MATH 131

MissiON 10: AREA, VOLUME AND OTHER APPLICATIONS OF INTEGRATION

Working together is encouraged, share ideas not calculations. Explain your steps. I will collect some subset of these
problems. A page to write answers on will be distributed in class the day before the Mission is due.
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Please read Chapter 5 of the Lecture Notes.

Current I = % where @) is the charge. Calculate the net change in charge over 0 < ¢ < 3 given that

I(t) = 10(1 — e~2t).

ap

If a pet-educator throws poodles out a window at the rate G- = 2¢ + 1 from ¢ = 1 to £ = 3 then find the
net number of poodles thrown out the window from time ¢t = 1 to time ¢ = 3. In case you have not seen it,
you might watch: this clip from Weird Al’s classic movie UHF'.

1 b
We define fq,y = m/ f(z)dz for the average of f(z) on a < x < b. Find fu, for f(z) = z? on
0<xr<2. ¢

Suppose f is continuous on [a, b] and f(z) > 0 for simplicity of discussion. Solve f: flz)de = fab cdz for c.
What can you say about f,., in view of this calculation.

Find the signed-area bounded between y = sin(2z) and the z-axis where 0 < z < 7.

Find the area bounded between y = sin(2z) and the z-axis where 0 < z < 7. Your solution should include
a graph which motivates your calculation.

Find the area bounded by y = 22 — 9, the z-axis, z = —4 and = = 4. Your solution should include a graph
which motivates your calculation.

Find the area bounded by y = 22 — 10 and = = 10 — y?. Your solution should include a graph which
motivates your calculation.

Find the area bounded by y = v/ — 1 and y = x — 1. Your solution should include a graph which motivates
your calculation.

Find the velocity and position x at time ¢ given the acceleration a(t) =t + 4. Write your answer in terms
of the inital velocity v, and position z,.

Suppose the initial position is x = 0 and the initial velocity is v = 2 at time ¢ = 1. If the acceleration is
given by a(t) = t> — 1 for t > 1 then find the velocity and position at time ¢ > 1.

Suppose the velocity at time ¢ is given by v(t) = 10 4 sin(2¢). If the initial position at time ¢t = 0 is = 2
then find the position and acceleration at time ¢ > 0.

Suppose v(t) = t? — 4. Find the distance travelled during the time interval [0, 4].

If3 foa edr = fob e*dx then how are a and b related ? Solve for b as a function of a.

Find area bounded by y =z +1 and y = 9 — 22 and = —1 and = = 2. Include a sketch of the area as well
as your typical infinitesimal approximating rectangle.

Find area bounded by y = = and y = 22. Include a sketch of the area as well as your typical infinitesimal
approximating rectangle.

Find area bounded by y = vz +3 and y = %(x + 3). Include a sketch of the area as well as your typical
infinitesimal approximating rectangle.

Find area bounded by y = 2% and y? = x. Include a sketch of the area as well as your typical infinitesimal
approximating rectangle.

Find area bounded by y = 12 — 22 and y = 22 — 6. Include a sketch of the area as well as your typical
infinitesimal approximating rectangle.



https://www.youtube.com/watch?v=Btdp-sC8MJI
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Find area bounded by z = 2y? and =z = 4 + 3%. Include a sketch of the area as well as your typical
infinitesimal approximating rectangle.

Find area bounded by z = 1 — y2 and = = y? — 1. Include a sketch of the area as well as your typical
infinitesimal approximating rectangle.

Find area of triangle with vertices (0,0),(2,1),(—1,6). Include a sketch of the area as well as your typical
infinitesimal approximating rectangle.

Find a value b such that y = b divides the area bounded by y = 22 and y = 4 into two equal parts.

Find the volume of solid formed by revolving the area bounded by y = —z/2+ 2 and y = 0 and = 1 and
x = 2 around the z-axis. Also, find the volume if we instead rotate around the y = —1 axis.

Find the volume of solid formed by revolving the area bounded by y = 1/z and z =1 and x =2 and y =0
around the z-axis.

Find the volume of solid formed by revolving the area bounded by x = 2,/y and z = 0 and y = 9 around
the y-axis. Also, find the volume if we rotate around the x = 8 axis.

Find the volume of solid formed by revolving the area bounded by y = 2 and y = « and = > 0 around the
T-axis.

Find the volume of solid formed by revolving the area bounded by 3% =  and x = 2y around the y-axis.
Find the volume of the cap of a sphere of radius R where the cap is distance h from the center of the sphere.
Find the volume of a rectangular pyramid with base with width b and length 2b and a height h.

Use the method of cylindrical shells to find the volume of the solid generated by rotation of the area
bounded by y = 22 for 0 < x < 2 and y = 4 and x = 0 around the y-axis. Include a diagram to explain
your calculation.

Use the method of cylindrical shells to find the volume of the solid generated by rotation of the area bounded
by y = 4(x — 2)? and y = 2% — 42 + 7 around the y-axis. Include a diagram to explain your calculation.

Use the method of cylindrical shells to find the volume of the solid generated by rotation of the area
bounded by 2 = 1+ %% and 2 = 0 and y = 1 and y = 2 around the z-axis. Include a diagram to explain
your calculation.

Use the method of cylindrical shells to find the volume of the solid generated by rotation of the area bounded
by y = 22 and y = 8 and = = 0 around the z-axis. Include a diagram to explain your calculation.

In physics the force F' in a one-dimensional problem with coordinate z is called conservative if there exists

a potential energy function U for which F = —%. If the coordinate was y then this becomes F = —%
etc. Find aE| potential energy function given:
(a.) F = —kz where k is a constant and the coordinate is z,
(b.) F = —mg where m, g are constants and the coordinate is y,
Gmim
(c.) F= —# where G, mq, mgy are constants and the coordinate is r.
r

In physics, the net-force F' in a one-dimensional problem with coordinate x must satisfy Newton’s Second
d d?

Law F' = ma where a = dit) = Wf and we assume the mass m is constant. Let T'(v) = 2mov? define the
Z2

kinetic energy. Prove / F(z)dx = T(vy) —T(v1). This result is known as the work-energy theorem.

x1

Let F' be a one-dimensional conservative force with F = —% and let T'(v) = %va as in the previous
problem. If F'is the net-force and E(x,v) = U(x) 4+ T'(v) then prove that energy E is conserved along the
equations of motion. That is, show that % = 0 for solutions of Newton’s Second Law.

Inotice there is a freedom to set U = 0 wherever we so desire, this is an example of gauge freedom



Problem 399 Work done by F in the z-direction over the interval [z1,z2] is defined by W = f;f F(z)dx. Let F, be a
constant. Calculate the work done by F = F, from z = x1 to x = x5.

Problem 400 Work done by F in the z-direction over the interval [z, zo] is defined by W = f;f F(z)dx. Calculate the
work done by F' = —kx from z = x7 to x = .



