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preface

These notes contain many examples and thoughts I will not have time for in lecture. Sometimes
I may refer to the notes rather than write out certain lengthy theorems or definitions. It would
be good if you had a copy of these notes for your convenience. I’ve seen students fit as many as
6 pages to a single side of paper, if your eyesight is good it’s not much to carry. I do expect you
come to class. Attending class is a necessary, but not sufficient condition for success in this course.
You will need to spend time outside class pondering what was said. I would recommend you form
a study group to work on the homework and/or study together. If you’re like me then you’ll want
to try the homework before joining the group.

I try to add interesting examples in lecture which are not found in these notes. Often I present
something in general in the notes whereas I present a simple low-dimensional application for class.
In addition, I always am interested in interesting questions about the material. A properly engaged
class will bring questions which add depth to these notes, the text, even the homework. Nothing
makes me happier then learning something from my students. Ideally, I teach to learn.

Doing the homework is doing the course. I cannot overemphasize the importance of thinking
through the homework. I would be happy if you left this course with a working knowledge of:

X how to solve a system of linear equations by Gaussian elimination the rref(A)

X concrete and abstract matrix calculations

X determinants

X the calculational utility of linear independence, spanning, coordinates and bases

X column, row and null spaces for a matrix, how to find their bases and use them

X matrix of linear transformation and change of basis

X eigenvalues and eigenvectors and diagonalization

X orthogonal bases and the Gram-Schmidt algorthim

X least squares fitting of experimental data, Fourier fits of functions

X how to solve a system of linear differential equations

X principle axis theorems for conic sections and quadric surfaces

X Matlab’s matrix computational commands

These notes are loosely based on my Fall 2010 lecture notes for Linear Algebra. Those notes are
intended for a course with a larger emphasis on proof. In contrast, while there will be some ”proofs”
in this course our focus is more in the direction of calculation and problem solving. Please let me
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know if anything seems out of place and/or confusing. I’ve attempted to eliminate comments from
previous semesters and those things unique to Math 321, but there are about 300 pages here and
I’ve only been at this a week. I do appreciate being notified of errors. Email is best, be specific, it
helps me and your classmates.

Math 221 is intended for SECS majors. If you are a double major in Math and some SECS major
then you should take Math 321 since that course covers most of the calculational aspects of this
course and focuses more on the concept of abstraction through vector spaces. Math 321 can be
subsituted for Math 221 however, Math 221 may not be substituted for Math 321.

I use my usual conventions in these notes: green is used for definitions whereas remarks appear in
red and propositions or theorems etc... appear in blue . Many proofs are omitted in this version.
However, not all. I have included some since I believe that some exposure to proofs is still worth-
while for those students who only care about the real world. I happen to believe in the reality
of mathematicians and you may find yourself needing to converse with one someday. Most of the
theory I do insist on maintaining in this course is largely for the purpose of langauge. Mathematics
is just that, it is a precise langauge which allows us to quickly get across abstract ideas to people
with similar training.

To the weaker among you, to those who the proofs frighten, my apologies for their appearance in
the notes. Please note that I have marked certain sections with a *. This indicates there is some
significant part of that section which is beyond the core of this course and/or it involves concepts
(like partial differentiation or methods of differential equations) which are not pre-requisite to this
course.

The purpose of these notes is to supplement your notes from lecture and your reading from the
required text. It is important that you come to class, pay attention, and keep track of what we
cover. It is even more important that you regularly work on the homeworks with the goal of un-
derstanding both lecture and these notes.

Note on technology: You can use Matlab or Mathematica to calculate, but it should be an appro-
priate use. Inappropriate use would be where the purpose of the homework is averted through the
use. For example, at the start of the course when we are calculating rref(A) then you need to work
our the row-reductions step-by-step since you will be expected to do the same on the exam. On
the other hand, later in the midst of a least squares problem using the rref command to simplify a
system would be totally appropriate. It is always appropriate to check answers with technology! If
in doubt, ask.

It not wise to use Cramster etc... for help on the homework. Between lecture, office hours and your
study group this should be enough. If you need someone else to tell you the answer then that is
not doing homework. That is wasting your time. Moreover, if I see the solution from the solution
manual in your homework then the grade of that homework is zero. The grader will notice. Don’t
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do it. You’ll lose many more points on the tests and quizzes than you would gain on the homework
anyway.

Bibliographical notes:

1. references to David Lay’s Linear Algebra and Its Applications refer to the second edition.
Incidentally, this an excellent text which you can purchase for about ten dollars and shipping.

2. references to Anton and Rorres refer to either ed. 9 or 10. I have ed. 9 if you want to look
at it in office hours. I do expect you have (or share with someone) the tenth ed.

3. Insel Spence and Friedberg authored two texts on linear algebra. The text I primarily refer-
ence is titled Elementary Linear Algebra the 2nd edition. Their other text Linear Algebra is
a beautiful text I would love to see us use for Math 321.

4. previous editions of my linear algebra notes from Math 321 are posted at my webpage
www.supermath.info.

I hope you find this course engaging. The availability of computers has made linear algebra the
most important mathematics for business and applications. Almost without exception when we ask
graduates who work in industry what courses were most important we hear linear algebra towards
the top if not at the top of the list. It is my sincere desire that when you leave this course you are
ready to start applying the calculations of this course to solve real world problems.

I have arranged for week of numerical methods at the end of this course. My hope is that Dr. Wang
will collaborate and share some of his expertise in this area. The Matlab project(s) will likely be
based on Dr. Wang’s vision for those topics.

James Cook, July 16, 2012
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Chapter 1

Gauss-Jordan elimination

Gauss-Jordan elimination is an optimal method for solving a system of linear equations. Logically
it may be equivalent to methods you are already familar with but the matrix notation is by far
the most efficient method. This is important since throughout this course we will be faced with
the problem of solving linear equations. Additionally, the Gauss-Jordan produces the reduced row
echelon form(rref) of the matrix. Given a particular matrix the rref is unique. This is of particular
use in theoretical applications.

1.1 systems of linear equations

Let me begin with a few examples before I state the general definition.

Example 1.1.1. Consider the following system of 2 equations and 2 unknowns,

x+ y = 2

x− y = 0

Adding equations reveals 2x = 2 hence x = 1. Then substitute that into either equation to deduce
y = 1. Hence the solution (1, 1) is unique

Example 1.1.2. Consider the following system of 2 equations and 2 unknowns,

x+ y = 2

3x+ 3y = 6

We can multiply the second equation by 1/3 to see that it is equivalent to x + y = 2 thus our two
equations are in fact the same equation. There are infinitely many equations of the form (x, y)
where x+ y = 2. In other words, the solutions are (x, 2− x) for all x ∈ R.

Both of the examples thus far were consistent.

9
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Example 1.1.3. Consider the following system of 2 equations and 2 unknowns,

x+ y = 2

x+ y = 3

These equations are inconsistent. Notice substracting the second equation yields that 0 = 1. This
system has no solutions, it is inconsistent

It is remarkable that these three simple examples reveal the general structure of solutions to linear
systems. Either we get a unique solution, infinitely many solutions or no solution at all. For our
examples above, these cases correspond to the possible graphs for a pair of lines in the plane. A
pair of lines may intersect at a point (unique solution), be the same line (infinitely many solutions)
or be paralell (inconsistent).1

Remark 1.1.4.

It is understood in this course that i, j, k, l,m, n, p, q, r, s are in N. I will not belabor this
point. Please ask if in doubt.

Definition 1.1.5. system of m-linear equations in n-unknowns

Let x1, x2, . . . , xm be m variables and suppose bi, Aij ∈ R for 1 ≤ i ≤ m and 1 ≤ j ≤ n then

A11x1 +A12x2 + · · ·+A1nxn = b1

A21x1 +A22x2 + · · ·+A2nxn = b2

...
...

...
...

Am1x1 +Am2x2 + · · ·+Amnxn = bm

is called a system of linear equations. If bi = 0 for 1 ≤ i ≤ m then we say the system
is homogeneous. The solution set is the set of all (x1, x2, . . . , xn) ∈ Rn which satisfy all
the equations in the system simultaneously.

1I used the Graph program to generate these graphs. It makes nice pictures, these are ugly due to user error.
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Remark 1.1.6.

We use variables x1, x2, . . . , xn mainly for general theoretical statements. In particular
problems and especially for applications we tend to defer to the notation x, y, z etc...

Definition 1.1.7.

The augmented coefficient matrix is an array of numbers which provides an abbreviated notation
for a system of linear equations.

A11x1 +A12x2 + · · ·+A1nxn = b1
A21x1 +A22x2 + · · ·+A2nxn = b2

...
...

...
...

...
Am1x1 +Am2x2 + · · ·+Amnxn = bm

 abbreviated by


A11 A12 · · · A1n b1
A21 A22 · · · A2n b2

...
...

...
...

...
Am1 Am2 · · · Amn bm

 .

The vertical bar is optional, I include it to draw attention to the distinction between the matrix of
coefficients Aij and the nonhomogeneous terms bi. Let’s revisit my three simple examples in this
new notation. I illustrate the Gauss-Jordan method for each.

Example 1.1.8. The system x+ y = 2 and x− y = 0 has augmented coefficient matrix:[
1 1 2
1 −1 0

]
r2 − r1 → r2−−−−−−−−→

[
1 1 2
0 −2 −2

]
r2/− 2→ r2−−−−−−−−−→

[
1 1 2
0 1 1

]
r1 − r2 → r1−−−−−−−−→

[
1 0 1
0 1 1

]
The last augmented matrix represents the equations x = 1 and y = 1. Rather than adding and
subtracting equations we added and subtracted rows in the matrix. Incidentally, the last step is
called the backward pass whereas the first couple steps are called the forward pass. Gauss is
credited with figuring out the forward pass then Jordan added the backward pass. Calculators can
accomplish these via the commands ref ( Gauss’ row echelon form ) and rref (Jordan’s reduced
row echelon form). In particular,

ref

[
1 1 2
1 −1 0

]
=

[
1 1 2
0 1 1

]
rref

[
1 1 2
1 −1 0

]
=

[
1 0 1
0 1 1

]
Example 1.1.9. The system x+ y = 2 and 3x+ 3y = 6 has augmented coefficient matrix:[

1 1 2
3 3 6

]
r2 − 3r1 → r2−−−−−−−−−→

[
1 1 2
0 0 0

]
The nonzero row in the last augmented matrix represents the equation x + y = 2. In this case we
cannot make a backwards pass so the ref and rref are the same.
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Example 1.1.10. The system x+ y = 3 and x+ y = 2 has augmented coefficient matrix:[
1 1 3
1 1 2

]
r2 − 3r1 → r2−−−−−−−−−→

[
1 1 1
0 0 1

]
The last row indicates that 0x+0y = 1 which means that there is no solution since 0 6= 1. Generally,
when the bottom row of the rref(A|b) is zeros with a 1 in the far right column then the system
Ax = b is inconsistent because there is no solution to the equation. In this case the solution set is
the empty set ∅

1.2 Gauss-Jordan algorithm

To begin we need to identify three basic operations we do when solving systems of equations. I’ll
define them for system of 3 equations and 3 unknowns, but it should be obvious this generalizes to m
equations and n unknowns without much thought. The following operations are called Elementary
Row Operations.

(1.) scaling row 1 by nonzero constant c A11 A12 A13 b1
A21 A22 A23 b2
A31 A32 A33 b3

 cr1 → r1−−−−−→

 cA11 cA12 cA13 cb1
A21 A22 A23 b2
A31 A32 A33 b3


(2.) replace row 1 with the sum of row 1 and row 2 A11 A12 A13 b1

A21 A22 A23 b2
A31 A32 A33 b3

 r1 + r2 → r1−−−−−−−−→

 A11 +A21 A12 +A22 A13 +A23 b1 + b2
A21 A22 A23 b2
A31 A32 A33 b3


(3.) swap rows 1 and 2 A11 A12 A13 b1

A21 A22 A23 b2
A31 A32 A33 b3

 r1 ←→ r2−−−−−−→

 A21 A22 A23 b2
A11 A12 A13 b1
A31 A32 A33 b3


Each of the operations above corresponds to an allowed operation on a system of linear equations.
When we make these operations we will not change the solution set. Notice the notation tells us
what we did and also where it is going. I do expect you to use the same notation2 I also expect
you can figure out what is meant by cr2 → r2 or r1 − 3r2 → r1. We are only allowed to make a
finite number of the operations (1.),(2.) and (3.). The Gauss-Jordan algorithm tells us which order
to make these operations in order to reduce the matrix to a particularly simple format called the
”reduced row echelon form” (I abbreviate this rref most places).

2there is an abbrevation which is convenient and I will use to save some writing. Instead of r1 + r2 −→ r1−−−−−−−−−−→ we can

just write r1 + r2−−−−→. In contrast, r1 + r2 −→ r2−−−−−−−−−−→ we can just write r2 + r1−−−−→. Whichever row appears first in the formula

is modified.
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Definition 1.2.1. Gauss-Jordan Algorithm.

Given an m by n matrix A the following sequence of steps is called the Gauss-Jordan algo-
rithm or Gaussian elimination. I define terms such as pivot column and pivot position
as they arise in the algorithm below.

Step 1: Determine the leftmost nonzero column. This is a pivot column and the
topmost position in this column is a pivot position.

Step 2: Perform a row swap to bring a nonzero entry of the pivot column to the topmost
row which does not already contain a pivot position. (in the first iteration this will
be the top row of the matrix)

Step 3: Add multiples of the pivot row to create zeros below the pivot position. This is
called ”clearing out the entries below the pivot position”.

Step 4: If there are no more nonzero rows below the last pivot row then go to step 5.
Otherwise, there is a nonzero row below the pivot row and the new pivot column is
the next nonzero column to the right of the old pivot column. Go to step 2.

Step 5: the leftmost entry in each nonzero row is called the leading entry (these are the
entries in the pivot positions). Scale the bottommost nonzero row to make the leading
entry 1 and use row additions to clear out any remaining nonzero entries above the
leading entries.

Step 6: If step 5 was performed on the top row then stop, otherwise apply Step 5 to the
next row up the matrix.

Steps (1.)-(4.) are called the forward pass. A matrix produced by a foward pass is called
the reduced echelon form of the matrix and it is denoted ref(A). Steps (5.) and (6.) are
called the backwards pass. The matrix produced by completing Steps (1.)-(6.) is called
the reduced row echelon form of A and it is denoted rref(A).

The ref(A) is not unique because there may be multiple choices for how Step 2 is executed. On
the other hand, it turns out that rref(A) is unique. The proof of uniqueness can be found in
Appendix E of the text Elementary Linear Algebra: A Matrix Approach, 2nd ed. by Spence, Insel
and Friedberg. The backwards pass takes the ambiguity out of the algorithm. Notice the forward
pass goes down the matrix while the backwards pass goes up the matrix.
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Example 1.2.2. Given A =
[

1 2 −3 1
2 4 0 7
−1 3 2 0

]
calculate rref(A).

A =

 1 2 −3 1
2 4 0 7
−1 3 2 0

 r2 − 2r1 → r2−−−−−−−−−→

 1 2 −3 1
0 0 6 5
−1 3 2 0

 r1 + r3 → r3−−−−−−−−→

 1 2 −3 1
0 0 6 5
0 5 −1 1

 r2 ↔ r3−−−−−→

 1 2 −3 1
0 5 −1 1
0 0 6 5

 = ref(A)

that completes the forward pass. We begin the backwards pass,

ref(A) =

 1 2 −3 1
0 5 −1 1
0 0 6 5

 r3 → 1
6r3

−−−−−−→

 1 2 −3 1
0 5 −1 1
0 0 1 5/6

 r2 + r3 → r2−−−−−−−−→

 1 2 −3 1
0 5 0 11/6
0 0 1 5/6

 r1 + 3r3 → r1−−−−−−−−−→

 1 2 0 21/6
0 5 0 11/6
0 0 1 5/6

 1
5r2 → r2
−−−−−−→

 1 2 0 21/6
0 1 0 11/30
0 0 1 5/6

 r1 − 2r2 → r1−−−−−−−−−→

 1 0 0 83/30
0 1 0 11/30
0 0 1 5/6

 = rref(A)

Example 1.2.3. Given A =
[ 1 −1 1

3 −3 0
2 −2 −3

]
calculate rref(A).

A =

 1 −1 1
3 −3 0
2 −2 −3

 r2 − 3r1 → r2−−−−−−−−−→

 1 −1 1
0 0 −3
2 −2 −3

 r3 − 2r1 → r3−−−−−−−−−→

 1 −1 1
0 0 −3
0 0 −5

 3r3 → r3−−−−−−→
5r2 → r2−−−−−−→

 1 −1 1
0 0 −15
0 0 −15

 r3 − r2 → r3−−−−−−−−→−1
15 r2 → r2
−−−−−−−→

 1 −1 1
0 0 1
0 0 0

 r1 − r2 → r1−−−−−−−−→

 1 −1 0
0 0 1
0 0 0

 = rref(A)

Note it is customary to read multiple row operations from top to bottom if more than one is listed
between two of the matrices. The multiple arrow notation should be used with caution as it has great
potential to confuse. Also, you might notice that I did not strictly-speaking follow Gauss-Jordan in
the operations 3r3 → r3 and 5r2 → r2. It is sometimes convenient to modify the algorithm slightly
in order to avoid fractions.
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Example 1.2.4. easy examples are sometimes disquieting, let r ∈ R,

v =
[

2 −4 2r
]

1
2r1 → r1
−−−−−−→

[
1 −2 r

]
= rref(v)

Example 1.2.5. here’s another easy example,

v =

 0
1
3

 r1 ↔ r2−−−−−→

 1
0
3

 r3 − 3r1 → r3−−−−−−−−−→

 1
0
0

 = rref(v)

Example 1.2.6. Find the rref of the matrix A given below:

A =

 1 1 1 1 1
1 −1 1 0 1
−1 0 1 1 1

 r2 − r1 → r2−−−−−−−−→

 1 1 1 1 1
0 −2 0 −1 0
−1 0 1 1 1

 r3 + r1 → r3−−−−−−−−→

 1 1 1 1 1
0 −2 0 −1 0
0 1 2 2 2

 r2 ↔ r3−−−−−→

 1 1 1 1 1
0 1 2 2 2
0 −2 0 −1 0

 r3 + 2r2 → r3−−−−−−−−−→

 1 1 1 1 1
0 1 2 2 2
0 0 4 3 4

 4r1 → r1−−−−−−→
2r2 → r2−−−−−−→

 4 4 4 4 4
0 2 4 4 4
0 0 4 3 4

 r2 − r3 → r2−−−−−−−−→
r1 − r3 → r1−−−−−−−−→

 4 4 0 1 0
0 2 0 1 0
0 0 4 3 4

 r1 − 2r2 → r1−−−−−−−−−→

 4 0 0 0 0
0 2 0 1 0
0 0 4 3 4

 r1/4→ r1−−−−−−→
r2/2→ r2−−−−−−→
r3/4→ r3−−−−−−→ 1 0 0 0 0

0 1 0 1/2 0
0 0 1 3/4 1

 = rref(A)
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Example 1.2.7.

[A|I] =

 1 0 0 1 0 0
2 2 0 0 1 0
4 4 4 0 0 1

 r2 − 2r1 → r2−−−−−−−−−→
r3 − 4r1 → r3−−−−−−−−−→ 1 0 0 1 0 0

0 2 0 −2 1 0
0 4 4 −4 0 1

 r3 − 2r2 → r3−−−−−−−−−→

 1 0 0 1 0 0
0 2 0 −2 1 0
0 0 4 0 −2 1

 r2/2→ r2−−−−−−→
r3/4→ r3−−−−−−→

 1 0 0 1 0 0
0 1 0 −1 1/2 0
0 0 1 0 −1/2 1/4

 = rref [A|I]

Example 1.2.8.

A =


1 0 1 0
0 2 0 0
0 0 3 1
3 2 0 0

 r4 − 3r1 → r4−−−−−−−−−→


1 0 1 0
0 2 0 0
0 0 3 1
0 2 −3 0

 r4 − r2 → r4−−−−−−−−→


1 0 1 0
0 2 0 0
0 0 3 1
0 0 −3 0

 r4 + r3 → r4−−−−−−−−→


1 0 1 0
0 2 0 0
0 0 3 1
0 0 0 1

 r3 − r4 → r3−−−−−−−−→


1 0 1 0
0 2 0 0
0 0 3 0
0 0 0 1


r2/2→ r2−−−−−−→
r3/3→ r3−−−−−−→
r1 − r3 → r1−−−−−−−−→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = rref(A)

Proposition 1.2.9.

If a particular column of a matrix is all zeros then it will be unchanged by the Gaussian
elimination. Additionally, if we know rref(A) = B then rref [A|0] = [B|0] where 0 denotes
one or more columns of zeros.

Proof: adding nonzero multiples of one row to another will result in adding zero to zero in the
column. Likewise, if we multiply a row by a nonzero scalar then the zero column is uneffected.
Finally, if we swap rows then this just interchanges two zeros. Gauss-Jordan elimination is just
a finite sequence of these three basic row operations thus the column of zeros will remain zero as
claimed. �
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Example 1.2.10. Use Example 1.2.3 and Proposition 1.2.9 to calculate,

rref


1 0 1 0 0
0 2 0 0 0
0 0 3 1 0
3 2 0 0 0

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


Similarly, use Example 1.2.5 and Proposition 1.2.9 to calculate:

rref

 1 0 0 0
0 0 0 0
3 0 0 0

 =

 1 0 0 0
0 0 0 0
0 0 0 0


I hope these examples suffice. One last advice, you should think of the Gauss-Jordan algorithm
as a sort of road-map. It’s ok to take detours to avoid fractions and such but the end goal should
remain in sight. If you lose sight of that it’s easy to go in circles. Incidentally, I would strongly
recommend you find a way to check your calculations with technology. Mathematica, Maple or
Matlab etc... will do any matrix calculation we learn. TI-85 and higher will do much of what we
do with a few exceptions here and there. There are even websites which will do row operations, I
provide a link on the course website.

Finally, let us once more note that the rref of a matrix is unique:

Theorem 1.2.11.

Let A ∈ Rm×n then if R1 and R2 are both Gauss-Jordan eliminations of A then R1 = R2.
In other words, the reduced row echelon form of a matrix of real numbers is unique.

1.3 classification of solutions

Surprisingly Examples 1.1.8,1.1.9 and 1.1.10 illustrate all the possible types of solutions for a linear
system. In this section I interpret the calculations of the last section as they correspond to solving
systems of equations.

Example 1.3.1. Solve the following system of linear equations if possible,

x+ 2y − 3z = 1
2x+ 4y = 7
−x+ 3y + 2z = 0

We solve by doing Gaussian elimination on the augmented coefficient matrix (see Example 1.2.2
for details of the Gaussian elimination),

rref

 1 2 −3 1
2 4 0 7
−1 3 2 0

 =

 1 0 0 83/30
0 1 0 11/30
0 0 1 5/6

 ⇒ x = 83/30
y = 11/30
z = 5/6

(We used the results of Example 1.2.2).
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Remark 1.3.2.

The geometric interpretation of the last example is interesting. The equation of a plane
with normal vector < a, b, c > is ax + by + cz = d. Each of the equations in the system
of Example 1.2.2 has a solution set which is in one-one correspondance with a particular
plane in R3. The intersection of those three planes is the single point (83/30, 11/30, 5/6).

Example 1.3.3. Solve the following system of linear equations if possible,

x− y = 1
3x− 3y = 0
2x− 2y = −3

Gaussian elimination on the augmented coefficient matrix reveals (see Example 1.2.3 for details of
the Gaussian elimination)

rref

 1 −1 1
3 −3 0
2 −2 −3

 =

 1 −1 0
0 0 1
0 0 0


which shows the system has no solutions . The given equations are inconsistent.

Remark 1.3.4.

The geometric interpretation of the last example is also interesting. The equation of a line
in the xy-plane is is ax+ by = c, hence the solution set of a particular equation corresponds
to a line. To have a solution to all three equations at once that would mean that there is
an intersection point which lies on all three lines. In the preceding example there is no such
point.

Example 1.3.5. Solve the following system of linear equations if possible,

x− y + z = 0
3x− 3y = 0
2x− 2y − 3z = 0

Gaussian elimination on the augmented coefficient matrix reveals (see Example 1.2.10 for details
of the Gaussian elimination)

rref

 1 −1 1 0
3 −3 0 0
2 −2 −3 0

 =

 1 −1 0 0
0 0 1 0
0 0 0 0

 ⇒ x− y = 0
z = 0

The row of zeros indicates that we will not find a unique solution. We have a choice to make, either
x or y can be stated as a function of the other. Typically in linear algebra we will solve for the
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variables that correspond to the pivot columns in terms of the non-pivot column variables. In this
problem the pivot columns are the first column which corresponds to the variable x and the third
column which corresponds the variable z. The variables x, z are called basic variables while y is

called a free variable. The solution set is {(y, y, 0) | y ∈ R} ; in other words, x = y, y = y and

z = 0 for all y ∈ R.

You might object to the last example. You might ask why is y the free variable and not x. This is
roughly equivalent to asking the question why is y the dependent variable and x the independent
variable in the usual calculus. However, the roles are reversed. In the preceding example the
variable x depends on y. Physically there may be a reason to distinguish the roles of one variable
over another. There may be a clear cause-effect relationship which the mathematics fails to capture.
For example, velocity of a ball in flight depends on time, but does time depend on the ball’s velocty
? I’m guessing no. So time would seem to play the role of independent variable. However, when
we write equations such as v = vo − gt we can just as well write t = v−vo

−g ; the algebra alone does
not reveal which variable should be taken as ”independent”. Hence, a choice must be made. In the
case of infinitely many solutions, we customarily choose the pivot variables as the ”dependent” or
”basic” variables and the non-pivot variables as the ”free” variables. Sometimes the word parameter
is used instead of variable, it is synonomous.

Example 1.3.6. Solve the following (silly) system of linear equations if possible,

x = 0
0x+ 0y + 0z = 0
3x = 0

Gaussian elimination on the augmented coefficient matrix reveals (see Example 1.2.10 for details
of the Gaussian elimination)

rref

 1 0 0 0
0 0 0 0
3 0 0 0

 =

 1 0 0 0
0 0 0 0
0 0 0 0


we find the solution set {(0, y, z) | y, z ∈ R} . No restriction is placed the free variables y and z.

Example 1.3.7. Solve the following system of linear equations if possible,

x1 + x2 + x3 + x4 = 1
x1 − x2 + x3 = 1
−x1 + x3 + x4 = 1

Gaussian elimination on the augmented coefficient matrix reveals (see Example 1.2.6 for details of
the Gaussian elimination)

rref

 1 1 1 1 1
1 −1 1 0 1
−1 0 1 1 1

 =

 1 0 0 0 0
0 1 0 1/2 0
0 0 1 3/4 1
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We find solutions of the form x1 = 0, x2 = −x4/2, x3 = 1 − 3x4/4 where x4 ∈ R is free. The

solution set is a subset of R4, namely {(0,−2s, 1− 3s, 4s) | s ∈ R} ( I used s = 4x4 to get rid of

the annoying fractions).

Remark 1.3.8.

The geometric interpretation of the last example is difficult to visualize. Equations of the
form a1x1 +a2x2 +a3x3 +a4x4 = b represent volumes in R4, they’re called hyperplanes. The
solution is parametrized by a single free variable, this means it is a line. We deduce that the
three hyperplanes corresponding to the given system intersect along a line. Geometrically
solving two equations and two unknowns isn’t too hard with some graph paper and a little
patience you can find the solution from the intersection of the two lines. When we have more
equations and unknowns the geometric solutions are harder to grasp. Analytic geometry
plays a secondary role in this course so if you have not had calculus III then don’t worry
too much. I should tell you what you need to know in these notes.

Example 1.3.9. Solve the following system of linear equations if possible,

x1 + x4 = 0
2x1 + 2x2 + x5 = 0
4x1 + 4x2 + 4x3 = 1

Gaussian elimination on the augmented coefficient matrix reveals (see Example 1.2.7 for details of
the Gaussian elimination)

rref

 1 0 0 1 0 0
2 2 0 0 1 0
4 4 4 0 0 1

 =

 1 0 0 1 0 0
0 1 0 −1 1/2 0
0 0 1 0 −1/2 1/4


Consequently, x4, x5 are free and solutions are of the form

x1 = −x4

x2 = x4 − 1
2x5

x3 = 1
4 + 1

2x5

for all x4, x5 ∈ R.

Example 1.3.10. Solve the following system of linear equations if possible,

x1 + x3 = 0
2x2 = 0
3x3 = 1
3x1 + 2x2 = 0
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Gaussian elimination on the augmented coefficient matrix reveals (see Example 1.2.8 for details of
the Gaussian elimination)

rref


1 0 1 0
0 2 0 0
0 0 3 1
3 2 0 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Therefore,there are no solutions .

Example 1.3.11. Solve the following system of linear equations if possible,

x1 + x3 = 0
2x2 = 0
3x3 + x4 = 0
3x1 + 2x2 = 0

Gaussian elimination on the augmented coefficient matrix reveals (see Example 1.2.10 for details
of the Gaussian elimination)

rref


1 0 1 0 0
0 2 0 0 0
0 0 3 1 0
3 2 0 0 0

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


Therefore, the unique solution is x1 = x2 = x3 = x4 = 0 . The solution set here is rather small,
it’s {(0, 0, 0, 0)}.

Remark 1.3.12.

Incidentally, you might notice that the Gauss-Jordan algorithm did not assume all the
structure of the real numbers. For example, we never needed to use the ordering relations
< or >. All we needed was addition, subtraction and the ability to multiply by the inverse
of a nonzero number. Any field of numbers will likewise work. Theorems 1.5.1 and 1.2.11
also hold for matrices of rational (Q) or complex (C) numbers. We will encounter problems
which require calculation in C. If you are interested in encryption then calculations over a
finite field Zp are necessary. In contrast, Gausssian elimination does not work for matrices
of integers since we do not have fractions to work with in that context. Some such questions
are dealt with in Abstract Algebra I and II.
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1.4 applications to curve fitting and circuits

We can use linear algebra to solve problems which reduce to linear equations. Some problems the
model itself is linear whereas others require some thought or substitution to make the linearity
manifest. I let you explore some substitution problems in the homework. We consider the standard
examples in this section.

Example 1.4.1. Find a polynomial P (x) whose graph y = P (x) fits through the points (0,−2.7),
(2,−4.5) and (1, 0.97). We expect a quadratic polynomial will do nicely here: let A,B,C be the
coefficients so P (x) = Ax2 +Bx+ C. Plug in the data,

P (0) = C = −2.7
P (2) = 4A+ 2B + C = −4.5
P (1) = A+B + C = 0.97

⇒


A B C

0 0 1 −2.7
4 2 1 −4.5
1 1 1 0.97


I put in the A,B,C labels just to emphasize the form of the augmented matrix. We can then perform
Gaussian elimination on the matrix ( I omit the details) to solve the system,

rref

 0 0 1 −2.7
4 2 1 −4.5
1 1 1 0.97

 =

 1 0 0 −4.52
0 1 0 8.14
0 0 1 −2.7

 ⇒
A = −4.52
B = 8.14
C = −2.7

The requested polynomial is P (x) = −4.52x2 + 8.14x− 2.7 .

Example 1.4.2. Find which cubic polynomial Q(x) have a graph y = Q(x) which fits through the
points (0,−2.7), (2,−4.5) and (1, 0.97). Let A,B,C,D be the coefficients of Q(x) = Ax3 + Bx2 +
Cx+D. Plug in the data,

Q(0) = D = −2.7
Q(2) = 8A+ 4B + 2C +D = −4.5
Q(1) = A+B + C +D = 0.97

⇒


A B C D

0 0 0 1 −2.7
8 4 2 1 −4.5
1 1 1 1 0.97


I put in the A,B,C,D labels just to emphasize the form of the augmented matrix. We can then
perform Gaussian elimination on the matrix ( I omit the details) to solve the system,

rref

 0 0 0 1 −2.7
8 4 2 1 −4.5
1 1 1 1 0.97

 =

 1 0 −0.5 0 −4.07
0 1 1.5 0 7.69
0 0 0 1 −2.7

 ⇒

A = −4.07 + 0.5C
B = 7.69− 1.5C
C = C
D = −2.7

It turns out there is a whole family of cubic polynomials which will do nicely. For each C ∈ R the

polynomial is QC(x) = (−4.07 + 0.5C)x3 + (7.69− 1.5C)x2 + Cx− 2.7 fits the given points. We

asked a question and found that it had infinitely many answers. Notice the choice C = 8.14 gets us
back to the last example, in that case QC(x) is not really a cubic polynomial.
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Example 1.4.3. Consider the following traffic-flow pattern. The diagram indicates the flow of cars
between the intersections A,B,C,D. Our goal is to analyze the flow and determine the missing
pieces of the puzzle, what are the flow-rates x1, x2, x3. We assume all the given numbers are cars
per hour, but we omit the units to reduce clutter in the equations.

