Working together is encouraged, share ideas not calculations. Explain your steps. I will collect some subset of these problems. A page to write answers on will be distributed in class the day before the Mission is due. I wise course of study might be to go lightly on Problems 46-57 and complete the more of the later problems to begin.

Problem 43 Please read Sections 2.1 - 2.4 of the Lecture Notes.

- **Problem 44** Find the equation of a line from (a, f(a)) to (b, f(b)) assuming $a \neq b$.
- **Problem 45** Let $U = \{1, 2, 3\} \cup [4, 6) \cup (6, 7)$. Find all limit points of U. Which limit points of U are not interior limit points? Which points are isolated points?
- **Problem 46** Prove from the $\varepsilon\delta$ -definition of the limit that $\lim_{x\to -3}(2x+7) = 13$.
- **Problem 47** Prove from the $\varepsilon\delta$ -definition of the limit that $\lim_{x \to -2} (8-2x) = 12$.
- **Problem 48** Prove from the $\varepsilon\delta$ -definition of the limit that $\lim_{x \to 2} |3x 2| = 7$.
- **Problem 49** Prove from the $\varepsilon\delta$ -definition of the limit that $\lim_{x\to 3} (x^2 + 2x + 7) = 22$.
- **Problem 50** Prove from the $\varepsilon\delta$ -definition of the limit that $\lim_{x \to 0} (2x^2 x 3) = 3$.
- **Problem 51** Prove from the $\varepsilon\delta$ -definition of the limit that $\lim_{x \to -1} (x^3 10x^2 11x + 2) = 2$.
- **Problem 52** Prove from the $\varepsilon\delta$ -definition of the limit that $\lim_{x\to 7} \frac{2x}{2x+7} = \frac{2}{3}$.
- **Problem 53** Prove from the $\varepsilon\delta$ -definition of the limit that $\lim_{x \to \infty} (x) = a$.
- **Problem 54** Prove from the $\varepsilon\delta$ -definition of the limit that $\lim_{x \to \infty} \sqrt[3]{x} = \sqrt[3]{a}$.

Problem 55 Prove by the $\varepsilon\delta$ -definition of the one-sided-limit that $\lim_{x \to 4^+} \sqrt{x-4} = 0$.

- **Problem 56** Prove by the $\varepsilon\delta$ -definition of the one-sided-limit that $\lim_{x\to 5^+} (3+\sqrt{x-5}) = 3.$
- **Problem 57** Prove by the $\varepsilon\delta$ -definition of the limit that $\lim_{x \to 0} (3 + \sqrt{x-5}) = 5$.
- **Problem 58** Calculate $\lim_{x \to 1^{-1}} (13x^4 + 20x^2 + 9)$.
- **Problem 59** Calculate $\lim_{\theta \to \pi/4} \tan \theta$
- **Problem 60** Calculate $\lim_{\theta \to \pi^-} \tan\left(\frac{\theta}{2}\right)$
- **Problem 61** Calculate $\lim_{\theta \to \pi/4} \left[\sec \theta + \csc^2 \theta \right]$
- **Problem 62** Calculate $\lim_{x \to 3^+} \sqrt{x-3}$
- **Problem 63** Calculate $\lim_{x \to -3} \left(\frac{x+3}{x^2-9} \right)$
- **Problem 64** Calculate $\lim_{x \to 3^+} \left(\frac{x+3}{x^2-9}\right)$
- **Problem 65** Given $\lim_{x\to 2} f(x) = 6$ calculate $\lim_{x\to 2} [7f(x)]$ and $\lim_{x\to 2} \cos(\pi f(x))$.

Problem 66 Let c be a constant and define $f(x) = \begin{cases} 3x-2 & x \leq 4\\ 2x^3+c & x>4 \end{cases}$. Calculate both $\lim_{x \to 4^-} f(x)$ and $\lim_{x \to 4^+} f(x)$. What value of c must we choose in order that $\lim_{x \to 4} f(x)$ exists.

