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2. FUNCTIONS AND ALGEBRA 
 

You might think of this chapter as an icebreaker. Functions are the primary 

participants in the game of calculus, so before we play the game we ought to 

get to know a few functions. I start the chapter with a few rather abstract 

notions. Then I transition to the concrete setting we will spend the majority 

of our time. I assume that you know at least a little algebra and precalculus 

or advanced mathematics, I’ll try to alert you to my assumptions about your 

background.  

 

2.1. ABSTRACT IDEA OF A FUNCTION 
 

To begin we need to settle a few common terms and definitions for future use. 

I warn you that I assume that you know what is meant by the terms “set”, 

“subset” and “element”. 

 

 

 
 

 

 

In other words, a function is a rule that outputs  if it is given the input . 

There can be no ambiguity in what the output is, if there was more than one 

output for a given input then we would not call that rule a function.  

 

              
 

The rules illustrated above are schematic, sometimes I find such pictures to 

be conceptually useful. For the beginning of the calculus sequence we will be 

almost entirely interested in functions which map sets of real numbers to sets 

of real numbers. Sometimes we may also dabble with functions which map to 

and from subsets of complex numbers. 

 

 

 

Not a Function 

 

  

Function 

  

Definition:  is a function from  to  if for each  the 

function assigns is a unique element  . We say that  maps 

 to  . This can be denoted .  
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2.2. DOMAIN, RANGE AND GRAPH   
 

In this section we consider “real-valued functions of a real variable”. This sort 

of function takes a real number input and returns a real number output. 

Often such a function is defined by some formula. When a function is defined 

by a formula then we may not need to explicitly state the domain. Also the 

codomain can just be taken to be the range. 

 

 

 

 

 

 

 

 

 

 

Let me give a few typical examples just to illustrate how a formula might fail 

to return a real number. 

 

         
 

 

 

 

 

 

 

 

 

 

 

Definition: Let  is a function from  to  then 

  ●  is the domain of the function; . 

  ●  is the codomain of the function.  

  ●  is the range of  

when the codomain is the same as the range the function is said to 

be “surjective” or “onto”. 

Definition: Let  be a real-valued function of a real variable  

which is defined by a formula  and nothing more, 

  ●  

  ●   

in other words the domain is the largest set of real numbers for 

which the formula   yields a real number. In this case we can 

let the codomain just match the range;  . 

Example 2.2.2: Let .  Observe that  when .  

Thus the formula makes no sense when  due to division by 

zero. Consequently, . This notation 

means that  if  or . 

Example 2.2.3: Let .  Observe that  when 

.  Thus the formula will return a real number so long as the 

input of the square root is nonnegative. So, . Note 

the formula still makes sense for  but then  is not a real 

number so we exclude such  from the domain.  

Example 2.2.1: Let .  Observe that  cannot be zero 

since  so there is no way to cancel the 1. Thus there is no 

real number  which will result in division by zero. Consequently, 

. 
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Sometimes there are considerations beyond the formula for the function. 

These might come from the interpretation assigned to the real variable. 

 

 

 

 

 

 

 

 

 

Sometimes a picture can be used to describe a function.  

 

 

 

 

 

 

The graph of a function is equivalent to its formula and domain. Given the 

formula we can construct the graph. Conversely, given the graph we can find 

 for each  in the domain. However, we may be unable to actually find a 

nice simple formula for the function.  

  

Example 2.2.5:  Consider the graph of  below,  

  

                       
We can see that the domain begins at -1 which is included and 

continues right up to 3, so . We can also see the 

values of the function from the graph. For example,  

can be deduced from the leftmost point on the graph. This graph 

is pretty nice, we can see it is a parabola. Bonus point if you can 

tell me the formula and the range of this function soon. 
 

Example 2.2.4: Let  model the number of toys owned by 

per household in a country with an average of  children per 

household.  Since we cannot have a negative number of children it 

follows that . In this example there was extra 

information beyond the formula. Probably we could let the domain 

be   without danger of ignoring many cases. My 

point in this silly example is that the domain can be adjusted. 