We model this by one simple principle: conservation of vehicles

A : x1 − x2 − 400 = 0
B : −x1 + 600− 100 + x3 = 0
C : −300 + 100 + 100 + x2 = 0
D : −100 + 100 + x3 = 0

This gives us the augmented-coefficient matrix and Gaussian elimination that follows ( we have to
rearrange the equations to put the constants on the right and the variables on the left before we
translate to matrix form)

rref


1 −1 0 400
−1 0 1 −500
0 1 0 100
0 0 1 0

 =


1 0 0 500
0 1 0 100
0 0 1 0
0 0 0 0


From this we conclude, x3 = 0, x2 = 100, x1 = 500. By the way, this sort of system is called
overdetermined because we have more equations than unknowns. If such a system is consistent
they’re often easy to solve. In truth, the rref business is completely unecessary here. I’m just trying
to illustrate what can happen.
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Example 1.4.4. (taken from Lay’s homework, §1.6#7) Alka Seltzer makes fizzy soothing bubbles
through a chemical reaction of the following type:

NaHCO3︸ ︷︷ ︸
sodium bicarbonate

+ H3C6H5O7︸ ︷︷ ︸
citric acid

→ Na3C6H5O7︸ ︷︷ ︸
sodium citrate

+ H2O︸︷︷︸
water

+ CO2︸︷︷︸
carbon dioxide

The reaction above is unbalanced because it lacks weights to describe the relative numbers of
the various molecules involved in a particular reaction. To balance the equation we seek integers
x1, x2, x3, x4, x5 such that the following reaction is balanced.

x1(NaHCO3) + x2(H3C6H5O7) → x3(Na3C6H5O7) + x4(H2O) + x5(CO2)

In a chemical reaction the atoms the enter the reaction must also leave the reaction. Atoms are
neither created nor destroyed in chemical reactions3. It follows that the number of sodium(Na),
hydrogen(H), carbon(C) and oxygen(O) atoms must be conserved in the reaction. Each element
can be represented by a component in a 4-dimensional vector; (Na,H,C,O). Using this notation
the equation to balance the reaction is simply:

x1


1
1
1
3

+ x2


0
8
6
7

 = x3


3
5
6
7

+ x4


0
2
0
1

+ x5


0
0
1
2


In other words, solve

x1 = 3x3

x1 + 8x2 = 5x3 + 2x4

x1 + 6x2 = 6x3 + x5

3x1 + 7x2 = 7x3 + x4 + 2x5

⇒


1 0 −3 0 0 0
1 8 −5 −2 0 0
1 6 −6 0 −1 0
3 7 −7 −1 −2 0


After a few row operations we will deduce,

rref


1 0 −3 0 0 0
1 8 −5 −2 0 0
1 6 −6 0 −1 0
3 7 −7 −1 −2 0

 =


1 0 0 0 −1 0
0 1 0 0 −1

3 0
0 0 1 0 −1

3 0
0 0 0 1 −1 0


Therefore, x1 = x5, x2 = x5/3, x3 = x5/3 and x4 = x5. Atoms are indivisible (in this context)
hence we need to choose x5 = 3k for k ∈ N to assure integer solutions. The basic reaction follows
from x5 = 3,

3NaHCO3 +H3C6H5O7 → Na3C6H5O7 + 3H2O + 3CO2

Finding integer solutions to chemical reactions is more easily solved by the method I used as an
undergraduate. You guess and check and adjust. Because the solutions are integers it’s not too hard
to work out. That said, if you don’t want to guess then we have a method via Gaussian elimination.
Chemists have more to worry about than just this algebra. If you study reactions carefully then there
are a host of other considerations involving energy transfer and ultimately quantum mechanics.

3chemistry is based on electronic interactions which do not possess the mechanisms needed for alchemy, transmu-
tation is in fact accomplished in nuclear physics. Ironically, alchemy, while known, is not economical.
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Example 1.4.5. Let R = 1Ω and V1 = 8V . Determine the voltage VA and currents I1, I2, I3

flowing in the circuit as pictured below:

Conservation of charge implies the sum of currents into a node must equal the sum of the currents
flowing out of the node. We use Ohm’s Law V = IR to set-up the currents, here V should be the
voltage dropped across the resistor R.

I1 = 2V1−VA
4R Ohm’s Law

I2 = VA
R Ohm’s Law

I3 = V1−VA
4R Ohm’s Law

I2 = I1 + I3 Conservation of Charge at node A

Substitute the first three equations into the fourth to obtain

VA
R = 2V1−VA

4R + V1−VA
4R

Multiply by 4R and we find

4VA = 2V1 − VA + V1 − VA ⇒ 6VA = 3V1 ⇒ VA = V1/2 = 4V.

Substituting back into the Ohm’s Law equations we determine I1 = 16V−4V
4Ω = 3A, I2 = 4V

1Ω = 4A
and I3 = 8V−4V

4Ω = 1A. This obvious checks with I2 = I1 + I3. In practice it’s not always best to
use the full-power of the rref.

See your text for other examples on circuits.
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1.5 conclusions

The theorems given below form the base of our logic for this course. Proofs can be found in my
Linear Algebra notes and in many other texts.

Theorem 1.5.1.

Given a system of m linear equations and n unknowns the solution set falls into one of the
following cases:

1. the solution set is empty.

2. the solution set has only one element.

3. the solution set is infinite.

Theorem 1.5.2.

Suppose that A ∈ R m×n and B ∈ R m×p then the first n columns of rref [A] and rref [A|B]
are identical.

Theorem 1.5.3.

Given n-linear equations in n-unknowns Ax = b, a unique solution x exists iff rref [A|b] =
[I|x]. Moreover, if rref [A] 6= I then there is no unique solution to the system of equations.

There is much more to say about the meaning of particular patterns in the reduced row echelon
form of the matrix. We will continue to mull over these matters in later portions of the course.
Theorem 1.5.1 provides us the big picture. Again, I find it remarkable that two equations and two
unknowns already revealed these patterns.



Chapter 2

matrix arithmetic

In the preceding chapter I have used some matrix terminolgy in passing as if you already knew the
meaning of such terms as ”row”, ”column” and ”matrix”. I do hope you have had some previous
exposure to basic matrix math, but this chapter should be self-contained. I’ll start at the beginning
and define all the terms.

2.1 basic terminology and notation

Definition 2.1.1.

An m × n matrix is an array of numbers with m rows and n columns. The elements in
the array are called entries or components. If A is an m × n matrix then Aij denotes the
number in the i-th row and the j-th column. The label i is a row index and the index j
is a column index in the preceding sentence. We usually denote A = [Aij ]. The set m× n
of matrices with real number entries is denoted R m×n. The set of m × n matrices with
complex entries is C m×n. If a matrix has the same number of rows and columns then it is
called a square matrix.

Matrices can be constructed from set-theoretic arguments in much the same way as Cartesian
Products. I will not pursue those matters in these notes. We will assume that everyone understands
how to construct an array of numbers.

Example 2.1.2. Suppose A = [ 1 2 3
4 5 6 ]. We see that A has 2 rows and 3 columns thus A ∈ R2×3.

Moreover, A11 = 1, A12 = 2, A13 = 3, A21 = 4, A22 = 5, and A23 = 6. It’s not usually possible to
find a formula for a generic element in the matrix, but this matrix satisfies Aij = 3(i− 1) + j for
all i, j.

In the statement ”for all i, j” it is to be understood that those indices range over their allowed
values. In the preceding example 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3.

27
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Definition 2.1.3.

Two matrices A and B are equal if and only if they have the same size and Aij = Bij for
all i, j.

If you studied vectors before you should identify this is precisely the same rule we used in calculus
III. Two vectors were equal iff all the components matched. Vectors are just specific cases of
matrices so the similarity is not surprising.

Definition 2.1.4.

Let A ∈ R m×n then a submatrix of A is a matrix which is made of some rectangle of elements in
A. Rows and columns are submatrices. In particular,

1. An m×1 submatrix of A is called a column vector of A. The j-th column vector is denoted
colj(A) and (colj(A))i = Aij for 1 ≤ i ≤ m. In other words,

colk(A) =


A1k

A2k
...

Amk

 ⇒ A =


A11 A21 · · · A1n

A21 A22 · · · A2n
...

... · · ·
...

Am1 Am2 · · · Amn

 = [col1(A)|col2(A)| · · · |coln(A)]

2. An 1×n submatrix of A is called a row vector of A. The i-th row vector is denoted rowi(A)
and (rowi(A))j = Aij for 1 ≤ j ≤ n. In other words,

rowk(A) =
[
Ak1 Ak2 · · · Akn

]
⇒ A =


A11 A21 · · · A1n

A21 A22 · · · A2n
...

... · · ·
...

Am1 Am2 · · · Amn

 =


row1(A)

row2(A)
...

rowm(A)



Suppose A ∈ R m×n, note for 1 ≤ j ≤ n we have colj(A) ∈ Rm×1 whereas for 1 ≤ i ≤ m we find
rowi(A) ∈ R1×n. In other words, an m×n matrix has n columns of length m and n rows of length
m.

Example 2.1.5. Suppose A = [ 1 2 3
4 5 6 ]. The columns of A are,

col1(A) =

[
1
4

]
, col2(A) =

[
2
5

]
, col3(A) =

[
3
6

]
.

The rows of A are
row1(A) =

[
1 2 3

]
, row2(A) =

[
4 5 6

]
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Definition 2.1.6.

Let A ∈ R m×n then AT ∈ R n×m is called the transpose of A and is defined by (AT )ji =
Aij for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Example 2.1.7. Suppose A = [ 1 2 3
4 5 6 ] then AT =

[
1 4
2 5
3 6

]
. Notice that

row1(A) = col1(AT ), row2(A) = col2(AT )

and

col1(A) = row1(AT ), col2(A) = row2(AT ), col3(A) = row3(AT )

Notice (AT )ij = Aji = 3(j − 1) + i for all i, j; at the level of index calculations we just switch the
indices to create the transpose.

The preceding example shows us that we can quickly create the transpose of a given matrix by
switching rows to columns. The transpose of a row vector is a column vector and vice-versa.

Remark 2.1.8. notation, we choose Rn to be column vectors.

It is customary in analytic geometry to denote Rn = {(x1, x2, . . . , xn) | xi ∈ R f or all i}
as the set of points in n-dimensional space. There is a natural correspondence between
points and vectors. Notice that R1×n = {[x1 x2 · · · xn] | xi ∈ R f or all i} and Rn×1 =
{[x1 x2 · · · xn]T | xi ∈ R f or all i} are naturally identified with Rn. There is a bijection
between points and row or column vectors. For example, Φ : Rn×1 → R1×n defined by
transposition

Φ[x1 x2 . . . xn] = [x1 x2 · · ·xn]T

gives a one-one correspondence between row and column vectors. It is customary to use Rn
in the place of R1×n or Rn×1 when it is convenient. This means I can express solutions to
linear systems as a column vector or as a point. For example, x + y = 2, x − y = 0 has
solution can be denoted by ”x = 1, y = 1”, or (1, 1), or [ 1

1 ], or [ 1 1 ] or [1, 1]T . By default I
will use the convention Rn = Rn×1 and the somewhat subtle notation that

[v1, v2, . . . , vn]T = (v1, v2, . . . , vn).

I use this convention in most everything I’ve written past about 2010.

2.2 addition and multiplication by scalars

Definition 2.2.1.

Let A,B ∈ R m×n then A+B ∈ R m×n is defined by (A+B)ij = Aij+Bij for all 1 ≤ i ≤ m,
1 ≤ j ≤ n. If two matrices A,B are not of the same size then there sum is not defined.
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Example 2.2.2. Let A = [ 1 2
3 4 ] and B = [ 5 6

7 8 ]. We calculate

A+B =

[
1 2
3 4

]
+

[
5 6
7 8

]
=

[
6 8
10 12

]
.

Definition 2.2.3.

Let A,B ∈ R m×n, c ∈ R then cA ∈ R m×n is defined by (cA)ij = cAij for all 1 ≤ i ≤ m,
1 ≤ j ≤ n. We call the process of multiplying A by a number cmultiplication by a scalar.
We define A−B ∈ R m×n by A−B = A+(−1)B which is equivalent to (A−B)ij = Aij−Bij
for all i, j.

Example 2.2.4. Let A = [ 1 2
3 4 ] and B = [ 5 6

7 8 ]. We calculate

A−B =

[
1 2
3 4

]
−
[

5 6
7 8

]
=

[
−4 −4
−4 −4

]
.

Now multiply A by the scalar 5,

5A = 5

[
1 2
3 4

]
=

[
5 10
15 20

]
Example 2.2.5. Let A,B ∈ R m×n be defined by Aij = 3i+ 5j and Bij = i2 for all i, j. Then we
can calculate (A+B)ij = 3i+ 5j + i2 for all i, j.

Definition 2.2.6.

The zero matrix in R m×n is denoted 0 and defined by 0ij = 0 for all i, j. The additive
inverse of A ∈ R m×n is the matrix −A such that A + (−A) = 0. The components of the
additive inverse matrix are given by (−A)ij = −Aij for all i, j.

The zero matrix joins a long list of other objects which are all denoted by 0. Usually the meaning
of 0 is clear from the context, the size of the zero matrix is chosen as to be consistent with the
equation in which it is found.

Example 2.2.7. Solve the following matrix equation,

0 =

[
x y
z w

]
+

[
−1 −2
−3 −4

]
Equivalently, [

0 0
0 0

]
=

[
x− 1 y − 2
z − 3 w − 4

]
The definition of matrix equality means this single matrix equation reduces to 4 scalar equations:
0 = x− 1, 0 = y − 2, 0 = z − 3, 0 = w − 4. The solution is x = 1, y = 2, z = 3, w = 4.
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Theorem 2.2.8.

If A ∈ R m×n then

1. 0 ·A = 0, (where 0 on the L.H.S. is the number zero)

2. 0A = 0,

3. A+ 0 = 0 +A = A.

Proof: I’ll prove (2.). Let A ∈ R m×n and consider

(0A)ij =
m∑
k=1

0ikAkj =
m∑
k=1

0Akj =
m∑
k=1

0 = 0

for all i, j. Thus 0A = 0. I leave the other parts to the reader, the proofs are similar. �

2.3 matrix multiplication

One very special fact about matrices is that when they are the right sizes we can multiply them.

Definition 2.3.1.

Let A ∈ R m×n and B ∈ R n×p then the product of A and B is denoted by juxtaposition
AB and AB ∈ R m×p is defined by:

(AB)ij =

n∑
k=1

AikBkj

for each 1 ≤ i ≤ m and 1 ≤ j ≤ p. In the case m = p = 1 the indices i, j are omitted in the
equation since the matrix product is simply a number which needs no index.

This definition is very nice for general proofs, but pragmatically I usually think of matrix multipli-
cation in terms of dot-products.

Definition 2.3.2.

Let v, w ∈ R n×1 then v · w = v1w1 + v2w2 + · · ·+ vnwn =
∑n

k=1 vkwk

Proposition 2.3.3.

Let v, w ∈ R n×1 then v · w = vTw.

Proof: Since vT is an 1×n matrix and w is an n×1 matrix the definition of matrix multiplication
indicates vTw should be a 1× 1 matrix which is a number. Note in this case the outside indices ij
are absent in the boxed equation so the equation reduces to

vTw = vT 1w1 + vT 2w2 + · · ·+ vT nwn = v1w1 + v2w2 + · · ·+ vnwn = v · w.�
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Proposition 2.3.4.

The formula given below is equivalent to the Definition 5.5.1. Let A ∈ R m×n and B ∈ R n×p

then

AB =


row1(A) · col1(B) row1(A) · col2(B) · · · row1(A) · colp(B)
row2(A) · col1(B) row2(A) · col2(B) · · · row2(A) · colp(B)

...
... · · ·

...
rowm(A) · col1(B) rowm(A) · col2(B) · · · rowm(A) · colp(B)


Proof: The formula above claims (AB)ij = rowi(A) · colj(B) for all i, j. Recall that (rowi(A))k =
Aik and (colj(B))k = Bkj thus

(AB)ij =
n∑
k=1

AikBkj =
n∑
k=1

(rowi(A))k(colj(B))k

Hence, using definition of the dot-product, (AB)ij = rowi(A) · colj(B). This argument holds for
all i, j therefore the Proposition is true. �

Example 2.3.5. Let A =

 1 2 3
4 5 6
7 8 9

 and v =

 1
0
−3

 calculate Av.

Av =

 1 2 3
4 5 6
7 8 9

 1
0
−3

 =

 (1, 2, 3) · (1, 0,−3)
(4, 5, 6) · (1, 0,−3)
(7, 8, 9) · (1, 0,−3)

 =

 −2
−14
−20

 .
Example 2.3.6. Let A = [ 1 2

3 4 ] and B = [ 5 6
7 8 ]. We calculate

AB =

[
1 2
3 4

] [
5 6
7 8

]

=

[
[1, 2][5, 7]T [1, 2][6, 8]T

[3, 4][5, 7]T [3, 4][6, 8]T

]

=

[
5 + 14 6 + 16
15 + 28 18 + 32

]

=

[
19 22
43 50

]
Notice the product of square matrices is square. For numbers a, b ∈ R it we know the product of a



2.3. MATRIX MULTIPLICATION 33

and b is commutative (ab = ba). Let’s calculate the product of A and B in the opposite order,

BA =

[
5 6
7 8

] [
1 2
3 4

]

=

[
[5, 6][1, 3]T [5, 6][2, 4]T

[7, 8][1, 3]T [7, 8][2, 4]T

]

=

[
5 + 18 10 + 24
7 + 24 14 + 32

]

=

[
23 34
31 46

]
Clearly AB 6= BA thus matrix multiplication is noncommutative or nonabelian.

When we say that matrix multiplication is noncommuative that indicates that the product of two
matrices does not generally commute. However, there are special matrices which commute with
other matrices.

Example 2.3.7. Let I = [ 1 0
0 1 ] and A =

[
a b
c d

]
. We calculate

IA =

[
1 0
0 1

] [
a b
c d

]
=

[
a b
c d

]
Likewise calculate,

AI =

[
a b
c d

] [
1 0
0 1

]
=

[
a b
c d

]
Since the matrix A was arbitrary we conclude that IA = AI for all A ∈ R2×2.

Definition 2.3.8.

The identity matrix in R n×n is the n×n square matrix I which has components Iij = δij .
The notation In is sometimes used if the size of the identity matrix needs emphasis, otherwise
the size of the matrix I is to be understood from the context.

I2 =

[
1 0
0 1

]
I3 =

 1 0 0
0 1 0
0 0 1

 I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Example 2.3.9. The product of a 3× 2 and 2× 3 is a 3× 3 1 0
0 1
0 0

[ 4 5 6
7 8 9

]
=

 [1, 0][4, 7]T [1, 0][5, 8]T [1, 0][6, 9]T

[0, 1][4, 7]T [0, 1][5, 8]T [0, 1][6, 9]T

[0, 0][4, 7]T [0, 0][5, 8]T [0, 0][6, 9]T

 =

 4 5 6
7 8 9
0 0 0
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Example 2.3.10. The product of a 3× 1 and 1× 3 is a 3× 3 1
2
3

 [ 4 5 6
]

=

 4 · 1 5 · 1 6 · 1
4 · 2 5 · 2 6 · 2
4 · 3 5 · 3 6 · 3

 =

 4 5 6
8 10 12
12 15 18


Example 2.3.11. The product of a 2× 2 and 2× 1 is a 2× 1. Let A = [ 1 2

3 4 ] and let v = [ 5
7 ],

Av =

[
1 2
3 4

] [
5
7

]
=

[
[1, 2][5, 7]T

[3, 4][5, 7]T

]
=

[
19
43

]
Likewise, define w = [ 6

8 ] and calculate

Aw =

[
1 2
3 4

] [
6
8

]
=

[
[1, 2][6, 8]T

[3, 4][6, 8]T

]
=

[
22
50

]
Something interesting to observe here, recall that in Example 2.3.6 we calculated

AB =

[
1 2
3 4

] [
5 6
7 8

]
=

[
19 22
43 50

]
. But these are the same numbers we just found from the

two matrix-vector products calculated above. We identify that B is just the concatenation of the

vectors v and w; B = [v|w] =

[
5 6
7 8

]
. Observe that:

AB = A[v|w] = [Av|Aw].

The term concatenate is sometimes replaced with the word adjoin. I think of the process as
gluing matrices together. This is an important operation since it allows us to lump together many
solutions into a single matrix of solutions. (I will elaborate on that in detail in a future section)

Proposition 2.3.12.

Let A ∈ R m×n and B ∈ R n×p then we can understand the matrix multiplication of A and
B as the concatenation of several matrix-vector products,

AB = A[col1(B)|col2(B)| · · · |colp(B)] = [Acol1(B)|Acol2(B)| · · · |Acolp(B)]

Proof: left to the reader. It’s not too hard, you just have to think through the notation. �

Example 2.3.13. Consider A, v, w from Example 2.3.11.

v + w =

[
5
7

]
+

[
6
8

]
=

[
11
15

]
Using the above we calculate,

A(v + w) =

[
1 2
3 4

] [
11
15

]
=

[
11 + 30
33 + 60

]
=

[
41
93

]
.
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In constrast, we can add Av and Aw,

Av +Aw =

[
19
43

]
+

[
22
50

]
=

[
41
93

]
.

Behold, A(v + w) = Av +Aw for this example. It turns out this is true in general.

2.3.1 multiplication of matrix by a vector is linear combination of columns

Observe that the general definition of the matrix product gives the following: If A = [Aij ] ∈ Rk×n
and v = [vj ] ∈ Rn then (Av)i =

∑n
j=1Aijvj for each i = 1, 2, . . . , k. But, colj(A) = [Aij ] ∈ Rk thus

(colj(A))i = Aij and we find for each i = 1, 2, . . . , k.

(Av)i =
n∑
j=1

Aijvj =
n∑
j=1

vj(colj(A))i =

( n∑
j=1

vjcolj(A)

)
i

Proposition 2.3.14.

If A ∈ Rk×n and v ∈ Rn then Av is a linear combination of the columns of A weighted by
the components of v;

Av = v1col1(A) + v2col2(A) + · · ·+ vncoln(A)

.

The formula above is sometimes taken as the definition of the matrix-vector product. For example,
see the elementary text by Insel Spence and Friedberg.

Example 2.3.15. Let A =

[
1 2
3 4

]
and v =

[
x
y

]
then we may calculate the product Av as

follows:

Av =

[
1 2
3 4

] [
x
y

]
= x

[
1
3

]
+ y

[
2
4

]
=

[
x+ 2y
3x+ 4y

]
.

Example 2.3.16. Let A =

[
1 1 1
a b c

]
and v =

 x
y
z

 then we may calculate the product Av as

follows:

Av =

[
1 1 1
a b c

] x
y
z

 = x

[
1
a

]
+ y

[
1
b

]
+ z

[
1
c

]
=

[
x+ y + z
ax+ by + cz

]
.

If you prefer then you can use the dot-product rule we first introduced. However, the pattern we
considered in this subsection gives us great insight to the question of spanning later in this course.
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2.3.2 rules of matrix algebra

I collect all my favorite properties for matrix multiplication in the theorem below. To summarize,
matrix math works as you would expect with the exception that matrix multiplication is not
commutative. We must be careful about the order of letters in matrix expressions.

Theorem 2.3.17.

If A,B,C ∈ R m×n, X,Y ∈ R n×p, Z ∈ R p×q and c1, c2 ∈ R then

1. (A+B) + C = A+ (B + C),

2. (AX)Z = A(XZ),

3. A+B = B +A,

4. c1(A+B) = c1A+ c2B,

5. (c1 + c2)A = c1A+ c2A,

6. (c1c2)A = c1(c2A),

7. (c1A)X = c1(AX) = A(c1X) = (AX)c1,

8. 1A = A,

9. ImA = A = AIn,

10. A(X + Y ) = AX +AY ,

11. A(c1X + c2Y ) = c1AX + c2AY ,

12. (A+B)X = AX +BX,

Proof: I will prove a couple of these and relegate most of the rest to the Problem Set. They
actually make pretty fair proof-type test questions. Nearly all of these properties are proved by
breaking the statement down to components then appealing to a property of real numbers. Just
a reminder, we assume that it is known that R is an ordered field. Multiplication of real numbers
is commutative, associative and distributes across addition of real numbers. Likewise, addition of
real numbers is commutative, associative and obeys familar distributive laws when combined with
addition.

Proof of (1.): assume A,B,C are given as in the statement of the Theorem. Observe that

((A+B) + C)ij = (A+B)ij + Cij defn. of matrix add.
= (Aij +Bij) + Cij defn. of matrix add.
= Aij + (Bij + Cij) assoc. of real numbers
= Aij + (B + C)ij defn. of matrix add.
= (A+ (B + C))ij defn. of matrix add.



2.3. MATRIX MULTIPLICATION 37

for all i, j. Therefore (A+B) + C = A+ (B + C). �
Proof of (6.): assume c1, c2, A are given as in the statement of the Theorem. Observe that

((c1c2)A)ij = (c1c2)Aij defn. scalar multiplication.
= c1(c2Aij) assoc. of real numbers
= (c1(c2A))ij defn. scalar multiplication.

for all i, j. Therefore (c1c2)A = c1(c2A). �
Proof of (10.): assume A,X, Y are given as in the statement of the Theorem. Observe that

((A(X + Y ))ij =
∑

k Aik(X + Y )kj defn. matrix multiplication,
=
∑

k Aik(Xkj + Ykj) defn. matrix addition,
=
∑

k(AikXkj +AikYkj) dist. of real numbers,
=
∑

k AikXkj +
∑

k AikYkj) prop. of finite sum,
= (AX)ij + (AY )ij defn. matrix multiplication(× 2),
= (AX +AY )ij defn. matrix addition,

for all i, j. Therefore A(X + Y ) = AX +AY . �

The proofs of the other items are similar, we consider the i, j-th component of the identity and then
apply the definition of the appropriate matrix operation’s definition. This reduces the problem to
a statement about real numbers so we can use the properties of real numbers at the level of
components. Then we reverse the steps. Since the calculation works for arbitrary i, j it follows
the the matrix equation holds true. This Theorem provides a foundation for later work where we
may find it convenient to prove a statement without resorting to a proof by components. Which
method of proof is best depends on the question. However, I can’t see another way of proving most
of 2.3.17.
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2.4 systems of linear equations revisited

In the previous chapter we found that systems of equations could be efficiently solved by doing
row operations on the augmented coefficient matrix. Let’s return to that central topic now that we
know more about matrix addition and multiplication. The proof of the proposition below is simply
matrix multiplication.

Proposition 2.4.1.

Let x1, x2, . . . , xm be m variables and suppose bi, Aij ∈ R for 1 ≤ i ≤ m and 1 ≤ j ≤ n then
recall that

A11x1 +A12x2 + · · ·+A1nxn = b1

A21x1 +A22x2 + · · ·+A2nxn = b2

...
...

...
...

Am1x1 +Am2x2 + · · ·+Amnxn = bm

is called a system of linear equations. We define the coefficient matrix A, the inho-
mogeneous term b and the vector solution x as follows:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · ·
...

am1 am2 · · · amn

 b =


b1
b2
...
bm

 x =


x1

x2
...
xm


then the system of equations is equivalent to matrix form of the system Ax = b.
(sometimes we may use v or ~x if there is danger of confusion with the scalar variable x)

Definition 2.4.2.

Let Ax = b be a system of m equations and n-unknowns and x is in the solution set of the
system. In particular, we denote the solution set by Sol[A|b] where

Sol[A|b] = {x ∈ R n×1 | Ax = b}

We learned how to find the solutions to a system Ax = b in the last Chapter by performing Gaussian
elimination on the augmented coefficient matrix [A|b]. We’ll discuss the structure of matrix solutions
further in the next Chapter. To give you a quick preview, it turns out that solutions to Ax = b
have the decomposition x = xh + xp where the homogeneous term xh satisfies Axh = 0 and the
nonhomogeneous term xp solves Axp = b.

Example 2.4.3. We found that the system in Example 1.3.1,

x+ 2y − 3z = 1
2x+ 4y = 7
−x+ 3y + 2z = 0
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has the unique solution x = 83/30, y = 11/30 and z = 5/6. This means the matrix equation Av = b
where

Av =

 1 2 −3
2 4 0
−1 3 2


︸ ︷︷ ︸

A

 x1

x2

x3


︸ ︷︷ ︸

v

=

 1
7
0


︸ ︷︷ ︸

b

has vector solution v =

 83/30
11/30
5/6

 .

Example 2.4.4. Consider the following generic system of two equations and three unknowns,

ax+ by + cz = d
ex+ fy + gz = h

in matrix form this system of equations is Av = b where

Av =

[
a b c
e f g

]
︸ ︷︷ ︸

A

 x
y
z


︸ ︷︷ ︸

v

=

[
(a, b, c) · (x, y, z)
(e, f, g) · (x, y, z)

]
=

[
ax+ by + cz
ex+ fy + gz

]
=

[
d
h

]
︸ ︷︷ ︸

b

Example 2.4.5. We can rewrite the following system of linear equations

x1 + x4 = 0
2x1 + 2x2 + x5 = 0
4x1 + 4x2 + 4x3 = 1

in matrix form this system of equations is Av = b where

Av =

 1 0 0 1 0
2 2 0 0 1
4 4 4 0 0


︸ ︷︷ ︸

A


x1

x2

x3

x4

x5


︸ ︷︷ ︸

v

=

 0
0
1


︸ ︷︷ ︸

b

.

Gaussian elimination on the augmented coefficient matrix reveals (see Example 1.2.7 for details of
the Gaussian elimination)

rref

 1 0 0 1 0 0
2 2 0 0 1 0
4 4 4 0 0 1

 =

 1 0 0 1 0 0
0 1 0 −1 1/2 0
0 0 1 0 −1/2 1/4

 .
Consequently, x4, x5 are free and solutions are of the form

x1 = −x4

x2 = x4 − 1
2x5

x3 = 1
4 + 1

2x5
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for all x4, x5 ∈ R. The vector form of the solution is as follows:

v =


−x4

x4 − 1
2x5

1
4 + 1

2x5

x4

x5

 = x4


−1
1
0
1
0

+ x5


0
−1

2
1
2
0
1

+


0
0
1
4
0
0

 .

Remark 2.4.6.

You might ask the question: what is the geometry of the solution set above ? Let S =
Sol[A|b] ⊂ R5, we see S is formed by tracing out all possible linear combinations of the

vectors v1 = (−1, 1, 0, 1, 0) and v2 = (0,−1
2 ,

1
2 , 0, 1) based from the point po = (0, 0, 1

4 , 0, 0).
In other words, this is a two-dimensional plane containing the vectors v1, v2 and the point
po. This plane is placed in a 5-dimensional space, this means that at any point on the plane
you could go in three different directions away from the plane.

2.4.1 concatenation for solving many systems at once

If we wish to solve Ax = b1 and Ax = b2 we use a concatenation trick to do both at once. In
fact, we can do it for k ∈ N problems which share the same coefficient matrix but possibly differing
inhomogeneous terms.

Proposition 2.4.7.

Let A ∈ R m×n. Vectors v1, v2, . . . , vk are solutions of Av = bi for i = 1, 2, . . . k iff V =
[v1|v2| · · · |vk] solves AV = B where B = [b1|b2| · · · |bk].

Proof: Let A ∈ R m×n and suppose Avi = bi for i = 1, 2, . . . k. Let V = [v1|v2| · · · |vk] and use the
concatenation Proposition 2.3.12,

AV = A[v1|v2| · · · |vk] = [Av1|Av2| · · · |Avk] = [b1|b2| · · · |bk] = B.

