3 Newton’s method

In this section we use linearizations to find roots of equations. The idea is actually very simple: we wish to
solve f(xz) =0 for a given differentiable function f

1. guess a solution xz, and calculate f(z,) and if it is close enough to zero then stop.

2. construct Lo(z) = f(x,)+ f'(20) (2 —x,) and solve L,(z1) = 0 to find solution 1 = z, — f(x,)/f (x,).
3. calculate f(z1) and if it is close enough to zero then stop.

4. construct Ly (x) = f(x1)+ f/(x1)(z — 1) and solve L1 (x2) = 0 to find solution ze = x1 — f(x1)/f'(z1).
5. calculate f(z2) and if it is close enough to zero then stop.

6. construct Lo(z) = f(x2)+ f'(x2)(z—x2) and solve L;i(x3) = 0 to find solution x3 = xo — f(z2)/f' (x2).

7. calculate f(z3) and so forth and so on until you get close enough to consider it a solution for the
purposes of your application.

To summarize: we wish to solve f(z) = 0 then we guess z, to begin then calculate iteratively by the rule

’xn-i-l =xn — f(xn)/f (x0) ‘

until |f(x,)| < € where € is an upper bound on the error you allow for the approximate solution.

Example 5.3.1. Let’s see how to solve the equation e = x to within £0.01. First construct flz) =
e~ — z and note that the problem becomes solving f(x) = 0. Calculate f'(z) = —2ze® —1. To begin we
guess x, = —0.2. Note f(—0.2) = 1.16. Calculate x1 = x, — f(2,)/f (x,) = 1.69. I have pictured the initial
guess T, as well as the first iterate x1 with green diamonds on the x — axis:

v

—_—

You can see that x1 is the z-intercept of the tangent line from x,. Next, we can calculate xo = x1 —

f(x1)/f (z1) = 0.324.
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Xo X X1

You can see that xo is the z-intercept of the tangent line from xy. Next, we can calculate r3 = x93 —

f(z2)/ f'(x2) = 0.686.

You can see that x3 is the z-intercept of the tangent line from xo. Next, we can calculate x4 = x3 —

f(x3)/f (x3) = 0.653.
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At this point the tangent line so closely follows the function it is difficult to see where the tangent line based
at (x3, f(x3)) crosses the x-axis. We calculate

£(0.653) = ¢~065%" _ .653 = —0.00015.

Therefore, to a good approximation, the solution of e~ =z is x = 0.653.

I included the pictures in the preceding example to emphasize the idea of the method. In practice the graphs
are not necessary for the calculation. However, looking at a graph is a good method to select the initial
guess of x,.

Example 5.3.2. Calculate ¥/20. Use your imagination, if x = /20 then x> = 20. We need to solve the
equation x3 — 20 = 0 in other words, find the zero of f(x) = x® — 20. We’ll use Newton’s method with an
initial guess of T, = 2.5 since we know that our answer must be somewhere between 2 and 3 since 23 = 8

and 3% = 27. Note f'(z) = 32°.
21 = 2o — f(@0)/f (20) = 2.5 + 4.375/18.75 = 2.733

wy =x1 — f(21)/f (21) = 2.733 — 0.4136/22.41 = 2.715
Tr3 = Ty — f(l‘g)/f/(xg) =2.715 — 0013/2211 =2.714
We calculate that 2.714% = 19.991 thus /20 ~ 2.714.

What if you wanted to calculate logs(7) via Newton’s method? I leave this as an exercise for the reader.
The ideas presented in this section are used by calculators with great success. There are examples for which
Newton’s method fails to find a root, but it’s not hard to modify the naive algorithm in this section to capture
most roots. We’ve seen in our examples that even in less than 10 iterations the method zoomed in on the
root. How quickly the method converges to the answer is important for applications because it determines
the number of computer operations we will have to perform to execute the method. There are a number of
useful estimates on the error of a particular iterate however they are beyond the scope of this course. You
might read pages 160-165 of Edwards Advanced Calculus if you're interested in the pure mathematics of the
topic. The goal of Edwards section is to prove the following theorem:
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Proposition 5.3.3. inverse function theorem for one-variable function.

Let f be a continuously differentiable functions on a nbhd of a then if f/(a) # 0 there exists a 6 > 0
such that f is invertible when restricted to (a — d,a + §). In other words, if f'(a) # 0 and f/(x)
exists for z near a then f is locally invertible near a.

Proof Sketch: since f'(a) # 0 and f’ is continuous it follows f/(z) # 0 on some nbhd. of a. Thus f/(z) is
either positive or negative on this nbhd and thus f is strictly monotonic and may therefore by inverted. [J

The proof in Edwards is fascinating and constructive. He shows how to find a sequence of functions which
converges to the inverse function. This means he shows how to construct an inverse function even in cases
where you cannot implement the precalculus algorithm to find the inverse ﬂ I have a Mathematica notebook
which demonstrated the algorithm from Edwards’ text. Incidentally, I don’t mean to indicate that this idea
is unique to Edward’s text. These ideas are older and can be found in dozens, if not hundreds, of modern
texts on numerical methods.

2 you remember, y = f(x), solve for = then say x = f !(y). Don’t switch 2 and y, it’s better to use different
letters for the domain and range of the function since they may well have different physical interpretations and/or
be different sets. We can think of functions of y or functions of x. We are not slaves to notation!
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Chapter 6

geometry and differential calculus

In this modern age it is tempting to neglect a careful study of graphing since we have so much technological
assistance. However, by doing such we would rob ourselves of basic geometric intuition. In my view there
is no substitute for seeing the nuts and bolts of calculus and their application to graphing. Moreover, the
application of this analysis to word problems answers many nontrivial questions. Given a mathematical
model we might wish to know which values of the variable make it the fastest, tallest, shortest, coolest,
cheapest, etc... these sort of questions are easily answered by the analysis in this chapter.

In Chapter 4 we learned how to differentiate. In Chapter 5 we learned that the basic interpretation of the
derivative at a point is as a linear approximation. In this chapter we learn what a derivative as a function
means. We also analyze the geometric significance of higher derivatives. To complete the story of graphing
we analyze limits at +00. We also apply such limits to analyze the asymptotic behavior of a function thus
generalizing the idea of a horizontal asymptote. The asymptotic behavior of a model is sometimes the
most interesting case. 1’Hopital’s rule is introduced and justified. Finally, breaking from some calculus-
orthodoxy I discuss Taylor’s Theorenﬂ with Lagrange’s form of the remainder. It is my opinion that the
power of the theorem warrants some discussion at this time. Taylor’s theorem elucidates and expands the
second derivative test. Moreover, the idea of polynomial approximation is a very important idea to many
applications. I show how polynomial approximations play a special role in physics.

6.1 graphing with derivatives

We would like to develop a strategy to locate where a given function takes its largest positive or negative
values. In an application this tells us the boundaries of what is possible for a given model. For example, the
motion of a spring oscillates between two positions. In other words, we can bound the motion between those
two positions. In contrast, we might study a bridge over which a wind blows with a certain frequency. If the
frequency of the wind matches the resonant frequency of the structure then the oscillation or waving motion
of the bridge could build without bound. In that case a good mathematical modeﬂ of the bridge would
reveal motion which is unbounded. The idea of bounded motion is closely connected with the following:

Inote we do not discuss series at this juncture, the totality of that topic waits until calculus II, I simply include
some discussion here in the interest of deeper geometric insight. As a side consequence I also hope this inclusion
strengthens the student for calculus II’s travails

2a good mathematical model is the sort which anticipates these sort of problems before they occur

153
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Definition 6.1.1. absolute extrema.

1. We say a function f has an absolute maximum at ¢ if f(c) > f(z) for all z € dom(f). The
absolute maximum is f(c) in this case.

2. We say a function f has an absolute minimum at d if f(d) < f(z) for all x € dom(f). The
absolute minimum is f(d) in this case.

3. If there exist absolute maximum and minimum values then we call them the global extrema
of f.

One subtle point is that motion could be bounded and yet no global extrema are realized. Think about it.
What shape of graph would be bounded and yet have no global max. or min. ? A less subtle comment is
that if a function has a VA then it is not bounded above and below and it also does not possess global a
maximum and minimum (it might have just a global max. or just a min.). It can happen that function has
a global minimum but not global maximum. For example the function below has f(0) = —2 and that is the
global minimum for f(z) = |z| — 2.

Suppose we are given a model plus some additional condition so that we know the model must have variables
whose values are near some given data point. In a case such as that it is interesting to know what the largest
positive or negative values the function takes near the given data point. Mathematically this is encapsulated
by the idea of a local extreme value:

Definition 6.1.2. local extrema.

1. A function f has a local maximum at c if there exists a connected set J with ¢ € J and
J C dom(f) such that f(c) > f(z) for all x € J. The local maximum is f(c) in this case.

2. A function f has a local minimum at c if there exists a connected set J with ¢ € J and
J C dom(f) such that f(c) < f(x) for all x € J. The local minimum is f(c) in this case.

3. If f(c) is either a local maximum or a local minimum then we say f(c) is a local extrema
at c.

In the graph below the are local minima at z = —5,5,10,16 and the local maxima are at 1,8,14,19. The
global maximum is 15 it is reached at © = 14. The global minimum is 5 and it is reached at * = —5 and
z = 10.
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The example above is just intended to illustrate the definitions. Usually we are not given a picture of the
graph. More often we are given the formula for the function then we endeavor to discover the graph through
a careful, calculus-assisted analysis.

The following theorem is at the heart of most everything that follows in this chapter.

Proposition 6.1.3. Ezxtreme value theorem.

Suppose that f is a function which is continuous on [a, b] then f attains its absolute maximum f(c)
on [a,b] and its absolute minimum f(d) on [a, b] for some ¢, d € [a, b].

It’s easy to see why the requirement of continuity is essential. If the function had a vertical asymptote on
[a,b] then the function gets arbitrarily large or negative so there is no biggest or most negative value the
function takes on the closed interval. Of course, if we had a vertical asymptote then the function is not
continuous at the asymptote. The proof of this theorem is technical and beyond the scope of this course.
See Apostol pages 150-151 for a nice proof.

Notice the extreme value theorem does not really tell us how to find extrema. It merely states they exist
somewhere if the given function is continuous. Naturally we would like a way to locate such points. Given
our earlier work with tangent lines it would seem intuitively natural to suppose those extrema should be
found at points where there is either a horizontal tangent or a jump or kink in the graph. Those graphical
features will either make the derivative at the point to be zero or undefined. We wish to prove this intuition
valid. Begin by defining the points of interest:

Definition 6.1.4. critical numbers.

We say ¢ € R is a critical number of a function f if either f'(¢) = 0 or f’(¢) does not exist. If
¢ € dom(f) is a critical number then (¢, f(c)) is a critical point of f.

Notice that a critical number need not be in the domain of a given function. For example, f(x) = 1/x has
f(r) = —1/22 and thus ¢ = 0 is a critical numbers as f’(0) does not exist in R. Clearly 0 ¢ dom(f) either.
It is usually the case that a vertical asymptote of the function will likewise be a vertical asymptote of the
derivative function.

Proposition 6.1.5. Fermat’s theorem.

If f has a local extreme value of f(c) and f’(c) exists then f/(c) = 0.
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Proof: suppose f(c) is a local maximum. Then there exists §; > 0 such that f(c + h) < f(c) for all
h € Byg, (0). Furthermore, since f’(¢) € R we have limj_,q M = f'(¢) eR. If h > 0 and h € Bs,(0)
then f(c+ h) — f(c) <0 hence,

Using the squeeze theorem we find f/(¢) = limy_,or Z5=HD < limy,0(0) = 0. Likewise, if b < 0 and
h € Bs, (0) then f(c+ h) — f(c) <0 hence,

fleth) = f(o)
h

>0

Using the squeeze theorem we find f/(c) = lim,_,o- W > limy,0(0) = 0. Consequently, f'(c) <0
and f'(c) > 0 therefore f'(¢) = 0. The proof in the case that f(c) is a local minimum is similar. O

Remember, if f’(c) does not exist then ¢ is a critical point by definition. Therefore, if f(c) is a local extrema
then ¢ must be a critical point for one of two general reasons:

1. f'(c) exists so Fermat’s theorem proves f’(c) = 0 so ¢ is a critical point.

2. f'(c) does not exist so by definition ¢ is a critical point.
Sometimes Fermat’s Theorem is simply stated as ”local extrema happen at critical points”.
The converse of this Theorem is not true. We can have a critical number ¢ such that f(c) is not a local
maximum or minimum. For example, f(z) = 23 has critical number ¢ = 0 yet f(0) = 0 which is neither a
local max. nor min. value of f(x) = 3. It turns out that (0, 0) is actually an inflection point as we’ll discuss
soon. Another example of a critical point which yields something funny is a constant function; if g(z) = k

then ¢'(z) = 0 for each and every x € dom(g). Technically, y = k is both the minimum and maximum value
of g. Constant functions are a sort of exceptional case in this game we are playing.

Proposition 6.1.6. Rolle’s theorem.

Suppose that f is a function such that
1. f is continuous on [a, b],
2. f is differentiable on (a,b),
3. f(a) = /).
Then there exists ¢ € (a,b) such that f/(c) = 0.

Proof: If f(x) =k for all € [a, b] then every point is a critical point and the theorem is trivially satisfied.
Suppose f is not constant, apply the Extreme Value Theorem to show there exists ¢,d € [a,b] such that
f(e) > f(x) for all z € [a,b] and f(d) < f(z) for all © € [a,b]. Since f(x,) # f(a) for at least one z, € (a,b)
it follows that f(z,) > f(a) or f(z,) < f(a). If z, € (a,b) and f(z,) > f(a) then f(a) is not the absolute
maximum therefore we deduce ¢ € (a,b) is the absolute maximum. Likewise, if 2, € (a,b) and f(z,) < f(a)
then f(a) is not the absolute minimum therefore we deduce d € (a, b) is the absolute maximum. In all cases
there is an absolute extremum in the open set (a,b) hence there exists a critical point in the interior of the
set. Moreover, since f is differentiable on (a,b) it follows that either f'(c) = 0 or f/(d) = 0 and Rolle’s
theorem follows. [J
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Let’s think about this theorem as it applies to the physics of projectile motion. If the height of a cat is y(t)
and it represents a cat thrown up into the air for 3 seconds meaning y(0) = y(3) = 0. Then v = dy/dt must
be zero at some point during the flight of the cat. What goes up must come down, and before it comes down
it has to stop going up.

Proposition 6.1.7. Mean Value Theorem (MVT).

Suppose that f is a function such that
1. f is continuous on [a, b],
2. f is differentiable on (a,b),

Then there exists ¢ € (a,b) such that f'(¢) = W. That is, there exists ¢ € (a,b) such that
f(0) = f(a) = f'(c)(b—a).
Proof:(essentially borrowed from Stewart pg. 216-217, this proof is common to a host of calculus texts).

The equation of the secant line to y = f(x) on the interval [a,b] is y = s(z) where s(z) is defined via the
standard formula for a line going from (a, f(a) to (b, f(b))

The Mean Value Theorem proposes that there is some point on the interval [a, b] such that the slope of the
tangent line is equal to the slope of the secant line y = s(x). Consider a new function defined to be the
difference of the secant line and the given function, call it h:

W) = f@) = 5(2) = f@) = fla) = T =1 (0 )

Observe that h(a) = h(b) = 0 and h is clearly continuous on [a,b] because f is continuous and besides that
the function is constructed from a sum of a polynomial with f. Additionally, it is clear that h is differentiable
on (a,b) since polynomials are differentiable everywhere and f was assumed to be differentiable on (a,b).
Thus Rolle’s Theorem applies to h so there exists a ¢ € (a,b) such that h’'(¢) = 0 which yields

O 1@ o [ IO —F@]

W)= (o) - L2 —

Physical Significance of the Mean Value Theorem: The term "mean” could be changed to ”average”. Apply
the MVT to the case that the independent variable is time ¢ and the dependent variable is position y and
we get the simple observation that the average velocity over some time interval is equal to the instantaneous
velocity at some time during that interval of time. For example, if you go 60 miles in one hour then your
average velocity is clearly 60mph. The MVT tells us that some time during that hour your instantaneous
velocity was also 60mph.

Proposition 6.1.8. sign of the derivative function f’ indicates strict increase or decrease of f.

Suppose that f is a function and .J is a connected subset of dom(f)
1. if f/(x) > 0 for all = € J then f is strictly increasing on J
2. if f'(x) < 0 for all z € J then f is strictly decreasing on J.
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Proof: suppose f'(x) > 0 for all z € J. Let [a,b] C J and note f is continuous on [a, ] since it is given
to be differentiable on a superset of [a,b]. The MVT applied to f with respect to [a,b] implies there exists
¢ € [a,b] such that

f(0) = f(a)

)

Notice that f(b) — f(a) = (b—a)f'(c) but b—a > 0 and f’(c¢) > 0 hence f(b) — f(a) > 0. Therefore, for each
pair a,b € J with a < b we find f(a) < f(b) which means f is strictly increasing on J. Likewise, if f'(¢) <0
then almost the same argument applies to show a < b implies f(a) > f(b). O

Theorem 6.1.9. derivative zero implies constant function.

’If f'(z) = 0 for each = € (a,b) then f is a constant function on (a,b).

Proof: apply the Mean Value Theorem. We know we can because the derivative exists at each point on the
interval and this implies the function is continuous on the open interval, so it is continuous on any closed
subinterval of (a,b). Let us denote this closed subinterval by J = [a,,b,] C (a,b). We have to apply the
Mean Value Theorem to J = [a,, bo] because we do not know for certain that the function is continuous on
the endpoints. We find,

f(bo) — flao)

O:
b, — a,

= f(bo) = f(ao)
But this is for an arbitrary closed subinterval hence the function is constant on (a,b). O
Caution: we cannot say the function is constant beyond the interval (a,b). It could do many different

things beyond the interval in consideration. Piecewise continuous functions are such examples, they can be
constant on the pieces yet at the points of discontinuity the function can jump from one constant to another.

Theorem 6.1.10. if derivatives of two functions agree then the functions have same shaped graph.

‘ If f'(z) = ¢'(x) for each x € (a,b) then f(x) = g(x) + ¢ for some constant ¢ € R. ‘

Proof: Apply Proposition to h(z) = f(z) — g(x). Notice h'(x) = f'(z) — ¢’(x) = 0 hence h(x) = ¢ and
thus ¢ = f(z) — g(x). The proposition follows. [J

Notice that the assumption is that they are equal on an open interval. If we had that the derivatives of
two functions were equal over some set which consisted of disconnected pieces then we could apply Theorem
to each piece separately then we would need to check that those constants from different components
matched up. (for example if % = 29 on (0,1) U (2,3) then we could have that f(z) = g(z) + 1 on (0,1)
whereas f(z) = g(z) + 2 on (2,3)).

Physical Significance: If we have equal velocities over some time interval then the displacement between our
positions at any time will be constant.

Proposition 6.1.11. sign-charts for derivatives reveal increase and decrease of function.

If f has finitely many critical numbers and f then the intervals of increase and decrease for f can be
determined through the use of a sign-chart for f’(z). In particular, one draws a number line with
all critical points then labels either (+) or (—) on each subinterval based on a test point for f/(z)
in the subinterval. The function is either increasing or decreasing on each subinterval bounded by
the critical points.
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Proof: since there are finitely many critical points we may partition the real line into a finite number of
disjoint open intervals which are joined at critical numbers. Then we apply Proposition to each open
interval to determine strict increase or decrease. The sign-chart is simply a number line indicating this
analysis in a nice organized fashion. See the next subsection for examples. [

The sign-chart also applies to the case of countably many critical points which are separated by finite open
intervals. For example f(z) = cos(nz) has f/'(z) = —wsin(7z) and we have infinitely many critical numbers
of the form ¢ = n for n € Z. The concept of the sign-chart does just fine for an example like f(x) = cos(wz).
However, the sign-chart is not helpful for functions which have dense accumulations of critical points in some
nbhd. (see Example for this bad behavior).

6.1.1 first derivative test
The following theorem naturally follows from the sign-test theorem.

Theorem 6.1.12. sign-charts for derivatives reveal increase and decrease of function.

Suppose f is continuous on an open interval containing a critical number ¢ then
1. if f/(z) changes signs from positive to negative at ¢ then f(c¢) is a local maximum.
2. if f'(x) changes signs from negative to positive at ¢ then f(c) is a local minimum.

3. if f/(x) does not change signs at ¢ then f(c) is not a local extrema.

In each of the examples that follow in this section we aim to use calculus to analyze the graph
of the function. In particular, we are interesting in locating any local extrema and the intervals
of increase and decrease for the given functions.

Example 6.1.13. Let f(z) = %x?’ + %xz — 6z. Find all critical numbers and classify the critical points as
local mazimums, minimums or neither. Observe,

flx) =2 +2—6=(x—2)(x+3).
We have two critical numbers, ¢ = 2 and ¢ = —3. Therefore, we set-up the sign-chart as follows:

23 2

5 } | . df/dx

Then we test a point somewhere in the interior of each region,

F(-4) = (—4-2)(—2+3)=8>0 (6.1)
f (0)=(-2)(3)=-6<0 (6.2)
F(3)=0B-23+3)=6>0 (6.3)

(6.4)

Hence the completed sign-chart,

5 | | s A



160 CHAPTER 6. GEOMETRY AND DIFFERENTIAL CALCULUS

By the First Derivative Test we conclude,
1. f(=3)=-27/349/2—6(—3) =27/2 is a local mazimum.
2. f(2)=8/34+4/2—6(2) = —22/3 is a local minimum.

Example 6.1.14. Let f(x) = e® + x. Note that f'(x) = e* + 1. This function has no critical points since
the equation €* + 1 = 0 has no solutions. It follows that y = €* 4+ 1 has no local extrema. However, we can
deduce that f(x) is increasing on R since f'(x) =e* + 1> 2 for all x € R.

Example 6.1.15. Observe that f(x) = z~ (z—1)* for x # 1 and f(1) = 1 has critical number ¢ = 1.

z—1
Moreover, the derivative changes signs at ¢ =1 since f'(x) = —1 for x < 1 whereas f'(x) =1 for x > 1. Is
it the case that f(1) =1 is a local mazimum ¢ Does this contradict the First Derivative Test? Explain.

Example 6.1.16. Let f(z) = 2* — 1222 —5. Calculate f'(x) = 42 — 242 = 4x (2> — 6) = 3(x +/6)(x —/6)
hence we find critical numbers ¢ = 0,4+/6. In invite the reader to confirm that the test points —3,—1,1,2
reside between the critical points and f'(—3) < 0, f'(=1) > 0, f'(1) < 0 and f'(3) > 0 therefore the sign-chart
for the derivative function is as follows:

4172 0 6112

————I++++ I————I++++ df/dx

P

&

We identify that f is increasing on (—v/6,0) U (vV/6,00) and it f is decreasing on (—oo, —/6) U (0,1/6). By
the first derivative test we observe that f(—v/6) = 36 — 72 —5 = —41 and f(v/6) = 36 — 72 — 5 = —41 are

local mazima whereas f(0) = —5 is a local minimum. The graph can be deduced from these facts.

.
©.-5)
-5is local
maximum X

o VM )

-41is local -41is local

minimum minimum

Notice I did not even need to find the zeros of the graph to make a good sketch of the curve.

Example 6.1.17. Let f(x) = ﬁ By quotient rule

d 114 2)?-2(1+ax) 11—z

de (1+z)2 (14 z)* (14 z)3

Thus the critical points are ¢ =1 and ¢ = —1. The sign-chart is
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'y

i | » df/dx

Observe that © = —1 is a VA and by the first derivative test f(1) = 1/4 is a local mazimum. The function
is increasing on (—1,1) and it is decreasing on (—oo,1) U (1,00)

0.6

(1,1/4)

1/4is local

£ maximum

-6 4 2 2 4

(.6

Example 6.1.18. Suppose f(z) = e*5(™) . We calculate by chain rule f'(x) = —msin(rz)e®3(™) . Note
that the exponential function is nonzero thus f'(x) = 0 implies sin(wx) = 0, but we recall from our study of
trigonometry that the set of solutions are precisely those x € R such that mx = nw for some n € Z. In this
example we find infinitely many critical points. In particular, ¢, = n implies f'(c,) = 0. The sign-chart is

-4 -3 -2 -] o) ] 2 3 4

——|++|——|++|——|++I——|++|——I++_; df/dx

For each even integer 2n we apply first derivative test to find f(2n) = e is the global mazimum of f and for
each odd integer 2n + 1 we apply first derivative test to find f(2n + 1) = 1/e is the global minimum of f.

The graph is sort of like an cosine graph, although it is bounded by 1/e < e°*(™) < e and you can see the
shape not the same as cosine.

IA

¥y.=e

global maximum
attained at all even
integers

2 4 6 8
y=1/e
global maximum
attained at all odd
integers
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I have pointed out a few mazima (2n, €) with yellow dots and minima (2n—1, 1) with blue dots in the picture
above.

Example 6.1.19. Suppose f(x) = cos(e®). The chain rule provides f'(x) = —e®sin(e”). We will find
infinitely many solutions for the critical number criteria f'(x) = —e®sin(e”) = 0. Note e # 0 for all x € R
hence we must have sin(e®) = 0. Consequently we find solutions described implicitly by e* = nm for n € Z.
Since e* > 0 we have no solutions with n < 0. If n > 0 then we can solve for x = In(nm) = In(n) + In(n).
Define ¢,, = In(n) 4+ In(x), then clearly f'(c,) = 0 for each n € N. The critical numbers c1,ca,... are not
evenly spaced. Instead, as n increases we know the In(n) grows slower and slower which means the critical
numbers are closer and closer as © — co. Note that —e” sin(e®) changes from + to — if e* = 2nw whereas
—e”sin(e”) changes from — to + if we cross e* = (2n — 1)w. Therefore, by first derivative test, f(can) =1
is the global mazimum which is attained at © = cop for n € N and f(con—1) = —1 is the global minimum
which is attained at * = cop,_1 for n € N.

(n@Hn@2,1)

(In(x), -1)

The yellow dots are at (can, 1) and the blue dots are at (con—1,1) forn =1,2,3,4,5.

Example 6.1.20. Let f(x) = xe™®. By the product rule, f'(z) = e ® —xe ™ = (1 —xz)e™ " thus the critical
number if c = 1. The sign-chart is very simple here:

P
-

F E TR FVREF OO E R R S W df/dx

A

Therefore, by the first derivative test f(1) = 1/e is a local mazimum. Moreover, the function is increasing
on (—o0,1) and it is decreasing on (1,00). We can see that f(1) = 1/e is also a global maximum for f since
f(z) <1/e for all x € R.
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(1.1/e)

Example 6.1.21. Let f(z) = /(z —1)2 — \/(z — 2)2. You should recogm'z these are formulas for the
absolute value function y = |x| shifted either one or two units right. We expect there will be two critical

points. Let us verify my conjecture,

fiay =4 ¢<x—1>2—¢<x—2>2}

T da

_ 2@-1) 2@ -—2)

S 2/(@—12 2/(z-2)?

:(m—l) (x —2)? = (z—2) (x—l)Q.
Vi —1)2/(z-2)?

You might be tempted to just cancel terms in the numerator and conclude f'(x) = 0 for all x € R. However,
this is not correct. In fact, f'(1) and f'(2) do not exist and f'(x) =2 for 1 < x < 2. Let us change notation
a bit so the problem becomes clearer, the trouble with this problem is that we really need to break it into cases

to see clearly:

2 ifx>2

_ _)x—=1 ifz>1 — o T
”@_UQ_x_H_{1—xifx§1 ViZ=27 =l m_{Q—xifx§2

Therefore,
~1 ifz<1
fl@)y=lr—1—|z—-2|=¢2r -1 if1<x<2.
1 if x>2
It follows that
0 ifx<l1
flz)=42 ifl<z<?2.
0 ifx>2

we can show that f is continuous on R however the derivative f' is discontinuous at x = 1 and x = 2. In
fact, dom(f") = R — {1,2}. The first derivative test does not apply to this example. Notice that the set of
critical points for f is (—o0,1] U [2,00). Since the derivative is constant on (—oo,1] and [2,00) we find the

3 we could write \/(xz — 1)2 = (2 —1), however I hope you realize that it is not correct to simply write /(z — 1)2 =
x — 1 for generic x. This mistake made many students miss this problem on a previous semester’s test
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function is constant on those intervals. (we already found this but I point out that the differential calculus
and our previous propositions on constant functions and derivatives do apply to this case even though the
first derivative test is non-applicable.)

df/dx=0
(2.1) ifx>2

df/dx =2
if1<x<2 x
5 -4 3 E -1 1 2 3 4 5

df/dx = 0 (1,-1)
ifx<1

6.1.2 concavity and the second derivative test

A function is concave-up on an interval J if the function has the shape of a bowl which is right-side up over
that interval J. A function is concave down on an interval J if the function has the shape of a bowl which
is up-side down over that interval J. In other words, a concave up function stays below the secant line but
a concave down function stays above the secant line.

Remark 6.1.22. (pre-calculus definition of geometric concavity, do not use later).

Suppose J = (a, b) then we define f to be concave down on (a,b) if

If p € dom(f) is a point for which the concavity of (p—d7) is different than the concavity of (p, p+d2)
for some 01, d5 > 0 then we call (p, f(p)) an inflection point

We should note these definitions are in some sense more general than the definition I offer below (however,
I argue this is not a good thing). For example, f(x) = 3 — |z| would be judged concave down on (—a,a) for
any a > 0 by the definition above. On the other hand, f(x) = 3 — |z| is both concave up and down on any
connected set not containing zero. In other words, functions made from lines piecewise joined yield some
seemingly contradictory statements. We should like our description to be locally consistent. In other words,
if a function is concave up on J then f ought also to be concave up on a connected subset of J. In my view
that makes the following a better definition:
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Definition 6.1.23. (calculus definition of geometric concavity, use later).

Let f be a function which is twice differentiable on some connected set J,
1. f is concave up if the derivative of f is decreasing on J (abbreviated CU on J)
2. f is concave down if the derivative of f is increasing on J (abbreviated CD on J)

3. if p € dom(f) is a point such that there exists § > 0 such that f is concave up(down) on
(p—0,p) and concave down(up) on (p,p+0) then we say p or (p, f(p)) is an inflection point.
An inflection point is a point where the concavity changes.

Equivalence of definitions proof sketch: Consider this, if a function has a the shape of a bowl right
side up then the slopes of the tangent lines will increase as we increase x. On the other hand, if a function
has the shape of a bowl upside down then the slopes of the tangent lines will decrease as x increases. In
other words, the derivative is an increasing function where the function is concave-up and the derivative is
a decreasing function where the function is concave-down. This is the heart of the proof that the definition
given above is equivalent to the geometric definition for concavity.

Notice that the example f(z) = 3 — |z| escapes trouble in view of the definition above because we cannot
say that f is concave down on (—a,a) based on the calculus definition because the calculus-based criteria
below does not even apply since f/(0) and f”(0) do not exist. Because increase and decrease allow equality
in these notes it is still the case that a line will be found both concave up and down since the derivative of a
line is a constant function. Intuitively, a line is between the cases of CU and CD. If we bend a line upwards
then it morphs into a CU graph whereas if we bend the line downward it morphs into a CD graph.

Remark 6.1.24.

One easy way to remember which is up and which is down is the following slogan:

concave up: is locally like a u concave down: is locally like a n |.

This slogan is useful to help create graphs if you already know the concavity.

Incidentally, the term ”convex” was historically used for concave down and this term is still used in physics
particularly in the study of optics.

Example 6.1.25. If f(x) = 22 then f'(x) = 2x. Notice that f"(x) = 2 > 0 therefore f' is an increasing
function on R. It follows that y = x2 is concave up on R.

v

(-2,4)

slope of -4 (2,4)

slope of 4

(1.1)
slope of 2

(1.1)
slope of -2 ™,

2 El =, i i 3
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Notice that the tangents (in green) are under the graph since the function is CU everywhere.

Example 6.1.26. If f(z) = 23 then f'(z) = 32%. Notice that f"(x) = 6x is positive for x > 0 whereas
x < 0 implies f"(x) < 0. Therefore, f' is increasing on (0,00) and f' is decreasing on (—00,0). It follows
that y = a3 is CU on (0,00) and CD on (—00,0). Thus (0,0) is an inflection point.

v

(2,8)
slope of 12
(-1.-1)
slope of 3

1
(1.1)
slope of 3

(-2,-8)
slope of 12

Notice that the tangents (in green) are over the graph where it is CD (x < 0) whereas the tangents are under
the graph where the function is CU (x > 0).

Theorem 6.1.27. sign-charts for derivatives reveal increase and decrease of function.

Suppose f € C%(a,b) (has continuous 2nd derivative) and (a,b) contains a critical number ¢ then
1. if f”(x) > 0 for all = € (a,b) then f is concave up on (a,b).
2. if f”(x) <0 for all z € (a,b) then f is concave down on (a,b).

3. if f”(c) = 0 then this test is inconclusive.

I emphasize that when the second derivative is zero we might find an inflection point, but it doesn’t have to
be the case. The same is true for critical points. When a critical point is not at a local max or min it could
be an inflection point, but it might be something else, there are countless other optionﬂ The following
theorem is geometrically obvious.

Theorem 6.1.28. Second Derivative Test.

Suppose f has a critical number ¢ such that f'(¢) = 0 and f”(z) is exists for € Bs(c) for some
0 > 0 then

1. if f”(¢) > 0 then f(c) is a local minimum at c.
2. if f”(c) < 0 then f(c) is a local maximum at c.

3. if f”(c¢) = 0 then this test is inconclusive.

Proof: suppose f”(c) > 0 and f’'(c) = 0. Notice that f’ is continuous on Bs(c) for some § > 0 since f” is
defined on that set and differentiability of f’ implies continuity of f’. Furthermore, notice that f’ is strictly

4challenge: find me an example of a continuous function which has a nonzero derivative and a critical point which
is neither at a local maximum, minimum or inflection point.
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increasing on Bs(c) therefore f’ is an injection on Bs(c). Since f/'(¢) = 0 and f’ is strictly increasing it
follows that f'(z) < 0 for z € Bs(c) with < ¢ and f/(x) > 0 for € Bs(c) with x > ¢ therefore by the
First Derivative Test we conclude f(c) is a local minimum. A similar argument applies to case 2. [J

We will discover another proof for the second derivative test when we discuss Taylor’s Theorem later in this
chapter.

In the examples below we aim to analyze the graph of the given function with the aid of
concavity and the second derivative test.

Example 6.1.29. Suppose f(z) = e=* then f'(z) = —2ze* and f"(z) = -2~ + da2e~*" = 2(222 —

1)6*12. Therefore, we find ¢ = 0 is the critical point and x = +1/v/2 are possible points of inflection. We
assemble the sign charts for f' and f" to guide our thoughts

0

+ + + + + + o+ | - - - - - - a7 dx

A
Y

-l 2-1/2
+ 4+ + o+ | - - — - = =] + + + +

I I - dzf/dxz

A

We identify that f(0) = 1 is a local mazimum since f”(0) < 0. We can read from the sign-chart for f”
that f is CU on (—o00,—1/v/2) and (1/+/2,00) and f is CD on (—1/v/2,1/3/2). Therefore, (%,6_%> are
inflection points.

1.21Y

global maximum

inflection point inflection point

Perhaps you recognize this function, it’s the Gaussian function. The graph above is called the Gaussian
distribution for its application to probability.

Example 6.1.30. Suppose f(x) = 325 — 20z* + 4023. Differentiating once we find f'(x) = 15z* — 802> +
12022. Differentiate once more to find f(x) = 602® — 24022 + 240x. We can factor f'(x) and f"(x) to
make clear the critical points and possible inflection points:

f'(x) = 52*(3x% — 162 + 24) f(x) = 60x(z? — 42 + 4) = 60x(z — 2)*

Thus the sign-charts for ' and " are: ( need to use a few test points to pin down the signs, I leave such
details to the reader)
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0
+ + + + + + + + + + + + + + + + + -
df/dx

A

2
- - - - - @k dd ) R R om0 e

]

d*t/dx*

F

We find the function is increasing on R and of the two possible inflection points only (0,0) is a point of
inflection. This quintic polynomial has a graph that much resembles the standard cubic function. We find
y = f(z) is CU on (0,00) and CD on (—00,0).

-0.4 -0.2 0.2 0.4

Example 6.1.31. Suppose f(z) = %H + —L5. If we make a common denominator we find f(z) = —3%;.

We differentiate (the original given formula),

R S S i
f(z) = (z+2)?2 (z-2)2 (x +2)%(z — 2)2

then differentiate again (using the unsimplified f'(x) as starting point),

L2 2 28448z da(z?+24)
L eyl P ke e g Al ey e

We find critical points ¢ = —2,2 and points of possible inflection at —2,0, 2.

¥

I R — df/dx

A

- - - + + + | - - - +++‘d2‘f/dxz

We find the function is decreasing on R and of the three possible inflection points only (0,0) is a point of
inflection, the concavity also changes at x = +2 but those are VA so we shouldn’t say those are points of
inflection. This rational function has a graph that is CU on (—2,0) and (2,00) and it is CD on (—o0,—2)
and (0, 2).
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inflection :
point

One physical interpretation mathematics found in the previous example is that y = f(x) could be a graph
of the electric potential along the z-axis for two positive point charges placed at x+ = —2 and z = 2. A
divergence in the potential signals the presence of localized charge.

Example 6.1.32. Suppose f(x) = sec(z) then f'(z) = sec(z)tan(z) and f"(x) = sec?(z) tan(x) + sec?(x)
by the product rule. Let us write these in terms of sine and cosine since we have a complete and working
knowledge of all the zeros for sine and cosine.

1 df _ sin(z) d*f  sin(z) +1

cos(x) dr  cos?(z) dz? ~  cos?(z)

It follows that critical points arise from where sin(xz) = 0 or where f'(x) does not exist because cos(x) = 0;
that ¢, = 5n forn € Z. We also see that the odd-integer critical points are also locations of possible concavity
change since a vanishing cosine makes f"(x) undefined. Note that sin(xz) = —1 has solutions x; = T4j — 1
for j € Z. For exzample, j =0 gives sin(—%) = —1 and j = 1 gives sin(3]) = —1. These points are included
already as a subset of the zeros of cosine. The concavity can only change at a zero of cosine.

—IT —n/2 0 /2 Vg
df/dx

F'y
¥

—m/f2 /2

4

d2t/dx*

¥

Notice that the local maximum of 1 is attained at x = 2nm for n € Z whereas a local minimum of 1 is attained
at x = (2n — 1) for n € Z. The fact these are respectively local mazimums and minimums is verified by the
second derivative test since f’(2nm) =1>0 and f"'((2n — 1)7) = =1 < 0 for all n € Z. Naturally the first
derivative test agrees. Both tests are evident from the sign-chart given above.
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Remark 6.1.33. concerning on case 3 of 2nd Derivative Test

Maybe you are wondering, what is an example of a function which falls into case 3 of the derivative
test? Ome simple example is a line y = f(z) = ma + b which has f/(z) = m. Clearly f and f’ are
continuous everywhere. Notice f”(z) = 0 for each # € R. There are two cases:

1. m =0, thus f(z) = b and y = b is the maximum and minimum value of the function at all
points.

2. m # 0, then f(z) = maz + b and the function has no extrema with respect to R.

Notice also that g(x) = 2* + 1 and h(z) = z° + 4 both have critical number ¢ = 0 and ¢”(0) =
R (0) = 0 however (0, ¢(0)) is a local minimum whereas (0, 2(0)) is an inflection point. The second
derivative is too clumsy to detect the difference. Later in this chapter we’ll discover that Taylor’s
polynomial approximation theorem covers cases like g or h.
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6.1.3 closed interval method

The following theorem details how to actually find the extrema the Extreme Value Theorem indicated exist.
If f is continuous on [a,b] then the Extreme Value Theorem says there exist global extrema with respect to
[a,b]. If an extrema are in the interior then it must also be a local extrema thus by Fermat’s theorem it will
occur at a critical number. Otherwise, the extrema are at the endpoints. Therefore, if we check endpoints
and critical points we will find the extrema.

Theorem 6.1.34. closed interval method.

If we are given function f which is continuous on a closed interval [a, b] the we can find the absolute
minimum and maximum values of the function over the interval [a, b] as follows:

1. Locate all critical numbers = ¢ in (a,b) and calculate f(c).
2. Calculate f(a) and f(b).

3. Compare values from steps 1. and 2. the largest of these values is the absolute maximum, the
smallest (or largest negative) value is the absolute minimum of f on [a, b].

Example 6.1.35. Let f(x) = sin(x) find absolute extrema of [ relative to interval 0 < x < 2w. Note

J'(x) = cos(z) and cos(xz) = 0 has solutions x = T, 5 € [0, 27].
3
F(0) =sin(0) =0, f(5) =sin(3) =1, f(5)=sin(})=-1, sin(2m) =0
Therefore, by closed interval method f(%5) = 1 is the mazimum and f(%”) = —1 is the minimum of f(x) =

sin(x) on the interval [0, 27].

Example 6.1.36. Let f(x) = (x — 3)(x — 4) find absolute extrema of f on [0,1]. Calculate f'(x) =

(x—4)+ (z — 3) =22 — 7 thus c = —L is a critical point. Compute the values of f(z) at the critical points

inside [0,1] and the endpoints (there are no critical points in [0,1]):

F(0) =12, f(1) =6,
Therefore, f(0) = 12 is the absolute maximum and f(1) = 6 is the absolute minimum of f(x) = (x—3)(z—4)
on [0,1].

Example 6.1.37. Let f(x) = 2* —22%+3 find absolute extrema of f on [0,2]. Note that f'(x) = 423 —4x =
4z(z% — 1) = dz(z + 1)(z — 1) thus ¢ = 0,—1,1 are critical points for f. Only 0,1 € [0,2]. Calculate the
values of the potential extrema:

f0)=3, f(1)=2
Thus, f(1) = 2 is the minimum and f(0) = 3 is the mazimum of f on [0,2].
Example 6.1.38. Let f(x) = e “sin(z). Find the extreme values of f on [0,4].

f'(z) = —sin(z)e™* + cos(x)e™™ = (cos(z) — sin(x))e

Solutions of cos(x) = sin(z) are critical points. If you picture the graphs of sine and cosine on the same plot
then the solutions are given from the points of intersection. In particular, c = 5 +nw for n € Z. The critical
points in [0,4] are T and 2F ~ 3.93. Calculate,

F(Z) = e T sin(%) ~0.32
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£(0) = ¢”sin(0) =
f(4) = e *sin(4) = —0.138

We find f(25) = —0.0139 is the minimum and f(%) = 0.32 is the mazimum of f on the interval [0,4]. The
graph has blue dots to illustrate the extrema.

v

the greenlines
envelope the
oscillating curve

I suppose we ought to be happy the last example wasn’t f(x) = e *sin(11z). That would have required
more calculation.

the greenlines
envelope the

Physically these are very interesting functions. You should see it again when you study springs with friction
or RLC circuits.
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6.2 optimization

I have preserved the format of these examples from an earlier edition of my notes. If I have any advice about
optimization problems or word problems more generally it is simply to write down your thoughts. Draw
a picture. Label unknown quantities. Once you find a solution, check it against common sense. Anyway,
people have written whole books on the proper way to teach problem solving. I assume the reader is mature
enough that no large amount of coddling is required. IN A WORD: THINK.

Example 6.2.1.
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ﬂ%@_ = 200=-2w => J%"“'C’ o g
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T b‘; 2% derivetive tect = /00 giver Mex. alea. “This

(¥

100 f+

= 200-100=10C0

o
oo gt [00ft

| 004
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Example 6.2.2.
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Example 6.2.3.
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Example 6.2.4.
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6.3 to oo and beyond

The behavior a function for £ >> 0 or for z << 0 is captured by the limitEl of the function at 4o0,

Definition 6.3.1. limits at co or —oo.

The limit at oo for a function f is L € R if the values f(x) can be made arbitrarily close to L for
inputs x sufficiently large. We write

lim f(z)=1L

Tr—r 00
in this case. To be more precise we should say that lim,_,, f(z) = L iff for each ¢ > 0 there exists
N € R with N > 0 such that if > N then |f(x) — L| < e. Likewise,

lim f(z)=1L

r—>—00

iff for each € > 0 there exists M € R with M < 0 such that if x < M then |f(z) — L| < e.

Geometrically this definition essentially says that if we pick a band of width 2¢ about the line y = L then
for points to the right(or left) of N (or M) the graph y = f(«) fits inside the band. In the picture below
you can see that for any ¢ > 0 or § > 0 we can find a band about the limiting value in which the tail of the
graph can be fit.

L-f<y<Li+p

2¢€ - width band centered
L-e<y<Li+e about y=L.

2¢€ - width band centered
about y=L,.

\/\/\/\ horizontal asymptote of y=L;.

horizontal asymptote of y=L,

Given the graph above we expect lim; o f(z) = L1 and lim, o f(x) = Lo.

Swe did discuss the values of the function tending to arbitrarily large positive or negative values with respect to
some finite limit point. I would say those are limits which go to oo whereas this section is about limits which are
taken at +0o. These concepts are not mutually exclusive; lim, oo € = co.
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Example 6.3.2. Let f(z) = 1. Calculate the limit of f(z) at co. Observe that,
f(10) = 0.1, f(100) = 0.01, £(1000) = 0.001.

We see that the values of the function are getting closer and closer to zero as x gets larger and larger. This
leads us to suspect,

lim — =0.
T—00 I

In other words, if we divide something nonzero by a very big number then we get something very small. This
sort of limit is not ambiguous, to determine the answer intuitively we either need to think about a table of
values or perhaps a graph.

Or if you want to be rigorous you can argue as follows: Let € > 0 choose N = 1/e and observe that for
x> N = 1/e it follows that 1/x < e. Consequently, z > N implies |f(z) — 0| = |1| = L < e. Hence by the
precise definition limg_, o % =0.0

The limits at —oo are much the same.
Example 6.3.3. Let f(z) = 2. Calculate the limit of f(z) at —co. Observe that,
F(=10) = —0.1,  f(~100) = —0.01,  f(—1000) = —0.001.

We see that the values of the function are getting closer and closer to zero as x gets larger and negative.
This leads us to suspect,
lim — =0.
rT——00 I
In other words, if we divide something nonzero by a very big negative number then we get something very
small and negative. This sort of limit is not ambiguous, to determine the answer intuitively we either need
to think about a table of values or perhaps a graph.

Or if you want to be rigorous you can argue as follows: Let € > 0 choose M = —1/e and observe that for
< M = —1/e it follows that —1/x < e. Consequently, x < N implies |f(z) — 0| = |1| = =1 < e. Hence by
the precise definition limg,_, % =0. 0

Clearly we’d prefer to avoid the picky eps-type arguments if possible. Towards that end I’'m offering proofs
for a number of standard results and theorems so that we have justification for later algebraic or intuitive
arguments to solve limits at +o0o. As always it is still important we remember at the definition is actually
precise even if we sometimes allow some amount of intuitive argumentation.

