Printed Name:	
---------------	--

Physics 331 Test 2: Magnetostatics & Electrodynamics (150pts+10pts)

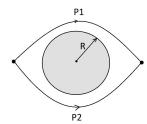
Please work the problems in the white space provided and clearly box your solutions. You are allowed a page of notes, front and back is fine. Enjoy!

- **Problem 1** (20pts) Suppose we define \vec{A} for a given steady current density \vec{J} . In this problem we wish to justify the choice of Coulomb Gauge $\nabla \cdot \vec{A} = 0$. You are given the existence of a vector field $\vec{A_o}$ for which $\vec{B} = \nabla \times \vec{A_o}$. Moreover, $\vec{A_o} = 0$ for r >> 0.
 - (a.) let λ be scalar function, show $\vec{A} = \vec{A}_o + \nabla \lambda$ is a vector potential for \vec{B}
 - (b.) show $\nabla \cdot \vec{A} = 0$ implies λ solves a Poisson equation where $\nabla \cdot \vec{A}_o$ is playing the role of charge density. By analogy with the electrostatics theorem:

If charge density is ρ then the potential is $V(\vec{r}) = \frac{1}{4\pi\epsilon_o} \int \frac{\rho(\vec{r}')}{\epsilon} d\tau'$ write down the integral formula for λ

- (c.) given \vec{A} satisfies the Coulomb Gauge, show that $\nabla^2 \vec{A} = -\mu_o \vec{J}$.
- (d.) explain why $\vec{A}(\vec{r}) = \frac{\mu_o}{4\pi} \int \frac{\vec{J}(\vec{r}')}{\imath} d\tau'$ where $\imath = ||\vec{r} \vec{r}'||$

- **Problem 2** (30pts) In quantum mechanics the phase of a charge q moving along a path with vector potential \vec{A} is given a phase shift $\varphi = \frac{q}{\hbar} \int_P \vec{A} \cdot d\vec{l}$.
 - (a.) Consider a very long solenoid of radius R centered about the z-axis. A current I flows through the solenoid which has n turns per unit length. Find the vector potential for the magnetic field for $0 \le s \le R$.
 - (b.) Find the vector potential outside the solenoid where s > R.
 - (c.) Let P_1 and P_2 be two coterminal paths around the solenoid; that is suppose P_1, P_2 are paths for which $P_1 \cup (-P_2)$ then forms a loop enclosing around the solenoid. Let φ_j be the phase shift along P_j . Find explicitly how the difference in phase shift $\varphi_2 \varphi_1$ depends on the current I.



- **Problem 3** (20pts) A very long circular cylinder of radius R carries a magnetization $\vec{M} = ks^2 \hat{\phi}$ where k is constant. Find the magnetic field for points inside and outside s = R as follows:
 - (a.) solve via the \vec{H} arguments
 - (b.) solve via analysis of Ampere's Law on the bound currents

Problem 4 (20pts) A square loop of side length a lies in the xy-plane in the first quadrant with one corner at (0,0). In this region $\vec{B}=3ky^2t^2\hat{z}$ where k is a constant. Calculate the emf in the loop.

Problem 5 (5pts) We introduced the stress energy tensor and we found the formula

$$\vec{F} = \int_{\partial V} T(d\vec{a},) - \mu_o \epsilon_o \frac{d}{dt} \int_V \vec{S} d\tau.$$

Give a qualitative description of what this formula tells us.

Problem 6 (5pts) We defined $\vec{g} = \mu_o \epsilon_o \vec{S}$ and we showed

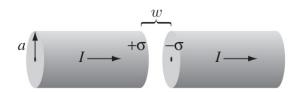
$$-\frac{\partial \vec{g}}{\partial t} + \sum_{i,j=1}^{3} (\partial_i T_{ij}) \hat{x}_j = 0.$$

Qualitatively describe the significance of the above equation.

- **Problem 7** (20pts) Notice for part (b.) We showed in lecture that the magnetic field within a spinning charged spherical shell with uniform charge density σ at radius R with angular velocity $\vec{\omega}$ is given by $\vec{B} = \frac{2}{3}\mu_o \sigma R \vec{\omega}$.
 - (a.) Suppose a solid sphere of radius R has uniform magnetization $\vec{M} = M\hat{z}$ where M > 0. Calculate the bound current densities inside the sphere and on its surface
 - (b.) Calculate the magnetic field for the uniformly magnetized sphere in the case r < R (inside the sphere). Your solution should not use \vec{H} .
 - (c.) Derive the magnetic field within the uniformly magnetized sphere via auxillary field arguments in the case r < R. (now use \vec{H})
 - (d.) Find the magnetic field for the uniformly magnetized sphere in the case r > R.

Problem 8 (20pts) We argued that the rate of work done on charges due to the electric and magnetic fields in some volume V is given by $\frac{dW}{dt} = \int_V \vec{E} \cdot \vec{J} d\tau$. Show that $\frac{dW}{dt} = -\frac{d}{dt} \int_V u \, d\tau - \int_{\partial S} \vec{S} \cdot d\vec{A}$ where u is the electromagnetic field energy density and \vec{S} is the Poynting vector.

Problem 9 (20pts) Consider the model of the charging capacitor pictured below.



- (a.) Find \vec{E} near the center of the gap assuming that the charging begins at t=0
- (b.) Find \vec{B} due to the changing electric field near the center of the gap
- (c.) Find the electromagnetic field energy density u and Poynting vector \vec{S} near the center of the gap of width w
- (d.) Do u and \vec{S} relate in the appropriate manner?