Conversely, suppose AV = B where V = [v1|v2| · · · |vk] and B = [b1|b2| · · · |bk] then by Proposition
2.3.12 AV = B implies Avi = bi for each i = 1, 2, . . . k. �

Example 2.4.8. Solve the systems given below,

x+ y + z = 1
x− y + z = 0
−x+ z = 1

and
x+ y + z = 1
x− y + z = 1
−x+ z = 1

The systems above share the same coefficient matrix, however b1 = [1, 0, 1]T whereas b2 = [1, 1, 1]T .
We can solve both at once by making an extended augmented coefficient matrix [A|b1|b2]

[A|b1|b2] =

 1 1 1 1 1
1 −1 1 0 1
−1 0 1 1 1

 rref [A|b1|b2] =

 1 0 0 −1/4 0
0 1 0 1/2 0
0 0 1 3/4 1
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We use Proposition 2.4.7 to conclude that

x+ y + z = 1
x− y + z = 0
−x+ z = 1

has solution x = −1/4, y = 1/2, z = 3/4

x+ y + z = 1
x− y + z = 1
−x+ z = 1

has solution x = 0, y = 0, z = 1.

2.5 elementary matrices

The concept of an elementary matrix allows us to see Gauss-Jordan elimination as matrix multi-
plication. Gauss Jordan elimination consists of three elementary row operations:

(1.) ri + arj → ri, (2.) bri → ri, (3.) ri ↔ rj

Left multiplication by elementary matrices will accomplish the same operation on a matrix.

Definition 2.5.1.

Let [A : ri + arj → ri] denote the matrix produced by replacing row i of matrix A with
rowi(A) + arowj(A). Also define [A : cri → ri] and [A : ri ↔ rj ] in the same way. Let
a, b ∈ R and b 6= 0. The following matrices are called elementary matrices:

Eri+arj→ri = [I : ri + arj → ri]

Ebri→ri = [I : bri → ri]

Eri↔rj = [I : ri ↔ rj ]

Example 2.5.2. Let A =
[
a b c
1 2 3
u m e

]

Er2+3r1→r2A =

 1 0 0
3 1 0
0 0 1

 a b c
1 2 3
u m e

 =

 a b c
3a+ 1 3b+ 2 3c+ 3
u m e



E7r2→r2A =

 1 0 0
0 7 0
0 0 1

 a b c
1 2 3
u m e

 =

 a b c
7 14 21
u m e



Er2→r3A =

 1 0 0
0 0 1
0 1 0

 a b c
1 2 3
u m e

 =

 a b c
u m e
1 2 3
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Proposition 2.5.3.

If A ∈ R m×n then there exist elementary matrices E1, E2, . . . , Ek such that
rref(A) = E1E2 · · ·EkA.

Proof: Gauss Jordan elimination is accomplished by k-successive elementary row operations. Each
row operation can be implemented by multiplying the corresponding elementary matrix on the left.
The Theorem follows. �

Example 2.5.4. Just for fun let’s see what happens if we multiply the elementary matrices on the
right instead.

AEr2+3r1→r2 =

 a b c
1 2 3
u m e

 1 0 0
3 1 0
0 0 1

 =

 a+ 3b b c
1 + 6 2 3
u+ 3m m e



AE7r2→r2 =

 a b c
1 2 3
u m e

 1 0 0
0 7 0
0 0 1

 =

 a 7b c
1 14 3
u 7m e



AEr2→r3 =

 a b c
1 2 3
u m e

 1 0 0
0 0 1
0 1 0

 =

 a c b
1 3 2
u e m


Curious, they generate column operations, we might call these elementary column operations. In
our notation the row operations are more important.

In the section that follows and in the discussion of the product rule for determinants we will see
that elementary matrices are needed to uncover some of the deeper results.

2.6 invertible matrices

Definition 2.6.1.

Let A ∈ R n×n. If there exists B ∈ R n×n such that AB = I and BA = I then we say that
A is invertible and A−1 = B. Invertible matrices are also called nonsingular. If a matrix
has no inverse then it is called a noninvertible or singular matrix.

Proposition 2.6.2.

Elementary matrices are invertible.

Proof: I list the inverse matrix for each below:

(Eri+arj→ri)
−1 = [I : ri − arj → ri]



2.6. INVERTIBLE MATRICES 43

(Ebri→ri)
−1 = [I : 1

b ri → ri]

(Eri↔rj )
−1 = [I : rj ↔ ri]

I leave it to the reader to convince themselves that these are indeed inverse matrices. �

Example 2.6.3. Let me illustrate the mechanics of the proof above, Er1+3r2→r1 =
[

1 3 0
0 1 0
0 0 1

]
and

Er1−3r2→r1 =
[

1 −3 0
0 1 0
0 0 1

]
satisfy,

Er1+3r2→r1Er1−3r2→r1 =
[

1 3 0
0 1 0
0 0 1

] [
1 −3 0
0 1 0
0 0 1

]
=
[

1 0 0
0 1 0
0 0 1

]
Likewise,

Er1−3r2→r1Er1+3r2→r1 =
[

1 −3 0
0 1 0
0 0 1

] [
1 3 0
0 1 0
0 0 1

]
=
[

1 0 0
0 1 0
0 0 1

]
Thus, (Er1+3r2→r1)−1 = Er1−3r2→r1 just as we expected.

Theorem 2.6.4.

Let A ∈ R n×n. The solution of Ax = 0 is unique iff A−1 exists.

Proof:( ⇒) Suppose Ax = 0 has a unique solution. Observe A0 = 0 thus the only solution is the
zero solution. Consequently, rref [A|0] = [I|0]. Moreover, by Proposition 2.5.3 there exist elemen-
tary matrices E1, E2, · · · , Ek such that rref [A|0] = E1E2 · · ·Ek[A|0] = [I|0]. Applying the concate-
nation Proposition 2.3.12 we find that [E1E2 · · ·EkA|E1E2 · · ·Ek0] = [I|0] thus E1E2 · · ·EkA = I.

It remains to show that AE1E2 · · ·Ek = I. Multiply E1E2 · · ·EkA = I on the left by E1
−1 followed

by E2
−1 and so forth to obtain

Ek
−1 · · ·E2

−1E1
−1E1E2 · · ·EkA = Ek

−1 · · ·E2
−1E1

−1I

this simplifies to
A = Ek

−1 · · ·E2
−1E1

−1.

Observe that
AE1E2 · · ·Ek = Ek

−1 · · ·E2
−1E1

−1E1E2 · · ·Ek = I.

We identify that A−1 = E1E2 · · ·Ek thus A−1 exists.

(⇐) The converse proof is much easier. Suppose A−1 exists. If Ax = 0 then multiply by A−1 on
the left, A−1Ax = A−10 ⇒ Ix = 0 thus x = 0. �



44 CHAPTER 2. MATRIX ARITHMETIC

Proposition 2.6.5.

Let A ∈ R n×n.

1. If BA = I then AB = I.

2. If AB = I then BA = I.

Proof of (1.): Suppose BA = I. If Ax = 0 then BAx = B0 hence Ix = 0. We have shown that
Ax = 0 only has the trivial solution. Therefore, Theorem 2.6.4 shows us that A−1 exists. Multiply
BA = I on the left by A−1 to find BAA−1 = IA−1 hence B = A−1 and by definition it follows
AB = I.

Proof of (2.): Suppose AB = I. If Bx = 0 then ABx = A0 hence Ix = 0. We have shown that
Bx = 0 only has the trivial solution. Therefore, Theorem 2.6.4 shows us that B−1 exists. Multiply
AB = I on the right by B−1 to find ABB−1 = IB−1 hence A = B−1 and by definition it follows
BA = I. �

Proposition 2.6.5 shows that we don’t need to check both conditions AB = I and BA = I. If either
holds the other condition automatically follows.

Proposition 2.6.6.

If A ∈ R n×n is invertible then its inverse matrix is unique.

Proof: Suppose B,C are inverse matrices of A. It follows that AB = BA = I and AC = CA = I
thus AB = AC. Multiply B on the left of AB = AC to obtain BAB = BAC hence IB = IC ⇒
B = C. �

Example 2.6.7. In the case of a 2× 2 matrix a nice formula to find the inverse is known:[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
It’s not hard to show this formula works,

1
ad−bc

[
a b
c d

] [
d −b
−c a

]
= 1

ad−bc

[
ad− bc −ab+ ab
cd− dc −bc+ da

]
= 1

ad−bc

[
ad− bc 0

0 ad− bc

]
=

[
1 0
0 1

]
How did we know this formula? Can you derive it? To find the formula from first principles you
could suppose there exists a matrix B = [ x y

z w ] such that AB = I. The resulting algebra would lead
you to conclude x = d/t, y = −b/t, z = −c/t, w = a/t where t = ad− bc. I leave this as an exercise
for the reader.
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There is a giant assumption made throughout the last example. What is it?

Example 2.6.8. A counterclockwise rotation by angle θ in the plane can be represented by a

matrix R(θ) =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
. The inverse matrix corresponds to a rotation by angle −θ and

(using the even/odd properties for cosine and sine) R(−θ) =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
= R(θ)−1. Notice that

R(0) = [ 1 0
0 1 ] thus R(θ)R(−θ) = R(0) = I. We’ll talk more about geometry in a later chapter.

If you’d like to see how this matrix is related to the imaginary exponential eiθ = cos(θ) + i sin(θ)
you can look at www.supermath.info/intro to complex.pdf where I show how the cosines and sines
come from a rotation of the coordinate axes. If you draw the right picture you can understand
why the formulas below describe changing the coordinates from (x, y) to (x̄, ȳ where the transformed
coordinates are rotated by angle θ:

x̄ = cos(θ)x+ sin(θ)y
ȳ = − sin(θ)x+ cos(θ)y

⇔
[
x̄
ȳ

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
x
y

]
Theorem 2.6.9.

If A,B ∈ R n×n are invertible, X,Y ∈ R m×n, Z,W ∈ R n×m and nonzero c ∈ R then

1. (AB)−1 = B−1A−1,

2. (cA)−1 = 1
cA
−1,

3. XA = Y A implies X = Y ,

4. AZ = AW implies Z = W ,

Proof: To prove (1.) simply notice that

(AB)B−1A−1 = A(BB−1)A−1 = A(I)A−1 = AA−1 = I.

The proof of (2.) follows from the calculation below,

(1
cA
−1)cA = 1

c cA
−1A = A−1A = I.

To prove (3.) assume that XA = Y A and multiply both sides by A−1 on the right to obtain
XAA−1 = Y AA−1 which reveals XI = Y I or simply X = Y . To prove (4.) multiply by A−1 on
the left. �

Remark 2.6.10.

The proofs just given were all matrix arguments. These contrast the component level proofs
needed for 2.3.17. We could give component level proofs for the Theorem above but that
is not necessary and those arguments would only obscure the point. I hope you gain your
own sense of which type of argument is most appropriate as the course progresses.

We have a simple formula to calculate the inverse of a 2 × 2 matrix, but sadly no such simple
formula exists for bigger matrices. There is a nice method to calculate A−1 (if it exists), but we do
not have all the theory in place to discuss it at this juncture.
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Proposition 2.6.11.

If A1, A2, . . . , Ak ∈ R n×n are invertible then

(A1A2 · · ·Ak)−1 = A−1
k A−1

k−1 · · ·A
−1
2 A−1

1

Proof: Provided by you in the Problem Set. Your argument will involve induction on the index k.
Notice you already have the cases k = 1, 2 from the arguments in this section. In particular, k = 1
is trivial and k = 2 is given by Theorem 2.6.11. �

2.6.1 how to calculate the inverse of a matrix

The problem of calculating an inverse amounts to precisely the problem of simultaneously solving
several systems of equations at once. We now put to use the technique disucssed in Section 2.4.

PROBLEM: how should we calculate A−1 for a 3× 3 matrix ?

Consider that the Proposition 2.4.7 gives us another way to look at the problem,

AA−1 = I ⇔ A[v1|v2|v3] = I3 = [e1|e2|e3]

Where vi = coli(A
−1) and e1 = [0 0 0]T , e2 = [0 1 0]T , e3 = [0 0 1]T . We observe that the problem

of finding A−1 for a 3× 3 matrix amounts to solving three separate systems:

Av1 = e1, Av2 = e2, Av3 = e3

when we find the solutions then we can construct A−1 = [v1|v2|v3]. Think about this, if A−1 exists
then it is unique thus the solutions v1, v2, v3 are likewise unique. Consequently, by Theorem 1.5.3,

rref [A|e1] = [I|v1], rref [A|e2] = [I|v2], rref [A|e3] = [I|v3].

Each of the systems above required the same sequence of elementary row operations to cause A 7→ I.
We can just as well do them at the same time in one big matrix calculation:

rref [A|e1|e2|e3] = [I|v1|v2|v3]

While this discuss was done for n = 3 we can just as well do the same for n > 3. This provides
the proof for the first sentence of the theorem below. Theorem 1.5.3 together with the discussion
above proves the second sentence.

Theorem 2.6.12.

A ∈ R n×n is invertible iff rref [A|I] = [I|A−1]. In contrast, for A ∈ R n×n,
A−1 not invertible iff rref(A) 6= I iff rref [A|I] 6= [I|B].

This theorem tells us how and when we can find an inverse for a square matrix.
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Example 2.6.13. Recall that in Example 1.2.7 we worked out the details of

rref

 1 0 0 1 0 0
2 2 0 0 1 0
4 4 4 0 0 1

 =

 1 0 0 1 0 0
0 1 0 −1 1/2 0
0 0 1 0 −1/2 1/4


Thus,  1 0 0

2 2 0
4 4 4

−1

=

 1 0 0
−1 1/2 0
0 −1/2 1/4

 .
Example 2.6.14. I omit the details of the Gaussian elimination,

rref

 1 −1 0 1 0 0
1 0 −1 0 1 0
6 2 3 0 0 1

 =

 1 0 0 −2 −3 −1
0 1 0 −3 −3 −1
0 0 1 −2 −4 −1


Thus,  1 −1 0

1 0 −1
6 2 3

−1

=

 −2 −3 −1
−3 −3 −1
−2 −4 −1

 .
2.7 all your base are belong to us (ei and Eij that is)

The purpose of this section is to introduce some compact notation that allows for elegant proofs of
certain statements in n-dimensions. When we face general question these are nice results since they
allow us to trade equations about matrices for simple, but arbitrary, scalar equations. This type
of calculation is an example of tensorial calculation. Tensors are of great importance to modern
physics and engineering 1.

We define ei ∈ Rn by (ei)j = δij =

{
1 i = j

0 i 6= j
. We call ei the i-th standard basis vector. We’ll

study these later in the course. For example, in Proposition 4.2.8 that every vector in Rn is a linear
combination of e1, e2, . . . , en. We can define a standard basis for matrices of arbitrary size in much
the same manner.

Definition 2.7.1.

The ij-th standard basis matrix for R m×n is denoted Eij for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
The matrix Eij is zero in all entries except for the (i, j)-th slot where it has a 1. In other
words, we define (Eij)kl = δikδjl.

1I discuss tensors and their calculus in the advanced calculus course when the opportunity presents itself.
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Proposition 2.7.2.

Every matrix in R m×n is a linear combination of the Eij where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Proof: Let A ∈ R m×n then

A =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

... · · ·
...

Am1 Am2 · · · Amn



= A11


1 0 · · · 0
0 0 · · · 0
...

... · · · 0
0 0 · · · 0

+A12


0 1 · · · 0
0 0 · · · 0
...

... · · · 0
0 0 · · · 0

+ · · ·+Amn


0 0 · · · 0
0 0 · · · 0
...

... · · · 0
0 0 · · · 1


= A11E11 +A12E12 + · · ·+AmnEmn.

The calculation above follows from repeated mn-applications of the definition of matrix addition
and another mn-applications of the definition of scalar multiplication of a matrix. We can restate
the final result in a more precise langauge,

A =
m∑
i=1

n∑
j=1

AijEij .

As we claimed, any matrix can be written as a linear combination of the Eij . �

The term ”basis” has a technical meaning which we will discuss at length in due time. For now,
just think of it as part of the names of ei and Eij . These are the basic building blocks for matrix
theory.

Example 2.7.3. Suppose A ∈ R m×n and ei ∈ Rn is a standard basis vector,

(Aei)j =

n∑
k=1

Ajk(ei)k =

n∑
k=1

Ajkδik = Aji

Thus, [Aei] = coli(A) . We find that multiplication of a matrix A by the standard basis ei yields

the i− th column of A.

Example 2.7.4. Suppose A ∈ R m×n and ei ∈ Rm×1 is a standard basis vector,

(ei
TA)j =

n∑
k=1

(ei)kAkj =

n∑
k=1

δikAkj = Aij

Thus, [ei
TA] = rowi(A) . We find multiplication of a matrix A by the transpose of standard basis

ei yields the i− th row of A.
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Example 2.7.5. Again, suppose ei, ej ∈ Rn are standard basis vectors. The product ei
T ej of the

1× n and n× 1 matrices is just a 1× 1 matrix which is just a number. In particular consider,

ei
T ej =

n∑
k=1

(ei
T )k(ej)k =

n∑
k=1

δikδjk = δij

The product is zero unless the vectors are identical.

Example 2.7.6. Suppose ei ∈ Rm×1 and ej ∈ Rn. The product of the m × 1 matrix ei and the
1× n matrix ej

T is an m× n matrix. In particular,

(eiej
T )kl = (ei

T )k(ej)k = δikδjk = (Eij)kl

Thus we can construct the standard basis matrices by multiplying the standard basis vectors; Eij =
eiej

T .

Example 2.7.7. What about the matrix Eij? What can we say about multiplication by Eij on the
right of an arbitrary matrix? Let A ∈ R m×n and consider,

(AEij)kl =
n∑
p=1

Akp(Eij)pl =
n∑
p=1

Akpδipδjl = Akiδjl

Notice the matrix above has zero entries unless j = l which means that the matrix is mostly zero
except for the j-th column. We can select the j-th column by multiplying the above by ej, using
Examples 2.7.5 and 2.7.3,

(AEijej)k = (Aeiej
T ej)k = (Aeiδjj)k = (Aei)k = (coli(A))k

This means,

AEij =


column j

0 0 · · · A1i · · · 0
0 0 · · · A2i · · · 0
...

... · · ·
... · · ·

...
0 0 · · · Ami · · · 0


Right multiplication of matrix A by Eij moves the i-th column of A to the j-th column of AEij and
all other entries are zero. It turns out that left multiplication by Eij moves the j-th row of A to the
i-th row and sets all other entries to zero.

Example 2.7.8. Let A = [ 1 2
3 4 ] consider multiplication by E12,

AE12 =

[
1 2
3 4

] [
0 1
0 0

]
=

[
0 1

0 3

]
=
[

0 col1(A)
]

Which agrees with our general abstract calculation in the previous example. Next consider,

E12A =

[
0 1
0 0

] [
1 2
3 4

]
=

[
3 4
0 0

]
=

[
row2(A)

0

]
.
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Example 2.7.9. Calculate the product of Eij and Ekl.

(EijEkl)mn =
∑
p

(Eij)mp(Ekl)pn =
∑
p

δimδjpδkpδln = δimδjkδln

For example,
(E12E34)mn = δ1mδ23δ4n = 0.

In order for the product to be nontrivial we must have j = k,

(E12E24)mn = δ1mδ22δ4n = δ1mδ4n = (E14)mn.

We can make the same identification in the general calculation,

(EijEkl)mn = δjk(Eil)mn.

Since the above holds for all m,n,
EijEkl = δjkEil

this is at times a very nice formula to know about.

Remark 2.7.10.

You may find the general examples in this portion of the notes a bit too much to follow. If
that is the case then don’t despair. Focus on mastering the numerical examples to begin
with then come back to this section later. These examples are actually not that hard, you
just have to get used to index calculations. The proofs in these examples are much longer
if written without the benefit of index notation. I was disappointed your text fails to use
the index notation in it’s full power. The text deliberately uses + · · · rather than

∑
. I will

use both langauges.

Example 2.7.11. Let A ∈ R m×n and suppose ei ∈ Rm×1 and ej ∈ Rn. Consider,

(ei)
TAej =

m∑
k=1

((ei)
T )k(Aej)k =

m∑
k=1

δik(Aej)k = (Aej)i = Aij

This is a useful observation. If we wish to select the (i, j)-entry of the matrix A then we can use
the following simple formula,

Aij = (ei)
TAej

This is analogus to the idea of using dot-products to select particular components of vectors in
analytic geometry; (reverting to calculus III notation for a moment) recall that to find v1 of ~v we
learned that the dot product by î =< 1, 0, 0 > selects the first components v1 = ~v · î. The following
theorem is simply a summary of our results for this section.
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Theorem 2.7.12.

Assume A ∈ R m×n and v ∈ Rn and define (Eij)kl = δikδjl and (ei)j = δij as we previously
discussed,

v =
n∑
i=1

vnen A =
m∑
i=1

n∑
j=1

AijEij .

[ei
TA] = rowi(A) [Aei] = coli(A) Aij = (ei)

TAej

EijEkl = δjkEil Eij = eiej
T ei

T ej = δij

2.8 matrices with special shapes

In this section we learn about a few special types of matrices.

2.8.1 symmetric and antisymmetric matrices

Definition 2.8.1.

Let A ∈ R n×n. We say A is symmetric iff AT = A. We say A is antisymmetric iff
AT = −A.

At the level of components, AT = A gives Aij = Aji for all i, j. Whereas, AT = −A gives Aij = −Aji
for all i, j. I should mention skew-symmetric is another word for antisymmetric. In physics,
second rank (anti)symmetric tensors correspond to (anti)symmetric matrices. In electromagnetism,
the electromagnetic field tensor has components which can be written as an antisymmetric 4 × 4
matrix. In classical mechanics, a solid’s propensity to spin in various directions is described by the
intertia tensor which is represented by a symmetric matrix. The energy-momentum tensor from
electrodynamics is also represented by a symmetric matrix. Matrices are everywhere if we look for
them.

Example 2.8.2. Some matrices are symmetric:

I, O, Eii,

[
1 2
2 0

]
Some matrices are antisymmetric:

O,

[
0 2
−2 0

]
Only 0 is both symmetric and antisymmetric. Other matrices are neither symmetric nor antisym-
metric:

ei, Ei,i+1,

[
1 2
3 4

]
I assumed n > 1 so that ei is a column vector which is not square.
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Proposition 2.8.3.

Let A,B ∈ R n×n and c ∈ R then

1. (AT )T = A

2. (AB)T = BTAT socks-shoes property for transpose of product

3. (cA)T = cAT

4. (A+B)T = AT +BT

5. (AT )−1 = (A−1)T .

Proof: Just apply the definition. �

Proposition 2.8.4.

All square matrices are formed by the sum of a symmetric and antisymmetric matrix.

Proof: Let A ∈ R n×n. Utilizing Proposition 2.8.3 we find(
1
2(A+AT )

)T
= 1

2(AT + (AT )T ) = 1
2(AT +A) = 1

2(A+AT )

thus 1
2(A+AT ) is a symmetric matrix. Likewise,(

1
2(A−AT )

)T
= 1

2(AT − (AT )T ) = 1
2(AT −A) = −1

2(A−AT )

thus 1
2(A−AT ) is an antisymmetric matrix. Finally, note the identity below:

A = 1
2(A+AT ) + 1

2(A−AT )

The theorem follows. �

The proof that any function on R is the sum of an even and odd function uses the same trick.

Example 2.8.5. The proof of the Proposition above shows us how to break up the matrix into its
symmetric and antisymmetric pieces:[

1 2
3 4

]
= 1

2

([
1 2
3 4

]
+

[
1 3
2 4

])
+ 1

2

([
1 2
3 4

]
−
[

1 3
2 4

])

=

[
1 5/2

5/2 4

]
+

[
0 −1/2

1/2 0

]
.
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Example 2.8.6. What are the symmetric and antisymmetric parts of the standard basis Eij in
R n×n? Here the answer depends on the choice of i, j. Note that (Eij)

T = Eji for all i, j.
Suppose i = j then Eij = Eii is clearly symmetric, thus there is no antisymmetric part.
If i 6= j we use the standard trick,

Eij = 1
2(Eij + Eji) + 1

2(Eij − Eji)

where 1
2(Eij +Eji) is the symmetric part of Eij and 1

2(Eij −Eji) is the antisymmetric part of Eij .

Proposition 2.8.7.

Let A ∈ R m×n then ATA is symmetric.

Proof: Proposition 2.8.3 yields (ATA)T = AT (AT )T = ATA. Thus ATA is symmetric. �

2.8.2 exponent laws for matrices

The power of a matrix is defined in the natural way. Notice we need for A to be square in order
for the product AA to be defined.

Definition 2.8.8.

Let A ∈ R n×n. We define A0 = I, A1 = A and Am = AAm−1 for all m ≥ 1. If A is
invertible then A−p = (A−1)p.

As you would expect, A3 = AA2 = AAA.

Proposition 2.8.9.

Let A,B ∈ R n×n and p, q ∈ N ∪ {0}

1. (Ap)q = Apq.

2. ApAq = Ap+q.

3. If A is invertible, (A−1)−1 = A.

Proof: left to reader. �

You should notice that (AB)p 6= ApBp for matrices. Instead,

(AB)2 = ABAB, (AB)3 = ABABAB, etc...

This means the binomial theorem will not hold for matrices. For example,

(A+B)2 = (A+B)(A+B) = A(A+B) +B(A+B) = AA+AB +BA+BB

hence (A+B)2 6= A2 +2AB+B2 as the matrix product is not generally commutative. If we have A
and B commute then AB = BA and we can prove that (AB)p = ApBp and the binomial theorem
holds true.
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Proposition 2.8.10.

If A is symmetric then Ak is symmetric for all k ∈ N.

Proof: Suppose AT = A. Proceed inductively. Clearly k = 1 holds true since A1 = A. Assume
inductively that Ak is symmetric.

(Ak+1)T = (AAk)T defn. of matrix exponents,
= (Ak)TAT socks-shoes prop. of transpose,
= AkA using inducition hypothesis.
= Ak+1 defn. of matrix exponents,

thus by proof by mathematical induction Ak is symmetric for all k ∈ N. �
There are many other fun identities about symmetric and invertible matrices. I’ll probably put a
few in the Problem Set since they make nice easy proof problems.

2.8.3 diagonal and triangular matrices

Definition 2.8.11.

Let A ∈ R m×n. If Aij = 0 for all i, j such that i 6= j then A is called a diagonal matrix.
If A has components Aij = 0 for all i, j such that i ≤ j then we call A a upper triangular
matrix. If A has components Aij = 0 for all i, j such that i ≥ j then we call A a lower
triangular matrix.

Example 2.8.12. Let me illustrate a generic example of each case for 3× 3 matrices: A11 0 0
0 A22 0
0 0 A33

  A11 A12 A13

0 A22 A23

0 0 A33

  A11 0 0
A21 A22 0
A31 A32 A33


As you can see the diagonal matrix only has nontrivial entries on the diagonal, and the names
lower triangular and upper triangular are likewise natural.

If an upper triangular matrix has zeros on the diagonal then it is said to be strictly upper
triangular. Likewise, if a lower triangular matrix has zeros on the diagonal then it is said to be
strictly lower triangular. Obviously and matrix can be written as a sum of a diagonal and
strictly upper and strictly lower matrix,

A =
∑
i,j

AijEij

=
∑
i

AiiEii +
∑
i<j

AijEij +
∑
i>j

AijEij

There is an algorithm called LU -factorization which for many matrices A finds a lower triangular
matrix L and an upper triangular matrix U such that A = LU . We may discuss it at the end of
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the course. It is one of several factorization schemes which is calculationally advantageous for large
systems. There are many many ways to solve a system, but some are faster methods. Algorithmics
is the study of which method is optimal.

Proposition 2.8.13.

Let A,B ∈ R n×n.

1. If A,B are upper diagonal then AB is diagonal.

2. If A,B are upper triangular then AB is upper triangular.

3. If A,B are lower triangular then AB is lower triangular.

Proof of (1.): Suppose A and B are diagonal. It follows there exist ai, bj such that A =
∑

i aiEii
and B =

∑
j bjEjj . Calculate,

AB =
∑
i

aiEii
∑
j

bjEjj

=
∑
i

∑
j

aibjEiiEjj

=
∑
i

∑
j

aibjδijEij

=
∑
i

aibiEii

thus the product matrix AB is also diagonal and we find that the diagonal of the product AB is
just the product of the corresponding diagonals of A and B.
Proof of (2.): Suppose A and B are upper diagonal. It follows there exist Aij , Bij such that
A =

∑
i≤j AijEij and B =

∑
k≤lBklEkl. Calculate,

AB =
∑
i≤j

AijEij
∑
k≤l

BklEkl

=
∑
i≤j

∑
k≤l

AijBklEijEkl

=
∑
i≤j

∑
k≤l

AijBklδjkEil

=
∑
i≤j

∑
j≤l

AijBjlEil

Notice that every term in the sum above has i ≤ j and j ≤ l hence i ≤ l. It follows the prod-
uct is upper triangular since it is a sum of upper triangular matrices. The proof of (3.) is similar. �.

It is entirely likely that I give a less technical proof for the special case n = 2 or 3 in lecture.
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2.8.4 block matrices

If you look at most undergraduate linear algbera texts they will not bother to even attempt much
of a proof that block-multiplication holds in general. I will foolishly attempt it here. However,
I’m going to cheat a little and employ uber-sneaky physics notation. The Einstein summation
convention states that if an index is repeated then it is assumed to be summed over it’s values.
This means that the letters used for particular indices are reserved. If i, j, k are used to denote
components of a spatial vector then you cannot use them for a spacetime vector at the same time.
A typical notation in physics would be that vj is a vector in xyz-space whereas vµ is a vector in
txyz-spacetime. A spacetime vector could be written as a sum of space components and a time
component; v = vµeµ = v0e0 +v1e1 +v2e2 +v3e3 = v0e0 +vjej . This is not the sort of langauge we
use in mathematics. For us notation is usually not reserved. Anyway, cultural commentary aside, if
we were to use Einstein-type notation in linear algebra then we would likely omit sums as follows:

v =
∑
i

viei −→ v = viei

A =
∑
ij

AijEij −→ A = AijEij

We wish to partition a matrices A and B into 4 parts, use indices M,N which split into subindices
m,µ and n, ν respectively. In this notation there are 4 different types of pairs possible:

A = [AMN ] =

[
Amn Amν
Aµn Aµν

]
B = [BNJ ] =

[
Bnj Bnγ
Bµj Bµγ

]
Then the sum over M,N breaks into 2 cases,

AMNBNJ = AMnBnJ +AMνBνJ

But, then there are 4 different types of M,J pairs,

[AB]mj = AmNBNj = AmnBnj +AmνBνj

[AB]mγ = AmNBNγ = AmnBnγ +AmνBνγ

[AB]µj = AµNBNj = AµnBnj +AµνBνj

[AB]µγ = AµNBNγ = AµnBnγ +AµνBνγ

Let me summarize,[
Amn Amν
Aµn Aµν

] [
Bnj Bnγ
Bµj Bµγ

]
=

[
[Amn][Bnj ] + [Amν ][Bνj ] [Amn][Bnγ ] + [Amν ][Bνγ ]

[Aµn][Bnj ] + [Aµν ][Bνj ] [Aµn][Bnγ ] + [Aµν ][Bνγ ]

]
Let me again summarize, but this time I’ll drop the annoying indices:
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Theorem 2.8.14. block multiplication.

Suppose A ∈ R m×n and B ∈ R n×p such that both A and B are partitioned as follows:

A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
where A11 is an m1 × n1 block, A12 is an m1 × n2 block, A21 is an m2 × n1 block and
A22 is an m2 × n2 block. Likewise, Bnkpk is an nk × pk block for k = 1, 2. We insist that
m1 + m2 = m and n1 + n2 = n. If the partitions are compatible as decribed above then
we may multiply A and B by multiplying the blocks as if they were scalars and we were
computing the product of 2× 2 matrices:[

A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
.