Example 6.3.4. Let f(x) = 1/2™ where n > 0. Calculate the limit of f(x) at co. Observe that,
f(10) = 1/10™, £(100) = 1/100™, f(1000) = 1/1000™.

We see that the values of the function are getting closer and closer to zero as © gets larger and larger.
This leads us to suspect,

Let € > 0 choose N = 1/ew. Suppose x > N = 1/en thus 1/x < en which implies 1/z" < (ew)™ = €.
Consider then, if x > N then

(@) = 0] = 1/2"] = 1/a" <.
L =0.0

xn

Therefore by the precise definition for limits at infinity, limg,_,
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The graphical significance of all three examples thus far considered is that the function has a horizontal
asymptote of y = 0 as x — +oo.

Definition 6.3.5. horizontal asymptotes.

If lim, o f(2) = L then the function f is said to have a horizontal asymptote of y = L at oc.
If lim, , o f(x) = L then the function f is said to have a horizontal asymptote of y = L at
—00.

Example 6.3.6. Let f(x) = tan=!(x). We saw in the preliminaries chapter that the inverse tangent function
had horizontal asymptotes of y = 5 for x >> 0 and y = —% for x << 0. Therefore,

lim tan~!(z) = T lim tan~!(z) = I

T—00 2 T——00 2
Vertical asymptotes of the function correspond to horizontal asymptotes for the inverse functiorﬂ We can
also discuss limits which go to infinity at infinity. It’s just the natural merger of both definitions but I state
it here for completeness.

Definition 6.3.7. infinite limits at infinity.

The limit at oo for a function f is oo iff for each M > 0 there exists N > 0 such that for z > N we
find f(z) > M. We denote

in this case. Likewise, the limit at —oo for a function f is oo iff for each M > 0 there exists N < 0
such that if © < N then f(x) > M. We denote this by

im  f(z) = oo
Similarly, if for each M < 0 there exists N > 0 such that z > N implies f(z) < M we say
lim, o f(z) = —oo. Finally, if for each M < 0 there exists N < 0 such that © < N implies
f(z) < M we say lim,_,_ f(z) = —oc.

Example 6.3.8. [ would say that the limit below are not indeterminant. Their values can be deduced by
straightforward analysis from the definition. The formal proof of these claims I leave to the reader.

.1 . . 1 . .1
Iim — =0 lim —=0 Iim — =00 lim — =- lim — = dne
T—00 I T——00 I z—0t X z—0- T z—0 T
. . . 1 . 1
hm—zzO lim —220 lim — =0 lim —5 =00 hm—2:oo
T—00 I T——00 I z—0t X rz—0— T z—0 X
. . . . 1 . 1
lim —=0 Ilim — =7 lim — =00 lim — =7 lim — = dne
z—00 \/T T——00 /X =0t /T 0~ /T =0 /T
lim vz =00 lim +z =7 lim vz=0 lim z =? lim vz = dne
T— 00 Tr— —00 r—0+ r—0— x—0
lim 22 = lim z? =0 lim 22=0 lim 22=0 lim 22 =0
T—00 r——00 z—0+ x—0~ z—0
. 3 _ : 3 _ : 3 _ : 3 _ . 3 _
lim 2z° =c0 lim 2° = —c0 lim z° = lim z° = lim x° =
T—00 T——00 z—0+ z—0— z—0

SChallenge: what are the horizontal asymptotes of y = tan™"(3z) ?
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I have used 7?7 instead of d.n.e. in a few places just to make it fit. Those limits are taken at a limit point
which is not in the domain of the function, in some cases not even on the boundary of the function. If we
can’t take values close to the limit point then by default the limit is said to mot exist, in which case we use
7d.n.e.” or "dne” as a shorthand.

We can also have limits which fail to exist at plus or minus infinity due to oscillation. All of the functions
in the next example fall into that category.

Example 6.3.9. the following limits all involve cyclic functions. They never settle down to one value for
large positive or negative input values so the limits d.n.e.

lim sin(z) =d.n.e. lim cos(z) = d.n.e. lim tan(x) = d.n.e

T—00 T—00 T—r00

lim sin(z) =dmn.e. lim cos(z) =d.n.e. lim tan(z) = d.n.e.
T——00 T——00 T——00

lim csc(z) =d.n.e. lim sec(x) = d.n.e. lim sec(z) = d.n.e

T—00 T—00 T—>00

lim csc(z) =dmn.e.  lim sec(x) =d.n.e. lim sec(z) =d.n.e
r—r—00 Tr—r—00 Tr——00

Example 6.3.10. The interplay between a function and its inverse is especially enlightening for In(x),sin™*(z), cos~* ().
I refer the reader to the earlier chapter on preliminary material if it is forgotten by now.

. - o . 1 o . -1 o
llgrolc sin™ (z) = d.n.e. nggo cos™ (z) = d.n.e. wlgrolotan () =m/2
lim sin~!(z) =dmn.e  lim cos !(z) =d.n.e. lim tan~!(z) = —7/2

rT——00 T——00 rT——0Q
lim e* = oo lim e™* =0 lim (1/2)* =0
Tr—r00 T—00 Tr—r00
lim e* =0 lim e * =00 lim (1/2)* =
rT——00 T——00 r—r—00

The domain of sin~* (x) and cos™'(x) will be the range of sine and cosine respectively; that is dom(sin™'(z)) =
[—1,1] and dom(cos~1(x)) = [—1,1] so clearly the limits at plus and minus infinity are not sensible as inverse
sine and cosine are not even defined at co. In contrast the range of the exponential function is all positive
real numbers and ln(z) is the inverse function of e® thus
lim In(z) =d.n.e. lim In(z) = —oc0 lim In(z) = oo
T—>—00 z—01 T—00

For x < 0 the In(z) is not real, the middle limit you should have thought about in the earlier discussion of
limits. The last one is true although an uncritical appraisal of the graph y = In(z) gives the appearance of a
horizontal asymptote, but appearances can be deceiving. I've assigned the proof as homework.

The following lemma connects limits at oo with one-sided limits at zero.

Lemma 6.3.11.

zllﬁn;o flx) = tlilél+ f(1/t) and lim f(z)= th%{ f/e).

T—r—00

The equalities above apply to the case that the limit exists as well as the cases where the limits do
not exist. We mean for the equality to denote that both limits diverge in the same manner.

Proof: Let’s begin with the case that lim, ,~, f(z) = L € R. Let € > 0 and note the following inequalities

are equivalent:
1 1
— <

M I
0< <x = 0<x Vi
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Therefore, 0 < 2 < -L implies | f(z) — L| < € which indicates that

lim f(z)=1L hence using ¢t = 1/ we find hm+ f(1/t) = L.
t—0

10+
The proof lim, o f(x) = lim;_,g- f(1/t) € R is similar.

Suppose lim,_,_ f(z) = co. It follows that for each N > 0 there exists M < 0 such that x < M implies
f(xz) > N. Note that 7; < 1 is equivalent with z < M thus -z < 1 < 0 implies f(z) > N. But the last
string of inequalities yields that

lim f(z) =00 hence using t = 1/x we find li%1 f(1/t) = 0.
50—

Proof for other cases are similar and left to the reader. The basic point is that if £ — oo thent = % — 0. O

With the little lemma above in mind we see that all the limit theorems transfer over to limits at +oo since
each such limit is in 1-1 correspondence with a one-sided limit at zero and we already proved the limit laws
for limits at zero. Rather than restating all the limit laws again I will illustrate by example. In fact, let’s
get straight to the fun part: indeterminant limits.

6.3.1 algebraic techniques for calculating limits at +oo

Up to this point I have attempted to catalogue the basic results. I'm sure I forgot something important,
but I hope these examples give you enough of a basis to do those limits which are unambiguous at plus or
minus infinity. There is another category of problems where the limits which are given are not obvious, there
is some form of indeterminancy. All the same indeterminant forms (see defn. M) arise again and most
of the algebraic techniques we used back in section [3.4] will arise again here although perhaps in a slightly
altered form.

The good news is that limits at infinity enjoy all the same properties as limits which are taken at a
finite limit point, at least in as much as the properties make sense. Of course we can only apply the limit
properties when the values of the limit are finite. For example,

xh_)r{)lo(x —2z) = zlgrgo(x) + IILH;O(—QJJ) = 00— 00

is not valid because you might be tempted to cancel and find lim, ,(x — 2z) = 0 yet lim, oo (z — 22) =
lim, 00 (—2) = —o0 is the correct result. So we should only split limits by the limit laws when the subsequent
limits are finite. That said, I do admit there are certain cases it doesn’t hurt to apply the limit laws even
though the limits are infinite. In particular, suppose ¢ # 0, if lim f = co then lim¢f = ¢lim f = coo provided
we agree to understand that coo = oo for ¢ > 0 whereas coo = —o0 if ¢ < 0. Such statements are dangerous
because the reader may be tempted to apply laws of arithmetic to expressions involving oo and it’s just

not that simple. We should always remember that oo is just a notation for a particular limiting process in
calculud’]

"in complex variables one can actually add the point at infinity and use the extended complex numbers. In fact,
some authors use a similar idea for calculus, they introduce the so-called extended real numbers or the ”really long
line” of RU {oo} U {—o0}. If this sort of thing seems interesting to you then perhaps you ought to read the text
Elementary Calculus: An Infinitesimal Approach by H. Jerome Keisler
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Example 6.3.12. this one is type 2 to begin.

3 z 43
lim ( T ) = lim ( — ) divided top and bottom by x
z—oo\ T — 2 T—00 %—;
. 140
_Ili)n;o<1_0) ¢/r —0 as x — 00
=1.

Example 6.3.13. this one is also of type 22 to begin.

3359 14 3
lim ( 364—’—7% ) = lim ( % ) divided top and bottom by x*
zt—2x+1 1—5+:7

T—00

Jr
0+0-0
:lim(—i_o> form=1,2,4, ¢/2" = 0 as x — o0

(o8]

Example 6.3.14. again, type =2 to begin.

343z —2 c+3-3%
lim ST T2 lim ’2”7"”2 divided top and bottom by z*
z——oo\ 22— +7 1-=

x

1

= —0OQ.

Another way of thinking about this one is to put in very big negative values of r. For erxample, when
x = —1000 we find
23+ 3z —2  1000% + 3000 — 2 N 10002
a2 —x+7 10002 — 1000 —2 ~ 10002

This sort of reasoning is a good method to try if you are lost as to what algebraic step to apply. There
are problems which no amount of algebra will fix, sometimes considering numerical evidence is the best way
to figure out a limit. However, for some functions —1000 is not big enough, take f(z) = m we find
f(=1000) = —1/3. But, you can show f(xz) = 0 as © — —oco. To be safer you should experiment with more
than one number, or better yet THINK.

=1000 =z

Example 6.3.15. you guessed it, type 52 to begin.

. V2rt+3x—2 . L2zt + 3z -2
lim (| ————— | = lim [ %5
T—00 2 —x+7 Z—y00 ?($2_x+7)

2+ 5%
T—00 1_54_*2
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Example 6.3.16. this has type 0 - oo to begin.

s —zoT \ _ 13 In(2%) —x
IILH;O( e *2 ) = zhﬂn;() (e e ) sneaky step

_ 1 zIn(2) —x
= Jigp, (70e)

— lim ex(ln(?)fl))
T—00

=0.

In the last step I noticed In(2) —1 ~ 0.692—1 < 0 thus the limit amounts to the exponential function evaluated
at ever increasing large negative values which indicates the limit is zero. This example really belongs in the
section with I’Hopital’s Rule, I include it now for novelty only.

We find that limits of type co/co can result in many different final answers depending on how the indeter-
minancy is resolved. The next example is more general, I think it is healthy to think about something a
little more abstract from time to time. The strategy used is essentially identical to the strategy employed in
several of the preceding examples.

Example 6.3.17. let P be a polynomial of degree p and let Q be a polynomial of degree q. This means there
exist real coefficients ap,ap—1,...,a1,00 and by, by_1,...,b1,by such that a, # 0 and by # 0 where

P(z) =apz? +--- + a1z + ao Q(z) =bgx?+ -+ bixz + by
Consider f(x) = P(x)/Q(x). There are three cases.

1. If p> q then p — q > 0 hence
. P(x) . apx? + -+ a1z +ap
lim = lim
z—oo\ Q(x) =00\ bexd+ -+ bz + by
. aprP™9 4 i 4 20
= lim ) blg” m z
R

g Yop—q . ., M, @
= xl;n()l()( qu + + e + byt >

Tr—r00

= +o0.

In particular if a, /by > 0 then oo is obtained whereas if a,/by < 0 then —oo is the answer.

2. If p < q then g—p >0 hence
. P(x) . apx? + - 4 a1z + ag
lim = lim
z—oo \ Q(2) =00\ bgxd 4+ -+ bz + by
a, P4 4+ ... + ai1+@
i (T
by + -+ o e

. a 1 ay ag
=1 P Rt N T L
IE&( by xa=P Tt byxa—1 + by )

Tr—00

=0.
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3. If p=q then

. P(x) . apx? + -+ a1r + ag
lim = lim
b+ -+ + b1z + by

= lim ( apz?”d - A G +32>
byt -+ 2+

. a ay ap
= 1 i e _ -
ati)rgo< by Tt byaa~1 + bgxd )

In each case my goal was to simplify the denominator so I could focus on the behavior of the numerator.
Very similar arguments will work for x — —oo.

In case you forgot, a function f is said to be bounded if there exist m, M € R such that m < f(x) < M for
all z € dom(f).

Example 6.3.18. we can throw away a bounded function in a sum when the other function in the sum is
unbounded, here are two examples of this idea in action:

lim (sin(z) + €®) = lim () = 00

Tr— 00 T—00
T +2) = Lo () = —oo.

Example 6.3.19. if we take a function f(x) with a known limit of L € R or £00 as © — £oo then the limit
of f(x 4+ a) for a € R is the same for x — +oo. For ezample,

lim (e®) =00 == lim (") = 0
T—>00 T—>00

. 1 : 1
a (55) =0 = () 0

lim (tan™*(z)) = T — lim (tan™!(z 4+ 2)) =
Tr—r0o0 2
Example 6.3.20. in a contest between power functions the largest degree wins.

lim (333 — m2) = lim (acs) = 00.

T—0o0 T—>00
lim (2% — z%) = lim (—2%) = —oc.
r—00 r—00

On the other hand the exponential function will win against a polynomial because eventually the exponential
function’s values will totally dwarf the power function’s values.

. 3 _ x — T T\ _

p e =) = i e = oo
lim (27 +2)= lim (27%) = .
Tr——00 T—r—00

How would we prove such a claim?
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Example 6.3.21. limits of type co — co can sometimes be dealt with via the rationalization technique:

i (o= V) = tim (25 (0 - ) )

T—>00 r—00

_ x—1 )
1m

z=oo\ 1+ 4/1/x
= . (®)
= Q.

Example 6.3.22. this limit is also of type oo — 0o but in this case the —oo wins.

(z — V2 4+ 4x
r — Va2 4+ 4x

lim (z+ Va?2+4z)= lim (x+ V% + 4x))

Tr—r—00 r—r—00
. 2 — 2% — 4z
= lim (| ——mm—
zo—oo\ x — Va2 + 4z

Of course, similar looking problems might have co as the answer:

) _ x+ V22 +4x
= VAR = (S e VE D))

= lim
T—— °°<x—|—\/2x2+4a:>
( —z2 — 4z >
= lim
z——oo\ x + /222 + 4z
( —z—4/x )
A e i/z

It is also possible for the type oo — oo to resolve to a finite limit.
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Example 6.3.23. when dealing with square roots it is important that you remember that the laws of exponents

indicate %\/a +b= ,/x—lz(a +0b). We assume that a,c > 0 in this problem. Consider,

. var?+br+c ) Var? +br +c
lim (| —/ —/—— | = lim [ — —
vex? +dr+e Vex? +dxr+e

aw2+2x+c
— tim (Y——)
T—00 /cx2+c2la:+e
lim <\/a+b/x+c/x2)
Ve+d/xz+e/x?

Tr—r00 T— 00

g]I=|8 |~

T—>00

:\[

Example 6.3.24. The Squeeze Theorem applies to limits at £oo. Suppose we are given a function f such

that
2 422 41
—t < < -
2 tan! (@) < fa) < S

for all x > 14,000, 000,000,000 (national debt 2010). We can calculate the limit at oo via the Squeeze
Theorem. Observe that

2 2
lim<tan 1(:6))2 =1
T—00 ™ ™

3
- VAr? +1 4+ 1/x — VA2 —1.
e (o )~ (e ) e

2z —3 2-3/

Tr—r00

Therefore, by the Squeeze Theorem, lim,_, f(z) =

Example 6.3.25. (an example of what we can’t do easily in this section) the infinite limit view of e. Consider

the following limit:
1 x
lim ( 1+ — ) =e
T—00 €

If you can show that this definition is compatible with our previous implicit definition of e:

. eh —1
iﬂ%( h )_1'

x
then I’d be z'mpresse. The 1imz_>oo< 1+ % ) 1s type 1°° and we have yet to develop the best tools to deal

with such limits.

8page 444 of Stewart together with some thinking will do it
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6.3.2 asymptotes in general

This section currently being remodelled. Should post new version later this semester.
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6.4 ID’Hopital’s rule

In earlier sections we were able to resolve many indeterminant limits with purely algebraic arguments. You
might have noticed we have not really tried to use calculus to help us solve limits better. In our viewpoint,
limits were just something we needed to do in order to carefully define the derivative. However, we were
certainly happy enough once those limits vanished and were replaced by a few essentially algebraic rules.
Linearity, product, quotient and chain rules all involve a limiting argument if we consider the technical
details. The fact that we can do calculus without dwelling on those details is in my view why calculus is so
beautifully simple.

In this section we will learn about I’Hopital’s Rule which allows us to use calculus to resolve limits which
are indeterminant. We need to have limits of type co/oc or 0/0 in order to apply the rule. Often we will
need to rewrite the given expression in order to change it to either type oo/oco or 0/0. We will see that
00 — 00,1%,00%, 0% can all be resolved with the help of 'Hopital’s Rule.

I’Hopital’s Rule says that the limit of an indeterminant quotient of functions should be the same as the limit
of the quotient of the derivatives of those functions. Essentially the idea is to compare how the numerator
changes verses the how the denominator changes. This can be done at a finite limit point or with limits at
+o0.

I will give a good proof of the ’'Hopital’s rule in a later section, but my proof in this section is only for a
relatively special case. I’Hopital’s Rule holds in a context more general than the assumptions for my proof.
It turns out that the extended law of the mean is needed to prove both 'Hopital’s rule and Taylor’s polyno-
mial approximation theorem with Lagrange’s form of the remainder. We postpone those arguments for later.

Theorem 6.4.1. [’Hopital’s Rule

g dL § 0
Suppose that lim y s of type § or 2 then

() -m(2)

where equality includes all cases including those divergent cases. Note lim is meant to denote both
left, right and double-sided limits at a finite point and also limits at +oo.

sin(x)

Example 6.4.2. Notice lim,_q 18 type %. Observe that

i 0

lim sin(z) = lim cos(2) L’Hopital with —

z—0 x x—0 0
=1

We gave a geometric argument to prove this limit in the discussion leading up to the derivatives of sine and
cosine. Given that the derivatives of sine and cosine require knowledge of this limit it is not surprising that
this limit is trivially reproduced by I'Hopital’s rule with the help of the derivative of sine and cosine. I used
to think this proved this limit, but it is circular logic since we cannot know the derivative of sine is cosine
unless we have already derived this limit.
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Remark 6.4.3. notation for [’Hopital’s rule

At the present time I have not found a way to adequately translate my notation for applying
I’Hopital’s rule into KTEX. You should notice my notation in lecture is less cumbersome.

Example 6.4.4. In this example we’ll apply I’Hopital’s Tule twice to remove the indeterminancy.

24z —2 . 2x+1
lim — o = lim

L’Hopital on type >
00

2
= lim = L’Hopital on type s
2 00

Please notice that the rule says to differentiate the numerator and denominator separately. There is no such
rule as lim(f(x)) = lim(f’'(x)).

Example 6.4.5.

L’Hopital on type >
)

Example 6.4.6.

8=

e 00
lim zer = lim — L’Hopital on type —
z—0t z—01 o0

Remark 6.4.7. notation for I’Hopital’s rule

In the preceding example it was not initially possible to apply I’'Hopital’s rule. This is a common
trouble in these problems. Often we are faced with type 0-oc in which case we can either reformulate
the quotient to be type 0/0 or type co/oo. Which choice is best is exposed via trial, error and
ultimately experience born from mathematical experimentation.
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Example 6.4.8.

. _ LT
lim e 2% = lim —
T—r00 rz—oo el

= lim — L’Hopital on type >
z 00

T—00 €
00
= lim — L’Hopital on type —
rz—oo el o0

=0.

Apparently exponentials do grow faster than quadratic functions. It’s not hard to see that if we replaced x
with ™ for n > 1 then we could again find the same result from n-applications of I’Hopital’s rule.

Example 6.4.9.

2
2
lim T lim Tx L’Hopital on type s
e—oo In(z)  w—oo 1 00
— 1; 2
=)
= 0.

Apparently the natural logarithm grows slower than a quadratic function.

Example 6.4.10. I posed the question of how to prove that lim, . (2° — ) = oco. I simply claimed that
exponentials grow faster than polynomials but I offered no justification in the preceding section. [’Hopital’s
rule helps us argue that

lim (27/z) = lim (In(2)2%/1) = .

T—>00 T—r00

The limit above is useful to help analyze the following

Clearly the denominator tends to zero and the numerator tends to oo since the 2% /x will dominate the —1
as © — 0o. Therefore, lim,_, (2% — x) = 0.

The type 0o0/0 is divergent, the question is just if it goes to 0o, —oo or oscillates. In this example it was clear
the function was positive for  >> 0 once I rewrote the expression.

Example 6.4.11. Here’s what not to do.

. 1
;mz_l—;mi—l.

Notice here I was wrong to apply I’Hopital’s rule because this limit was not indeterminant of type 0/0 or
T

0o0/00. Rather, this limit has the form 1/0 which is divergent. Analysis from graph of f(z) = 27 =1+ 2+
quickly shows that the limit point is at a VA and in fact the limit d.n.e.
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Example 6.4.12.

91_i>r£1+(csc(0) —cot(f)) = el_ig{r (Sinl(g) B ZTEEZ;)
— i (L2500
= 9L0+( sin(0) )

L sin(6) o 0
= 01_1)I£l+ (cos(@)) L’Hopital on type 0

Example 6.4.13.

1 1 x—1—1In(x)
lim — = lim
z—1\In(z) =x-1 =1\ (z — 1)In(z)
1
- 0
I €T ) . _
= }1_>ml (wwl " ln(z)> L’Hopital on type 0
_1 0
— 13 X ) . _
= }l—>ml (1 — % " ln(z)> L’Hopital on type 0
-
= lim L
z—1 ( x% 4 % )

6.4.1 concerning why I’Hopital’s rule works

I'll begin with an intuitive argument. Suppose lim,_, f(x)/g(x) is type (0/0). Since z — a in the limit it is
reasonable to replace f and g with their linearizations based at x = a hence

@) _ i f(a)Jrf’(a)(xa)} [f’(a)(za)]
a=a g(z)  a=alg(a) +¢'(a)(z —a) g'(a)(x —a)

Note, I knew f(a) = g(a) = 0 since differentiability of f,g at 2 = a implies continuity at z = a and since
the limit is form 0/0 we know 0 = lim,_,, f(z) = f(a) and 0 = lim,_,, g(z) = g(a).

o S@) L)

= lim = .
z—a g'(a)  ¢'(a)

r—a

The proof for type co/oo is technical and beyond the scope of this course. The proof of I’'Hopital’s rule in
for type (0/0) follows from an interesting generalization of the MVT which is due to Cauchy.

Theorem 6.4.14. Cauchy’s law of the mean.

If f,g are continuous on [a, b] and are differentiable on (a,b) then there exists ¢ € (a,b) such that

Proof: the proof is similar to that for the MVT. Begin by defining

h(z) = (f(b) = f(a))(g(x) — g(a)) = (9(b) — g(a))(f(z) — f(a)).
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Observe that h is continuous on [a,b] and differentiable on (a,b) by virtue of what is given. Furthermore,
h(a) = 0 and h(b) = 0 hence we may apply Rolle’s theorem to conclude there exists ¢ € (a,b) such that
1 (¢) = 0 hence

(F6) ~ F@) @)~ (o) — gl f(0) = LD Ty

There is a beautiful interpretation of this theorem in terms of parametric curves and their tangent vectors.
See Taylor’s Advanced Calculus page 109 (I happen to have the first edition, if you have another then look
for ”Cauchy’s generalized law of the mean”).

Proof of ’'Hopital’s Rule for type % at finite limit point: Suppose we are given that lim,_,, f'(z)/g'(x)
exists and f(a) = g(a) = 0 and ¢'(z) # 0 for all © € Bs(a) for some 6 > 0. Suppose = € Bs(a) and x > a
then ¢'(x) # 0. Apply Cauchy’s law of the mean to intervals of the form [a, z], for each such interval we find
¢ such that ¢ < ¢ < z and

since f(a) = g(a) = 0. Therefore,
N N (C B ()

r—at g(.’II) c—at gI<C) r—at g/(.ﬁ)

and since the limit on the right exists it follows that the limit on the left exists and this proves half

of 'Hopital’s rule. If 2 € Bs(a) and < a then by almost the same argument we can show that
f(=) f@) O

limy o gy = limg - iy

Proof of I’Hopital’s Rule for type % at infinite limit point: Apply the lemma to switch limits x — +o00
to corresponding limits of form ¢t — 0*:

F(l
"EBI:?OO [Jgt((z” = tl_igli ;Ei;] apply I’'Hopital’s rule
|2
t—0* _g’(%);—zl
g [LO)
t—0% | g %)
[ f(=)
- i [ 755] .

6.4.2 indeterminant powers

We have discussed indeterminant forms of type 0/0, co/infty, 0- oo and co — oo in some depth. There are
three more forms to consider.

Definition 6.4.15. forms of indeterminant power.

1. we say lim f9 is of ”type 0°” iff lim f = 0 and limg = 0

09

2. we say lim f9 is of "type c0”” iff lim f = oo and limg = 0

3. we say lim f9 is of "type 1°°” iff lim f = 1 and lim g = o
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We will discover shortly that these forms largely reduce to the problems we previously considered once we
understand a little lemma.

Lemma 6.4.16. the power lemma.

Suppose that f(z) > 0 for points considered in limit,

lim [f(x)]g(m) = exp(lim g(z) ln(f(x)))
where equality includes all cases including those divergent cases. In particular,
1. if lim[g(z) In(f(x))] = ¢ € R then lim[f(x)]g(x) =e°.
2. if lim[g(z) In(f(x))] = oo then lim[f(2)]*") = o

3. if lim[g(z) In(f(z))] = —oco then lim [f(;v)]g(w) =0.

Note lim is meant to denote both left, right and double-sided limits at a finite point and also limits
at +oo.

Proof: follows from properties of natural logarithm as well as the continuity of the exponential function on
R:

lim[f(:c)]g(z) = lim ea:p(ln[f(x)]g(z)) = exp(lim ln[f(x)]g(w)) = exp(limg(z) In(f(x))).

I leave the proof of the divergent cases for the reader. [J

Example 6.4.17. Calculate lim,_,q+ 2®. We use the power lemma, consider

lim 2” = lim (21
Jlim 2% = ezp( lim (zln(z)))
|

*

We focus on x, notice it is of type 0 - 0o so we use the standard technique to rewrite it as co/oo and apply

U’Hopital’s rule

1

* = i 1 = li = lim % = lim (—2)=0
A i) = lig =3 =l o= i 00)

Hence, we find x = 0 and returning to our original limit,
lim 2% = exp(0) = 1.

z—0t

nx
Example 6.4.18. Calculate lim,, (1 + i) . We use the power lemma, consider we can pull out x since

1\"™ 1
lim <1 + > = exp {x lim nln (1 + ﬂ
n—00 n n—r00 n

*

it is independent of n,

We focus on *, notice it is of type 0 - 00 so we use the standard technique to rewrite it as co/oo and apply
U’Hopital’s rule

n—oo

1 In(1+ 1 T2 1
* = lim nln(l—i—) = lim u: lim w7 lim =1.
n
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Hence, we find x =1 and returning to our original limit,

lim 2% = exp(zx) = exp(z).
z—0+t

Example 6.4.19. Calculate lim,_, zw. We use the power lemma,
. 1 .1
lim 2= = exp| lim — In(x)
T—00 T—00 I

We focus on *, notice it is of type 0 - 00 so we use the standard technique to rewrite it as co/oo and apply
U’Hopital’s rule

1 1 1

*= lim —In(z) = lim n(z) = lim £ =0.

T—00 I r—00 I r—o00 |

Hence, we find x = 0 and returning to our original limit,

lim 2+ = exp(0) = 1.

z—0t

Remark 6.4.20. notation for I’Hopital’s rule

Some students prefer the method presented in Stewart and other texts. The idea is to call the desired
limit y then take natural logarithm of limit and y and apply I’'Hopital’s rule etc... to determine the
modified limit. Then you exponentiate both sides to find the answer. This technique is entirely
equivalent to the x-method I propose in this section and as such you are free to use it if for some
reason you find my approach distasteful.
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6.5 Taylor’s Theorem about polynomial approximation

The idea of a Taylor polynomial is that if we are given a set of initial data f(a), f'(a), f"(a),..., f"(a) for
some function f(x) then we can approximate the function with an n'"-order polynomial which fits all the
given data. Let’s see how it works order by order starting with the most silly case.

6.5.1 constant functions

Suppose we are given f(a) = y, then T,(z) = y, is the zeroth Taylor polynomial for f centered at x = a.
Usually you have to be very close to the center of the approximation for this to match the function.

6.5.2 linearizations again

Suppose we are given values for f(a), f'(a) we seek to find T} (z) = ¢, + ¢1(x — a) which fits the given data.
Note that

ot cila—a)=fla) co = f(a).
1= f'(a) a1 = f'(a).
Which gives us the first Taylor polynomial for f centered at a: Ti(x) = f(a) + f'(a)(z — a). This func-

tion, I hope, is familiar from our earlier study of linearizations. The linearization at a is the best linear
approximation to f near a.

C
C

6.5.3 quadratic approximation of function

Suppose we are given values for f(a), f/(a) and f”(a) we seek to find Ta(z) = ¢, + ¢1(z — a) + ca(z — a)?

which fits the given data. Note that

T2(a):Co+cl(a_a)+02(a_a)2:f(a) Co:f(a)'
T3(a) = c1 + 2c2(a — a) = f'(a) a = f'(a).
Ty (a) = 2¢y = f"(a) oy = %f”(a)-

Which gives us the first Taylor polynomial for f centered at a: T1(z) = f(a)+ f'(a)(z —a) + 3 f"(a)(z — a)?.
We would hope this is the best quadratic approximation for f near the point (a, f(a)).
6.5.4 cubic approximation of function

Suppose we are given values for f(a), f'(a), f”(a) and f"'(a) we seek to find To(z) = ¢, + c1(z —a) + ca2(z —
a)? + c3(x — a)® which fits the given data. Note that

T3(a) = co +ci(a —a) + e2(a — a)® + c3(a — a)® = f(a) co = f(a).
Ti(a) = ¢ + 2c2(a — a) + 3cz(a — a)* = f'(a) c1 = f'(a).
Ty (a) = 2¢2 + 3 - 2c3(a —a) = f"(a) co = %f”(a).
T3 (@) = 3+ 2¢5) = 1"(a) s = 55" (@),

Which gives us the first Taylor polynomial for f centered at a: T1(z) = f(a) + f'(a)(z — a) + 5 f"(a)(z —
a)? + ¢ f"(a)(z — a)®. We would hope this is the best cubic approximation for f near the point (a, f(a)).
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6.5.5 general case

Hopefully by now a pattern is starting to emerge. We see that Ty(z) = Ty—1(z) + % f*)(a)(z — a)* where
Kl =k(k—1)(k—2)---3-2- 1

Definition 6.5.1. Taylor polynomials.

Suppose f is a function which has k-derivatives defined at a then the k-th Taylor polynomial for f
is defined to be Ty (z) where

k

=0

(j)(af) i _ ’ L. 2 1 3
- = @)+ @ - 0+ @ —af 4+ P a) e - 0

Let’s examine a few examples before continuing with the theory.

Example 6.5.2. Suppose f(x) = e®. Calculate the first few Taylor polynomials centered at a = —1.
Derivatives of the exponential are easy enough to calculate; f'(x) = f"(x) = f"'(x) = e® therefore we find
1
T(z) = -
@=1
1 1
T = -4 - 1
(o) = 24 ()
1 1 1
To(x) = — + - 1)+ — 1)?
J#) =+ a4 )+ o)
T5( )—1+1( +1)+i( +1)2+i( +1)°
W= T 2" Ge '

The graph below shows y = €® as the dotted red graph, y = Ti(x) is the blue line, y = Ta(x) is the green
quadratic and y = T3(x) is the purple graph of a cubic. You can see that the cubic is the best approximation.

Example 6.5.3. Suppose f(r) = —15 + 1. Calculate the first few Taylor polynomials centered at a = 1.
Observe
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thus f(1) =0, f'(1) = -1, f"(1) = =2 and f""(1) = —6. Hence,

Ti(z) = —(z —1)

To(z) = —(x — 1)+ (z —1)2

Ty(zx)=—(x—1)+(x—-1%—(z—1)3
The graph below shows y = i +1 as the dotted red graph, y = T1(x) is the blue line, y = Ta(x) is the green
quadratic and y = T3(x) is the purple graph of a cubic. You can see that the cubic is the best approximation.

Also, you can see that the Taylor polynomials will not give a good approximation to f(x) to the right of the
VA at x = 2.

Now, for a given function we can find a Taylor polynomial relative to any point in the domain. They certainly
are not unique. For example, we could expand about the center a = 3 to find

Ti(x) =24+ (3—x)
To(z) =2+ (3 —2) + (3 —x)?
Ti(z) =2+ B —z)+ (3 -2)*+ (3 —2)%

The graph below uses the same color scheme. Notice this time the Taylor polynomials only work well to the
right of the VA.

Example 6.5.4. Let f(x) = sin(x). It follows that
f'(x) = cos(w), f"(x) = —sin(), f"'(x) = — cos(z), fY (2) = sin(z), ) (2) = cos(x)
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Hence, f(0) =0, f'(0) =1, f/(0) = 0, f(0) = —1, f®(0) = 0, f®)(0) = 1. Therefore the Taylor polynomi-
als of orders 1,3,5 are

Ti(z)==x blue graph
1

Ty(x) =2 — —2° green graph
6
1 1

Ts(z) = — 63:3 + mxs purple graph

The graph below shows the Taylor polynomials calculated above and the next couple orders above. You can
see how each higher order covers more and more of the graph of the sine function.

Taylor polynomials can be generated for a given smoot}ﬂ function through a certain linear combination of its
derivatives. The idea is that we can approximate a function by a polynomiaﬂ, at least locally. We discussed
the tangent line approximation to a function. We found that the linearization of a function gives a good
approximation for points close to the point of tangency. If we calculate second derivatives we can similarly
find a quadratic approximation for the function. Third derivatives go to finding a cubic approximation about
some point. I should emphasize from the outset that a Taylor polynomial is just a polynomial, it will not
be able to exactly represent a function which is not a polynomial. In order to exactly represent an analytic
function we’ll need to take infinitely many terms, we’ll need a power series. We discuss those carefully in
calculus II. Finally, let me show you an example of how Taylor polynomials can be of fundamental importance
in physics.

Example 6.5.5. The relativistic energy E of a free particle of rest mass m, is a function of its velocity v:

Mo

Eo= e

for —c < v < ¢ where c is the speed of light in the space. We calculate,

@ -~ MU
dv (1—1)2/02)%

9for p € R the notation f € C°°(p) means there exists a nbhd. of p € R on which f has infinitely many continuous
derivatives.

DOthere do exist pathological examples for which all Taylor polynomials at a point vanish even though the function
is nonzero near the point; f(z) = exp(—1/x?) for x # 0 and f(0) =0
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thus v = 0 is a critical number of the energy. Moreover, after a little calculation you can show the 4-th order
Taylor polynomial in velocity v for energy E is

1 3m
~ 2 L o9 OMo 4
E(v) = myc” + 5 MoV + g2V
The constant term is the source of the famous equation E = moc? and the quadratic term is precisely the
classical kinetic energy. The last term is very small if v &~ 0. As |v| — ¢ the values of the last term become
more significant and they signal a departure from classical physics. I have graphed the relativistic kinetic
energy K = E —myc? (red) as well as the classical kinetic energy K newtonian = %vz (green) on a common
axis below:

Kinetic energy

classical kinetic|energy in green
relativistic kine{ic energy in red

velocity of light in dotted blue

speed (¢)
12 16 3

The blue-dotted lines represent v = +c and if |v| > ¢ the relativistic kinetic energy is not even defined.
However, for v = 0 you can see they are in very good agreement. We have to get past 10% of light speed
to even begin to see a difference. In every day physics most speeds are so small that we cannot see that
Newtonian physics fails to correctly model dynamics. I may have assigned a homework based on the error
analysis of the next section which puts a quantitative edge on the last couple sentences.

One of the great mysteries of modern science is this fascinating feature of decoupling. How is it that we are
so fortunate that the part of physics which touches one aspect of our existence is so successfully described.
Why isn’t it the case that we need to understand relativity before we can pose solutions to the problems
presented to Newtonian mechanics? Why is physics so nicely segmented that we can understand just one
piece at a time? This is part of the curiosity which leads physicists to state that the existence of physical
law itself is bizarre. If the universe is randomly generated as is life then how is it that we humble accidents
can so aptly describe what surrounds us. What right have we to understand what we do of nature? Recently
some materialists have turned to something called the anthropomorphic principle as a tool to describe how
this fortunate accident occurred. To the hardcore materialist the allowance of supernatural intervention
is abhorrent. They prefer a universe without purpose. Personally, I prefer purpose. Moreover, it is my
understanding of my place in this universe and our purpose to glorify God that make me expect to find laws
of physics. Laws, or more correctly, approximations of physics reveal the glory of a God we cannot fully
comprehend. I guess I digress... back to the math.

6.5.6 error in Taylor approximations

We've seen a few examples of how Taylor’s polynomials will locally mimic a function. Now we turn to the
question of extrema. Think about this, if a function is locally modeled by a Taylor polynomial centered
at a critical point then what does that say about the nature of a critical point? To be precise we need to
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know some measure of how far off a given Taylor polynomial is from the function. This is what Taylor’s
theorem tells us. There are many different formulations of Taylor’s theorenﬂ the one below is partially due
to Lagrange.

Theorem 6.5.6. Taylor’s theorem with Lagrange’s form of the remainder.

If f has k derivatives on a closed interval I with 0I = {a,b} then

@) (q _
ﬂw:n@+m@:§ﬁf9@_w+m@

k
P
where Ry (b) = f(b) — T (b) is the k-th remainder. Moreover, there exists ¢ € int(I) such that

F9)

R (b) = (k+1)!

(b—a)k+t.

We have essentially proved the first portion of this theorem. It’s straightforward calculation to show that
Ti(x) has the same value, slope, concavity etc... as the function at the point z = a. What is deep about
this theorem is the existence of c¢. This is a generalization of the mean value theorem. Suppose that a < b,
if we apply the theorem to

f(@) = To(a) + Ra(a)

we find Taylor’s theorem proclaims there exists ¢ € (a, b) such that R;(b) = f'(¢)(b—a) and since T, (x) = f(a)
we have f(b) — f(a) = f'(¢)(b — a) which is the conclusion of the MVT applied to [a, b].

Proof of Taylor’s Theorem: the proof I give here I found in Real Variables with Basic Metric Space
Topology by Robert B. Ash. Proofs found in other texts are similar but I thought his was particularly lucid.

Since the k-th derivative is given to exist on I it follows that f) is continuous for each j = 1,2,...,k—1 (we
are not garaunteed the continuity of the k-th derivative, however it is not needed in what follows anyway).
Assume a < b and define M implicitly by the equation below:

I

o)
(k—U!“_GWFD+AHb -

1) = (@) + F(@)(b—a)+ -+ -
Our goal is to produce ¢ € (a,b) such that f*)(¢) = M. Ash suggests replacing a with a variable ¢ in the
equation that defined M. Define g by

gty =—fO)+ fFO) + ()b —t)+ -+ m(b_ p=D 4

M(b—t)*
k!

for t € [a,b]. Note that g is differentiable on (a,b) and continuous on [a, b] since it is the sum and difference
of likewise differentiable and continuous functions. Moreover, observe

IO

g(b) = —f(b) + f(b) —l—f/(b)(b— b)+ -+ W(b_ b)(kfl) +

M(b—b)*
o

" Chapter 7 of Apostol or Chapter I1.6 of Edwards would be good additional readings if you wish to understand
this material in added depth.



6.5. TAYLOR’S THEOREM ABOUT POLYNOMIAL APPROXIMATION 203

On the other hand, the definition of M implies g(a) = 0. Therefore, Rolle’s theorem applies to g, this means
there exists ¢ € (a, b) such that ¢’(c) = 0. Calculate the derivative of g, the minus signs stem from the chain
rule applied to the b — t terms,

0= [0+ F0) + SO0 0]+t
(k—1) Y

= PO~ F0+ 06— 1) ~ 020~ 1) 4+

FARIO) T A O) _y  ME(b-t)*!
b—t)bt) L gD
MR A !

A0 (b— )%= _ ME(b—t)**

(k= 1)! k!

_ b=tV
where we used that % = ﬁ = ﬁ in the last step. Note that ¢ € (a,b) therefore ¢ # b hence

—t 0 hence (b —t)\"~ 0 hence # # 0. Tt follows that ¢’(¢) = 0 implies f¥)(¢) — M =0

b—1) # 0 hence (b— )"~ # 0 hence C20%

which shows M = f(¥)(¢) for some ¢ € (a,b). The proof for the case b > a is similar. [J

In total, we see that Taylor’s theorem is more or less a simple consequence of Rolle’s theorem. In fact, the
proof above is not much different than the proof we gave previously for the MVT.

Corollary 6.5.7. error bound for Ty(x).

If a function f has (k+ 1)-continuous derivatives on a closed interval [p, q] with length [ = ¢ —p and
|f*+D ()| < M for all « € (p,q) then for each a € (p,q)

Mlk-l—l

@) < Gy

where f(z) = Z?:o M(m —a) + R¢(z).

7!

Proof: At each point a we can either look at [a, z] or [z, a] and apply Taylor’s theorem to obtain ¢, € R such

that f(x) = Zj:o %(w—a)j+RZ(x) where R (z) = %(m—a)kﬂ. Then we note | f*+1) (¢, )| < M

and the corollary follows. [

Consider the criteria for the Second Derivative test. We required that f/(c¢) = 0 and f”(c) # 0 for a definite
conclusion. If f” is continuous at ¢ with f”(c) # 0 then it is nonzero on some closed interval I = [¢— 4, c+ ]
where § > 0. If we also are given that f”’ is continuous on I then it follows there exists M > 0 such that
| (x)| < M for all x € I. Observe that

1 1 4Ms3

@) = £(0) = 3£ (@@ = e = 151" (G - '] < =5

for all z € [c—d, c+6]. This inequality reveals that we have f(z) ~ f(c)+ 3 f"(c)(x—c)? as § — 0. Therefore,
locally the graph of the function resembles a parabola which either opens up or down at the critical point.
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If it opens up (f”(c) > 0) then f(c) is the local minimum value of f. If it opens down (f”(c) < 0) then f(c)
is the local maximum value of f. Of course this is no surprise. However, notice that we may now quantify
the error FEs(z) = |f(z) — Te(x)] < %. If we can choose a bound for f”/(z) independent of z then the

error is simply bounded just in terms of the distance from the critical point which we can choose § = |x — ¢|

and the resulting error is just 41\?,’[‘53. Usually, M will depend on the distance from ¢ so the choice of § to

limit error is a bit more subtle. Let me illustrate how this analysis works in an example.

Example 6.5.8. Suppose f(x) = 62° +152* — 1023 — 3022 +2. We can calculate that f'(z) = 30z* + 602> —
3022 — 60x therefore clearly (0,2) is a critical point of f. Moreover, f(x) = 12023+ 18022 — 60x — 60 shows
f"(0) = —60. I aim to show how the quadratic Taylor polynomial Ty(x) = f(2)+f'(2)x+3f"(2)a* = 2—302?
gives a good approzimation for f(x) in the sense that the maximum error is essentially bounded by the size
of Lagrange’s term. Note that

() = 36022 + 360z — 60 and  f™(z) = 720z + 360

Suppose we seek to approzimate on —0.1 < x < 0.1 then for such x we may verify that f®(z) > 0 which
means " is increasing on [—0.1,0.1] thus f"”(—0.1) < f""(z) < f"(0.1) which gives 3.6—36—60 < f"'(z) <
3.6 +36 — 60 thus —92.4 < f"'(x) < —20.4. Therefore, if |z| < 0.1 then |f"(z)] < 92.4. Using 6 = 0.1 we
should expect a bound on the error of 41\3[‘53 = 4(92.4)/3000 = 0.123. I have illustrated the global and local

qualities of the Taylor Polynomial centered at zero. Notice that the error bound was quite generous in this
example.

red curve is f(x)
green curve is Ta(x)

grey band shows hypothetical error
allowed from Lagrange's remainder.

. -

red curve is f(x)
green curve is Tx(x) based at zero.

grey band near (0,2) is
enlarged in other graph.

the other picture
AN
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Example 6.5.9. Here we examine Taylor polynomials for f(x) = sin(x) on the interval (—1,1) and second
on (—2,2). In each case we use sufficiently many terms to guarantee an error of less than ¢ = 0.1. Notice
that fF=Y(z) = £sin(x) whereas f?*=2)(x) = £ cos(x) for all k € N therefore |f(™ (z)| < 1 for all x € R.

If we wish to bound the error to 0.1 on —1 < & < 1 then we to bound the remainder term as follows:
(note —1 < x < 1 implies | = 2 and we just argued M =1 is a good bound for any k)

Mlk+1 2k+1
|f(z) — Ti(z)] < CES IS =FE,<0.1

At this point I just start plugging various values of k until I find a value smaller than the desired bound. For
this case,

92 23 4 24 9 25 32 26 64
El=2 =9 Fy=o=c Fa=" =2 E=2 =2 50925, Bs=— = — ~0.1
=g =5 72 3= T3 Pam g T g U2 Be = = g B0

This shows that Ty(xz) will provide the desired accuracy. But, it just so happens that Ts = Ty in this case so
we find T3(x) = x — éxS will suffice. In fact, it fits the £0.1 tolerance band quite nicely:

red curve is [(x)

\_/»,x green curve is Ts(x)

grey band shows hypothetical error \'\‘
allowed from Lagrange's remainder
on the interval (-1,1). \

If we wish to bound the error to 0.1 on —2 < x < 2 then we to bound the remainder term as follows: (note
—2 <z <2 impliesl=4)

MIF+ 4kl
|f(x) = Ti(z)] < ST = E, <0.1

At this point I just start plugging various values of k until I find a value smaller than the desired bound. For
this case,

48 410 212

EFr=—=16, Fg=—=~03, By =— =0.
Tl 0, By = 1q; ® 03, B = 15, = 0.035

This shows that Th0(x) will provide the desired accuracy. But, it just so happens that Ty = Thg in this case

so we find Ty(x) =z — %x?’ + ﬁx‘r’ — ﬁaﬂ + mmg will suffice. In fact, as you can see below it fits the

+0.1 tolerance band quite nicely well beyond the target interval of —2 < x < 2:
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red curve is {(x)
green curve is To(x)
grey band shows hypothetical error

allowed from Lagrange's remainder
on the interval (-2,2).