Definition: Let  be a real-valued function of a real variable  

  ●  

In other words, the graph of a function is the set of points in the 

-plane such that  
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The next example will not allow you to find a nice formula for the function, 

but the graph still contains lots of useful information about the function. 
 

 
 

2.3. TYPES AND PROPERTIES OF FUNCTIONS 
 

We begin by defining even and odd functions. 

       
 

It turns out that many functions can be written as the sum of an even and an 

odd function. For example, let . Notice that  is an 

even function and  is an odd function. Thus for my example 

function . For a bonus point show me how to do this in general. 

Notice the even function (cyan graph) is symmetric about the y-axis while the 

odd function(green graph) is symmetric about the origin.  

 

 

Example 2.2.6:  Consider the graph of  below,  

  

                           
This is an example of a discontinuous function, it would be hard 

to find the formula for this function explicitly. Observe that 

. The notation  means a set 

with just the number 2.5 inside it. The range of this function is 

approximately [0.4, 5.6], the crudeness of my graph does not 

allow for a better estimate. 

Definition 2.3.1: Let  be a real-valued function of a real variable, 

•  is an even function if  for each  

•  is an odd function if  for each  
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The concepts of even and odd functions concern the total domain of the 

function, they are global concepts. In contrast, the concepts of increasing and 

decreasing apply to some open subset of a function’s domain. So a function 

may be increasing for some points and decreasing elsewhere.  

 

  

 

 

  

The graph of  gives us an example of a function which is increasing 

everywhere except at zero. It increases on  and . We will learn 

that calculus gives us a nice way to figure out where a function increases and 

decreases without even drawing the graph! But for now, we graph. 

 

 
 

The graph that follows is of the function . This function is 

increasing on  and decreasing on . The point where the function 

changes from increasing to decreasing happens to be a vertical asymptote 

which means that zero is not even in the domain of the function in this case. 

 

 
 

 

 

 

 

 

Definition 2.3.2: Let , 

•  is increasing on   if  for each pair  with . 

•  is decreasing on   if  for each pair  with . 

•

Definition 2.3.3: We say that a function is injective or one to one 

(1-1) on  if  implies that  for any pair 

. If  then graphically this is equivalent to 

saying the function passes the horizontal line test. Recall that a 

function passes the horizontal line test if any horizontal line 

drawn through the graph intersects the graph only once.  
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We will discuss one to one functions further later this chapter when we define 

inverse functions. I want to have a few more interesting examples before we 

say more.  

 

 
 

Let me give a nontrivial example of how to find the zeros of a cubic function. 

 

Definition 2.3.4: A function  has a zero at  if . 

Graphically this means that the graph of the function intersects 

the x-axis at . 

Example 2.3.1: Let . Our mission is to find all the 

zeros of this function with a minimum of computer aid. To begin notice 

that . ( I might tell you this or give a graph which 

reveals this fact, guessing a zero is not generally an easy thing to do, but 

hey I just made this up so it was pretty easy for me). Think about what 

 says about the function, it tells us we can factor out , 

. 

We knew there had to be a quadratic left since we started with a cubic, 

but we don’t know what the coefficients  are without some work. 

Lets multiply out what we just wrote, 

                                      

This must match the given function so, 

 

Now perhaps you haven’t seen such an equation before, but it’s not as 

bad as you might imagine. In fact we can just equate the coefficients of 

like powers of ,  

 

The first and last of these equations are really easy to solve, clearly  

and . The equation from the -coefficient shows . So we find, 

 

The only way  is if either  or . So the zeros 

come from  or the solutions to the quadratic equation. Notice, 

 

Therefore there are no additional roots besides the one we guessed to 

begin with;  has one zero at . You might ask why 

not just learn these things with a graphing calculator? That is another 

valid approach for this problem, but the approach we took here helps us 

learn some algebra and builds character. After all, there is little in the 

calculus sequence that cannot be done on a computer. Then why do we do 

such calculations? We do them to gain a deeper understanding of math. 
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2.4. ELEMENTARY FUNCTIONS  
 

The functions we discuss in this section are the most common functions used 

in calculus. We can model a great variety of phenomena with these functions.  

