Working together is encouraged, share ideas not calculations. Explain your steps. I will collect some subset of these problems. A page to write answers on will be distributed in class the day before the Mission is due.

Problem 267 Please read Sections 5.3-5.6 of the Lecture Notes.
Problem 268 Suppose a box holds a volume of $32,000 \mathrm{~cm}^{3}$. The base of the box is square side length x and the sides have height y. The top of the box is open. What values should we choose for x and y as to minimize the amount of material needed to construct the box ?

Problem 269 What is the maximum area of a rectangle inscribed between the parabola $y=8-x^{2}$ and the x-axis? Use calculus to support your claim.

Problem 270 Consider a 10 meter length of wire which is cut into two pieces such that a length x piece is bent into a square and the remaining part is bent into a circle. Find maximum and minimum value for the net area bounded by both the square and the circle ${ }^{1}$

Problem 271 Find points on the ellipse $4 x^{2}+y^{2}=4$ which are furthest from $(1,0)$.
Problem 272 Find dimensions of the rectangle of largest area which may be inscribed in a circle of radius R.
Problem 273 A beehive is made of cells which are regular hexagonal prisms with a trihedral endcap with characteristic angle θ. It turns out the surface area of a cell in the beehive is given by:

$$
S=6 \operatorname{sh}-\frac{3}{2} s^{2} \cot \theta+\left(\frac{3 s^{2} \sqrt{3}}{2}\right) \csc \theta
$$

where s, b, h are constants and $0<\theta<\pi / 2$. Find the angle θ which minimizes the S. This is actually observed in nature, however, there is technically a slight improvement possible in terms of minimizing the surface area in terms of pure geometry. You can read more at: https://en.wikipedia.org/wiki/Honeycomb if you're interested.

Problem 274 Solve the problems below with calculus:
(a.) Show a square has the greatest area of all the rectangles formed by a given perimeter P.
(b.) Show a square has the smallest perimeter of all the rectangles formed by a given area A.

Problem 275 Find the point on the line $y=4 x+7$ which is closest to the origin.
Problem 276 Two poles of unequal height $h_{1} \neq h_{2}$ are secured by a very taught rope to a point between the poles as pictured below. Show that the shortest length of rope needed to secure the poles occurs when $\theta_{1}=\theta_{2}$. Let X be the distance betweent the base of the poles ${ }^{2}$

Problem 277 Find two positive real numbers x, y whose product is 100 and the sum of the second number and four times the first number is a minimum.

Problem 278 Suppose the speed of a race car is given by $v(t)=200 t-4 t^{2}$ for $0 \leq t \leq 50$ where t is in seconds and v is in m / s. Find the maximum speed of the car.

[^0]Problem 279 Let us review some limits at $\pm \infty$ which can be solved without L'hopital's Rule:
(a.) $\lim _{x \rightarrow-\infty} \frac{2 x^{3}-3 x^{2}+5}{3 x^{3}-2 x^{2}-5}$
(b.) $\lim _{x \rightarrow-\infty} \frac{\sqrt{5 x^{6}-2 x^{3}+3}}{9 x^{3}+8}$
(c.) $\lim _{x \rightarrow \infty} \frac{\sqrt{7 x^{2}+x-2}}{2 x-3}$
(d.) $\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{4}-1}}{2 x^{2}-x-10}$
(e.) $\lim _{x \rightarrow \infty}\left[2 x-\sqrt{4 x^{2}+3 x-1}\right]$
(f.) $\lim _{x \rightarrow-\infty}\left[2 x^{3}+5 x^{2}\right]$

Problem 280 Find the horizontal asymptotes for the graphs given below:
(a.) $y=\frac{3 x^{2}+x-9}{2 x^{2}-x-15}$
(b.) $y=\frac{\sqrt{2 x^{2}-7}}{x-8}$ (be careful)

Problem 281 Use L'hopital's Rule to calculate the following limits:
(a.) $\lim _{x \rightarrow 0}\left[x^{2} e^{\frac{1}{x^{2}}}+\tan ^{-1}\left(\csc ^{2}(x)\right)\right]$
(b.) $\lim _{x \rightarrow 0}\left[2^{p x-q x}\right]$ where p, q are constants.
(c.) $\lim _{x \rightarrow \infty} \frac{1}{\left[1+\frac{1}{x}\right]^{b x}}$ where b is a constant.