Example 6.5.10. Let’s think about f(x) = sin(z) again. This time, answer the following question: for
what domain —§ < x < 6 will f(x) = = to within £0.01 ¢ We can use M =1 and | = 2. Furthermore,
Ty (z) = To(x) = x therefore we want

2 3 3

(29) = ﬁ <0.1
(3! 3

to hold true for our choice of §. Hence 63 < 0.075 which suggests 6 < 0.42. Taylor’s theorem thus shows
sin(xz) = z to within £0.01 provided —0.42 < x < 0.42. (0.42 radians translates into about 24 degrees).

Here’s a picture of f(x) = sin(z) (in red) and Ty (x) = x (in green) as well as the tolerance band (in grey).
You should recognize y = Ty (x) as the tangent line.

[f(z) =] <

y

red curve is y = sin(x)
green curve is y = T1(x) = x
4 grey band shows hypothetical error

4 of allowed for Lagrange's remainder

// on the interval (-0.42,0.42).

Example 6.5.11. Suppose we are faced with the task of calculating v/4.03 to an accuracy of 5-decimals.
For the purposes of this example assume all calculators are evil. It’s after the robot holocaust so they can’t
be trusted. What to do? We use the Taylor polynomial up to quadratic order: we have f(x) = \/x and

f(z) = ﬁ and " (z) = 4(\_/%)3. Apply Taylor’s theorem,

VA4.03 = f(4) + f/(4)(4.03 — 4) + %f”(4)(4.03 42 +R
13 19

o 4100 64 10000 +
=2+ 0.0075 — 0.000014062 + R

= 2.007485938 + R
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If we bound f"(z) = S by M on [4,4.03] then |R| < MO0 Clearly f(z) = 775 < 0
'f we ounf(m)—s(ﬁ)5 Yy on [4,4.03] then |R| < - earyf(x)—w(ﬁ)7< for

x € [4,4.03] therefore, f" is decreasing on [4,4.03]. It follows f"'(4) > f"'(x) > f"'(4.03). Choose M =
f"(4) = o2 = 52 thus

8(32) 256
(0.03)3 3 27 1 1
R| < —_— = = 0.000001.
IR] < 6 256 25610000 100000
Therefore, | vV4.03 = 2.007486 + 0.000001 ‘ As far as I know my TI-89 is still benevolent so we can check

our answer; the calculator says v/4.03 = 2.00748598999.

In the last example, we again find that we actually are a whole digit closer to the answer than the error
bound suggests. This seems to be typical. In calculus II we’ll find a better error bound in the study of power
series.

Example 6.5.12. Newton postulated that the gravitational force between masses m and M separated by a

distance of r is

- GmM

F=- P

r2
where 1 is the distance from the center of mass of M to the center of mass m and G is a constant which
quantifies the strength of gravity. The minus sign means gravity is always attractive in the direction T which
points along the line from M to m. Consider a particular case, M is the mass of the earth and m is a small
mass a distance r from the center of the earth. It is convenient to write r = R + h where R is the radius
of the earth and h is the altitude of m. Here we make the simplifying assumptions that m is a point mass
and M is a spherical mass with a homogeneous mass distribution. It turns out that means we can idealize
M as a point mass at the center of the earth. All of this said, you may recall that F' = mg is the force of
gravity in highschool physics where the force points down. But, this is very different then the inverse square
law? How are these formulas connected? Focus on a particular ray eminating from the center of the earth
so the force depends only on the altitude h. In particular:

GmM
Fh)y=———=
) (R+ h)?
We calculate,
2GmM
F(h)= —
(h) (R+h)3

Note that clearly F”(h) < 0 hence F' is a decreasing function of h therefore if 0 < h < hpqs then F'(0) >
F'(h) > F'(hmaz) so F'(0) provides a bound on F'(h). Calculate that

GmM 2GmM
? and F/(O) = T

Taylor’s theorem says that F'(h) = F(0) + E and |E| < F'(0)hmas therefore,
~ GmM " 2GmM

F(0) = —

F(h) ~ 2 7 h
Note G = 6.673 x 101! NT"Q’Z and R = 6.3675 x 10°m and M = 5.972 x 10**kg. You can calculate that
kg
G%M = 9.83m/s% which is hopefully familar to some who read this. In contrast, the error term

2G'mM

h=(3.1x10"%mh
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If the altitude doesn’t exceed h = 1,000m then the formula F/m = g approzimates the true inverse square
law to within 0.0031m/s?. At h = 10,000m the error is 0.031m/s?. At h = 100,000m the error is around
0.31m/s%. (100,000 meters is about 60 miles, well above most planes flight ceiling). Taylor’s theorem gives
us the mathematical tools we need to quantify such nebulous phrases as F = mg "near” the surface of the
earth. Mathematically, this is probably the most boring Taylor polynomial you’ll ever study, it was just the
constant term.

Remark 6.5.13. transcendental numbers and a look ahead to calculus II.

Another application of Taylor’s theorem is in calculation of transcendental numbers such as 7w or e.
See Apostol pg. 285 problem 10 for a method to approximate 7 to seven decimals. Or page 281 for the
calculation of e to 8 decimal places. On page 282 in Example 2 a proof is offered for the irrationality
of e. To be frank, you don’t really understand what a real number is until you understand the
construction and convergence/divergence of power series. The idea of an unending decimal expansion
really has no justification in the mathematics we have thus far discussed. Fortunately most of you
will take calculus II so at least then you’ll actually learn how to carefully formulate what is required
for an unending sum to be reasonable. The idea of a series provides a careful meaning for a sum of

infinitely many things. We’ll explain why 0.1111... = % -+ 1—(1)0 + 1()1% + -+ is a real number whereas
% + i + % + -+ is not. Taylor’s theorem plays an important role in the study of power series. But,

as you hopefully see by now it is also useful for gaining deeper insight into the geometry and local
behavior of functions.

6.5.7 higher derivative tests

We saw in the previous section that the second derivative test is concretely justified by Taylor’s theorem with
Lagrange’s remainder. The next logical step is the following theorem which is justified by similar analysis.
Basically the point is that if you have all the derivatives zero up to some particular order, say k — 1, then
the function f(x) = Ty (x) provided z is close to the critical point. Therefore, if k is an even integer then
the function is locally-shaped like a parabola whereas if k is odd then is locally-shaped like a cubic. Hence
the following theorem:

Theorem 6.5.14. higher derivative tests.

Suppose f has k continuous derivatives such that f'(c) = f"(c) = --- = f*=1(c) = 0and f*)(c) # 0
then

1. if k € 2N and £ (¢) > 0 then f(c) is a local minimum.
2. if k € 2N and f*)(c) < 0 then f(c) is a local maximum.
3. if k € 2N+ 1 then f(c) is not an extrema.

The notation k € 2N means that there exists n € N such that k¥ = 2n. Likewise, the notation k£ € 2N+1 means
that there exists n € N such that £ = 2n+1. In other words, 2N = {2,4,6, ... } whereas 2N+1 = {3,5,7,... }.
The proof of this theorem is suggested by the examples and general comments about Taylor polynomials
and their remainders. However, if you would like to see an explicit proof you can consult C.H. Edwards, Jr.
Advanced Calculus of Several Variables pages 125-127.

Example 6.5.15. Consider f(z) = z*. We can calculate f'(x) = 43 therefore the only critical number is
c=0. Note that f"(z) = 1222, f"(x) = 24z, f® (x) = 24. It follows that

7'(0) = 1(0) = £(0) = 0
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but f®)(x) = 24 > 0 therefore, by the higher derivative test, f(0) = 0 is a local minimum of f(zx) = x*.
Notice that this example would not have been covered by the second derivative test (but, the first derivative
test would have covered it).

Example 6.5.16. Consider f(z) = 2°. We can calculate f'(x) = 5x* therefore the only critical number is
¢ =0. Note that f"(z) = 2023, f"(x) = 6022, f®(x) = 120z, f®)(x) = 120. It follows that

£(0) = f7(0) = f(0) = f(0) =0

but fO) () = 120 # 0 therefore, by the higher derivative test, f(0) = 0 is not a local extrema of f(z) = x°.
Notice that this example would not have been covered by the second derivative test (but, the first derivative
test would have covered it).

Example 6.5.17. Consider f(z) = 2®> —2* +1. We can calculate f'(r) = 32% — 423 = 22(3 — 4x) thus
critical numbers are ¢ = 0 and ¢ = 3/4. Note that f"(x) = 62 — 1222, f"(x) = 6 — 24z, fP(z) = —24. It
follows that

f1(0) = f"(0)=0
but f®)(z) = 6 # 0 therefore, by the higher derivative test, f(0) = 3 is a not a local extrema of f(x) =
23 — 2t + 3. Continuing to the other critical point notice f'(3/4) =0, f"(3/4) = 18/4 — 12(3/4)?> = —9/4
thus by the second derivative test f(3/4) is a local mazimum.

What is the difference between these critical points geometrically? Notice that y = f"(x) = 6x — 122% =
6x(1 — 2z) is a downward opening parabola with zeros at x = 0 and x = 1/2 therefore we deduce f"(x) < 0
forx <0 and f"(x) >0 for 0 < x < 1/2. This means that (0,1) is an inflection point of y = f(x). For that
reason this example could not be covered by the second derivative test. In contrast, the concavity is downward
on a nbhd around ¢ = 3/4.
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Chapter 7

antiderivatives and the area problem

Let me begin by defining the terms in the title:
1. an antiderivative of f is another function F' such that F’ = f.
2. the area problem is: ”find the area of a shape in the plane”

This chapter is concerned with understanding the area problem and then solving it through the fundamental
theorem of calculus(FTC).

We begin by discussing antiderivatives. At first glance it is not at all obvious this has to do with the area
problem. However, antiderivatives do solve a number of interesting physical problems so we ought to consider
them if only for that reason. The beginning of the chapter is devoted to understanding the type of question
which an antiderivative solves as well as how to perform a number of basic indefinite integrals. Once all of
this is accomplished we then turn to the area problem.

To understand the area problem carefully we’ll need to think some about the concepts of finite sums, se-
quences and limits of sequences. These concepts are quite natural and we will see that the theory for these is
easily transferred from some of our earlier work. Once the limit of a sequence and a number of its basic prop-
erties are established we then define area and the definite integral. Finally, the remainder of the chapter is
devoted to understanding the fundamental theorem of calculus and how it is applied to solve definite integrals.

I have attempted to be rigorous in this chapter, however, you should understand that there are superior

treatments of integration(Riemann-Stieltjes, Lesbeque etc..) which cover a greater variety of functions in a
more logically complete fashion. The treatment here is more or less typical of elementary calculus texts.

211
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7.1 indefinite integration
Don’t worry, the title of this section will make sense later.

7.1.1 why antidifferentiate?

The antiderivative is the opposite of the derivative in the following sense:

Definition 7.1.1. antiderivative.

‘ If f and F are functions such that F’ = f then we say that F is an antiderivative of f.

Example 7.1.2. Suppose f(z) = x then an antiderivative of f is a function F such that % =x. We could

try x2 but then %(zQ) = 2x has an unwanted factor of 2. What to do? Just adjust our guess a little: try

F(z) = 122, Note that L (32?) = $-L(2?) = 1(22) = 2.

Example 7.1.3. Let k be a constant. Suppose g(t) = e** then we guess G(t) = %ekt and note it works;
4 (Lekt) = eM therefore g(t) = e has antiderivative G(t) = te™.
Example 7.1.4. Suppose h(0) = cos(#). Guess H(6) = sin(0) and note it works; -%(sin(6)) = cos(0).

Obviously these guesses are not random. In fact, these are educated guesses. We simply have to think
about how we differentiated before and just try to think backwards. Simple enough for now. However, we
should stop to notice that the antiderivative is far from unique. You can easily check that F(z) = %x2 +c1,

G(t) = £e" + cp and H(f) = sin(f) + c3 are also antiderivatives for any constants c1, ¢z, c3 € R.

Proposition 7.1.5. antiderivatives differ by at most a constant.

‘ If f has antiderivatives F; and F» then there exists ¢ € R such that Fy(x) = Fy(z) + c. ‘

Proof: We are given that % = f(x) and % = f(z) therefore % = %. Hence, by Proposition [6.1.10
we find Fy(z) = Fa(z) +c. O

To understand the significance of this constant we should consider a physical question.

Example 7.1.6. Suppose that the velocity of a particle at position x is measured to be constant. In particular,
suppose that v(t) = 9 and v(t) = 1. The condition v(t) = % means that x should be an antiderivative of
v. Forv(t) =1 the form of all antiderivatives is easy enough to guess: x(t) =t + c. The value for ¢ cannot
be determined unless we are given additional information about this particle. For example, if we also knew

that at time zero the particle was at x = 3 then we could fit this initial data to pick a value for c:
2(0)=0+c=3 = ¢=3 = |z(t)=t+3]|

For a given velocity function each antiderivative gives a possible position function. To determine the precise
position function we need to know both the velocity and some initial position. Often we are presented with
a problem for which we do not know the initial condition so we’d like to have a mathematical device to leave
open all possible initial conditions.
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Definition 7.1.7. indefinite integral.

If f has an antiderivative I’ then the indefinite integral of f is given by:

/ f@)dz = {G(z) | G'(z) = f(2)} = {F(z) + clc € R}.

However, we will customarily drop the set-notation and simply write

/f(x)da: — F(z) + ¢ where F'(z) = f(z).

The indefinite integral includes all possible antiderivatives for the given function. Technically the indefinite
integral is not a function. Instead, it is a family of functions each of which is an antiderivative of f.

Example 7.1.8. Consider the constant acceleration problerrﬂ' we are given that a = —g where g = 9.8m/ s>

and a = %. We can take the indefinite integral of the equation:

dv

T=9 = v(t):/—gdtz—gt—l—cl.

Furthermore, if v = % then

d 1
dfg;:—gt—kq = y(t):/—gt+cldt:—§gt2+c1t+02.

Therefore, we find the velocity and position are given by formulas

1
v(t) =c — gt y(t) = ca + 1t — 59152.

If we know the initial velocity is v, and the initial position is y, then

v(0)=v,=c1—-0 = |v(t)=v,—gt

1
YO0) =go=c2=0-0 = |y(t) = yo +vot — 5gt°

These formulas were derived by Galileo without the benefit of calculus. Instead, he used experiment and a
healthy skepticism of the philosophical nonsense of Aristotle. The ancient Greek’s theory of motion said that
if something was twice as heavy then it falls twice as fast. This is only true when the objects compared have
air friction clouding the dynamics. The equations above say the objects’ motion is independent of the mass.

lhere F = ma is —mg = ma so a = —g but that’s physics, I supply the equation of motion in calculus. You just
have to do the math.
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Remark 7.1.9. redundant comment (again).

The indefinite integral is a family of antiderivatives: [ f(z) = F(x) + ¢ where F’'(z) = f(x). The
following equation shows how indefinite integration is undone by differentiation:

d
& [ @) de= 1)

the function f is called the integrand and the variable of indefinite integration is x. Notice the
constant is obliterated by the derivative in the equation above. Leibniz’ notation intentionally makes
you think of cancelling the dx’s as if they were tiny quantities. Newton called them fluzions. In fact
calculus was sometimes called the theory of fluzions in the early 19-th century. Newton had in mind
that dx was the change in x over a tiny time, it was a fluctuation with respect to a time implicit. We
no longer think of calculus in this way because there are easier ways to think about foundations of
calculus. That said, it is still an intuitive notation and if you are careful not to overextend intuition
it is a powerful mnemonic. For example, the chain rule 4 — df du g the chain rule just from

dr ~— dudz’
multiplying by one? No. But, it is a nice way to remember the rule.

A differential equation is an equation which involves derivatives. We have solved a number of differential
equations in this section via the process of indefinite integration. The example that follows doesn’t quite fit
the same pattern. However, I will again solve it by educated guessinﬂ .

Example 7.1.10. A simple model of population growth is that the rate of population growth should be directly
proportional to the size of the population P. This means there exists k € R such that
dP
T
Fortunately, we just did Example[7.1.5 where we observed that

1
/ektdt = Eekt +c

kP.

So we know that one solution is given by P(t) = +e'. Change variables by substituting u = In(P) so

du _ 1dP

G = 55 thus % = P‘é—?. Hence we can solve P% =kP or % = k instead. This we can antidifferentiate
to find u(t) = kt + c1. Thus, In(P) = kt + ¢1 hence P(t) = eF'+c1 = ec1eFt. If the initial population is given

to be P, then we find P(0) = P, = et thus | P(t) = P,e".

The same mathematics govern simple radioactive decay, continuously compounded interest, current or voltage
in an LR or RC circuit and a host of other simplistic models in the natural sciences. Real human population
growth involves many factors beyond just raw population, however for isolated systems this type of model
does well. For example, growth of bacteria in a petri dish.

Remark 7.1.11. why antidifferentiate?

We antidifferentiate to solve simple differential equations. When one variable (say v) is the instan-
taneous rate of change of another (say s so v = %) then we can reverse the process of differentiation
to discover the formula of s if we are given the formula for v. However, because constants are lost in
differentiation we also need an initial condition if we wish to uniquely determine the formula for s.
I have emphasized the utility of the concept of antidifferentiation as it applies to physics, but that

was just my choice.

2 Actually, the method I use here is rather unusual but the advanced reader will recognize the idea from differential
equations. The easier way of solving this is called separation of a variables, but we discuss that method much later
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Notice, I have yet to even discuss the area problem. We already see that indefinite integration is an important
skill to master. The methods I have employed in this section are ad-hoc. We would like a more systematic
method. I offer organization for guessing in the next section.

7.1.2 properties of indefinite integration

In this section we list all the basic building blocks for indefinite integration. Some of these we already guessed
in specific examples. If you need to see examples you can skip ahead to the section that follows this one.

Proposition 7.1.12. basic properties of indefinite integration.

Suppose f, g are functions with antiderivatives and ¢ € R then

J1r@) + @iz = [ f@)do + [ g(o)do
/cf(a:)dsczc/f(m)da:

Proof: Suppose [ f(z)dz = F(z)+ ¢; and [ g(z)dz = G(z) + ¢ note that

d d d

T {F@) + Ga)] = o [F (@) + o

ZIG(@)] = () +g(2)

hence [[f(z)+ g(z)ldx = F(z) + G(z) + ¢3 = [ f(x) dx + [ g(x) dz where the constant c3 is understood to
be included in either the [ f(z)dx or the [ g(z)dx 1ntegral as a matter of custom. O

Proposition 7.1.13. power rule for integration. suppose n € R and n # —1 then

1
/z” de = ——z"t 4+ ¢
n+1

Proof: ‘i[nilxnﬂ] = %x”“*l = z". Note that n+1 # 0 since n # —1. O

Note that the special case of n = —1 stands alone. You should recall that - 1 (:c) =1opr ovided x> 0. In
the case z < 0 then by the chain rule applied to the positive case: Cfp In(— ) ( 1) = 7. Observe then

that for all z # 0 we have % In|z| = L. Therefore the proposition below follows.

Proposition 7.1.14. reciprocal function is special case.

1
/fdlenm—l—c.
x

Note that it is common to move the differential into the numerator of such expressions. We could just as
well have written that f dz _ p |z| + ¢. T leave the proof of the propositions in the remainder of this section
to the reader. They are not difficult.
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Proposition 7.1.15. exponential functions. suppose a >0 and a # 1,

/a'”dx: /emd:r::e'”—I—c

The exponential function has base a = e and In(e) = 1 so the formulas are consistent.

a® +c

in particular:

1
In(a)

Proposition 7.1.16. trigonometric functions.

/sin(x) dx = —cos(z) + ¢
/secz(:c) dx = tan(z) + ¢

/csc2(9:) dx = —cot(z) + ¢

/cos(:v) dx = sin(x) + ¢
/sec(x) tan(z) dr = sec(z) + ¢

/csc(x) cot(z) de = — csc(x) + c.

You might notice that many trigonometric functions are missing. For example, how would you calculateﬂ
J tan(z) dz? We do not have the tools for that integration at this time. For now we are simply cataloguing
the basic antiderivatives that stem from reading basic derivative rules backwards.

Proposition 7.1.17. hyperbolic functions.

/sinh(z) dx = cosh(z) + ¢ /cosh(:c) dx = sinh(z) + ¢

Naturally there are also basic antiderivatives for sech?(z), sech(z)tanh(z), csch?(z) and csch(z)coth(z) how-
ever I omit them for brevity and also as to not antagonize the struggling student at this juncture.

Proposition 7.1.18. special algebraic and rational functions

dx 1 dz |
m:tan () +c ﬁ:sm (z) +c.
d d
/% = cosh™!(z) + ¢ /\/ﬁ = sinh™!(z) + ¢

One can replace the expressions above with natural logs of certain algebraic functions. These identities are
explored on page 466 of Stewart’s 6-th edition. Page 488 has a nice summary of these basic integrals that
we ought to memorize (although we have not covered tan(z) and cot(x) at this point)

3the answer is In |sec(z)| + ¢ if you're curious and impatient.
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7.1.3 examples of indefinite integration

Example 7.1.19.
[z = [atiz—

Example 7.1.20.

1 1 =1 23 3 2
/[\/3?+3—\/E]dx:/az2dx+/xddx: §x2+§xd +c

Example 7.1.21.

[MEe

dz 1 9 -1 -1
_— = d = — = | —
/3952 3/x et 30 €

2zd d
/ x2m22 —x:2ln|x|+c: In(z?) 4 ¢
x x

Note that |x| = +x thus |z|?> = (£x)? = 22 so it was logical to drop the absolute value bars after bringing in
the factor of two by the property In(A°) = cIn(A).

2413
/v13m7dm:\/ﬁ/x%dm: VIS5 4o = T\/»x‘l\/f—i—c

Example 7.1.22.

Example 7.1.23.

Example 7.1.24.

/36”“'+2dx = 3/626wd$ = 362/6wd£€ =3e%(e” +¢1) =

Example 7.1.25.

/(z +2)%dx = /(x2 + 4z + 4)dzx

:/xde+4/xdx+4/dx

1
= §x3+2x2+4x+c

Example 7.1.26.

2 1
/(2x3—|—3)daz=1x4+3x+c: 5.%‘44-31‘—1—6

Example 7.1.27.

/(2”” + 3 cosh(x))dz = /dex +3 / cosh(z)dz = I 12) 2% 4+ 3sinh(z) + ¢
n

Example 7.1.28.

223 223 d 2
/ ‘ +3dx:/[x+3]dx:/2x2dm+3/$: “a¥ 4+ 3In x|+ ¢
x T x T 3
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Example 7.1.29.

z? 1+2%2-1 1 1
_— = B —— = 1—7 = — -
/1+x2dx / o dx /[ 1+x2]da¢ ’x tan™" (z) + ¢

Example 7.1.30.

/Sin(x +3)dx = /[Sin(x) cos(3) + sin(3) cos(z)|dx

=m®/m@m+m@/mwm

= — cos(3)[cos(z) + c1] + sin(3)[sin(x) + c2]
sin(3) sin(z) — cos(3) cos(z) + ¢

’—cos(m—i—?))—}—c‘

Incidentally, we find a better way to do this later with the technique of u-substitution.

Example 7.1.31.

1 _ 9 _
/de = /Sec (x)dx =|tan(z) 4+ ¢
5 Sy =l ]
= =1t
/ﬁ+mﬂ@+mﬂ@ /;M& an (2) +e

Every example in this section is easily checked by differentiation.

Example 7.1.32.

7.2 area problem

The area of a general shape in the plane can be approximately calculated by dividing the shape into a bunch
of rectangles or triangles. Since we know how to calculate the area of a rectangle [A = lw] or a triangle
[A= %bh] we simply add together all the areas to get an approximation of the total area. In the special case
that the shape has flat sides then we can find the exact area since any shape with flat sides can be subdivided
into a finite number of triangles. Generally shapes have curved edges so no finite number of approximating
rectangles or triangles will capture the exact area. Archimedes realized this some two milennia ago in ancient
Syracuse. He argued that if you could find two approximations of the area one larger than the true area
and one smaller than the true area then you can be sure that the exact area is somewhere between those
approximations. By such squeeze-theorem type argumentation he was able to demonstrate that the value of
7 must be between 272—13 and % (in decimals 3.1408 < 7 & 3.1416 < 3.1429 ). In Apostol’s calculus text he
discusses axioms for area and he uses Archimedes’ squeezing idea to define both area and definite integrals.

Our approach will be less formal and less rigorous.

Our goal in this section is to careful construct a method to calculate the area bounded by a function on
some interval [a, b]. Since the function could take on negative values in the interval we actually are working
on a method to calculate signed area under a graph. Area found beneath the x-axis is counted negative
whereas area above the x-axis is counted positive. Shapes more general than those described by the graph
of a simple function are treated in the next chapter.
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7.2.1 sums and sequences in a nutshell

A sequence is function which corresponds uniquely to an ordered list of values. We consider real-valued
sequences but the concept extends to many other objectsﬂ

Definition 7.2.1. sequence of real numbers.

If U C Z has a smallest member and the property that n € U implies n + 1 € U then a function
f:U — R is a sequence. Moreover, we may denote the sequence by listing its values

f={f(w), f(u2), f(uz),- -} = {furs fusy fugy- - b= {f’uj Jo'ozl

Typically U = N or U = NU {0} and we study sequences of the form

{a]—};io = {a(), ay,ag, ... } {bn}zozl = {bl, bQ, b3 .. }

Example 7.2.2. Sequences may defined by a formula: a, =n for all n € N gives
{an}zozl = {17 23 33 s }
Or by an iterative rule: fr =1, fo =1 then f, = fu_1 + fn—2 for all m > 3 defines the Fibonacci sequence:
{fa}or,=11,1,2,3,5,8,13,21,... }.

Beyond this we can add, subtract and sometimes divide sequences because a sequence is just a function with
a discrete domain.

Definition 7.2.3. finite sum notation.

Suppose a; € R for j € N. Then define:

n—1

1 n
E a; = ay E a; = E a; + an
Jj=1 Jj=1 Jj=1

for n > 2. This iterative definition gives us the result that

n
g a; =a1+az+---+ap.
j=1

The variable j is called the dummy index of summation. Moreover, sums such as

IN
E 4 = a5, +aj, + o +ay
J=J1

N summands

can be carefully defined by a similar iterative formula.

4 . . . . .
sequences of functions, matrices or even spaces are studied in modern mathematics
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Example 7.2.4. Sums can give particularly interesting sequences. Consider a, = Z?le form=1,2....
{antrz: ={1,14+2,14+2+3,14+2+3+4,...} ={1,3,6,10,... }.

The greatest mathematician of the 19-th century is generally thought to be Gauss. As a child Gauss was tasked
with computing a100. The story goes that just as soon as the teacher asked for the children to calculate the
sum Gauss wrote the answer 5050 on his slate. How did he know how to calculate the sum 1+2+34---+50
with such ease? Gauss understood that generally

n

. n(n+1)
3= H D)

j=1
For example,
as = @ =10, ...,a100 = w = 50(101) = 5050.

What method of proof is needed to prove results such as this? The method is called ”proof by mathematical
induction”. We discuss it in some depth in the Math 200 course. In short, the idea is this: you prove the
result you interested in is true for n = 1 then you prove that if n is true then n 4+ 1 is also true for an
arbitrary n € N. Let’s see how this plays out for the preceding example:

Proof of Gauss’ Formula by induction: note that n = 1 is clearly true since a; = 1. Assume that
Z?=1 j= % (%) is valid and consider that, by the recursive definition of the finite sum,

n+1 n

. ) n(n+1 1 n+1)(n+1+1
Zg=23+n+1=¥+n+1:7(n2+3n+2):([ Nn+11+1)
‘ 2 2 2
j=1 j=1 ——
using *

which is precisely the claim for n+ 1. Therefore, by proof by mathematical induction, Gauss’ formula is true
for all m € N. [J

Formulas for simple sums such as >.1,5 n,> n? 3 n3 are also known and can be proven via induction.
Let’s collect these results for future reference:

Proposition 7.2.5. special formulas for finite sums.

ilzn ik:n(n—kl) ikQZn(n—i—l)(Qn—l—l) ik3:n2(n+1)2
’ 6 ) .
- - k=1

2 )
k=1 k=1

The following results are less surprising but are even more useful:
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Proposition 7.2.6. finite sum properties. suppose a,bg,c € R for all k and let n,m € N such that m < n,

(i) D ar+ > b= (ar+b),
k=1 k=1 k=1
(4i.) ank = cZak,
k=1 k=1
(i) Y ar=Y ax+ »_ ax
k=1 k=1 k=m-+1

Proof: begin with (i.). The proof is by induction on n. Note that (i.) is true for n = 1 since Z,lczl ax +
Zizl b, =a1+b = leg:1(ak + bg). Suppose that (i.) is true for n and consider

n+1 n+1 n

D+ Y b= ar+anii+ Y bp+bu by defn. of y_
k=1 k=1 k=1

o
(]
I

= (ag + br) + any1 + bpta by induction hypothesis for n
k=1
n+1

= (ar+bg) by defn. of Z
k=1

Therefore, (i.) true for n implies (i.) is true for n+ 1 hence by proof by mathematical induction we conclude
(i.) is true for all n € N. The proof for (ii.) is similar. We leave the proof of (iii.) to the reader. O

We would like to have sums with many terms in the sections that follow. In fact, we will want to let n — oo.
The definition that follows is essentially the same we gave previously for functions of a continuous variable.
The main difference is that only integers are considered in the limiting process.

Definition 7.2.7. limit of a sequence.

We say the sequence {a,,} converges to L € R and denote

lim a,, = L
n— oo

iff for each € > 0 there exists N € N such that for all n > N we find |a,, — L| < ¢

The skills you developed in studying functions of a continuous variable transfer to the study of sequential
limits because of the following fundamental lemma:

Lemma 7.2.8. correspondence of limits of functions on R and sequences.

Suppose {a,} is a sequence and f is a function such that f(n) = a, for all n € dom({a,}). If
lim, 0 f(z) = L € R then lim,, o a,, = L.

Proof: assume lim, .o f(z) = L € R and f(n) = a,, for all n € N. Let € > 0 and note that by the given
limit there exists M € R such that |f(z) — L| < € for all z > M. Choose N to be the next integer beyond
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M so N € Nand N > M. Suppose that n € N and n > N then |f(n) — L| = |a, — L| < e. Therefore,
lim,, yooa, = L. O

The converse is not true. You could extend a sequence so that it gave a function of a continuous variable
which diverged. Just imagine a function which oscillates wildly between the natural numbers.

Definition 7.2.9. infinite sum.

o0 n

g ar = lim E a.
n— oo

k=1 k=1

Given a particular formula for ay it is generally not an easy matter to determine if the limit above exists.
These sums without end are called series. In particular, we define Zzil ar = a1 +as+asz—+--- to converge
iff the limit lim,, o 22:1 a, converges to a real number. We discuss a number of various criteria to analyze
this question in calculus II. T believe this amount of detail is sufficient for our purposes in solving the area
problem. Our focus will soon shift away from explicit calculation of these sums.

7.2.2 left, right and midpoint rules

We aim to calculate the signed-area bounded by y = f(z) for a < & < b. In this section we discuss three
methods to approximate the signed-area. To begin we should settle some standard notation which we will
continue to use for several upcoming sections.

Definition 7.2.10. partition of |a,b].

b—a
n

Suppose a < b then [a,b] C R. Define Az =
In particular, z, = a and z,, = b.

forn e Nand let z; =a+ jAx for 7 =0,1,...,n.

The closed interval [a,b] is a union of n-subintervals of length Az. Note that the closed interval [a,b] =
[0, z1]U[x1, 22]U- - -U[2p—1, xy]. The following rule is an intuitively obvious way to calculate the signed-area.

Definition 7.2.11. left endpoint rule (L,,).

Suppose that [a,b] C dom(f) then we define

Ln = i: f(zj)Az = [f(zo) + f(z1) + - + f(zn-1)|Az.

7=0

Example 7.2.12. Let f(z) = 2% and estimate the signed-area bounded by f on [1,3] by the left-endpoint
rule. To keep things simple Ill just illustrate the calculation with n = 4. Note Ax = 3%1 = 0.5 thus
To=1,21 = 1.5,20 = 2,23 = 2.5 and x4 = 3.

Li=[f(1) + f(1.5) + f(2) + f(2.5)]Az = [1 + 2.25 + 4 + 6.25](0.5) = 6.75

It’s clear from the picture below that Ly underestimates the true area under the curve.
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Definition 7.2.13. right endpoint rule (R, ).

Suppose that [a,b] C dom(f) then we define

Rn=Y fla;)Az = [f(@1) + f(z2) + -+ + (@n)] Ao

Example 7.2.14. Let f(x) = 22 and estimate the signed-area bounded by f on [1,3] by the right end-point

rule. To keep things simple I'll just illustrate the calculation with n = 4. Note Az = 321 = 0.5 thus

1
z, =121 =159 = 2,23 = 2.5 and x4 = 3.
Ry =[f(1.5)+ f(2) + f(2.5) + f(3)]Az = [2.25 + 4 + 6.25 + 9](0.5) = 10.75

It’s clear from the picture below that Ry overestimates the true area under the curve.

\ |
o
X

Definition 7.2.15. midpoint rule (M,).

Suppose that [a,b] C dom(f) and denote the midpoints by Zx = %(xk + xp—1) and define

M, — Z (@) = [f(F1) + f(@2) + - + f(@n)] Ac.

Example 7.2.16. Let f(x) = x? and estimate the signed-area bounded by f on [1,3] by the midpoint
rule. To keep things simple I'll just illustrate the calculation with n = 4. Note Ax = % = 0.5 thus
F1 = 1.25, %9 = 1.75, %3 = 2.25 and T4 = 2.75.

My = [f(1.25) + f(1.75) + f(2.25) + f(2.75)]Ax = [1.5625 + 3.0625 + 5.0625 + 7.5625](0.5) = 8.625
Clearly Ly < My < Ry and if you study the errors you can see Ly < My < A < Ry.
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~_

\ ,//

Notice that the size of the errors will shrink if we increase n. In particular, it is intuitively obvious that
as n — oo we will obtain the precise area bounded by the curve. Moreover, we expect that the distinction
between L, R, and M, should vanish as n — oco. Careful proof of this seemingly obvious claim is beyond
the scope of this course.

Example 7.2.17. Let f(x) = 2% and calculate the signed-area bounded by f on [1,3] by the right end-point
rule. To perform this calculation we need to set up R, for arbitrary n and then take the limit as n — oo.
Note z, = 1+ kAz and Az = 2/n thus xp, = 1 4+ 2k/n. Calculate,

2k \? 4k 4k?
f(mk)=(1+) =14+ —+ —
n n n

thus,

Note that % and n—lz clearly tend to zero as n — oo thus

16 26
lim R, =2+4+ — = 3 =~ 8.6667.

n— oo 6
Challenge: show Ly, and M, also have limit 2—36 as n — 0o.

Notice that the error in My is simply E = 8.6667 — 8.625 = 0.0417 which is within 0.5% of the true area. I
will not attempt to give an quantitative analysis of the error in L,,, R, or M, at this time. Stewart discusses
the issue in §8.7. Qualitatively, if the function is monotonic then we should expect that the area is bounded
between L, and R,,.
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7.2.3 Riemann sums and the definite integral

In the last section we claimed that it was intuitively clear that as n — oo all the different approximations
of the signed-area converge to the same value. You could construct other rules to select the height of the
rectangles. Riemann’s definition of the definite integral is made to exploit this freedom in the limit. Again,
it should be mentioned that this begs an analytical question we are unprepared to answer. For now I have
to ask you to trust that the following definition is meaningful. In other words, you have to trust me that
it doesn’t matter the details of how the point in each subinterval is chosen. Intuitively this is reasonable as
Az — 0 as n — oo. Therefore, the subinterval [z;,z; + Az] — {z;} so the choice between the left, right and
midpoints is lost in the limit. Actually, special functions which are very discontinuous could cause problems
to the intuitive claim I just made. For that reason we insist that the function below is continuous on [a, ]
in order that we avoid certain pathologies.

Definition 7.2.18. Riemann sum and the definite integral of continuous function on [a,b].

Suppose that f is continuous on [a,b] suppose z} € [x—1, 2] for all K € N such that 1 < k < n
then an n-th Riemann sum is defined to be

Z flap)Ar = [f(a]) + f(x3) + -+ f(a))]Ax.

Notice that no particular restriction is placed on the sample points xj. This means a Riemann sum could
be a left, right or midpoint rule. This freedom will be important in the proof of the Fundamental Theorem
of Calculus I offer in a later section.

Definition 7.2.19. definite integrals.

Suppose that f is continuous on [a,b], the definite integral of f from a to b is defined to be
lim,,_, R,, in particular we denote:

b n
/ f(z)dx = hm R, = lim {Z f(TZ)AT]
Ja n—00 i1

The function f is called the integrand. The variable x is called the dummy variable of integra-
tion. We say a is the lower bound and b is the upper bound. The symbol dx is the measure.
We also define for a < b

) b a
@ = = d nd dx =
gL / f@yde  a / f(z) da

The signed-area bounded by y = f(x) for a < z < b is defined to be f x)dz.

The integral above is known as the Riemann-integral. Other definitions are possibleﬂ

® the Riemann-Stieltjes integral or Lesbesque are generalizations of this the basic Riemann integral. Riemann-
Stieltjes integral might be covered in some undergraduate analysis courses whereas Lesbesque’s measure theory is
typically a graduate analysis topic.
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If f is continuous on the intervals (a1, a2), (az,a3),...(ak,ar+1) and each discontinuity is a finite-jump
discontinuity then the definite integral of f on [a1,ak+1] is defined to be the sum of the integrals:

/:Hl f(x)de = jil/ajo f(z)dx.

1

Technically this leaves something out since we have only carefully defined integration over a closed interval
and here we need the concept of integration over a half-open or open interval. To be careful one has the
limit of the end points tending to the points of discontinuity. We discuss this further in Calculus IT when we
study improper integrals

In the graph of y = f(x) below I have shaded the positive signed-area green and the negative signed-area

blue for the region —4 < x < 3. The total signed-area is calculated by the definite integral and can also be
found from the sum of the three regions: 11.6 — 1.3 + 8.7 = 19.0 = fil f(x)dx.

area=11.6

signed arfee

P <@

Example 7.2.20. Suppose f(x) = sin(x). Set-up the definite integral from [0,7|. We choose R = R,, for
convenience. Note Az = w/n and the typical sample point is z; = jm/n. Thus

", " [im\ 7 T = . [jm\ 7
R, = Az = — - = de =1 — -
Jz::lsm(x]) x jz_:lsm( - > . /0 sin(z) dx nl_)rréojzlsm( - ) .

At this point, most of us would get stuck. In order to calculate the limit above we need to find some identity

to simplify sums such as
. (w) . (%) _ ((n—l)w)
sinf — | +sin{ — ) +---+sin| ——— | =7.
n n n

If you figure it out please show me.

Symmetry can help integrate. Note that by the symmetry of the sine function it is clear that foﬂ sin(x) dz =

fi)ﬂ sin(x) dz and consequently the signed area bounded by y = sin(z) on [—7, 7] is simply zero.
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7.2.4 properties of the definite integral

As we just observed a particular Riemann integral can be very difficult to calculate directly even if the
integrand is a relatively simple function. That said, there are a number of intuitive properties for the
definite integral whose proof is easier in general than the preceding specific case.

Proposition 7.2.21. algebraic properties of definite integration.

Suppose f, g are continuous on [a,b] and a < ¢ < b, & € R
6) [ U@ +o@lde= [ sexet [ o
i) | af(@)z = / ’ f(wz,
i) [  fiespt— [ s [ e

Proof: since f, g are continuous it follows f + g is likewise continuous hence f, g, f + g are all bounded on
[a,b] and consequently their definite integrals exist (the limit of the Riemann sums must converge to a real
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value). Consider then,

b - n
/ [f(a:) + ag(m)]dx = lim Z[f(:ci) + ozg(xZ)}Am]

n— oo
Lj=1

= nhﬁrr;(} Z flzr) Az + ong(a:Z)Ax}
= ILm Zf Xy, Az] + hm [Zg xy, Ax]

-7=1

/abf(x)dx—f—a/a g(x)dz

We used the linearity properties of finite sums and the linearity properties of sequential limits in the calcu-
lation above. In the case a = 1 we obtain a proof for (i.). In the case g = 0 we obtain a proof for (ii.). The
proof of (iii.) will require additional thinking. We need to think about a partition of [a, b] and split it into
two partitions, one for [a, ¢] and the other for [¢,b]. Since a < ¢ < b the value of ¢ must appear somewhere
in the partition:

To=a < 1 < 2 < -+ < z; < ¢ < xjpq < o0 < xp=a+nAx=0>.

for some j < n. Note zp = a + kAx and Az = b_T“ for k =1,2,...,n. Note that as n — oo the following
ratios hold (if z; = ¢ then these are exact, however clearly z; — ¢ as n — o0):

Aw:b—&:c—‘a: b—(%
n J n—j

these simply express the fact that the partition of [a, b] has equal length in each region. In what follows the
x; is the particular point in each partition of [a, b] close to the midpoint c:

/:f(a:) dz = lim [Zn:f ) A:c]

k=1
J

= i [3 sGpar 3 JGia
k=1 k=j+1

J
= jim [ 31060

k=1

} +plgngo{if(y?)bpc}

where z; = zj and y; = 7, for j & nj=; and we have replaced the limit of n — oo With that of
p = n — j — oo which is reasonable since j ~ ni=% cca _ pba—cta _ pb=c epce
—a b—a b—

n — oo implies n — j — oo as b > ¢ and b > a by assumption. Likewise, we replaced n — oo w1th j— o0

for the first sum. This substitution is again justified since ¢ > a and b > a thus j ~ ni=>
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implies j — oo. Finally, denote Ay = <=2 and Az = 2=¢ to obtain
J P

/ab f(@)de = lim LE: f (zZ)Az] + lim [zp: f(yl*)Ay]

=1

/:f(Z)dZ+/be(y)dy
:/:f(x)dfr—k/cbf(x)dx.

This concludes the proof of (4i7.). O

It’s interesting that what is intuitively obvious is not necessarily so intuitive to prove. Another example of
this pattern is the Jordan curve lemma from complex variables. Basically the lemma simply states that you
can divide the plane into two regions, one inside the curve and one outside the curve. The proof isn’t typically
offered until the graduate course on topology. It’s actually a technically challenging thing to prove precisely.
This is one of the reasons that rigor is so important to mathematics: what is intuitive maybe be wrong.
Historically, appeal to intuition has trapped us for centuries with wrong ideas. However, without intuition
we’d probably not advance much either. My personal belief is that for good mathematics to progress we need
many different types of mathematicians working in concert. We need visionaries to forge ahead sometimes
without proof (Edward Witten is probably the most famous example of this type currently) and then we
need careful analytical types to make sure the visionaries are not just going in circles. In this modern age it
is no longer feasible to expect all major progress be made by people like Gauss who both propose the idea
and provide the proof at levels of rigor sufficient to convince the whole mathematical community. In any
event, whether you are a math major or not, I hope this course helps you understand what mathematics is
about. By now you should be convinced it’s not just about secret formulas and operations on equations.

Proposition 7.2.22. inequalities of definite integration.

Suppose f, g are continuous on [a,b] and m, M € R,
b
(2.) if f(x) > 0 for all z € [a,b] then / f(z)dx >0,
B b
(i3.) if f(z) > g(x) for all z € [a,b] then / f(z)dz > / g(x)dx,

b
(#ii.) if m < f(x) < M for all € [a,b] then m(b—a) < / f(z)de < M(b—a).

Proof: since f, g are continuous we can be sure that the limits defining the definite integrals exist. We need
the existence of the limits in order to apply the limit laws in the arguments that follow. Begin with (i.),
assume f(x) > 0 and partition [a, b] as usual a = z,,b = z, and x; = a + Az. Sample points z} are chosen
from each subinterval [z_1,x]. Consider, for any particular n € N it is clear that:

b— n
f(@}) >0 and Az = Ta >0 = Y fz])Az >0
k=1

Consequently, R,, = > ;_, f(z})Az > 0 for all n € N hence by comparison property for sequential limits,
lim;, 00 Ry > lim,,,00(0) = 0 and (4.) follows immediately.
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To prove (ii.) construct h(z) = f(x)—g(x) and note f(x) > g(z) for all z € [a, b] implies h(x) = f(x)—g(x) >
0 for all « € [a,b]. We apply (i.) to the clearly continuous function h and obtain:

/h( Yz >0 = / )dz >0 = /f dm—/ab (x)dz >0

and (ii.) clearly follows.

Proof of (iii.) follows from observing that if f is bounded by m < f(z) < M for all x € [a,b] then
m < f(zy) < M for each z} € [a,b]. Hence,

n
S
k=1

But m, M € R so the summations on the edges are easy:

(]
=

S
k=1

E
Il
-

n < f(z}) < Mn.

NE

~
Il
-

Finally, we can multiply by Az = b_Ta to obtain

SZf(xZ)AxSMnb;J = m(b—a) < flzp)Ax < M(b— a).
k=1 k=1

b—a
n

mn

Apply the sequential limit squeeze theorem and take the limit as n — oo to find

m(b—a) < lim [Zf zk Am} < M(b—a)

n—r oo
This proves (#ii.). O

One easy fact to glean from the proof of (iii.) is the following:

Corollary 7.2.23. integral of a constant. Let m € R,

/abmdx:m(b—a).

Given that the definite integral was constructed to calculate area this result should not be surprising. Note
0 <y <mfor a <z <b describes a rectangle of width b — a and height m.

7.3 fundamental theorem of calculus

In the preceding section we detailed a careful procedure for calculating the signed area between y = f(x)
and y = 0 for a < = < b. Unless the function happened to be very simple or enjoyed some obvious
symmetry it was difficult to actually calculate the area. We can write the limits but we typically have no
way of simplifying the sum to evaluate the limit. In this section we will prove the Fundamental Theorem
of Calculus (FTC) which amazingly shows us how to calculate signed-areas without explicit simplification
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of the Riemann sum or evaluation of the limit. I begin by studying area functions. I show how the FTC
part I is seen naturally for both the rectangular and triangular area functions. These two simple cases are
discussed to help motivate why we would even expect to find such a thing as the FTC. Then we regurgitate
the standard arguments found in almost every elementary calculus text these days to prove "FTC part I”
and "FTC part I1”. Finally, I offer a constructive proof of FTC part II and I argue why FTC part I follows
intuitively.

