Working together is encouraged, share ideas not calculations. Explain your steps. I will collect some subset of these problems. A page to write answers on will be distributed in class the day before the Mission is due.

Problem 361 Please read Chapter 5 of the Lecture Notes.
Problem 362 Current $I=\frac{d Q}{d t}$ where Q is the charge. Calculate the net change in charge over $0 \leq t \leq 3$ given that $I(t)=10\left(1-e^{-2 t}\right)$.

Problem 363 If a pet-educator throws poodles out a window at the rate $\frac{d P}{d t}=2 t+1$ from $t=1$ to $t=3$ then find the net number of poodles thrown out the window from time $t=1$ to time $t=3$. In case you have not seen it, you might watch: this clip from Weird Al's classic movie UHF

Problem 364 We define $f_{a v g}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$ for the average of $f(x)$ on $a \leq x \leq b$. Find $f_{\text {avg }}$ for $f(x)=x^{2}$ on $0 \leq x \leq 2$.
Problem 365 Suppose f is continuous on $[a, b]$ and $f(x) \geq 0$ for simplicity of discussion. Solve $\int_{a}^{b} f(x) d x=\int_{a}^{b} c d x$ for c. What can you say about $f_{\text {avg }}$ in view of this calculation.

Problem 366 Find the signed-area bounded between $y=\sin (2 x)$ and the x-axis where $0 \leq x \leq \pi$.
Problem 367 Find the area bounded between $y=\sin (2 x)$ and the x-axis where $0 \leq x \leq \pi$. Your solution should include a graph which motivates your calculation.

Problem 368 Find the area bounded by $y=x^{2}-9$, the x-axis, $x=-4$ and $x=4$. Your solution should include a graph which motivates your calculation.

Problem 369 Find the area bounded by $y=2 x-10$ and $x=10-y^{2}$. Your solution should include a graph which motivates your calculation.

Problem 370 Find the area bounded by $y=\sqrt{x-1}$ and $y=x-1$. Your solution should include a graph which motivates your calculation.
Problem 371 Find the velocity and position x at time t given the acceleration $a(t)=t+4$. Write your answer in terms of the inital velocity v_{o} and position x_{o}.
Problem 372 Suppose the initial position is $x=0$ and the initial velocity is $v=2$ at time $t=1$. If the acceleration is given by $a(t)=t^{3}-1$ for $t \geq 1$ then find the velocity and position at time $t \geq 1$.

Problem 373 Suppose the velocity at time t is given by $v(t)=10+\sin (2 t)$. If the initial position at time $t=0$ is $x=2$ then find the position and acceleration at time $t \geq 0$.
Problem 374 Suppose $v(t)=t^{2}-4$. Find the distance travelled during the time interval $[0,4]$.
Problem 375 If $3 \int_{0}^{a} e^{x} d x=\int_{0}^{b} e^{x} d x$ then how are a and b related? Solve for b as a function of a.
Problem 376 Find area bounded by $y=x+1$ and $y=9-x^{2}$ and $x=-1$ and $x=2$. Include a sketch of the area as well as your typical infinitesimal approximating rectangle.
Problem 377 Find area bounded by $y=x$ and $y=x^{2}$. Include a sketch of the area as well as your typical infinitesimal approximating rectangle.

Problem 378 Find area bounded by $y=\sqrt{x+3}$ and $y=\frac{1}{2}(x+3)$. Include a sketch of the area as well as your typical infinitesimal approximating rectangle.
Problem 379 Find area bounded by $y=x^{2}$ and $y^{2}=x$. Include a sketch of the area as well as your typical infinitesimal approximating rectangle.

Problem 380 Find area bounded by $y=12-x^{2}$ and $y=x^{2}-6$. Include a sketch of the area as well as your typical infinitesimal approximating rectangle.

Problem 381 Find area bounded by $x=2 y^{2}$ and $x=4+y^{2}$. Include a sketch of the area as well as your typical infinitesimal approximating rectangle.

Problem 382 Find area bounded by $x=1-y^{2}$ and $x=y^{2}-1$. Include a sketch of the area as well as your typical infinitesimal approximating rectangle.

Problem 383 Find area of triangle with vertices $(0,0),(2,1),(-1,6)$. Include a sketch of the area as well as your typical infinitesimal approximating rectangle.