To give a careful proof we’d just need to write out many sums and define the partition with care
from the outset of the proof. In any event, notice that once you have this partition you can apply
it twice to build block-multiplication rules for matrices with more blocks. The basic idea remains
the same: you can parse two matrices into matching partitions then the matrix multiplication
follows a pattern which is as if the blocks were scalars. However, the blocks are not scalars so the
multiplication of the blocks is nonabelian. For example,

AB =

 A11 A12

A21 A22

A31 A32

[ B11 B12

B21 B22

]
=

 A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

A31B11 +A32B21 A31B12 +A32B22

 .
where if the partitions of A and B are compatible it follows that the block-multiplications on the
RHS are all well-defined.

Example 2.8.15. Let R(θ) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
and B(γ) =

[
cosh(γ) sinh(γ)
sinh(γ) cosh(γ)

]
. Further-

more construct 4× 4 matrices Λ1 and Λ2 as follows:

Λ1 =

[
B(γ1) 0

0 R(θ1)

]
Λ2 =

[
B(γ2) 0

0 R(θ2)

]
Multiply Λ1 and Λ2 via block multiplication:

Λ1Λ2 =

[
B(γ1) 0

0 R(θ1)

] [
B(γ2) 0

0 R(θ2)

]
=

[
B(γ1)B(γ2) + 0 0 + 0

0 + 0 0 +R(θ1)R(θ2)

]
=

[
B(γ1 + γ2) 0

0 R(θ1 + θ2)

]
.
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The last calculation is actually a few lines in detail, if you know the adding angles formulas for
cosine, sine, cosh and sinh it’s easy. If θ = 0 and γ 6= 0 then Λ would represent a velocity boost
on spacetime. Since it mixes time and the first coordinate the velocity is along the x-coordinate. On
the other hand, if θ 6= 0 and γ = 0 then Λ gives a rotation in the yz spatial coordinates in space
time. If both parameters are nonzero then we can say that Λ is a Lorentz transformation on
spacetime. Of course there is more to say here, perhaps we could offer a course in special relativity
if enough students were interested in concert.

Example 2.8.16. Problem: Suppose M is a square matrix with submatrices A,B,C, 0. What

conditions should we insist on for M =

[
A B

0 C

]
to be invertible.

Solution: I propose we partition the potential inverse matrix M−1 =

[
D E

F G

]
. We seek to find

conditions on A,B,C such that there exist D,E, F,G and MM−1 = I. Each block of the equation
MM−1 = I gives us a separate submatrix equation:

MM−1 =

[
A B

0 C

] [
D E

F G

]
=

[
AD +BF AE +BG

0D + CF 0E + CG

]
=

[
I 0

0 I

]
We must solve simultaneously the following:

(1.) AD +BF = I, (2.) AE +BG = 0, (3.) CF = 0, (4.) CG = I

If C−1 exists then G = C−1 from (4.). Moreover, (3.) then yields F = C−10 = 0. Our problem
thus reduces to (1.) and (2.) which after substituting F = 0 and G = C−1 yield

(1.) AD = I, (2.) AE +BC−1 = 0.

Equation (1.) says D = A−1. Finally, let’s solve (2.) for E,

E = −A−1BC−1.

Let’s summarize the calculation we just worked through. IF A,C are invertible then the matrix

M =

[
A B

0 C

]
is invertible with inverse

M−1 =

[
A−1 −A−1BC−1

0 C−1

]
.

Consider the case that M is a 2 × 2 matrix and A,B,C ∈ R. Then the condition of invertibility
reduces to the simple conditions A,C 6= 0 and −A−1BC−1 = −B

AC we find the formula:

M−1 =

[
1
A

−B
AC

0 1
C

]
=

1

AC

[
C −B
0 A

]
.

This is of course the formula for the 2× 2 matrix in this special case where M21 = 0.
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Of course the real utility of formulas like those in the last example is that they work for partitions of
arbitrary size. If we can find a block of zeros somewhere in the matrix then we may reduce the size
of the problem. The time for a computer calculation is largely based on some power of the size of
the matrix. For example, if the calculation in question takes n2 steps then parsing the matrix into
3 nonzero blocks which are n/2×n/2 would result in something like [n/2]2 + [n/2]2 + [n/2]2 = 3

4n
2

steps. If the calculation took on order n3 computer operations (flops) then my toy example of 3
blocks would reduce to something like [n/2]3 + [n/2]3 + [n/2]3 = 3

8n
2 flops. A savings of more than

60% of computer time. If the calculation was typically order n4 for an n×n matrix then the saving
is even more dramatic. If the calculation is a determinant then the cofactor formula depends on
the factorial of the size of the matrix. Try to compare 10!+10! verses say 20!. Hope your calculator
has a big display:

10! = 3628800 ⇒ 10! + 10! = 7257600 or 20! = 2432902008176640000.

Perhaps you can start to appreciate why numerical linear algebra software packages often use al-
gorithms which make use of block matrices to streamline large matrix calculations. If you are very
interested in this sort of topic you might strike up a conversation with Dr. Van Voorhis. I suspect
he knows useful things about this type of mathematical inquiry.

Finally, I would comment that breaking a matrix into blocks is basically the bread and butter of
quantum mechanics. One attempts to find a basis of state vectors which makes the Hamiltonian
into a block-diagonal matrix. Each block corresponds to a certain set of statevectors sharing a
common energy. The goal of representation theory in physics is basically to break down matrices
into blocks with nice physical meanings. On the other hand, abstract algebraists also use blocks
to rip apart a matrix into it’s most basic form. For linear algebraists2, the so-called Jordan form
is full of blocks. Wherever reduction of a linear system into smaller subsystems is of interest there
will be blocks.

2mostly dead by now sad to say.
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2.9 applications

Definition 2.9.1.

Let P ∈ R n×n with Pij ≥ 0 for all i, j. If the sum of the entries in any column of P is one
then we say P is a stochastic matrix.

Example 2.9.2. Stochastic Matrix: A medical researcher3 is studying the spread of a virus in
1000 lab. mice. During any given week it’s estimated that there is an 80% probability that a mouse
will overcome the virus, and during the same week there is an 10% likelyhood a healthy mouse will
become infected. Suppose 100 mice are infected to start, (a.) how many sick next week? (b.) how
many sick in 2 weeks ? (c.) after many many weeks what is the steady state solution?

Ik = infected mice at beginning of week k
Nk = noninfected mice at beginning of week k

P =

[
0.2 0.1
0.8 0.9

]
We can study the evolution of the system through successive weeks by multiply the state-vector
Xk = [Ik, Nk] by the probability transition matrix P given above. Notice we are given that X1 =
[100, 900]T . Calculate then,

X2 =

[
0.2 0.1
0.8 0.9

] [
100
900

]
=

[
110
890

]
After one week there are 110 infected mice Continuing to the next week,

X3 =

[
0.2 0.1
0.8 0.9

] [
110
890

]
=

[
111
889

]
After two weeks we have 111 mice infected. What happens as k → ∞? Generally we have Xk =
PXk−1. Note that as k gets large there is little difference between k and k − 1, in the limit they
both tend to infinity. We define the steady-state solution to be X∗ = limk→∞Xk. Taking the limit
of Xk = PXk−1 as k →∞ we obtain the requirement X∗ = PX∗. In other words, the steady state
solution is found from solving (P − I)X∗ = 0. For the example considered here we find,

(P − I)X∗ =

[
−0.8 0.1
0.8 −0.1

] [
u
v

]
= 0 v = 8u X∗ =

[
u
8u

]
However, by conservation of mice, u + v = 1000 hence 9u = 1000 and u = 111.1̄1 thus the steady
state can be shown to be X∗ = [111.1̄1, 888.8̄8]

3this example and most of the other applied examples in these notes are borrowed from my undergraduate linear
algebra course taught from Larson’s text by Dr. Terry Anderson of Appalachian State University
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Example 2.9.3. Diagonal matrices are nice: Suppose that demand for doorknobs halves every
week while the demand for yo-yos it cut to 1/3 of the previous week’s demand every week due to
an amazingly bad advertising campaign4. At the beginning there is demand for 2 doorknobs and 5
yo-yos.

Dk = demand for doorknobs at beginning of week k
Yk = demand for yo-yos at beginning of week k

P =

[
1/2 0
0 1/3

]
We can study the evolution of the system through successive weeks by multiply the state-vector
Xk = [Dk, Yk] by the transition matrix P given above. Notice we are given that X1 = [2, 5]T .
Calculate then,

X2 =

[
1/2 0
0 1/3

] [
2
5

]
=

[
1

5/3

]
Notice that we can actually calculate the k-th state vector as follows:

Xk = P kX1 =

[
1/2 0
0 1/3

]k [
2
5

]
=

[
2−k 0
0 3−k

]k [
2
5

]
=

[
2−k+1

5(3−k)

]
Therefore, assuming this silly model holds for 100 weeks, we can calculate the 100-the step in the
process easily,

X100 = P 100X1 =

[
2−101

5(3−100)

]
Notice that for this example the analogue of X∗ is the zero vector since as k →∞ we find Xk has
components which both go to zero.

Example 2.9.4. Naive encryption: in Example 2.6.14 we found observed that the matrix A has
inverse matrix A−1 where:

A =

 1 −1 0
1 0 −1
6 2 3

 A−1 =

 −2 −3 −1
−3 −3 −1
−2 −4 −1

 .
We use the alphabet code

A = 1, B = 2, C = 3, . . . , Y = 25, Z = 26

and a space is encoded by 0. The words are parsed into row vectors of length 3 then we multiply
them by A on the right; [decoded]A = [coded]. Suppose we are given the string, already encoded by
A

[9,−1,−9], [38,−19,−19], [28,−9,−19], [−80, 25, 41], [−64, 21, 31], [−7, 4, 7].

Find the hidden message by undoing the multiplication by A. Simply multiply by A−1 on the right,

[9,−1,−9]A−1, [38,−19,−19]A−1, [28,−9,−19]A−1,

4insert your own more interesting set of quantities that doubles/halves or triples during some regular interval of
time
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[−80, 25, 41]A−1, [−64, 21, 31]A−1, [−7, 4, 7]A−1

This yields,
[19, 19, 0], [9, 19, 0], [3, 1, 14], [3, 5, 12], [12, 5, 4]

which reads CLASS IS CANCELLED 5.

If you enjoy this feel free to peruse my Math 121 notes, I have additional examples of this naive
encryption. I say it’s naive since real encryption has much greater sophistication by this time. There
are many other applications. A parial list: matrix multiplication of the input by the transfer matrix
gives the output signal for linear systems in electrical engineering. There are coincidence matrices,
permutation matrices, Leslie matrices, tri-banded matrices, shear transformation matrices, matrices
to model an affine transformation of computer graphics... My goal in this section is simply to show
you a few simple applications and also to invite you to study more as your interests guide you. One
nice source of applications is found at the end of Anton and Rorres’ Elementary Linear Algebra:
applications version. They have twenty interesting applications you can study if you need additional
motivation as to the applicability of linear algebra.

Remark 2.9.5.

Matrix multiplication and the composition of linear operators is the heart of the chain rule
in multivariate calculus. The derivative of a function f : Rn → Rm at a point p ∈ Rn gives
the best linear approximation to f in the sense that

Lf (p+ h) = f(p) +Dpf(h) u f(p+ h)

if h ∈ Rn is close to the zero vector; the graph of Lf gives the tangent line or plane or
hypersurface depending on the values of m,n. The so-called Frechet derivative is Dpf ,
it is a linear transformation from Rn to Rm. The simplest case is f : R → R where
Dpf(h) = f ′(p)h and you should recognize Lf (p+h) = f(p) + f ′(p)h as the function whose
graph is the tangent line, perhaps Lf (x) = f(p) + f ′(p)(x − p) is easier to see but it’s the
same just set p + h = x. Given two functions, say f : Rn → Rm and g : Rm → Rp then
it can be shown that D(g ◦ f) = Dg ◦Df . In turn, the matrix of D(g ◦ f) is simply obtain
by multiplying the matrices of Dg and Df . The matrix of the Frechet derivative is called
the Jacobian matrix. The determinant of the Jacobian matrix plays an important role in
changing variables for multiple integrals. It is likely we would cover this discussion in some
depth in the Advanced Calculus course, while linear algebra is not a pre-req, it sure would
be nice if you had it. Linear is truly foundational for most interesting math.

5Larson’s pg. 100-102 # 22
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2.10 conclusions

The theorem that follows here collects the various ideas we have discussed concerning an n × n
matrix and invertibility and solutions of Ax = b.

Theorem 2.10.1.

Let A be a real n× n matrix then the following are equivalent:

(a.) A is invertible,

(b.) rref [A|0] = [I|0] where 0 ∈ R n×1,

(c.) Ax = 0 iff x = 0,

(d.) A is the product of elementary matrices,

(e.) there exists B ∈ R n×n such that AB = I,

(f.) there exists B ∈ R n×n such that BA = I,

(g.) rref [A] = I,

(h.) rref [A|b] = [I|x] for an x ∈ R n×1,

(i.) Ax = b is consistent for every b ∈ R n×1,

(j.) Ax = b has exactly one solution for every b ∈ R n×1,

(k.) AT is invertible.

These are in no particular order. If you examine the arguments in this chapter you’ll find we’ve
proved most of this theorem. What did I miss? 6

6teaching moment or me trying to get you to do my job, you be the judge.
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Chapter 3

determinants

I should warn you there are some difficult calculations in this Chapter. However, the good news
is these are primarily to justify the various properties of the determinant. The determinant of
a square matrix is simply a number which contains lots of useful information. We will conclude
this Chapter with a discussion of what the determinant says about systems of equations. There
are a lot of different ways to introduce the determinant, my approach is rooted in my love of
index calculations from physics. A pure mathematician would likely take another approach (mine
is better). Geometrically, determinants are used to capture the idea of an oriented volume. I
illustrate this with several examples before we get too deep into the more esoteric calculations.

3.1 determinants and geometry

The determinant of a square matrix can be defined by the following formulas. I’ll give the general
formula in the next section, but more often than not the formulas given here are more than enough.
Well, this one is just silly:

det a = a.

Then the 2× 2 case is perhaps more familar,

det

(
a b
c d

)
= ad− bc.

we’ve seen this before somewhere. Then the 3× 3 formula is:

det

a b c
d e f
g h i

 = a · det

(
e f
h i

)
− b · det

(
d f
g i

)
+ c · det

(
d e
g h

)

65
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and finally the 4× 4 determinant is given by

det


a b c d
e f g h
i j k l
m n o p

 = a · det

f g h
j k l
n o p

− b · det

 e g h
i k l
m o p

 (3.1)

+ c · det

 e f h
i j l
m n p

− d · det

 e f g
i j k
m n o

 (3.2)

What do these formulas have to do with geometry?

Example 3.1.1. Consider the vectors < l, 0 > and < 0, w >. They make two sides of a rectangle
with length l and width w. Notice

det

[
l 0
0 w

]
= lw.

In contrast,

det

[
0 w
l 0

]
= −lw.

Interestingly this works for parallellograms with sides < a, b > and < c, d > the area is given by
±det

[
a b
c d

]
.

Maybe you can see it better in the diagram below: the point is that triangles T1 and T2 match nicely
but the T3 is included in the red rectangle but is excluded from the green parallelogram. The area
of the red rectangle A1B2 less the area of the blue square A2B1 is precisely the area of the green
parallelogram.
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If you’ve taken calculus III the you may have learned that a parallelogram with sides ~A, ~B can
be parametrized by ~r(u, v) = u ~A + v ~B. We have ~A = (a, b, 0) and ~B = (c, d, 0) if you view the
parallelogram from a three dimensional perspective. Moreover,

~A× ~B = det

 e1 e2 e3

a b 0
c d 0

 = (ad− bc)e3.

The sign of ad − bc indicates the orientation of the paralellogram. If the paralellogram lives in
the xy-plane then it has an up-ward pointing normal if the determinant is positive whereas it has a
downward pointing normal if the determinant is negative.

Example 3.1.2. If we look at a three dimensional box with vectors ~A, ~B, ~C pointing along three
edges with from a common corner then it can be shown that the volume V is given by the determinant

V = ±det
[
~A| ~B|~C

]
Of course it’s easy to see that V = lwh if the sides have length l, width w and height h. However,
this formula is more general than that, it also holds if the vectors lie along a paralell piped. Again
the sign of the determinant has to do with the orientation of the box. If the determinant is positive
then that means that the set of vectors { ~A, ~B, ~C} forms a righted-handed set of vectors. In terms

of calculus III, ~(C) and ~A × ~B both point off the same side of the plane containing ~A and ~B; the
ordering of the vectors is roughly consistent with the right-hand rule. If the determinant of the
three vectors is negative then they will be consistent with the (inferior and evil) left-hand rule. I
say ”roughly” because ~A× ~B need not be parallel with ~C. The sign of the determinant just reveals
if ~C is above or below the plane spanned by ~A, ~B.

If you study the geometry of cross and dot products it is not too hard to see that V = | ~A · ( ~B× ~C)|.
This formula is easy to reproduce,

det

 A1 A2 A3

B1 B2 B3

C1 C2 C3

 = A1(B2C3 −B3C2) +A2(B1C3 −B3C1) +A3(B1C2 −B2C1)

= ~A · ( ~B × ~C).
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If you’d like to know more about the geometry of cross products then you should take calculus III
and read more than a standard calculus text. It is interesting that the determinant gives formulas
for cross products and the so-called ”triple product” above.

Example 3.1.3. To calculate the cross-product of ~A and ~B we can use the heuristic rule

~A× ~B = det

 e1 e2 e3

A1 A2 A3

B1 B2 B3


technically this is not a real ”determinant” because there are vectors in the top row but numbers in
the last two rows.

Example 3.1.4. The infinitesimal area element for polar coordinate is calculated from the Jacobian:

dS = det

[
r sin(θ) −r cos(θ)
cos(θ) sin(θ)

]
drdθ = (r sin2(θ) + r cos2(θ))drdθ = rdrdθ

Example 3.1.5. The infinitesimal volume element for cylindrical coordinate is calculated from the
Jacobian:

dV = det

 r sin(θ) −r cos(θ) 0
cos(θ) sin(θ) 0

0 0 1

 drdθdz = (r sin2(θ) + r cos2(θ))drdθdz = rdrdθdz

Jacobians are needed to change variables in multiple integrals. The Jacobian1 is a determinant
which measures how a tiny volume is rescaled under a change of coordinates. Each row in the
matrix making up the Jacobian is a tangent vector which points along the direction in which a
coordinate increases when the remaining coordinates are fixed.

Remark 3.1.6.

Chapter 3 of Anton and Rorres tenth ed. has a very nice discussion of three dimensional
vectors including dot and cross products. I don’t intend to cover that material directly since
it is covered in our Calculus III course (231). It would be wise to read it if you are either
taking Math 231 or intend to soon.

1see pages 206-208 of Spence Insel and Friedberg or perhaps my advanced calculus notes where I develop differ-
entiation from a linear algebraic viewpoint.
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3.2 cofactor expansion for the determinant

The precise definition of the determinant is intrinsically combinatorial. A permutation σ : Nn → Nn
is a bijection. Every permutation can be written as a product of an even or odd composition of
transpositions. The sgn(σ) = 1 if σ is formed from an even product of transpositions. The
sgn(σ) = −1 if σ is formed from an odd product of transpositions. The sum below is over all
possible permutations,

det(A) =
∑
σ

sgn(σ)A1σ(1)A2σ(2) · · ·Anσ(n)

this provides an explicit definition of the determinant. For example, in the n = 2 case we have
σo(x) = x or σ1(1) = 2, σ1(2) = 1. The sum over all permutations has just two terms in the n = 2
case,

det(A) = sgn(σo)A1σo(1)A2σo(2) + sgn(σ1)A1σ1(1)A2σ1(2) = A11A22 −A12A21

In the notation A11 = a,A12 = b, A21 = c, A22 = d the formula above says det(A) = ad− bc.

Pure mathematicians tend to prefer the definition above to the one I am preparing below. I would
argue mine has the advantage of not summing over functions. My sums are simply over integers.
The calculations I make in the proofs in this Chapter may appear difficult to you, but if you gain
a little more experience with index calculations I think you would find them accessible. I will not
go over them all in lecture. I would recommend you at least read over them.

Definition 3.2.1.

Let εi1i2...in be defined to be the completely antisymmetric symbol in n-indices. We define
ε12...n = 1 then all other values are generated by demanding the interchange of any two
indices is antisymmetric. This is also known as the Levi-Civita symbol.

We have nice formulas for the determinant with the help of the Levi-Civita symbol, the following
is yet another way of stating the definition for det(A),

det(A) =
∑

i1,i2,...,in

εi1,i2,...,inA1i1A2i2 · · ·Anin

Example 3.2.2. I prefer this definition. I can actually calculate it faster, for example the n = 3
case is pretty quick:

det(A) = ε123A11A22A33 + ε231A12A23A31 + ε312A13A21A32

+ε321A13A22A31 + ε213A12A21A33 + ε132A11A23A32

In principle there are 27 terms above but only these 6 are nontrivial because if any index is repeated
the εijk is zero. The only nontrivial terms are ε123 = ε231 = ε312 = 1 and ε321 = ε213 = ε132 = −1.
Thus,

det(A) = A11A22A33 +A12A23A31 +A13A21A32

−A13A22A31 −A12A21A33 −A11A23A32
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This formula is much closer to the trick-formula for calculating the determinant without using
minors. See Anton for the ”arrow technique”.

The formalism above will be used in all my proofs. I take the Levi-Civita definition as the primary
definition for the determinant. All other facts flow from that source. The cofactor expansions of
the determinant could also be used as a definition.

Definition 3.2.3.

Let A = [Aij ] ∈ R n×n. The minor of Aij is denoted Mij which is defined to be the
determinant of the R(n−1)×(n−1) matrix formed by deleting the i-th column and the j-th
row of A. The (i, j)-th co-factor of A is Cij = (−1)i+jMij .

Theorem 3.2.4.

The determinant of A ∈ R n×n can be calculated from a sum of cofactors either along any
row or column;

1. det(A) = Ai1Ci1 +Ai2Ci2 + · · ·+AinCin (i-th row expansion)

2. det(A) = A1jC1j +A2jC2j + · · ·+AnjCnj (j-th column expansion)

Proof: I’ll attempt to sketch a proof of (2.) directly from the general definition. Let’s try to
identify A1i1 with A1j then A2i2 with A2j and so forth, keep in mind that j is a fixed but arbitrary
index, it is not summed over.

det(A) =
∑

i1,i2,...,in

εi1,i2,...,inA1i1A2i2 · · ·Anin

=
∑
i2,...,in

εj,i2,...,inA1jA2i2 · · ·Anin +
∑

i1 6=j,i2,...,in

εi1,i2,...,inA1i1A2i2 · · ·Anin

=
∑
i2,...,in

εj,i2,...,inA1jA2i2 · · ·Anin +
∑

i1 6=j,i3,...,in

εi1,j,...,inA1i1A2j · · ·Anin

+ · · ·+
∑

i1 6=j,i2 6=j,...,in−1 6=j
εi1,i2,...,in−1,jA1i1 · · ·An−1,in−1Anj

+
∑

i1 6=j,...,in 6=j
εi1,...,inA1i1A1i2 · · ·Anin

Consider the summand. If all the indices i1, i2, . . . in 6= j then there must be at least one repeated
index in each list of such indices. Consequently the last sum vanishes since εi1,...,in is zero if any
two indices are repeated. We can pull out A1j from the first sum, then A2j from the second sum,
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and so forth until we eventually pull out Anj out of the last sum.

det(A) = A1j

( ∑
i2,...,in

εj,i2,...,inA2i2 · · ·Anin
)

+A2j

( ∑
i1 6=j,...,in

εi1,j,...,inA1i1 · · ·Anin
)

+ · · ·

+Anj

( ∑
i1 6=j,i2 6=j,...,j 6=in−1

εi1,i2,...,jA1i1A2i2 · · ·An−1,in−1

)
The terms appear different, but in fact there is a hidden symmetry. If any index in the summations
above takes the value j then the Levi-Civita symbol with have two j’s and hence those terms are
zero. Consequently we can just as well take all the sums over all values except j. In other words,
each sum is a completely antisymmetric sum of products of n − 1 terms taken from all columns
except j. For example, the first term has an antisymmetrized sum of a product of n− 1 terms not
including column j or row 1.Reordering the indices in the Levi-Civita symbol generates a sign of
(−1)1+j thus the first term is simply A1jC1j . Likewise the next summand is A2jC2j and so forth
until we reach the last term which is AnjCnj . In other words,

det(A) = A1jC1j +A2jC2j + · · ·+AnjCnj

The proof of (1.) is probably similar. We will soon learn that det(AT ) = det(A) thus (2.) =⇒ (1.).
since the j-th row of AT is the j-th columns of A.

All that remains is to show why det(A) = det(AT ). Recall (AT )ij = Aji for all i, j, thus

det(AT ) =
∑

i1,i2,...,in

εi1,i2,...,in(AT )1i1(AT )2i2 · · · (AT )nin

=
∑

i1,i2,...,in

εi1,i2,...,inAi11Ai22 · · ·Ainn

=
∑

i1,i2,...,in

εi1,i2,...,inA1i1A2i2 · · ·Anin = det(A)

to make the last step one need only see that both sums contain all the same terms just written in
a different order. Let me illustrate explicitly how this works in the n = 3 case,

det(AT ) = ε123A11A22A33 + ε231A21A32A13 + ε312A31A12A23

+ε321A31A22A13 + ε213A21A12A33 + ε132A11A32A23

The I write the entries so the column indices go 1, 2, 3

det(AT ) = ε123A11A22A33 + ε231A13A21A32 + ε312A12A23A31

+ε321A13A22A31 + ε213A12A21A33 + ε132A11A23A32
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But, the indices of the Levi-Civita symbol are not in the right order yet. Fortunately, we have
identities such as ε231 = ε312 which allow us to reorder the indices without introducing any new
signs,

det(AT ) = ε123A11A22A33 + ε312A13A21A32 + ε231A12A23A31

+ε321A13A22A31 + ε213A12A21A33 + ε132A11A23A32

But, these are precisely the terms in det(A) just written in a different order (see Example 3.2.2).
Thus det(AT ) = det(A). I leave the details of how to reorder the order n sum to the reader. �

Remark 3.2.5.

Lay’s text circumnavigates many of the difficulties I face in this chapter by using the co-
factor definition as the definition of the determinant. One place you can also find a serious
treatment of determinants is in Linear Algebra by Insel, Spence and Friedberg where you’ll
find the proof of the co-factor expansion is somewhat involved. However, the heart of the
proof involves multilinearity. Multilinearity is practically manifest with our Levi-Civita def-
inition. Anywho, a better definition for the determinant is as follows: the determinant
is the alternating, n-multilinear, real valued map such that det(I) = 1. It can be
shown this uniquely defines the determinant. All these other things like permutations and
the Levi-Civita symbol are just notation.

Remark 3.2.6.

The best way to prove things about determinants is likely the wedge product formalism.
In that notation the Levi-Civita symbol is implicit within the so-called wedge product of
vectors. For a n×n matrix the det(A) is defined implicitly by the formula col1(A)∧col2(A)∧
· · · ∧ coln(A) = det(A)e1 ∧ e2 ∧ · · · ∧ en. One nice place to read more about these things
from a purely linear-algebraic perspective is the text Abstract Linear Algebra by Morton L.
Curtis.

Example 3.2.7. I suppose it’s about time for an example. Let

A =

 1 2 3
4 5 6
7 8 9


I usually calculate by expanding across the top row out of habit,

det(A) = 1det

[
5 6
8 9

]
− 2det

[
4 6
7 9

]
+ 3det

[
4 5
7 8

]
= 1(45− 48)− 2(36− 42) + 3(32− 35)

= −3 + 12− 9

= 0.
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Now, we could also calculate by expanding along the middle row,

det(A) = −4det

[
2 3
8 9

]
+ 5det

[
1 3
7 9

]
− 6det

[
1 2
7 8

]
= −4(18− 24) + 5(9− 21)− 6(8− 14)

= 24− 60 + 36

= 0.

Many other choices are possible, for example expan along the right column,

det(A) = 3det

[
4 5
7 8

]
− 6det

[
1 2
7 8

]
+ 9det

[
1 2
4 5

]
= 3(32− 35)− 6(8− 14) + 9(5− 8)

= −9 + 36− 27

= 0.

which is best? Certain matrices might have a row or column of zeros, then it’s easiest to expand
along that row or column.

Example 3.2.8. Let’s look at an example where we can exploit the co-factor expansion to greatly
reduce the difficulty of the calculation. Let

A =


1 2 3 0 4
0 0 5 0 0
6 7 8 0 0
0 9 3 4 0
−1 −2 −3 0 1


Begin by expanding down the 4-th column,

det(A) = (−1)4+4M44 = 4det


1 2 3 4
0 0 5 0
6 7 8 0
−1 −2 −3 1


Next expand along the 2-row of the remaining determinant,

det(A) = (4)(5(−1)2+3M23) = −20det

 1 2 4
6 7 0
−1 −2 1


Finish with the trick for 3× 3 determinants, it helps me to write out 1 2 4 1 2

6 7 0 6 7
−1 −2 1 −1 −2
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then calculate the products of the three down diagonals and the three upward diagonals. Subtract
the up-diagonals from the down-diagonals.

det(A) = −20(7 + 0− 48− (−28)− (0)− (12)) = −20(−25) = 500.

3.3 properties of determinants

We’re finally getting towards the good part.

Proposition 3.3.1.

Let A ∈ R n×n,

1. det(AT ) = det(A),

2. If there exists j such that rowj(A) = 0 then det(A) = 0,

3. If there exists j such that colj(A) = 0 then det(A) = 0,

4. det[A1|A2| · · · |aAk + bBk| · · ·An] = adet[A1| · · · |Ak| · · · |An]+ bdet[A1| · · · |Bk| · · · |An],

5. det(kA) = kndet(A)

6. if B = {A : rk ↔ rj} then det(B) = −det(A),

7. if B = {A : rk + arj → rk} then det(B) = det(A),

8. if rowi(A) = krowj(A) for i 6= j then det(A) = 0

where I mean to denote rk ↔ rj as the row interchange and rk + arj → rk as a column
addition and I assume k < j.

Proof: we already proved (1.) in the proof of the cofactor expansion Theorem 3.2.4. The proof of
(2.) and (3.) follows immediately from the cofactor expansion if we expand along the zero row or
column. The proof of (4.) is not hard given our Levi-Civita defintion, let

C = [A1|A2| · · · |aAk + bBk| · · · |An]
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Calculate from the definition,

det(C) =
∑

i1,i2,...,in

εi1,i2,...,inC1i1 · · ·Ckik · · ·Cnin

=
∑

i1,i2,...,in

εi1,i2,...,inA1i1 · · · (aAkik + bBkik) · · ·Anin

= a

( ∑
i1,i2,...,in

εi1,i2,...,inA1i1 · · ·Akik · · ·Anin
)

+ b

( ∑
i1,i2,...,in

εi1,i2,...,inA1i1 · · ·Bkik · · ·Anin
)

= a det[A1|A2| · · · |Ak| · · · |An] + b det[A1|A2| · · · |Bk| · · · |An].

by the way,the property above is called multilinearity. The proof of (5.) is similar,

det(kA) =
∑

i1,i2,...,in

εi1,i2,...,inkA1i1kA2i2 · · · kAnin

= kn
∑

i1,i2,...,in

εi1,i2,...,inA1i1A2i2 · · ·Anin

= kn det(A)

Let B be as in (6.), this means that colk(B) = colj(A) and vice-versa,

det(B) =
∑

i1,i2,...,in

εi1,...,ik,...,ij ,...,inA1i1 · · ·Ajik · · ·Akij · · ·Anin

=
∑

i1,i2,...,in

−εi1,...,ij ,...,ik,...,inA1i1 · · ·Ajik · · ·Akij · · ·Anin

= −det(A)

where the minus sign came from interchanging the indices ij and ik.

To prove (7.) let us define B as in the Proposition: let rowk(B) = rowk(A) + arowj(A) and
rowi(B) = rowi(A) for i 6= k. This means that Bkl = Akl + aAjl and Bil = Ail for each l.
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Consequently,

det(B) =
∑

i1,i2,...,in

εi1,...,ik,...,inA1i1 · · · (Akik + aAjik) · · ·Anin

=
∑

i1,i2,...,in

εi1,...,inA1i1 · · ·Akik · · ·Anin

+ a

( ∑
i1,i2,...,in

εi1,...,ij ,...,ik,...,inA1i1 · · ·Aj,ij · · ·Ajik · · ·Anin
)

=
∑

i1,i2,...,in

εi1,...,inA1i1 · · ·Akik · · ·Anin

= det(A).