7.3.1 area functions and FTC part I

In that discussion the endpoints a and b were given and fixed in place. We now shift gears a bit. We study
area functions in this section. The idea of an area function is simply this: if we are given a function f
then we can define an area function for f once we pick some base point a. Then A(z) will be defined to be
the signed-area bounded by y = f(¢) for a < ¢ < z. T use t in the place of = since we wish to use z in a less
general sense in the pictures that follow here.

Definition 7.3.1. area function.

Given f and a point a we define the area function of f relative to a as follows:

Aw = [ s

We say that A(z) is the signed-area bounded by f on [a,z].

We would like to look for patterns about area functions. We’ve seen already that direct calculation is dif-
ficult. However, we know two examples from geometry where the area is easily calculated without need of
calculus.

Area function of rectangle: let f(¢) = ¢ then the area bounded between ¢ = 0 and ¢ = z is simply length
(x) times height (¢). By geometry we have that A(x) = fom cdt = cx, see the picture below:

y /
) /
,,"/
s
/ T
The green region is a rectangle with /
green reg afectang /. y=A(z) = cdt = cx
area cx. The green line is the area / 0
function for y = ¢ based from zero. /’"
/
/ /!
/
/
v=c¢ /
X
/ 4 X
/
,,-//
/
/ 5
//A
y
/

If we positioned the rectangle at a <t < z then length becomes (z — a) and the height is still (¢). Therefore,
by geometry, A(z) = f; cdt = ¢(x — a) = cx — ca. Again, see the picture below where I have pictured a
particular  but I have graphed y = A(t) for many ¢ besides x. You can imagine other choices of z and you

should find the area function agrees with the area under the curve.
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The green region is a rectangle with
area c(x-a). The green line is the area
tunction for y = ¢ based at a.

g/:A(z):/rcdt:c(zfa)

Area function of triangle: I begin with a triangle formed at the origin with the t-axis and the line y = mt
and t = x. For a particular x, we have base length z and height y = mx thus the area of the triangle is given
by geometry: A(z) = foz mtdt = $ma?. I picture the function (y = mt in red) as well as the area function
(y = $mt? in green) in the picture below:

The green region is a triangle with
base length x and altitude mx.

V=mx

v 1
y=A(z) = / mtdt = —ma*
0 2

We calculate the area bounded by y = mt for a <t < x by subtracting the area of the small triangle from
0 <t < a from the area of the larger triangle 0 < t < x as pictured below. Thus from geometry we find

Az) = [Tmtdt = ma® — tma®.
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The green region has an area which is
found by subtracting the area of the little
triangle with base length a from that

of the larger triangle with base length x.

y=mx

1
y = Az) :/ mtdt = *NLL - ima

The area under a parabola could also be calculate without use of further theory. We could Work out from
the spec1al summation formulas that the area function for y = ¢* for a < t < x is given by A(z) = [ t?dt =
;’:1:3 3a (I might ask you to show this in a homework). I suspect this is beyond the scope of constructive
geometry (compass/straight-edge and paper). We should notice a pattern:
A(z) = [ cdt = cx has 4 = c.
A(z) = [ mtdt = ima? has %2 = ma.
3. A(z) = [T 2 dt = 123 has 94 = 22,

We suspect that if A(z f f(t)dt then % = f(z). Let’s examine an intuitive graphical argument for
why this is true for an arbltrary function:

the green shaded areais A(x). x
the blue shaded area is the extra A(g;) — / f(t) dt
bit of area under [x, x+dx] which a

I have labeled dA.

Formally, dA = A(z + dz) — A(z) = f(z)dz hence dA/dx = f(z). This proof made sense to you (if it
did) because you believe in Leibniz’ notation. We should offer a rigorous proof since this is one of the most
important theorems in all of calculus.
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Theorem 7.3.2. Fundamental Theorems of Calculus part I (FTC I).

Suppose f is continuous on [a,b] and x € [a, b] then,

= [ rwd= s,

Proof: let A(z) = [ f(t)dt and note that

z+h T z+h z+h
A(x+h):/ f(t)dtz/ f(t)dt+/ f(t)dt:A(x)+/ () dt

Therefore, the difference quotient for the area function is simply as follows:

A( + h /.L"Fh
"k

However, note that by continuity of f we can find bounds for f on J = [z,z+ h] (if h > 0) or J = [x + h, z]
(if h < 0). By the extreme value theorem, there exist w,v € J such that f(u) < f(z) < f(v) for all z € J.
Therefore, if h > 0, we can apply the inequality properties of definite integrals and find

x+h
@rh-ofw < [ f0a<@rh-of) - fo<g [ s )

x

If b < 0 then dividing by h reverses the inequalities hence f(v) < 3 f;Jrh f(t)dt < f(u). Finally, observe that
limy, o u = x and limy,_,o v = x. Therefore, by continuity of f, limy,_o f(u) = f(z) and limy, o f(v) = f(x).
Remember, f(u) < % f;+h f(®)dt < f(v) and apply the squeeze theorem to deduce:

pm / f(@)

oy Al 1) — Ax) _
h—0 h

Which, by definition of the derivative for A, gives % = f(z). O

Consequently,

The FTC part I is hardly a solution to the area problem. It’s just a curious formula. The FTC part II takes
this curious formula and makes it useful. It is true there are a few functions defined as area functions hence
the differentiation in the FTC I is physically interesting. However, such problems are fairly rare. You can
read about the Fresnel function in the text.
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Remark 7.3.3. a method to derive antiderivatives without guessing.

Notice that the FTC I also gives us a method to calculate antiderivatives without guessing. But, I can
only derive a few very simple antiderivatives. For example, here is a derivation of the antiderivative
of f(z) = 3. I calculate that [ 3dx = 3z + ¢ without guessing:

i 1—os -

) fluydu = lim > f(u})Au Au=(z—0)/n=2z/n
i=1

1

= lim Z 3:?-2
n

=g <
i=1

R
= lim — E 1
n—oc Tr
=1

GRS 1
= lim —n

n—+2c Tl
= lim 3

=G

= 3.

7.3.2 FTC part 11, the standard arguments

The fact that L [* f(t)dt = f(z) is just half of what we observed in our examination of the rectangular
and triangular area functions. If the area was measured away from the origin on some region a <t < x then
we can observe another pattern: the area was given by the difference of the antiderivative of the
integrand at the end points

1. f:cdt:cx—ca

2. f; mtdt = %me — %ma2

This suggests the following theorem may be true:

Theorem 7.3.4. Fundamental Theorems of Calculus part II (FTC II).

Suppose f is continuous on [a, b] and has antiderivative F then

b
/ f(x)dz = F(b) — F(a).

Proof: consider the area function based at a: A(z) = [ f(t) dt. The FTC I says that A is an antiderivative
of f. Since F is given to be another antiderivative we know that F'(z) = A’(x) = f(z) which means F' and
A differ by at most a constant ¢ € R: F(x) = A(z) + ¢. Since F and A are differentiable on [a, b] it follows
they are also continuous on [a, b] hence,

F(a) = lim F(z)= lim [A(I)Jrc]:A(a)Jrc:/af(t)dtJrc:c

r—at r—at

and
F(b) = lim F(z) = lim [A(z) +c] = A(b) + c = /b f(t)dt+c.
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Hence, F(b) — F(a) = f; f@)dt+c—c= f; f(t)dt. Of course, ¢ is just the dummy variable of integration
so we can change it to « at this point to complete the proof of the FTC part I1. O

Example 7.3.5. We return to Example |7.2.20] where we were stuck due to an incalculable summation.
We wish to calculate [ sin(z)dz. Observe that F(x) = —cos(x) has F'(z) = sin(x) hence this is a valid
antiderivative for the given integrand sin(z). Apply the FTC part II to find the area:

/OTr sin(x) dz = F(7w) — F(0) = — cos(m) + cos(0) = 2.

Obviously this is much easier than calculation from the definition of the Riemann integral.

Definition 7.3.6. evaluation notation.

We define the symbols below to denote evaluation of an expression:

In this notation the FTC part II is written as follows:

b

b
/ f(x)dx = F(x)| = F(b)— F(a).

a

7.3.3 FTC part II an intuitive constructive proof

Let me restate the theorem to begin:

FTC II: Suppose f is continuous on [a, b] and has antiderivative F' then

/ f(a)dz = F(b) — F(a).

Proof: We seek to calculate ff f(x)dx. Use the usual partition for the n-th Riemann sum of f on [a,b];
To=a,r1 =a+ Ax,...,x, =b where Azx = ”_Ta. Suppose that f has an antiderivative F' on [a,b]. Recall
the Mean Value Theorem for y = F(x) on the interval [z,,x1] tells us that there exists 7 € [z,, 1] such
that
F(ay) — F(z,) _ F(a1) — F(zo)
F, * = =
(1) T1— Zo Ax

Notice that this tells us that F'(z7)Az = F(z1) — F(z,). But, F'(z) = f(z) so we have found that
f@})Az = F(x1) — F(x,). In other words, the area under y = f(z) for z, < & < z7 is well approximated by
the difference in the antiderivative at the endpoints. Thus we choose the sample points for the n-th Riemann
sum by applying the MVT on each subinterval to select x% such that f(z})Az = F(x;) — F(z;-1). With
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this construction in mind calculate:

Mz

n—oo

/ab f(@)dz = lim f(x}‘)Ax)

3

Il
g

/’\Q/’\
ﬂ

S
Il
—

Jn ([P - Flay-)] )

(F(
= lim (F(zy,) — F(x,))
(F(
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This result clearly extends to piecewise continuous functions which have only finite jump discontinuities.
We can apply the FTC to each piece and take the sum of those results. This Theorem is amazing. We can
calculate the area under a curve based on the values of the antiderivative at the endpoints. Think about
that, if @ = 1 and b = 3 then ff f(z) dx depends only on F(3) and F(1). Doesn’t it seem intuitively likely
that what value f(2) takes should matter as well? Why don’t we have to care about F(2) ? The values of
the function at = = 2 certainly went into the calculation of the area, if we calculate a left sum we would
need to take values of the function between the endpoints. The cancellation that occurs in the proof is the

root of why my nave intuition is bogus.
Next, let me show you how to derive FTC I from FTC II El We have just proved that
b
/ f(t)dt = F(b) — F(a).
Suppose b = x and consider differentiating with respect to =z,

Zlgwmziwm_mm:ﬁ;ﬂn

thus we obtain FTC I simply by differentiating FTC II. Moreover, we can obtain a more general result

without doing much extra work:

Theorem 7.3.7. differentiation of integral with variable bounds. (FTC III for fun)

Suppose u, v are differentiable functions of  and f is continuous where it is integrated,

d v(x)
dx

F(t)dt = F(o(@) %~ fua) 2

u(x)

Proof: let f have antiderivative F' and apply FTC II at each x to obtain:

v(z)
/})ﬂwﬁzF@u»—ﬂwm>

Snote I didn’t need to use FTC I in the argument for the FTC II in this section, instead I needed only assume

that there existed an antiderivative for the given integrand
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now differentiate with respect to z and apply the chain-rule,

d @ dF dv  dF du
@ ooy F)dt = ——(u(@)) o — - (ul@)) o
But, 4 = f(x) hence g [ F(t)dt = f(u(2))§ — f(u(2)) 2. O

The examples based on FTC III are embarrassingly simple once you understand what’s happening.

Example 7.3.8.

di ’ cos(Vt) dt = cos(\/f)d(T\/E) - cos(\/g)? =|cos(vr)=—=.
T J3 T T

Example 7.3.9.

% tanh(t?) dt = tanh((z*)?) diz?

~ tanh((e")2) difz)

- = ’ 32? tanh(z°) — e* tanh(e?”). ‘

Example 7.3.10. The function Si is defined by Si(x) = fox Sir‘tﬁdt for  # 0 and Si(0) = 0. This function
arises in Electrical Engineering in the study of optics.

L p— /0 "sin(®) 5, _ | sin(@)

dx dx t T

Example 7.3.11.

2

°+3 2 .
% Vitdt = /22 + SW - sin(x)w =|2zv 22 + 3 — cos(x)+/sin(z).
sin(x)

Example 7.3.12. Suppose f is continuous on R. It follows that f has an antiderivative hence the FTC IIT
applies:

d [7* d(—zx)

5. d(z?)
L pwyau= (-0

— J@) S = () - 20/ ().
dx
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7.4 definite integration

Example 7.4.1.

! 1
2% dx = 2%
[ 7=

Example 7.4.2. Let a,b be constants,

b

= ’ cosh(b) — cosh(a). ‘

/ " inh(t) dt = cosh()

a

Example 7.4.3.

—2 —2
d
/ Y _lz|| =In|—2|—In| - 4] = In(2) - In(4) = In(1/2).
4 T _4
If we had neglected the absolute value function in the antiderivative then we would have obtained an incorrect
result. The absolute value bars are important for this integral. Note the answer is negative here because

y = 1/x is under the x-axis in the region —4 < x < —2.

Example 7.4.4.

/gdx_l Tde _2va) 20 21 [ 4
Ve VB Ve VB VB VB VB

Example 7.4.5. Let n > 0 and consider,

In(n+1)
/ % dr = eln(nJrl) o eln(n) =n4+1l-n=
1

n(n)

This is an interesting result. I've graphed a few examples of it below. Notice how as n increases the distance
between In(n) and In(n + 1) decreases, yet the exponential increases such that the bounded area still works
out to one-unit.

N

In(1) n{4) In(é) ;(G) In(7) 1

=X

8)




240 CHAPTER 7. ANTIDERIVATIVES AND THE AREA PROBLEM

7.4.1 area vs. signed-area

Example 7.4.6. Calculate the signed-area bounded by y = 3% — 3z — 6 for 0 < z < 2.

2

2
3 3
/(3x2—3m—6)dx=($3—§m2—6x) :8—5(4)—12:8—18: —10.
0 0

Here’s an illustration of the calculation (the blue part):

-

The green area is calculated by
4

4
3 3
/ (32% — 3z — 6)dx = (° — Ja® — 6x) :(6475(16)724)+10:64748+10:
2

2

Example 7.4.7. If we wanted to calculate the area bounded by y = f(x) = 322 — 3z — 6 and y = 0 for
0 <z <4 then we need to also count negative-signed-area as positive. This is nicely summarized by stating
we should integrate the absolute value of the function to obtain the area bounded between the function and the
x-axis. Generally analyzing an absolute value of a function takes some work, but given the previous example
it is clear how to break up the positive and negative cases:

4 2 4
/ |3x2—3x—6|dx:/ |32 —3x—6|dx+/ 322 — 32 — 6|dx
0 0 2

= /02[—(3:1:2 — 3z — 6)]dz + /24(3952 — 3z — 6)dx

=10+26

_[55]

Here’s a picture of the function we just integrated. You can see how the absolute value flips the negative part
of the original function up above the x-axis.
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Remark 7.4.8. absolute values and areas.

To calculate the area bounded by y = f(z) for a < x < b we may calculate

b
Area = | |f(z)|dx.

a

— s
Example 7.4.9. Calculate the area bounded by y = cos(x) on 0 < < =F.

3 3 =3 Z
/0 | cos(z)|dx = /0 cos(z)dx _/g cos(x)dx + /3; cos(x)dx
= sin(z) Ll sin(x) N + sin(z) N
0 3 5
= (sin(g) — sin(0)) — (sin(%”) - sin(g)) + (sin(%” - sin(%”))

[

7.4.2 average of a function

To calculate the average of finitely many things we can just add all the items together then divide by the
number of items. If you draw a bar chart and find the area of all the bars and then divide by the number
of bars then that gives the average. A function f(z) takes on infinitely many values on a closed interval
so we cannot just add the values, however, we can calculate the area and divide by the length. This is the
continuous extension of the averaging concept:

Definition 7.4.10. average of a function over a closed interval.

The average value of f on [a,b] is defined by

b
favg - % / j(i) dx.

—a .,

Example 7.4.11. Suppose f(x) = 423. Find the average of f on [0,2].

2

0

1 [ 1
favg:i/o 4x3dm:§x4

Example 7.4.12. Suppose f(x) = sin(x). Find the average of f on [0, 27].

2T

0

1 27
favg = E/o sin(z) de = p cos(z)
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Example 7.4.13. In the case of constant acceleration a = —g we calculated that v(t) = v, — gt where v,, g
were constants. Let’s calculate the average velocity over some time interval [ty,t2),

1 t2
Vavg = / (vo — gt) dt

to —1t1 Jy,
1 g t2
= t— Z¢?
to—t1 [wot = 5t "
1 9.2 2
= ty —t1) — Z (12—t
bty — 11 [Uo(Q 1) 2(2 1)
1 g g
e [votg 5753 — Uty + 2t§]
_ y(t2) —y(t)
to — 11

where I have used a little imagination and a recollection that y(t) = y, + vot — %t2. The result is comforting,
we find the average velocity is the average of the average velocity function.

There is a better way to calculate the last example. It will provide the first example of the next topic.

7.4.3 net-change theorem

Combining FTC I and FTC II we find a very useful result: the net-change theorem.

Theorem 7.4.14. net change theorem.

b
ifdt_

= dt = f(6) — f(a).

a

Example 7.4.15. Let v(t) be the instantaneous velocity where v(t) = % then we can calculate the average
velocity over some time interval [tq,ts],

1 t2
Vavg = / U(t) dt

to —t1 Jy,

1 2 g
_ / ay
to —t1 )y, dt

1

— () ~ (1)
_ y(t2) —y(t)
to—t;

Notice we didn’t even need to know the details of the velocity function.

We'll see more examples of like this one when we discuss infinitesimal methods in the next Chapter. Your
text also has many more examples.
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7.5 u-substitution

The integrations we have done up to this point have been elementary. Basically all we have used is lin-
earity of integration and our basic knowledge of differentiation. We made educated guesses as to what the
antiderivative was for a certain class of rather special functions. Integration requires that you look ahead
to the answer before you get there. For example, [ sin(z)dz. To reason this out we think about our basic
derivatives, we note that the derivative of cos(x) gives — sin(z) so we need to multiply our guess by -1 to
fix it. We conclude that [ sin(z)dxz = — cos(z) + c¢. The logic of this is essentially educated guessing. You
might be a little concerned at this point. Is that all we can do? Just guess? Well, no. There is more. But,
those basic guesses remain, They form the basis for all elementary integration theory.

The new idea we look at in this section is called ”u-substitution”. It amounts to the reverse chain
rule. The goal of a properly posed u-substitution is to change the given integral to a new integral which
is elementary. Typically we go from an integration in x which seems incalculable to a new integration in
u which is elementary. For the most part we will make direct substitutions, these have the form u = g(x)
for some function g however, this is not strictly speaking the only sort of substitution that can be made.
Implicitly defined substitutions such as = f(6) play a critical role in many interesting integrals, we will
deal with those more subtle integrations in a later chapter when we discuss trigonometric substitution.

Finally, I should emphasize that when we do a u-substitution we must be careful to convert each and
every part of the integral to the new variable. This includes both the integrand(f(x)) and the measure(dx)
in an indefinite integral [ f(z)dz. Or the integrand(f(z)), measure(dz) and upper and lower bounds a,b

in a definite integral f; f(x)dz. T will provide a proof of the method at the conclusion of the section for a
change of pace. Examples first this time.

7.5.1 wu-substitution in indefinite integrals

Example 7.5.1.

d d d
/xeﬁda::/ze"—u let u = 22, U or andde =
2z dx 2x
1
=3 /e“du see how all the x’s cancelled, this has to happen.
1 u
= 56 +c not done yet.
1 -2 . . o
= ieg” +c differentiate to check if in doubt.

Example 7.5.2. Let a,b be constants. If a # 0 then,

d d d
/(ax—i—b)l?’dx:/ul?’—u let u=ax +b, Y andde =2
a dx a
_ Loy
Tt T

1
= m(am +bh) e

If a =0 then clearly [(az +b)3dz = [b'3dx =
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Example 7.5.3.

- ¢ d 1
/5§dx= /5“(3du) let u = %’ d—z i and dx = 3du

5% + ¢

n(3)

5
3

Example 7.5.4.

/tan(m)dmz / ::)r;((?)d:b

—du du . . -
=/ - let u = cos(z), priai sin(z) and sin(x)dx = —du
= —In(Juf) +¢

= ’ —In(] cos(z)]) + ¢ ‘

Notice that —In|cos(z)| = In|cos(z)| ™! = In|sec(z)| hence [ tan(z)dz = In|sec(z)|+ c.

Example 7.5.5.

2 d 5 d
/idx: a let u=1+ 22, —U:Qx and 2xdr = du
14 22 u dx
— In(lul) +

=|In(1 +2?) +c.

Notice that 2> +1 > 0 for all z € R thus |2® + 1| = 22 + 1. We should only drop the absolute value bars if
we have good reason.

Example 7.5.6.

. d di di
/\3/173$dI:/%7u letuzl—?;x,—u:f?)anddl':—u
-3 dx -3
_ 3.4
= ZU C
3
= Z(1—395)%.
Example 7.5.7.
/ dx = dj let u=x + b thus du = dx
x+0b U
=ln|ul+¢

=lln|z +b| +ec
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Example 7.5.8. suppose x > 0.

/m:/xm

xdx
V1— 22

—d
= /Wg let u=1—2* thus —du/2 = xdx

-1

=|-v1-z2+ec

Notice, we start to see examples where educated guessing alone probably wouldn’t have solved it. Of course
there are numerous software programs to assist with integration these days but unless you do a bunch of
these at some point in your life you’ll never really understand what the computer is doing.

Example 7.5.9. suppose x > 0.

/M _ /udu (et w=n(x) thus du = dr/x]

T

u2+c

2

1
= iln(x)Q—&—c l1-—22+c.

Example 7.5.10.

d d
/sin(30)d9 = /sin(u)?u let w = 30 thus df = ?u

=3 cos(u) + ¢

-1
=5 cos(30) + ¢

Example 7.5.11.

sin™ dz
d = [ udu let u=sin"'(2) thus du = ——
/ v1-— 22 / (2) 1— 22
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Example 7.5.12.

1 d
/tcos(t2 + m)dt = i/cos(u)du let u =t* 4+ 7 thus tdt = %L

=3 sin(u) + ¢

1
=3 sin(t? + ) + c.

If you understand the example below then you will be able to integrate any odd power of sine or cosine.

Example 7.5.13.

/ in® (z)da — / sin?(z) sin(z)dz
- / (1 — cos? () sin(z)da

= /(1 — u?)(—du) let u = cos(z) thus du = — sin(z)dx ‘
= /(u2 — 1)du

1
= gug —u+c

=3 cos® () — cos(x) + c.

Example 7.5.14. suppose a # 0

/ dx _1 dx
22+a2 a2 §—§+1

1
= / adu let u = r thus adu = dx
a

a2 | u?2+1

1 1
= —t -
- tan (u) + ¢

1 l{x]
=| —tan —| +ec
a a

Example 7.5.15. suppose a # 0

/cos(ae“ + 3)e"dx = - /cos(u)du let u = ae® + 3 thus du/a = e*dx ‘
a

= —sin(u c
~sin(u) +

1
=|—sin(ae” 4+ 3) +c.
a
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Example 7.5.16.

/sin2 (0)do = /% [1 - sin2(9)} de by trigonmetry.

1 1

= — —_ = ‘2
2/d9 2/C%( 6)do
0 1

=371 sin(260) + c.

In the preceding example I omitted a wu-substitution because it was fairly obvious. In the next example I
demonstrate a notation which allows you to perform wu-substitution without even stating explicitly the w.
You will not find this notation in many American textbooks.

Example 7.5.17.
1 2
/4sinh2(x)dm = 4/ {2 (e” — ef”)] dz by definition of sinh(x).
= /[(e””)2 —2e%e” " 4+ (e_”)Z} dx

= /[62”” -2+ 6_2$:| dx

= /ehdx—Q/dx—l—/efhdm

_ 1 2x o o 1 —2x g0
f2/e d(2z) — 2z 2/6 d(—2x)

1 1
= 56296 — 2z — 56721 +ec.

= ’ sinh(2z) — 2z + c. ‘

Interesting, if you trust my calculation then we may deduce

4sinh?(z) = di[sinh(lv) — 2z] = 2cosh(2z) — 2
x

thus sinh?(z) = L[cosh(2x) — 1].

1
2

7.5.2 wu-substitution in definite integrals
There are two ways to do these. I expect you understand both methods.

1. Find the antiderivative via wu-substitution and then use the FTC to evaluate in terms of the given
upper and lower bounds in z. (see Example [7.5.18| below)

2. Do the u-substitution and change the bounds all at once, this means you will use the FTC and evaluate
the upper and lower bounds in u. (see Example [7.5.19| below)

I will deduct points if you write things like a definite integral is equal to an indefinite integral ( just leave
off the bounds during the u-substitution). The notation is not decorative, it is necessary and important to
use correct notation.
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Example 7.5.18. We previously calculated that [ tcos(t?+m)dt = 4 sin(t?+m)+c. We can use this together
with the FTC to calculate the following definite integral:

Vi 1 Vi
/ tcos(t? + m)dt = 5 sin(t? 4 )
0 0

1 1
5 sin(§ + ) — 5 sin(7)

-1
2.

This illustrates method (1.) we find the antiderivative off to the side then calculate the integral using the
FTC in the z-variable. Well, the t-variable here. This is a two-step process. In the next example I'll work
the same integral using method (2.). In contrast, that is a one-step process but the extra step is that you
need to change the bounds in that scheme. Generally, some problems are easier with both methods. Also,
sometimes you may be faced with an abstract question which demands you understand method 2.).

Example 7.5.19.

V3 1 [F d
/ tcos(t? + )dt = 3 / cos(u)du let u=t*+ 1 thus tdt = ?u
0 ™

1 7 3

=3 sin(u) also u(%) = g and u(0) =
1 1

=3 sin(2F) — 3 sin(7)

_|=1

12

Example 7.5.20.

92 . 3m
d d/.
/ sin(yz)dr _ / sin(u)(2du) let u = /T thus 2du = “=
472 \/E 27 ﬁ

3

= —2cos(u) also w(97%) = V972 = 31 and u(4r?) = Vin? = 21

2m
= —2cos(3m) + 2 cos(2m)

(@]

7.5.3 theory of u-substitution

In the past 20 examples we’ve seen how the technique of u-substitution works. To summarize, you take an
integrand and measure in terms of = (say g(f(z))dz) and propose a new variable v = f(x) for some function
f. Then we differentiate % = f'(z) and solve for dz = % which gives us

[t s = [ o) 57

and if our choice of u is well thought out then the expression f,((q; )) can be simplified into a nice elementary

integrable function h(u) (meaning [ h(u)du was on our list of elementary integrals). In a nutshell, that is
what we did in each example. Let’s me raise a couple questions to criticize the method:
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1. what in the world do I mean by dx = % ? This sort of division is not rigorous.

2. what if f'(z) = 07 Especially if we were doing an integration with bounds, is it permissible to have a
point in the domain of integration where the substitution seems to indicate division by zero?

Question (1.) is not too hard to answer. Let me propose the formal result as a theorem.

Theorem 7.5.21. change of variables in integration.

Suppose g is continuous on the connected interval J with endpoints f(a) and f(b) and f is differen-
d
&

tiable on a,b then
warl| = [otsen{ as
[/g u=f(z) /g dx

1.
f(®) b df
[, swdu= [ o g a

Proof: Note that g continuous indicates the existence of an antiderivative G on J. Let uw = f(x) and apply
the chain-rule to differentiate G(u),

Do) = w2 =g T — gpwnZ

At this stage we have already proved the indefinite integral substitution rule:

G(f(@) = | [ atw o

. /g(f(x))% dv = H(z) + c.
u=1 (@)

Use the result above and FTC II to see why (2.) is true:

f(®)

b
| o)L do= 1) - H@) = GUO) - 6@) = [ gl dus
a f(a)

I assumed continuity for simplicity of argument. One could prove a more general result for piecewise con-
tinuous functions. Furthermore, note we never really divided by f/(z) thus f'(x) = 0 does not rule out the

applicability of this theorem.

Example 7.5.22. Consider the following problem: calculate

27
/ eS@) cos(z) da.
0

In this case we should identify u = f(z) = sin(z) and g(u) = e*. Clearly the hypotheses of the theorem above
are met. Moreover, f(0) =sin(0) =0 and f(27) = sin(27) = 0 hence

o 2 . 0
/ esin(ac) COS(JJ) dr = / esin(m)M dr = / e du = 0.
0 0 dr 0
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For whatever reason, using the notation above seems unnatural to most people so we instead think about
substituting formulas with w into the integrand. Same calculation, but this time with our usual approach:

2 0
; d d
/ es0@) cos(z) do = / e" cos(x) u let uw = sin(z) thus dx = “
0 0 cos(x) cos(x)
0
= / e du ‘ also u(0) = sin(0) and u(27) = sin(27). ‘
0

The apparent division by zero was just a sloppy way of communicating application of the theorem for variable
change.

This phenomenon of the bounds collapsing to a point will only occur if ‘;—Z = 0 somewhere along a < x <b.
Otherwise, 2% + 0 hence u is strictly monotonic on [a, b] hence either u(a) < u(b) or u(b) > u(a).

Remark 7.5.23. geometric meaning of u-substitution.

The geometric meaning of substitution is an interesting topic that this current version of my notes
does not address. You are free to read the text on that topic and it is probable I will spend a few
minutes of lecture contemplating the geometry of u-substitution.

Well, that’s about it for the mathematics of integration this semester. I do expect you can do many
trigonometric integrals which capitalize on your knowledge of trigonometry. For example, f cos?(x) du,
J tan?(z) dr and so forth. However, we are necessarily limited this semester. Many integrals I cannot ask
simply because we have yet to cover integration by parts or trigonometric substitution or partial fractions.
Those techniques are covered in Calculus II. Shortcomings aside, we can solve a great variety of applied
problems with tools discovered thus far. This is the focus of the remainder of this course: how can we apply
integration to "real world” problems?



Chapter 8

applications of integral calculus

Broadly speaking, the infinitesimal method is the idea of formulating models at an infinitesimal level and then
using differentiation and /or integration to decide instantaneous rates of change or total amounts accumulated.
For the both the derivative and the integral the same pattern is seen as we transition from the finite model
to the continuous model: we replace A with d to indicate finite changes becoming infinitesimal changes:

with the instantaneous rate of change v = %. As

1. we replace the average rate of change v4yg = ﬁ—f

At — 0 we have At — dt and correspondingly As — ds.

As ds
Vavg = E —_— v = E

2. as a finite sum of n items has n — oo the pieces of the sum become smaller and smaller, ideally in the
limit each element in the sum is ”infinitesimal”.

n b
A, = Zf(%:)ASC —S s A= / f(x)dx
=1 a

the integral is often called a continuous sum.

We have established the precise mathematical meaning of % and fab f(x) dz in previous chapters. We know
that the comments above speak to a conceptual process. A finite sum is not an integral and an average
rate of change is not an instantaneous rate of change. Often your first exposure to an application is at the
level of averages, for example v = s/t the speed is the distance over the time. But, this is too crude for all
but the most boring of physical examples so we insist that the basic quantity to study is v = ds/dt. We
replace the average quantities with corresponding infinitesimals and this results in a precise model for the
system. To make the continuum limit we ask what average laws should hold for infinitesimal quantities?
What is the logical way to set up the problem. Much of this chapter is about trying to answer these questions.

To begin we reexamine the net-change theorem in view of the conceptual clarity the infinitesimal method
offers. Infinitesimals provide a notation to quickly summarize a limiting process without need of even stating
the process. If you need to see the process I invite you to read the text.

In this chapter we return to the problem of calculating the area of some region. In contrast to signed area,
this will really be the area which is positive. We will find that infinitesimal arguments provide an efficient
shorthand for writing limiting processes. Almost every problem is begun by drawing a graph of the region
and a typical approximating rectangle. Then we find the net area by adding up all the infinitesimal areas.

251
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This ”adding up” is integration, we should think of integration as a continuous sum.

Once the area problem is settled we turn to the task of calculating the volumes of solids which possess a
certain regularity. If a solid is such that the cross-sectional area is of the same type at each value of the axis
perpendicular to the cross-section then we can add up the volume of each slice and get the total volume. For
example, a sphere has a cross-sections which are disks if we use a diameter as an axis. A tetrahedron has
triangular cross-sections relative to the axis which extends perpendicularly from one its faces to an opposing
vertex. A solid of revolution has cross-sections which are disks or washers relative to the axis of revolution.
Of course, you should look at the pictures in this chapter before you get too worried about the meaning of
this paragraph. Integration provides the technology needed to add together all the tiny volumes.

Finally, I issue a word of caution. Infinitesimals are not real numbers. They are merely a notation to indicate
a precise mathematical construction which we have spend months to develop with care. Remember this as
you use them.

8.1 a brief tour of infinitesimal methods

Concept: average concepts still hold true at the infinitesimal level. Integration then extends these micro-
scopic arguments to macroscopic rules. Often we can find a relation that holds true over an instant dt of
time or a little displacement dx etc...

Example 8.1.1. For example, the displacement for a particle moving with velocity v during a time dt is
stmply the product of velocity and time; dy = vdt. This makes sense because the velocities v(t) and v(t + dt)
are equal. To be more precise I should say they are equal in the limit that dt — 0. During an instant of time
the velocity is constant so we can use the constant velocity formula.

y(t) t
dy =vdt = ds = / v(T)dr
0

Yo

= yt) =9 +/0 v(T)dT.

We call y(t) the position at time t. The displacement during the time interval [0,t] is the net-change in
position; y(t) —yo. If we wanted to know the distance traveled then we need to do a different calculation since
neither the displacement nor the position reveal the distance traveled. Imagine a particle oscillating back and
forth 20 times. You could have a distance traveled much larger than the displacement. Distance traveled is
always positive, let’s denote distance by s:

s(t) t
ds = |v|dt = / ds = / |v(T)|dT
So 0

= s(t) = 80+/0 |v(T)|dT.

The absolute value signs insure we are calculating distance rather than displacement, the absolute value of
the wvelocity is called the speed. Often I set s, = 0. The acceleration a = %’ thus dv = adt and we may
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obtain the velocity from integration the acceleration from time zero to time t,

v(t) t
dv=adt = / dv = / a(t)dr
Vo 0

= u(t)=v, + /Ot a(T)dr.

We explore the meaning of the constructions in this example in depth in the physics course. It’s much more
fun once we have a few more dimensions to explore.

Suppose that a(t) = sin(t) for some object travelling in the x-direction such that the object is initially moving
right at 1m/s and has an initial position x = 3m. We can calculate the position, velocity, speed and distance
traveled by integration.

v(t) t
dv = sin(t) dt = / dv = / sin(7)dr
1 0
¢
= o(t)— 1= —cos(T)

0

= ’v(t) =2 — cos(t) ‘

To calculate speed we simply take absolute value; speed = |v(t)| = |2 — cos(t)|. Next, integrate the velocity to
find position,

z(t) t

dx =wvdt = / dx = / (2 — cos(7))dr
3 0

¢

:x@—h(w—mm)

= |o(t) =3+ 2t —sin(t).|

0

Distance traveled is curiously equal to the displacement in this example since |v(t)| = v(t) (can you see why
I know the velocity is positive for this example?). If I had given an initial velocity of v, = 0.5m/s then the
speed would differ from the wvelocity. In invite the reader to rework this example for the case x, = 3 and
v, = 0.5.
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Remark 8.1.2.

Let me comment on the mathematics used in the preceding example. The net-change theorem states:

b g
| L da =10 - r@.

The technique of u-substitution tell us the same result: just substitute u = f to see,

b4 f(b)
[ i =0~ @

Generically, if we have g—f = g then we can solve to obtain df = g(z)dz. Then you can integrate

this, but to be fair we have to match the bounds to the variables:

J(®)

df = g(x)dz = /f df = /abg(ac) dx

(a)

the bounds on the LHS and RHS should correspond in the way that the change of variables theorem
demands. These observations give us a new way to solve some of the problems we previously solved
by antidifferentiation followed by algebra to fit the ”¢”. Integration from time zero to time ¢ naturally
encodes initial conditions into the solution for time ¢. The downside is that to be careful we have to
take care not to confuse the time ¢ with the dummy variable of integration 7.

Example 8.1.3. Another example is current I = dQ/dt. If we wish to calculate the net charge that has
flowed from time zero to time t then we simply integrate the current,

_dQ

I =
dt

dQ = I dt

Q) t
= dQ:/ I(r)dr
Qo 0

t

QW) =0, + /0 I(7)dr.

Example 8.1.4. This idea also applies to things which are not from some time-rate of change. For example,
the work done by a constant force F' over a distance x is given by the formula W = Fx. Now this formula is
only for constant forces which act in the direction of the displacement. What would we do if the force was a
function of position? Then we could not just use the formula since the force is not constant. However, if we
look at F(x) and F(x+dx) then those forces are equal in the limit that dx — 0. So we can conclude that the
simple work equation holds at the infinitesimal level; the work dW done by a force F(x) over a displacement
dzx will be AW = F(z)dx. If the force does work from x = a to x = b then the net work done will be the sum
of all the infinitesimal works dW , in other words,

W/dW/abF(x)dx.

For example, if we have the spring force then F(x) = kx for some constant k called the stiffness”,

b 1 1
W:/dW:/ kxdx = =kb® — Zka?.
" 2 2
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Example 8.1.5. Another application is hydrostatic force. The force on a dam is due to water pressure. The
definition of pressure is that it is force per unit area, this gives us

P= A

Now this only makes sense so long as the same force is applied over the whole area. We cannot just apply
this equation to the force due to the water pressure on a dam. The pressure at the bottom of the dam is
larger than that at the top. In fact it is known that P = pgy, it is proportional to the depth y. Different
depths give different pressures, hopefully this is a familiar fact to everyone. So, if we wish to calculate the
net-force due to pressure (this is called the ”hydrostatic force”) then we should consider horizontal strips of
area dA = l(y)dy where l(y) is the width of the dam at depth y. These will have the same pressure all along
them so the equation makes sense to apply to the strip, we have

P(y) = pgy = A

The little force dF' is due to the pressure P(y) acting on dA. Then

Y2

dF = pgydA = pgyl(y)dy = F= / pgyl(y)dy
Y

1

Generally the challenging part of these dam examples is finding the actual function for l as function of y.
The simplest example is a rectangular dam of constant width L and depth h

h
1
dF' = pgydA = pgyLdy = F = pgL / ydy = inghQ = PriddieLh.
0

Where Ppiddie = pg%. Effectively, it is as if we had the total area of the dam A = Lh subject to the pressure
at the midpoint of the dam. For a triangular or semicircular dam the effective pressure might occur lower or
higher on the dam.

Example 8.1.6. What is the arclength of a curve y = f(x) for a <z < b? We cannot just calculate the
distance between (a, f(a)) and (b, f(b) since the curve is probably not a line. However, if we calculate the
little distance ds between (z, f(x)) and (x + dx, f(x + dx)) then it stands to reason we can approximate the
function with its tangent line so dy = f'(x)dx and the distance formula yields:

/ 2
ds = +/dz? + dy? = 1—&—% dx

Consider then y = VRZ —x2 for 0 < z < R. Calculate % = \/% hence the arclenth of this curve is

found by integrating:

R 2 R R R
r R R TR
5= 1+7dm:/ 765&3:/ ———_d(Z)=Rsin (& =,
/0 m o VRZ_a2 o VIo(o2 (%) (R>0 5

Notice that the curve we just considered has equation y?> = R? — 22 or x® +y? = R2. In fact, it was precisely

the quarter of the circle of radius R which is in quadrant I. To find the total arclenth of the circle we simply
multiply by 4; . With calculus we can derive the formula for the circumference of a circle.
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Example 8.1.7. What is the area of a circle of radius R? Notice we can cut a circle into a bunch of circular
strips. If the strip from radius v to r +dr has area dA then we can calculate that area from imagining taking
the strip and laying it straight to make a rectangular strip of width dr and length 27r (using the last example).
Hence, dA = 2nrdr. We have to add up the area of each strip all the way from r =0 up to r = R.
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We can calculate the area of a circle without integral calculus. We just need trigonometry and a few basic
limit theorems:

- sided Fdf‘ 9,;:;/9 mside o cirele of radius .
a‘ﬁe twie A=Y (Sguee )
Db the 0¥ case

T iflwsfrate
°"Jﬂ':3(°<’-'?{°35"7)‘ we e r-u.'—ué‘ri/(?f

and ke Nn—=> 20 +» Fae P area qfcircdn.)

2

&= =—=

]
L€+S Vie +rl n Dﬂ\&'l'fq.%_
a, -\-.1?'.(“1 Sub rim.&u. Teed o £0d

e

e h uﬁu\% Koand @,
= 2Rsin(%%)
‘= Reas(92)

= L bh = R¥sin(%4) cos(%)

Tow Yau should  Jenow  Sin (?lﬁ‘) = 25n f cos @ Fhur

A = LR*sio(e)

Lete werte H4ha  orea of o { - gon tnserbed
.‘ne M\' tiecle of rodiar " 43““" 3

A, = ne £Rsin(e) = [287sin(3E) = 4]

For faibe n we aproximae e arca of
¥ —3 o9 Fhir be comer an axoct account 9—

A"" h"‘:’m (-__ s"ﬂ(z,rl
78 Jim (—S?ﬁiﬂ)

Cufc:c &g\.z( ays
A

\2 rm:/n; o

n

i

nN—yoa
- Wzt%* ( %@] =(r7?]

I hope this selection of examples is enough for you to begin to appreciate the beauty of the infinitesimal
formalism. I wanted you to understand that the remainder of the chapter is useful beyond the problems of
area and volume. Similar thinking is needed to set-up a host of interesting applied problems
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8.2 area

Example 8.2.1. .

C,:;m. gicler o %D.hﬂlfzﬂ Emm;'-n 4‘5 he_%):’l" ) ‘PI"\I'.’j
%g Bl es buurd-ul' b x-——&,x=b and £ (=) and 9(x)
wihere Filx) > ax) Re ol x on [ﬂ-, b]. A pichare :l'\¢||:;

‘?‘ e Sam ‘FIH\J +he A An,
by, divieking Hhe aren vp
into Mll.a ey 'mi:'mh.rimnd
Ce etn  We've drawn
o -’n’p'u:n.'l b ane Yow cen
" see ' hvﬁH is #&J-ﬁl&-}_,
i hes oen AR, = [fix)-90x)]sx,

A hesn = fim 3 (F000- 3¢ ax

hi—spg 1%

But i e precigels +ha 'm-lea?p.ﬂ of fix)- "-'_’I-(x]

\ﬁu - g;ﬁfw - arx})de

» Tethnic we Sheuld Btﬁm m.ﬂ Frnbi&ms wrkh wﬁwmmﬂb
abeud ‘i";:a!anl‘ AR, and 50 on  these are Lavke . Then
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n-mdungﬂw we pags fo tha limit n—o0 and £
e ‘z be comesr am E and AX becmes o dx, For
oll ca Jowlodonel puspeses e Fiest steps with A"% “f?
unécesrara . e cun  molea Fhese afammwv‘f.s' L

infinitesimady Ao i besinnioy ad T will Foms

fAevs  orm,

The general strategy is to draw a picture to get a handle on the problem, then find the formula for the area
dA of a typical infinitesimal rectangle and then add all the little areas together by integrating.
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Example 8.2.2. .

?tv.-'si‘uf u;ma. t;ﬁjgn.r:;!ﬁ;m.f m‘amnmu'-ﬁ,
dx

4 > dh = (Fe0- ax)) dx
— —— e
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]

Example 8.2.3. .
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Example 8.2.4. .

[ Fod ocea bowaded by = x* it y= 7]
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2 ] b VR = x* = heigb
— 5 —
de = wiskih

(n  x
The area of he Ky rechagl s, dA = (4% - x*)dx
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Example 8.2.5. .

ﬂfg; &-una'e.af 52 Y=x and y=)€’? it whed 7

Vi Vex ’ eTleed 4o find ntersection poiats
rox 'h:u e Cen F;"F'Pf? &M ?:
X = x°
e et z -
| = (- x*dx| b
._L.___(__..L_JI W= ar M=
X The poinh of indersechion
(o) —NIF e are (0,0) ard ().

1]
—
] -
=
1
|
x‘lﬂ

Example 8.2.6. .

X= 2=Y% Tt swith
X ==Y roley of X Y togee
e greph Shaold be

r‘nﬁm and sidewans posabela .

M Pouds of indersection follew From X EX'I;
4-4-2=0 o
G -2)(9+1)=0 = Y=2%9Y=-|

df = (%a - % )d%

= —u?_ (-4) d' 2 2
g ((szua_ﬂzm-- s A= Sizﬂ-w’}d%[zwé“a‘ﬁ’l
-l

(E.Up..lun*[in udths

F
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Example 8.2.7. .

i

("51‘ o Léa\,lcb(
(|.+-{_x' = L= éjdx
(dx - $Xx)dx

n

Pqi:\ﬂts of atersection £ llowed Fram “35 A "31. bﬂﬂ-ﬂ-ﬂ-ﬂ."

l+4x = 1+ %

X = e

3x =x

Q% = x* Cannot é’\u{- divida by X

2 %am lese ]N!:wm‘un tlla d.-r:ﬁé_
¥ =9x = 0 Hhat. {xmigh'i*sg -.'HMJ
X(x-49)=o0

:.- X=0 or K.wq_
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Example 8.2.8. .

L Find area i'::f;d'rr.-f’.?_;_‘_yt:)f and 2V =_><-':“ﬂ
Tobw F#hed of intecrechisn X=x = y* = 2y, 3
® Yi2y-3= 0
= (V'EJI':V+J] =0
S e ey
= peintt of iabersechan are
(%.3) and (1,-1)

~its beter 4o wse
heri 2ordad strips becawe
we dedt need 4o breake
Up inte Cares. T we

a5 ured vertieod cfrips i+

Wewld be +ricky becowae

da = (zwg-w)d}’ 0ExS | i Jif?mda%m

' VEx€ % fur verticel sheips

3
Thus A E(zv +3-y2)dy
=t

23

(5o -7
(QH A= %(2?})"{’!-'3+-3!-)
1+ % =[34 = 0.¢7

1

Example 8.2.9. .

Y4 . &
: dA= (% -9,)dx
dx = (" -snx) ) dx
- x=T ‘Therc&ref
m 3
asinty A= K (:E‘x— nnfx'.i)dx
5 ° Wz Ve
ity - = - - =2

> mfetees]]
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Example 8.2.10. .

