Working together is encouraged, share ideas not calculations. Explain your steps. I will collect some subset of these problems. A page to write answers on will be distributed in class the day before the Mission is due. I wise course of study might be to go lightly on Problems 46-57 and complete the more of the later problems to begin.

Problem 43 Please read Sections 2.1-2.4 of the Lecture Notes.
Problem 44 Find the equation of a line from $(a, f(a))$ to $(b, f(b))$ assuming $a \neq b$.
Problem 45 Let $U=\{1,2,3\} \cup[4,6) \cup(6,7)$. Find all limit points of U. Which limit points of U are not interior limit points ? Which points are isolated points ?

Problem 46 Prove from the $\varepsilon \delta$-definition of the limit that $\lim _{x \rightarrow 3}(2 x+7)=13$.
Problem 47 Prove from the $\varepsilon \delta$-definition of the limit that $\lim _{x \rightarrow-2}(8-2 x)=12$.
Problem 48 Prove from the $\varepsilon \delta$-definition of the limit that $\lim _{x \rightarrow 3}|3 x-2|=7$.
Problem 49 Prove from the $\varepsilon \delta$-definition of the limit that $\lim _{x \rightarrow 3}\left(x^{2}+2 x+7\right)=22$.
Problem 50 Prove from the $\varepsilon \delta$-definition of the limit that $\lim _{x \rightarrow 2}\left(2 x^{2}-x-3\right)=3$.
Problem 51 Prove from the $\varepsilon \delta$-definition of the limit that $\lim _{x \rightarrow-1}\left(x^{3}-10 x^{2}-11 x+2\right)=2$.
Problem 52 Prove from the $\varepsilon \delta$-definition of the limit that $\lim _{x \rightarrow 7} \frac{2 x}{2 x+7}=\frac{2}{3}$.
Problem 53 Prove from the $\varepsilon \delta$-definition of the limit that $\lim _{x \rightarrow a}(x)=a$.
Problem 54 Prove from the $\varepsilon \delta$-definition of the limit that $\lim _{x \rightarrow a} \sqrt[3]{x}=\sqrt[3]{a}$.
Problem 55 Prove by the $\varepsilon \delta$-definition of the one-sided-limit that $\lim _{x \rightarrow 4^{+}} \sqrt{x-4}=0$.
Problem 56 Prove by the $\varepsilon \delta$-definition of the one-sided-limit that $\lim _{x \rightarrow 5^{+}}(3+\sqrt{x-5})=3$.
Problem 57 Prove by the $\varepsilon \delta$-definition of the limit that $\lim _{x \rightarrow 9}(3+\sqrt{x-5})=5$.
Problem 58 Calculate $\lim _{x \rightarrow 1}\left(13 x^{4}+20 x^{2}+9\right)$.
Problem 59 Calculate $\lim _{\theta \rightarrow \pi / 4} \tan \theta$
Problem 60 Calculate $\lim _{\theta \rightarrow \pi^{-}} \tan \left(\frac{\theta}{2}\right)$
Problem 61 Calculate $\lim _{\theta \rightarrow \pi / 4}\left[\sec \theta+\csc ^{2} \theta\right]$
Problem 62 Calculate $\lim _{x \rightarrow 3^{+}} \sqrt{x-3}$
Problem 63 Calculate $\lim _{x \rightarrow-3}\left(\frac{x+3}{x^{2}-9}\right)$
Problem 64 Calculate $\lim _{x \rightarrow 3^{+}}\left(\frac{x+3}{x^{2}-9}\right)$
Problem 65 Given $\lim _{x \rightarrow 2} f(x)=6$ calculate $\lim _{x \rightarrow 2}[7 f(x)]$ and $\lim _{x \rightarrow 2} \cos (\pi f(x))$.

Problem 66 Let c be a constant and define $f(x)=\left\{\begin{array}{ll}3 x-2 & x \leq 4 \\ 2 x^{3}+c & x>4\end{array}\right.$. Calculate both $\lim _{x \rightarrow 4^{-}} f(x)$ and $\lim _{x \rightarrow 4^{+}} f(x)$. What value of c must we choose in order that $\lim _{x \rightarrow 4} f(x)$ exists.
Problem 67 See this website for this graph. Consider $y=f(x)$ given below:

Analyze the following limits: (worth 4pts)
(a.) $\lim _{x \rightarrow-\infty} f(x)$
(b.) $\lim _{x \rightarrow \infty} f(x)$
(c.) $\lim _{x \rightarrow 1^{-}} f(x)$
(d.) $\lim _{x \rightarrow 1^{+}} f(x)$
(e.) $\lim _{x \rightarrow 1} f(x)$

Problem 68 Consider the graph $y=f(x)$ below:

(a.) which points are limit points of $f(x)$?
(b.) list the isolated points of $f(x)$,
(c.) find the limits at each left and right boundary point.