Problem 282 Calculate the limits via L'Hopital's Rule and appropriate algebra.
(a.) $\lim _{x \rightarrow 1}\left[\frac{x^{2}-1}{x^{2}-x}\right]$
(b.) $\lim _{t \rightarrow 0}\left[\frac{e^{t}-1}{t^{3}}\right]$
(c.) assume $q \neq 0, \lim _{x \rightarrow 0} \frac{\tan (p x)}{\tan (q x)}$
(d.) $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}$
(e.) $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{3}}$
(f.) $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}$
(g.) $\lim _{t \rightarrow 0} \frac{5^{t}-3^{t}}{t}$
(h.) $\lim _{x \rightarrow 0} \frac{\sin ^{-1}(x)}{x}$
(i.) $\lim _{t \rightarrow \infty} x^{3} e^{-x^{2}}$
(j.) $\lim _{t \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right)$

Problem 283 Calculate the limits via L'Hopital's Rule and appropriate algebra.
(a.) for $n \in \mathbb{N}, \lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}$
(b.) for $p>0, \lim _{x \rightarrow \infty} \frac{\ln x}{x^{p}}$
(c.) for $a, b \neq 0, \lim _{x \rightarrow 1} \frac{x^{a}-1}{x^{b}-1}$
(d.) $\lim _{x \rightarrow 0} \frac{x+\tan x}{\sin x}$
(e.) $\lim _{x \rightarrow \pi} \frac{1}{x \cot x}$
(f.) $\lim _{x \rightarrow \infty} \frac{\ln (\ln (x))}{x}$
(g.) for m, n constants, $\lim _{x \rightarrow 0}\left(\frac{\cos (m x)-\cos (n x)}{x^{2}}\right)$
(h.) $\lim _{x \rightarrow 0} \frac{x}{\tan ^{-1}(4 x)}$
(i.) $\lim _{x \rightarrow \frac{\pi}{2}-} \sec (7 x) \cos (3 x)$
(j.) $\lim _{x \rightarrow 1^{+}}\left[(x-1) \tan \left(\frac{\pi x}{2}\right)\right]$
(k.) $\lim _{x \rightarrow 0}(\csc (x)-\cot (x))$
(1.) $\lim _{x \rightarrow 1}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)$

Problem 284 Calculate the limits of the following indeterminant powers via L'Hopital's Rule and appropriate algebra.
(a.) $\lim _{x \rightarrow 0}(1-2 x)^{1 / x}$
(b.) $\lim _{x \rightarrow \infty}\left(x^{1 / x}\right)$
(c.) $\lim _{x \rightarrow 0^{+}}(\cos x)^{1 / x^{2}}$
(d.) $\lim _{x \rightarrow 0^{+}}(\sin x)^{\tan x}$
(e.) $\lim _{x \rightarrow \infty} x^{\frac{\ln 2}{1+\ln x}}$

Problem 285 Calculate $\lim _{x \rightarrow \infty} \frac{210 x^{2}-6 x+4}{5 x^{2}+15 x-8}$.
Problem 286 Calculate $\lim _{x \rightarrow \infty} \frac{x^{2}+3 x-8}{e^{x}}$
Problem 287 Calculate $\lim _{x \rightarrow 0} \frac{x^{2}}{\ln (3 x)}$
Problem 288 Calculate $\lim _{x \rightarrow 0} \frac{\ln \left(6 x^{3}+2\right)}{\ln \left(x^{3}+3 x+8\right)}$
Problem 289 Calculate $\lim _{x \rightarrow 2}\left[\frac{1}{\ln (x-1)}-\frac{1}{x-2}\right]$
Problem 290 Calculate $\lim _{x \rightarrow \infty} e^{x} \sin \left(e^{-x}\right)$
Problem 291 Let a, b be positive constants. Calculate $\lim _{x \rightarrow 0} \frac{\sin (a x)}{\sin (b x)}$.

Problem 292 Show $e^{t}=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x t}$.
Problem 293 Given $\tan ^{-1}(x)<f(x)<\frac{\pi}{2} \tanh (x)$ for $x>42$ calculate $\lim _{x \rightarrow \infty} f(x)$.
Problem 294 Find the Taylor poynomial of order 4 centered at the given a for the functions below:
(a.) $f(x)=x^{4}+4$, with center $a=2$,
(b.) $g(x)=\tan x$, with center $a=0$,
(c.) $h(x)=\frac{1}{1-x}$, with center $a=0$.

Problem 295 We say a polynomial $p(x)$ has a zero x_{o} with multiplicity m if $p(x)=\left(x-x_{o}\right)^{m} g(x)$ where $g\left(x_{o}\right) \neq 0$ is a polynomial. Use values of derivatives of $p(x)$ at x_{o} to give a condition on the derivatives of $p(x)$ which make x_{o} a zero with multiplicity m.

Problem 296 Consider $f(x)=x^{5}+x^{4}-6 x^{3}+2 x^{2}+5 x-3$. Use the result of the previous problem to show $f(x)$ has the zero $x_{o}=1$ with multiplicity 3 . Finally, completely factor $f(x)$ over \mathbb{R}.

[^0]: ${ }^{1}$ hint: $0 \leq x \leq 10$ is the physically reasonable range for x given the statement of the problem.
 2^{2} when I worked out this problem I used x as a variable to set-up the calculus, there may be a wiser path.