The term in parenthesis vanishes because it has the sum of an antisymmetric tensor in ij , ik against
a symmetric tensor in ij , ik. Here is the pattern, suppose Sij = Sji and Tij = −Tji for all i, j then
consider ∑

i

∑
j

SijTij =
∑
j

∑
i

SjiTji switched indices

=
∑
j

∑
i

−SijTij used sym. and antisym.

= −
∑
i

∑
j

SijTij interchanged sums.

thus we have
∑
SijTij = −

∑
SijTij which indicates the sum is zero. We can use the same argu-

ment on the pair of indices ij , ik in the expression since AjijAjik is symmetric in ij , ik whereas the
Levi-Civita symbol is antisymmetric in ij , ik.

We get (8.) as an easy consequence of (2.) and (7.), just subtract one row from the other so that
we get a row of zeros. �

Proposition 3.3.2.

The determinant of a diagonal matrix is the product of the diagonal entries.

Proof: Use multilinearity on each row,

det


d1 0 · · · 0
0 d2 · · · 0
...

... · · ·
...

0 0 · · · dn

 = d1 det


1 0 · · · 0
0 d2 · · · 0
...

... · · ·
...

0 0 · · · dn

 = · · · = d1d2 · · · dndet


1 0 · · · 0
0 1 · · · 0
...

... · · ·
...

0 0 · · · 1


Thus det(D) = d1d2 · · · dn as claimed. �
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Proposition 3.3.3.

Let L be a lower triangular square matric and U be an upper triangular square matrix.

1. det(L) = L11L22 · · ·Lnn

2. det(U) = U11U22 · · ·Unn

Proof: I’ll illustrate the proof of (2.) for the 3× 3 case. We use the co-factor expansion across the
first column of the matrix to begin,

det

 U11 U12 U13

0 U22 U23

0 0 U33

 = A11det

[
U22 U23

0 U33

]
= U11U22U33

The proof of the n× n case is essentially the same. For (1.) use the co-factor expansion across the
top row of L, to get det(L) = L11C11. Not the submatrix for calculating C11 is again has a row of
zeros across the top. We calculate C11 = L22C22. This continues all the way down the diagonal.
We find det(L) = L11L22 · · ·Lnn. �

Proposition 3.3.4.

Let A ∈ R n×n and k 6= 0 ∈ R,

1. det(Eri↔rj ) = −1,

2. det(Ekri→ri) = k,

3. det(Eri+brj→ri) = 1,

4. for any square matrix B and elementary matrix E, det(EB) = det(E)det(B)

5. if E1, E2, . . . , Ek are elementary then det(E1E2 · · ·Ek) = det(E1)det(E2) · · · det(Ek)

Proof: Proposition 3.6.2 shows us that det(I) = 1 since I−1 = I (there are many easier ways to
show that). Note then that Eri↔rj is a row-swap of the identity matrix thus by Proposition 3.3.1
we find det(Eri↔rj ) = −1. To prove (2.) we use multilinearity from Proposition 3.3.1. For (3.) we
use multilinearity again to show that:

det(Eri+brj→ri) = det(I) + bdet(Eij)

Again det(I) = 1 and since the unit matrix Eij has a row of zeros we know by Proposition 3.3.1
det(Eij) = 0.

To prove (5.) we use Proposition 3.3.1 multiple times in the arguments below. Let B ∈ R n×n

and suppose E is an elementary matrix. If E is multiplication of a row by k then det(E) = k
from (2.). Also EB is the matrix B with some row multiplied by k. Use multilinearity to see that
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det(EB) = kdet(B). Thus det(EB) = det(E)det(B). If E is a row interchange then EB is B with a
row swap thus det(EB) = −det(B) and det(E) = −1 thus we again find det(EB) = det(E)det(B).
Finally, if E is a row addition then EB is B with a row addition and det(EB) = det(B) and
det(E) = 1 hence det(EB) = det(E)det(B). Notice that (6.) follows by repeated application of
(5.). �

Proposition 3.3.5.

A square matrix A is invertible iff det(A) 6= 0.

Proof: recall there exist elementary matrices E1, E2, . . . , Ek such that rref(A) = E1E2 · · ·EkA.
Thus det(rref(A)) = det(E1)det(E2) · · · det(Ek)det(A). Either det(rref(A)) = 0 and det(A) = 0
or they are both nonzero.

Suppose A is invertible. Then Ax = 0 has a unique solution and thus rref(A) = I hence
det(rref(A)) = 1 6= 0 implying det(A) 6= 0.

Conversely, suppose det(A) 6= 0, then det(rref(A)) 6= 0. But this means that rref(A) does not
have a row of zeros. It follows rref(A) = I. Therefore A−1 = E1E2 · · ·Ek. �

Proposition 3.3.6.

If A,B ∈ R n×n then det(AB) = det(A)det(B).

Proof: If either A or B is not invertible then the reduced row echelon form of the nonivert-
ible matrix will have a row of zeros hence det(A)det(B) = 0. Without loss of generality, assume
A is not invertible. Note rref(A) = E1E2 · · ·EkA hence E3

−1E2
−1E1

−1rref(A)B = AB. No-
tice that rref(A)B will have at least one row of zeros since rref(A) has a row of zeros. Thus
det(E3

−1E2
−1E1

−1rref(A)B) = det(E3
−1E2

−1E1
−1)det(rref(A)B) = 0.

Suppose that both A and B are invertible. Then there exist elementary matrices such that A =
E1 · · ·Ep and B = Ep+1 · · ·Ep+q thus

det(AB) = det(E1 · · ·EpEp+1 · · ·Ep+q)
= det(E1 · · ·Ep)det(Ep+1 · · ·Ep+q)
= det(A)det(B).

We made repeated use of (6.) in Proposition 3.3.4. �

Proposition 3.3.7.

If A ∈ R n×n is invertible then det(A−1) = 1
det(A) .
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Proof: If A is invertible then there exists A−1 ∈ R n×n such that AA−1 = I. Apply Proposition
3.3.6 to see that

det(AA−1) = det(A)det(A−1) = det(I) ⇒ det(A)det(A−1) = 1.

Thus, det(A−1) = 1/det(A) �

Many of the properties we used to prove det(AB) = det(A)det(B) are easy to derive if you were
simply given the assumption det(AB) = det(A)det(B). When you look at what went into the proof
of Proposition 3.3.6 it’s not surprising that det(AB) = det(A)det(B) is a powerful formula to know.

Proposition 3.3.8.

If A is block-diagonal with square blocks A1, A2, . . . , Ak then

det(A) = det(A1)det(A2) · · · det(Ak).

Proof: for a 2 × 2 matrix this is clearly true since a block diagonal matrix is simply a diagonal
matrix. In the 3 × 3 nondiagonal case we have a 2 × 2 block A1 paired with a single diagonal
entry A2. Simply apply the cofactor expansion on the row of the diagonal entry to find that
det(A) = A2det(A1) = det(A2)det(A1). For a 4 × 4 we have more cases but similar arguments
apply. I leave the general proof to the reader. �

Example 3.3.9. If M =

[
A 0

0 B

]
is a block matrix where A,B are square blocks then det(M) =

det(A)det(B).

3.4 examples and select applications of determinants

In the preceding section I worked pretty hard to prove a number of useful properties for determi-
nants. I show how to use them in this section.

Example 3.4.1. Notice that row 2 is twice row 1,

det

 1 2 3
2 4 6
7 8 9

 = 0.

Example 3.4.2. To calculate this one we make a single column swap to get a diagonal matrix.
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The determinant of a diagonal matrix is the product of the diagonals, thus:

det



0 6 0 0 0 0
8 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 = −det



6 0 0 0 0 0
0 8 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 = 48.

Example 3.4.3. I choose the the column/row for the co-factor expansion to make life easy each
time:

det


0 1 0 2
13 71 5 π
0 3 0 4
−2 e 0 G

 = −5det

 0 1 2
0 3 4
−2 e G


= −5(−2)det

[
1 2
3 4

]
= 10(4− 6)

= −20.

Example 3.4.4. Find the values of λ such that the matrix A− λI is singular given that

A =


1 0 2 3
1 0 0 0
0 0 2 0
0 0 0 3


The matrix A− λI is singular iff det(A− λI) = 0,

det(A− λI) = det


1− λ 0 2 3

1 −λ 0 0
0 0 2− λ 0
0 0 0 3− λ


= (3− λ)det

 1− λ 0 2
1 λ 0
0 0 2− λ


= (3− λ)(2− λ)det

[
1− λ 0

1 λ

]
= (3− λ)(2− λ)(1− λ)(−λ)

= λ(λ− 1)(λ− 2)(λ− 3)

Thus we need λ = 0, 1, 2 or 3 in order that A − λI be a noninvertible matrix. These values are
called the eigenvalues of A. We will have much more to say about that later.
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Example 3.4.5. Suppose we are given the LU-factorization of a particular matrix (borrowed from
the text by Spence, Insel and Friedberg see Example 2 on pg. 154-155.)

A =

 1 −1 2
3 −1 7
2 −4 5

 =

 1 0 0
3 1 0
2 −1 1

 1 −1 2
0 2 1
0 0 2

 = LU

The LU-factorization is pretty easy to find, we may discuss that at the end of the course. It is an
important topic if you delve into serious numerical work where you need to write your own code
and so forth. Anyhow, notice that L,U are triangular so we can calculate the determinant very
easily,

det(A) = det(L)det(U) = 1 · 1 · 1 · 1 · 2 · 2 = 4.

From a numerical perspective, the LU-factorization is a superior method for calculating det(A) as
compared to the co-factor expansion. It has much better ”convergence” properties. For a very large
matrix the technique of calculation could result in a great reduction in computing time. See the
chapter on factoring for further discussion of the LU-decomposition.

Example 3.4.6. Recall that the columns in A are linearly independent iff Ax = 0 has only the
x = 0 solution. We also found that the existence of A−1 was equivalent to that claim in the case A
was square since Ax = 0 implies A−1Ax = A−10 = 0 hence x = 0. Clearly then the columns of a
square matrix A are linearly independent iff A−1 exists. Suppose A−1 exists then AA−1 = I thus
det(AA−1) = det(A)det(A−1 = det(I) = 1 hence det(A) 6= 0. Conversely, the adjoint formula for
the inverse is well-defined if det(A) 6= 0. To summarize: for A ∈ R n×n

columns of A are linearly independent ⇔ det(A) 6= 0.

Observe that this criteria is only useful if we wish to examine the linear independence of preciely
n-vectors in Rn. For example, (1, 1, 1), (1, 0, 1), (2, 1, 2) ∈ R3 have

det

 1 1 2
1 0 1
1 1 2

 = 0.

Therefore, {(1, 1, 1), (1, 0, 1), (2, 1, 2)} form a linearly dependent set of vectors.
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3.5 Cramer’s Rule

The numerical methods crowd seem to think this is a loathsome brute. It is an incredibly clumsy
way to calculate the solution of a system of equations Ax = b. Moreover, Cramer’s rule fails in the
case det(A) = 0 so it’s not nearly as general as our other methods. However, it does help calculate
the variation of parameters formulas in differential equations so it is still of theoretical interest at a
minimum. Students sometimes like it because it gives you a formula to find the solution. Students
sometimes incorrectly jump to the conclusion that a formula is easier than say a method. It is
certainly wrong here, the method of Gaussian elimination beats Cramer’s rule by just about every
objective criteria in so far as concrete numerical examples are concerned.

Proposition 3.5.1.

If Ax = b is a linear system of equations with x = [x1 x2 · · · xn]T and A ∈ R n×n such that
det(A) 6= 0 then we find solutions

x1 =
det(A1)

det(A)
, x2 =

det(A2)

det(A)
, . . . , xn =

det(An)

det(A)

where we define Ak to be the n× n matrix obtained by replacing the k-th column of A by
the inhomogeneous term b.

Proof: Since det(A) 6= 0 we know that Ax = b has a unique solution. Suppose xj =
det(Aj)
det(A) where

Aj = [col1(A)| · · · |colj−1(A)|b|colj+1(A)| · · · |coln(A)]. We seek to show x = [xj ] is a solution to
Ax = b. Notice that the n-vector equations

Ae1 = col1(A), . . . , Aej−1 = colj−1(A), Aej+1 = colj+1(A), . . . , Aen = coln(A), Ax = b

can be summarized as a single matrix equation:

A[e1| . . . |ej−1|x|ej+1| · · · |en] = [col1(A)| · · · |colj−1(A)|b|colj+1(A)| · · · |coln(A)]︸ ︷︷ ︸
this is precisely Aj

= Aj

Notice that if we expand on the j-th column it’s obvious that

det[e1| . . . |ej−1|x|ej+1| · · · |en] = xj

Returning to our matrix equation, take the determinant of both sides and use that the product of
the determinants is the determinant of the product to obtain:

det(A)xj = det(Aj)

Since det(A) 6= 0 it follows that xj =
det(Aj)
det(A) for all j. �

This is the proof that is given in Lay’s text. The construction of the matrix equation is not really
an obvious step in my estimation. Whoever came up with this proof originally realized that he
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would need to use the determinant product identity to overcome the subtlety in the proof. Once
you realize that then it’s natural to look for that matrix equation. This is a clever proof2

Example 3.5.2. Solve Ax = b given that

A =

[
1 3
2 8

]
b =

[
1
5

]
where x = [x1 x2]T . Apply Cramer’s rule, note det(A) = 2,

x1 =
1

2
det

[
1 3
5 8

]
=

1

2
(8− 15) =

−7

2
.

and,

x2 =
1

2
det

[
1 1
2 5

]
=

1

2
(5− 2) =

3

2
.

The original system of equations would be x1 + 3x2 = 1 and 2x1 + 8x2 = 5. As a quick check we
can substitute in our answers x1 = −7/2 and x2 = 3/2 and see if they work.

I conclude this section with examples from other courses. In particular, the subsections that follow
show several particularly beautiful examples of how linear algebra is used to do calculus.

3.5.1 constrained partial differentiation, an application of Cramer’s rule*

Suppose3 x + y + z + w = 3 and x2 − 2xyz + w3 = 5. Calculate partial derivatives of z and
w with respect to the independent variables x, y. Solution: we begin by calculation of the
differentials of both equations:

dx+ dy + dz + dw = 0
(2x− 2yz)dx− 2xzdy − 2xydz + 3w2dw = 0

We can solve for (dz, dw). In this calculation we can treat the differentials as formal variables.

dz + dw = −dx− dy
−2xydz + 3w2dw = −(2x− 2yz)dx+ 2xzdy

I find matrix notation is often helpful,[
1 1
−2xy 3w2

] [
dz
dw

]
=

[
−dx− dy

−(2x− 2yz)dx+ 2xzdy

]
Use Cramer’s rule, multiplication by inverse, substitution, adding/subtracting equations etc...
whatever technique of solving linear equations you prefer. Our goal is to solve for dz and dw

2as seen from my humble vantage point naturally
3This discussion is take from my Advanced Calculus 2011 notes.
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in terms of dx and dy. I’ll use Cramer’s rule this time:

dz =

det

[
−dx− dy 1

−(2x− 2yz)dx+ 2xzdy 3w2

]
det

[
1 1
−2xy 3w2

] =
3w2(−dx− dy) + (2x− 2yz)dx− 2xzdy

3w2 + 2xy

Collecting terms,

dz =

(
−3w2 + 2x− 2yz

3w2 + 2xy

)
dx+

(
−3w2 − 2xz

3w2 + 2xy

)
dy

From the expression above we can read various implicit derivatives,(
∂z

∂x

)
y

=
−3w2 + 2x− 2yz

3w2 + 2xy
&

(
∂z

∂y

)
x

=
−3w2 − 2xz

3w2 + 2xy

The notation above indicates that z is understood to be a function of independent variables x, y.(
∂z
∂x

)
y

means we take the derivative of z with respect to x while holding y fixed. The appearance

of the dependent variable w can be removed by using the equations G(x, y, z, w) = (3, 5). Similar
ambiguities exist for implicit differentiation in calculus I. Apply Cramer’s rule once more to solve
for dw:

dw =

det

[
1 −dx− dy
−2xy −(2x− 2yz)dx+ 2xzdy

]
det

[
1 1
−2xy 3w2

] =
−(2x− 2yz)dx+ 2xzdy − 2xy(dx+ dy)

3w2 + 2xy

Collecting terms,

dw =

(
−2x+ 2yz − 2xy

3w2 + 2xy

)
dx+

(
2xzdy − 2xydy

3w2 + 2xy

)
dy

We can read the following from the differential above:(
∂w

∂x

)
y

=
−2x+ 2yz − 2xy

3w2 + 2xy
&

(
∂w

∂y

)
x

=
2xzdy − 2xydy

3w2 + 2xy
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3.5.2 variation of parameters, an application of Cramer’s rule*

We begin4 by assuming the existence of a fundamental solution set for L[y] = f ; assume {y1, y2, . . . , yn}
is a linearly independent set of solutions for L[y] = 0. We propose the particular solution yp
can be written as a linear combination of the fundmental solutions with coefficients of functions
v1, v2, . . . , vn (these are the ”parameters”)

yp = v1y1 + v2y2 + · · ·+ vnyn

Differentiate,

y′p = v′1y1 + v′2y2 + · · ·+ v′nyn + v1y
′
1 + v2y

′
2 + · · ·+ vny

′
n

Let constraint 1 state that v′1y1 + v′2y2 + · · ·+ v′nyn = 0 and differentiate y′p in view of this added
constraint, once more we apply the product-rule n-fold times:

y′′p = v′1y
′
1 + v′2y

′
2 + · · ·+ v′ny

′
n + v1y

′′
1 + v2y

′′
2 + · · ·+ vny

′′
n

Let constraint 2 state that v′1y
′
1 + v′2y

′
2 + · · ·+ v′ny

′
n = 0 and differentiate y′′p in view of contraints

1 and 2,

y′′′p = v′1y
′′
1 + v′2y

′′
2 + · · ·+ v′ny

′′
n + v1y

′′′
1 + v2y

′′′
2 + · · ·+ vny

′′′
n

Let constraint 3 state that v′1y
′′
1 + v′2y

′′
2 + · · · + v′ny

′′
n = 0. We continue in this fashion adding

constraints after each differentiation of the form v′1y1
(j) + v′2y2

(j) + · · · + v′nyn
(j) = 0 for j =

3, 4, . . . , n− 2. Note this brings us to

y(n−1)
p = v1y

(n−1)
1 + v2y

(n−1)
2 + · · ·+ vny

(n−1)
n .

Thus far we have given (n − 1)-constraints on [v′1, v
′
2, . . . , v

′
n]. We need one more constraint to fix

the solution. Remember we need L[yp] = f ; aoy
(n)
p + a1y

(n−1)
p + · · ·+ an−1y

′
p + anyp = f thus:

y(n)
p =

f

ao
− a1

ao
y(n−1)
p − · · · − an−1

ao
y′p −

an
ao
yp. (?)

Differentiating yp = v1y1 + v2y2 + · · ·+ vnyn and apply the previous contraints to obtain:

y(n)
p = v′1y

(n−1)
1 + v′2y

(n−1)
2 + · · ·+ v′ny

(n−1)
n + v1y

(n)
1 + v2y

(n)
2 + · · ·+ vny

(n)
n . (?2)

4The following discussion is take from my Spring 2012 Math 334 notes.
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Equate ? and ?2 to obtain:

f

ao
=
a1

ao
y(n−1)
p + · · ·+ an−1

ao
y′p +

an
ao
yp+

v′1y
(n−1)
1 + v′2y

(n−1)
2 + · · ·+ v′ny

(n−1)
n + v1y

(n)
1 + v2y

(n)
2 + · · ·+ vny

(n)
n

= v′1y
(n−1)
1 + v′2y

(n−1)
2 + · · ·+ v′ny

(n−1)
n

+
ao
ao

(
v1y

(n)
1 + v2y

(n)
2 + · · ·+ vny

(n)
n

)
+

+
a1

ao

(
v1y

(n−1)
1 + v2y

(n−1)
2 + · · ·+ vny

(n−1)
n

)
+

+ · · ·+

+
an−1

ao

(
v1y
′
1 + v2y

′
2 + · · ·+ vny

′
n

)
+

+
an
ao

(
v1y1 + v2y2 + · · ·+ vnyn

)

= v′1y
(n−1)
1 + v′2y

(n−1)
2 + · · ·+ v′ny

(n−1)
n

+
v1

ao

(
aoy

(n)
1 + a1y

(n−1)
1 + · · ·+ an−1y

′
1 + any1

)
+

+
v2

ao

(
aoy

(n)
2 + a1y

(n−1)
2 + · · ·+ an−1y

′
2 + any2

)
+

+ · · ·+

+
vn
ao

(
aoy

(n)
n + a1y

(n−1)
n + · · ·+ an−1y

′
n + anyn

)
= v′1y

(n−1)
1 + v′2y

(n−1)
2 + · · ·+ v′ny

(n−1)
n .

In the step before the last we used the fact that L[yj ] = 0 for each yj in the given fundamental
solution set. With this calculation we obtain our n-th condition on the derivatives of the parameters.
In total, we seek to impose

y1 y2 · · · yn
y′1 y′2 · · · y′n
...

... · · ·
...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n



v′1
v′2
...
v′n

 =


0
0
...

f/ao

 . (?3)

Observe that the coefficient matrix of the system above is the Wronskian Matrix. Since we as-
sumed {y1, y2, . . . , yn} is a fundamental solution set we know that the Wronskian is nonzero which
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means the equation above has a unique solution. Therefore, the constraints we proposed are con-
sistent and attainable for any n-th order linear ODE.

Let us pause to learn a little matrix theory convenient to our current endeavors. Nonsingular
system of linear equations by Cramer’s rule. To solve A~v = ~b you can follow the procedure below:
to solve for vk of ~v = (v1, v2, . . . , vk, . . . , vn) we

1. take the matrix A and replace the k-th column with the vector ~b call this matrix Sk

2. calculate det(Sk) and det(A)

3. the solution is simply vk = det(Sk)
det(A) .

Cramer’s rule is a horrible method for specific numerical systems of linear equations5. But, it has
for us the advantage of giving a nice, neat formula for the matrices of functions we consider here.

Example 3.5.3. Suppose you want to solve x+y+z = 6, x+z = 4 and y−z = −1 simultaneously.
Note in matrix notation we have: 1 1 1

1 0 1
0 1 −1

 x
y
z

 =

 6
4
−1

 .
We can swap out columns 1, 2 and 3 to obtain S1, S2 and S3

S1 =

 6 1 1
4 0 1
−1 1 −1

 S2 =

 1 6 1
1 4 1
0 −1 −1

 S3 =

 1 1 6
1 0 4
0 1 −1


You can calculate det(S1) = 1, det(S1) = 2 and det(S3) = 3. Likewise det(A) = 1. Cramer’s Rule

states the solution is x = det(S1)
det(A) = 1, y = det(S2)

det(A) = 2 and z = det(S3)
det(A) = 3.

In the notation introduced above we see ?3 has

A =


y1 y2 · · · yn
y′1 y′2 · · · y′n
...

... · · ·
...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

 & ~b =


0
0
...

f/ao

 .
Once more define Sk as the matrix obtained by swapping the k-th column of A for the column
vector ~b and let W be the Wronskian which is det(A) in our current notation. We obtain the
following solutions for v′1, v

′
2, . . . , v

′
n by Cramer’s Rule:

v′1 =
det(S1)

W
, v′2 =

det(S2)

W
, . . . , v′n =

det(Sn)

W
5Gaussian elimination is faster and more general, see my linear algebra notes or any text on the subject!
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Finally, we can integrate to find the formulas for the parameters. Taking x as the independent
parameter we note v′k = dvk

dx hence:

v1 =

∫
det(S1)

W
dx, v2 =

∫
det(S2)

W
dx, . . . , vn =

∫
det(Sn)

W
dx.

The matrix Sk has a rather special form and we can simplify the determinants above in terms of
the so-called sub-Wronskian determinants. Define Wk = W (y1, . . . , yk−1, yk+1, . . . , yn;x) then it
follows by Laplace’s Expansion by minors formula that det(Sk) = (−1)n+k f

ao
Wk. Thus,

v1 =

∫
(−1)n+1 fW1

aoW
dx, v2 =

∫
(−1)n+2 fW2

aoW
dx, . . . , vn =

∫
fWn

aoW
dx .

Of course, you don’t have to think about subWronskians, we could just use the formula in terms of
det(Sk). Include the subWronskain comment in part to connect with your text. In any event, we
should now enjoy the spoils of this conquest. Let us examine how to calculate yp = v1y1 + · · ·+vnyn
for particular n.

1. (n=1) ao
dy
dx+a1y = f has W (y1;x) = y1 and W1 = 1. It follows that the solution y = y1v1 has

v1 =
∫ f
aoy1

dx where y1 is the solution of ao
dy
dx+a1y = 0 which is given by y1 = exp(

∫ −a1
ao

dx).

In other words, variation of parameters reduces to the integrating factor method6 for n = 1.

2. (n=2) Suppose aoy
′′ + a1y

′ + a2y = f has fundamental solution set {y1, y2} then

W = det

[
y1 y2

y′1 y′2

]
= y1y

′
2 − y2y

′
1

furthermore, calculate:

det(S1) = det

[
0 y2

f/ao y′2

]
= −fy2

ao
& det(S2) = det

[
y1 0
y′1 f/ao

]
=
fy1

ao

Therefore,

v1 =

∫
−fy2

ao(y1y′2 − y2y′1)
dx & v2 =

∫
fy1

ao(y1y′2 − y2y′1)
dx

give the particular solution yp = v1y1 + v2y2. Note that if the integrals above are indefinite
then the general solution is given by:

y = y1

∫
−fy2

ao
dx+ y2

∫
fy1

ao
dx .

Formulas for n = 3, 4 are tedious to derive and I leave them to the reader in the general case. Most
applications involve n = 2.

6note dy
dx

+ a1
ao
y = 0 implies I = exp(

∫
a1
ao
dx) hence d

dx
(Iy) = 0 and so y = C/I and taking C = 1 derives y1.
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Example 3.5.4. Solve y′′+y = sec(x). The characteristic equation λ2 +1 = 0 yields λ = ±i hence
y1 = cos(x), y2 = sin(x). Observe the Wronskian simplifies nicely in this case: W = y1y

′
2 − y2y

′
1 =

cos2(x) + sin2(x) = 1. Hence,

v1 =

∫
−fy2

W
dx =

∫
− sec(x) sin(x) dx = −

∫
sin(x)

cos(x)
dx = − ln | cos(x)|+ c1 = ln | sec(x)|+ c1.

and,

v2 =

∫
fy1

W
dx =

∫
sec(x) cos(x) dx =

∫
dx = x+ c2.

we find the general solution y = y1v1 + y2v2 is simply:

y = c1 cos(x) + c2 sin(x) + cos(x) ln | sec(x)|+ x sin(x) .

Sometimes variation of parameters does not include the c1, c2 in the formulas for v1 and v2. In
that case the particular solution truly is yp = y1v1 + y2v2 and the general solution is found by
y = yh + yp where yh = c1y1 + c2y2. Whatever system of notation you choose, please understand
that in the end there must be a term c1y1 + c2y2 in the general solution.

Example 3.5.5. Solve y′′ − 2y′ + y = f . The characteristic equation λ2 − 2λ + 1 = (λ − 1)2 = 0
yields λ1 = λ2 = 1 hence y1 = ex, y2 = xex. Observe the Wronskian simplifies nicely in this case:
W = y1y

′
2 − y2y

′
1 = ex(ex + xex)− exxex = e2x. Hence,

v1 =

∫
−f(x)xex

e2x
dx & v2 =

∫
f(x)ex

e2x
dx.

we find the general solution y = y1v1 + y2v2 is simply:

y = c1e
x + c2xe

x − ex
∫
f(x)xex

e2x
dx+ xex

∫
f(x)ex

e2x
dx .

In particular, if f(x) = ex sin(x) then

v1 =

∫
−x sin(x) dx = x cos(x)− sin(x) & v2 =

∫
sin(x) dx = − cos(x).

Hence, yp = (x cos(x)− sin(x))ex + xex(− cos(x)) = −ex sin(x). The general solution is

y = c1e
x + c2xe

x − ex sin(x) .

Notice that we could also solve y′′−2y′+y = ex sin(x) via the method of undetermined coefficients.
In fact, any problem we can solve by undetermined coefficients we can also solve by variation of
parameters. However, given the choice, it is usually easier to use undetermined coefficients.
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Example 3.5.6. Solve y′′′ + y′ = x ln(x). The characteristic equation has λ3 + λ = λ(λ2 + 1) = 0
hence λ = 0 and λ = ±i. The fundmental solutions are y1 = 1, y2 = cos(x), y3 = sin(x). Calculate,

W (1, cos(x), sin(x);x) = det

 1 cos(x) sin(x)
0 − sin(x) cos(x)
0 − cos(x) − sin(x)

 = 1(sin2(x) + cos2(x)) = 1.

Swapping the first column of the Wronskian matrix with (0, 0, x ln(x)) gives us S1 and we find

det(S1) = det

 0 cos(x) sin(x)
0 − sin(x) cos(x)

x ln(x) − cos(x) − sin(x)

 = x ln(x).

Swapping the second column of the Wronskian matrix with (0, 0, x ln(x)) gives us S2 and we find

det(S2) = det

 1 0 sin(x)
0 0 cos(x)
0 x ln(x) − sin(x)

 = −x ln(x) cos(x).

Swapping the third column of the Wronskian matrix with (0, 0, x ln(x)) gives us S3 and we find

det(S3) = det

 1 cos(x) 0
0 − sin(x) 0
0 − cos(x) x ln(x)

 = −x ln(x) sin(x).

Note, integration by parts yields7 v1 =
∫
x ln(x) dx = 1

2x
2 ln(x) − 1

4x
2. The integrals of v2 =∫

−x ln(x) cos(x) dx and v3 = −x ln(x) sin(x) dx are not elementary. However, we can express the
general solution as:

y = c1 + c2 cos(x) + c3 sin(x) +
1

2
x2 ln(x)− 1

4
x2 − cos(x)

∫
x ln(x) cos(x) dx− sin(x)

∫
x ln(x) sin(x) dx .

7I’m just calculating an antiderivative here since the homogeneous solution will account for the neccessary constants
in the general solution
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3.6 adjoint matrix

Definition 3.6.1.

Let A ∈ R n×n the the matrix of cofactors is called the adjoint of A. It is denoted adj(A)
and is defined by and adj(A)ij = CTij where Cij is the (i, j)-th cofactor.

I’ll keep it simple here, lets look at the 2× 2 case:

A =

[
a b
c d

]
has cofactors C11 = (−1)1+1det(d) = d, C12 = (−1)1+2det(c) = −c, C21 = (−1)2+1det(b) = −b and
C22 = (−1)2+2det(a) = a. Collecting these results,

adj(A) =

[
d −c
−b a

]
This is interesting. Recall we found a formula for the inverse of A (if it exists). The formula was

A−1 =
1

ad− bc

[
d −b
−c a

]
Notice that det(A) = ad− bc thus in the 2×2 case the relation between the inverse and the adjoint
is rather simple:

A−1 =
1

det(A)
adj(A)T

It turns out this is true for larger matrices as well:

Proposition 3.6.2.

If A is invertible then A−1 = 1
det(A)adj(A)T .

