Working together is encouraged, share ideas not calculations. Explain your steps. I will collect some subset of these problems. A page to write answers on will be distributed in class the day before the Mission is due.

Problem 361 Please read Chapter 5 of the Lecture Notes.

- **Problem 362** Current $I = \frac{dQ}{dt}$ where Q is the charge. Calculate the net change in charge over $0 \le t \le 3$ given that $I(t) = 10(1 e^{-2t})$.
- **Problem 363** If a pet-educator throws poodles out a window at the rate $\frac{dP}{dt} = 2t + 1$ from t = 1 to t = 3 then find the net number of poodles thrown out the window from time t = 1 to time t = 3. In case you have not seen it, you might watch: this clip from Weird Al's classic movie UHF.
- **Problem 364** We define $f_{avg} = \frac{1}{b-a} \int_a^b f(x) dx$ for the average of f(x) on $a \le x \le b$. Find f_{avg} for $f(x) = x^2$ on $0 \le x \le 2$.
- **Problem 365** Suppose f is continuous on [a, b] and $f(x) \ge 0$ for simplicity of discussion. Solve $\int_a^b f(x) dx = \int_a^b c dx$ for c. What can you say about f_{avg} in view of this calculation.
- **Problem 366** Find the signed-area bounded between $y = \sin(2x)$ and the x-axis where $0 \le x \le \pi$.
- **Problem 367** Find the area bounded between $y = \sin(2x)$ and the x-axis where $0 \le x \le \pi$. Your solution should include a graph which motivates your calculation.
- **Problem 368** Find the area bounded by $y = x^2 9$, the x-axis, x = -4 and x = 4. Your solution should include a graph which motivates your calculation.
- **Problem 369** Find the area bounded by y = 2x 10 and $x = 10 y^2$. Your solution should include a graph which motivates your calculation.
- **Problem 370** Find the area bounded by $y = \sqrt{x-1}$ and y = x-1. Your solution should include a graph which motivates your calculation.
- **Problem 371** Find the velocity and position x at time t given the acceleration a(t) = t + 4. Write your answer in terms of the initial velocity v_o and position x_o .
- **Problem 372** Suppose the initial position is x = 0 and the initial velocity is v = 2 at time t = 1. If the acceleration is given by $a(t) = t^3 1$ for $t \ge 1$ then find the velocity and position at time $t \ge 1$.
- **Problem 373** Suppose the velocity at time t is given by $v(t) = 10 + \sin(2t)$. If the initial position at time t = 0 is x = 2 then find the position and acceleration at time $t \ge 0$.
- **Problem 374** Suppose $v(t) = t^2 4$. Find the distance travelled during the time interval [0, 4].
- **Problem 375** If $3 \int_0^a e^x dx = \int_0^b e^x dx$ then how are *a* and *b* related ? Solve for *b* as a function of *a*.
- **Problem 376** Find area bounded by y = x + 1 and $y = 9 x^2$ and x = -1 and x = 2. Include a sketch of the area as well as your typical infinitesimal approximating rectangle.
- **Problem 377** Find area bounded by y = x and $y = x^2$. Include a sketch of the area as well as your typical infinitesimal approximating rectangle.
- **Problem 378** Find area bounded by $y = \sqrt{x+3}$ and $y = \frac{1}{2}(x+3)$. Include a sketch of the area as well as your typical infinitesimal approximating rectangle.
- **Problem 379** Find area bounded by $y = x^2$ and $y^2 = x$. Include a sketch of the area as well as your typical infinitesimal approximating rectangle.
- **Problem 380** Find area bounded by $y = 12 x^2$ and $y = x^2 6$. Include a sketch of the area as well as your typical infinitesimal approximating rectangle.