CHAPTER 8. APPLICATIONS OF INTEGRAL CALCULUS

(_ Lind area é;mo{:«f 53 Y= Sin(x) and Y=L andx=0 el =TT

. . 5
{dﬁ = (i-_-slnfxl)dk ) I\':': sin (x)

Weotin +hed sin (') = sin (w/g} =% and b.a LY

S remnery

of Sinl(x) shouh x=Myp He clear sn(5%) =Yz,

This reveas the interception points wre (W4, %2) and (Y V)
Clearky we rued fo divice wvp inte cases @j@w@’

T/, 9% L s .
[ s -snsn)ax o [ (sinoa-g)dx + [ G -sino)dx
L7

-] 'iﬂ:;;,l
IE Y _ ur "% "”'
= +cﬂs£x}}n -3 -m(u}|% + v ool
X o B_ )8 o fF
- R e %*T’*fi;--i-%-[d-izi

-2
e t2lr=-2
2(43-1)- Ty,
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Example 8.2.11. .

beea oA Hfpee Stadord Ellipre Ellipse in fae Gouel
b .}_(: + .}.:’ = ] ok i |
il K SO LS

o yet Wﬁ_}‘ = hﬂa%l--t of boy = 254"3;-\}’

dff = 241 -G dx
A= (o AT

5 i"‘m sos6d®
- ?nb f ca:'&i&
‘—'Eﬂ.b S}Gq-mz@)da

T

. alime

= ab [8 K ﬂ'}-ﬁl% W
! (ﬂfz_+-,;’s\|‘n£oﬂ])—(-7ﬁ +%:I“\§.'.:'J)J
:

ﬂuﬁ'u oham 0= b =T Wgab A =

Xx= asin® X=0 9 @e %
dax = ncsodB K=o g ==Ty

1]

Yr* whih ic amf'-

!ln_gu.l:s"an-' Wl‘ﬂi s the qu ﬂr -H-n'l e-ufp& n Pnlw foerJim{-cg?

_X__' 5 lz_ = 1 = Y ees 0 "'T",ji':‘e = 1
o' Ls a¥ b :
l"’@u.r'ﬁ + “T: s'ln'*e} = q

" T %7

We  can 13,,‘,, ndia  when a=b we o F=a  avery

cengible eg."‘ Ar o circl .\f +ha ﬂff'ar'n.
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Example 8.2.12. .

~1&H %dm widdh of & slie in @ +r{uﬂ% g
fﬁh"'un a{' Lun(l»'ﬂ'\ W end hﬁﬁ&lﬁb e AECEY

Wy clesr thab e Hhic shoge Yhat f varies

A
7 ok f=mY +b . Mdihmuuta_

Vneac La with Y, So
WQ kﬂhu '
V=0 = l=w=mpe+b - l'b_cw_j

y=h ﬁi:ﬁ :mh-l-[_.u ,‘,F:"WA.

o —

ol s e ) R:'J#w@,

We see Hah dA= fdy = ('-‘ﬁ-?+lﬂjd‘f Hhus

ki
A= [ (gyeway

R BT O h
(.z.rv - Wy

= —%wh + Wwh

s Lwh - 1 foure) (hesght)




8.2. AREA 067

Example 8.2.13. .

g, = (-x - (x*2) ) dx (X<o]
= (2 -x - x")dx

dh, = (X - fx’-z])dx (x:-o)
= (2 +x-x%)dx

Poinds of intersection

2 z = it
x> X = X*-2 D x-x-2 = (x-2)(xH)=0
i £ mntee COaF) Mk ot
becasas X'#O =
X<0 —X =X°-2 = x%ax-z = (x+2)(¥~1) =0
= et %fa-u o-b‘r!'\ﬁ.i
il el D S e
o 2

Example 8.2.14. .
& éﬂund.'uf #:x? and -{ﬂg
. (m-h Y=~£txl ?x‘ b (L1, and Hs x-axis
Recall we wrife As %ny-?j A V=F) of (4,17%))
jnc;,men-! (provided 7<) exisls)
y= fla) + fla (X-a)
ad £)=2x 2 F0)=2 the

we hewve a=|
ﬁm“:’= b 2lx-1) = 2x=1 =y  (faged fac)
4 da= (X - % )d%
= (39+3- 17 )d%
y=2x~|
%=2(#1) Do of inkemsechion :
2x~-| = x*

2z
x*-2x+1= (X-1) =0
LoX=1 = Y=| of tusedin
T T Np‘--‘ih‘!ﬁ&-’(’inh{ﬂ”
i Tkmiu:, r\-vl'irua o=%=| fr area,
—;) 1
* A= ($9r4-T8)dy
o /
i : : X
ih"‘“—*"; =(F§1*%9_%gé/=_§‘+ziﬂ _@
[+

wip
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8.3 volume

Example 8.3.1. .

A=Tb"
dv = A d¥ = b d%

v = (dv = gowws [ =v)

Thig s +a slmplzﬂ case, the crass- section
i ashnt u.\mbé m’tubrﬁ\-.-an oAl

Example 8.3.2. .
A=Tets WHE) (e onpumet belew)

—— 4
-~ A -
T T Td}'

Nota +at r sheuld depend
lineulnﬁ, o x thus rm =m3% +b.

r{%to) =0 E clear 'Fr'am
F(z=h) = pichare,

Thes 0=k end: biamh. - D= %h

z

The volurma of ench -|'m slice is found o be d"‘v’ EE- % d}
Se tha doh) veluma n: found 53 tdllm% these up

Vin g:%ﬁ;%‘as 3% RN T
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Example 8.3.3. .

l Eind 1Hr_vﬂ.lf=fffr_n:¢ & Sfﬁffc af rﬂr'u;rﬂ
AT e,

Slica ay w

F'P-J'tmﬂh {X'}I‘j-PhMr
rés yi= p* T
rf= RE-y?
) A=Tr®= R y?)

dV = AdY = T (rR:y?)dy

W£ ‘HI']CJ‘? ﬁﬁg “i.l ‘I‘LM Uﬂ.‘lum 5 5 .ﬂ'.r_:r:-; -H’; -fume
of the d'r:k.r 'Jfrum Y= -® up ﬁn ?:z g ey 2
r

vV = j’ﬂ'(ﬁ' Y2 )dy

= 2 Ky
TT{R Y -4y ’_E
- ¥ | 1
= T\'I_-(Rﬁql?’J-(-HH@R’)]
R T
= éi-n*ﬁ’ = Ve
Example 8.3.4. .
ddj fta” 5‘3’ 'ﬂgxzfj
y T e | L dy %
abosh *ﬁe iﬂ-wﬁs o bl -~ ik
X=9%=0;, *=
e
s '*dfa dv = ‘ri'(l'(*'f'i )y )de
=T (1- ¥ )d¥
'. 1=r, :
Avea of annvlw g o= 5 T(1-9")d%
A= 3 % 1 N
dvﬁ%as =T (4-3Y,

T+ = J%E’“f'”i]

]
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Example 8.3.5. .

Hemarlke : for manmy shepes +he _-‘Enaﬁ’ﬁ of a side (or
He rodias) veries linearly as we go up +Ha shage.

Sa of we lknow the ffﬁﬂ of #a ride {:r‘ rad"p?lr) +ar
Fue siices we can frad +ha b of #ha picde (Ff r‘n.ddi-‘l-*f_.l

-!:nr nny sliee, Aa example Fo elgar uo wihed I-mcua/

find weloma of pyvamid of hoight b with +n’mbul-r boge with gida a,

whats Ha area
T ARY | of e trungle ?
look o Yha
*,}T“ prohees do Sen
. =Li(HE)=5¢
| gwhia TR 5 ziLT ) T
% 1 P
oa Hhig 4y ’ﬁ

side ¥
</ I\
The volume From +he slic wonld be dV = Ady =Ty,
Tlofia Het X ic o fonction of Y. Wor :?nlpsrv'kﬂ'.l"'rgl Iy
is @ iin_ﬁl_i" Loneton of Y,
Y=0 = =0 (a thabose)
Y=h = =0 (o ¥ahp) :
Bl uwe Wrow }\[f:IEmY'.-b. Plu% w dha &_ﬁ*ﬂj
1{h‘]=ﬂ '=-mh1-h. *M':-E/fh
fo) =0 =mE+b = a=b =» m="%h

Thas IO =(2)Y+ a =5 (h-Y)
h
V= l'gfd?: F‘% %{h‘-zww‘)d’f

o
1 h h
= Sty w3y = Lah
(WY W, =
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Example 8.3.6. .

Fird velame of In."ilﬂ; u‘ﬁmJ ﬂla m’.ﬁ‘ﬁﬂa The feaar'aﬁ
blnnJ‘J 53 Y: x: ﬂﬂ"‘ }Jz=>( ﬂéﬂb\'f' 'ﬁ#‘ M oL,

infersechion Piir&r hawve "*..f'!‘__ y’
T W = (xl"" xY

2 X-x= x(xXi)=0 ﬁj(’:g.r .

o x: « i i o '+*P;£IJ we her
in tha voluma Ph:.vlufgd.
G = %"
Gud =
tha ores of Hhe onnnlws is
ven by A= T(RL-6) = T(x=xY)
Fhws e velumae of a\‘lniﬂ:!icd wisnfher s,
dv= TF(X"'X“}GIX
Which alews us 4v At dohd velwee V)

V = g. T(x- x*) dx

= T(x- +x°|
- (44
= [T
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Example 8.3.7. .

brand regon by Y='k  ¥Y=0 X=l,x23 ond rohk acwnm Y=<

* Sind s Vohumae d!
47

4k

(G - &7 )dx
W (Q+3) - 1)
(14 %+ A -1)dX

= T ( 5 *5a)dn

V- (2. &) - (-] =

dv

1

n

"

A X
=(zrrﬂnw-J}!3
= 2mh(3) - T+

=Eﬂ';(ﬁnf3}+ ‘ﬁi}}

Q&w#l% s SG“J leebes :LH'.I.J

i

5 'kft_l



8.3. VOLUME 973

Example 8.3.8.

Fh"&l anul‘nt O‘F (-8 donu‘t
‘\'f'nrusv A ms‘t‘n_ L-E* %E 'T\”N l’\k\l’! b‘l% I‘Dﬁdw\f R nnq} 1-'-%
2R

rodus . -

We ron gee Haak Fhis shepe con be olrtained Iﬂa, rototin
o citele of codius O contered oX X = R arosnd Hhe

- oxis. Side view of . .
\f v e » 83 F'ﬁlmﬂ.'m 4.8

C, = R-1= R-Ja&
X, = Rel= RefTF
Find the welume of o +-,|pir.u.ﬂ w-;herj
dV = Tridy- W dy
= M[(R+2) (n 2 ]y
= & [+ 2r0+ 49 - (R- 2re+ X)] 9Y
= YTR)dY
= 4T R Y*-F dY Q’mﬁ" seq '::;"ug:t exch Y From Y= -0 )
V= EWRW dy

ly 2l
i%'-ma (oot 8] aces 840

Y= aging Y=o — @= T ki
a4 = o ces 4B Yeoo — g =T
e ~[7taf = oces &

T
y =(1+ g 28)d@ ———
4T Ro. S.'I' Z{ } K’Rtmriﬂ, irﬁu.-h'!l!“ "H.ﬂ: J

‘A
n (il =EFRERV) hvoemed) S
hig o
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Example 8.3.9. we calculate the volume by the method of washers.

Finp Vowume G _Sou1? RAMEy 8y RemrinG REGion Retinep
T

VAR ND Y = ANig

] (A
dv 11’[_-;:" Jdy ¥
Fhe dY sugg:“ A
e must
wd G af Fumction
of Y.__ Y R %

Example 8.3.10. same as the previous example, but this time we calculate by the method of cylindrical
shells.

_usies Gy lindeiced Shells” dx
1

{r,0)

dv: ‘Z‘T”)C{x-x )ax

| ] p ALY a‘F infinl *"'-""“‘-l
S 'ZT["X(K‘ <) dx r_ﬁ'l indler \:H‘-‘i"'-'ﬁ"'l"l'L
B

"

2n % - x;{FL:
aw ] T )

L]
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Example 8.3.11. .

Rt %= :--qz abech the Lg”ﬂ,l
o Hod X =g-g'=9(1-¢)
- ?ﬁ:mg X» 0 when 4=0or 4=/
i S0 ) aregh: Remnsber Hha ront
= %':H chmp]r\ is 3-d buh, T usw
EI'\ . a,w’( drauvs “he 'ﬂﬂf:zohana-{-m
G . = e J hwrna i S [}(ta}u? ang . Thet

iJlr.“-‘mfe u 3""““&,‘“ +o ‘FL%NE owb  huw
Ga = X =4y G deponds on X d%,

e Jv=T(e-47)d
7”"3 Valuwe & & ) ¢

=T (4 -24"+4")d%

<

3‘1’1’(%’4%’%“)&%
w (3o e,

- - T=
W (5-pog) = M(2552E) = | L = oes

Example 8.3.12. Note, we also include the boundary y =1,

¢ = Suc(x) otatn rhic {
&tﬂ "J;“T";x' 'f} {;tra..wl' xu-axr.r ﬂ.-ﬁ.-.:l Valuma |
> % dv =T (Cp-0G )dx

e B = T (sec’tx)=1) dX

'-: e comns of Spl'ﬁ r Can Cﬂ..[t‘-m!.n.t
1 e ""Sl and mﬁﬂa b‘?:-

V = ES T ((sec®) - 1) dx

il

an ( n(x) - x]

[ 'I':mfl'll- f‘hn:’a]—g']]
PW{ﬁnh]q) = 3_502J

"
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Example 8.3.13. .

heph o
shage is b . S depends incarl 4

':.!'dﬁ s(e)=m@)+b =b = R
S{h)= mh+R=r
é = wh = =R .*.m=ﬂ

s os=(Fhlyar, )
| o e,
ny— av

= s’dy
A =TS = T[(5E)esR] dy
=T [ (I’_‘T&jzﬁﬂ 29(1';'3)'3 - Fl']d&L
h
V= o (G e 2(5h)e < R0

n
—
w|=
——
:r"".1
e =
[}
=
W
+
=
—_—
t ]
o
i S
2
™
-+
=
]
o
S

n

Lk [(r- R) + 331‘}

—;*?Th[ r2-2Rr+ R%+ BRP]

f{;rhl_r2+ Are R = V]
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Example 8.3.14. .

S deperdr linew
il vt

sS=mé+ B
Frem pic-f'nf.g:
sle) =6
s{h)=aqa

Contnui S(e)=m(s)+8 = B8=b
v S(M=m(h)+ b = & J( %E(ﬂﬁ)%"*b]

m = -‘l;—{!
‘ﬂe L ek, u‘f +ha :irur.r-.mcrﬁhn s ("LJ.«:-F A= 52 _s_.‘?wn-.f) ‘;‘ﬁw
dv = s%d% = [mg+&]§}=[m‘$*+?meg + 5%y

ﬂcrm‘;re
S
L I[W’%** iy +6%]d¢ T 4
: 297 4 Zmb 4™ c‘—":ﬁt/!i i 38 ® hea
m + ST
= (-? %-z ] T cowld &ur{- \un.-f,!-
= ‘;;-?ﬂzﬁ?qt mb h° + b%h M inrtead,

L2+ (SE)bhT+ 67
h( #-6) + @G-}t +4)
$h( 0]+ 3«5)

gh( a%-2b +5"+32a4)

= [$h (a*+ab+67)]

]
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Example 8.3.15. .

=
R

= (A= ¢-r%)dy Nebu thed

=T ( R=r*-4*)dy ~JREm s g Rt

twe add voline a_f[
Wosher ia Thu Fargs

= G, s monets o
‘5?1 'Tz b ﬁ_‘{-t{n{gﬁr &em
V= 2| TRty Sl
o ard devkle it.
=

- 21‘-(@2_{..)..}_ 'Er' %a}

= 2T (e - (7))
= 2#( (e r)’s - .?g(;?ary;s)
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Vet wham =0 wegﬂ‘f’ V”gi?r???
which £ o gﬁad’ 7‘41.!}';-69,
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Example 8.3.16. .

Mehta [9=X abausix =2, Mok, X =49% 2 x'= %
B=Ix = X(x=-1) =0
S x=o § X=| !
F Xa = & (inhredi’an gts. | -
= % %= 9"
Lp
e

o ™ ZmX%, = 2-9
G »2-% = 2-%

T(rh-n7)d%

n [(z-9)"- (2-4)"]d%

TTI)(-'-I‘&'Jr ka"'-(;(—w;; *‘@f:}]d%—

w[ Y- 5¢ e ualdy

BN = glwf‘ﬁ"ﬁ‘s'ﬂ'é:ld‘& =1T[g'v'35- ,?tg'ﬂgg',

i
2 g

o
<
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Chapter 9

Integration Techniques

In this chapter it is assumed you have a complete and working knowledge of both basic antidifferentiation
theory and the Fundamental Theorems of Calculus parts I and II. You must know the basic integrals as a
reflex, if you have to look them up then you are not ready to start this Chapter. In addition, it is assumed
you have mastered all the elementary u-substitutions and are ready, willing and able to solve definite and
indefinite integrals which require u-subsitution. If this is not the case then you need to review.

9.1 integration by parts (IBP)

I'm breaking from tradition a little here. I've decided to use U and V as opposed to u and v for integration
by parts. Of course you could use other letters if you don’t like these.

Theorem 9.1.1. integration by parts.

Suppose that U,V are differentiable functions on some connected subset J C R. Then,

(1 )/U%Vd _uv - /V—dm

Moreover, if a,b € J then

/U—d;v— Ub)V(b) — /V —dx

Notice that is more common to use the following notation to put this theorem into practice:

/UdV:UV—/VdU.

here we mean for the expressions to be evaluated at x € J once the integrations are complete.

Proof: Consider that by linearity of differentiation we find

d au d d au
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The rightmost term simplifies to V% by the definition of the indefinite integral and the other term gives
LUV] =490V 4 U9Y by the product rule. Thus,
au dv dU av
—|UV — /V —V—l—U——V— U—.
dx dx dx

On the other hand, by the definition of the indefinite integral,

d av av

il U = v

Therefore, we find the derivatives of the Lh.s and r.h.s. of (1.) agree hence by the definition of indefinite
integration the equality is justified (recall indefinite integration is a shorthand for a whole class of antideriva-
tive functions which differ by at most a constant). The proof of (2.) follows immediately from (1.) together
with FTC part II. OJ

Example 9.1.2.

/xsin(m)dm :/ x sin(z)dz = UV—/VdU
U

av
= —zcos(x) — /(— cos(z))dx

= ’ —x cos(x) + sin(z) + c. ‘

I observed that V = [dV = [sin(z)dz = —cos(z) + ¢ and dU = dz. You might wonder why I didn’t have

to add a constant to V. Let’s discuss this in general:

Suppose you replace V' with V =V + ¢ for some constant ¢ then the formula for IBP changes to:

/UdV:Uf/—/f/dU
:U(V+c)—/(V—|—c)dU

:UVJch—c/dU—/VdU

:UV—/VdU.

Therefore, either V or V + ¢ will yield the same answer under IBP so we are free to choose ¢ however we
do so desire. For example, in the first example I just took ¢ = 0 for convenience. It is very likely I will
continue to do so for the forseaable future. Another way of stating this result is to comment that when we
find V from dV we just need an antiderivative, not the indefinite integral. We take account of the indefinite
integral at the end of the calculation when we add c in the final step. You may recall from calculus I that the
indefinite integral is technically a whole family of functions whereas the antiderivative is a specific function.
Since some of you didn’t have me for calculus I, I will elaborate a little further: if we were more technical
and less traditional we’d have to write something like f xdr = %xz +c¢ | ¢ € R}. But, to be less notationally
obtuse we have agreed to write [zdz = %xQ + ¢ to indicate the set of functions. Ok, now that I have you
all properly confused, let’s do some more examples. Come back to this paragraph later if at first it doesn’t
make sense.
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Example 9.1.3.

1

1
—/ VdU
o Jo

1 1
/ wadac:/ z 2%°dx =UV
0 0 M~

U A%
1 1
1 1
- e _ 9274
m@)"" |, /O m2)° “*
1 1!
= 2% — 5
m2) |, W2)? |,
2 1

Example 9.1.4. In the calculation below we use IBP twice.

/ 22 sin(z)dz = / 2 sin(z) di = —a” cos(x) - / (= cos(x))2dz

Us dvi

= —22 cos(z) +/ 2x cos(z) dx
Uz ava

= —2° cos(z) + 2z sin(z) — /sin(x)Qd:v

= | —2? cos(z) + 2z sin(x) + 2 cos(z) + c. ‘

The basic idea is that each application of IBP can reduce " to "~ !. If we know how to calculate [ f(x)dx
then the integral [ z™ f(z)dx is solvable by repeated application of IBP. Challenge: show that

/:1:3 sin(z)dz = —2® cos(x) + 3x? sin(x) + 6z cos(z) — 6sin(z) + c.

IBP often allows us to integrate inverse functions: in this type of example there is only one reasonable choice
for dV, it must be dx hence V = .

Example 9.1.5.

/Sin_l(gj)dz_/sii_[jlgz\dil_zsin—l(x)/\/%

av

1 dw
2 Vw
1w
*4‘1‘6
2 5

= xsin~!(z) + (here w =1 — 2?)

= xsin~!(x) +

=|zsin ! (z) +V1-22 +ec
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Challenge: follow the method of the example above to find integrals of cos~!(z) and tan~!(x). What about
a:sin_l(:v) ? Could you integrate that function? You may not have seen the hyperbolic trig. functions in
calculus I. If that is the case then you should probably ask me in office hours.

Example 9.1.6.

/cosh_l(x)da: = /cosh_l(x) ;i‘a/: = zcosh™ () —/\/;Cji_l
U
L [dw
2] JVw
Vw

Lvw |
-5 1 te¢
2 3

=|zcosh™(z) —VaZ —1+ec.

Challenge: follow the method of the example above to find integrals of sinh™*(z) and tanh™'(z).

= zcosh™* () (here w = 2 — 1)

= zcosh ™ (z)

Example 9.1.7.

/ln(x)dx: /w\df/:$ln(x)  [ads

g dv

T

zlxln(x)—x—i—c.‘

The pattern we’ve observed in the last couple examples is something like this:

/Q(l’)dﬂﬂz/g(x)j—i dx:/ {i[my]xﬁ}dwxg/xjidw

It’s good to remember that all IBP does is to use the product rule. If you forget the formula it should be
easy to find it again from the product rule. The examples that follow here are probably more like your
homework.

Example 9.1.8. I encourage the use of brackets to eliminate careless sign errors.

) ) ) cos(In(z))dx
sin(In(z))dz = | sin(In(z)) dz = zsin(ln(z)) - [ 2————

= zsin(In(x)) — /cos(ln(x))\df_/]
- Uy ave

= wsin(In(z)) — |z cos(In(x)) ~ / f(smml(x))dx)]

T

= zsin(In(x)) — |z cos(In(z)) + /sin(ln(a:))daj}

= zsin(In(x)) — z cos(In(z)) — /sin(ln(x))dm.

Ok, what’s the answer? You tell me. Hint: let I = [sin(In(z))dz and solve for I. Don’t forget to add c to
the final result since we’re calculating an indefinite integral.
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This pattern of looping back to where we start is found in a number of common integrals.

Example 9.1.9. I could switch and use the sin(3x + 1)dx as the dV, but I think it’s easier to choose
dV = e*dx since e is trivial to integrate.

/em sin(3x + 1)dz = /sin(?)x +1)e%dx=€e"sin(3z + 1) — 3/005(33: + 1)e®dx
—_——

o avi

:e”sin(3x+1)—3[/cos3a:+ ]
=e"sin(3z+1) — 3|:€ cos(3x + 1) /—Sm 3z + 1)e®dx

=e"sin(3z + 1) — 3e” cos(3z + 1) — €’ sin(3x + 1)dz

=e"sin(3z + 1) — 3e” cos(3x + 1) *9/6 sin(3x + 1)dz.

Therefore,

/e"’” sin(3x + 1)dx = 110 “[sin(3z 4+ 1) — cos(3z + 1)] + ¢

I’'m not sure what will happen in the next example. This is an experiment.

Example 9.1.10.

/ sin?(z)dz = / sin(a) sin(a)ds = — sin(e) cos(z) + / cos(x) cos(x)dx

U, avy

= —sin(x) cos(x) + /(1 — sin®(z))dx

= —sin(z) cos(z) + = — /sinQ(x)dx

Therefore, by algebra! ,

/sin2 (z)dz = %(x — sin(x) cos(x)) + c.

I usually integrate sin2(x) via the trigonmetric identity sin®*(z) = 3(1 — cos(2z)) from which it is obvious
that [ sin?(z)dr = £ — Lsin(2z) + c. Can you see the answer we just found from IBP is the same answer?

A formula which is defined by showing how one step goes to the next step is called a recursive formula.
There are a number of interesting recursive formulas which allow us to integrate arbitrarily high powers of
trigonmetric functions through a simple step-by-step procedure. I don’t expect you memorize these, but I
do expect you could re-derive them if asked. In other words, you should understand the next example.
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Example 9.1.11. Let k € N and consider:

/sink(x)dx = /sinkil(x) sin(z)dz = —sin® 1 (z) cos(x) + /cos(ac)(k — 1) sin"7%(z) cos(z)dx
——

U, A%

= —sin®*~(z) cos(z) + (k — 1) / sin* 2 (z) [1- sin2(x)]dx
= —sin® () cos(z) + (k — 1)/Sink_2(:n)dac — (k- 1)/Sink(ac)d:£

Solve for [ sin®(z)dx (note k # 0 since k € N)

-1 -1
/sink(m)daz =4 sin® 1 (z) cos(z) + kT sin*~2(z)dx + c.

We already have integrals for sin®(z) in the cases k = 1,2 so we can use the recursive formula above to
calculate the cases k = 3,4.

Example 9.1.12. Use Example|9.1.11| to find for the k = 4 case,

-1
/sin4(x)dx = Tsm (z) cos(z) + 7/sm z)dx + ¢

-1 3

= sin®(z) cos(z) + 1 (2 (z — sin(x) cos(x ))) +c
3 3 . 1.

=53 sin(z) cos(z) — 1 sin®(z) cos(z) + .

Example 9.1.13. Again, use Example|9.1.11]in the k = 3 case,
-1
/sin?’(m)dx =3 sin®~! () cos(z —|— — /Sm x)dz +c

sin?(z) cos(z) — % cos(z) + ¢

(1 — cos®(z)) cos(z) — gcos(x) +c
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9.2 integrals of trigonometric functions

In this section we return to the problem of integrating trigonometric functions. The tools used here are a
combination of basic u-substitution, judiciously chosen trigonometric identities and as a last resort IBP. I'll
begin by attacking the problem of sing(:lc) which we just solved by IBP in the previous section. This is an
easier way:

Example 9.2.1.
/sin3(;v)dx = /sin2 (2) sin(z)dx
= /[1 — u”](—du) (where u = cos(x))

+ius
—Uu —Uu C
3

1
—cos(x) + 3 cos®(z) + ¢

The integral of sin®(z) is not as easy in my view.

Example 9.2.2.
/sin4($c)dx = /[SinQ(a?)]2d.’E

(1- cos(2x))} 2dx

L—
DN =

[1— 2cos(2z) + cos®(2z)]dx

|
SR R e —

sin(2z) + é/(l + cos(4z))dx

1
sin(2z) + % + 2 sin(4x) + ¢

e i

1 1
= %T 1 sin(2x) + 3 sin(4x) + c.

I invite the reader to verify that Example [0.1.12] and the example above are consistent. Actually, would you
know where to start in comparing these answers?

If you ponder the methods we just used to integrate sink(sc) you should be able to integrate any sum
or product of sin(z) and cos(z). For example, see if you can calculate the integrals [ sin(z)cos(z)dz or
[ sin®(z) cos?(x)dz. Sums of products and reciprocals of sine and cosine require more thought but, many
are not too difficult.

Example 9.2.3. Let let u = cos(x) in the calculation below:

/sin(x) dr — —du

cos(z) u

:’fln\cos(:c)\ +c.‘
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Therefore, [ tan(z)dz = In|sec(z)| + c.

I hope you can figure out [ cot(z)dr with ease. It is important to remember tan®(z) + 1 = sec?(x) and
[ sec?(z)dx = tan(z) 4 ¢ in the examples that follow.

Example 9.2.4.

/ tan2(z)dz = / (sec2(z) — 1)dz

:’tan(x)fx+c.‘

Example 9.2.5. We let u = tan(z) so du = sec?(x)dz,

/sec2(9:) tan®(z)dr = /u2du

13
—3u+c

1
=3 tan®(z) + c.

Example 9.2.6.

tan?(x)(sec?(x) — 1)dx

Il
ol = | T Y Y

/tan4(x)dac
tan?(z) sec?(x)dx — /tanQ(x)dx

tan?(z)d(tan(z)) — /tanz(:v)dfc

tan®(z) + tan(z) — x + c.

The notation used in the third line of the calculation above is a slick implicit notation for indicating a
u = tan(x) substitution. Every so often I make use of this notation. In any event, you should be able to
integrals of expressions like [sec®(z)dz or [ cot?(z)dx or [ cot?(x)csc?(x)dx using arguments paralelling
the previous triple of examples. What lies beneath is scarier.

Example 9.2.7. Observe that if u = sec(x) + tan(z) then % = sec(z)dz (work it out for yourself!). With
this bit of trivia in mind note:

d
/ sec(x)dx = o

u
=Infu|l+ec

= ’ In|sec(z) + tan(z)| + c ‘

Ok, by now you should expect me to ask if you can integrate [ csc(xz)dz given the patterns above. Given
our work thus far it ought to be clear that integrating even powers of secant is actully pretty easy. On the
other hand, the first odd power above required a stroke of genious. If you try to convert to a sine/cosine
integral it does not help much if you were wondering. Maybe we’ll return to secant in a future section and
I'll show you a less clever way of calculating the integral. For now we move on to the dreaded sec?(x).
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Example 9.2.8. I use the result of the previous example to go from the 4'" to the 5'" line of the calculation
below.

/sec3(m)dx = /Ee\c@seCQ(x)dx

U, dVy

— sec(z) tan(z) — / tan(z) sec(z) tan(z)dz

— sec(x) tan(z) — / (sec2(z) — 1) sec(x)dz

— sec(z) tan(z) — / sec®(z)da + / sec(z)da

— sec() tan(x) + In | sec() + tan(z)| — / sec® () dz.

Therefore,

/sec3 (x)dx = %sec(m) tan(x) + %ln | sec(z) + tan(z)| + c.

Given the example above you ought to have a shot at completing integrals like [ sec®(x)dx or i cscd(z)da.
The integrals that follow in this section require a comment:

Remark 9.2.9.

See Section [2.9] for an account of how to use and derive trigonometric identities. If you invest a little
time to understand how the complex exponential function e!* = cos x + i sin x encodes both sine and
cosine together in a unified object subject to the expected laws of exponents e**e?¥ = ¢ +¥ then
you can derive trig. identities. The trouble of remembering dozens of identities is replaced with the
trouble of remembering:

sina = l,(e” — e ') and cosx = l(e” + &™)
24 2

Alternatively, you can memorize the adding angle formulas and derive most everything from that

pair of identities. In some sense these approaches are just alternate notations for the same underlying

structure. Naturally, using these formulas without justification is no more logical than utilizing the

adding angles formulas without deriving them. Options aside, these formulas are correct, meaningful

and have been worthwhile to science and mathematics for a couple centuries.

We keep in mind that the adding angles formula for cosine is ’ cos(f + B) = cosf cos B — sin O sin B | whereas

the adding angles formula for sine is ’ sin(f + B) = sinf cos B + cos O sin 8 ‘ Together these adding angles

tanf +t
formulas for sine and cosine yield another for tangent; | tan(6 4+ §) = % . Finally the product
— tan 6 tan

identities for sine and cosine are also very useful and for most of us far from obvious;

cos(azx) cos(bx) = %cos[(a +b)x] + % cos[(a — b)z]
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and

sin(az) sin(bx) = % cos|(a + b)a] — %cos[(a _ b)a]

and

cos(ax) sin(bx) = % sin[(a + b)z] + % sin[(a — b)z] |

The product formulas are very important to the study of constructive and destructive inteference in waves.
They explain where beats come from among other things. Also, it is worth mentioning that if you remember
one of these carefully then you can get others from differentiating. Try differentiating sin(a + x) to derive
the adding angles formula for cos(a + z).

Example 9.2.10.

/ cos(32) sin(52)dz — / [; sin(8z) + ;Sin(—Zx)} do
= %/Sin(&t)dﬂ:f %/sin(?x)dx

— 1
== o 3 - = S 2 .
16 cos(8x) 1 cos(2x) + ¢

Example 9.2.11.

/cos(3a:) cos(bx)dr = /B cos(8x) + ;cos(—2x)} dx
= %/cos(&r)dx—i—%/cos(%)dm

1 1
=16 sin(8x) + 1 sin(2x) + c.

Example 9.2.12.

/Sin(?):v) sin(bx)dx = /[; cos(8x) — ;cos(Qx)] dx
= %/COS(S.’K)CZ.’L‘— %/cos(Qm)dw

1. 1.
=1 sin(8z) — 1 sin(2x) + c.

What about [ sin(z) cos(3z) cos(6z)daz? How would you attack such a problem?
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Example 9.2.13. Here we use the adding angles identity for tangent followed by a u = cos(4x) substitution.

/ tan(z) + tan(3x)

1 — tan(z) tan(3x)

dzx = /tan(4x)dm

[ sin(4x)

B / cos(4x) de
—du

4u

-1
=7 In | cos(4z)| + c.

Finally, I would just comment that there are many integrations of the hyperbolic trigonometric functions
which follow arguments paralell to those given in this section. You may be asked to discover some of those
for yourself in the homework.

9.3 implicit substitutions

All of the substitutions made thus far have been explicit. This means the new substituted variable is defined
explicitly as a function of the given variable of integration. An implicit substitution may give the change of
variables in many other forms. Most common among these is the so-called trig-substitution where we usually
either use © = a cos(f) or x = asin(f) or x = asec(f) or x = atan(f). In each of these cases the new variable
which is analogous to the u of our earlier work is played by the variable 8. We’ll also look at substitutions
based on the inverse hyperbolic functions. We will need the techniques of the previous section to properly
complete many of these problems. It really is a beautiful chapter in the theory of calculation, an art which
is slowly but surely being lost to the ever encroaching hob-goblin of mediocrity in the calculus sequence.

Example 9.3.1. We wish to calculate [ /4 — x? dz. The squareroot is trouble. One sneaky way to eliminate
it is to let x = 2sin(f) thus 4 — x> = 4 — 4sin?(0) = 4 cos?(#) and dx = 2cos(0)df. Hence,

/Mdag :/mzcos(e)de
:/4cos2(9)d9
:/[2+cos(20)]d9

1

1
=|2sin"! (326) + 2sin(2sin1[§]> +c.

The careful student will have questioned how I knew that /4 cos?(0) = 2 cos(). After all, algebraically we
ought to have /4 cos?(8) = 2| cos(f)|. The answer is simply that we insist 6 be chosen such that cos(26) > 0,
otherwise we’d have to introduce a sign in that step. Similar comments apply to future examples, but I will
not belabor this point further.
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Example 9.3.2. We wish to calculate [ a2 —9 dz. The squareroot is trouble. One sneaky way to eliminate
it is to let x = 3sec(d) thus x? — 9 = 9sec?(0) — 9 = 9tan?(0) and dx = 3sec() tan(6)df. Hence,

/ Va? — 9de = / \/9 tan2(6)3sec(0) tan(6)dd
= / 9sec(0) tan?(0)do
- / 9sec(0) (sec(9) — 1)do
= 9/sec3(9)d9— 9/sec(9)d9
- gsec(ﬂ) tan(6) + gln |sec(8) + tan(8)] — 91n| sec(6) + tan(6)| + ¢
= 2 sec() tan(6) — 3 In| sec(6) + tan()| + c

We can simplify this answer nicely if we think about the substitution in terms of a triangle. Note that if

x = 3sec(f) then sec(f) = § = %f hence opp = V&2 — 9 and so tan(f) = 7”5;_9. We find,

1 JzZ —
/\/x2—9dx:§x\/x2—9—gln §+9539’+O

Example 9.3.3. The fundamental identity for hyperbolic trigonometry is cosh?(¢) — sinh?(¢) = 1. We can
rearrange this to give cosh?(¢) — 1 = sinh?(¢). This suggests we might be able to work the previous example
by making a © = 3cosh(¢) substitution. If x = 3cosh(¢) then dx = 3sinh(¢)d¢ and 2> — 9 = 9sinh?(¢).

Hence,
/\/ 22 —9dxr = /951nh2(¢)d¢.

I need an identity for sinh? (), let’s derive it from scratch,

2
sinh?(¢) = B (e — e¢)} = i {ew -2+ 62¢:| = %COSh(Q(b) — %

Returning to our integration with this new-found insight,

/m de = /(g cosh(2¢) 9)d¢ = gsmh(2¢>) - % t+ec

2 4

Note that 2sinh(¢) cosh(¢) = 3(e? — e ?)(e? + %) = £(e2® — e72?) = sinh(2¢). Furthermore, we began
by supposing that x = 3cosh(¢) hence cosh(¢) = £ and sinh(¢) = Va2 9. We find that %sinh(2¢) =

%57@;79 = 22v/x2 — 9. On the other hand, in our current formalism we are led to write % = %coshfl(g).
Thus,

1
/\/x2—9 dr = 2x\/x2—9—zcosh_1(x> +c.

3
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You should consult Stewart pg. 466 equation 4 to help see why the last two examples are in fact consistent.
Also, reading section 7.7 of Stewart will almost certainly aid you in your success with the integration technique
we currently consider.

Example 9.3.4. We wish to calculate [v42?+9 dz. The squareroot is trouble. One sneaky way to
eliminate it is to let 2z = 3tan(f) thus 4z + 9 = 9tan?(0) + 9 = 9sec?(0) and 2dz = 3sec?(0)df. Hence,

/\/4302—1—9 dx:/\/Qsecz((‘)) w
9

= §/SQC3(9)d9

= z sec(f) tan(0) + Zln | sec(0) + tan(8)| + ¢

We can simplify this answer nicely if we think about the substitution in terms of a triangle. Note that if

2x = 3tan(0) then tan(f) = 2 = ok hence hyp = V4a® +9 and so sec(f) = 7“4”?“’. We find,

+ c.

1 9 [VizZ+9 2
/\/4$2+9dx:§x 4x2+9+4ln‘m3+ +§

Notice, we can simplify this answer by factoring out a 1/3 in the natural log argument,
1 9
/\/4x2+9daj:§oj 4x2+9+zln|\/4x2+9+2x|+c.

Example 9.3.5. Another way to calculate f\/4x2 + 9 dx is to make a hyperbolic substitution. Observe
that cosh?(¢) — sinh?(¢) = 1 gives cosh?(¢) = sinh?(¢) + 1. This suggests we can make a 2z = 3sinh(¢)
substitution. If 2¢ = 3sinh(¢) then 422 4+ 9 = 9sinh?(¢) + 9 = 9cosh?(¢) and 2dx = 3 cosh(¢)d¢.

/\/4x2+9 d$:/\/9COSh2(¢) w
9

=5 / cosh?(¢)d¢

I need an identity for cosh2(¢), let’s derive it from scratch,
1 o 1 1
cosh?(¢) = [2 (e + e¢)] =1 [ew +24 e%ﬂ =3 cosh(2¢) + 3

Returning to our integration with this new-found insight,

/ V4x2 +9 do = 2/(cosh(2¢) +1)dg

4
= % sinh(2¢) + g(b +ec.

92 4224+9 9
9 VATED 9
4 3 3 4

1 2
— 5:6 4x2+9+Zsinh_1(3x) +c.
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I used the identity sinh(2¢) = 2sinh(¢) cosh(¢) to help simplify the answer.

Again, you can consult Stewart pg. 466 equation 4 to help see why the last two examples are in fact
consistent. Also, by now you should start to appreciate that both the hyperbolic and the trig. substitutions
have pros and cons. I believe a healthy approach is to be ready to apply either approach to a given problem.
Knowledge of this mathematics will also aid you in interpreting Mathemtatica outputs. Mathematica might
give the answer in terms of hyperbolics whereas you know the answer for other reasons in terms of logarithms.
Hopefully as you work the problems in this section you’ll start to understand that hyperbolic functions and
trigonmetric functions are intrically linked. The explicit connection and ultimate synthesis for these functions
is largely covered in the complex variables course. The following triple of examples all invoke a bit of algebra
which is commonly called ” completing the square”.

Example 9.3.6. To begin I simplify the quadratic by completing the square:
/ dz B / dz
w2 +4r+5 ) (x+2)2+1

Remember that tan?(0) + 1 = sec?(0) so this makes me think a x + 2 = tan(f) substitution will simplify this
problem. If x + 2 = tan(0) then (z +2)% + 1 = tan?(0) + 1 = sec?(0) and dx = sec?(0)df. Thus,

/ dx B / sec?(6)do
2442 +5 sec?(6)

=0+c

:’tan_l(x+2) —|—c.‘

Example 9.3.7. To begin I simplify the quadratic:
/ dx B / dx
422 +8x+9 ) 4z +1)245

Remember that tan?(0) +1 = sec?(0) so this makes me think a 4(z+1)% = 5tan?(0) substitution will simplify
this problem. If 2(x +1) = v/5tan(0) then 4(x+1)% +5 = 5tan?(0) +5 = 5sec?(0) and 2dx = v/5sec?(0)dh.
Thus,

/ dx [ V5sec*(0)dd
422 +8x+9 ) 2(5sec2(d))

! 0+
= — c
2v/5

Example 9.3.8. To begin I simplify the quadratic by completing the square:

/ dx _/ dx
224+6x+5 ) (z+3)2—-4
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Remember that tan?(0) = sec?(0) — 1 so this makes me think a (x + 3)? = 4sec?(0) substitution will simplify
this problem. If x + 3 = 2sec(f) then (z + 3)? — 4 = 4sec?(§) — 4 = 4tan?(0) and dx = 2sec(d) tan(9)d6.
Thus,

/ dx _ / 286(;(5;;2?9()9)619

x2+6x+5
B / sec(6)db
] 2tan(h)

% /csc(@)d@

-1 [d
=5 a let uw = csc(0) + cot(0) hence —du/u = csc(0)do
u

-1
=3 In | csc(6) 4 cot(0)] + ¢

We let z + 3 = 2sec(6) thus sec(f) = 3 = Z—%, The other side of the substitution triangle is found by the
. _ 2 _ — adj _ 2 — hyp _
pythagorean theorem; opp (x +3)2 — 4. Observe that cot(f) T and csc(6)

opp opp
\/ﬁﬁ. Therefore,
/ dx B _—11n x+3 n 2 Lo
?H6e+s |2 [ w+3P -4 J@+3?—d|

Let’s attack the preceding example once more, but this time from the angle of a hyperbolic substitution.

Example 9.3.9. If cosh?(¢)—sinh?(¢) = 1 then dividing by sinh?(¢) reveals the hyperbolic cotangent /cosecant

identity: coth?(¢) — 1 = csch?(¢) where by definition coth(¢) = z?r?}}:((;? and csch(¢) = m In view of the

identity above, the integral [ z2+d6””z+5 = (m+‘§§2_4 is likely simplified by an (z43)% = 4 coth®(¢) substitution.

If £ 4 3 = 2coth(¢) then (z + 3)> — 4 = 4coth®(¢) — 4 = 4esch? (@) and dx = —2csch?(¢)de.

/ dx _/ dx
2+6x+5 ) (v+3)2-4

[ —2csch?(¢)do
N / desch?(¢)

-1
7@5 +c.

-1 3
=5 coth™! (i) + c.

I show how [ = _71 tanh ™! (TT%) + ¢ in the next example.

dz
z2+6x+5

. 2 2
!just use the quotient rule; coth(¢) = Z?j}li((i))l — sinh ifn)h_zc((;s)h @) — sin}jzl((b) = —csch?(¢)
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Example 9.3.10. If cosh?(¢) — sinh®(¢) = 1 then dividing by cosh?(¢) reveals the hyperbolic cotan-

gent/cosecant identity: 1 — tanh®(¢) = sech?(¢) where by definition tanh(¢p) = Zg;}liiﬁ% and sech(¢) =
1

b (@) In view of the identity above, the integral fﬂﬁ}ixm% = —lef(;ﬁ)z 1s likely simplified by an
(z+3)% = 4tanh®(¢) substitution. If x + 3 = 2tanh(¢) then 4 — (x + 3)? = 4 — 4tanh?(¢) = 4sech?(¢) anﬂ

dx = 2sech?(¢)de.
/ dz _ _/ dz
w24+ 6z +5 4—(x+3)2

B 2sech?(¢)de
N 7/ dsech?(¢p)

-1

Example 9.3.11. We wish to calculate [ f;ﬁl% dx. The squareroot is trouble. One sneaky way to eliminate

it is to let x = 3sin(f) thus 9 — x> = 9 — 9sin?(#) = 9cos?(#) and dxz = 3cos(0)df. Hence,
wide / 27sin”(6)(3 cos()db)
VI — 22 3 cos(h)
= / 27sin®(0)d0
= /27(1 — cos*(0)) sin(60)do

= /[27u2 — 27]du let u = cos(9)

=9cos?(6) — 27 cos(f) + ¢

Note that © = 3sin(0) gives sin(f) = 5 = ZZJ; where we have in mind a triangle which represents the
subsitution. Applying the pythagorean theorem we calculate adj = /9 — 22 hence cos() = ZTd; =Y 93_“52 and
we can simplify our answer nicely: 9 cos®(0) = AvO—a?) W = 1(9 — 2%)v9 — 22 and 9cos®(0) — 27 cos() =

39— 2H)V9 — 2% — £27V9 — a2,

-1

3d
/\/%z (184 2%)V0—a? tc
— X

. 2 A 2
%just use the quotient rule; tanh(¢) = z;’;k};((ﬁ))l — cosh C(:;)h_zs(g])h @) — Cosh12(¢) = sech?(¢)
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Remark 9.3.12.

If we have an integral with bounds then we change the integrand, measure and the bounds under
an implicit substitution. We have not faced that difficulty in this section so far because I have
focused on indefinite integration. Also, once bounds enter in then one may hope for an explicit
geometric interpretation of the substitution. I have emphasized an algebraic understanding in this
section because I believe it will lead less students astray. In my experience, few students understand
geometry well enough to appropriately modify it for the solution of nonstandard problems. That
said, I will invoke a geometry-based substitution in the final example that follows.

Example 9.3.13. Find the area bounded by b*(x — h)? + a®(y — k)? = a®b? where a,b,h,k € R and it is
given that a,b > 0. This is an ellipse. Note if (x,y) is a solution to the given equation then it is also a
solution to
=P (b
a? b2
and we identify that the area is an ellipse centered at (h,k). We can view this ellipse as two graphs pasted
together; note (y — k)? = b*[1 — (””;72’1)2] = b2 >[a? — (z — h)?] has solutions

b b
yr =k+ —v/a? — (x — h)? and  yp=k— —+/a®— (z—h)2
a a

These solutions have domains which are governed by the inequality a®> — (x — h)? > 0 hence a®> > |z — h|?
and as a > 0 we find |x — h| < a which is equivalent to h —a < x < h + a.