Proof: To find the inverse of A we need only apply Cramer’s rule to solve the equations implicit
within AA−1 = I. Let A−1 = [v1|v2| · · · |vn] we need to solve

Av1 = e1, Av2 = e2, . . . Avn = en

Cramer’s rule gives us (v1)j =
C1j

det(A) where C1j = (−1)1+jMij is the cofactor formed from delet-
ing the first row and j-th column. More generally we may apply Cramer’s rule to deduce the
j-component of the i-th column in the inverse (vi)j =

Cij
det(A) . Therefore, coli(A

−1)j = (A−1)ji =
Cij

det(A) . By definition adj(A) = [Cij ] hence adj(A)Tij = Cji. It follows that A−1 = 1
det(A)adj(A)T . �
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Example 3.6.3. Let’s calculate the general formula for the inverse of a 3 × 3 matrix (assume it
exists). Let

A =

 a b c
d e f
g h i

 .
Calculate the cofactors,

C11 = det
[
e f
h i

]
= ei− fh,

C12 = −det
[
d f
g i

]
= fg − di,

C13 = det
[
d e
g h

]
= dh− eg,

C21 = −det
[
b c
h i

]
= ch− bi,

C22 = det [ a cg i ] = ai− cg,

C23 = −det
[
a b
g h

]
= bg − ah,

C31 = det
[
b c
e f

]
= bf − ce,

C32 = −det [ a cd f ] = cd− af,

C33 = det
[
a b
d e

]
= ae− bd.

Hence the adjoint is

adj(A) =

 ei− fh fg − di dh− eg
ch− bi ai− cg bg − ah
bf − ce cd− af ae− bd


Thus, using the A−1 = det(A)adj(A)T a b c

d e f
g h i

−1

=
1

aei+ bfg + cdh− gec− hfa− idb

 ei− fh ch− bi bf − ce
fg − di ai− cg cd− af
dh− eg bg − ah ae− bd


You should notice that are previous method for finding A−1 is far superior to this method. It required
much less calculation. Let’s check my formula in the case A = 3I, this means a = e = i = 3 and
the others are zero.

I−1 =
1

27

 9 0 0

0 9 0

0 0 9

 =
1

3
I

This checks, (3I)(1
3I) = 3

3II = I. I do not recommend that you memorize this formula to calculate
inverses for 3× 3 matrices.
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3.7 applications

The determinant is a convenient mnemonic to create expressions which are antisymmetric. The key
property is that if we switch a row or column it creates a minus sign. This means that if any two
rows are repeated then the determinant is zero. Notice this is why the cross product of two vectors
is naturally phrased in terms of a determinant. The antisymmetry of the determinant insures the
formula for the cross-product will have the desired antisymmetry. In this section we examine a few
more applications for the determinant.

Example 3.7.1. The Pauli’s exclusion principle in quantum mechanics states that the wave func-
tion of a system of fermions is antisymmetric. Given N -electron wavefunctions χ1, χ2, . . . , χN the
following is known as the Slater Determinant

Ψ(~r1, ~r2, . . . , ~rN ) = det


χ1(~r1) χ2(~r1) · · · χN (~r1)
χ1(~r2) χ2(~r2) · · · χN (~r2)
...

... · · ·
...

χ1(~rN ) χ2(~rN ) · · · χN (~rN )


Notice that Ψ(~r1, ~r1, . . . , ~rN ) = 0 and generally if any two of the position vectors ~ri = ~rj then the
total wavefunction Ψ = 0. In quantum mechanics the wavefunction’s modulus squared gives the
probability density of finding the system in a particular circumstance. In this example, the fact that
any repeated entry gives zero means that no two electrons can share the same position. This is
characteristic of particles with half-integer spin, such particles are called fermions. In contrast,
bosons are particles with integer spin and they can occupy the same space. For example, light is
made of photons which have spin 1 and in a laser one finds many waves of light traveling in the
same space.

Example 3.7.2. This is an example of a Vandermonde determinant. Note the following curious
formula:

det

 1 x1 y1

1 x2 y2

1 x y

 = 0

Let’s reduce this by row-operations8

 1 x1 y1

1 x2 y2

1 x y

 r2 − r1 → r2−−−−−−−−→
r3 − r1 → r3−−−−−−−−→

 1 x1 y1

0 x2 − x1 y2 − y1

0 x− x1 y − y1


Notice that the row operations above could be implemented by multiply on the left by Er2−r1→r2 and
Er3−r1→r3. These are invertible matrices and thus det(Er2−r1→r2) = k1 and det(Er3−r1→r3) = k2

8of course we could calculate it straight from the co-factor expansion, I merely wish to illustrate how we can use
row operations to simplify a determinant
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for some pair of nonzero constants k1, k2. If X is the given matrix and Y is the reduced matrix
above then Y = Er3−r1→r3Er2−r1→r2X thus,

0 = det

 1 x1 y1

1 x2 y2

1 x y

 = k1k2det

 1 x1 y1

0 x2 − x1 y2 − y1

0 x− x1 y − y1


= k1k2

[
(x2 − x1)(y − y1)− (y2 − y1)(x− x1)

]
Divide by k1k2 and rearrange to find:

(x2 − x1)(y − y1) = (y2 − y1)(x− x1) ⇒ y = y1 +

(
y2 − y1

x2 − x1

)
(x2 − x1)

The boxed equation is the famous two-point formula for a line.

Example 3.7.3. Let us consider a linear transformation T ([x, y]T ) = [2x, x + y]T . Furthermore,
let’s see how a rectangle R with corners (0, 0), (3, 0), (3, 1), (0, 1). Since this linear transformation is
invertible ( I invite you to prove that ) it follows that the image of a line is again a line. Therefore,
if we find the image of the corners under the mapping T then we can just connect the dots in the
image to see what T (R) resembles. Our goal here is to see what a linear transformation does to a
rectangle.

T ([0, 0]T ) = [0, 0]T

T ([3, 0]T ) = [6, 3]T

T ([3, 1]T ) = [6, 4]T

T ([0, 1]T ) = [0, 1]T

As you can see from the picture we have a paralellogram with base 6 and height 1 thus Area(T (R)) =
6. In constrast, Area(R) = 3. You can calculate that det(T ) = 2. Curious, Area(T (R)) =
det(T )Area(R). I wonder if this holds in general? 9

9ok, actually I don’t wonder, I just make it a homework problem sometimes.
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3.8 conclusions

We continue Theorem 2.10.1 from the previous chapter.

Theorem 3.8.1.

Let A be a real n× n matrix then the following are equivalent:

(a.) A is invertible,

(b.) rref [A|0] = [I|0] where 0 ∈ Rn,

(c.) Ax = 0 iff x = 0,

(d.) A is the product of elementary matrices,

(e.) there exists B ∈ R n×n such that AB = I,

(f.) there exists B ∈ R n×n such that BA = I,

(g.) rref [A] = I,

(h.) rref [A|b] = [I|x] for an x ∈ Rn,

(i.) Ax = b is consistent for every b ∈ Rn,

(j.) Ax = b has exactly one solution for every b ∈ Rn,

(k.) AT is invertible,

(l.) det(A) 6= 0,

(m.) Cramer’s rule yields solution of Ax = b for every b ∈ Rn.

It’s a small addition, however the determinant is a nice tool for small systems since it’s pretty easy
to calculate. Also, Cramer’s rule is nice for small systems since it just gives us the solution. This is
all a very special case, in general we could have an inconsistent system or infinitely many solutions.

Theorem 3.8.2.

Let A be a real n× n matrix then the following are equivalent:

(a.) A is not invertible,

(b.) Ax = 0 has at least one nontrivial solution.,

(c.) there exists b ∈ Rn such that Ax = b is inconsistent,

(d.) det(A) = 0,

It turns out this theorem is also useful. We shall see it is fundamental to the theory of eigenvectors.
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Chapter 4

vectors

The first section in this chapter is intended to introduce the reader to the concept of geometric
vectors. I show that both vector addition and scalar multiplication naturally flow from intuitive
geometry. Then we move on to study spanning sets. Essentially, the problem is to consider how
one builds a vector from a linear combination of other vectors. The row-reduction techniques we
learned at the start of this course are once more applied to give clean algorithms as to whether or
not it is possible to build a particular vector(s) as a linear combination of some set of given vectors.
Next we consider the concept of linear independence. We will see that the Column Correspondance
Property allows us to easily to pick out a linearly independent subset of a given set of vectors.

I give a brief introduction to vector spaces and subspaces. A vector space is basically just a set
where we have a way to add the elements (called vectors) and multiply by numbers (called scalars).
A subspace is simply a subset of a vector space which is itself a vector space. The concept of a
vector space is both abstract and simple. We do not attempt any general treatment here1, instead
I introduce vector spaces and subspaces mostly for the purpose of langauge. To understand the
structure of solutions to a general linear problem it is useful to have at hand the concepts of the
nullspace and column space of a matrix. These happen to be subspaces of the vectorspace Rn.

A basis for a vector space is a linearly indepdendent spanning set. We study how to find bases for
the standard subspaces associated to a matrix. Possible solutions of an arbitrary system of linear
equations are characterized in view of the column and null space of the coefficient matrix.

1For the interested reader I have posted my Math 321 notes where vector spaces are treated in more depth.

97
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4.1 geometric preliminaries

The concept of a vector is almost implicit with the advent of Cartesian geometry. Rene Descartes’
great contribution was the realization that geometry had an algebraic description if we make an
identification of points in the plane with pairs of real numbers. This identification is so ubiqitious
it is hard to imagine the plane without imagining pairs of numbers. Euclid had no idea of x or y
coordinates, instead just lines, circles and constructive axioms. Analytic geometry is the study of
geometry as formulated by Descartes. Because numbers are identified with points we are able to
state equations expressing relations between points. For example, if h, k,R ∈ R then the set of all
points (x, y) ∈ R2 which satisfy

(x− h)2 + (y − k)2 = R2

is a circle of radius R centered at (h, k). We can analyze the circle by studying the algebra of the
equation above. In calculus we even saw how implicit differentiation reveals the behaviour of the
tangent lines to the circle.

Very well, what about the points themselves ? What relations if any do arbitrary points in the
plane admit? For one, you probably already know about how to get directed line segments from
points. A common notation in highschool geometry2 is that the line from point P = (Q1, Q2) to

another point Q = (Q1, Q2) is
−−→
PQ where we define:

−−→
PQ = Q− P = (Q1 − P1, Q2 − P2).

A directed line-segment is also called a vector3.

Consider a second line segment going from Q to R = (R1, R2) this gives us the directed line segment

of
−−→
QR = R−Q = (R1−Q1, R2−Q2). What then about the directed line segment from the original

2a dying subject apparently
3however, not every vector in this course is a directed line segment.
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point P to the final point R? How is
−→
PR = R − P = (R1 − P1, R2 − P2) related to

−−→
PQ and

−−→
QR?

Suppose we define addition of points in the same way we defined the subtraction of points:

(V1, V2) + (W1,W2) = (V1 +W1, V2 +W2).

Will this definition be consistent with the geometrically suggested result
−−→
PQ+

−−→
QR =

−→
PR ? Note:

−−→
PQ+

−−→
QR = (Q1 − P1, Q2 − P2) + (R1 −Q1, R2 −Q2)

= (Q1 − P1 +R1 −Q1, Q2 − P2 +R2 −Q2)

= (R1 − P1, R2 − P2)

=
−→
PR.

We find the addition and subtraction of directed line segments is consistent with the usual tip-tail
addition of vectors in the plane.

What else can we do ? It seems natural to assume that
−−→
PQ +

−−→
PQ = 2

−−→
PQ but what does

multiplication by a number mean for a vector? What definition should we propose? Note if−−→
PQ = (Q1 − P1, Q2 − P2) then

−−→
PQ +

−−→
PQ = 2

−−→
PQ implies 2(

−−→
PQ) = (2(Q1 − P1), 2(Q2 − P2)).

Therefore, we define for c ∈ R,

c(V1, V2) = (cV1, cV2).

This definition is naturally consistent with the definition we made for addition. We can understand
multiplication of a vector by a number as an operation which scales the vector. In other words,
multiplying a vector by a number will change the length of the vector. Multiplication of a vector
by a number is often called scalar multiplication. Scalars are numbers.
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Vectors based at the origin are naturally identified with points: the directed line segment from
Q = (0, 0) to P is naturally identified with the point P .

−−→
QP = (P1, P2)− (0, 0) = (P1, P2).

In other words we can identify the point P = (P1, P2) with the directed line segment from the
origin ~P = (P1, P2). Unless context suggests otherwise vectors in this course are assumed to be
based at the origin.

4.2 n-dimensional space

In this section I define the operations of addition and scalar multiplication on Rn again4. I consider
only the linear structure here, the geometry of Rn is discussed later in the course. If you wish to
read further about three dimensional coordinate geometry then you might read Chapter 3 of Anton
and Rorres’, this would complement the discussion in Math 231 about vectors. That said, or focus
lies elsewhere.

Two dimensional space is R2 = R × R. To obtain n-dimensional space we just take the Cartesian
product of n-copies of R.

Definition 4.2.1.

Let n ∈ N, we define Rn = {(x1, x2, . . . , xn) | xj ∈ R for j = 1, 2, . . . , n}. If v ∈ Rn
then we say v is an n-vector. The numbers in the vector are called the components;
v = (v1, v2, . . . , vn) has j-th component vj .

Notice, a consequence of the definition above and the construction of the Cartesian product5 is
that two vectors v and w are equal iff vj = wj for all j. Equality of two vectors is only true if all
components are found to match. Addition and scalar multiplication are naturally generalized from
the n = 2 case.

4these are just n× 1 matrices so we already defined in detail earlier in the course
5see my Math 200 notes or ask me if interested, it’s not entirely trivial
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Definition 4.2.2.

Define functions + : Rn × Rn → Rn and · : R × Rn → Rn by the following rules: for each
v, w ∈ Rn and c ∈ R:

(1.) (v + w)j = vj + wj (2.) (cv)j = cvj

for all j ∈ {1, 2, . . . , n}. The operation + is called vector addition and it takes two
vectors v, w ∈ Rn and produces another vector v+w ∈ Rn. The operation · is called scalar
multiplication and it takes a number c ∈ R and a vector v ∈ Rn and produces another
vector c · v ∈ Rn. Often we simply denote c · v by juxtaposition cv.

If you are a gifted at visualization then perhaps you can add three-dimensional vectors in your
mind. If you’re mind is really unhinged maybe you can even add 4 or 5 dimensional vectors. The
beauty of the definition above is that we have no need of pictures. Instead, algebra will do just
fine. That said, let’s draw a few pictures.

Notice these pictures go to show how you can break-down vectors into component vectors which
point in the direction of the coordinate axis. Vectors of length6 one which point in the coordinate

6the length of vectors is an important concept which we mine in depth later in the course
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directions make up what is called the standard basis7 It is convenient to define special notation
for the standard basis. First I define a useful shorthand,

Definition 4.2.3.

The symbol δij =

{
1 , i = j

0 , i 6= j
is called the Kronecker delta.

For example, δ22 = 1 while δ12 = 0.

Definition 4.2.4.

Let ei ∈ Rn×1 be defined by (ei)j = δij . The size of the vector ei is determined by context.
We call ei the i-th standard basis vector.

Example 4.2.5. Let me expand on what I mean by ”context” in the definition above:
In R we have e1 = (1) = 1 (by convention we drop the brackets in this case)
In R2 we have e1 = (1, 0) and e2 = (0, 1).
In R3 we have e1 = (1, 0, 0) and e2 = (0, 1, 0) and e3 = (0, 0, 1).
In R4 we have e1 = (1, 0, 0, 0) and e2 = (0, 1, 0, 0) and e3 = (0, 0, 1, 0) and e4 = (0, 0, 0, 1).

Example 4.2.6. Any vector in Rn can be written as a sum of these basic vectors. For example,

v = (1, 2, 3) = (1, 0, 0) + (0, 2, 0) + (0, 0, 3)

= 1(1, 0, 0) + 2(0, 1, 0) + 3(0, 0, 1)

= e1 + 2e2 + 3e3.

We say that v is a linear combination of e1, e2 and e3.

The concept of a linear combination is very important.

Definition 4.2.7.

A linear combination of objects A1, A2, . . . , Ak is a sum

c1A1 + c2A2 + · · ·+ ckAk =
k∑
i=1

ciAi

where ci ∈ R for each i.

We will look at linear combinations of vectors, matrices and even functions in this course. If ci ∈ C
then we call it a complex linear combination. The proposition below generalizes the calculation
from Example 4.2.6.

7for now we use the term ”basis” without meaning, in Chapter 5 we make a great effort to refine the concept.
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Proposition 4.2.8.

Every vector in Rn is a linear combination of e1, e2, . . . , en.

Proof: Let v = (v1, v2, . . . , vn) ∈ Rn. By the definition of vector addition:

v = (v1, v2, . . . , vn)
= (v1, 0, . . . , 0) + (0, v2, . . . , vn)
= (v1, 0, . . . , 0) + (0, v2, . . . , 0) + · · ·+ (0, 0, . . . , vn)
= (v1, 0 · v1, . . . , 0 · v1) + (0 · v2, v2, . . . , 0 · v2) + · · ·+ (0 · vn, 0 · vn, . . . , vn)

In the last step I rewrote each zero to emphasize that the each entry of the k-th summand has a
vk factor. Continue by applying the definition of scalar multiplication to each vector in the sum
above we find,

v = v1(1, 0, . . . , 0) + v2(0, 1, . . . , 0) + · · ·+ vn(0, 0, . . . , 1)
= v1e1 + v2e2 + · · ·+ vnen.

Therefore, every vector in Rn is a linear combination of e1, e2, . . . , en. For each v ∈ Rn we have
v =

∑n
i=1 vnen. �

Proposition 4.2.9. the vector properties of Rn.

Suppose n ∈ N. For all x, y, z ∈ Rn and a, b ∈ R,

1. (P1) x+ y = y + x for all x, y ∈ Rn,

2. (P2) (x+ y) + z = x+ (y + z) for all x, y, z ∈ Rn,

3. (P3) there exists 0 ∈ Rn such that x+ 0 = x for all x ∈ Rn,

4. (P4) for each x ∈ Rn there exists −x ∈ Rn such that x+ (−x) = 0,

5. (P5) 1 · x = x for all x ∈ Rn,

6. (P6) (ab) · x = a · (b · x) for all x ∈ Rn and a, b ∈ R,

7. (P7) a · (x+ y) = a · x+ a · y for all x, y ∈ Rn and a ∈ R,

8. (P8) (a+ b) · x = a · x+ b · x for all x ∈ Rn and a, b ∈ R,

9. (P9) If x, y ∈ Rn then x+y is a single element in Rn, (we say Rn is closed with respect
to addition)

10. (P10) If x ∈ Rn and c ∈ R then c · x is a single element in Rn. (we say Rn is closed
with respect to scalar multiplication)

We call 0 in P3 the zero vector and the vector −x is called the additive inverse of x. We
will usually omit the · and instead denote scalar multiplication by juxtaposition; a ·x = ax.
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Proof: all the properties follow immediately from the definitions of addition and scalar multipli-
cation in Rn as well as properties of real numbers. Consider,

(x+ y)j = xj + yj = yj + xj︸ ︷︷ ︸
?

= (y + x)j

where ? follows because real number addition commutes. Since the calculation above holds for each
j = 1, 2, . . . , n it follows that x + y = y + x for all x, y ∈ Rn hence P1 is true. Very similarly P2
follows from associativity of real number addition. To prove P3 simply define, as usual, 0j = 0;
The zero vector is the vector with all zero components. Note

(x+ 0)j = xj + 0j = xj + 0 = xj

which holds for all j = 1, 2, . . . , n hence x + 0 = x for all x ∈ Rn. I leave the remainder of the
properties for the reader. �

These properties are geometrically obvious. Let’s stop to appreciate how they work in an example:

Example 4.2.10. Suppose x + y + z = 3, x + y = 2 and x − y − z = −1. This system can be
written as a single vector equation by simply stacking these equations into a column vector: x+ y + z

x+ y
x− y − z

 =

 3
2
−1


Furthermore, we can break up the vector of variables into linear combination where the coefficients
in the sum are the variables x, y, z:

x

 1
1
1

+ y

 1
1
−1

+ z

 1
0
−1

 =

 3
2
−1


Note that the solution to the system is x = 1, y = 1, z = 1.
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4.3 linear combinations and spanning

We saw that linear combinations of the standard basis will generate any vector in Rn in the previous
section. We now set out to answer a set similar question:

PROBLEM: Given vectors v1, v2, . . . , vk and a vector b do there exist constants
c1, c2, . . . , ck such that c1v1 + c2v2 + · · · + ckvk = b? If so, how should we determine them
in general?

We have all the tools we need to solve such problems. I’ll show a few examples before I state the
general algorithm.

Example 4.3.1. Problem: given that v = (2,−1, 3), w = (1, 1, 1) and b = (4, 1, 5) find values for
x, y such that xv + yw = b (if possible).

Solution: using our column notation we find xv + yw = b gives

x

 2
−1
3

+ y

 1
1
1

 =

 4
1
5

 ⇒

 2x+ y
−x+ y
3x+ y

 =

 4
1
5


We are faced with solving the system of equations 2x + y = 4,−x + y = 1 and 3x + y = 5. As we
discussed in depth last chapter we can efficiently solve this type of problem in general by Gaussian
elimination on the corresponding augmented coefficient matrix. In this problem, you can calculate
that

rref

 2 1 4
−1 1 1
3 1 5

 =

 1 0 1
0 1 2
0 0 0


hence x = 1 and y = 2. Indeed, it is easy to check that v + 2w = b.

The geometric question which is equivalent to the previous question is as follows: ”is the vector
b found in the plane which contains v and w”? Here’s a picture of the calculation we just performed:
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The set of all linear combinations of several vectors in Rn is called the span of those vectors. To
be precise

Definition 4.3.2.

Let S = {v1, v2, . . . , vk} ⊂ Rn be a finite set of n-vectors then span(S) is defined to be the
set of all linear combinations formed from vectors in S:

span{v1, v2, . . . , vk} = {
k∑
i=1

civi | ci ∈ R for i = 1, 2, . . . , k}

If W = span(S) then we say that S is a generating set for W .

If we have one vector then it has a span which could be a line. With two vectors we might generate
a plane. With three vectors we might generate a volume. With four vectors we might generate a
hypervolume or 4-volume. We’ll return to these geometric musings in § 4.4 and explain why I have
used the word ”might” rather than an affirmative ”will” in these claims. For now, we return to the
question of how to decide if a given vector is in the span of another set of vectors.

Example 4.3.3. Problem: Let b1 = (1, 1, 0), b2 = (0, 1, 1) and b3 = (0, 1,−1).
Is8 e3 ∈ span{b1, b2, b3}?

Solution: Find the explicit linear combination of b1, b2, b3 that produces e3. We seek to find
x, y, z ∈ R such that xb1 + yb2 + zb3 = e3,

x

 1
1
0

+ y

 0
1
1

+ z

 0
1
−1

 =

 0
0
1

 ⇒

 x
x+ y + z
y − z

 =

 0
0
1


Following essentially the same arguments as the last example we find this question of solving the
system formed by gluing the given vectors into a matrix and doing row reduction. In particular, we
can solve the vector equation above by solving the corresponding system below: 1 0 0 0

1 1 1 0
0 1 −1 1

 r2 − r1 → r2−−−−−−−−→

 1 0 0 0
0 1 1 0
0 1 −1 1

 r3 − r2 → r3−−−−−−−−→ 1 0 0 0
0 1 1 0
0 0 −2 1

 −r3/2→ r3−−−−−−−−→
r2 − r3 → r2−−−−−−−−→
r1 − r3 → r1−−−−−−−−→

 1 0 0 0
0 1 0 1/2
0 0 1 −1/2


Therefore, x = 0, y = 1

2 and z = −1
2 . We find that e3 = 1

2b1 + 1
2b2 −

1
2b3 thus e3 ∈ span{b1, b2, b3}.

8challenge: once you understand this example for e3 try answering it for other vectors or for an arbitrary vector
v = (v1, v2, v3). How would you calculate x, y, z ∈ R such that v = xb1 + yb2 + zb3?
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The power of the matrix technique shines bright in the next example. Sure you could guess the last
two, but as things get messy we’ll want a refined efficient algorithm to dispatch spanning questions
with ease.

Example 4.3.4. Problem: Let b1 = (1, 2, 3, 4), b2 = (0, 1, 0, 1) and b3 = (0, 0, 1, 1).
Is w = (1, 1, 4, 4) ∈ span{b1, b2, b3}?

Solution: Following the same method as the last example we seek to find x1, x2 and x3 such that
x1b1 + x2b2 + x3b3 = w by solving the aug. coeff. matrix as is our custom:

[b1|b2|b3|w] =


1 0 0 1
2 1 0 1
3 0 1 4
4 1 1 4


r2 − 2r1 → r2−−−−−−−−−→
r3 − 3r1 → r3−−−−−−−−−→
r4 − 4r1 → r4−−−−−−−−−→


1 0 0 1
0 1 0 −1
0 0 1 1
0 1 1 0

 r4 − r2 → r4−−−−−−−−→


1 0 0 1
0 1 0 −1
0 0 1 1
0 0 1 1

 r4 − r3 → r4−−−−−−−−→


1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 0

 = rref [b1|b2|b3|w]

We find x1 = 1, x2 = −1, x3 = 1 thus w = b1 − b2 + b3 . Therefore, w ∈ span{b1, b2, b3}.

Pragmatically, if the question is sufficiently simple you may not need to use the augmented coeffi-
cient matrix to solve the question. I use them here to illustrate the method.

Example 4.3.5. Problem: Let b1 = (1, 1, 0) and b2 = (0, 1, 1).
Is e2 ∈ span{b1, b2}?

Solution: Attempt to find the explicit linear combination of b1, b2 that produces e2. We seek to
find x, y ∈ R such that xb1 + yb2 = e3,

x

 1
1
0

+ y

 0
1
1

 =

 0
1
0

 ⇒

 x
x+ y
y

 =

 0
1
0


We don’t really need to consult the augmented matrix to solve this problem. Clearly x = 0 and
y = 0 is found from the first and third components of the vector equation above. But, the second
component yields x+ y = 1 thus 0 + 0 = 1. It follows that this system is inconsistent and we may
conclude that w /∈ span{b1, b2}. For the sake of curiousity let’s see how the augmented solution
matrix looks in this case: omitting details of the row reduction,

rref

 1 0 0
1 1 1
0 1 0

 =

 1 0 0
0 1 0
0 0 1


note the last row again confirms that this is an inconsistent system.
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Proposition 4.3.6.

Given vectors v1, v2, . . . , vk ∈ Rn and another vector b ∈ Rn we can solve the vector equa-
tion x1v1 + x2v2 + · · · + xkvk = b by Gaussian elimination of the corresponding matrix
problem [v1|v2| · · · |vk|b]. Moreover, b ∈ span{v1, v2, . . . , vk} iff [v1|v2| · · · |vk|b] represents
the augmented matrix of a consistent system of equations.

Proof: note that solving the single vector equation x1v1 + x2v2 + · · ·+ xkvk = b for x1, x2, . . . , xk
is equivalent to solving n-scalar equations

x1(v1)1 + x2(v2)1 + · · ·+ xk(vk)1 = b1

x1(v1)2 + x2(v2)2 + · · ·+ xk(vk)2 = b2
...

...
...

...

x1(v1)n + x2(v2)n + · · ·+ xk(vk)n = bn.

But, this can be solved by performing Gaussian elimination on the matrix
(v1)1 (v2)1 · · · (vk)1 b1
(v1)2 (v2)2 · · · (vk)2 b2

...
...

...
...

...
(v1)n (v2)n · · · (vk)n bn

 .
Therefore, b ∈ span{v1, v2, . . . , vk} iff the system above reduces to a consistent system. �

Remark 4.3.7.

If we are given B = {b1, b2, . . . , bk} ⊂ Rn and T = {w1, w2, . . . , wr} ⊂ Rn and we wish to
determine if T ⊂ span(B) then we can answer the question by examining if [b1|b2| · · · |bk]x =
wj has a solution for each j = 1, 2, . . . r. Or we could make use of Proposition 2.4.7 and
solve it in one sweeping matrix calculation;

rref [b1|b2| · · · |bk|w1|w2| · · · |wr]

If there is a row with zeros in the first k-columns and a nonzero entry in the last r-columns
then this means that at least one vector wk is not in the span of B( moreover, the vector
not in the span corresponds to the nonzero entrie(s)). Otherwise, each vector is in the span
of B and we can read the precise linear combination from the matrix. I will illustrate this
in the example that follows.
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Example 4.3.8. Let W = span{e1 + e2, e2 + e3, e1 − e3} and suppose T = {e1, e2, e3 − e1}. Is
T ⊂W? If not, which vectors in T are not in W? Consider,

[e1 + e1|e2 + e3|e1 − e3||e1|e2|e3 − e1] =

 1 0 1 1 0 −1
1 1 0 0 1 0
0 1 −1 0 0 1

 r2 − r1 → r2−−−−−−−−→

 1 0 1 1 0 −1
0 1 −1 −1 1 1
0 1 −1 0 0 1

 r3 − r2 → r3−−−−−−−−→

 1 0 1 1 0 −1
0 1 −1 −1 1 1
0 0 0 1 −1 0

 r2 + r3 → r2−−−−−−−−→
r1 − r3 → r1−−−−−−−−→ 1 0 1 0 1 −1

0 1 −1 0 0 1
0 0 0 1 −1 0


Let me summarize the calculation:

rref [e1 + e2|e2 + e3||e1 − e3|e1|e2|e3 − e1] =

 1 0 1 0 1 −1
0 1 −1 0 0 1
0 0 0 1 −1 0


We deduce that e1 and e2 are not in W . However, e1 − e3 ∈ W and we can read from the matrix
−(e1 + e2) + (e2 + e3) = e3− e1. I added the double vertical bar for book-keeping purposes, as usual
the vertical bars are just to aid the reader in parsing the matrix.

The main point which provides the theorem below is this: Av is a linear combination of the columns
of A therefore Av = b has a solution iff b is a linear combination of the columns in A. We have
seen for a particular matrix A and a given vector b it may or may not be the case that Av = b
has a solution. It turns out that certain special matrices will have a solution for each choice of
b. The theorem below is taken from Lay’s text on page 43. The abbreviation TFAE means ”The
Following Are Equivalent”.

Theorem 4.3.9.

Suppose A = [Aij ] ∈ Rk×n then TFAE,

1. Av = b has a solution for each b ∈ Rk

2. each b ∈ Rk is a linear combination of the columns of A

3. columns of A span Rk

4. A has a pivot position in each row.
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4.4 linear independence

In the previous sections we have only considered questions based on a fixed spanning set. We asked
if b ∈ span{v1, v2, . . . , vn} and we even asked if it was possible for all b. What we haven’t thought
about yet is the following:

PROBLEM: Given vectors v1, v2, . . . , vk and a vector b = c1v1 + c2v2 + · · ·+ ckvk for some
constants cj is it possible that b can be written as a linear combination of some subset of
{v1, v2, . . . , vk}? If so, how should we determine which vectors can be taken away from the
spanning set? How should we decide which vectors to keep and which are redundant?

The concept of linear independence is central to answering these questions. We will examine the
basics of linear independence in this section.

Definition 4.4.1.

If a vector vk can be written as a linear combination of vectors {v1, v2, . . . , vk−1} then we
say that the vectors {v1, v2, . . . , vk−1, vk} are linearly dependent.
If the vectors {v1, v2, . . . , vk−1, vk} are not linear dependent then they are said to be linearly
independent.

Example 4.4.2. Let v = [1 2 3]T and w = [2 4 6]T . Clearly v, w are linearly dependent since
w = 2v.

I often quote the following proposition as the defintion of linear independence, it is an equivalent
statement and as such can be used as the definition(but not by us, I already made the definition
above). If this was our definition then our definition would become a proposition. Math always
has a certain amount of this sort of ambiguity.

Proposition 4.4.3.

Let v1, v2, . . . , vk ∈ Rn. The set of vectors {v1, v2, . . . , vk} is linearly independent iff

c1v1 + c2v2 + · · ·+ ckvk = 0 ⇒ c1 = c2 = · · · = ck = 0.

Proof: (⇒) Suppose {v1, v2, . . . , vk} is linearly independent. Assume that there exist constants
c1, c2, . . . , ck such that

c1v1 + c2v2 + · · ·+ ckvk = 0

and at least one constant, say cj , is nonzero. Then we can divide by cj to obtain

c1
cj
v1 + c2

cj
v2 + · · ·+ vj + · · ·+ ck

cj
vk = 0

solve for vj , (we mean for v̂j to denote the deletion of vj from the list)

vj = − c1
cj
v1 − c2

cj
v2 − · · · − v̂j − · · · − ck

cj
vk
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but this means that vj linearly depends on the other vectors hence {v1, v2, . . . , vk} is linearly de-
pendent. This is a contradiction, therefore cj = 0. Note j was arbitrary so we may conclude cj = 0
for all j. Therefore, c1v1 + c2v2 + · · ·+ ckvk = 0 ⇒ c1 = c2 = · · · = ck = 0.