 

1.) We say  is a polynomial function  of degree  if it has the form 

 where  and we call  

 the coefficients of the polynomial. 

 

 

2.) We say  is a power function if  where  is a fixed constant. 

There are a few special cases with added labels, 
 

 i.)   then  is a polynomial. 

 ii.)   with   then   is the  root function. 

 iii.)  then   is the reciprocal function. 

 

Formula Name Zeros Graph of  

 constant 

function 

None, unless  

in which case there  

are infinitely 

many. 

 

 
 

 linear 

function 
  

we assume . 

 

 
 

 quadratic 

function  
if   , . 

 

 
 

 cubic 

function 

No simple formula.  

There is always one  

zero. In some cases  

there are 3 zeros. 
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3.) We say that  is a rational function if it has the form  for 

a pair of polynomial functions  and . The zeros of  occur where the zeros of 

 occur, except possibly some of those are cancelled by the  (could have holes 

in the graph or a vertical asymptote). The domain of a rational function is 

simply all the points where we avoid division by zero; . 

The reciprocal function is a rational function.  

A typical example of a rational function is 

 
this function has a hole in the graph at zero and three. It has a vertical asymptote at two. 

It has a zero at one. So . Can you tell me the 

formula for a function  that agrees with  on  but has no holes? It’s not a hard 

question. 

 

4.) We say that  is an algebraic function if it has a formula which is 

comprised of finitely many algebraic operations. By “algebraic” we mean you 

may add, subtract, multiply, divide and raise to powers or take roots. This 

category of functions includes all the preceding examples in 1,2 and 3. The 

domain for an algebraic function is simply all the inputs which result in a 

real number output. That means we must avoid taking the square root of a 

negative number and also division by zero. A silly example of an algebraic 

function is . What is the difference between this function and 

 ? I’ll give you a clue, it’s just the domain that is different. 

 

5.) Trigonometric functions such as sine, cosine and tangent are based on 

the geometry of triangles. Recall a right triangle is one for which an angle 

measures 90 degrees (or  radians, or 100 grads, etc…). 

 
    

 

  

 

 

 

 

 

 

In the picture above we assume that  and we have drawn the 

triangle so that , it is an acute angle. You may recall that the side 

 is adjacent to the angle  while the side  is opposite the angle . The 

longest side  is called the hypotenuse.  

 

       

 

 
 

 

 

   

Theorem 2.4.1: (Pythagorean Theorem) Let  be the sides of 

a right triangle with hypotenuse  then . 
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5.) Trigonometric functions continued: We could go on and list many 

more facts that are known about triangles and the geometric ratios of sine, 

cosine and tangent. Instead, I now introduce you to the functions  

which are defined for any value of .  

   

notation name Zeros graph 

 
 

 

sine 

 
 

 

Equivalently, 

 

,   

 

 

   
 

 
 

 

cosine 

 

 

 

Equivalently, 

 

,   

 

 

   
 

 
 

 

tangent 

 

Same as sine. The 

green lines are the 

vertical asymptotes 

which happen where 

cosine is zero. 

 

   
 

 

These functions extend the quadrant I geometric quantities to the other three 

quadrants. The definitions make polar coordinates work. The -plane is the 

set of points of the form . We say  is the -coordinate of  while  is 

the -coordinate of . The polar coordinates of  are  where 

 
 

 

and  is the radial coordinate and  is the standard angle. There are a 

number of conventions as to what particular values the polar coordinates 
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should be allowed to take. We will insist that  and . The -

plane is divided into four quadrants. See below how the sine and cosine of the 

standard angle matches the signs of  and .  