=1

(h,k+1b)

bsin(0)

(h+a,k)

At each x € [h — a,h + a] we can envision an infinitesimal rectangle of width dx and hezght yr — yp =

2b Va? — (x — h)? hence the typical infinitesimal area is given by dA = 2b Va2 — (x — h)? dx (Tl let you

dmw in the dA) and we can calculate the total area by integration:

h+a

A= dA = 29\/a2—(m—h)2 dx
a

ellipse h—a

This is a nontrivial integration. However, we can do it. We let x = h + acos(6) hence x —h = acos(f) and
a? — (x — h)? = a® — a®cos(A) = a®sin*(0) and dr = —asin(h)dd. Consider the bounds:
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1. ifr =h+a=h+acos(d) then we find cos(d) =1 hence 6 =0 (our choice)
2. ifx =h—a=h+acos(f) then we find cos(f) = —1 hence 0 = (our choice)

I say "our choice” because once I state these bounds I am clarifying that we made the substitution for
0 <0 < 7. Other intervals are possible, however this one will suffice. We calculate,

A= /WO 22\/a2 sin?(0) (—asin(0)dh)

Now, our choice of 0 < 0 < 7 indicates the sine function is non-negative and as a > 0 was given it follows

\/a2sin?(0) = asin(9). Flipping the bounds to remove the minus we find,

™

A= / 2absin?(0)df = / ab[1 — cos(260)]d6 = ab[0 — %sin(QG)] =
0 0

0

In the case a = b we usually say a = r and we find A = wr2. Only in that special case is the “angle” 0

technically an angle in the geometric sense. For a # b the quantity 0 is simply a parameter which does not
match the polar angle as measured from the center of the ellipse.

There are more exotic trigonometric substitutions. For example, there is a well-known substitution that

allows one to integrate a fraction of sines and cosines: [ %dm The fact that this is solvable
S\ T 2 g

means that there are corresponding algebraic functions which become solvable under a substitution which

brings the integral to the fraction of sines and cosines. I may assign such a problem in homework as a

challenge.
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9.4 partial fractions

If we can find a formula in terms of finitely many elementary functions for f f(x) dx then I say the integral
is solvable. In constrast, I would say f is integrable if there exists an antiderivative function F'(z) = f(z)
for all z € dom(f). This criteria of integrable is much weaker than solvable. You should recall that the FTC
part I proves that any continuous function is integrable. However, the FTC just provides the existence of
the antiderivative, it does not explain how to find its formula. While it is not at all an easy thing to prove,
there are many continuous functions which have insolvable integrals. For example, [e ~2*dy or Ik gm(r) dx
cannot be solved in terms of elementary functions aloneﬂ Given all of this, you might be surprised by the
following claim:

lTHE INTEGRAL OF ANY RATIONAL FUNCTION IS SOLVABLE. ‘

I will attempt to illustrate a partial proof of this claim in this section. After many examples I'll outline the
general procedure which proves the claim above.

Example 9.4.1. The calculation off is greatly simplified by the algebra below:

dz
z2+62+5
1 1 A B

2F6x+5 (x+1)(z+5) _x+1+33+5

= 1=A(z+5) +B(zx+1)
evaluating at v = -1 = 1=-4B = DB=-1/4
evaluating at vt = -5 = 1=4A = A=1/4
1 14 1/
224+6zx+5 x+1 z+45

We say the algebraic technique above is performing the partial fractal decomposition of the rational function.
In other words, I take the given rational function and try to write it as a sum of more basic rational functions
which happen to have nice integrals. Observe that

/ dx _1/ dx _1/ dx
224+6x+5 4J) z+1 4) z+5

dz

Therefore,

Remark 9.4.2.

Why is it ok to plug in z = —1 and = —57 Shouldn’t this lead to an error since the integrand is
not even defined at those values? But, there is no error, the algebra is correct, why?

A rational function f is by definition the quotient of two polynomials p and ¢; f is rational iff there exist
polynomials p, g such that f = p/q. Moreover, we say f = § is proper iff deg(p) < deg(q). On the other
hand, we say f = % is improper iff deg(p) > deg(q). In the case f is improper we can always find a proper
rational function r and a polynomial g such that f = 2 = g + Z. The polynomial r is sometimes called
the remainder and it is calculated in general by long-division of polynomials. If you can do long-division for

3there are techniques to find approximations for the antiderivatives, this is one of the reasons we cover power
series expansions later in this course.
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integers then you should be able to do it for polynomials. I do not use synthetic division because it is neither
necessary or general. The algorithm and logic for polynomial long-division is essentially the same as the
process we were taught as children. We systematically subtract multiples of the divisor from the numerator

until we can no longer subtract whole copy from what remains. For example,

222 — 5z + 18
x—|—3) 223 +2%2 +3z +5
— 2% — 622
— 522 + 3z
522 + 15z
18z +5
— 18x — 54
—49

The example below makes use of the division above.

Example 9.4.3.

223 + 22+ 32 +5 49 2 5
/ v ord dxz/ 220% —5x + 18 — —— |do =| -2 — ~2* + 182 — 49In |z + 3| +c.
r+3 T+ 3 3 2

We can have higher degree polynomials in the denominator and still perform long-division.

20 — 7

x2+4x—|—3) 2¢3 +2%2 +3z +5
—22% — 822 — 6z

— 722 —3z +5
722 4 28z + 21
25x + 26

Again, I use this long-division to begin the next example.
Example 9.4.4.

23 + 22 + 32 +5 %5z + 26 , %52 + 26
de = [ (20 -7+ 222720 Vo =227 T
/ 2+d4z+3  ° / Tt ) T +/332+4x+3 v

Calculation of the remaining integral is accomplished with the partial fractions idea once more:

25z + 26 25z 4 26 A B

x2+4m+3:(x+1)(x+3) x—|—1+x—|—3

= 252426 = A(x +3)+ B(z + 1)
evaluating at t = -3 = —T5+26=-2B = B =49/2
evaluating at t = -1 = —-254+26=24 = A=1/2

25x + 26 _ 1/2 49/2
224+46+3 x+1 43
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Hence,

[ B g A A s P s
24443 2) z+1 2 ) x+3 2 2 |

Therefore,

/2x3+x2—|—3x+5
2244+ 3

1 49
dx :x2—7$+§ln|x+1|+?ln|x+3|+c.

Example 9.4.5. Some problems are sufficiently simple that I don’t have to do the long-division.
1—2x 3—2x—-2
sate= [T

:/(k )

=’x—|—ln|3—2x|+c.‘

Again, I avoid long division with an appropriately added zero:

Example 9.4.6.

322 32?2 +1)-3
/7x2+1dm_/7x2+1 dx

-~ [3- 5

:’?m — 3tan"'(z) +C.‘

What if we have denominators of larger degree than two? I’ll begin with a long division just to emphasize
once more it’s importance.

23 —42? +13z - 38
x3+4x2+3x) x8 + 228 +2x +7
— 28 — 42 — 32
—42® —3z* +22°
425 + 162* + 1223

1324 + 1423
—13z* — 522% — 3922

— 3823 —3922 +2z
38z3 + 15222 + 114z

11322 + 116z

Example 9.4.7. We wish to calculate [ %dl‘. Note from the long-division above,

6 4223 4+ 20 47 11322 + 11
/m vt Ar dx:/(x3—4x2+13x—38+M>dx

3 + 422 + 3z 3 + 422 + 3z

1, 4, 13, /113x2+116x
S S BT B I ¥ R N
LTy g T S i a2



302 CHAPTER 9. INTEGRATION TECHNIQUES

The denominator factors into three linear factors x® + 4x* + 3z = x(x + 1)(z + 3). This factoring is what
leads us to the decomposition beneath:

113m2+116x_A+ B __C
23 +422+3z x x+1 x+3

Multiply by the denominator, nice cancellations occur:
11322 + 1162 = A(z + 1)(2 + 3) + Ba(z + 3) + Cx(x + 1)

Now, since all three linear factors correspond to distinct roots we can plug in the roots to obtain solutions
for A, B, C, if we had repeated roots then we’ll see this system breaks down, but let’s finish this example for

now,

r=0 = 0=34
r=-1 = 113-116=—-2B
z=-3 = 113(9) — 3(116) = 6C
Hence, A=0, B=23/2 and C = 223/2 (the fact that A = 0 was obvious from the outset)

20+ 223 + 22 +7 1 4 13 11322 + 1162
dp — —gd 4 23 4 22,2 /
/ P A SRR AR Lo = e e
1, 4, 13, S/dx 223 [ da
741' +3:17 +2:v 38x+2 m+1+ 2 13
1, 4, 13, 3 223
== - s 21 1]+ =21 .
1% +3x + 5 & 383:—!—2 nle+1|+ 5 nlx+3|+ec

Ok, I think we’ve seen enough long-division examples for this section. Keep in mind that we could add that
wrinkel to the examples that follow, but it just adds one extra step at the beginning of the calculation.

Example 9.4.8. We wish to calculate the integral below:

/ 222 4+ 32 —9 d
x
x4 + 423 + 522 4 922 + 362 + 45

This is a proper rational function so we don’t have to do any long division. Our first task is to factor the
denominator. Note x* 4 43 + 522 + 922 + 362 + 45 = 2%(2? + 42 +5) + 9(2? + 42 + 5) hence

/ 222 +3x—9 dm—/ 222 +3x—9 e
o4+ 43 + 522 + 922 + 36z + 45 ) (22 +9) (22 +4x +5)

I cannot factor further over the real numbers because these quadratic factors have complex roots. The partial
fractions requires two unknown coefficients for each quadratic factor:

202 +3x—9 _Arx+B Cxz+D

(224 9)(x? + 42+ 5) 22+9  a?2+4x+5

= 222 + 3z — 9 = (Az + B)(2* + 42 + 5) + (Cz + D)(2* +9)
= 222 + 32— 9= Az® + Ba? + 4A2% + 4Bx + 5Ax + 5B + Cz® + Da? + 9Cx + 9D



9.4. PARTIAL FRACTIONS 303

= 202 + 32 —9=a3(A+C)+2*(B+4A+ D) +z(4B +5A +9C) + 5B + 9D
Two polynomials are equal iff they have matching coefficients. We equate coefficients of 23, 22, x'andx®:
(iJ0=A+C (ti.) 2=B+4A+ D (#91.) 3=4B +5A+9C (iv.) —9=5B+9D
We have four linear equations and four unknowns. We procede by elimination: using i. and i.,

A=-C, A=(2-B-D)/4, = (2-B-D)/4=-C = 2—-B-D+4C=0 (v.)

Next eliminate A from ii. and ii.
A= (2—B-D)/4, A= (3-4B-9C)/5 = (2—-B-D)/4 = (3—4B-9C)/5 = 5(2—B—D) = 4(3—4B-9C)

Simplifying gives 11B + 36C — 5D — 2 =0 (vi.) so equations iv.,v and vi. involve only the variables B, C, D.
We have reduced the problem to 8 equations and 8 unknowns:

5B4+9D=-9, —-B+4C—-D=-2, 11B+36C —5D =2

We can finish by elimination, but for a change of pace I'll use Kramer’s rule from high-school algebra II, we
write the system as a matrix problem:

5 0 9 B -9
-1 4 -1 cC|l=1 -2
11 36 -5 D 2
Then, Kramer’s rule says:
[ -9 0 9]
det | =2 4 -1
B_ | 2 36 =5 ] —9(-20+36)+9(-72-8) 864 27
B 5 0 971 5(—20+36)+9(—36—44) —640 20
det | =1 4 -1
| 11 36 -5 |
At which point finding D is easy from iv.,
5 5 27 -7
D=-1--B=-1——--—=—
9 9 20 4
Find C with ease from v. neat,
1 1 27 =7 -3
=—(-24B+D)=-(24+—+—)=—
C’4<++)4( +20+4) 5

Hence, returning to i., clearly A = % As a check on the algebra, I'll solve the problem again from the start

using technology: the row reduced echelon form of the augmented coefficient matriz will reveal the solution

in their matriz notation:

1 0 0 1 0 10 0 0 3/5
rref 0 5 0 91 -9 | _ rref 0 1 0 0]27/20
0 -1 4 -1|-2 0 01 2| -3/5
0 11 36 —-5| 2 0 00 1] -7/4



304 CHAPTER 9. INTEGRATION TECHNIQUES

Which confirms the algebra of the last page. Pragmatically speaking, if you are not taking a test and don’t
need to practice your algebra then the reduced row echelon form (a.k.a. Gaussian elimination) is hard to
beat. We examine the logical underpinnings of both Kramers rule and Gaussian elimination in the linear

algebra courseﬂ (Math 821). Let’s collect our thoughts. We have shown that
222 + 32 — 9 _ e+ f P
w43 + 522 + 922 4362 +45 2249 22 +4r+5

Observe we can integrate using u-substitution on the A-term and trig. substitution on the B-ternﬂ

/ Syx+ 2 3 [ 2zdx 27/ dx
222 dr = — +— [ —
z2+9 10/ 22+9 20/ z2+9
3 [du 27 3sec?(0)do

10/ w 20 9sec?(0)

3 9
= Eln\uH—%H—I—cl (where u = 2% + 9 and x = 3tan(f))

= %ln\x2+9| + %tanfl <§) +a

*

Next, turn to the C' and D terms, a little creative algebra from the outset makes life easier,

/53”7"_Z dm:/;(I“Hg_Zd@«

z2+4x+5 22 +4x+5

-3 (x + 2)dx _E/ dx

5 ) (@+2)2+1 20/ (z+2)2+1

-3 @_11/ dw

10/ v 20/ w2+1

-3 11 1 2
:1—0111|u|—2—0tan (w) + 2 (where u=(z+2)*+1 and w =2+ 2)
—_—31n|x2+4x+5|—Etan_l(x+2)—|—c
T 10 20 ’

**

2224329
xd4+-4x3+5224+92x2+362+45

Therefore, using * and xx we find f dx is

- 11
%ln|12 + 9| + T§1n|x2 + 4z + 5] — %tan’l(z+2) + %tanfl <z) +e.

At this point, we have seen examples of how to integrate rational functions with denominators that consist
of a linear factor, a pair of linear factors, a triple of linear factors or a pair irreducible quadratic factors. I
know consider an example where we have a mixture of linear and irreducible quadratic terms. Again, the
heart of the solution is the partial fractal decomposition.

“however, linear algebra is about a lot more than just solving linear equations, you are really supposed to know
what I’ve shown here from highschool. Granted many of you have forgotten. Now is time to remember. As you work
the homework you should not use technology to solve all the algebra, instead, use technology to check your answers.
I have links on my website to free online calculators which will do partial fractions and/or the rref calculation. Make
use of them wisely.

5T do not expect you to memorize these formulas, I expect you to be able to derive them!
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Example 9.4.9. We wish to calculate [ %dz. Note that x® — 32? +x — 3 = (z — 3)(z? + 1) hence
we propose the following decomposition:

322 — 3z —8 A Bx+C

x3—3m2+:r—3_:v—3+ 2241

Multiply by the denominator, nice cancellations occur:
32° =32 — 8= A(2* + 1) + (Bx + C)(x — 3)
I’ll plug in the real Toot and one of the complex rootﬁ to obtain:
r=3 = 3(9)-33)—-8=104 = A=1.
r=i=+v-1 = 3*-3i-8=(iB+C)i—-3) = —11-3i=-B-3C+i(C—3B)

The beautiful thing about complex equations is they do twice the work of real equations. This is due to the
fact that the real and imaginary parts of a complex equation must separately balance. In particular,

~11-3i=-B-3C+i(C-3B) = —11=-B-3C and —3=C —3B

Multiply —11 = —B — 3C by —3 to find 33 = 3B + 9C then add this to —3 = C' — 3B to obtain 30 = 10C
hence C = 3 and it follows B =11 —3C = 2. In summary, A=1, B+ 2 and C = 3. Finish it.

/ 3z2 — 3z —38 dx—/ dzx +/ 2xdx +3/ dx
23 —322+z-3 ) z-3 2+ 1 2 +1

:’1n|x73\ +1In|z% 4+ 1| +tan*1(x)+c.‘

Example 9.4.10. We wish to calculate [ —2=dz. Well, this is easy to factor: a* —1 = (2% 4+ 1)(2? — 1).
The partial fractions decomposition with respect to this factoring is
2  Arx+B Cx+D
zt—1  22+1 z2 -1

Multiply by the denominator, nice cancellations occur:
2 = (Az + B)(2* — 1) + (Cz + D)(2* + 1)
I’ll plug in the real roots and one of the complex roots to obtain:
r=1 = 2=2C+2D.
r=-1 = 2=-2C+2D.
r=i=+v-1 = 2=(Ai+B)(i*-1) = 2=-2B-24i
The real and imaginary parts of a complex equation must separately balance. In particular,

2=-2B—-2Ai = 2=-2B and 0=-24A

Therefore, A =0 and B = —1. Adding and subtracting the x = £1 equations yields C =0 and D = 1.

2 dx dx 1 1
- - — —tanh~}(z) — fe
/ . 1dx / 7 / o tanh™ " (z) — tan™ " (x) + ¢

Syes, you could also multiply the polynomials out and equate coefficients as we did in a previous example.
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In the preceding example I made use of the inverse hyperbolic tangent integral. If you don’t like the inverse
hyperbolic function then you could just as well break the 1/(x? — 1) term into a sum of reciprocals of (z — 1)
and (z + 1). You can show that

1 1 1
2—-1 2|z—-1 ax+1]
Or, you could at least check that I am correct by making a common denominator of the RHS to recover the
LHS. In any event, integration will yield natural logs from this algebraic approach:

dr 1 dx 1 dx
/x2—1_§/x—1_§/x+1
:lln|x71\flln|x+1|+c.
2 2

There are identities which connect this expression and — tanhfl(m). If nothing else, we know they have to
be different formulas for the same function since

1. %[—tanhfl(x)] =Lilmz—1-injz+1]]= 2~

2. tanh™'(0) =0 and $In[0— 1| — $In|0+1[=0
Recall that if f'(z) = ¢'(z) for all € J (a connected interval) then f(z) = g(z) + ¢ on J. If we also know
f(0) = ¢g(0) then it follows ¢ = 0 hence f = g, provided the domain of both functions is J. Now perhaps my

argument is less than satisfying, after all I didn’t really explain how these rather different looking formulas
are the same. See Stewart around page 466 for more on how to connect these algebraically.

Example 9.4.11. We wish to calculate fﬂ_g%dm This integral contains a new difficulty, it has a
irreducible quadratic repeated in the denominator since x* + 8% + 16 = (22 + 4)2. The partial fractions

decomposition for a repeated quadratic is as follows:

22 +5 _Ax—|—B+Cx+D
ri+ 822 +16  a2+4 (22 +4)%

I invite the reader to verify that the usual algebra yields A =0,B =1,C =0 and D = 1. I know this will
happen since the following algebra leads to the same conclusion:

a® +5 ?4+4+1 1 1

i 4822 +16 (22 +4)2 _a:2—|—4+ (z2 +4)2

If x = 2tan(f) then 2% + 4 = 4tan?(0) + 4 = 4sec?(0) and dx = 2sec?(0)df. We will make use of this
substitution in the integral below:

/ +5 _/' 1,1 J
2+ 822+ 16 ) |22 +4 " (@2+42]|™
[ 1 1
= 2 sec?
/_4se(;2(9) + (4sec2(9))2]( sec”(9)d9)

1 é cos? (9)] de

|2
1 1 1
/_2+16+16008(20)] do
9 1
= 1—6+3—28m(29)+c
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Recall that sin(260) = 2sin(0) cos(f) and note tan(f) = 5 hence sin(f) = T and cos(f) = \/a:zﬁ thus,
sin(26) = I§i4. Therefore,

/9«“2+5dx_9tan—1 BN, _ & ..
4 +822+16 16 2 8(x2+4)

Example 9.4.12. We wish to calculate | %dz To begin we need to work out the partial fractions

decomposition. Given the factoring of the denominator we propose:

20+ 32 —2x+1 A n B n C D
(x—2)(z+1)3  2-2 z+1 (x+1)2 (z+1)3

Multiply by the denominator to find:
20 4322 —24+1=Alx+ 1)+ Bz - 2)(z +1)* +C(z - 2)(z + 1) + D(z — 2)

We can evaluate at x = —1 to find that —2+3+1+1= —3D hence . Likewise, evaluate at x = 2

to obtain that 16+12—2+1 = 27A hence . To find B and C' we need additional equations. One easy
choice is to evaluate at x = 0 which gives 1 = A—2B —-2C' —2D =1—-2B —2C+2 hence =2 = —2B — 2C.
Nexzt, Ievaluat(ﬂatx: 1 to obtain 24+3—-1+1=8A—-4B —2C — D hence 5 =8 —4B — 2C + 1 thus
4 =4B + 2C and dividing by two gives 2 = 2B + C. Collecting our thoughts,

—2=-2B-2C addedto 2=2B+C = 0=-C = |C=0|and|B=1]

Therefore,
/2x3+3x2—x—|—1d _/ 1 -+ 1 L,
z—2)(x+1)3 7 2T+l (@r13|™
d
z/ “ / /—letu-x—Qandw—x—Fl
1
Example 9.4.13. We wish to calculate [ MW, Note that 2 + 6z + 13 = (x + 3)% + 4 hence the

denominator cannot be further reduced. This is already a basic rational function. We make a x+3 = 2 tan(0)
substitution hence (x + 3)? + 4 = 4sec?(0) and dx = 2sec?(0)df. Observe

dx 2sec?(6)do
/ (x2 + 62 + 13)3 / 64 sec(6)
)

1

32 cos*(0)do (the next step is nontrivial)

80 1 S B 1 ‘
=135 [8 + g s n(#) cos®(6) — g sin (0) cos(9) + 3 sin(f) cos(0)| + ¢

"because the arithmetic is easy and multiplying out to equate coefficients looks like more work here
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_ z+43 : — z+3 — 2
We know tan(0) = 5= hence sin(6) T and cos(6) Torra Thus,
1 1 1 1
/ (x2—|—€§l;—&—13)3 =3 [389 + 3 sin(6) cos®(0) — 3 sin®(6) cos(6) + 3 sin(6) cos(8)| + ¢
173 _1f{T+3
- 32( gt ( 2 )
L1 @43 { 2 ]3
8(z+3)2+4l/(z+3)2+4
B 1[ z+3 ]3 2
8 V(@ +3)2+4] /(z+3)2+4
1 x+3 2 >
= &
2/(x+3)2+4/(z+3)?2+4

After a some algebra the expressions above ought to simply to the following:

/ dz 2824 202z 4 54x? + 623 it - 3+ n
(22162 +13)3 (13 + 6z +22)2 256 2 “

Remark 9.4.14.

I think we’ve seen enough. At this point we can make a few observations:

1. when integrating a rational function we can always reduce the problem to integrating a proper
rational function and a polynomial because we know long division for polynomials.

2. any proper rational function can be decomposed into a sum of basic rational functions which
either have the form (z_la)k or [t & for k=1,2,...

1

z—a)2+32

3. we can integrate any basic rational function, we have the methods, we just need paper and
perservance.

4. the partial fractions decomposition of a proper rational function with denominator of degree
N will have N-unknown coefficients in its decomposition.

I seek to sketch a proof of (2.) and (4.) in the section that follows. The proofs of (1.) and (3.) are
left to the reader. .

Beyond these comments, we also observed that the inverse hyperbolic functions allow us to treat reducible
reciprocal quadratic factors in much the same way as we treat the irreducible reciprocals. This led to a great
diversity in the appearance of answers.
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9.4.1 existence of partial fractions decomposition

Remark 9.4.15.

Read if interested. Ask me questions if want further detail. Pragmatically speaking, if you under-
stand the examples before this subsection you should do just fine. This section does contain useful
comments about algebra in general and a few complex calculations that all electrical engineers should
be eager to master.

Suppose we have a rational function f(z) = g%z; Suppose further that deg(Q) = N and deg(P) = n and
n < N so this rational function is proper. A fundamental theorem of algebra states that any polynomial
with real coefficients can be written as a product of linear factors which may be repeated and/or correspond
to complex roots. However, the complex roots must come in complex conjugate pairs which once multiplied
give irreducible quadratic factors. That said, I will give an argument which allows complex notation. We
know that @) factors as

Q(x) = A(x — al)]Cl (x — (lg)kQ (= ar)kT
where A # 0 and a; € C and k; + k2 + -+ + k. = N. We claim that f can be written as a sum of the

reciprocals (x —a1)*, (z —az)*2,--- | (x —a,)¥. That is, we claim that the following equation has a solution
for some Aq, As,..., A, € C,
_ Plx) A Ao A, ANk, AN—ko41 An
F@) = Q(x) x—ay + (r —a1)? Tt (x —ay)k Tt z—a, (x—a.)? oot (z — a,)kr
Multiply both sides by Q(z) to obtain *:
P(z) = Ay [(z — a)f Nz —ag)*2 - (x — ar)k’] +

"'+Ak1[(x—a2)k2-~'(36—a,~)kr] + ...

4 AN—kT [(x _ al)klfl(x _ ag)k2 . (x _ ar)kal] N

o AN, [(x _ al)kl’l(x _ a2)k2 (= a,r_l)krfl]
Observe that if we plug in £ = a1 into * then we find

P(ay)

P(ay) = A, (a1 — ag)’C2 < (ag — a,.)kT = Ag, =

(al — ag)kQ PR (al — ar)k'r'
Next, we can plug in © = a9 into x and all terms drop to zero except one

P(ag)

(az — ar)kr(ag —az)ks - (ag — ay )k~

P(az) = Ay, (a2 — al)k1 (ag — ag)k3 <o (ag — ar)kr = Ag, =

Continue in this fashion and we find solutions for Ay, for j = 3,4,...,7. However, this is only a subset of the
coefficients since we allow k; > 1 since we want to treat the case of repeated roots. Differentiate x and call
it g—;. Plug & = a; into g—; and note that just one term remains. The derivative of the term with coefficient
Apj,—1 produces many terms, however only one remains after the evaluation. The term that remains is the

one which (z — a;) was differentiated hence

P'(a1)

(al — a2)k2 P (al — ar)kr

P’(al) = Akl_l(al — @2)k2 s (&1 — ar)kT = Ak1—1 =

Then, if we differentiate twice then evaluate more we find a formula for Ay, _5. Continuing in this fashion we
find formulas for A;, As, ..., Ak,. To complete the argument simply apply the procedure for the first root to
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the remaining roots as, as, ... a,. Finally, note in the case of complex roots we must have a conjugate pair.
Observe that for such a pair we can reproduce the form we’ve used in this section:

A B _Alx—a+if)+Blx—a—if) (A+B)r—a(A+ B)+if(A—B)

x—a—i6+m—a+z’ﬁ_ (r—a—iB)(z—a+iB) (x — )2 + B2
This is precisely the form we used, just written with ugly coefficients. You might worry that the rational
function is complex so that will not match the manifestly real partial fractions decomposition. However,
the fact that f = P/Q is real implies certain reality conditions on A and B hence the imaginary term will
vanish. Rather than work this out in general let me illustrate how the real and complex form of the partial
fractions work out in a specific case:

2r+6 x+3 B A B
22 +4r+5 (x+2)2—4i2 z+2-—i T2
Multiply both sides by the denominator to find 22 + 6 = A(xz + 2 +4) + B(x + 2 — ¢). Thus,
20 +6=(A+B)x+2(A+ B)+i(A— B)
Equating coefficients gives 2 = A+ B and 6 = 2(A+ B) 4+ i(A — B) which yields 6 = 4 +i(A — B). It follows
that 2 = i(A — B) thus A — B =2/i = —2i. Add A— B = —2i and A+ B = 2 to find 24 = 2 — 2i thus
A =1 —1i. Likewise, subtract A — B = —2i from A+ B = 2 to find 2B = 2 + 2i thus B = 1 + i. We have
derived the complex partial fractions decomposition
2e+6 11— 1414
Zidr+5 12— zt2ti

In general, one can prove that if A4+ B € R and A — B € iR and it follows that expression on the far right
below is manifestly real once the imaginary terms are cancelled

A B (A+B)z—a(A+B)+if(A-B)

x—a—iﬂ+x—a+iﬂ: (x —a)? + B2
In any event, I include these general comments for those students who wonder about why this method works
in general. The algebraic technique of partial fractions extends beyond calculus, but it is seldom proved in
any course. It is doubtful I lecture on this stretch of the notes.

Lemma 9.4.16. equating coefficients.

Suppose F, G and @ are continuous functions and Q(x) = 0 has finitely many solutions. If ggg =

ggg for all x € R such that Q(z) # 0 then F(z) = G(x).

Proof: Note that if z € R such that Q(z) # 0 then it is clear that F'(x) = G(z). Suppose z, € R such that
Q(z,) = 0 and consider that F'(z) = G(x) for all z € Bs(x,), ( a deleted nbhd of radius § > 0 must exist on
which Q(z) # 0 throughout since the zeros of @) are finite in number so we can separate them) but then
lim F(z) = lim G(x)
T,

T—T,

since the limit considers only points near the limit point. But, F' and G are continuous hence

lim G(x) = G(x,) and xli)ntla F(z) = F(x,).

T—T,

Therefore, F'(z,) = G(z,) and as this was an arbitrary zero of @ the lemma follows. OJ

This was = exercise 69 of page 519 of Stewart’s Ed. 6, however I proved it in more generality. Note that
polynomials have finitely many zeros so they are covered by the lemma.
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Numerical Integration

In this chapter we examine a few basic numerical techniques to approximate a definite integral. You may
recall some of this from Calculus I where we discussed the left, right and midpoint rules to motivate the
definition of the Riemann integral.

10.1 left, right and midpoint rules

We aim to calculate the signed-area bounded by y = f(z) for a < & < b. In this section we discuss three
methods to approximate the signed-area. To begin we should settle some standard notation which we will
continue to use for several upcoming sections.

Definition 10.1.1. partition of |a,b].

Suppose a < b then [a,b] C R. Define Az = b:—La forn e N and let z; =a+ jAz for j =0,1,...,n.
In particular, z, = a and z,, = b.

The closed interval [a,b] is a union of n-subintervals of length Axz. Note that the closed interval [a,b] =
[0, 21]U[x1, 22]U- - -U[2s—1, ). The following rule is an intuitively obvious way to calculate the signed-area.

Definition 10.1.2. left endpoint rule (Ly,).

Suppose that [a,b] C dom(f) then we define

n—1

L, = Z fz AI = [f(zo) + f(z1) + - + f(Tn-1)]Az.

7=0

Example 10.1.3. Let f(x) = 2% and estimate the signed-area bounded by f on [1,3] by the left endpoint
rule. To keep things simple Ill just illustrate the calculation with n = 4. Note Ax = == = 0.5 thus
To=1,21 = 15,20 =2,23 = 2.5 and x4 = 3.

Ly =[f(1) + f(1.5) + £(2) + £(2.5)]Az = [1 + 2.25 + 4 + 6.25](0.5) = 6.75

It’s clear from the picture below that Ly underestimates the true area under the curve.

311
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Definition 10.1.4. right endpoint rule (R, ).

Suppose that [a,b] C dom(f) then we define

Rn=Y fla;)Az = [f(@1) + f(z2) + -+ + (@n)] Ao

Example 10.1.5. Let f(x) = 2 and estimate the signed-area bounded by f on [1,3] by the right end-point

rule. To keep things simple I'll just illustrate the calculation with n = 4. Note Az = 321 = 0.5 thus

1
z, =121 =159 = 2,23 = 2.5 and x4 = 3.
Ry =[f(1.5)+ f(2) + f(2.5) + f(3)]Az = [2.25 + 4 + 6.25 + 9](0.5) = 10.75

It’s clear from the picture below that Ry overestimates the true area under the curve.

\ |
o
X

Definition 10.1.6. midpoint rule (M,).

Suppose that [a,b] C dom(f) and denote the midpoints by Zx = %(xk + xp—1) and define

M, — Z (@) = [f(F1) + f(@2) + - + f(@n)] Ac.

Example 10.1.7. Let f(x) = x? and estimate the signed-area bounded by f on [1,3] by the midpoint
rule. To keep things simple I'll just illustrate the calculation with n = 4. Note Ax = % = 0.5 thus
F1 = 1.25, %9 = 1.75, %3 = 2.25 and T4 = 2.75.

My = [f(1.25) + f(1.75) + f(2.25) + f(2.75)]Ax = [1.5625 + 3.0625 + 5.0625 + 7.5625](0.5) = 8.625
Clearly Ly < My < Ry and if you study the errors you can see Ly < My < A < Ry.



10.1. LEFT, RIGHT AND MIDPOINT RULES 313

\ //

Notice that the size of the errors will shrink if we increase n. In particular, it is intuitively obvious that
as n — oo we will obtain the precise area bounded by the curve. Moreover, we expect that the distinction
between L, R, and M, should vanish as n — oco. Careful proof of this seemingly obvious claim is beyond
the scope of this course. In any event, we did prove the FTC part II in calculus I and as such we can calculate
the area exactly with ease for this function:

3
/ 22 dx = lx?’
1 3

Notice that the error in M, is simply E = 8.6667 — 8.625 = 0.0417 which is within 0.5% of the true area. I
will not attempt to give an quantitative analysis of the error in L,,, R,, or M, at this time. However, I do
hope you know terms such as increasing, decreasing, concave up/down and are able to discuss the relative
errors in these methods for a specific function qualitatively, at least you should be able to rank the rules
based on a geometric understanding of how the approximation schemes are constructed. Stewart discusses
such issues in §8.7. Qualitatively, if the function is monotonic then we should expect that the area is bounded
between L,, and R,,.

Example 10.1.8.
3
1 26
=-27-1)= —

Remark 10.1.9.

You might ask why in the world we would calculate L,,, R, or M, when we could just use the FTC
part II? Isn’t it easier to evaluate F'(b) — F'(a) rather than adding all those terms? Well, yes, of course
it’s easier. However, it’s hard to use the FTC when you can’t find a formula for the antiderivative.

10 _,2 10 -
For example, fo e or [, V1+az3 dr.

Example 10.1.10. Calculate M5 to approximate fom e~*". Note 6z = 2 and z; = 1,3,5,7,9 for j =
1,2,3,4,5.
Ms =2t +e? +e 2 47 +e78) ~ 0.7360057

In contrast, the numerical integrator in Wolfram Alpha returns:
0
/ e” " = 0.8862269
0

If you study the graph y = e~ the fact that M5 is an underestimate is not surprising. Next, I'll calculate
Mg, notez; =j —0.5 for j =1,2,...,10 and éx = 1.

10
My = Ze_(j_0'5)2 ~ 0.8861352
j=1
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Now, we agree with Wolfram Alpha to the first 8 decimals. Calculate Migg, this makes dx = 0.1 and
Z; =017 —0.05 for j =1,2,...,100

100

Mgy = Y e~ (177009 ~ .8862269.

j=1
Obuviously I used technology to compute this sum. I expect you will do the same in your homework. The
methods used to compute integrals numerically by mathematical software are most likely built off the Simpson’s
rule which we consider at the end of this chapter.

10.2 trapezoid rule

The idea of the trapezoid rule is simple enough, approximate a signed area by replacing the function with a
trapezoidal approximation. Then the signed-area under the trapezoids are easy to calculate. We still use the

same partition notation and our goal is to approximate once more ff f(z)dx. Let’s think about a subinterval
[;_1,2;]. We can replace f(z) with the secant line from (x;_1, f(x;-1)) to (x;, f(x;)). This secant line has

equation
y=si(o) = floy) + LT E ()

Therefore, we can approximate the integral on this subinterval as follows:

[ g [ (s s RSO Ja

= f(x;) (2 —xj-1) — %(%—1 — ;)
_ f(acj)Ax . f('rj) 2_A«];('Tj*1) (—Ax)2
3|7+ sei0] A

Consider that
b

/ab f(z)dx = /:1 f(z)dx + /: flx)dx + -+ /jn_l f(z)dz + / f(x)dx

Tn—2 Tp—1

Q

(o) + 1) ) o+ 3(Fe) + fo)) Aot
ot (I + fenea)) ) At 5 (0 + Sl ) Ao

;(fm>+2f@n>+2f@a>+--~+2f@m_ﬂ-+2f@m_o-+fao)Ax

Definition 10.2.1. Trapezoid rule (T,,).

Suppose that [a,b] C dom(f) then we define

n—1

T, = 3(f(a) + f(0) + > fla;)Az = L[f(a) + 2f(21) + 2f (22) + -+ + 2f (@) + f(D)] Ax.

Jj=1
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2
x

Example 10.2.2. Once more I return to folo e~ . We'll examine Tig,

Tio=L1(1+2e7 + 274+ + 275! 4+ ¢710) ~ 0.8863186.

Wolfram Alpha yields folo e~ ~ 0.8862269 so you can see we got the first 8 decimals, just like Myg. This
is mot surprising (see the error bounds for T, and M, they are very much the same order, page 535).

Again, I should emphasize that if you must do these with technology. I've used a mixture of Wolfram Alpha
and plain old figuring to arrive at my numbers. You are free to use Mathematica, Matlab, etc... it matters
not to me which CAEH you use. Just learn something.

10.3 Simpson’s Rule
The idea of Simpson’s rule is simple enough: approximate the signed area by replacing the given function
with a parabolic splice on each subinterval. We can easily integrate the signed area under parabolas so

calculating the approximate total signed area should be fairly easy. In this case we must suppose that the
number of approximating regions is even. After a couple pages of algebra one comes to the following formula:

b
[ #@de = S @)+ 4700 + 26(02) + 45 (0) 44 45 0-) + 20 (002) +4F (1) + £

This is known as Simpson’s Rule.

Definition 10.3.1. Simpson’s rule (S, ).

Suppose that [a,b] C dom(f) and n is even then we define

_le

Sp = 3 f(a) +4f(z1) +2f(x2) + 4f (x3) + - -+ + 4f (Tn—3) + 2f (Tn—2) + 4f(T0n-1) + f(D) |-

Let us once more return to my favorite example.
Example 10.3.2. Once more I return to folo e~ du. We’ll examine Sy,
S = %(1 +de 42+ 467 + 26710 £ 4672 420730 £ 47 4 2e70 4B 4 67100)

S10 ~ 0.8362143

2

Recall T1g =~ 0.8863186 and Wolfram Alpha yields folo e~ " &~ 0.8862269 so you can see we only correctly
calculated the first decimal. This is actually somewhat interesting since it is usually the case that Simpson’s
rule gives a more accurate result for a given number of approzimating regions (see the error bounds for S,
page 539 in Stewart’s 6-th Ed.). One may calculate that Soo =~ 0.886196 so at least by n = 20 the rule of
Simpson has arrived at the same accuracy as the trapezoid or midpoint rules of order 10.

!Computer Algebra System
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Example 10.3.3. [ feel bad for Simpson’s rule so I'm going to give it another chance at a new function.
Let’s calculate fol V1 + x%dx via all three methods and by the numerical integrator in Wolfram Alpha:

1
/ V14 2%dr =~ 1.074669188848 by Wolfram Alpha.
0

My ~ 1.073933
Ti0 ~ 1.076142
S10 ~ 1.074671

You can see that Simpson’s rule has 5 correct digits whereas the midpoint and trapezoid have only 3 correct
digits. You can find a link to an online calculator at my website which both calculates and graphs these rules.

Example 10.3.4. Below are a couple screen-shots of a Java Applet which calculates and graphs the left,
right, midpoint, trapezoid and Simpson’s rule. Note the website of the author is visible at the top of one of
the pictures.

Riemann Sums

Examples

type = mid-point, N =6
Riemann sum = 632154
g4
d Vs, . e
48
4 k.
1 5
3
H L
H
ol C
= L
t

10 2.0
r
sing 180 | f

f(x) = Partition with N =
ab 12
M g0 graph f{x)
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| 5E htbpe e, iath, ucla, eduf~ronmisch/Java_spplets/Rismann/inde:. htrnl

Examples

Riemann Sums

.84

A8

type = mid-point, M =6
Riemann sum = 632124
type = Simpson, N =6
Simpson sum = G32559

fix)=
ab

2.0

Sing14)

| Partition with N = | 6 \

12

g0

graph fi{x)

Finally, Wolfram Alpha weighs in with an estimate of

/12 sin(1/x)dx

—Ci(1/2) + Ci(1) + 2sin(1/2) — sin(1) ~ 0.632568
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where C'i(x) is the cosine integral function. This is one of the aspects of Wolfram Alpha I especially enjoy,
it leads you to discover new mathematics while you are solving a standard problem. Welll, I hope you've
seen enough that you could numerically approximate a definite integral. The general and careful study of

this problem is beyond this course.
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Chapter 11

Improper Integrals

Improper integrals are important to many applications where the concept of co is used to implement some
physical idealization. Or in probability, if you have a continuous random variable then the natural condi-
tion for the probability density function ¢ is ffooo ¢(x)dx = 1. In physics the divergence of functions often
represents a physically interesting quantity. For example, if E(z) is the electric field in a one-dimensional
system and E(z) — oo as z — x} then there is a positive electric charge at x = z,. The mathematics of
improper integrals are all made by combining the concept of the integral with the concept of a limit at a
point or infinity or both. Once you understand the definitions in this Chapter they are entirely natural, with
perhaps the exception of ffooo f(x)dx.

Beyond infinity, or perhaps before it, we can use the concept of improper integration to carefully define
integration of piecewise-continuous functions. The reason is subtle. Riemann integration is only defined
for closed intervals. If f(x) is piecewise defined to be fi(x) for x € [a,c) and on the other hand fa(z) for
z € (¢, b] then many calculus I instructors state that

/ab f(x)dz = /aC fi(z)dx + /cb folz)da.

However, it is cannot just mean the Riemann integraﬂ of f1 and f5. At least without some qualification this
equation is nonsenseﬂ because I cannot set up a partitition which allows us to evaluate fi(c) or fo(c). These
points need not be in the domain of f and they certainly cannot be defined for both f; and fs and yet be
distinct (if they were not equal then f would not be function). So, how should we define such an integral?
It’s not hard, we just have to introduce variable bounds and allow those bounds to tend to the point ¢ rather
than actually reach it. In practice, I don’t force students to write these limits in calculus I because in the
case of finite-jump discontinuities there is no danger of getting the wrong answerﬂ On the other hand, once
the integrand has a point of discontinuity where there is a vertical asymptote the limit is an essential detail
as application of L’Hospital’s rule and other subtle limit calculations are totally possible.

'not as we have defined it at least

2it will make perfect sense soon, we just need a simple definition to fix this hole. Actually, depending on the finer
points of your definition of integration this may already be meaningful. The point I raise here may be too picky for
the integration theory given in calculus I and II.

31 show we were correct later in this chapter, I show the limits are not really necessary for the bounded piecewise
continuous case.

319
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11.1 divergent integrands

Let me begin with a question: what is the meaning of fo d”” ? Notice it cannot just be the limit of a Riemann
sum since the function is not even defined at the first partltition point z, = a = 0 and that point gives
division by zero for the integrand 1/y/z. On the other hand, if we consider the graph then we’ll note there
might be a chance that the area bounded by x =0, z =1, y = 0 and y = 1/+/ is finite since the shape
gets very very narrow where it gets very very tall.

\

Furthermore, if ¢ > 0 then clearly the integral ft Ve is meaningful for each such value t. I propose the

——

natural definition for the integral in question is s1mply as follows:
bda ) Udx
0 \/E - t—0t+ t \/E
The expresssion above defines the improper integral on the LHS in terms of concepts on the RHS which we
have already given explicit and rigorous meaning.

Example 11.1.1.

1
7—1 1 =l 2V1 =2Vt ) =|2.
i [ =t (e ) = (v -ov7)

T’ll give a careful definition that covers the preceding example. Again, this is the natural definition because
it extends our concept in a way such that the integral still has the same essential meaning.

Definition 11.1.2. Improper integral with divergence at edge of integration interval.

Assume a < b and (a,b) C dom(f). The integral ff f(z)dz is generalized to mean the following in
the cases that either a ¢ dom(f) or b ¢ dom(f).

1. If a ¢ dom(f) however b € dom(f) then [ f(z)dz = lim;_,,+ /t (x)dz.
2. If b ¢ dom(f) however a € dom(f) then f f(x)dx = lim;_,;- f f(zx)

3. If both a,b ¢ dom(f) then we choose ¢ € (a,b) and define fa f(@)de = limy_+ [ f(z)dz +
limg_,;- ]CS f(x)dx
If any of the limits exist then we say the integral converges to the value of the limit. Moreover, if

the integral converges to a value we say it is convergent. However, if any of the limits above do
not exist then we say the mtegrdl is divergent. In the case the the limits diverge to oo we will

denote the divergence by ] f(z)dr = £o00 in cases (1.) and (2.). However, in case (3.) we say that
j f(x)dx = d.n.e. if one of the limits tends to oo while the other tends to —oo. Finally, if both

limits tend oo (—oo) then we say fa f(x)dx diverges to oo (—o0).
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You might expect that co and —oo can cancel. While that is possible, it is not possible in the context of
case (3.) above. The divegergence between the upper and lower bound are not connected in this definition.

Example 11.1.3.

1 1
dr _ lim dr _ lim <ln|m|

0o T t—0t J; I t—0+

1
> = lim (21n1—21nt> =[o0.]

¢ t—0t

This integral diverged to oco.

Example 11.1.4.

1 t
/ dr__ lim dr__ lim (lnx—1|
0

z—1 t=1-Jp x—1 t-1-

1

= 1li 2Inft -1 -2mn|0-1] | =
) = i (211 =2mip- 1)

t

This integral diverged to co.

Example 11.1.5.

1 0.5 s
1 1 1 1 1 1
/ -+ dx lim -+ dr + lim -+ dx
o \x x-—1 t—0+ J, z z—1 s=1- Jos\x x—1

0.5 s
= lim <ln|x|+ln|x—l| + lim <ln|x|+ln|x—l|
t—0+t : s—1— 0.5
= lim ( 2In|0.5| —In|¢t| +In|t — 1) + lim <1n|s| +In|js—1|—2In |0.5>
t—0t s—1—
= 00— 00
=|d.mn.e.

Notice that if we used some other middle point besides 0.5 the answer would not change. Moreover, if you
notice the pattern of the terms following from the 0.5-evaluations it is clear this cancellation will also occur in
the case of integrals which are not divergent. If this were not the case, if the integral depended on the choice
of the middle point, then the definition we gave would be meaningless. I leave the proof that the ambiguity
in the choice of ¢ does not lead to ambiguity in the integral to the reader.

The area of the shaded region was shown to diverge in the last example.
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Example 11.1.6. Recall that IBP yields that [In(z)dz = zIn(z) — z + ¢ and consider:

1 1
/ In(z)dz = lim In(z)dx
0

t—0+ t

lim (1111(1) —1—tIn(t) - t)

t—0+

—1+4+ lim

—t 1n(t)> note this is type 0oco
t—0+

) now is type co/oo thus apply L’Hospital’s Rule.

Il

|

—_
+

=

/N N7 N

=]

—~

~

SN—

T
1
= -1+ lim %)
t—0+ z
=1 i t
+ Jim ()

Il
I
—

Next we consider the case that the function has an isolated discontinuity in the domain of integration.