- **Problem 381** Find area bounded by $x = 2y^2$ and $x = 4 + y^2$. Include a sketch of the area as well as your typical infinitesimal approximating rectangle.
- **Problem 382** Find area bounded by $x = 1 y^2$ and $x = y^2 1$. Include a sketch of the area as well as your typical infinitesimal approximating rectangle.
- **Problem 383** Find area of triangle with vertices (0,0), (2,1), (-1,6). Include a sketch of the area as well as your typical infinitesimal approximating rectangle.
- **Problem 384** Find a value b such that y = b divides the area bounded by $y = x^2$ and y = 4 into two equal parts.
- **Problem 385** Find the volume of solid formed by revolving the area bounded by y = -x/2 + 2 and y = 0 and x = 1 and x = 2 around the x-axis. Also, find the volume if we instead rotate around the y = -1 axis.
- **Problem 386** Find the volume of solid formed by revolving the area bounded by y = 1/x and x = 1 and x = 2 and y = 0 around the x-axis.
- **Problem 387** Find the volume of solid formed by revolving the area bounded by $x = 2\sqrt{y}$ and x = 0 and y = 9 around the *y*-axis. Also, find the volume if we rotate around the x = 8 axis.
- **Problem 388** Find the volume of solid formed by revolving the area bounded by $y = x^3$ and y = x and $x \ge 0$ around the *x*-axis.
- **Problem 389** Find the volume of solid formed by revolving the area bounded by $y^2 = x$ and x = 2y around the y-axis.
- **Problem 390** Find the volume of the cap of a sphere of radius R where the cap is distance h from the center of the sphere.
- **Problem 391** Find the volume of a rectangular pyramid with base with width b and length 2b and a height h.
- **Problem 392** Use the method of cylindrical shells to find the volume of the solid generated by rotation of the area bounded by $y = x^2$ for $0 \le x \le 2$ and y = 4 and x = 0 around the y-axis. Include a diagram to explain your calculation.
- **Problem 393** Use the method of cylindrical shells to find the volume of the solid generated by rotation of the area bounded by $y = 4(x-2)^2$ and $y = x^2 4x + 7$ around the y-axis. Include a diagram to explain your calculation.
- **Problem 394** Use the method of cylindrical shells to find the volume of the solid generated by rotation of the area bounded by $x = 1 + y^2$ and x = 0 and y = 1 and y = 2 around the x-axis. Include a diagram to explain your calculation.
- **Problem 395** Use the method of cylindrical shells to find the volume of the solid generated by rotation of the area bounded by $y = x^3$ and y = 8 and x = 0 around the x-axis. Include a diagram to explain your calculation.
- **Problem 396** In physics the force F in a one-dimensional problem with coordinate x is called **conservative** if there exists a potential energy function U for which $F = -\frac{dU}{dx}$. If the coordinate was y then this becomes $F = -\frac{dU}{dy}$ etc. Find a¹ potential energy function given:
 - (a.) F = -kx where k is a constant and the coordinate is x,
 - (b.) F = -mg where m, g are constants and the coordinate is y,
 - (c.) $F = -\frac{Gm_1m_2}{r^2}$ where G, m_1, m_2 are constants and the coordinate is r.
- **Problem 397** In physics, the net-force F in a one-dimensional problem with coordinate x must satisfy Newton's Second Law F = ma where $a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$ and we assume the mass m is constant. Let $T(v) = \frac{1}{2}mv^2$ define the **kinetic energy**. Prove $\int_{x_1}^{x_2} F(x)dx = T(v_2) T(v_1)$. This result is known as the **work-energy theorem**.
- **Problem 398** Let F be a one-dimensional conservative force with $F = -\frac{dU}{dx}$ and let $T(v) = \frac{1}{2}mv^2$ as in the previous problem. If F is the net-force and E(x, v) = U(x) + T(v) then prove that energy E is conserved along the equations of motion. That is, show that $\frac{dE}{dt} = 0$ for solutions of Newton's Second Law.

¹notice there is a freedom to set U = 0 wherever we so desire, this is an example of gauge freedom

- **Problem 399** Work done by F in the x-direction over the interval $[x_1, x_2]$ is defined by $W = \int_{x_1}^{x_2} F(x) dx$. Let F_o be a constant. Calculate the work done by $F = F_o$ from $x = x_1$ to $x = x_2$.
- **Problem 400** Work done by F in the x-direction over the interval $[x_1, x_2]$ is defined by $W = \int_{x_1}^{x_2} F(x) dx$. Calculate the work done by F = -kx from $x = x_1$ to $x = x_2$.