Problem 69 Suppose $\lim _{x \rightarrow 3^{+}} f(x)=7$ and $\lim _{x \rightarrow 3^{-}} f(x)=4$. Sketch the graph $y=f(x)$ near $x=3$. What can you say about the two-sided limit at $x=3$?

Problem 70 Suppose $\lim _{x \rightarrow 2^{+}} f(x)=1$ and $\lim _{x \rightarrow 2^{-}} f(x)=1$ yet $2 \notin \operatorname{dom}(f)$. Sketch the graph $y=f(x)$ near $x=2$. What can you say about the two-sided limit at $x=2$?

Problem 71 Suppose $\lim _{x \rightarrow-3^{+}} f(x)=\infty$ and $\lim _{x \rightarrow-3^{-}} f(x)=-\infty$. Sketch the graph $y=f(x)$ near $x=-3$. What can you say about the two-sided limit at $x=3$?

Problem 72 Prove $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$ by an argument directly from the definition of the divergent limit.
Problem 73 Sketch the graph of $y=\tanh x$ and determine $\lim _{x \rightarrow \infty} \tanh x$ as well as $\lim _{x \rightarrow-\infty} \tanh x$.
Problem 74 Determine $\lim _{x \rightarrow \frac{\pi}{2}+} \sec x$ as well as $\lim _{x \rightarrow \frac{\pi^{-}}{2}} \sec x$ by examining the graph of cosine near $x=\pi / 2$.
Problem 75 Calculate the infinite limits below using an algebraic technique: here the notation $0<\delta \ll 1$ means that δ is an arbitrarily small positive quantity.
(a.) $\frac{x+3}{x-1}$ as $x \rightarrow 1^{+}($study $x=1+\delta$ where $0<\delta \ll 1)$
(b.) $\frac{2 x-9}{(x-4)^{2}}$ as $x \rightarrow 4($ study $x=4 \pm \delta$ where $0<\delta \ll 1)$
(c.) $\frac{x+2}{x^{2}+x-12}$ as $x \rightarrow 3^{-}($study $x=3-\delta$ where $0<\delta \ll 1)$

Problem 76 Prove the limit law: $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$ given the limits of f and g both exist at $x=a$.
Problem 77 Prove the limit law: Suppose $c \in \mathbb{R}$ and $\lim _{x \rightarrow a} f(x)=L \in \mathbb{R}$ then $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$.
Problem 78 Suppose $x^{2} \leq f(x) \leq x^{2}+1$ for all x such that $0<x<2$. What can we say about $\lim _{x \rightarrow 1} f(x)$? Discuss.
Problem 79 Suppose $t^{2} \leq g(t) \leq 3 t$ for all t such that $0 \leq t<1$. What can we say about $\lim _{t \rightarrow 0^{+}} g(t)$? Discuss.
Problem 80 Calculate the following limits via appropriate application of limit laws and algebra:
(a.) $\lim _{x \rightarrow 1}\left(a x^{2}+b x+c\right)$
(b.) $\lim _{x \rightarrow a} \frac{3 x+7}{x^{2}+4 x+5}$
(c.) $\lim _{x \rightarrow \ln 2} \cosh (4 x)$
(d.) $\lim _{x \rightarrow \pi} \cos ^{2}(x)$
(e.) $\lim _{x \rightarrow 0} \log \left(e^{x}+9\right)$
(f.) $\lim _{x \rightarrow 1} \ln \left(x^{2}-2 x+1\right)$
(g.) $\lim _{x \rightarrow 5} \sqrt{x^{3}-x+1}$
(h.) $\lim _{x \rightarrow 3^{+}} \frac{10}{x-3}$
(i.) $\lim _{x \rightarrow 3^{+}} \frac{3 x-9}{x^{2}-9}$
(j.) $\lim _{t \rightarrow-2} \frac{t^{3}+8}{t+2}$
(k.) $\lim _{y \rightarrow-8} \frac{y^{2}+9 y+8}{2 y^{2}-128}$
(1.) $\lim _{x \rightarrow 2^{-}} \frac{x^{4}-16}{\sqrt{(x-2)^{2}}}$
(m.) $\lim _{x \rightarrow 2^{+}} \frac{\sqrt{(2-x)^{2}}}{x-2}$
(n.) $\lim _{x \rightarrow 4^{+}} \frac{3-x}{x^{2}-2 x-8}$
(o.) $\lim _{x \rightarrow 4} \frac{4-x}{2-\sqrt{x}}$
(p.) $\lim _{z \rightarrow 6} \frac{z+6}{z^{2}-36}$
(q.) $\lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{x}$
(r.) $\lim _{x \rightarrow-2+\sqrt{3}} \frac{x+2-\sqrt{3}}{x^{2}+4 x+1}$