Definition 11.1.7. Improper integral with discontinuities in the interior of integration interval.

Assume a < ¢ < b and lim, .. f(z) # f(c). If both fcbf(x)dx € R and [; f(z)dz € R then the
integral fab f(x)dz is generalized to mean fnb flz)dz = [T f(z)dx + fcb f(z)dx . If either [7 f(z)dx

or fcb f(z)dx diverge then we say f; f(z)dx diverges. We say that f; f(z)dx = d.n.e. if one of the
improper integrals diverges to oo while the other diverges to —oo. Finally, if both diverge to oo
(—o0) then we say f; f(x)dx diverges to oo (—o0).

Suppose {a1,as,...,a,} is a finite set of discontinuities for an otherwise continuous function f and
a<a <ap <---<ap<b. are points of discontinuities for an otherwise continuous function f on

[a,b] then we define ff fl@)=[" f(z)dz + f;f f(x)dz+ -+ fabn f(x)dz.
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Example 11.1.8.

t 3

. T . dzx

= lim — + lim —
t=0- J_o T s—=0t Jo T

= I In|t| —In|—2 li In|3| -1
Jim (e —In| = 2)) + Tim (in 3] In )

= —00+ 00

- (e ]

Some students incorrectly think fEQ %daz is calculated by lim;_,q+ ( dz oy fs dm). Note:

-2 t x

—t 3
lim (/ d—x—i—/ dx):lim (ln|—t|—ln|—2|—|—ln3|—1n|t|>:ln3—ln2
t—0+\J_o T ., T t—0+

However, while this calculation is interesting, it is not the improper integral at zero. It is incorrect to assume
that we approach zero in the same way from the left and right. These are independent limits.

. b dx . 3 dx
= lim ——— + lim (7

t=1- Jo (x—1)2  so1+ x —1)2

i SLEE B -1
= lim [ —— [ m | ——
e \i—1 o0—1) T \3-1 T s

= —(—00) + 0

Example 11.1.9.

Example 11.1.10.

/3x2+3x2d i /1:172+3:z:2d Lo t2x2+3x72d L 3x2+3z72d
—————dr= lim — im — im —
o x(x?—4) T Do . x(x?—4) T e 1 z(z?—4) T e tn r(r?—4) v

Note that x = —2,2,0 are all points where the integrand is not defined due to division by zero hence we can
only approach these points. However, only 0 and 2 are within the integration region.
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Example 11.1.11. Recall 7/2 = 1.57 and sec(x) = 1/ cos(z) to understand what follows:

2 /2 2
/ sec(x)dx :/ sec(:v)dm—l—/ sec(x)dx.
1 1 /2

11.1.1 on the integration of finite jump discontinuous functions

Example 11.1.12. Notice f(x) = x/|z| is discontinuous at x = 0 since f(x) =x/ —x = —1 forz <0 and
flz)=z/x=1 forz>0.

3 0 3 ¢ 3
/ f(z)dx = / wde —|—/ zde_ lim (—=dz) + lim dx = lim (=2—t)+ lim (3—s)=1.
2 0

_o || lz| =0+ ) s—0- Jg t—0+ 5—0-

Compare the example above to the following:

[ sae= [t ot Py [

The calculation following the example is what is more common to find in calculus texts and courses, we ought
to wonder if both of these procedures always yield the same result. The answer, in the case the function
is bounded piecewise continuous, is yes. I explain why below: Suppose f has a finite jump-discontinuity
at * = ¢ and is otherwise continuous on [a,b] where ¢ € (a,b). This means that lim, ,.- f(z) = L1 and
lim,_,.+ f(z) = Ly where Ly, Ly € R and Ly # Lo. Define g by g(x) = f(z) for = € [a,c) and g(c) = Ly.
Observe that the function g is continuous on [a,c]. Apply FTC part I to obtain the existence of an an-
tiderivative G for g then apply FTC part II to find fat g(x)dx = G(t) — G(a) for any t € (a,].

0 3

—0-243-0=1
0

+x
-2

Next, define h by h(x) = f(z) for = € (¢, b] and define h(c) = Ly. Observe that the function & is continuous
on [e,b]. Apply FTC part I to obtain the existence of an antiderivative H for h then apply FTC part II to

find fsb h(z)dx = H(b) — H(s) for any s € [c,b).
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Connsider,

/abf(x)dac - /acf(x)da:+/cbf(x)da:
b

¢
lim / f(z)dz + lim f(x)dx
¢

t—ct s—c™ Jg
b
lim / g(z)dz + lim h(z)dx

t—ct s—=c” Jg

Tim (G(1) ~ Gla)) + lim (H(b) ~ H(5))
=G(c) — G(a)+ H(b) — H(c)

= /acg(x)dx—|—/cb h(z)dz.

Therefore, to integrate a piecewise-defined function with simple jump-discontinuities we can break the in-
tegral into a sum of integrals where each integral is not of the function itself, but rather the continuous
extension of the function onto the closure of the subinterval. Pragmatically, this means we need not write
limits in the case of improper integrals of the finite-jump-discontinuity type. We can calculate the antideriva-
tive of each piece, and simply sum the sub-integrals.

The especially picky reader will question how I made the first equality in the argument above. In truth, to
really understand such questions we need a more careful theory of integration. The question I raised on this
page probably is better left to a real analysis course.

The overall lesson I'd like you to take here is that we can ignore the contribution of a few points if the
points are merely finite-jump-discontinuities. On the other hand, if the points are genuine divegences for the
integrand then we have seen that more care is required.

Dr. Skoumbourdis sometimes emphasized ”you can only integrate over a closed interval” and that is what
got me started on the last page. I thought, when I break the piecewise integral into pieces those pieces are
not closed intervals so what I am calling an integral must not quite be what I usually call an integral. Or at
least, something subtle is being done with the points of discontinuity.

Those points of discontinuity are on the edge of the subintervals so it also occured to me that if we did not
use the edges for our integral then we might be able to get around the problem. For example, the midpoint
rule would never sample the endpoints so it would be well-defined even if the endpoints were not given for
the integrand. It turns out that this is precisely the reason that the midpoint rule is interesting for numerical
methods. If you want to calculate an improper integral then the midpoint rule is a nice choice because it
does not sample endpoints where the function is often not even defined. In constrast, left, right, trapezoid
and Simpsons all use boundary points of the integration region to approximate the integral.
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11.2 divergent bounds

The other type of improper integral is where the bounds are infinite. The question we begin with is what
should we mean by faoo f(z)dz ? The natural interpretation is to use this to denote the signed area bounded

bounded by y = f(x) for > a. We can calculate the area out to = t by f; f(z)dz. We want to let t — oo
to catch all the signed-area bounded by y = f(z). This brings us to the definition below:

Definition 11.2.1. Integrals with infinite bounds.

1. If f is continuous on [a,00) then we define [ f(z)dz = limy_ 0 fat f(x)dz.
2. If f is continuous on (—o00,a] then we define [ f(z)dz = lim¢,_ [, f(z)dz.
3. If f is continuous on R then we define [*_ f(z)dz = lim;, o [} f(2)dz+lim, o [ f(z)dz.

In each case if the limit exists then we say the integral is convergent, whereas if the limit does not
exist then we say it diverges. If the limit tends to +o0o in cases (1.) or (2.) then we say the integral
diverges to +oo. In case (3.) if both limits tend to co (—oo) then we say the integral diverges to
00 (—00). In case (3.) if one of the limits id divergent and the other is convergent then the integral
diverges. Finally, if the function in question is not continuous at some finite number of points we
combine this definition with the previous definition for improper integrals at points of discontinuity.

Sorry for the abundance of words, I'm simply trying to cover all the bases. One of the concepts I'm trying
to impress on you is that the words ”convergence” and ”divergence” are now also applicable to improper
integrals. Moreover, the actual calculation of of these improper integrals amounts to performing an integral
with a variable bound(s) followed by taking the limit as that bound tends to +oo. Graphically the idea is
simple enough: note below that the entire area, if it is finite, is found from adding the two areas together

/_Z flz)dx = /_loo f(z)dx + /100 flz)d

Note the choice of z = 1 as the divinding line was simply a choice. Fortunately, the result will not change for
different choices since an alternate choice amounts to cutting the same area into two different sized piecesﬂ

Example 11.2.2.

[e’e] t 1
/ zdr = lim zdr = lim [2t2 — 0} =
0

t—o0 0 t—o0

4a more careful proof of this claim is left to the interested reader.
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Example 11.2.3.

0 0
x _ : x I H 0 _ _t —
/ edac—thm edx—thm[e e}

o ——o0 [y —00

Example 11.2.4.

>~ d b od
/ v 5 = lim Y~ lim tan~!(t) — tan"1(0) | = T
0 1+x t—oo [o 1+ x2 t—o00 2

See Example 2.7.11] for the background to make the last example meaningful. Notice that the integrand

14-% — 0 as * — oo. One is tempted to suppose this is enough for such an improper integral to exist.

However, the next example shows that life is not so easy.
Example 11.2.5.
> d td
/ ' lim ' lim [ln(t) - ln(l)] =
1

xr t—00 1 T t—o00

Example 11.2.6. Let p > 1 and consider:

®dr t , 1 1 1
— = lim — = lim + = .
1 aP  tooo f xP tooo|(—p+ 1)#’*1 p—1 p—1

The preceding pair of examples prove the nontrivial portion of the proposition below:

Theorem 11.2.7. p-test for improper integrals.

1. If p > 1 then [ 92 diverges.

1 P
2. If p <1 then floo g—fg = p%l, hence it converges.

The case p = 1 is important and we will see it again.

Example 11.2.8. Refer to Example for the details of how to calculate [ Mﬁ.

/°° dx . /f dx
— = lim _—
o 4r248x+9 t-ooo fy 42?2 +8z+9
. 1 (2(t+1) 1 (2
= lim |—=tan 1< )— tan 1<> }
HOO[Q\/g VB 2V/5 V5
=|——=|= —tan — .
2v/5 2 NG

Example 11.2.9. Refer to Example for details on why

1
/ex sin(3z + 1)dz = Ee” [sin(3z + 1) — cos(3z + 1)] +c.
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I use the indefinite integral above to calculate the improper integral below:

0 0
/ e’ sin(3z 4+ 1)de = lim e’ sin(3x 4 1)dx

o t——o0 ¢

= lim {11060 [sin(1) — cos(1)] — liOet [sin(3t + 1) — cos(3t + 1)]

t——o0

sin(1) — cos(l).
10

The area illustrated below is calculated by the integral above.

Example 11.2.10. Note that [ xe *dz = —ze " + [ e *dx = —e~"(x + 1) + ¢ by IBP. Thus,

o0 t
ze ¥dr = lim re Ydx
0 t—o00 0

= lim |—e "t +1)+e %0+ 1)}

t—o0

= lim —et(t+l)] +1

t—o00 L
[ t+1
= lim |— + ] +1
t—oo | et
[ 1
t—00 L e

=[1.]

We used L’Hospital’s rule to simplify the limit of type oo/oo going from the 4" to 5! line. The area
illustrated below is calculated by the integral above.

v
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Theorem 11.2.11. Comparison test for improper integrals.

Suppose that f and g are continuous functions on [a, c0) such that 0 < f(x) < g(z) for all > a.
1. If [ g(z)dx converges then [ f(z)dx converges. Moreover, [ f(z)dz < [ g(z)dz.
2. If [ f(x)dx diverges then [ g(x)dx diverges.

Proof: To prove (1.) we remind the reader that a property of definite integrals is that they preserve inequal-
ities. In particular, 0 < f(z) < g(z) implies 0 < fat f(z)dx < fj g(x)dz. Then, the limiting process likewise
preserves this inequality hence 0 < lim;_, oo f; f(@)dr < limg_, o fj g(x)dz. Note further that f: f(z)dx is
an increasing function of ¢ since 4 f; f(z)dx = f(t) > 0 for t > a. We have that fi f(z)dz is an increasing
function of ¢ which is bounded between 0 and [~ g(z)dz € R. It follows that lim;_ fat f(z)dx exists.
Therefore, the convergence of faoo g(x)dz implies the convergence of faoo f(z)dz. T leave the proof of (2.)

to the reader. In fact, the reader may also need to supply the lemma which proves the limit of a bounded
increasing function exists. I don’t believe we have proved that result in these notes. O

Example 11.2.12. Does floo 9z converge or diverge? Notice that 0 < % < - L for all x > 1. Fur-

z—0.5 —0.5
thermore f(z) = L and g(x) = ——L~ are clearly continuous on [1,00). Observe that [ % = oo by the
p =1 test hence by the comparison theorem we find floo mj%ﬁ diverges. The area illustrates the comparison

theorem in action, the integral of the lower function diverges by the p-test for improper integrals thus the
integral of the larger function must likewise diverge.

y=1 %0
&\&&?\\’"\\?\K\T\ﬁ\\

Example 11.2.13. Notice that —e® < z% for x > 1. Furthermore, note that floo‘i—f converges by the
p = 2 improper integral test. Therefore, the integral of a function larger than —e® converges hence by the
comparison test floo —e®dx converges. Yet this is clearly false: mote the area is obviously unbounded for the

graph y = —e® for x > 1. What is the flaw in my logic? Fiz this argument. Here is a picture of the problem:
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Theorem 11.2.14. Tuil of integral is key for improper integrals.

Suppose that f is a continuous function on [a,c0) and b > a then
1. [ f(z)dx converges iff fboo f(x)dz converges.
2. [ f(z)dx diverges iff [, f(z)dx diverges.

Notice that the assumption of continuity is important since for a discontinuous functions we can find di-
vergence at finite points. For example, fl 4)2 diverges whereas f5 ”3)2 converges. We cannot just

discard the low values of x in the convergence analysis for f1 = 4)2 Ok enough about what we can’t do

let’s see what we can dd}

Example 11.2.15. Does flo; i—é’f converge or diverge? Notice

/°° dr /10 dz +/°° dz
p a? p z? 0 T?
—_—— =

1/2 99/200

Furthermore, it is clear that 1/x3 is continuous on [1,00) hence we conclude that this integral is just the tail
of the p = 3 integral which converges hence flo(f j—g converges. Moreover, in a case such as this we can even

calculate its value indirectly by [[5 %% =1/2 —99/200 = 1/200.

Remark 11.2.16. alternate solutions possible.

When analyzing convergence and divergence it is often possible to argue a point many different
ways. In this section, I do not always seek an optimal solution. Instead, I am trying to illustrate
the theorems with examples that are not overly difficult. One side-effect of this approach is that
currently we have no need to use the Tail theorem or the comparison theorem for the examples above.
We could have just straight calculated the improper integrals and came to the same conclusion with
less thinking. However, we will soon consider examples where the integral is simply not calculatable
in closed form. Instead our approach will be to see how it is like something we can calculate then use
the tail, comparison and/or the linearity theorem (given later in this section) to circumvent direct
calculation of the improper integral.

Sproof of the tail theorem is left to the reader, I don’t think this is a hard one
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Example 11.2.17. Does faoo m converge for a sufficiently large choice of a? Note, z* 4 822 +3 > 0
thus we can choose a = 0 in this case. The integrand

notice that for x > 0

m is clearly continuous on [0,00). Moreover,

1 1

— <= ‘ j ‘ :
s 3 [think about it, I made the denominator smaller]

Observe fooo i—‘ff converges because it it the tail of the p = 4 integral which we know converges. Furthermore,
0< m < % hence the comparison theorem applies and we find fooo % converges.

The inequality in the last example was pretty easy to see. The next example, which concerns faoo %

is much harder due to the change of sign. We would like to compare this integral to the p = 4 integral.
However, the approach used in the last example doesn’t quite work because we have the wrong inequality.
Notice that for z > a

1 1

— < [think about it, I made the denominator smaller on the RHS].
zt ~ ozt —822 -3

This inequality is correct, it’s just not what we need for our comparison theorem argument. The fact that
the integral of the LHS converges doesn’t say anything about integral of the RHS. We need to find a different
argument for the example below.

Example 11.2.18. Does faoo % converge for a sufficiently large choice of a? Consider that x* —

822 — 3 =0 is a quadratic equation in 2 and the solutions are

o 8TVBIET2 o, 8- /6112
2 2

Note that % > 0 whereas 875/% < 0 thus we find only two real solutions to the equation x* —8x% —3 = 0.

I’ll give them labels for our convenience:

8 + /76 8+ /76
M= =

We can calculate A1 < 3. Thus, we know there is no zero for the denominator of m on [3,00) hence
the function is continuous and positive. Moreover, if x > 3 then clearly x> — \; > 1 thus

1 B 1 11
rt =822 -3 (22— A\)(@2—X2) 22— Ay a2’

We apply the comparison theorem to argue that fgoo % converges since fgoo i—;” is the tail of the p = 2

integral which is known to converge. We can apply the comparison theorem because we have shown the
integrands are continuous and positive on [3,00) and satisfy the needed inequality of m < x% for all

x € [3,00).

There are many techniques to use here. Certainly factoring polynomials is a great tool and sign charts help
to unravel the non-linear inequalities. The idea that, for a positive fraction, increasing the denominator
makes a fraction smaller whereas decreasing the denominator makes it larger is very important to keep in
mind. Finally, the goal to reduce to a p-type integral for the purpose of comparison saves us the trouble
of integration. However, there are other examples where an integration is likely the only way to go. For
example:
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Example 11.2.19. Does the integral below converge or diverge?

/°° e*dx

1 sin(z) 4 e%®

The sine function is bounded by —1 < sin(x) < 1 and e2* > e? for x > 1 since the exponential function is
increasing. We find that sin(z) + €2* < 1+ €2* on the other hand the function clearly positive

since the sin(x) + e > _1+4e*®>—-1+4+e2>0. We argue that for all x > 1

__ e
sin(z)+e2®

x x

e . e
~ 1+e2* ~ sin(z) + 20’

Notice that we can integrate the function above by making a u = e* subsitution:

e*dx du 1
/m:/mzm (") +e.

< e*dx . toetdy
2r lim 2x
1 l4e t=oo J1 14e

Hence we calculate

— lim [tan_l(et) — tan~(e)

t—o0

™ -1
= — —tan “(e).

T o)

e’dx
sin(z)+e?®

due to our calculations here we can even reason that 0 < floo ﬁ <3- tan’l(e).

Therefore, floo % converges. It follows by the comparison theorem that floo converges. Moreover,

Theorem 11.2.20. Linearity for improper integrals.

If [ f(z)dz and [ g(x)dx converge then for each ¢ € R we find [°[f(z) + cg(z)]dx converges

" /:O [f(x) + cg(x)} do = /aoo F@)de + c/aoo o(z)dz.

On the other hand, if faoo f(z)dx diverges then faoo cf(x)dz also diverges for any ¢ € R such that
c#0. Ifc>0and [ f(x)de = +oo then we likewise find [ f(z)de = +oo. If ¢ < 0 and
[ f(#)dx = fo0 then we find [ cf (z)dz = Foo.

I just made use of the mathching + with F convention. As an alternate example of its use note you can
express cos(A + B) = cos(A) cos(B) — sin(A) sin(B) and cos(A — B) = cos(A) cos(B) + sin(A) sin(B) with
just a single equation in the matching £ notation: cos(4 + B) = cos(A) cos(B) F sin(A) sin(B). Notations
aside, I hope the theorem above is entirely reasonable in your opinion. The proof stems primarily from the
corresponding linearity rules for limits at oo and the details are left to the reader. This is a very useful
theorem. We could take any pair of examples and splice them together with this theorem. I conclude with
just one such example:

Example 11.2.21. Does the integral below converge or diverge?

g
1 322 sin(z) +e2®
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We know this converges because this is just a linear combination of the example above the theorem and a
stimple p = 2 integral multiplied by 1/3. In particular, using our work in the previous example,

/oo 1 N 2e” p 1 /°° dx 49 /°° e® d
—+———|do. == — ———dx
1 322 sin(z) + e2® 73 1 a? 1 sin(z) 4 e?®

1
=5 + 7 — 2tan"*(e).

The misuse the linearity theorem is often a source of logical weakness for students. For a bad example:

/ <w—x>dz—/ %—/ rdr = —00 + 00
1 1 1

At which point some students will choose 0 and others will choose —oo, yes others —oco/2. There are many
wrong choices, but they all stem from the assumption that you can apply the linearity theorem in the
divergent case and it is simply false. We can only split an improper integral into a sum of new improper
integrals when the new integrals actually converge. Otherwise, we beg all sorts of questions about how we
should go about defining arithemetic for co. We will not engage in such a discussion. Well, I think this is a
good start. I hope you learn more as you work the homework.

Example 11.2.22. By the way, here’s a problem I don’t know how to solve with our current methods:

/ < dx

1 wxsin(x)’

I want to say it is convergent, but, the nonlinearity of the % threatens the symmetry of the sin(z)-induced
cancellation. On the other hand, what happens with

/°° sin(z)dz
1 z .

Both of these are in some sense on the bubble of the p = 1 case which is where many of the most fascintating
and challenging examples emerge.
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Chapter 12

Curves

In this short chapter we analyze the concept of a curve from the three major viewpoints prevalent in analytic
geometry. For now, we use only Cartesian coordinatesﬂ The three views of a curve are:

1. a graph of a function; graph(f) = {(x,y) | y = f(x),z € dom(f)}
2. alevel curve; Cy, = {(z,y) | F(z,y) = k}
3. a parametrized curve; C' = {(x(t),y(t)) | t € J C R}

These views are not mutually exclusive and each has their advantange and disadvantage. We desire you
understand all three in this course. Experiment and question is key, you have to discover these concepts for
yourself. T'll tell you what I think, but don’t stop with my comments. Think. Ask your own questions.

12.1 graphs
Let’s begin by reminding ourselves of the definition of a graph:

Definition 12.1.1. Graph of a function.

Let f: dom(f) — R be a function then

graph(f) = {(z, f(x)) | © € dom(f)}.

We know this is quite restrictive. We must satisfy the vertical line test if we say our curve is the graph of a
function.

Example 12.1.2. To form a circle centered at the origin of radius R we need to glue together two graphs. In
particular we solve the equation x> + y* = R? for y = VR? — 22 ory = —V/R?2 — 2. Let f(z) = VR? — 22
and g(x) = —v R? — 22 then we find graph(f) U graph(g) gives us the whole circle.

Example 12.1.3. On the other hand, if we wish to describe the set of all points such that sin(y) = x we
also face a similar difficulty if we insist on functions having independent variable x. Naturally, if we allow
for functions with y as the independent variable then f(y) = sin(y) has graph graph(f) = {(f(y),y) | y €

Lall of these constructions find parallel versions when other coordinates such as polar, skew-linear or hyperbolics
are used to describe R?.

335
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dom(f)}. You might wonder, is this correct? I would say a better question is, ”is this allowed?”. Different
books are more or less imaginative about what is permissible as a function. This much we can say, if a shape
fails both the vertical and horizontal line tests then it is not the graph of a single function of x ory.

y

z = sin(y)

note the green curve is

y =sin"\(z)

which is the inverse function

for f(z) = sin(z) on =5 <z < 3.

Example 12.1.4. Let f(x) = mxz + b for some constants m,b then y = f(x) is the line with slope m and
y-intercept b.

12.2 level curves

Level curves are amazing. The full calculus of level curves is only partially appreciated even in calculus III,
but trust me, this viewpoint has many advantages as you learn more. For now it’s simple enough:

Definition 12.2.1. Level Curve.

A level curve is given by a function of two variables F : dom(F) C R?> — R and a constant k. In
particular, the set of all (z,y) € R? such that F(z,y) = k is called the level-set of F, but more
commonly we just say F(z,y) = k is a level curve.

In an algebra class you might have called this the "graph of an equation”, but that terminology is dead to
us now. For us, it is a level curve. Moreover, for a particular set of points C' C R? we can find more than
one function F' which produces C' as a level set. Unlike functions, for a particular curve there is not just one
function which returns that curve. This means that it might be important to give both the level-function F'
and the level k to specify a level curve F(z,y) = k.

Example 12.2.2. A circle of radius R centered at the origin is a level curve F(x,y) = R? where F(x,y) =
22 +y2. We call F the level function (of two variables).

Example 12.2.3. To describe sin(y) = x as a level curve we simply write sin(y) — x = 0 and identify the
level function is F(x,y) = sin(y) — x and in this case k = 0. Notice, we could just as well say it is the level
curve G(z,y) = 1 where G(z,y) = x — sin(y) + 1.

Note once more this type of ambiguity is one distinction of the level curve langauge, in constrast, the graph
graph(f) of a function y = f(x) and the function f are interchangeable. Some mathematicians insist the
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rule z — f(x) defines a function whereas others insist that a function is a set of pairs (x, f(z)). I prefer the
mapping rule because it’s how I think about functions in general whereas the idea of a graph is much less
useful in general.

Example 12.2.4. A line with slope m and y-intercept b can be described by F(x,y) = mx +b—y = 0.
Alternatively, a line with x-intercept x, and y-intercept y, can be described as the level curve G(x,y) =
L4 Yo=1,

Zo Yo

Example 12.2.5. Level curves need not be simple things. They can be lots of simple things glued together
in one grand equation:

F(z,y) = (x —y)(z* + 3> — 1)(2y — 1)(y — tan(z)) = 0.

Solutions to the equation above include the line y = x, the unit circle 2% +y? = 1, the tilted-hyperbola known
more commonly as the reciprocal function y = % and finally the graph of the tangent. Some of these intersect,
others are disconnected from each other.

It is sometimes helpful to use software to plot equations. However, we must be careful since they are not
as reliable as you might suppose. The example above is not too complicated but look what happens with
Graph:

Note: 1 crbshed Graph with thiz/eurve,
the line ghould extend through the origin.

Wolfram Alpha shares the same fate:

Implicit plot

| Look Wolfram Alpha

| missed the curve at the arigin

| These are the dangers of numerically
generated graphics. They can mislead

% Clearly y=x is solution it should appear in

L the plot

7
A

(=Y )r(x 24y " 2=1)rixey—L)r(y -tanix))=0 % Wolfram|pha

I hope Mathematica proper fairs better...

Theorem 12.2.6. any graph of a function can be wriiten as a level curve.

If y = f(x) is the graph of a function then we can write F(z,y) = f(z) —y = 0 hence the graph
y = f(x) is also a level curve.
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Not much of a theorem. But, it’s true. The converse is not true without a lot of qualification. Its a little
harder. Basically, the theorem below gives a criteria for when we can undo a level curve and rewrite is as a
single function of .

Theorem 12.2.7. sometimes a level curve can be locally represented as the graph of a function.

Suppose (Z,,Yo) is a point on the level curve F(z,y) = k hence F(z,,y,) = k. We say the level
curve F(z,y) = k is locally represented by a function y = f(x) at (z,,y,) iff F(z, f(z)) =k
for all x € B;s(x,) for some § > 0. Claim: if

(o) = - Faonn))

and the ‘Z—I; is continuous near (z,,y,) then F'(z,y) = k is locally represented by some function near
(Zos Yo)-

£0

Y=Yo

The theorem above is called the implicit function theorem and its proof is nontrivial. Its proper state-

ment is given in Advanced Calculus (Math 332). I'll just illustrate with the circle: F(z,y) = 2? + y? = R?
has %—Z = 2y which is continuous everywhere, however at y = 0 we have %—Z = 0 which means the implicit

function theorem might fail. On the circle, y = 0 when © = £ R which are precisely the points where we
cannot write y = f(x) for just one function. For any other point we may write either y = v R? — 22 or
y = —V R2 — 22 as a local solution of the level curve.

y= Rz — ;2
: 4
W

Remark 12.2.8. finding the formula for a local solution generally a difficult problem.

The implicit function theorem is an existence theorem. It merely says there exists a solution given a
certain criteria, howeve it does not tell us how to solve the equation to find the formula for the local
function. Sometimes we are just content to have an equation which implicitly defines a function
of z. For example, most sane creatures do not try to solve y° 4+ y* +3y?> —y + 1 = z for y. Or
sin(zy) = 3 +y. When faced with such curves we prefer the level curve description. We've already
done some work on this in Calculus I when we did implicit differentiation. The idea of implicit
differentiation is only logical when we can write y = f(x), so we must rely on the implicit function
theorem as a backdrop to any implicit differentiation problem (see if you forgot about implicit
differentiation).
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12.3 parametrized curves

The idea of a parametrized curve is probably simpler than the definition below appears. In short, we want to
take the real number line, or some subset, and paste it into the plane. Think of taking a string and placing
it on a table. You can place the string in a great variety of patterns. Imagine the string has little markers
placed along it which say t = 1, ¢ = 2 etc... the value of this label will tell us at which point we are on the
string?} That label is called the ”parameter”.

Definition 12.3.1. Parametrization of a curve.

Let C' be some curve in the plane. A parametrization of the curve C' is a pair of functions f,g: J C
R — R such that C = {(f(¢),9(¢)) | t € J}. In other words, a parametric curve is a mapping from
J C R — R? given by the rule t — (f(t),g(t)) for each t € J. We say that ¢ is the parameter and
that the parametric equations for the curve are x = f(t) and y = g(¢). In the case J = [a,b] we say
that (f(a),g(a)) is the initial point and (f(b), g(b)) is the terminal point. We often use the notation
x for f and y for g when it is convenient. Furthermore, the notation ¢ is just one choice for the label
of the parameter, we also may use s or A or other demarcations.

Finding the parametric equations for a curve does require a certain amount of creativity. However, it’s
almost always some slight twist on the examples I give in this section.

Example 12.3.2. Let x = Rcos(t) and y = Rsin(t) for t € [0,2n]. This is a parametrization of the circle
of radius R centered at the origin. We can check this by substituting the equations back into our standard
Cartesian equation for the circle:

2% +y? = (Rcos(t))? + (Rsin(t))? = R?(cos?(t) + sin*(t))

Recall that cos®(t) + sin®(t) = 1 therefore, x(t)? + y(t)> = R? for each t € [0,2x]. This shows that the
parametric equations do return the set of points which we call a circle of radius R. Moreover, we can identify
the parameter in this case as the standard angle from standard polar coordinates.

f y z = Rcos(t)
y = Rsin(t)

=

G — i <
[0, 2]

2the parameter can also be thought of as time as the next chapter discusses at length
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Example 12.3.3. Let x = Rcos(e') and y = Rsin(e') fort € R. We again cover the circle at t varies since it
is still true that (R cos(e?))? + (Rsin(e?))? = R?(cos?(e!) +sin(e!)) = R2. However, since range(et) = [1, 00)
it 1s clear that we will actually wrap around the circle infinitly many times. The parametrizations from this
example and the last do cover the same set, but they are radically different parametrizations: the last example
winds around the circle just once whereas this example winds around the circle co-ly many times.

Y 7 = Rcos(ch)

y = Rsin(e)

3
Lo
A a3

(—00,0)

Example 12.3.4. Let © = Rcos(—t) and y = Rsin(—t) for ¢t € [0,2n]. This is a parametrization of the
circle of radius R centered at the origin. We can check this by substituting the equations back into our
standard Cartesian equation for the circle:

22 +y? = (Rcos(—t))? + (Rsin(—t))? = R?(cos?(—t) 4 sin®(—t))

Recall that cos?(—t) + sin®(—t) = 1 therefore, 2(t)> + y(t)> = R? for each t € [0,2x]. This shows that the
parametric equations do return the set of points which we call a circle of radius R. Moreover, we can identify
the parameter an angle measured C'WE| from the positive x-axis. In contrast, the standard polar coordinate
angle is measured CCW from the postive x-azis. Note that in this example we cover the circle just once, but
the direction of the curve is opposite that of Example[12.3.3

f Y z = Rcos(—t)
y = Rsin(—t)
X
G S < >
[O,Qﬂ

-

Y

The idea of directionality is not at all evident from Cartesian equations for a curve. Given a graph y = f(x)
or a level-curve F(z,y) = k there is no intrinsic concept of direction ascribed to the curve. For example, if I

3CW is an abbreviation for ClockWise,whereas CCW is an abbreviation for CounterClockWise.
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ask you whether 22 + y? = R? goes CW or CCW then you ought not have an answer. I suppose you could
ad-hoc pick a direction, but it wouldn’t be natural. This means that if we care about giving a direction to
a curve we need the concept of the parametrized curve. We can use the ordering of the real line to induce
an ordering on the curve.

Definition 12.3.5. oriented curve.

Suppose f,g:J CR — R are 1 — 1 functions. We say the set {(f(¢),g(t)) | t € J} is an oriented
curve and say t — (f(t),g(t)) is a consistently oriented path which covers C. If J = [a,b] and
(f(a),g(a)) =pand (f(b),g(b)) = q then we can say that C' is a curve from to p to g.

I often illustrate the orientation of a curve by drawing little arrows along the curve to indicate the direction.
Furthermore, in my previous definition of parametrization I did not insist the parametric functions were
1 — 1, this means that those parametrizations could reverse direction and go back and forth along a given
curve. What is meant by the terms ”path”, "curve” and ”parametric equations” may differ from text to
text so you have to keep a bit of an open mind and try to let context be your guide when ambguity occurs.
I will try to be uniform in my langauge within this course.

Example 12.3.6. The line y = 3x + 2 can be parametrized by © =t and y = 3t + 2 fort € R. This
induces an orientation which goes from left to right for the line. On the other hand, if we use x = —\ and
y = =3\ + 2 then as X\ increases we travel from right to left on the curve. So the \-equations give the line
the opposite orientation.

4y =1
y=3t+2
> . :
(~o0.00)
Y
LAY =-A
y=—-314+2

k Kol
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To reverse orientation for x = f(t),y = g(t) for t € J = [a,b] one may simply replace ¢ by —t in the
parametric equations, this gives new equations which will cover the same curve via © = f(—t),y = g(—t) for
t € [—a,—b].

Example 12.3.7. The line-segment from (0, —1) to (1,2) can be parametrized by x =t and y = 3t — 1 for
0 <t < 1. On the other hand, the line-segment from (1,2) to (0,—1) is parametrized by x = —t,y = =3t — 1
for =1 <t <0.

Ay r=t
y=3t-1
/—\ ‘f
X
[
[0,1]
4y e
y=-3-1
/\ ‘f
X
o—0 <t =
[0,1]
Y

The other method to graph parametric curves is simply to start plugging in values for the parameter and
assemble a table of values to plot. I have illustrated that in part by plotting the green dots in the domain
of the parameter together with their images on the curve. Those dots are the results of plugging in the
parameter to find corresponding values for x,y. I don’t find that is a very reliable approach in the same
way I find plugging in values to f(z) provides a very good plot of y = f(x). That sort of brute-force
approach is more appropriate for a CAS system. There are many excellent tools for plotting parametric
curves, hopefully I will have some posted on the course website. In addition, the possibility of animation
gives us an even more exciting method for visualization of the time-evolution of a parametric curve. In the
next chapter we connect the parametric viewpoint with physics and such an animation actually represents
the physical motion of some object. My focus in the remainder of this chapter is almost purely algebraic, I
could draw pictures to explain, but I wanted the notes to show you that the pictures are not necessary when
you understand the algebraic process. That said, the best approach is to do some combination of algebraic
manipulation/figuring and graphical reasoning.
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Remark 12.3.8. Ahhhhhh! what ist 297

If you are at all like me when I first learned about parametric curves you're probably wondering
what is ¢ 7 You probably, like me, suppose incorrectly that ¢ should be just like z or y. There is
a crucial difference between = and y and ¢. The notations x and y are actually shorthands for the
Cartesian coordinate maps z : R? — R and y : R> — R where z(a,b) = a and y(a,b) = b. When I
use the notaion = 3 then you know what I mean, you know that I'm focusing on the vertical line
with first coordinate 3. On the other hand, if I say ¢ = 3 and ask where is it? Then you should say,
you question doesn’t make sense. The concept of ¢ is tied to the curve for which it is the parameter.
There are infinitely many geometric meanings for ¢. In other words, if you try to find ¢ in the
xy-plane without regard to a curve then you’ll never find an answer. It’s a meaningless question.

On the other hand if we are given a curve and ask what the meaning of ¢ is for that curve then we
ask a meaningful question. There are two popular meanings.

1. the parameter s measures the arclength from some base point on the given curve.
2. the parameter ¢ gives the time along the curve.

In case (1.) for an oriented curve this actually is uniquely specified if we have a starting point. Such
a parameterization is called the arclength parametrization or unit-speed parametrization of a
curve. These play a fundamental role in the study of the differential geometry of curves. In case
(2.) we have in mind that the curve represents the physical trajectory of some object, as t increases,
time goes on and the object moves. I tend to use (2.) as my conceptual backdrop. But, keep in
mind that these are just applications of parametric curves. In general, the parameter need not be
time or arclength. It might just be what is suggested by algebraic convenience: that is my primary
motivator in this chapter.

12.4 converting to and from the parametric viewpoint

Let’s change gears a bit, we’ve seen that parametric equations for curves give us a new method to describe
particular geometric concepts such as orientability or multiple covering. Without the introduction of the
parametric concept these geometric ideas are not so easy to describe. That said, I now turn to the question
of how to connect parametric descriptions with Cartesian descriptions of a curve. We'd like to understand
how to go both ways if possible:

1. how can we find the Cartesian form for a given parametric curve?
2. how can we find a parametrization of a given Cartesian curve?

In case (2.) we mean to include the ideas of level curves and graphs. It turns out that both questions can
be quite challenging for certain examples. However, in other cases, not so much: for example any graph
y = f(z) is easily recast as the set of parametric equations z = ¢t and y = f(t) for ¢ € dom(f). For the
standard graph of a function we use x as the parameter.
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12.4.1 how can we find the Cartesian form for a given parametric curve?

Example 12.4.1. What curve has parametric equations x = t for y = t2 for t € R? To find Cartesian
equation we eliminate the parameter (when possible)

==y = y=2?

Thus the Cartesian form of the given parametrized curve is simply y = 2.
Example 12.4.2. Ezample 15.2.2: Find parametric equations to describe the graph y = /x + 3 for 0 <z <
0o. We can use x = t? and y = \/t2 + 3 fort € R. Or, we could use z = X and y = VX + 3 for A € [0,00).

Example 12.4.3. What curve has parametric equations © =t for y = t> for t € [0,1]? To find Cartesian
equation we eliminate the parameter (when possible)

t2:x2=y = y==x

Thus the Cartesian form of the given parametrized curve is simply y = x2, however, given that 0 <t < 1
and x =t it follows we do not have the whole parabola, instead just y = x2 for 0 < x < 1.

Example 12.4.4. Identify what curve has parametric equations x = tan~1(t) and y = tan=1(t) for t € R.
Recall that range(tan=t(t)) = (—m/2,7/2). It follows that —7/2 < x < /2. Naturally we just equate
inverse tangent to obtain tan~'(t) = y = x. The curve is the open line-segment with equation y = x for
—7m/2 < x < w/2. This is an interesting parameterization, notice that as t — oo we approach the point
(m/2,m/2), but we never quite get there.

Example 12.4.5. Consider x = In(t) and y = e* — 1 for t > 1. We can solve both for t to obtain
t=e"=In(y+1) = y=—-1+explexp(x)).

The domain for the expression above is revealed by analyzing x = In(t) for t > 1, the image of [1,00) under
natural log is precisely [0,00); In[1, 00) = [0, c0).

Example 12.4.6. Suppose x = cosh(t) — 1 and y = 2sinh(t) + 3 for t € R. To eliminate t it helps
to take an indirect approach. We recall the most important identity for the hyperbolic sine and cosine:
cosh?(t) —sinh?(t) = 1. Solve for hyperbolic cosine; cosh(t) = z+1. Solve for hyperbolic sine; sinh(t) = 13
Now put these together via the identity:
—3)2
cosh?(t) —sinh?(t) =1 = (z+1)%— % =1

Note that cosh(t) > 1 hence x +1 > 1 thus x > 0 for the curve described above. On the other hand y is free
to range over all of R since hyperbolic sine has range R. You shoulﬂ recognize the equation as a hyperbola
centered at (—1,3).

4many students need to review these at this point, we use circles, ellipses and hyperbolas as examples in this
course. I'll give examples of each in this chapter.
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12.4.2 how can we find a parametrization of a given Cartesian curve?

I like this topic more, the preceding bunch of examples, while needed, are boring. The art of parameterizing
level curves is much more fun.

Example 12.4.7. Find parametric equations for the circle centered at (h,k) with radius R.

To begin recall the equation for such a circle is (x — h)? + (y — k)? = R%. Our inspiration is the identity
cos(t) +sin?(t) = 1. Let x — h = Rcos(t) and y — k = Rsin(t) thus

’xzh—!—Rcos(t)‘ and ’y:k‘—i—Rsin(t).‘

I invite the reader to verify these do indeed parametrize the circle by explicitly plugging in the equations into
the circle equation. Notice, if we want the whole circle then we simply choose any interval for t of length 27
or longer. On the other hand, if you want to select just a part of the circle you need to think about where
sine and cosine are positive and negative. For example, if I want to parametrize just the part of the circle

for which x > h then I would choose t € (-5, 7).

The reason I choose that intuitively is that the parametrization given for the circle above is basically built
from polar coordinate&ﬂ centered at (h, k). That said, to be sure about my choice of parameter domain I
like to actually plug in some of my proposed domain and make sure it matches the desired criteria. I think
about the graphs of sine and cosine to double check my logic. I know that cos(—%, %) = (0,1] whereas
sin(—%, %) = (=1,1), I see it in my mind. Then I think about the parametric equations in view of those
facts,

x = h+ Rcos(t) and y =k + Rsin(t).

I see that z will range over (h,h + R] and y will range over (k — R,k + R). This is exactly what I should
expect geometrically for half of the circle. Visualize that x = h is a vertical line which cuts our circle in
half. These are the thoughts I think to make certain my creative leaps are correct. I would encourage you to
think about these matters. Don’t try to just memorize everything, it will not work for you, there are simply
too many cases. It’s actually way easier to just understand these as a consequence of trigonometry, algebra
and analytic geometry.

Example 12.4.8. Find parametric equations for the level curve x2 + 2z + iy2 = 0 which give the
ellipse a CW orientation.

To begin we complete the square to understand the equation:

1 1
m2+2x+1y2:0 = (x+1)2+1y2:1.
We identify this is an ellipse centered at (—1,0). Again, I use the pythagorean trig. identity as my guide: T
want (z+1)? = cos?(t) and 1y* = sin®(t) because that will force the parametric equations to solve the ellipse
equation. However, I would like for the equations to describe CW direction so I replace the t with —t and
propose:

’a: = —1+ cos(—t) ‘ and y = 2sin(—t)

If we choose t € [0,2m) then the whole ellipse will be covered. I could simplify cos(—t) = cos(t) and sin(—t) =
—sin(t) but I have left the minus to emphasize the idea about reversing the orientation. In the preceding
example we gave the circle a CCW orientation.

Swe will discuss further in a later section, but this should have been covered in at least your precalculus course.
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Example 12.4.9. Find parametric equations for the part of the level curve 2% — y? = 1 which is
found in the first quadrant.

We recognize this is a hyperbola which opens horizontally since x = 0 gives us —y> = 1 which has no real
solutions. Hyperbolic trig. functions are built for a problem just such as this: recall cosh?(t) — sinh?(t) = 1
thus we choose x = cosh(t) and y = sinh(t). Furthermore, the hyperbolic sine function sinh(t) = L (et—e™?) is
everywhere increasing since it has derivative cosh(t) which is everywhere positive. Moreover, since sinh(0) = 0

we see that sinh(t) > 0 for t > 0. Choose non-negative t for the domain of the parametrization:

(@ =cosh(t), y=sinh(t), te[0,00).|

Example 12.4.10. Find parametric equations for the part of the level curve z2 — y?> = 1 which
is found in the third quadrant.

Based on our thinking from the last example we just need to modify the solution a bit:

’x = — cosh(t), y = sinh(t), t € (—o0,0]. ‘

Note that if t € (—o00,0] then — cosh(t) < —1 and sinh(t) < 0, this puts us in the third quadrant. It is also
clear that these parametric equations to solve the hyperbola equation since

(= cosh(t))? — (sinh(t))? = cosh®(t) — sinh?(t) = 1.

The examples thus far are rather specialized, and in general there is no method to find parametric equations.
This is why I said it is an art.

Example 12.4.11. Find parametric equations for the level curve z2y% =z — 2.

This example is actually pretty easy because we can solve for y* = 222 hence y = + 2722. We can choose
T as parameter so the parametric equations are just
t—2
r=t andy= P
fort > 2. Or, we could give parametric equations
t—2
r=1t andy=— 2

for t > 2. These parametrizations simply cover different parts of the same level curve.



Chapter 13

Calculus of Parametrized Curves

In the preceding chapter my intention was to introduce you to the basic mathematical structure of parametrized
curves and argue for why they are mathematically necessary. In this chapter we take the next step: we learn
what we can do with parametrized curves in the plane. In particular, we study the physics of motion from
this viewpoint. Parametric equations are the natural choice for physics because in physics we gain a mean-
ing for the parameter. In classical nonrelativistic physics the parameter is time. The nice thing about the
parametric viewpoint is that there is no preference between x or y. Motion in the z-direction and motion in
the y-direction are both covered by the same calculus. To fully appreciate this formalism it helps to think
of the  and y equations together as a single object. This is precisely what the vector formalism does for
us. In addition, vectors play an important role in both physics and calculus III. In this course we will work
primarily with two-dimensional vectors. The notation I'll use is as follows:

1. (a,b) is a point in R?
2. < a,b> is a vector in R?

A vector is a directed line segment whereas a point is a point. Vectors you can move around the plane
whereas a point is stuck.

Usually in applications we can
move the vectors around. In this

view the vectors pictured are all

the "same" vector.

These are our conventionsl]

Loften points and vectors are identified since they are in 1-1 correspondance. Moreover, you could think about
vectors which are stuck in place. The conventions I adopt here are simply to avoid a multiplication of notation.

347
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!4'

(w1, ws)
Often in applications we make an
indentification of the vectors based
at the origin and points. In this
view the vectors pictured are the
"same" as the points to which they
point.

(171-‘ UQ)

w

{wr, wa)

7 = <U]_,’U2>

13.1 vectors in a nutshell

Definition 13.1.1. vector terminology.

Given two points p = (p1,p2) and ¢ = (q1, ¢2) we can construct the vector from p to ¢ by

]ﬁ:< q1 —P1,42 —p2 > .

We call directed line segments vectors and denote the set of all such objects by V', we also write
a little arrow over such objects to emphasize that they are vectors. If v € V then we can write
the vector in Cartesian form v =< wvy,v9 >. We say vy is the z-component of ¢ and vy is the
y-component of ¥. Two vectors are equal iff both the z and y components are equal.

R=(Ry, Ry)

QR =(Ri - QiR - Q)

Pl=(Ri - P\, s - P2)
/ Q=(@1.Q)

P=(P,P)

The main thing to remember is that a vector has both a length and a direction. However, it is often more
convenient to think of the vector in terms of it Cartesian components. The definition that follows tells us
how to work with vectors. They’re really quite simple:
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Definition 13.1.2. vector addition, subtraction, lengths and standard angles.