Problem 67 See this website for this graph. Consider y = f(x) given below:

Analyze the following limits: (worth 4pts)

(a.) $\lim_{x \to -\infty} f(x)$ (b.) $\lim_{x \to \infty} f(x)$ (c.) $\lim_{x \to 1^{-}} f(x)$ (d.) $\lim_{x \to 1^{+}} f(x)$ (e.) $\lim_{x \to 1} f(x)$

Problem 68 Consider the graph y = f(x) below:

- (a.) which points are limit points of f(x)?
- (b.) list the isolated points of f(x),
- (c.) find the limits at each left and right boundary point.
- **Problem 69** Suppose $\lim_{x\to 3^+} f(x) = 7$ and $\lim_{x\to 3^-} f(x) = 4$. Sketch the graph y = f(x) near x = 3. What can you say about the two-sided limit at x = 3?
- **Problem 70** Suppose $\lim_{x\to 2^+} f(x) = 1$ and $\lim_{x\to 2^-} f(x) = 1$ yet $2 \notin dom(f)$. Sketch the graph y = f(x) near x = 2. What can you say about the two-sided limit at x = 2?

- **Problem 71** Suppose $\lim_{x\to -3^+} f(x) = \infty$ and $\lim_{x\to -3^-} f(x) = -\infty$. Sketch the graph y = f(x) near x = -3. What can you say about the two-sided limit at x = 3?
- **Problem 72** Prove $\lim_{x\to 0} \frac{1}{x^2} = \infty$ by an argument directly from the definition of the divergent limit.
- **Problem 73** Sketch the graph of $y = \tanh x$ and determine $\lim_{x\to\infty} \tanh x$ as well as $\lim_{x\to-\infty} \tanh x$.
- **Problem 74** Determine $\lim_{x \to \frac{\pi}{2}^+} \sec x$ as well as $\lim_{x \to \frac{\pi}{2}^-} \sec x$ by examining the graph of cosine near $x = \pi/2$.

Problem 75 Calculate the infinite limits below using an algebraic technique: here the notation $0 < \delta << 1$ means that δ is an arbitrarily small positive quantity.

(a.)
$$\frac{x+3}{x-1}$$
 as $x \to 1^+$ (study $x = 1 + \delta$ where $0 < \delta << 1$)
(b.) $\frac{2x-9}{(x-4)^2}$ as $x \to 4$ (study $x = 4 \pm \delta$ where $0 < \delta << 1$)
(c.) $\frac{x+2}{x^2+x-12}$ as $x \to 3^-$ (study $x = 3 - \delta$ where $0 < \delta << 1$)

Problem 76 Prove the limit law: $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$ given the limits of f and g both exist at x = a. **Problem 77** Prove the limit law: Suppose $c \in \mathbb{R}$ and $\lim_{x \to a} f(x) = L \in \mathbb{R}$ then $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$.

Problem 78 Suppose $x^2 \le f(x) \le x^2 + 1$ for all x such that 0 < x < 2. What can we say about $\lim_{x \to 1} f(x)$? Discuss.

Problem 79 Suppose $t^2 \leq g(t) \leq 3t$ for all t such that $0 \leq t < 1$. What can we say about $\lim_{t\to 0^+} g(t)$? Discuss.

Problem 80 Calculate the following limits via appropriate application of limit laws and algebra:

(a.) $\lim_{x \to 1} (ax^{2} + bx + c)$ (b.) $\lim_{x \to a} \frac{3x + 7}{x^{2} + 4x + 5}$ (c.) $\lim_{x \to \ln 2} \cosh(4x)$ (d.) $\lim_{x \to \pi} \cos^{2}(x)$ (e.) $\lim_{x \to 0} \log(e^{x} + 9)$ (f.) $\lim_{x \to 1} \ln(x^{2} - 2x + 1)$ (g.) $\lim_{x \to 3^{+}} \frac{10}{x - 3}$ (i.) $\lim_{x \to 3^{+}} \frac{3x - 9}{x^{2} - 9}$ (j.) $\lim_{x \to 2^{+}} \frac{x^{3} + 8}{x^{2} - 9}$ (k.) $\lim_{x \to 2^{-}} \frac{x^{4} - 16}{\sqrt{(x - 2)^{2}}}$ (n.) $\lim_{x \to 4^{+}} \frac{3 - x}{x^{2} - 2x - 8}$

(o.)
$$\lim_{x \to 4} \frac{4-x}{2-\sqrt{x}}$$

(p.) $\lim_{z \to 6} \frac{z+6}{z^2-36}$
(q.) $\lim_{x \to 0} \frac{\sqrt{x+4}-2}{x}$
(r.) $\lim_{x \to -2+\sqrt{3}} \frac{x+2-\sqrt{3}}{x^2+4x+1}$