Problem 81 Calculate the following limits via intuition guided by algebra where appropriate:
(a.) $\lim _{x \rightarrow \infty} \frac{126 \sqrt[3]{x}+1}{\sqrt[3]{27 x}}$
(b.) $\lim _{x \rightarrow \infty}\left(x^{2}+1\right)$
(c.) $\lim _{x \rightarrow-\infty}\left(x^{3}+x+1\right)$
(d.) $\lim _{x \rightarrow \infty} \tanh (2 x)$
(e.) $\lim _{x \rightarrow \infty} \tan ^{-1}(1-2 x)$
(f.) $\lim _{x \rightarrow \infty}\left(3+e^{4-x}\right)$
(g.) $\lim _{t \rightarrow-\infty}\left(3+2^{t}\right)$
(h.) $\lim _{x \rightarrow \infty} \frac{3 x^{2}-x+2}{x^{2}+7}$
(i.) $\lim _{x \rightarrow-\infty} \frac{\sqrt{5 x^{2}-2}}{x+3}$
(j.) $\lim _{x \rightarrow \infty} \frac{7-5 x^{5}}{x+13}$
(k.) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+3}-x\right)$

Problem 82 Calculate $\lim _{x \rightarrow a} \frac{1}{\left(16 x^{2}-1\right)^{2}}$. If needed, break into cases.
Problem 83 Calculate $\lim _{x \rightarrow 1}\left[(x-1)^{2} \sin \left(\frac{1}{x-1}\right)\right]$ via the Squeeze Theorem.
Problem 84 Calculate $\lim _{x \rightarrow 1^{+}} \sec \left(\frac{\pi x}{2}\right)$
Problem 85 Calculate $\lim _{\theta \rightarrow \frac{\pi}{4}}[\sin (2 \theta)+\tan (\theta)]$
Problem 86 Calculate $\lim _{x \rightarrow 10^{+}} \frac{x-10}{x^{2}-100}$
Problem 87 Calculate $\lim _{x \rightarrow-10^{+}} \frac{x-10}{x^{2}-100}$
Problem 88 (2pts) Consider $f(x)=\frac{x-3}{x^{3}+7 x^{2}-8 x}$. Calculate $\lim _{x \rightarrow a} f(x)$ for all a which give a finite limit. Also, determine which values for a give $\lim _{x \rightarrow a} f(x)$ which does not exist.
Problem 89 Calculate $\lim _{x \rightarrow 2}\left(x^{2}+1\right) e^{x-2}$
Problem 90 Calculate $\lim _{x \rightarrow 0} \sinh x$. The hyperbolic sine is defined by $\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)$.
Problem 91 Calculate $\lim _{x \rightarrow \ln 2} \cosh x$. The hyperbolic cosine is defined by $\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)$.

Problem 92 Calculate $\lim _{x \rightarrow 5} \frac{\sqrt{x+11}-4}{x-5}$
Problem 93 Calculate $\lim _{h \rightarrow 0}\left(\frac{h}{\sqrt{1+h}-1}\right)$.
Problem 94 Calculate $\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t^{2}+t}\right)$.
Problem 95 Suppose $x^{2}-6 x+10 \leq f(x) \leq \cos (2 \pi x)+\sin (\pi x)$ for all $x \in(2,4)$. Use the Squeeze Theorem to calculate $\lim _{x \rightarrow 3} f(x)$.
Problem 96 Calculate $\lim _{x \rightarrow \pi} \cos (x+\sin x)$.
Problem 97 Find a value for a such that the limit $\lim _{x \rightarrow 2} \frac{3 x^{2}+a x+a+3}{x^{2}+x-2}$ exists. Given that choice of a, calculate the limit.
Problem 98 Calculate $\lim _{x \rightarrow 2}\left(\frac{\frac{1}{x^{2}-4}}{\frac{1}{x-2}}\right)$.
Problem 99 Calculate $\lim _{x \rightarrow 0}\left(\frac{1+\frac{84}{x^{2}}}{1+\frac{2}{x^{2}}}\right)$.