Proof: (⇐) Assume that

c1v1 + c2v2 + · · ·+ ckvk = 0 ⇒ c1 = c2 = · · · = ck = 0.

If vj = b1v1 + b2v2 + · · · + b̂jvj + · · · + bkvk then b1v1 + b2v2 + · · · + bjvj + · · · + bkvk = 0 where
bj = −1, this is a contradiction. Therefore, for each j, vj is not a linear combination of the other
vectors. Consequently, {v1, v2, . . . , vk} is linearly independent.
Another way to characterize LI of vectors is given by the proposition below:

Proposition 4.4.4.

S is a linearly independent set of vectors iff for all v1, v2, . . . , vk ∈ S,

a1v1 + a2v2 + · · ·+ akvk = b1v1 + b2v2 + · · ·+ bkvk

implies ai = bi for each i = 1, 2, . . . , k. In other words, we can equate coefficients of linearly
indpendent vectors. And, conversely if a set of vectors allows for equating coefficients then
it is linearly independent.

Proof: left to the reader. �

Proposition 4.4.5.

If S is a finite set of vectors which contains the zero vector then S is linearly dependent.

Proof: Let {~0, v2, . . . vk} = S and observe that

1~0 + 0v2 + · · ·+ 0vk = 0

Thus c1~0 + c2v2 + · · · + ckvk = 0 does not imply c1 = 0 hence the set of vectors is not linearly
independent. Thus S is linearly dependent. �

Proposition 4.4.6.

Let v and w be nonzero vectors.

v, w are linearly dependent ⇔ ∃k 6= 0 ∈ R such that v = kw.

Proof: Suppose v, w are linearly dependent then there exist constants c1, c2, not all zero, such
that c1v + c2w = 0. Suppose that c1 = 0 then c2w = 0 hence9 c2 = 0 or w = 0. But, this is a

9if the product of a scalar and a vector in Rn is zero then you can prove that one or both is zero by examining
the components of the vector equation
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contradiction since v, w are nonzero and at least one of c1, c2 must be nonzero. Therefore, c1 6= 0.
Likewise, if c2 = 0 we find a similar contradiction. Hence c1, c2 are both nonzero and we calculate
v = (−c2/c1)w, identify that k = −c2/c1. �

Remark 4.4.7.

For two vectors the term ”linearly dependent” can be taken quite literally: two vectors are
linearly dependent if they point along the same line. For three vectors they are linearly
dependent if they point along the same line or possibly lay in the same plane. When we get
to four vectors we can say they are linearly dependent if they reside in the same volume,
plane or line. I don’t find the geometric method terribly successful for dimensions higher
than two. However, it is neat to think about the geometric meaning of certain calculations
in dimensions higher than 3. We can’t even draw it but we can eulicidate all sorts of
information with the mathematics of linear algebra.

Example 4.4.8. Let v = [1 2 3]T and w = [1 0 0]T . Let’s prove these are linearly independent.
Assume that c1v + c2w = 0, this yields

c1

 1
2
3

+ c2

 1
0
0

 =

 0
0
0


thus c1 + c2 = 0 and 2c1 = 0 and 3c1 = 0. We find c1 = c2 = 0 thus v, w are linearly independent.
Alternatively, you could explain why there does not exist any k ∈ R such that v = kw

Think about this, if the set of vectors {v1, v2, . . . , vk} ⊂ Rn is linearly independent then the equation
c1v1 + c2v2 + · · · + ckvk = 0 has the unique solution c1 = 0, c2 = 0, . . . , ck = 0. Notice we can
reformulate the problem as a matrix equation:

c1v1 + c2v2 + · · ·+ ckvk = 0 ⇔ [v1|v2| · · · |vk][c1 c2 · · · ck]T = 0

The matrix [v1|v2| · · · |vk] is an n× k. This is great. We can use the matrix techniques we already
developed to probe for linear independence of a set of vectors.

Proposition 4.4.9.

Let {v1, v2, . . . , vk} be a set of vectors in Rn.

1. If rref [v1|v2| · · · |vk] has less than k pivot columns then the set of vectors
{v1, v2, . . . , vk} is linearly dependent.

2. If rref [v1|v2| · · · |vk] has k pivot columns then the set of vectors {v1, v2, . . . , vk} is
linearly independent.

Proof: follows from thinking through the details of Gaussian elimination in the relevant cases. �.
The following result is a simple consequence of the above proposition.
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Corollary 4.4.10.

If {v1, v2, . . . , vk} is a set of vectors in Rn and k > n then the vectors are linearly dependent.

Proof: Proposition 4.4.9 tells us that the set is linearly independent if there are k pivot columns
in [v1| · · · |vk]. However, that is impossible since k > n this means that there will be at least one
column of zeros in rref [v1| · · · |vk]. Therefore the vectors are linearly dependent. �

We may have at most 2 linearly independent vectors in R2, 3 in R3, 4 in R4, and so forth...

Example 4.4.11. Determine if v1, v2, v3 (given below) are linearly independent or dependent. If
the vectors are linearly dependent show how they depend on each other.

v1 =

 1
1
1

 v2 =

 2
1
0

 v3 =

 3
2
1


We seek to use the Proposition 4.4.9. Consider then,

[v1|v2|v3] =

 1 2 3
1 1 2
1 0 1

 r2 − r1 → r2−−−−−−−−→
r3 − r1 → r3−−−−−−−−→

 1 2 3
0 −1 −1
0 −2 −2

 r1 + 2r2 → r2−−−−−−−−−→
r3 − 2r2 → r3−−−−−−−−−→

 1 0 1
0 −1 −1
0 0 0


Thus we find that,

rref [v1|v2|v3] =

 1 0 1
0 1 1
0 0 0


hence the variable c3 is free in the solution of V c = 0. We find solutions of the form c1 = −c3 and
c2 = −c3. This means that

−c3v1 − c3v2 + c3v3 = 0

for any value of c3. I suggest c3 = 1 is easy to plug in,

−v1 − v2 + v3 = 0 or we could write v3 = v1 + v2

We see clearly that v3 is a linear combination of v1, v2.

Example 4.4.12. Determine if v1, v2, v3, v4 (given below) are linearly independent or dependent.

v1 =


1
0
0
0

 v2 =


1
1
0
0

 v3 =


1
1
1
0

 v4 =


1
1
1
1
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We seek to use the Proposition 4.4.9. Omitting details we find,

rref [v1|v2|v3|v4] = rref


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


In this case no variables are free, the only solution is c1 = 0, c2 = 0, c3 = 0, c4 = 0 hence the set of
vectors {v1, v2, v3, v4} is linearly independent.

Example 4.4.13. Determine if v1, v2, v3 (given below) are linearly independent or dependent. If
the vectors are linearly dependent show how they depend on each other.

v1 =


1
0
0
3

 v2 =


3
1
2
0

 v3 =


2
1
2
−3


We seek to use the Proposition 4.4.9. Consider [v1|v2|v3] =

1 3 2
0 1 1
0 2 2
3 0 −3

 r4 − 3r1 → r4−−−−−−−−−→


1 3 2
0 1 1
0 2 2
0 −9 −9


r1 − 3r2 → r1−−−−−−−−−→
r3 − 2r2 → r3−−−−−−−−−→
r4 + 9r2 → r4−−−−−−−−−→


1 0 −1
0 1 1
0 0 0
0 0 0

 = rref [V ].

Hence the variable c3 is free in the solution of V c = 0. We find solutions of the form c1 = c3 and
c2 = −c3. This means that

c3v1 − c3v2 + c3v3 = 0

for any value of c3. I suggest c3 = 1 is easy to plug in,

v1 − v2 + v3 = 0 or we could write v3 = v2 − v1

We see clearly that v3 is a linear combination of v1, v2.

Example 4.4.14. Determine if v1, v2, v3, v4 (given below) are linearly independent or dependent.
If the vectors are linearly dependent show how they depend on each other.

v1 =


0
0
1
0

 v2 =


0
1
0
0

 v3 =


0
1
1
0

 v3 =


0
1
2
0


We seek to use the Proposition 4.4.9. Consider [v1|v2|v3|v4] =

0 0 0 0
0 1 1 1
1 1 2 0
0 0 0 0

 r1 ↔ r3−−−−−→


1 1 2 0
0 1 1 1
0 0 0 0
0 0 0 0

 r1 − r2 → r1−−−−−−−−→


1 0 1 −1
0 1 1 1
0 0 0 0
0 0 0 0

 = rref [v1|v2|v3|v4].
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Hence the variables c3 and c4 are free in the solution of V c = 0. We find solutions of the form
c1 = −c3 + c4 and c2 = −c3 − c4. This means that

(c4 − c3)v1 − (c3 + c4)v2 + c3v3 + c4v4 = 0

for any value of c3 or c4. I suggest c3 = 1, c4 = 0 is easy to plug in,

−v1 − v2 + v3 = 0 or we could write v3 = v2 + v1

Likewise select c3 = 0, c4 = 1 to find

v1 − v2 + v4 = 0 or we could write v4 = v2 − v1

We find that v3 and v4 are linear combinations of v1 and v2.

Observe that we used Proposition 4.4.9 in Examples 4.4.11, 4.4.12, 4.4.13 and 4.4.14 to ascertain
the linear independence of certain sets of vectors. If you pay particular attention to those examples
you may have picked up on a pattern. The columns of the rref [v1|v2| · · · |vk] depend on each other
in the same way that the vectors v1, v2, . . . vk depend on each other. These provide examples of the
so-called ”column correspondence property”. In a nutshell, the property says you can read
the linear dependencies right off the rref [v1|v2| · · · |vk].

Proposition 4.4.15. Column Correspondence Property (CCP)

Let A = [col1(A)| · · · |coln(A)] ∈ R m×n and R = rref [A] = [col1(R)| · · · |coln(R)]. There
exist constants c1, c2, . . . ck such that c1col1(A) + c2col2(A) + · · ·+ ckcolk(A) = 0 if and only
if c1col1(R) + c2col2(R) + · · · + ckcolk(R) = 0. If colj(rref [A]) is a linear combination of
other columns of rref [A] then colj(A) is likewise the same linear combination of columns
of A.

We prepare for the proof of the Proposition by establishing a useful Lemma.

Lemma 4.4.16.

Let A ∈ R m×n then there exists an invertible matrix E such that colj(rref(A)) = Ecolj(A)
for all j = 1, 2, . . . n.

Proof of Lemma: Recall that there exist elementary matrices E1, E2, . . . Er such that A =
E1E2 · · ·Errref(A) = E−1rref(A) where I have defined E−1 = E1E2 · · ·Ek for convenience. Recall
the concatenation proposition: X[b1|b2| · · · |bk] = [Xb1|Xb2| · · · |Xbk]. We can unravel the Gaussian
elimination in the same way,

EA = E[col1(A)|col2(A)| · · · |coln(A)]

= [Ecol1(A)|Ecol2(A)| · · · |Ecoln(A)]

Observe that EA = rref(A) hence we find the above equation says colj(rref(A)) = Ecolj(A) for
all j. �
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Proof of Proposition: Suppose that there exist constants c1, c2, . . . , ck such that c1col1(A) +
c2col2(A) + · · ·+ ckcolk(A) = 0. By the Lemma we know there exists E such that colj(rref(A)) =
Ecolj(A). Multiply linear combination by E to find:

c1Ecol1(A) + c2Ecol2(A) + · · ·+ ckEcolk(A) = 0

which yields
c1col1(rref(A)) + c2col2(rref(A)) + · · ·+ ckcolk(rref(A)) = 0.

Likewise, if we are given a linear combination of columns of rref(A) we can multiply by E−1 to
recover the same linear combination of columns of A. �

Example 4.4.17. I will likely use the abbreviation ”CCP” for column correspondence property.
We could have deduced all the linear dependencies via the CCP in Examples 4.4.11,4.4.13 and
4.4.14. We found in 4.4.11 that

rref [v1|v2|v3] =

 1 0 1
0 1 1
0 0 0

 .
Obviously col3(R) = col1(R) + col2(R) hence by CCP v3 = v1 + v2.
We found in 4.4.13 that

rref [v1|v2|v3] =


1 0 −1
0 1 1
0 0 0
0 0 0

 .
By inspection, col3(R) = col2(R)− col1(R) hence by CCP v3 = v2 − v1.
We found in 4.4.14 that

rref [v1|v2|v3|v4] =


1 0 1 −1
0 1 1 1
0 0 0 0
0 0 0 0

 .
By inspection, col3(R) = col1(R) + col2(R) hence by CCP v3 = v1 + v2. Likewise by inspection,
col4(R) = col2(R)− col1(R) hence by CCP v4 = v2 − v1.

You should notice that the CCP saves us the trouble of expressing how the constants ci are related.
If we are only interested in how the vectors are related the CCP gets straight to the point quicker.
We should pause and notice another pattern here while were thinking about these things.

Proposition 4.4.18.

The non-pivot columns of a matrix can be written as linear combinations of the pivot
columns and the pivot columns of the matrix are linearly independent.

Proof: Let A be a matrix. Notice the Proposition is clearly true for rref(A). Hence, using Lemma
4.4.16 we find the same is true for the matrix A. �
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Proposition 4.4.19.

The rows of a matrix A can be written as linear combinations of the transposes of pivot
columns of AT , and the rows which are transposes of the pivot columns of AT are linearly
independent.

Proof: Let A be a matrix and AT its transpose. Apply Proposition 4.4.15 to AT to find pivot
columns which we denote by colij (A

T ) for j = 1, 2, . . . k. These columns are linearly independent
and they span Col(AT ). Suppose,

c1rowi1(A) + c2rowi2(A) + · · ·+ ckrowik(A) = 0.

Take the transpose of the equation above, use Proposition 2.8.3 to simplify:

c1(rowi1(A))T + c2(rowi2(A))T + · · ·+ ck(rowik(A))T = 0.

Recall (rowj(A))T = colj(A
T ) thus,

c1coli1(AT ) + c2coli2(AT ) + · · ·+ ckcolik(AT ) = 0.

hence c1 = c2 = · · · = ck = 0 as the pivot columns of AT are linearly independendent. This shows
the corresponding rows of A are likewise linearly independent. The proof that these same rows
span Row(A) is similar. �

4.5 vector spaces and dimension

Honestly, I think once the concept of the Cartesian plane was discovered the concept of a vector
space almost certainly must follow. That said, it took a while for the definition I state in the
next section to appear. Giuseppe Peano gave the modern definition for a vector space in 188810.
In addition he put forth some of the ideas concerning linear transformations which we discuss in
the next chapter. Peano is also responsible for the modern notations for intersection and unions
of sets11. He made great contributions to proof by induction and the construction of the natural
numbers from basic set theory.

Finally, I should mention the work of Hilbert, Lebesque, Fourier, Banach and others were greatly
influential in the formation of infinite dimensional vector spaces. Our focus is on the finite dimen-
sional case.12

10Peano, Giuseppe (1888),Calcolo Geometrico secondo l′Ausdehnungslehre di H. Grassmann preceduto dalle Oper-
azioni della Logica Deduttiva, Turin

11see Pg 87 of A Transition to Advanced Mathematics: A Survey Course By William Johnston
12this history is flawed, one-sided and far too short. You should read a few more books if you’re interested.
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4.5.1 abstract vector space

The following definition is modelled on the known properties13 of Rn. Suppose we have a set V
paired with an addition and scalar multiplication such that for all x, y, z ∈ V and a, b, c ∈ R:

(i.) x+ y = y + x, (ii.) (x+ y) + z = x+ (y + z)
(iii.) x+ 0 = x, (iv.) x− x = 0
(v.) 1x = x, (vi.) (ab)x = a(bx),
(vii.) a(x+ y) = ax+ ay, (viii.) (a+ b)x = ax+ bx
(ix.) x+ y ∈ Rn (x.) cx ∈ Rn

then we say that V is a vector space over R. To be a bit more precise, by (iii.) I mean to say
that there exist some element 0 ∈ V such that x + 0 = x for each x ∈ V . Also, (iv.) should be
understood to say that for each x ∈ V there exists another element −x ∈ V such that x+(−x) = 0.
If we replace the real numbers with some other field14

Example 4.5.1. R is a vector space over R if we identify addition of real numbers as the vector
addition and multiplication of real numbers as the scalar multiplication.

Example 4.5.2. C = {a + ib | a, b ∈ R} is also a vector space over C if we define addition and
scalar multiplication by:

(a+ ib) + (c+ id) = a+ c+ i(b+ d) & (a+ ib)(c+ id) = ac− bd+ i(ad+ bc)

The preceding examples are very special because we can actually multiply the vectors. Usually we
cannot multiply two vectors and obtain another vector.

Example 4.5.3. Rn forms a vector space with respect to its usual addition and scalar multiplication.

A given set can be given different vector space structures. For example, we can also view the
complex numbers as a real vector space:

Example 4.5.4. C = {a+ ib | a, b ∈ R} is a vector space over R if we define addition and scalar
multiplication by:

(a+ ib) + (c+ id) = a+ c+ i(b+ d) & c(a+ ib) = ca+ i(cb)

Example 4.5.5. The set of all m × n matrices is denoted R m×n. It forms a vector space with
respect to matrix addition and scalar multiplication as we defined previously. Notice that we cannot
mix matrices of differing sizes since we have no natural way of adding them.

13see Prop. 4.2.9
14 a field is a set which allows a commutative multiplication and addition such that every element except the

additive identity (zero) has a multiplicative inverse (reciprocal). Usual examples are R,C and the finite field Zp
where p is a prime. Finite fields are important to cryptography and you can learn more about fields in Math 422.
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Example 4.5.6. Let F(R) denote the set of all functions with domain R. Let f, g ∈ F(R) and
suppose c ∈ R, define f + g and cf by the usual ”point-wise” rules:

(f + g)(x) = f(x) + g(x) & (cf)(x) = cf(x)

for all x ∈ R. This is an example of a function space15

Remark 4.5.7.

The elements of a vector space are called vectors. This means, with proper context,
functions, matrices and many other objects are all vectors. The geometric vector we began
this chapter with is the quintessiential example, but the term is far more general. As a
point of langauge I usually say ”column-vector” or ”geometric-vector” when I wish to make
a statement about Rn alone. On the other hand, I usually say ”abstract-vector” if I wish
to draw attention to the fact the statement holds for more than just the basic case Rn.

4.5.2 subspaces

Definition 4.5.8.

Let V be a vector space. If W ⊆ V such that W is a vector space w.r.t. the operations of
V restricted to W then we say that W is a subspace of V and we write W ≤ V .

Example 4.5.9. Let V be a vector space. It is simple to show that V and {0} are subspaces of V ;
V ≤ V and {0} ≤ V . A subspace which is neither V nor {0} is called a proper subspace.

Theorem 4.5.10.

Let V be a vector space and suppose W ⊂ V with W 6= ∅ then W ≤ V if and only if the
following two conditions hold true

1. if x, y ∈W then x+ y ∈W (W is closed under addition),

2. if x ∈W and c ∈ R then c · x ∈W (W is closed under scalar multiplication).

Example 4.5.11. Consider the vector space V = R n×n of square n× n matrices. We can define
the subset of symmetric matrices by W = {A ∈ V | AT = A}. Notice that 0T = 0 thus the zero
matrix is in W which shows W is nonempty. Moreover, suppose A,B ∈W and c ∈ R.

(A+B)T = AT +BT = A+B & (cA)T = cAT = cA

consequently A+B, cA ∈W . By the subspace test we find W ≤ V .

15we can similarly define function space for functions of the form f : I → S provided that S has vector space
structure, the domain I could be just about anything. For brevity, I mean F(R) when I mention ”function space” in
the remainder of this section.
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Example 4.5.12. Let P2 = {ax2 + bx+ c | a, b, c ∈ R}, the set of all polynomials up to quadratic
order. We can view P2 as a subset of the function space F defined in Example 4.5.6. Define ad-
dition and scalar multiplication by the usual operations on polynomials. Observe x2 ∈ P2 thus P2

is nonempty. Moreover, if f(x), g(x) ∈ P2 and c ∈ R then clearly f(x) + g(x) and cf(x) are once
more polynomials of degree two or smaller. Thus, by the subspace test, P2 ≤ F .

This result easily generalizes to the set of polynomials of order n or less via Pn = {anxn + · · · +
a1x+ ao|ai ∈ R}. Naturally, Pn also forms a subspace of function space. Finally, if we take the set
of all polynomials P it forms a vector space. Notice, P2 ⊂ P3 ⊂ P4 ⊂ · · · ⊂ P .

Example 4.5.13. There are many subspaces of function space; the set of continuous functions
C0(R), once continuously differentiable functions C0(R), k-times continuously differentiable func-
tions Ck(R), smooth functions C∞(R), analytic functions etc... in each case the sum and scalar
multiple of such a function is once more a function of the same type.

Example 4.5.14. Consider the constant coefficient homogeneous differential equation ay′′ + by′ +
cy = 0. This DEqn models springs with friction, unforced RLC circuits and much more. Suppose
y1 and y2 are solutions. This means

ay′′1 + by′1 + cy1 = 0 & ay′′2 + by′2 + cy2 = 0

It is a simple exercise to show that y1 + y2 and cy1 are likewise solutions to the DEqn. It follows
that the solution set to ay′′ + by′ + cy = 0 is a subspace of function space.

In Math 334 we study the problem above and its generalizations in considerable depth. Linear
algebra is at the heart of much of what is interesting. If you read my differential equations notes
you will see linear algebraic techniques woven throughout the fabric of almost every interesting
result. Transfer functions and superposition have linear structure at their core.

Definition 4.5.15.

Let S be a set of vectors in a vector space V then span(S) is defined to be the set of all
finite-linear combinations of vectors from S:

span(S) = {
k∑
i=1

civi | ci ∈ R and vi ∈ S}

If W = span(S) then we say that S is a generating set for W .

Often we use a finite set S to form a span. However, span(S) is almost always an infinite set.
Infinite in the sense that it has more vectors than you can count.

Theorem 4.5.16.

Let V be a vector space which contains vectors v1, v2, . . . , vk then span{v1, v2, . . . , vk} ≤ V .

In other words, whenever a subset of a vector space is formed by a span it is automatically a
subspace! This is a very covenient fact to know.
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Example 4.5.17. The following claims might be familar from multivariate calculus:

1. a line through the origin is spanned by its direction vector.

2. a plane through the origin is spanned by any two non-paralell vectors that lie in that plane.

3. three dimensional space is spanned by three non-coplanar vectors; span{ î, ĵ, k̂ } = R3.

Definition 4.5.18.

Let A ∈ R m×n. We define

1. Col(A) = span{colj(A)|j = 1, 2, . . . , n}

2. Row(A) = span{rowi(A)|i = 1, 2, . . . ,m}

3. Null(A) = {x ∈ R n×1|Ax = 0}

We can show Null(A) ≤ Rn by the subspace test. Note A0 = 0 thus 0 ∈ Null(A) and this shows
the nullspace is nonempty. If x, y ∈ Null(A) and c ∈ R then note

A(x+ y) = Ax+Ay = 0 &A(cx) = cAx = c(0) = 0

hence x+y, cx ∈ Null(A). It follows Null(A) ≤ Rn. In contrast, given Theorem 4.5.16, it is imme-
diately obvious that column space and row space are subspaces; Col(A) ≤ Rm and Row(A) ≤ R1×n.

4.5.3 basis and dimension

We linear combinations can generate vector spaces. We have also seen that sometimes we can
remove a vector from the generating set and still generate the whole vector space. For example,

span{e1, e2, e1 + e2} = R2

and we can remove any one of these vector and still span R2,

span{e1, e2} = span{e1, e1 + e2} = span{e2, e1 + e2} = R2

However, if we remove another vector then we will not span R2×1. A generating set which is just
big enough is called a basis.

Definition 4.5.19.

A basis for a vector space V is a set of vectors S such that

1. V = span(S),

2. S is linearly independent.

If a vector space V has a basis which consists of n < ∞ vectors then we say that V is
finite-dimensional vector space and dim(V ) = n. Otherwise V is said to be infinite-
dimensional
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Example 4.5.20. All the subspaces in Example 4.5.13 were infinite dimensional.

Example 4.5.21. Continue Example 4.5.14. In differential equations there is a theorem that
any solution of ay′′ + by′ + cy = 0 can be written as a linear combination y = c1y1 + c2y2 of
a fundamental solution set {y1, y2} of LI vectors. This means that the solution set is precisely
span{y1, y2}.Therefore, the solution set is a two-dimensional subspace of function space.

The finite-dimensionality of solution sets to linear homogeneous ordinary differential equations
allows us to use techniques of finite-dimensional linear algebra to analyze the structure of the
solutions. A central task in differential equations is locating a basis for the solution set16.

Example 4.5.22. Since {1, x, x2} is a LI set of functions and span{1, x, x2} = P2 it follows
dim(P2) = 3. In contrast, {1, x, x2, . . . } forms a basis for the set of all polynomials P and clearly
dim(P ) =∞.

Example 4.5.23. I called {e1, e2, . . . , en} the standard basis of Rn. Since v ∈ Rn can be written
as

v =
∑
i

viei

it follows Rn = span{ei | 1 ≤ i ≤ n}. Moreover, linear independence of {ei | 1 ≤ i ≤ n} follows
from a simple calculation:

0 =
∑
i

ciei ⇒ 0 =

[∑
i

ciei

]
k

=
∑
i

ciδik = ck

hence ck = 0 for all k. Thus {ei | 1 ≤ i ≤ n} is a basis for Rn, we continue to call it the standard
basis of Rn. The vectors ei are also called ”unit-vectors”. Clearly dim(Rn) = n

Example 4.5.24. Since A ∈ R m×n can be written as

A =
∑
i,j

AijEij

it follows R m×n = span{Eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Moreover, linear independence of
{Eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n} follows from a simple calculation:

0 =
∑
i,j

cijEij ⇒ 0 =

∑
i,j

cijEij


kl

=
∑
i,j

cijδikδjl = ckl

hence ckl = 0 for all k, l. Thus {Eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis for R m×n, we continue to
call it the standard basis of R m×n. The matrices Eij are also called ”unit-matrices”. By simple
counting you can deduce dim(R m×n) = mn.

16it’s probably easier than this sounds.
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4.5.4 basic theorems of linear algebra

I conclude this mind-bending section with a few seemingly obvious theorems. In Math 321 I would
take classtime to prove these and ideally I would expect my students to be able to provide their
own proofs of these claims. I have no such expectation here. On the other hand, truth is power, so
perhaps you should read these.

Proposition 4.5.25.

Let V be a finite-dimensional vector space and suppose B = {b1, b2, . . . , bn} is any basis of
V then any other basis for V also has n-elements.

Proposition 4.5.26.

Suppose V is a vector space with dim(V ) = n.

1. If S is a set with more than n vectors then S is linearly dependent.

2. If S is a set with less than n vectors then S does not generate V .

Proposition 4.5.27.

Let V be a vector space and suppose S is a nonempty set of vectors in V .

1. If S is linearly independent a nonzero vector v /∈ span(S) then S ∪ {v} is a linearly
independent set.

2. If v ∈ S is a linear combination of other vectors in S then span(S − {v}) = span(S).

Proposition 4.5.28.

Let V be an n-dimensional vector space. A set S with n-vectors is a basis for V if S is
either linearly independent or if span(S) = V .

Proposition 4.5.29.

Let S be a subset of a finite dimensional vector space V .

1. If span(S) = V but S is not a basis then S can be modified to make a basis by
removing redundant vectors.

2. If S is linearly independent and span(S) 6= V then S can be modified to make a basis
by unioning vectors outside span(S).

Proposition 4.5.30.

If V is a finite-dimensional vector space and W ≤ V then dim(W ) ≤ dim(V ). Moreover, if
dim(V ) = dim(W ) then V = W .
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4.6 on computation of bases for the matrix subspaces

Let me remind the reader how we define column, row and null space of a matrix. We also introduce
terminology for the dimension of column and null space:

Definition 4.6.1.

Let A ∈ R m×n. We define

1. Col(A) = span{colj(A)|j = 1, 2, . . . , n} and r = rank(A) = dim(Col(A))

2. Row(A) = span{rowi(A)|i = 1, 2, . . . ,m}

3. Null(A) = {x ∈ Rn|Ax = 0} and ν = nullity(A) = dim(Null(A))

Our goal in this section is to find bases for these spaces and more generally understand how to find
a basis for some subspace of Rn.

4.6.1 how to calculate a basis for a span of row or column vectors

Given some subspace of Rn we would like to know how to find a basis for that space. In particular,
if V = span{v1, v2, . . . , vk} then what is a basis for W? Likewise, given some set of row vectors
W = {w1, w2, . . . wk} ⊂ R1×n how can we select a basis for span(W ). We would like to find answers
to these question since most subspaces are characterized either as spans or solution sets(see the
next section on Null(A)). We already have the tools to answer these questions, we just need to
apply them to the tasks at hand.

Proposition 4.6.2.

Let W = span{v1, v2, . . . , vk} ⊂ Rn then a basis for W can be obtained by selecting the
vectors that reside in the pivot columns of [v1|v2| · · · |vk].

Proof: this is immediately obvious from Proposition 4.4.15. �

The proposition that follows is also follows immediately from Proposition 4.4.15.

Proposition 4.6.3.

Let A ∈ R m×n the pivot columns of A form a basis for Col(A).
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Example 4.6.4. Suppose A is given as below: ( I omit the details of the Gaussian elimination)

A =

 1 2 3 4
2 1 4 1
0 0 0 3

 ⇒ rref [A] =

 1 0 5/3 0
0 1 2/3 0
0 0 0 1

 .
Identify that columns 1,2 and 4 are pivot columns. Moreover,

Col(A) = span{col1(A), col2(A), col4(A)}

In particular we can also read how the second column is a linear combination of the basis vectors.

col3(A) = 5
3col1(A) + 2

3col2(A)

= 5
3 [1, 2, 0]T + 2

3 [2, 1, 0]T

= [5/3, 10/3, 0]T + [4/3, 2/3, 0]T

= [3, 4, 0]T

What if we want a basis for Row(A) which consists of rows in A itself?

Proposition 4.6.5.

Let W = span{w1, w2, . . . , wk} ⊂ R1×n and construct A by concatenating the row vectors
in W into a matrix A:

A =


w1

w2
...

wk


A basis for W is given by the transposes of the pivot columns for AT .

Proof: this is immediately obvious from Proposition 4.4.19. �

The proposition that follows is also follows immediately from Proposition 4.4.19.

Proposition 4.6.6.

Let A ∈ R m×n the rows which are transposes of the pivot columns of AT form a basis for
Row(A).

Example 4.6.7.

AT =


1 2 0
2 1 0
3 4 0
4 1 3

 ⇒ rref [AT ] =


1 0 0
0 1 0
0 0 1
0 0 0

 .
Notice that each column is a pivot column in AT thus a basis for Row(A) is simply the set of all rows
of A; Row(A) = span{[1, 2, 3, 4], [2, 1, 4, 1], [0, 0, 1, 0]} and the spanning set is linearly independent.
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Example 4.6.8.

A =


1 1 1
2 2 2
3 4 0
5 6 2

 ⇒ AT =

 1 2 3 5
1 2 4 6
1 2 0 2

 ⇒ rref [AT ] =

 1 2 0 2
0 0 1 1
0 0 0 0

 .
We deduce that rows 1 and 3 or A form a basis for Row(A). Notice that row2(A) = 2row1(A)
and row4(A) = row3(A) + 2row1(A). We can read linear dependendcies of the rows from the
corresponding linear dependencies of the columns in the rref of the transpose.

The preceding examples are nice, but what should we do if we want to find both a basis for Col(A)
and Row(A) for some given matrix ? Let’s pause to think about how elementary row operations
modify the row and column space of a matrix. In particular, let A be a matrix and let A′ be the
result of performing an elementary row operation on A. It is fairly obvious that

Row(A) = Row(A′).