Problem 81 Calculate the following limits via intuition guided by algebra where appropriate:

(a.)
$$\lim_{x \to \infty} \frac{126\sqrt[3]{x} + 1}{\sqrt[3]{27x}}$$

(b.)
$$\lim_{x \to \infty} (x^2 + 1)$$

(c.)
$$\lim_{x \to \infty} (x^3 + x + 1)$$

(d.)
$$\lim_{x \to \infty} \tanh(2x)$$

(e.)
$$\lim_{x \to \infty} \tan^{-1} (1 - 2x)$$

(f.)
$$\lim_{x \to \infty} (3 + e^{4-x})$$

(g.)
$$\lim_{x \to \infty} (3 + 2^t)$$

(h.)
$$\lim_{x \to \infty} \frac{3x^2 - x + 2}{x^2 + 7}$$

(i.)
$$\lim_{x \to -\infty} \frac{\sqrt{5x^2 - 2}}{x + 3}$$

(j.)
$$\lim_{x \to \infty} \frac{7 - 5x^5}{x + 13}$$

(k.)
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 3} - x\right)$$

Problem 82 Calculate $\lim_{x \to a} \frac{1}{(16x^2 - 1)^2}$. If needed, break into cases.

Problem 83 Calculate $\lim_{x \to 1} \left[(x-1)^2 \sin\left(\frac{1}{x-1}\right) \right]$ via the Squeeze Theorem. Problem 84 Calculate $\lim_{x \to 1^+} \sec\left(\frac{\pi x}{2}\right)$ Problem 85 Calculate $\lim_{\theta \to \frac{\pi}{4}} \left[\sin(2\theta) + \tan(\theta) \right]$ Problem 86 Calculate $\lim_{x \to \frac{x-10}{2}} \frac{x-10}{2}$

- Problem 86 Calculate $\lim_{x \to 10^+} \frac{x-10}{x^2-100}$ Problem 87 Calculate $\lim_{x \to 10^+} \frac{x-10}{x^2-100}$
- **Problem 87** Calculate $\lim_{x \to -10^+} \frac{x 10}{x^2 100}$
- **Problem 88** (2pts) Consider $f(x) = \frac{x-3}{x^3 + 7x^2 8x}$. Calculate $\lim_{x \to a} f(x)$ for all a which give a finite limit. Also, determine which values for a give $\lim_{x \to a} f(x)$ which does not exist.
- **Problem 89** Calculate $\lim_{x \to 2} (x^2 + 1)e^{x-2}$
- **Problem 90** Calculate $\lim_{x\to 0} \sinh x$. The hyperbolic sine is defined by $\sinh x = \frac{1}{2} (e^x e^{-x})$.
- **Problem 91** Calculate $\lim_{x \to \ln 2} \cosh x$. The hyperbolic cosine is defined by $\cosh x = \frac{1}{2} (e^x + e^{-x})$.

Problem 92 Calculate $\lim_{x\to 5} \frac{\sqrt{x+11}-4}{x-5}$ Problem 93 Calculate $\lim_{h\to 0} \left(\frac{h}{\sqrt{1+h}-1}\right)$. Problem 94 Calculate $\lim_{t\to 0} \left(\frac{1}{t}-\frac{1}{t^2+t}\right)$.

- **Problem 95** Suppose $x^2 6x + 10 \le f(x) \le \cos(2\pi x) + \sin(\pi x)$ for all $x \in (2, 4)$. Use the Squeeze Theorem to calculate $\lim_{x\to 3} f(x)$.
- **Problem 96** Calculate $\lim_{x \to \pi} \cos(x + \sin x)$.
- **Problem 97** Find a value for a such that the limit $\lim_{x\to 2} \frac{3x^2 + ax + a + 3}{x^2 + x 2}$ exists. Given that choice of a, calculate the limit.

Problem 98 Calculate $\lim_{x \to 2} \left(\frac{\frac{1}{x^2 - 4}}{\frac{1}{x - 2}} \right)$. Problem 99 Calculate $\lim_{x \to 0} \left(\frac{1 + \frac{84}{x^2}}{1 + \frac{2}{x^2}} \right)$.