  

 

 
  

    

 

  

Or perhaps the following diagrams make more sense to you, 

 

                  
 

Since  we see that the formulas  and  

reproduce the correct signs for the Cartesian coordinates  and . My point 

here is simply that sine and cosine not only include basic geometric ratios 

about triangles, they also encode the signs of the Cartesian coordinates in all 

four quadrants.  
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Calculator Warning:  Given the Cartesian coordinates of a point it is a 

common task to find the standard angle , we can solve  for  

by taking the inverse tangent to obtain . Let me explain 

some of the dangers of this formula. Notice that  is 

positive in quadrants I and III and is negative in quadrants II and IV. If 

you try to solve for  with a calculator it cannot detect the difference 

between I and III or II and IV. Let’s see how the formula is ambiguous if 

you are not careful, 

 

i.) Suppose  then . We can solve for  by taking 

the inverse tangent of both sides,  now most 

scientific calculators will calculate the inverse tangent, it gives 

. In this case the calculator has not misled, the standard 

angle is . 

 

ii.) Suppose  then . We can solve for  

by taking the inverse tangent of both sides, . 

Now the scientific calculator will again calculate that . But 

in this case the calculator might mislead us, the standard angle is not . 

In fact the standard angle here lies in quadrant III and so we have to add 

 to the angle the calculator found to get the correct angle; . 
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6.) Reciprocal Trigonometric functions: these appear quite often in 

difficult integrations. Secant, cosecant and cotangent are defined to be one 

over the functions cosine, sine and tangent respectively. We use the notation, 

 

We could say more about these, and we will later, but for now let me just 

show you the graphs of these functions. 

 

Graph of  Graph of  Graph of  

  

 
 

 

 

 

 

 

7.) Inverse Trigonometric functions: we should be careful to distinguish the 

inverse trigonometric functions from the reciprocal trig functions. The 

inverse trig functions are   and  which I 

refer to as “inverse sine”, “inverse cosine” and “inverse tangent” respectively. 

They satisfy the equations, 

 
and, 

. 

Let us collect the graphs of the inverse trig functions for future reference. 

 

Graph of  Graph of  Graph of  

 

 
 

    

 

 

 

 

The green lines illustrate horizontal asymptotes of inverse tangent. The occur 

at  and . These are all local inverses, more on that in 2.6. 
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8.) Exponential functions: let  then we say that  is an exponential 

function if . The fixed number  is called the base of the exponential 

function. Exponential functions are nonzero everywhere. The graph below 

shows the three shapes an exponential function may take. 

  

 

 
 

 

If  then  gives us exponential growth. If  then  

gives us exponential decay. The graph appears to get to zero, but this is not 

the case, exponential functions never reach zero. We see that  

 

If  then this is the exponential function, more often than not we 

will work with this particular base, the number  is called Euler’s 

number in honor of the famous mathematician Euler. It is a transcendental 

number which means it is defined by an equation which transcends simple 

algebra. We will discuss  further in later chapters.  

 

 

9.) Logarithmic functions: these are the inverse functions of the exponential 

functions. We say that  is a logarithmic function, we assume 

that  and that the “log base a of x” (this is how we verbalize the formula 

when we’re talking out the math)  satisfies the following equations, 

 
In this sense the logarithm and exponential functions cancel. An equivalent way to define 

the logarithm is to say that if  then . Notice that the input of the 

logarithm must be positive since  is positive; .  

 

The natural log function is denoted , this the logarithmic function 

with base  that simply means . This particular 

logarithmic function is so important that it gets its own notation. We will 

encounter it frequently in later chapters.  
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The graph of  shows that the natural log has one zero at  . 
 

   

  
  

 

We can see that   and the .    

                    

 

PROPERTIES OF EXPONENTIALS AND LOGARITHMS: 

We assume that  in the equations that follow. I assume 

that you know these formulas and how to use them.  