Problem 384 Find a value b such that $y=b$ divides the area bounded by $y=x^{2}$ and $y=4$ into two equal parts.
Problem 385 Find the volume of solid formed by revolving the area bounded by $y=-x / 2+2$ and $y=0$ and $x=1$ and $x=2$ around the x-axis. Also, find the volume if we instead rotate around the $y=-1$ axis.

Problem 386 Find the volume of solid formed by revolving the area bounded by $y=1 / x$ and $x=1$ and $x=2$ and $y=0$ around the x-axis.

Problem 387 Find the volume of solid formed by revolving the area bounded by $x=2 \sqrt{y}$ and $x=0$ and $y=9$ around the y-axis. Also, find the volume if we rotate around the $x=8$ axis.

Problem 388 Find the volume of solid formed by revolving the area bounded by $y=x^{3}$ and $y=x$ and $x \geq 0$ around the x-axis.

Problem 389 Find the volume of solid formed by revolving the area bounded by $y^{2}=x$ and $x=2 y$ around the y-axis.
Problem 390 Find the volume of the cap of a sphere of radius R where the cap is distance h from the center of the sphere.
Problem 391 Find the volume of a rectangular pyramid with base with width b and length $2 b$ and a height h.
Problem 392 Use the method of cylindrical shells to find the volume of the solid generated by rotation of the area bounded by $y=x^{2}$ for $0 \leq x \leq 2$ and $y=4$ and $x=0$ around the y-axis. Include a diagram to explain your calculation.

Problem 393 Use the method of cylindrical shells to find the volume of the solid generated by rotation of the area bounded by $y=4(x-2)^{2}$ and $y=x^{2}-4 x+7$ around the y-axis. Include a diagram to explain your calculation.

Problem 394 Use the method of cylindrical shells to find the volume of the solid generated by rotation of the area bounded by $x=1+y^{2}$ and $x=0$ and $y=1$ and $y=2$ around the x-axis. Include a diagram to explain your calculation.

Problem 395 Use the method of cylindrical shells to find the volume of the solid generated by rotation of the area bounded by $y=x^{3}$ and $y=8$ and $x=0$ around the x-axis. Include a diagram to explain your calculation.

Problem 396 In physics the force F in a one-dimensional problem with coordinate x is called conservative if there exists a potential energy function U for which $F=-\frac{d U}{d x}$. If the coordinate was y then this becomes $F=-\frac{d U}{d y}$ etc. Find α^{1} potential energy function given:
(a.) $F=-k x$ where k is a constant and the coordinate is x,
(b.) $F=-m g$ where m, g are constants and the coordinate is y,
(c.) $F=-\frac{G m_{1} m_{2}}{r^{2}}$ where G, m_{1}, m_{2} are constants and the coordinate is r.

Problem 397 In physics, the net-force F in a one-dimensional problem with coordinate x must satisfy Newton's Second Law $F=m a$ where $a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}$ and we assume the mass m is constant. Let $T(v)=\frac{1}{2} m v^{2}$ define the kinetic energy. Prove $\int_{x_{1}}^{x_{2}} F(x) d x=T\left(v_{2}\right)-T\left(v_{1}\right)$. This result is known as the work-energy theorem.

Problem 398 Let F be a one-dimensional conservative force with $F=-\frac{d U}{d x}$ and let $T(v)=\frac{1}{2} m v^{2}$ as in the previous problem. If F is the net-force and $E(x, v)=U(x)+T(v)$ then prove that energy E is conserved along the equations of motion. That is, show that $\frac{d E}{d t}=0$ for solutions of Newton's Second Law.

[^0]Problem 399 Work done by F in the x-direction over the interval $\left[x_{1}, x_{2}\right]$ is defined by $W=\int_{x_{1}}^{x_{2}} F(x) d x$. Let F_{o} be a constant. Calculate the work done by $F=F_{o}$ from $x=x_{1}$ to $x=x_{2}$.

Problem 400 Work done by F in the x-direction over the interval $\left[x_{1}, x_{2}\right]$ is defined by $W=\int_{x_{1}}^{x_{2}} F(x) d x$. Calculate the work done by $F=-k x$ from $x=x_{1}$ to $x=x_{2}$.

[^0]: ${ }^{1}$ notice there is a freedom to set $U=0$ wherever we so desire, this is an example of gauge freedom

