Working together is encouraged, share ideas not calculations. Explain your steps. I will collect some subset of these problems. A page to write answers on will be distributed in class the day before the Mission is due.

Problem 1 Please read Chapter 1 of the Lecture Notes. This mission assumes previous experience with precalculus which is summarized in Chapter 1. The problems which follow intend to help make certain you have a solid understanding of the basics before we begin Calculus in Chapter 2.

Problem 2 Find A, B, C for which $\sqrt{\frac{8x^3\sqrt{xy^2}}{x^6\sqrt[3]{27y}}} = Cx^Ay^B$

Problem 3 Find A, B, C for which $\left[\frac{x}{\sqrt{36y}}(x^2y)\right]^{-1} = Cx^A y^B$

Problem 4 Find
$$A, B, C$$
 for which $\frac{x^2}{y^{-1}} \cdot \frac{\frac{y}{x}}{2/\sqrt{x/y}} = Cx^A y^B$

Problem 5 Find A, B, C for which $\left[\frac{2x}{3y}\sqrt[3]{x^6y^3}\right]^2 = Cx^A y^B$

Problem 6 Find *A*, *B* for which $\frac{3x}{x^2 - 16} = \frac{A}{x + 4} + \frac{B}{x - 4}$.

- **Problem 7** Suppose $(x + 2y)^8 = x^8 + Ax^7y + \dots + Bxy^7 + C$ then find the values of A, B, C.
- **Problem 8** If $f(x) = 2^x = e^{kx-1}$ for all $x \in \mathbb{R}$ then find k.
- **Problem 9** Suppose x, y > 0. Find A, B, C for which $3 + \log(x^3y) 2\log(xy) = \log(Cx^Ay^B)$.
- **Problem 10** Consider the number systems $\mathbb{Z}, \mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$. Name each of these sets and explain how they can be arranged as subsets and supersets of one another.
- **Problem 11** Let $S = (-\infty, 3]$ and $T = (0, \infty)$. Write $S \cup T$ and $S \cap T$ as intervals of \mathbb{R} .

Problem 12 Let A = [1, 4] and $B = \{1, 2, 3, 4\}$. Express A - B in interval notation.

- **Problem 13** Let $S = \{(x, y) \mid 1 < x < 2, 3 \le y \le 4\}$. Express S as the Cartesian product of intervals of real numbers.
- **Problem 14** Let $S = \{x \in \mathbb{R} \mid |3x 12| < 18\}$. Express S using interval notation and \cup if necessary.
- **Problem 15** Let $S = \{x \in \mathbb{R} \mid 6 < |3x 12|\}$. Express S using interval notation and \cup if necessary.
- **Problem 16** Consider $U = \{x \in \mathbb{R} \mid -1 \le x < 3\}$. Find any boundary points of U and determine the interior of U.
- **Problem 17** Find a center x_0 and radius ε for which $B_{\varepsilon}(x_0) = (3, 7)$.
- **Problem 18** Write $B_5(-3) \cap B_6(4)$ in interval notation.

Problem 19 For each function given below, find the natural domain and express the domain in interval notation.

(a.)
$$f(x) = \frac{x^2 - 2x}{x}$$

(b.) $f(x) = \sqrt{3x - 7}$
(c.) $f(x) = \frac{3x - 2}{(x^2 + 4x + 5)^2}$
(d.) $f(x) = \ln(x - 8) + \log(x - 10)$
(e.) $f(x) = \sqrt[3]{x^2 - 4}$

Problem 20 Let $f(x) = \sqrt{5x+4}$. Find f[0,1] and $f^{-1}[0,1)$.

Problem 21 Let $f(x) = x^3 + 2$ and $A = \{1, 2, 3\}$ and $B = \{3, 10, 29, 123\}$. Find f(A) and $f^{-1}(B)$.

Problem 22 Let $f(x) = \frac{3x-1}{x+2}$ find the formula for $f^{-1}(y)$ and find the domain and range of both f and f^{-1} .

Problem 23 Let $f(x) = x^2 - 2x + 5$ where $1 \le x \le 2$. Find the formula for $f^{-1}(x)$ and graph y = f(x) and $y = f^{-1}(x)$.

- **Problem 24** Let $f(x) = 3 + 4e^{x-3}$. Find the formula for $f^{-1}(y)$ and find the domain and range of both f and f^{-1} .
- **Problem 25** Let $f(x) = \sin^{-1}(\pi x 2)$. Find the formula for $f^{-1}(y)$ and find the domain and range of both f and f^{-1} .
- **Problem 26** Let $f(x) = \tan^{-1}(3x)$. Find the formula for $f^{-1}(y)$ and find the domain and range of both f and f^{-1} .
- **Problem 27** Let $f(x) = \sin^{-1}(x)$ and $g(x) = \csc(x) = \frac{1}{\sin x}$. They're both *inverses* for the sine function. Explain the difference between f and g.
- **Problem 28** Find the solution set of $\cos(2x) = \frac{1}{2}$.
- **Problem 29** Find the solution set of $\sin(\pi x) \ge 0$.
- **Problem 30** Suppose $\cot \theta = x$ where x > 0. Find algebraic expressions for $\tan \theta$, $\cos \theta$, $\sin \theta$, $\csc \theta$ and $\sec \theta$. Draw a triangle to guide your work.
- **Problem 31** Solve $\cosh(x) = 2$ and also solve $\cosh(x) = 0$ where $\cosh(x) = \frac{1}{2}(e^x + e^{-x})$.
- **Problem 32** Show $\cosh^2 \phi \sinh^2 \phi = 1$.
- **Problem 33** Derive the formula for $\sinh^{-1}(x)$ as the natural log of an algebraic function.
- **Problem 34** Solve $\sinh^2(3x 1) = 8$.
- **Problem 35** Factor each polynomial below completely over \mathbb{C} :
 - (a.) $f(x) = x^2 10x + 26$ (b.) $f(x) = 2x^2 + 10x - 3$ (c.) $f(x) = x^6 - 81x^2$ (d.) $f(x) = x^4 + 4x^2 + 1$ (e.) $f(x) = x^3 - 27$
- **Problem 36** Find a polynomial of least degree for which p(1) = 0, p(-4) = 0 and $p(-1 + i\sqrt{2}) = 0$ and p(0) = 24. Please leave your answer in factored form. Do not leave the polynomial in standard form.
- Problem 37 Graph each rational function, be careful to label both vertical and horizontal asymptotes as well as x-intercepts.

(a.)
$$f(x) = \frac{3x-2}{(x+4)^2}$$

(b.) $f(x) = \frac{x^2-36}{4x^2-1}$
(c.) $f(x) = \frac{2x}{x^2-25}$

Problem 38 Let $f(x) = x^4 - 8x^2 + 8x + 15$. Notice f(-1) = 0 and f(-3) = 0. Factor f(x) completely over \mathbb{R} . **Problem 39** Solve $x^4 - 8x^2 + 8x + 15 > 0$ and express the answer using interval notation. **Problem 40** Derive the law of cosines. In particular, for a, b, c > 0 as pictured below, show that $c^2 = a^2 + b^2 - 2ab\cos\theta$:

Problem 41 Consider the diagram below:

Apply the law of cosines in order to derive a formula for $\cos(\alpha - \beta)$. Then use the even/odd properties for sine and cosine to derive the adding angles formula $\cos(A + B) = \cos A \cos B - \sin A \sin B$.

Problem 42 Does the identity $\cosh(A+B) = \cosh A \cosh B - \sinh A \sinh B$ hold true ? If not, how do you need to modify it to make it true ?