Technically there is no need for the equations in the bottom 

two squares since they are the same as the top two once we set 

  .For your convenience I include them. 
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10.) Hyperbolic trigonometric functions: these are little less common then 

some of the other functions we have discussed so far, however they are useful 

both for certain questions of integration and also special relativity (ask me if 

you are interested, in short, the hyperbolic angle is the rapidity…).  
 

name of function defining formula 

hyperbolic cosine 

 

hyperbolic sine 

 

hyperbolic tangent 

 
 

At first glance it is a little strange to call these “trigonometric”, that label 

comes from an understanding of cosine and sine in terms of imaginary 

exponentials  where . We will discuss imaginary exponentials in  

section 4.11. For now just observe that 

 

This is clearly similar to the corresponding identity . I 

remind you that  and the same goes for the other functions. 

 

graph of   graph of  graph of  

 

   
 

 

   
  

 

   
 

 

 

The inverse hyperbolic trigonometric functions are  and 

. These satisfy the formulas,  

 

 
 

and, 

 
 

I include these inverse hyperbolic trig  functions for the sake of completeness, I don’t 

expect we will use them too much in this course. 



 21

 

2.5. WAYS TO COMBINE FUNCTIONS 
 

Given two functions  and  we can create new functions by adding, 

subtracting, dividing or multiplying by a constant. 
 

function defining formula domain of new function 

   

   

   

   

   
 

These formulas go to show that functions are a lot like numbers, we can add, 

subtract, multiply and even divide functions and the result will be a function. 

Functions are different than numbers of course, for example, I’m not sure 

what the analogue for the following would be in terms of numbers. 

           

 
It is true that figuring out the domain of a composite function is little tricky. 

Fortunately, the focus of this course is formulas more than domains. I am 

just trying to be careful. Let me illustrate how a composite function works. 

 

 

 
 

 
 

 

 

 

 

 

 

To start with we need  then even after that we must be sure that 

, so for example the  that has   is not allowed in the 

domain since the flamingo is outside the domain of . Ok, enough about the 

domain of a composite function. The important thing is you be able to identify 

when a function is a composite, we will come back to this issue when we 

 

Definition 2.5.1: if  and  are functions then the composite of  with  is 

 which is defined by 

 

for all  such that . In other words the domain of 

 is the set of all numbers such that the formula  makes sense. 
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study the chain rule for derivatives. Let me give one example before we go on 

just to refresh your memory on how the composite works. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6. INVERSE FUNCTIONS  
 

We will work primarily with local inverses for known functions. 

  

 

 

 

 

 

 

 
 

 

        

Some functions we have discussed so far have global inverses. For example, 

 has the global inverse . The theorem below helps guide us in our quest 

to find local inverses, 

 
 

Examples of local inverses are . These cannot be 

global inverses since  all are cyclic, they repeat the same 

Definition 2.6.1: We say that  has a local inverse  on  

if it satisfies the following two equations, 

 

for each , and  

 

for each . I should mention that . If the 

set  then we say that  is the global inverse of . 

Example 2.5.1: Suppose that  and . Let us 

calculate the formulas for  and also .  

 
On the other hand, 

 

The domain for  is completely determined by the domain of the 

inside function  since  

. 

On the other hand the domain of  is not limited by the 

domain of the inside function. Its domain is narrowed by where 

the range of  happens to fall outside the domain of ; in 

particular . So, 

. 

 

Theorem 2.6.1: If  is one to one over an interval  then  has a local 

inverse on . Conversely, if  is not one to one on  then  has no local 

inverse on . 
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output values many many times. See the graphs in section 2.4.4. A one-one 

function only outputs a particular value just once.  
 

 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

Example 2.6.2: Lets  with . This is not 1-1 

because sine oscillates just like cosine. However, if we reduce the 

domain to  we obtain a 1-1 function on that interval (red), 

so we can find an inverse function(blue),  

                          
and you can see that the inverse is the reflection of the graph of 

cosine about the line  (green). The domain of  inverse sine is 

 and the range is . In principle one could construct 

other inverses for sine based on other intervals, the choice of 

 is simply one of convention. 