Suppose < v1,vy >, < wy,ws >€ V and ¢ € R we define
1. addition of vectors is done component-wise; < vy,vy > + < wi,ws >=< V1 + Wy, V2 + wWa >.
2. subtraction of vectors is done component-wise; < v1,v2 > — < Wy, Wy >=< V1 — W1, Vg — W >.
3. scalar multiplication is defined by; ¢ < vy, vy >=< cvy, cvg >.
4

. the length of a vector is defined to by
| < w2 > || = v/ (01)% + (v2)?

Moreover, if ¥ =< v1,v9 > then we also write v = ||v||. If ¥ #< 0,0 > then the unit vector
in the v-direction is a vector of length one denoted with a hat: © = %17. We can always write
v = v0 for a nonzero vector. In words, v is the magnitude and © is the direction vector.

5. the standard angle of a nonzero vector < v1,ve > is an angle 6 such that

v1 = v cos(6) and vy = vsin(f).

I have made a point in (5.) to help you avoid the pitfalls of carelessly solving tan(f) = %2 for § = tan~'(%2).

v v
This formula is only correct for angles that point in quadrants I and IV whereas (5.) needs no qualiﬁcaticl)n.

vsin®) vsin(6)

v cos(0)

The definition for vector addition is also very natural if you look at the picture below:

This illustrates the "tip-to-tail" or

"head to tail" method to

graphically add vectors. The sum

of the two red vectors gives the
<u71, U}Q> resultant green vector.

@

m = <7)1 +wy, v+ w2>

7 = <Z)17 ’02>
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Example 13.1.3. Let ¥ =< 1,2 > and W =< 3,4 > then we can calculate:

T+W =<1+43,24+4>=<4,6>
T—w =<1-3,2-4>=<-2,-2>= -2<1,1>
20-30 = 2<1,2>-3<3,4>=<24>-<9,12>=<-7,-8>

Note that v = /1 +4 = /5 and w = \/9+ 16 = 5. However, the length of ¥ + W is not v 4+ w. Instead,
|7+ W] = <4,6>]] =16+ 36 = v/52.

Example 13.1.4. Find a vector of length 6 in the same direction as v =< 1,1 >.. Let’s call the
vector were trying to find w. If W points in the same direction as U then there exists some constant k > 0

such that W = kv =< k,k >. We also want w = 6 thus 6 = Vk2 + k2 = kv/2. Therefore, W = % <1,1>.

Example 13.1.5. The standard angle for < —1,—1 > is an angle 0 such that —1 = v/2cos(0) and —1 =

N

V2sin(0). We must solve cos(0) = —1/+/2 and sin(0) = —1/+/2. The solution is | 0 1

. (in quadrant III)

Note tan=1(—1/ — 1) = 7 is not the correct angle in the preceding example. You have to think about
both components when determining standard angle. The inverse tangent will mislead you unless you really

understand what you are doing.

Example 13.1.6. The standard angle for < —/3,1 > is an angle 0 such that —/3 = 2cos(0) and 1 =

5
2sin(0). We must solve cos() = —2/v/3 and sin(0) = 1/2. The solution is |0 = % . (in quadrant II)
Once more, the inverse tangent fails us since tan~='(—1/v/3) = = - To use inverse tangent correctly you

must adjust answers when they ought to be in quadrants IT and III.

13.2 calculus for vector-valued functions

A vector valued function of a real variable is an assignment of of vector for each real number in some domain.
It’s a mapping t — <f(t),g(t)> for each t € J C R.

Definition 13.2.1. vector-valued functions.

We say v is a vector-valued function of a real variable if v : J C R — V is a function. In addition
if U(t) =< v1(¢),v2(t) > then we say v; is the z-component function of ¥ and v, is the y-component
function of .

If our vectors are all based from the origin outward then we can write V' = R?. Think about it: each point
is naturally identified with the vector which points from the origin out to the point. The identification
amounts to saying that < a,b >= (a,b) in our current notation. With this identification in mind we can
write parametric curves in nice vector notation:

Example 13.2.2. Recall the circle centered at the origin of radius R had parametric equations x = R cos(t)
and y = Rsin(t) for t € [0,27]. We can group these together and simply say that the circle is parametrized
by 7(t) =< Rcos(t), Rsin(t) >.
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One is often asked to find the parametrization of a line-segment from a point p to a point ¢. I recommend
the following approach: for 0 <t <1 let
7(t) = p(1 — t) + tgq.
It’s easy to calculate #(0) = p and 7(1) = ¢. This formula can also be written as
7(t) = p+tlg—p) = p+1 [p).

Example 13.2.3. Find the parametrization of a line segment which goes from (1,3) to (5,2). We
use the comment preceding this example and construct:

7(t) = (1,3) + ¢[(5,2) — (1,3)] =< 1+ 4¢t,3 — ¢t >
And now for the calculus. In short, we just do everything component by component.

Definition 13.2.4. calculus of vector-valued functions.

We say ¥/ is a vector-valued function of a real variable where ¥(t) =< vy (t), v2(t) > then

1. If v; and v9 are both differentiable functions we define
dv _d <v > dvy @
dat — dt\h dt ' dt |’

2. If v; and vy are both integrable functions on [a, b] then we define

b b b b
/Udt:/ <v1,v2>dt:</ vl(t)dt,/ 172(t)dt>.

3. We write [o(t)dt = V+¢é iff V=<W,Vs>and =< ci,co > where Jui@t)dt = Vi +
and [ wve(t)dt = Vo + ca.

We also use the prime notation for differentiation of vector valued functions if it is convenient; this means
7'(t) =dr/dt = &

Example 13.2.5. Let 7(t) =< t,cos(t)

- dt

<
</tdt,/cos dt> < t2 + ¢y, sin(t )+cQ>.
[/ o= [ [ o)~ 3 )

Often a vector-valued function will be called a space curve since its image is a curve in space.

>.
fl; (j(t),d(cos(t))> =< 1,—sin(t) > .

J o
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Theorem 13.2.6. fundamental theorems of calculus for space curves.

(1) 5 [ Andr =ty

(1) / %dt-r(b)—?(a)

Proof: Apply the FTC part I and II componentwise to arrive at the corresponding theorems above. [J

Theorem 13.2.7. rules of calculus for space curves.

Let #,% : J CR — R? and f: J C R — R be differentiable functions and let ¢ € R

(1) i_"+" 7@+@
at " T @ z
.. dfq
2.) — = —
@) 5|17 - o+ 45
d__, dv

(3.) | V| =

(4.) / [0+ @]dt = /vdtJr/wdt
(5.) /cz’;’dt = c/f)’dt

The proof of the theorem above is easily derived by simply expanding what the vector notation means and
borrowing the corresponding theorems from calculus I to simplify the component expressions. I might ask
for this in homework so I’ll not offer details here.
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13.3 position, velocity and acceleration in two dimensions

In this section the notations 7, ¥ and a is special and set-apart. I don’t use these as abstract variables here
with no set meaning. Instead, these are connected as is described in the definition that follows:

Definition 13.3.1. position, velocity and acceleration.

The position, velocity and acceleration of an object are vector-valued functions of time and we define
them as follows:

1. 7(t) is the position at time .

2. ¥(t) = % is the velocity at time .

3.d(t) = %*v is the acceleration at time ¢.

If we are given the position vector as a function of time then we need only differentiate to find the velocity
and acceleration. On the other hand, if we are given the acceleration then we need to integrate and apply
initial conditions to obtain the velocity and position.

Example 13.3.2. Suppose R and w are positive constants and the motion of an object is observed to follow
the path 7#(t) =< Rcos(wt), Rsin(wt) >= R < cos(wt),sin(wt) >. We wish to calculate the velocity and
acceleration as functions of time.

Differentiate to obtain the velocity

|6(t) = Rw < —sin(wt), cos(wt) > .|

Differentiate once more to obtain the acceleration:

d(t) = Rw < —wcos(wt), —w sin(wt) >= ’ —Rw? < cos(wt), sin(wt) > .

Notice we can write that @(t) = —w?7(t) in this very special example. This means the aacceleration is opposite

the direction of the position. Furthermore, we can calculate
r =R, v = Rw, a = Rw?

Thus the magnitudes of the position, velocity and acceleration are all constant. However, their directions are
always changing. Perhaps you recognize these equations as the foundational equations describing constant
speed circular motion. This acceleration is called the centripetal or center-seeking acceleration since it
points towards the center. Here we imagine attaching the acceleration vector to the object which is traveling
in the circle.
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(position vector not explicitly illustrated)

#(t) = (R cos(wt), Rsin(wt))

contant speed gives acceleration
; which points radially inward. No
N\ 7 component of the acceleration is

4 in the tangential direction for this
special case.

Example 13.3.3. Suppose that the acceleration of an object is known to be d =< 0,—g > where g is a
positive constant. Furthermore, suppose that initially the object is at 7, and has velocity v,. We wish to
calculate the position and velocity as functions of time.

Integrate the acceleration from 0 to t,

t 4 t ¢
/ Cir = / a(t)dr = U(t)—9(0) = / <0,—g>dr = ’ﬁ(t) =T+ < 0,—gt >
o dr 0 0

Integrate the velocity from 0 to t,

t t t
d 1
/ —dr dr = / v(r)dr = 7(t)—70)= / (Tot+ < 0,—gt >)dr = |F(t) =T, + tTo+ <0, —§gt2 >
o ar 0 0

T

7(E) = (To + Voul, Yo + Vot — 391°) \

E(f) — <vo;‘m Voy — gt)

C_L)(t) = <07 _g>
The acceleration is constant for this parabolic trajectory.

The velocity is changing in the vertical direction, but is constant
in the x-direction.

The best understanding of Newtonian Mechanics is given by a combination of both vectors and calculus.
We need vectors to phrase the geometry of force addition whereas we need calculus to understand how the
position, velocity and acceleration variables change in concert. In calculus IT we don’t delve too deeply into
the geometry of vectors. To do it properly I would also need to discuss dot and cross products and three
dimensional geometry. In addition, we will consider a few problems of physics, but the set-up will be fairly
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predictable and the problems we work on tests will be like those we have already solved. In contrast, I make
no such promise in a physics course. In physics we must understand the concepts of physical law. Here our
focus is more towards how calculus is used in physics.

13.3.1 position vs. displacement vs. distance traveled

The position of an object is simply the (z,y) coordinates of the object. Usually it is convenient to think of
the position as a vector-valued function of time which we denote 7(¢). The displacement is also a vector,
however it compares two possibly distinct positions:

Definition 13.3.4. displacement and distance traveled.

Suppose 7(t) is the position at time ¢ of some object.
1. The displacement from position 7 to position 75 is the vector A7 = 7y — 7.

2. The distance travelled during the interval [t1, t2] along the curve ¢ +— 7(t) is given by
de?  dy?
S12 = t)dt = — dt
S12 / / \ at T

Note that the position is the displacement from the origin. Distance travelled is a scalar quantity which
means it is just a number or if we think of an endpoint as variable it could be a function.

where v(t) = ||d7/dt]].

Definition 13.3.5. arclength function and speed.

t t da:2 dy2
t) = dr=|[ 2= +% 4
s(t) /tl o(T)dr /t1 o +d7’ T

to be the arclength travelled from time ¢; to ¢ along the parametrized curve ¢ — #(¢). Futhermore,
we define the speed to be the instantaneous rate of change in the arclength; speed is ds/dt.

We define

Notice it is simple to show that the speed is also equal to the magnitude of the velocity; ds/dt = v. We'll

explore the geometric foundation of the arclengt}EI formula in the next section. For now let’s examine a few

examples:

Example 13.3.6. Let w, R > 0. Suppose 7(t) =< Rcos(wt), Rsin(wt) > fort > 0. We can calculated that
dr . -

7 =< —Rwsin(wt), Rwcos(wt) > = w(t) = /(—Rwsin(wt))? + (Rw cos(wt))? = vV R2w? = Rw.

Now use this to help calculate the distance travelled during the interval [0, ]

t

= Rwt.
0

s(t) = /01t o(r)dr = /t Rwdr = Rwr

ty

In other words, As = RwAt. On a circle the arclength subtended As divided by the radius R is defined to
be the radian measure of that arc which we typically denote AG. We find that A0 = wAt or if you prefer
w = Af/At.

2or distance travelled formula if you insist the parameter be time
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Circular motion which is not at a constant speed can be obtained mathematically by replacing the constant
w with a function of time. Let’s examine such an example.

Example 13.3.7. Suppose 7#(t) =< Rcos(0), Rsin(8) > for t > 0 where 0,,w,,a are constants and 6 =
0, + wot + %at? To calculate the distance travelled it helps to first calculate the velocity:

% —< —R(w, + at) sin(0), R(w, + at) cos(d) >

Next, the speed is the length of the velocity vector,

v = /[~ R(w, + at) sin(0)]2 + [R(w, + at) cos(A)]2 = R/ (wo + at)? = R|w, + ot|.

Therefore, the distance travelled is given by the integral below:

t
s(t) = / R|w, + aT|dr
0

To keep things simple, let’s suppose that w,,a are given such that w, + at > 0 hence v = Rw, + Rat.
To suppose otherwise would indicate the motion came to a stopping point and reversed direction, which is
interesting, just not to us here.

t
1
S(t) = R/ (wo + Oﬂ—)dT = Rwot + iROétQ.
0

Observe that 0(t) — 0, = (s(t) — 5(0))/R thus we find that AY = wet + Fat? which is the formula for the
angle subtended due to motion at a constant angular acceleration «. In invite the reader to differentiate
the position twice and show that

at) = % = — Rw?(cos((t)),sin(0(t))) + Ra{ — sin(6(t)), cos(6(t)))

centripetal tangential

where w = w, + at.

7(t) = (Rcos(6), Rsin(0)) 0 is a funetion of time where
@9]d#* # 0. For such a motion
there is a tangential component (r) of the
acceleration in addition to the centripetal
component (d¢) of the acceleration.
The net-acceleration is the vector sum of the
tangential and centripetal vector components:
i=ir+ic

Distance travelled is not always something we can calculate in closed form. Sometimes we need to relagate
the calculation of the arclength integral to a numerical method. However, the example that follows is still
calculable without numerical assistance. It did require some thought.
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Example 13.3.8. We found that @ =< 0,—g > twice integrated yields a position of
7(t) = 7 + tU,+ < 0, f%gtz > for some constant vectors o =< To, Yo > and Uy =< Vog, Voy >. Thus,

. 1
7(t) = <x0 + Voxt, Yo + Voyt — §gt2>

From which we can differentiate to derive the velocity,
T(t) = (Vogs Voy — gt)-

If you’ve had any course in physics, or just a proper science education, you should be happy to observe that
the zero-acceleration in the z-direction gives rise to constant-velocity motion in the x-direction whereas the
gravitational acceleration in the y-direction makes the object fall back down as a consequence of gravity. If
you think about vey — gt it will be negative for some t > 0 whatever the initial velocity vy happens to be, this
point where vo, — gt = 0 is the turning point in the flight of the object and it gives the top of the pamboli(ﬂ
trajectory which is parametrized by t — 7(t). Suppose x, = y, = 0 and calculate the distance travelled from
time t = 0 to time t1 = v,y /g. Additionally, let us assume vVogz, Voy > 0.

5= /Otl v(t)dt = /Otl \/(vog,-)2 + (voy — gt)2dt

:/0 m(g) 5= Vo — gt

Voy

- 1/ 7 T )P
9Jo

Recall that a nice substitution for an integral such as this is provided by the sinh(z) since 1 + sinh?(z) =
cosh?(z) hence a u = vy, sinh(z) subsitution will give

(V02)? 4 (1)? = (V0z)? 4 (Vo sinh(2))? = v2, cosh?(z)

and du = vy, cosh(z)dz thus, [\/(Ver)? + (u)2du = [ \/v2, cosh®(2)v,, cosh(z)dz = [ v2, cosh®(2)dz. Fur-

thermore, cosh?(z) = (1 + cosh(2z)) hence
Vorr, 1.
V (Voz)? + (u)?du = 5 [z + 3 sinh(22)] + ¢ =
Note u = vy sinh(z) and vezcosh(z) = \/(Voz)? + (u)? hence substituting,

/deu:;{vgwsmw( u )M\/m] e

oxr
Well, I didn’t think that was actually solvable, but there it is. Returning to the definite integral to calculate
s we can use the antiderivative just calculated together with FTC part II to conclude: (provided vo, # 0)

1 o
s = 3 [v?m sinh ™! (ij> + Voyr [ V2, + vgy}

ox

<
Qo

2 [z + sinh(z) cosh(2)] + ¢

|

3no, we have not shown this is a parabola, I invite the reader to verify this claim. That is find A, B, C' such that
the graph y = Az® 4+ Bx 4 C is the same set of points as 7(R).
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If vop = 0 then the problem is much easier since v(t) = |voy — gt| = Voy — gt for 0 <t <t = v,,/g hence

ty ty 1 ) Voy /g v2y
= t)dt = oy — gt)dt = |voyt — =gt =2
$ /O v() /O ('Uy gt) [Uy 2.9 :|0 2

Interestingly, this is the formula for the height of the parabola even if v,, # 0. The initial x-velocity simply
determines the horizontal displacement as the object is accelerated vertically by gravity.

7.-”(, = <'Ua:x- on>

(0. 75)

We calculated the length of the blue segment's arclength.

Remark 13.3.9. physics, grrr...

I have made a few physical comments in this section, however, you should not confuse these comments
with your responsibilities. T intend for you to understand the mathematics. This means that if you
are given 7 or ¥ or d then you can calculate whatever you are not given provided sufficient initial data.
Also, if the integration isn’t crazy then you can calculate the distance travelled. Notice that while
these calculations do use some physical terminology, like position, velocity, speed or acceleration,
they are hardly physics problems. We have made no effort to understand what a force is or how it
is applied. In short, the calculations we explore here are easy physics problems. I say they are easy
because we know exactly what to calculate once the problem is stated. It’s just a matter of applying
the rules of calculus which we already know and love.
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13.4 geometric analysis in parametric setting

In this section we seek to understand tangent lines and arclength. We begin with the problem of tangent
lines. Since we have taken a little time to introduce vectors this problem is simple.

Definition 13.4.1. tangent vector to a path t — 7(t).

The tangent vector at 7(¢,) is the vector ¥ defined below:

_dr
Codt|,_

—

Vo
to

If ¥, # 0 then the tangent line to ¢ — 7(t) at 7(t,) = 7, is given parametrically by
A= L) =7, + M\,

where we call the direction vector for the line L.

Example 13.4.2. Find the tangent line to the curve 7(t) =< 1+¢,2+t?> > at the point (3,6).

To begin we find if this point is actually on the path; do the equations 3 = 1+t and 6 = 2 + t2 have a
stmultaneous solution? Answer: yes, t = 2 is the solution which solves both equations (t = —2 is also a
solution for 6 = 2+t however it does not solve 3 =1+1). Calculate:

.
(t) = dl; —(1,2t) = hence, H(2)=<1,4>

and we find the tangent line L(\) = (3,6) + A < 1,4 >.

We could use t as the parameter for the tangent line, however I have not done this because I don’t want you
to think the parameter for the curve and its tangent have to be the same. In the preceding example A = 0
matches up with ¢ = 2; 7(2) = E(O) Finding the direction of the tangent line is very similar to finding the
slope of the tangent line. When we found the slope we first calculated the derivative function which gives
us the slope at many points beside the point in question. We had to evaluate %’I:xo in order to calculate
the slope to the tangent line to y = f(z) at © = x,. In the same way, we calculate the velocity vector field
Z—f which once evaluated ‘é—ﬂ —t, gives us a direction vector for the tangent line at 7(t,). Again, we find the
tangent vector for many points beside the point in question, but evaluation singles out the direction vector
we desire. It is called a vector field because we envision the velociiy vectors glued to the points of tangency.
7

The tangent vector %7 is most naturally based at the point 7(t).

4In calculus III when we study space curves in R? it is natural to study unit tangent vector ﬁeld(f) along with
the unit normal(N) and unit binormal vector fields(B) of a space curve. For a regular smooth curve the {T', N, B}
vectors together form a moving coordinate system which is called a moving frame. The classical differential geometry
tied to the moving frame is beautifully encapsulated by the Frenet-Serret equations which explain how {’f, 1\7, é}
change along the curve.
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Example 13.4.3. Let a be a constant and suppose © = et cos(t) and y = e~ !sin(t) then
7(t) = e *(cos(t),sin(t)) and we can calculate from the product rule for space curves,

dF
d—; = —¢ " cos(t),sin(t)) 4+ e~ *( — sin(t), cos(t))

= e "( — cos(t) — sin(t), — sin(t) + cos(t))
The mapping t — 9= gives us the tangent vector field to 7(t) = e~*{ cos(t), sin(t)).

We can ask a question: is there a point which has a tangent vector pointing
in the < 0,1 > direction ?

Solution: We search for solutions to 3—7: =k <0,1> for some k # 0. This means we need to solve:

e '(—cos(t) —sin(t)) = 0 and e (= sin(t) + cos(t)) = k.

Since e=" # 0 we must have — cos(t) — sin(t) = 0 hence tan(t) = —1 which has solutions t = —% + nx for
n € Z. Which is just a fancy way of saying thatt = ..., =2 —5% = 3z Tx Uz Whent = —%+2mn
then 5 5
—V2 2
—sin(t) + cos(t) = —(2) + 5 = V2

and we find that k = 2e~ 527 for any m € 7 yields the desired direction. On the other hand when
t=—-%+2m+1)m we find k = —V/2e= 5 HCMENT for any m € Z which means the tangent vector points
opposite the desired direction. The tangent lines at ¥(—7 + 2mn) are

. . . —Z4+2mm
Ly(t) = e 5 12mm(\/2/2 —\/2/2) + t4/2e7 5 T2™7(1,0) = 64\/5<1 + 2t, —1>-

The curve in the last example winds very tightly around the origin as t — oco. It’s hard to picture the curve
directly but the tangent lines pictured give us some idea.

The blue tangent lines that appear

to intersect the origin are from t=1,5,10.
The green line is the tangent at t=-3.
... The purple line is the tangent at t=-5.

The family of tangent lines found in the last example were all vertical tangent lines. A vertical tangent line
is not covered as the linearization of a function of x. This is one of the geometric deficiencies of using graphs
of the form y = f(z). Perhaps you recall that the slope of a line is defined in every case except it is a vertical
line. We face no such exception for the parametric case. However, if the velocity vector is zero at a point
the analysis does require some thought. There might not be a well-defined tangent line at such a point thus
many discussions of the geometry of curves rule out such a case by insisting the curve is smooth.
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Definition 13.4.4. smooth curve t — 7(t).

If % exists and ‘fi—f #(0,0) for all t € dom(7) then we say ¢ — 7(t) is smooth or non-stop. A point
for which the tangent vector either is zero or fails to exist is called a critical point for the path.

When the curve is smooth we can sometimes locally express the parametric curve as the graph of a function.
We test if y = f(x) is the same curve as ¢ — 7(t) = (z(t),y(t)) by substituting the parametric formulas for
x(t) into f and checking if y(t) is the result. We insist that y(¢) = f(z(¢)) for all ¢ in at least some subset
J C dom(7). Differentiate implicitly to find:

dx

dy _ df da
o dt

dt — dz

rz=x(

Thus, if y = f(z) and 7(t,) = (2(to), y(to)) = (o, f(,)) then

dy
dy| _ dtly,
T T dx
dx vo  drl,

Example 13.4.5. Suppose x = cos(t) and y = cos(t) then we have 7(t) = (cos(t),cos(t)) hence ‘é—’; =

( —sin(t), —sin(t)). We find many critical points: if t = nm for n € Z then Z—f = 0. However, fort # nw for
n € Z we find the curve is smooth. Let t, be some point where this curve is smooth, we calculate

dy
dx

sin(t,)

)  sin(t,)

xr=cos(t,

This is no surprise since we can easily eliminate t by equating cos(t) = y = x. Note that the parametric
equations, while giving the same set of points as y = x for —1 < x < 1, is quite different as it covers this
line segment infinitely many times as it oscillated between the points (—1,1) and (1,1).

Example 13.4.6. Suppose x = sinh(t) +t and y = e?* we can calculate the slope of the corresponding
Cartesian curve y = f(x) at (0,1). Note t =0 yields x =1 and y = 1 thus calculate
dy 2e2t 2

dr|,_, cosh(t)+1|,_, T1+1

This would be less easy to arrive at through tmplicit differentiation of the Cartesian equation defining this
curve. Just for fun, note t = In(,/y) hence x = sinh(In(\/y)) + In(\/y). Thus,

1 dy
1 = [cosh((In(v7) + 1155
Plug in y = 1 to obtain 1 = [cosh(0) + 1]%% = %. Moral of story? Igore parametric techniques at your

own peril.

If i—f does not exist at a particular point it could signify the path has abruptly changed direction so the
past-pointing and future-pointing tangents diffe\ﬁ However, if the velocity vector Z—ﬂ —t, = <0,0> then it
may just be a point like that on the top of a hill where the velocity might tend to zero just as the object
barely makes it over the hill. There might still be a well-defined direction for the curve which can be detected
by examining how the curve approaches the point of zero-tangent.

Pthis happened in Example [13.4.5at points (1,1) and (—1,—1)
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Example 13.4.7. Let 7(t) = <t3,t3>. Calculate % = <3t2,3t2> thus observe t = 0 yields the critical point
7(0) = (0,0). In this case notice:

dy/dt . 3t?

U a3 3

Thus we identify that dy/dxz =1 at (0,0).

=1

However, critical points are much like limits of indeterminant form. There are many possible types of
behaviour.

Example 13.4.8. Let 7(t) = <1 +13,2 —|—t2> hence % = <3t2, 2t> thus observe t = 0 yields the critical point
7(0) = (1,2). Notice:

dy/dt . 2t . 2 PR dy/dt . 2t . 2
i = lim — = lim — = im = lim — = lim — =—
t—0+ dz/dt  t—o+ 32 t—o+ 3t oo At Ao dx/dt  t—0- 3t 10— 3t >

Thus we identify that dy/dx is not defined at (0,0). This is a vertical tangent.

z=141

y=2+1t

7lt)= (3t,2t)

This path stops at t=0.

In any event, we are most interested in smooth curves in this course so don’t worry about finding other
possible cases. For now you should mainly be interested in be able to find the parametric equations for the
tangent line for a given smooth curve. In addition, you should work on developing a picture in your mind for
our calculations. Draw pictures. Test your hunches. Of course Mathematica or another CAS will produce
nice plots of parametric curves and their tangents but you must test your understanding on simple examples
as to make sure you understand what the CAS is telling you if nothing else. I wouldn’t ask a question which
required the full assistance of a CAS on the test. Obviously the problem I give will be algebraically accessible
and mainly test your comptence in understanding the definitions we have explored in this section. Some of
your homework is probably deliberately messy so the CAS is the only way to go. That is for breadth not for
the test.
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Remark 13.4.9. higher derivatives for parametric curves

To calculate y”(x) in terms of z(t) and y(t) we can just differentiate (omitting explicit notation for
the t-dependence, let it be understood all of the objects below depend appropriately on t)

dy _ df de
dt — dzx dt

implicitly a second time to obtain by the product and chain rules:

By _ Efdet & Pa
dt2  da? dt dx dt?

I

Hence substitute

sl
o
]
1%
t+
@]
janp)
=
o,

Therefore, if y = f(z(t)) then

d2y %dzm 2 2

2, -5 — H =5 dedy _ dyd-z

dy _ A AP G g — g ae
daz? da )2 dx\3
(dt) ( ,t)

Example 13.4.10. Let x =t + 1 and y = t> calculate % =1 and % = 0 whereas % = 3t2 and Cc%y = 6t
it follows that
de d® dy d?:
Py G@ @ 6t
dx? (4&)3
dt
Hence for t < 0 the curve is concave down whereas for t > 0 the curve is concave up. From x =t + 1 we

find CD for z <1 and CU for z > 1.

If you eliminate ¢ to find y = (z — 1)® and it’s easy to calculate that the result we just found should be
agreeable from your previous work on concavity.
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13.4.1 motivating the arclength formula

To begin we assume the curve t — 7(t) = (x(t),y(t)) is smooth and ¢ € [a,b]. Let us begin by partitioning
the closed interval as we did in the integration theory:

to = a,t1 = a+ At,to = a + 2At,. n—1=a+ (n—1)Att, =b

where At = (b—a)/n and n € N is the number of subintervals in the partition. Let us define 7, = #(t;) =
<:1:k,yk> for k =0,1,2,...n. For each subinterval [t;_1,%;] we can construct the tangent line from 7;_; to
7, by the usual construction for a line segment: however, we set-up the parameter of each line segment as
to make the segment’s parameter match the parameter of the given curve:

- N t—t
Li(t) = fe—1 + (A:1> (Fe — Th—1) for t € [tr—1, k]

As a check on the formula above, note Ly (tk—1) = Tk—1 whereas I_:k(tk) = 7. We calculate the length of the
line segment t — Ly (t) for ¢t € [tx—1, 1] by calculating the length of the displacement from 7_1 to 7%:

As = |7 = Freall = V/(@r — 26-1) + (yp — ye-1)?
The total length of this piecewise-polygonal approximation to the smmoth path is

As, = Z V(@e —z5-1)2 + (e — Ye—1)2-
=1

If we allow n — oo then the approximation should converge to the arclength.

As = lim Z \/(xk —xk-1)* + (Yr — Ye—1)?
k=1

2 2
Ik*IEk 1 Yk — Yk—1

=1 === | At.
;&23 (a) ()

By construction, tp = tg_1 + At so we may identify that as n — oo and At — 0 since At = (b — a)/n the
difference quotients tend to derivatives:

Tp —xp—1  T(tp—1 + At) — z(tg—1) dx
= . t -_— .
At At — gl
Likewise,
Uk — Ye—1 Y1+ A —y(ty_1) dy
At At — )
Hence,

2
mﬂ%2¢ + (%) o

[y ()

where in the last step we identified the Riemann sum as the arclength integral we sought from the outset.

2
Notice that in the case of a graph y = f(x) we can take z =t and we derive As = f; 1+ <le/) dz.O]
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Remark 13.4.11. heuristic metric calculation

The infinitesimal argument should be understood as a shorthand for the technical argument we
covered before this remark:

1. ds? = dx? + dy? since a tiny triangle with sides dz and dy has a hypoteneuse which is really
close to the arclength.

2. Thus ds = /dx? + dy?

3. Factor out a dt to obtain ds = \/(dz/dt)? + (dy/dt)2dt.

4. add up all the little ds’s by integrating.

This infinitesimal argument should be thought of as a nice notation to summarize a more technically
correct summation argument(which is what follows this remark). T usually emphasize the infinites-
imal approach in calculus because it gets to the heart of the matter quickly and provides a very
general framework to solve a myriad of applied problems. The infinitesimal ds? is called the metric.
In general relativity the metric is sometimes used as the central object of interest in the theory. You
can calculate the influence of gravity in curved space through the mathematics of the metric. The
calculus for curved space involves tensors and manifolds. The calculations in tensor calculus are
very very fun.

In both notations there is a question we have neglected. In particular, how do we know our calculation
is independent of parametrization? If the arclength calculated depends on the choice of parameter then it
is not what we would want to call arclength. Geometrically, it is clear that the arclength is an intrinsic
geometric property of a given curve. I prove independence of the arclength formula from choice of parameter
in calculus IIT if time permits.

13.5 arclength examples

It might be helpful to note Stewart discusses arclength for graphs and parametric curves in separate sections:
see §9.1 and page 669-670 for his arclength examples. The distinction between the examples in this section
and those in the previous section on distance travelled is that we make no assumption that the parameter is
time. The calculations here are merely geometrical.

Example 13.5.1. .

Congidea dhe following peremetiic cuive whee OST=3, figay,

- w4 e ol z =
x sl et ¥ =et-&° x'tyt=(%e") + Y
Y= §-2¢ y = -2
= N ¢ Lt ot
< z 2t " - o | -t
S‘jé‘\[e-2+e +4dt j‘:ﬁ/e +Z te Jt = J[E’ +@ /df
= -ta - 13
= [8*.
= b
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Example 13.5.2. .

X = Yrest % = =Csint . = " sin®t
Y = ¢ Siat % = rost é:-;’) = fees®t

rais am
S (\?};—‘)ﬁ(ﬁi‘f de = E-P’sin’hr’cﬂ-dt = J rclt' --[z*rr?“;

wj,,oj, /s Iggdl _ﬂ‘/?cn X’f‘f’=f‘=, is a circle of radius g

Example 13.5.3. .
X=X

Lt ®0) = (X, Inlesta)) 02X ST ) ey
A ' Y= Jn lcos(x)]) ~or o0<x< Ty
v <X< T4
S = S | + @1y AX ¥
o eﬁ)
W/ .
- S "1 l+(-§§;§{-)‘olx
. ;
= (v trw dx 5 te'xd e | = sec?(9)
']
o
= & sec(x) dx
X i+g& U = Sec(x) ++an (x)
B S u d.;l:_ = sec(x)dx
' I+Z U (o) = sec(o) + wmnle) = 1 '|
= (J\n,'vl I 'U{mj- suf‘%l*“‘mf?f*) =f_+l )

= Y (1442) = fn (1)

CHAPTER 13. CALCULUS OF PARAMETRIZED CURVES
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Example 13.5.4. .

Fird c:'rmmferena of an eM?ﬂ%. :;: acest ) (&) = SnH v |

. bsind¢ 7
g; = —asint and ﬁz=5csu‘ wihere we ort 3""'" o*ts 217-

S =

S;fafs.'n*t B’ dt

[, o ot (e ot

= | T et Ty o
[

"

i

OV Ot oot dE r lofie @ = J:-@A}
= S‘;-\J | - (52Cnsz't d‘t

This m/:afm! is od e/wgnﬁfg, We ) need & Specifle @ ond b
in ordon 4y p(ocew/- Nal’f Fhed whem @ zb thun r@ = g
Sa S= ZMra hhpp,r/l% Considn o = / 2 b =[2 1hen E=1

Zr

-t dt = o
d‘:‘:ﬂ' jsntldf = .Lmsant At -Jme.ntdt i

e

Fee smost choices of a 41‘) we wonld
need 4o 4, this :'nfeamf numeci (-{/g_

Example 13.5.5. .

y,gg, +2._'£. wih Yaexs] R arcleraiy
L oS SR ay -l-(x‘z""_-f)
P S T T ax 4 -

s | T 7007+ 2 Jﬂx%z'r—)o&—f 30+ 5" e

t/l

- j’:’é&zfé)dx ;zi[_gi—-xl-]/'; = % = 80.6‘158}
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Chapter 14

Further Applications of Integral
Calculus

In this short chapter we examine two applications of integral calculus. I will utilize the infinitesimal method
to motivate both sections. The surface area problem we consider in this chapter is just the simple case of
a surface of revolution. The general problem of surface area is dealt with properly in calculus III. Physics
provides a wealth of applied problems, we content ourselves with the problems of work, hydrostatic force on
a dam and the center of mass or centroid problem. Our emphasis is once more on mathematical set-up as
opposed to physical concept. I will attempt to provide the conceptual framework and then you simply need
to work out various geometries in my framework.

369
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14.1 surface area

Imagine we take a graph y = f(z) for a < 2 < b and rotate it around the z-axis. We suppose f(z) > 0 for
the purposes of this discussion. This creates a surface of revolution. You may recall from calculus I that we
calculated the volume contained inside such surfaces for a variety of cases. For now we will just focus on the
case of a surface revolved around the z-axis. Let us focus on just a small portion of the surface. In particular
the bit from x to = 4+ dx. Suppose ds is the arclength of the graph from (z, f(z)) to (z + dz, f(x + dx)).
The straight-line distance from (x, f(x)) to (x + dz, f(z + dx)) is identical to ds in this infinitesimal limit.
Notice then we can calculate the area of this conical ribbon which has radii f(z) and f(x + dx) at its edges
and a length of ds along the edge as described belowﬂ

%p

\ o / .lﬂ Yi
"’ﬂ,\l g-h"\P uj: X Con be 'cI‘PPeJ | i
and Nuskaked os shown =7 ,:.:W
Or we ton \ CLLa “H"\.l S*r I’P l

flot as below:

‘ﬁna orea of Hhit Par‘Hmﬂ annwlus s wen b\ﬁd
2 [}
A = TR ) - T (=%
= 1o (R*-r?)
. [observe @=T Shw
= 18 (R+r)(R=-r) ¢ [ ]

= flxvdx) = f(x) as
= L (T)(afe))ds dx = O.

= ATf) IS .
01“ ;n +&Irn$ U‘F dx, dﬂ"—' 'B\T'."} l‘l‘(g.)x Ax w}qarg lﬂ-’.‘:«F(,()'

!thanks to Ginny for this idea
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Furthermore, while we assumed an increasing function for the ease of visualization this formula holds for
the case that f is decreasing. Note that ds is positive and we assumed from the outset that f(xz) > 0.
Recall ds = \/dz2 + dy? = /1 + (dy/dxr)2dz hence the total surface area is thus found from the following

integration:
A= / 2 f(x \ll—i— ﬁ

All of this said, we can state a more general formula for parametric curves around an arbitrary axis in
the plane. Suppose that ¢ — <x(t), y(t)> is a parametric curve and £ is a line in the plane. Suppose this
parametric curve does not cross the axis and any perpendicular bisector of the axis crosses the curve in at
most one point. Let r(¢) be the distance from the curve to the axis then we can by the same argument as
given for y = f(x) derive that the area of the surface or revolution formed by rotation the parameterized

curve for a <t < b is simply:
/ dy”®
A= 2 — dt
/ mr(t —|— at

In the case of the graph we had ¢ = z and r(t) = f(x). For an abitrary example the real problem is
geometrically determining the formula for r(t).

Example 14.1.1. Problem: Let R > 0 and x = Rcos(t) and y = Rsin(t) for =5 <t < 7. Find the
surface area of the surface formed by revolving the given curve around the y-azis.

Solution: the cruve we consider is a half-circle centered at the origin with radius R. Since the axis L is the
y-ais the distanc to a point (x(t),y(t)) on the curve is clearly z(t). Recall ds = +/(dz/dt)? + (dy/dt)2dt

hence we calculate ds = \/R2 sin?(t) + R2 cos2(t)dt = Rdt. The area of a typical infinitesimal ribbon is

dA = 2mr(t)ds = 2w (Rcos(t))(Rdt) for each t € [-F,F]. Add together all the little dA’s by integration to
find the total surface area:

A= 27rR2 cos(t)dt = 2 R? sin(t)‘ =

Therefore, the surface area of a sphere of radius R is 47 R?. It is interesting to note that the integral of this
formula with respect to R yields the volume of a sphere; V = %TFR?’. Likewise, the circumference of the disk
of radius R is 2w R which once integrated yields the area wR?. This pattern does not hold for all solids. For
example, if you think about a cube of side length x then the V' = 23 whereas the surface area is A = 6z2. The
symmetry of the sphere or circle is very special and the pattern continues for higher dimensional spheresﬂ

to\:!
M)

2distance from a point to a set is by definition the distance from the point to the closest point in the set

3 22 4 y? = 1 gives unit circle or S1, ? + 3%+ 22 = 1 gives unit spherical shell or Sa, 23 4 23 + - - -Jr:rfbﬂ =1 gives
the unit n-sphere S,,. You can find a derivation of the hypervolume of the higher dimensional spheres in Apostol if
you're interested.
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Example 14.1.2. Problem: Find the surface area of the surface of revolution formed by rotating y = \/x
around the x-axis for 0 < x < 1.

Solution: We have

1 2

/ 1
=2 14+ —
T x{ +4x} dx
1
:2771/x—|—1 dx

=nvidx +1 dx

We can integrate the expression above with the help of a u = 4x + 1 subsitution. Note

du  2u? 1
/de:/\/ﬁzuz fQ +c:6(4x+1)%+c.
Thus,
1 ) 1
A:/ iz + 1 dm:%(4x+1)% = %(\/125—1).
0 0

Example 14.1.3. Problem: Find the surface area of an open right-circular cone of height h and radius R.

Solution: we can view this as a surface of revolution. Take the line y = Rx/h for 0 < x < h and rotate it
around the x-axis. Observe that

2 2
dA:zw(}Zx> 1+% dx = lfx\/hum dz.

Now integrate over 0 < x < h to find the total area:

h 2
2 2
A:/ T R = R i e
0

h

=|mRvVh2 + R2.

h 2h?

0

Notice that the formula above checks nicely in the limits ~ — 0 and R — 0 where we find A — 7R? and
A — 0 respective. Can you see why this makes sense?
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14.2 physics

In this section we examine a few variable force work problems, variable pressure hydrostatic force problems
and finally the center of mass problem for a homogeneous laminate in the plane.

14.2.1 work and force with calculus
The basic physical concepts used here are as follows:

1. work W due to a force F' over a displacement Az is defined to be W = FAx provided the force is
exerted in the direction of the displacement and is constant.

2. the force F' exerted over an area A by a pressure P is defined to be F' = PA provided the pressure is
constant over the area A.

In the examples we consider in this section we cannot simply multiply as described above because the
requisite idealizations are not met in our examples in the finite case. In other words, the forces are variable
and the pressures are not constant. However, if we instead consider an infinitesimal displacement dz or an
infinitesimal area dA we can in fact realize the idealized physical laws. It is true that dW = Fdx because
the F' does not change over the tiny displacement dz. For the problem of the dam, we can say dF' = PdA
if our dA is a horizontal strip since the pressure is constant over a certain depth. I’ll leave the rest of the
details for the examples. Mainly we need the following physical equations to complete the examples:

1. F = mg, near the surface of the earth this is the force of gravity on a mass m.

2. P = pgd, is the pressure due to water at a depth d where p = 1000kg/m? is the density of water.
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Example 14.2.1. . This is a variable work due to variable mass problem.

| with o unihemly dictribts) e of 104y .

B wagas fasle of werk fe;w-'fﬂfffo ftd a /Om md-’:]

Lets dlehne ,? A be the ﬁngr% of Ha enble é;;,.,‘} -"-r“:‘i_-d'; s
will very From Q= [0m ~——= = Om as +the ocoble ir lifed,
We sheedd Frd Ha work dW dome o we |4 lensh
1 g dishna ‘“},

dw = FdJ B ) _
= -mo, df {2=%& - Loy . qing)
=-RE%J~1 ﬁ*._“?“ it linesr Paags dfﬂ“‘l*é}hf'j
ﬁuw odd vp o wor ke : __m—*-:gg f
&
W= (2,04
[}
=9 (L]’
49 (z A 4_
= 29 3(10)°
=-1+98-5p
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Example 14.2.2. . This is a variable work due to variable mass problem.

dw = (dm‘)%' - X | -FE.:mnrllc-:" -H'm it 0-.
- fTrd)s x o

We are foreed o |

- ) B mp e orill
= pofr 4022 xax kli s g R

= Fﬁﬁ{mox—zﬂ*f*’ x* ) olx
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(=]

M2 (Somict - 2o +T)

25

im(lox)a8) {Sﬂ x(g - !"Kr&! +_‘il}
i
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Example 14.2.3. . The triangular dam problem.

[ Find +the hydroshatic the +ri ;
L p: :Jm:d bz.l.lr. ﬁs:mw\:mfi-’lm*:é{aﬁgaﬁ ::EE::#: level b

1z

— widdh i ow which
& Clewhy  degands linewky

aa XK,
we= mx+b

W{G):ml{u'}+b= D s b=gp
W (le) = mfe) + 0 =2 - m=i.§_.=g_ E: Ts—fx!

_ﬂri; Feoeds B W cheedts becavae W ()= EEm"Jz 12 as of shoat)
Mhewn e amu of j#/.},—. s dA= wdx = g-xd'x -
New sed up Hha Prefsiaee .E,: -"93- qff
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How sam the heas he the strips af X in 0<x<h
F o ["222 (ke - x2)d
- S gm0
= oG = Lb ]

#



14.2. PHYSICS 377

Example 14.2.4. . The hemispherical dam problem.
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The hemispherical dam problem continued:
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14.2.2 center of mass

The concept of center of mass is a ubiquituous topic in mechanics. In a nutshell it allows us to idealize
shapes with finite size as if they were just a point mass. This is a tremendous simplification as it allows us
to think of just one particle at a time rather than the infinity of atoms that make up a solid. I'll prove this
idealization is reasonable in physics, but for here we just want to see how the center of mass is calculate via
calculus.

e ments F Centers of Maee (com)
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Example 14.2.5. . Center of mass problem.
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Notice we could work problems where the density depended on z without much trouble, however if the
density depended on both x and y at once then it would not be easy given our current tools. In calculus
IIT we can treat problems which allow both x and y to vary so we relegate that more interesting class of

problems to that course.
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Remark 14.2.6. note format.

Beyond this point the notes will change format. The notes to follow are from previous years however,
I have numbered the equations and sections as to be consistent with the numbering up to this point.
The page numbering ceases to be meaningful past this point. You can still refer to the section
number without ambiguity provided you clarify if it is Stewart or my notes in question. Sorry for
the change in format, I didn’t have enough time over break to complete the notes to the level of the
notes up to this point. Some of you will rejoice in the sudden reduction in proofy-ness.
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Chapter 15

Geometry and Coordinates

I have posted a separate pdf of Chapter 15 notes. This particular Chapter of the notes is probably the
most disorganized of the course. It is therefore extremely important you take good notes in class and study
Stewart in addition to my notes. I will probably add a lot of material in lecture. My apologies this is not
better prepared, sadly winter break is far too short.

15.1 polar coordinates

15.2 parametric curves in polar coordinates
15.3 conic sections

15.4 rotated coordinates

15.5 other coordinate systems
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Chapter 16

Introduction to Differential Equations

I have posted a separate pdf of Chapter 16 notes. These notes are fairly well prepared. There are many
examples I will not have time to cover in lecture. The only thing missing here is Euler’s method and direction
fields which T will likely cover in addition to these notes. Those topics are heavily numerical so probably I
will just do some show and tell with a CAS worksheet or Java applet.

16.1 what is a solution?

16.2 separation of variables

16.3 exponential growth and decay
16.4 integrating factor method

16.5 constant coefficient second order DEqns
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Chapter 17

Sequences and Series

I have posted a separate pdf of Chapter 17 notes.

17.1
17.2
17.3
17.4
17.5

sequence examples
convergence of sequences
series and convergence tests
error tests

conditional and absolute convergence
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Chapter 18

Basics of Power Series

I have posted a separate pdf of Chapter 18 notes.

18.1 what is a power series?
18.2 power series via geometric series

18.3 power series representations
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Chapter 19

Taylor Series and Techniques

I have posted a separate pdf of Chapter 19 notes. I will also cover the proof of Taylor’s theorem this semester.
That proof was included in my calculus I notes. See §6.5 of my notes.

19.1 Taylor Polynomials

19.2 Taylor’s Theorem

19.3 binomial series

19.4 numerical applications of Taylor series
19.5 calculus applications of Taylor series

19.6 physical applications of Taylor series
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