Example 2.6.1: Let’s begin with  the graph looks like, 

                                
this cannot have a global inverse since it is not 1-1. However, if we 

reduce the domain to  we obtain a 1-1 function on that interval, so 

we can find an inverse function. I have graphed the inverse in blue, 

                          
and you can see that the inverse is the reflection of the graph of 

cosine about the line  (green). Let it be understood that when we 

speak of inverse cosine we intend the local inverse for cosine on the 

interval . The domain of  inverse cosine is  and the range is 

. In principle one could construct other inverses for cosine based 

on other intervals, the choice of  is simply one of convention. 
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By now you should have noticed that we can construct the inverse function’s 

graph by reflection about the line  (assuming that the function is 1-1 on 

the interval of interest ). I actually use this fact to construct certain graphs.  

                                     
You can draw the graph  (red) then draw the line  (green) and a 

bunch of perpendicular bisectors (cyan) then the graph of the inverse function 

 follows. If we travel one unit from the red graph to the green line 

along the cyan line then the corresponding point on the blue graph is one unit 

further past the green line. That is the green line should intersect the cyan 

line at the midpoint between the intersection points of the red and blue 

Example 2.6.2: Lets  with . This is not 1-1 

because tangent oscillates just like sine and cosine. However, if we 

reduce the domain to  we obtain a 1-1 function on that 

interval (red), so we can find an inverse function(blue),  

                          
and you can see that the inverse is the reflection of the graph of 

cosine about the line  (green). The domain of  inverse tangent 

is  and the range is .   

     I have added the vertical asymptotes of tangent in cyan at 

 you can see that the inverse tangent has horizontal 

asymptotes at . This illustrates a general pattern, vertical 

asymptotes for a function will morph into horizontal asymptotes 

for the inverse function. We will make use of this example in later 

chapters. It helps us understand what the limit of  is as 

 (it’s ). 
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graphs. Now, I should warn you that this advice is given for graphs with 

horizontal and vertical directions given the same scale. The cyan lines and 

the green line would take a different slant if -axis and -axis used a 

different scale ( Example 2.6.1 is such a case ). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2.6.4: Consider  with  we can argue 

algebraically that this function is not one-one since  implies 

 (we needed  instead ). Or observe that  

    
it fails the horizontal line test. In contrast, the same formula with 

reduced domain  or  will pass the horizontal line test, 

                  
So then what is the formula for the inverse functions? We need, 

 

in the interest of making the calculation easier let’s say that 

, then (ii.) above becomes  which yields . 

Two solutions! Which one to pick? Well remember we also need to 

solve (i.) which reads 

 

Interesting. This has two solutions, 

 ● If  then  so we choose the + solution;  

 ● If  then  so we choose the - solution;  

We find that the inverse of  on  is  and the  

inverse of  on  is . Notice that the 

graphs of inverses (blue) are symmetric about the line  ( green) 

               
Incidentally we just stumbled across a nice algebraic formula for the absolute 

value function; . For example, .  
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Why does the reflection rule hold ? 

 

We have seen in a number of cases that we can construct the graph of the 

inverse by reflection about the line . Examples are not proof. They are 

evidence in favor of a proof, can we give a general argument as to why this 

trick works ? Notice that one way of characterizing a reflection about the 

 line is to say that the reflected function is the same graph just with x 

and y switched.  For example,  is reflected to  which is otherwise 

known as . So the reflection of  is . If you go back 

and look at our graphs you’ll see the inverse is the same shape as the 

function, it’s just run vertically instead of horizontally.  

 

So the question reduces to why does the inverse function have the same 

graph as the function except with x and y reversed? Is it obvious from the 

definition of inverse ? Recall, 

 

If the graph of the inverse has the roles of x and y reversed we ought to look 

at the vertical graph . Using the boxed equation (which is the very 

definition of the inverse) we see . We have shown that the 

graph of the inverse function is just the graph of the function itself with the 

roles of  and  reversed. 

 

You may recall from your algebra course that the formula for the inverse 

function is found by taking the formula for the function and switching . 

For example, if  then we take  and switch it to  and 

solve for : remember to remove exponentials we can take the natural log, 

 

Thus, . Hence, .  

 

That high school trick makes good sense in view of the arguments on this 

page. 

 