Think about it. If we swap to rows that just switches the order of the vectors in the span that
makes Row(A). On the other hand if we replace one row with a nontrivial linear combination of
itself and other rows then that will not change the span either. Column space is not so easy though.
Notice that elementary row operations can change the column space. For example,

A =

[
1 1
1 1

]
⇒ rref [A] =

[
1 1
0 0

]
has Col(A) = span{[1, 1]T } whereas Col(rref(A)) = span([1, 0]T ). We cannot hope to use columns
of ref(A) (or rref(A)) for a basis of Col(A). That’s no big problem though because we already
have the CCP-principle which helped us pick out a basis for Col(A). Let’s collect our thoughts:

Proposition 4.6.9.

Let A ∈ R m×n then a basis for Col(A) is given by the pivot columns in A and a basis for
Row(A) is given by the nonzero rows in ref(A).

This means we can find a basis for Col(A) and Row(A) by performing the forward pass on A. We
need only calculate the ref(A) as the pivot columns are manifest at the end of the forward pass.
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Example 4.6.10.

A =

 1 1 1
1 1 1
1 2 3

 r2 − r1 → r2−−−−−−−−→
r3 − r1 → r3−−−−−−−−→

 1 1 1
0 0 0
0 1 2

 r1 ↔ r2−−−−−→

 1 1 1
0 1 2
0 0 0

 = ref [A]

We deduce that {[1, 1, 1], [0, 1, 2]} is a basis for Row(A) whereas {[1, 1, 1]T , [1, 1, 2]T } is a basis for
Col(A). Notice that if I wanted to reveal further linear dependencies of the non-pivot columns
on the pivot columns of A it would be wise to calculate rref [A] by making the backwards pass on
ref [A].  1 1 1

0 1 2
0 0 0

 r1 − r2 → r1−−−−−−−−→

 1 0 −1
0 1 2
0 0 0

 = rref [A]

From which I can read col3(A) = 2col2(A)− col1(A), a fact which is easy to verify.

Example 4.6.11.

A =

 1 2 3 4
1 3 8 10
1 2 4 11

 r2 − r1 → r2−−−−−−−−→
r3 − r1 → r3−−−−−−−−→

 1 2 3 4
0 1 5 6
0 0 1 7

 = ref [A]

We find that Row(A) has basis

{[1, 2, 3, 4], [0, 1, 5, 6], [0, 0, 1, 7]}

and Col(A) has basis { 1
1
1

 ,
 2

3
2

 ,
 3

8
4

}

Proposition 4.6.9 was the guide for both examples above.

4.6.2 calculating basis of a solution set

Often a subspace is described as the solution set of some equation Ax = 0. How do we find a basis
for Null(A)? If we can do that we find a basis for subspaces which are described by some equation.

Proposition 4.6.12.

Let A ∈ R m×n and define W = Null(A). A basis for W is obtained from the solution set
of Ax = 0 by writing the solution as a linear combination where the free variables appear
as coefficients in the vector-sum.

Proof: x ∈ W implies Ax = 0. Denote x = [x1, x2, . . . , xn]T . Suppose that rref [A] has r-pivot
columns ( we must have 0 ≤ r ≤ n). There will be (m − r)-rows which are zero in rref(A) and
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(n− r)-columns which are not pivot columns. The non-pivot columns correspond to free-variables
in the solution. Define p = n − r for convenience. Suppose that xi1 , xi2 , . . . , xip are free whereas
xj1 , xj2 , . . . , xjr are functions of the free variables: in particular they are linear combinations of the
free variables as prescribed by rref [A]. There exist constants bij such that

xj1 = b11xi1 + b12xi2 + · · ·+ b1pxip
xj2 = b21xi1 + b22xi2 + · · ·+ b2pxip
...

... · · ·
...

xjr = br1xi1 + br2xi2 + · · ·+ brpxip

For convenience of notation assume that the free variables are put at the end of the list. We have

x1 = b11xr+1 + b12xr+2 + · · ·+ b1pxn
x2 = b21xr+1 + b22xr+2 + · · ·+ b2pxn
...

... · · ·
...

xr = br1xr+1 + br2xn−p+2 + · · ·+ brpxn

and xj = xj for j = r+ 1, r+ 2, . . . , r+ p = n (those are free, we have no conditions on them, they
can take any value). We find,

x =



x1

x2
...
xr
xr+1

xr+2
...
xn


= xr+1



b11

b21
...
br1
1
0
...
0


+ xr+2



b12

b22
...
br2
0
1
...
0


+ · · ·+ xn



b1p
b2p
...
brp
0
0
...
1


We define the vectors in the sum above as v1, v2, . . . , vp. If any of the vectors, say vj , was linearly
dependent on the others then we would find that the variable xr+j was likewise dependent on the
other free variables. This would contradict the fact that the variable xr+j was free. Consequently
the vectors v1, v2, . . . , vp are linearly independent. Moreover, they span the null-space by virtue of
their construction. �

Didn’t follow the proof above? No problem. See the examples to follow here. These are just the
proof in action for specific cases. We’ve done these sort of calculations in §1.3. We’re just adding
a little more insight here.
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Example 4.6.13. Find a basis for the null space of A given below,

A =

 1 0 0 1 0
2 2 0 0 1
4 4 4 0 0


Gaussian elimination on the augmented coefficient matrix reveals (see Example 1.2.7 for details of
the Gaussian elimination)

rref

 1 0 0 1 0
2 2 0 0 1
4 4 4 0 0

 =

 1 0 0 1 0
0 1 0 −1 1/2
0 0 1 0 −1/2


Denote x = [x1, x2, x3, x4, x5]T in the equation Ax = 0 and identify from the calculation above that
x4 and x5 are free thus solutions are of the form

x1 = −x4

x2 = x4 − 1
2x5

x3 = 1
2x5

x4 = x4

x5 = x5

for all x4, x5 ∈ R. We can write these results in vector form to reveal the basis for Null(A),

x =


−x4

x4 − 1
2x5

1
2x5

x4

x5

 = x4


−1

1
0
1
0

+ x5


0
−1

2
1
2
0
1


It follows that the basis for Null(A) is simply

{
−1

1
0
1
0

 ,


0
−1

2
1
2
0
1


}

Of course, you could multiply the second vector by 2 if you wish to avoid fractions. In fact there is
a great deal of freedom in choosing a basis. We simply show one way to do it.
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Example 4.6.14. Find a basis for the null space of A given below,

A =

 1 1 1 1
1 1 1 1
1 1 1 1


Gaussian elimination on the augmented coefficient matrix reveals:

rref

 1 1 1 1
1 1 1 1
1 1 1 1

 =

 1 1 1 1
0 0 0 0
0 0 0 0


Denote x = [x1, x2, x3, x4]T in the equation Ax = 0 and identify from the calculation above that
x2, x3 and x4 are free thus solutions are of the form

x1 = −x2 − x3 − x4

x2 = x2

x3 = x3

x4 = x4

for all x2, x3, x4 ∈ R. We can write these results in vector form to reveal the basis for Null(A),

x =


−x2 − x3 − x4

x2

x3

x4

 = x2


−1

1
0
0

+ x3


−1

0
1
0

+ x4


−1

0
0
1


It follows that the basis for Null(A) is simply

{
−1

1
0
0

 ,

−1

0
1
0

 ,

−1

0
0
1


}
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Proposition 4.6.15.

Let A ∈ R m×n then dim(Row(A)) = dim(Col(A))

Proof: By Proposition 4.6.3 we know the number of vectors in the basis for Col(A) is the number
of pivot columns in A. Likewise, Proposition 4.6.9 showed the number of vectors in the basis for
Row(A) was the number of nonzero rows in ref(A). But the number of pivot columns is precisely
the number of nonzero rows in ref(A) therefore, dim(Row(A)) = dim(Col(A)). �

Proposition 4.6.16.

Let A ∈ R m×n then n = rank(A) + nullity(A).

Proof: The proof of Proposition 4.6.12 makes is clear that if a m×n matrix A has r-pivot columns
then there will be n− r vectors in the basis of Null(A). It follows that

rank(A) + nullity(A) = r + (n− r) = n.

4.7 general theory of linear systems

Let A ∈ R m×n we should notice that Null(A) ≤ Rn is only possible since homogeneous systems of
the form Ax = 0 have the nice property that linear combinations of solutions is again a solution:

Proposition 4.7.1.

Let Ax = 0 denote a homogeneous linear system of m-equations and n-unknowns. If v1 and
v2 are solutions then any linear combination c1v1 + c2v2 is also a solution of Ax = 0.

Proof: Suppose Av1 = 0 and Av2 = 0. Let c1, c2 ∈ R and recall Theorem 2.3.17 part 13,

A(c1v1 + c2v2) = c1Av1 + c2Av2 = c10 + c20 = 0.

Therefore, c1v1 + c2v2 ∈ Sol[A|0]. �
We proved this before, but I thought it might help to see it again here.

Proposition 4.7.2.

Let A ∈ R m×n. If v1, v2, . . . , vk are solutions of Av = 0 then V = [v1|v2| · · · |vk] is a
solution matrix of Av = 0 ( V a solution matrix of Av = 0 iff AV = 0)

Proof: Let A ∈ R m×n and suppose Avi = 0 for i = 1, 2, . . . k. Let V = [v1|v2| · · · |vk] and use the
solution concatenation Proposition 2.4.7,

AV = A[v1|v2| · · · |vk] = [Av1|Av2| · · · |Avk] = [0|0| · · · |0] = 0. �

In simple terms, a solution matrix of a linear system is a matrix in which each column is itself a
solution to the system. We’ve proved this before, (sorry the notes are not LI.)
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Proposition 4.7.3.

Let A ∈ R m×n. The system of equations Ax = b is consistent iff b ∈ Col(A).

The proposition below explains how to solve Ax = b in general.

Proposition 4.7.4.

Let A ∈ R m×n and suppose the system of equations Ax = b is consistent. We find x ∈ Rn
is a solution of the system if and only if it can be written in the form

x = xh + xp = c1v1 + c2v2 + · · ·+ cνvν + xp

where Axh = 0, {vj}νj=1 are a basis for Null(A), and Axp = b. We call xh the
homogeneous solution and xp is the nonhomogeneous solution.

Proof: Suppose Ax = b is consistent then b ∈ Col(A) therefore there exists xp ∈ Rn such that
Axp = b. Let x be any solution. We have Ax = b thus observe

A(x− xp) = Ax−Axp = Ax− b = 0 ⇒ (x− xp) ∈ Null(A).

Define xh = x− xp it follows that there exist constants ci such that xh = c1v1 + c2v2 + · · ·+ cνvν
since the vectors vi span the null space.

Conversely, suppose x = xp + xh where xh = c1v1 + c2v2 + · · ·+ cνvν ∈ Null(A) then it is clear
that

Ax = A(xp + xh) = Axp +Axh = b+ 0 = b

thus x = xp + xh is a solution. �

Example 4.7.5. Consider the system of equations x+ y + z = 1, x+ z = 1. In matrix notation, 1 1 1
1 0 1
0 0 0

 x
y
z

 =

 1
1
0

 ⇒ rref [A|b] = rref

 1 1 1 1
1 0 1 1
0 0 0 0

 =

 1 1 1 1
0 0 0 0
0 0 0 0


It follows that x = 1− y − z is a solution for any choice of y, z ∈ R.

v =

 x
y
z

 =

 1− y − z
y
z

 =

 1
0
0

+ y

 −1
1
0

+ z

 −1
0
1


We recognize that vp = [1, 0, 0]T while vh = y[−1, 1, 0]T + z[−1, 0, 1]T and {[−1, 1, 0]T , [−1, 0, 1]T }
is a basis for the null space of A. We call y, z parameters in the solution.
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We will see that null spaces play a central part in the study of eigenvectors. In fact, about half of the
calculation is finding a basis for the null space of a certain matrix. So, don’t be too disappointed if
I don’t have too many examples here. You’ll work dozens of them later. Let us conclude the theory
with a simple observation about the connection between the parameters in the general solution and
the dimension of the nullspace:

Proposition 4.7.6.

Let A ∈ R m×n. If the system of equations Ax = b is consistent then the general solution
has as many parameters as the dim(Null(A)).

4.7.1 similarities with the general solution of linear differential equation*

A very similar story is told in differential equations. In Math 334 we spend some time unraveling
the solution of L[y] = g where L = P (D) is an n-th order polynomial in the differentiation operator
with constant coefficients. In total we learn that y = c1y1 + c2y2 + · · · + cnyn + yp is the solution
where yj are the homogeneous solutions which satisfy L[yj ] = 0 for each j = 1, 2, . . . , n and, in
contrast, yp is the so-called ”particular solution” which satisfies L[yp] = g. On the one hand, the
results in DEqns are very different because the solutions are functions which live in the infinite-
dimensional function space. However, on the other hand, L[y] = g is a finite dimensional problem
thanks to the fortunate fact that Null(L) = {f ∈ F(R)|L(f) = 0} = span{y1, y2, . . . , yn}. For this
reason there are n-parameters in the general solution which we typically denote by c1, c2, . . . , cn
in the Math 334 course. The particular solution is not found by row reduction on a matrix in
DEqns. Instead, we either use the annihilator method, power series techniques, or most generally
the method of variation of parameters will calculate yp. The analogy to the linear system Av = b
is striking:

1. Av = b has solution v = c1v1 + c2v2 + · · ·+ ckvn + vp where vj ∈ Null(A) and Avp = b.

2. L[y] = g has solution v = c1y1 + c2y2 + · · ·+ ckyn + yp where yj ∈ Null(L) and L[yp] = b.

The reason the DEqn L[y] = g possesses such an elegant solution stems from the linearity of L. If
you study nonlinear DEqns the structure is not so easily described.

Example 4.7.7. Here’s a simple differential equation you all should be able to solve:
L[y] = y′′ = ex. Simply integrate twice to obtain y = c1 + c2x+ ex. Observe that yh = c1 + c2x has
L[yh] = y′′h = 0 whereas L[ex] = (ex)′′ = ex and we identify yp = ex.

Of course, if all differential equations were so simple to solve as the last example then we’d hardly
need a course for the subject!
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4.8 conclusions

We continue Theorem 3.8.1 from the previous chapter.

Theorem 4.8.1.

Let A be a real n× n matrix then the following are equivalent:

(a.) A is invertible,

(b.) rref [A|0] = [I|0] where 0 ∈ Rn,

(c.) Ax = 0 iff x = 0,

(d.) A is the product of elementary matrices,

(e.) there exists B ∈ R n×n such that AB = I,

(f.) there exists B ∈ R n×n such that BA = I,

(g.) rref [A] = I,

(h.) rref [A|b] = [I|x] for an x ∈ Rn,

(i.) Ax = b is consistent for every b ∈ Rn,

(j.) Ax = b has exactly one solution for every b ∈ Rn,

(k.) AT is invertible,

(l.) det(A) 6= 0,

(m.) Cramer’s rule yields solution of Ax = b for every b ∈ Rn.

(n.) Col(A) = R n×1,

(o.) Row(A) = R 1×n,

(p.) rank(A) = n,

(q.) Null(A) = {0},

(r.) ν = 0 for A where ν = dim(Null(A)),

(s.) the columns of A are linearly independent,

(t.) the rows of A are linearly independent

The addition of the comments about row, column and null space are huge since these gives us easy
concise tools to characterize subspaces in Rn. As we’ve seen in this chapter we can test for linear
independence and spanning all through solving particular systems. However, clever use of matrix
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notations allows us to do these calculations even without explicitly writing those equations. Again,
continuing Theorem 3.8.2 from the previous chapter:

Theorem 4.8.2.

Let A be a real n× n matrix then the following are equivalent:

(a.) A is not invertible,

(b.) Ax = 0 has at least one nontrivial solution.,

(c.) there exists b ∈ Rn such that Ax = b is inconsistent,

(d.) det(A) = 0,

(e.) Null(A) 6= {0},

(f.) there are ν = dim(Null(A)) parameters in the general solution to Ax = 0,
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Chapter 5

linear transformations and
coordinates

Linear transformations are simply functions1 from one vector space to another which preserve both
vector addition and scalar multiplication. In short, if V and W are vector spaces and L : V → W
is a function with (1.) L(x+ y) = L(x) + L(y) & (2.) L(cx) = cL(x) for all x, y ∈ V and numbers
c. Such a function is both additive(1) and homogeneous(2). Perhaps you identify that many of
the operations from calculus share these patterns: limits, definite integrals, d/dx etc... In this
work, we mainly study the case V = Rn and W = Rm in which there is a simple correspondance
between linear transformations and m × n matrices. In particular, the Fundamental Theorem of
Linear Algebra claims that a mapping L : Rn → Rm is linear iff there exists A ∈ R m×n such that
L(x) = Ax for all x ∈ Rn. This matrix A is important and has special notation; A = [L] the
standard matrix. We’ll see how the structure of A is reflected in the properties of LA. This gives
us a chance to once more apply our work from earlier chapters on LI and spanning.

The geometry of linear tranformations is interesting, I study how the unit square is mapped by
a variety of linear transformations. Anton and Rorres have a nice and much more comprehensive
list of possible linear mappings of the plane. Please take a few minutes to appreciate those pictures.

We introduce the concept of coordinates. We show how to find coordinate vectors as well as how
to calculate the matrix with respect to a nonstandard basis. We see how the matrix of a linear
transformation changes undergoes a similarity transformation as we exchange one basis for another.

1Let me briefly some standard terminology about functions. Recall that a function f : A→ B is an single-valued
assignment of elements in A to elements in B. We say that dom(f) = A and codomain(f) = B. Furthermore, recall
that the range of the function is the set of all outputs: range(f) = f(A). If f(A) = B then we say that f is a
surjection or equivalently f is onto. If f(x) = f(y) implies x = y for all x, y ∈ A then we say that f is injective or
equivalently f is 1-1. Don’t dismay if the wording in this chapter is too much to follow in places. Just make a note
and ask. There are many unproved assertions in this chapter. If you percieve a gap, it’s likely there. It’s also likely
that is something that is shown in Math 321.

137
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5.1 theory of linear transformations part one

Definition 5.1.1.

Let V,W be vector spaces. If a mapping L : V →W satisfies

1. L(x+ y) = L(x) + L(y) for all x, y ∈ V ,

2. L(cx) = cL(x) for all x ∈ V and c ∈ R

then we say L is a linear transformation. If L : V → V is linear then say L is a linear
transformation on V .

Many simple examples are given in the next section. You can look ahead to gain a better sense,
but first I develop a little theory.

Proposition 5.1.2.

Let L : V →W be a linear transformation on vector spaces V and W ,

1. L(0) = 0

2. L(c1v1 + c2v2 + · · · cnvn) = c1L(v1) + c2L(v2) + · · ·+ cnL(vn) for all vi ∈ V and ci ∈ R.

Proof: to prove of (1.) let x ∈ Rn and notice that x− x = 0 thus

L(0) = L(x− x) = L(x) + L(−1x) = L(x)− L(x) = 0.

To prove (2.) we use induction on n. Notice the proposition is true for n=1,2 by definition of linear
transformation. Assume inductively L(c1v1 +c2v2 + · · · cnvn) = c1L(v1)+c2L(v2)+ · · ·+cnL(vn) for
all vi ∈ V and ci ∈ R where i = 1, 2, . . . , n. Let v1, v2, . . . , vn, vn+1 ∈ V and c1, c2, . . . cn, cn+1 ∈ R
and consider, L(c1v1 + c2v2 + · · · cnvn + cn+1vn+1) =

= L(c1v1 + c2v2 + · · · cnvn) + cn+1L(vn+1) by linearity of L
= c1L(v1) + c2L(v2) + · · ·+ cnL(vn) + cn+1L(vn+1) by the induction hypothesis.

Hence the proposition is true for n+ 1 and we conclude by the principle of mathematical induction
that (2.) is true for all n ∈ N. �

Item (2.) simply says that the linear transformations map spans to spans. Thus:

Proposition 5.1.3.

Let V,W be vector spaces and {v1, v2, . . . , vk} ⊂ V if L : V →W is linear then

L(span{v1, v2, . . . , vk}) = span{L(v1), L(v2), . . . , L(vk)}.
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This is a very nice result. Why? Think about V = Rn and W = Rm for m,n ≥ k. We find L
maps k-dimensional planes spanned by {v1, v2, . . . , vk} map to a new j-dimensional plane spanned
by {L(v1), L(v2), . . . , L(vk)} where j ≤ k. We have to allow for the possibility that j < k as is
illustrated explicitly in the examples of the next section. Then in Section 5.3 we turn to the ques-
tion of how to anticipate this loss of dimension. We’ll study how and why a linear transformation
maintains the dimension of the objects it transforms.

There is also a similar proposition for line-segments.

Proposition 5.1.4.

Let L = {p + tv | t ∈ [0, 1], p, v ∈ Rn with v 6= 0} define a line segment from p to p + v in
Rn. If T : Rn → Rm is a linear transformation then T (L) is a either a line-segment from
T (p) to T (p+ v) or a point.

Proof: suppose T and L are as in the proposition. Let y ∈ T (L) then by definition there exists
x ∈ L such that T (x) = y. But this implies there exists t ∈ [0, 1] such that x = p + tv so
T (p+ tv) = y. Notice that

y = T (p+ tv) = T (p) + T (tv) = T (p) + tT (v).

which implies y ∈ {T (p) + sT (v) | s ∈ [0, 1]} = L2. Therefore, T (L) ⊆ L2. Conversely, suppose
z ∈ L2 then z = T (p) + sT (v) for some s ∈ [0, 1] but this yields by linearity of T that z = T (p+ sv)
hence z ∈ T (L). Since we have that T (L) ⊆ L2 and L2 ⊆ T (L) it follows that T (L) = L2. Note
that L2 is a line-segment provided that T (v) 6= 0, however if T (v) = 0 then L2 = {T (p)} and the
proposition follows. �

We can say something a bit more general without much more work. However, this suffices for
our current endeavor. Ask me if you are interested in how to generalize the proposition to a
higher-dimensional object.

Proposition 5.1.5.

If A ∈ R m×n and L : Rn → Rm is defined by L(x) = Ax for each x ∈ Rn then L is a linear
transformation.

Proof: Let A ∈ R m×n and define L : Rn → Rm by L(x) = Ax for each x ∈ Rn. Let x, y ∈ Rn and
c ∈ R,

L(x+ y) = A(x+ y) = Ax+Ay = L(x) + L(y)

and
L(cx) = A(cx) = cAx = cL(x)

thus L is a linear transformation. �

Obviously this gives us a nice way to construct examples. It’s so simple. If you can write the
formula for a mapping as a matrix multiplication then that proves the mapping is linear. That is
what the proposition above gives us. Please make a note in your mind on this point.
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5.2 examples of linear transformations on euclidean spaces

My choice of mapping the unit square has no particular signficance in the examples below. I
merely wanted to keep it simple and draw your eye to the distinction between the examples.
In each example we’ll map the four corners of the square to see where the transformation takes
the unit-square. Those corners are simply (0, 0), (1, 0), (1, 1), (0, 1) as we traverse the square in a
counter-clockwise direction.

Example 5.2.1. Let L(x, y) = (x, 2y). This is a mapping from R2 to R2. This mapping has
stretches the vertical direction.

Example 5.2.2. Let A =

[
k 0
0 k

]
for some k > 0. Define L(v) = Av for all v ∈ R2. In particular

this means,

L(x, y) = A(x, y) =

[
k 0
0 k

] [
x
y

]
=

[
kx
ky

]
.

We find L(0, 0) = (0, 0), L(1, 0) = (k, 0), L(1, 1) = (k, k), L(0, 1) = (0, k). This mapping is called
a dilation.

Example 5.2.3. Let A =

[
−1 0

0 −1

]
. Define L(v) = Av for all v ∈ R2. In particular this means,

L(x, y) = A(x, y) =

[
−1 0

0 −1

] [
x
y

]
=

[
−x
−y

]
.

We find L(0, 0) = (0, 0), L(1, 0) = (−1, 0), L(1, 1) = (−1,−1), L(0, 1) = (0,−1). This mapping is
called an inversion.
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Example 5.2.4. Let A =

[
1 2
3 4

]
. Define L(v) = Av for all v ∈ R2. In particular this means,

L(x, y) = A(x, y) =

[
1 2
3 4

] [
x
y

]
=

[
x+ 2y
3x+ 4y

]
.

We find L(0, 0) = (0, 0), L(1, 0) = (1, 3), L(1, 1) = (3, 7), L(0, 1) = (2, 4). This mapping shall
remain nameless, it is doubtless a combination of the other named mappings.

Example 5.2.5. Let A = 1√
2

[
1 −1
1 1

]
. Define L(v) = Av for all v ∈ R2. In particular this

means,

L(x, y) = A(x, y) =
1√
2

[
1 −1
1 1

] [
x
y

]
=

1√
2

[
x− y
x+ y

]
.

We find L(0, 0) = (0, 0), L(1, 0) = 1√
2
(1, 1), L(1, 1) = 1√

2
(0, 2), L(0, 1) = 1√

2
(−1, 1). This mapping

is a rotation by π/4 radians.
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Example 5.2.6. Let A =

[
1 −1
1 1

]
. Define L(v) = Av for all v ∈ R2. In particular this means,

L(x, y) = A(x, y) =

[
1 −1
1 1

] [
x
y

]
=

[
x− y
x+ y

]
.

We find L(0, 0) = (0, 0), L(1, 0) = (1, 1), L(1, 1) = (0, 2), L(0, 1) = (−1, 1). This mapping is a
rotation followed by a dilation by k =

√
2.

We will come back to discuss rotations a few more times this semester, you’ll see they give us
interesting and difficult questions later this semester. Also, if you so choose there are a few bonus
applied problems on computer graphics which are built from an understanding of the mathematics
in the next example.

Example 5.2.7. Let A =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. Define L(v) = Av for all v ∈ R2. In particular

this means,

L(x, y) = A(x, y) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]
=

[
x cos(θ)− y sin(θ)
x sin(θ) + y cos(θ)

]
.
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We find L(0, 0) = (0, 0), L(1, 0) = (cos(θ), sin(θ)), L(1, 1) = (cos(θ)−sin(θ), cos(θ)+sin(θ)) L(0, 1) =
(sin(θ), cos(θ)). This mapping is a rotation by θ in the counter-clockwise direction. Of course you
could have derived the matrix A from the picture below.

Example 5.2.8. Let A =

[
1 0
0 1

]
. Define L(v) = Av for all v ∈ R2. In particular this means,

L(x, y) = A(x, y) =

[
1 0
0 1

] [
x
y

]
=

[
x
y

]
.

We find L(0, 0) = (0, 0), L(1, 0) = (1, 0), L(1, 1) = (1, 1), L(0, 1) = (0, 1). This mapping is a
rotation by zero radians, or you could say it is a dilation by a factor of 1, ... usually we call this
the identity mapping because the image is identical to the preimage.
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Example 5.2.9. Let A1 =

[
1 0
0 0

]
. Define P1(v) = A1v for all v ∈ R2. In particular this means,

P1(x, y) = A1(x, y) =

[
1 0
0 0

] [
x
y

]
=

[
x
0

]
.

We find P1(0, 0) = (0, 0), P1(1, 0) = (1, 0), P1(1, 1) = (1, 0), P1(0, 1) = (0, 0). This mapping is a
projection onto the first coordinate.

Let A2 =

[
0 0
0 1

]
. Define L(v) = A2v for all v ∈ R2. In particular this means,

P2(x, y) = A2(x, y) =

[
0 0
0 1

] [
x
y

]
=

[
0
y

]
.

We find P2(0, 0) = (0, 0), P2(1, 0) = (0, 0), P2(1, 1) = (0, 1), P2(0, 1) = (0, 1). This mapping is
projection onto the second coordinate.
We can picture both of these mappings at once:

Example 5.2.10. Let A =

[
1 1
1 1

]
. Define L(v) = Av for all v ∈ R2. In particular this means,

L(x, y) = A(x, y) =

[
1 1
1 1

] [
x
y

]
=

[
x+ y
x+ y

]
.

We find L(0, 0) = (0, 0), L(1, 0) = (1, 1), L(1, 1) = (2, 2), L(0, 1) = (1, 1). This mapping is not a
projection, but it does collapse the square to a line-segment.
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A projection has to have the property that if it is applied twice then you obtain the same image
as if you applied it only once. If you apply the transformation to the image then you’ll obtain a
line-segment from (0, 0) to (4, 4). While it is true the transformation ”projects” the plane to a line
it is not technically a ”projection”.

Remark 5.2.11.

The examples here have focused on linear transformations from R2 to R2. It turns out that
higher dimensional mappings can largely be understood in terms of the geometric operations
we’ve seen in this section.

Example 5.2.12. Let A =

 0 0
1 0
0 1

. Define L(v) = Av for all v ∈ R2. In particular this means,

L(x, y) = A(x, y) =

 0 0
1 0
0 1

[ x
y

]
=

 0
x
y

 .
We find L(0, 0) = (0, 0, 0), L(1, 0) = (0, 1, 0), L(1, 1) = (0, 1, 1), L(0, 1) = (0, 0, 1). This mapping
moves the xy-plane to the yz-plane. In particular, the horizontal unit square gets mapped to vertical
unit square; L([0, 1]× [0, 1]) = {0} × [0, 1]× [0, 1]. This mapping certainly is not surjective because
no point with x 6= 0 is covered in the range.
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Example 5.2.13. Let A =

[
1 1 0
1 1 1

]
. Define L(v) = Av for all v ∈ R3. In particular this

means,

L(x, y, z) = A(x, y, z) =

[
1 1 0
1 1 1

] x
y
z

 =

[
x+ y
x+ y + z

]
.

Let’s study how L maps the unit cube. We have 23 = 8 corners on the unit cube,

L(0, 0, 0) = (0, 0), L(1, 0, 0) = (1, 1), L(1, 1, 0) = (2, 2), L(0, 1, 0) = (1, 1)

L(0, 0, 1) = (0, 1), L(1, 0, 1) = (1, 2), L(1, 1, 1) = (2, 3), L(0, 1, 1) = (1, 2).

This mapping squished the unit cube to a shape in the plane which contains the points (0, 0), (0, 1),
(1, 1), (1, 2), (2, 2), (2, 3). Face by face analysis of the mapping reveals the image is a parallelogram.
This mapping is certainly not injective since two different points get mapped to the same point. In
particular, I have color-coded the mapping of top and base faces as they map to line segments. The
vertical faces map to one of the two parallelograms that comprise the image.

I have used terms like ”vertical” or ”horizontal” in the standard manner we associate such terms
with three dimensional geometry. Visualization and terminology for higher-dimensional examples is
not as obvious. However, with a little imagination we can still draw pictures to capture important
aspects of mappings.

Example 5.2.14. Let A =

[
1 0 0 0
1 0 0 0

]
. Define L(v) = Av for all v ∈ R4. In particular this

means,

L(x, y, z, t) = A(x, y, z, t) =

[
1 0 0 0
1 0 0 0

]
x
y
z
t

 =

[
x
x

]
.

Let’s study how L maps the unit hypercube [0, 1]4 ⊂ R4. We have 24 = 16 corners on the unit
hypercube, note L(1, a, b, c) = (1, 1) whereas L(0, a, b, c) = (0, 0) for all a, b, c ∈ [0, 1]. Therefore,



5.2. EXAMPLES OF LINEAR TRANSFORMATIONS ON EUCLIDEAN SPACES 147

the unit hypercube is squished to a line-segment from (0, 0) to (1, 1). This mapping is neither
surjective nor injective. In the picture below the vertical axis represents the y, z, t-directions.

Example 5.2.15. Suppose f(t, s) = (
√
t, s2 + t) note that f(1, 1) = (1, 2) and f(4, 4) = (2, 20).

Note that (4, 4) = 4(1, 1) thus we should see f(4, 4) = f(4(1, 1)) = 4f(1, 1) but that fails to be true
so f is not a linear transformation.

Example 5.2.16. Let L : Rn → Rm be defined by L(x) = 0 for all x ∈ V . This is a linear
transformation known as the trivial transformation

L(x+ y) = 0 = 0 + 0 = L(x) + L(y) and L(cx) = 0 = c0 = cL(x)

for all c ∈ R and x, y ∈ Rn.

Example 5.2.17. The identity function on a Rn is also a linear transformation. Let Id : Rn → Rn
satisfy L(x) = x for each x ∈ Rn. Observe that

Id(x+ cy) = x+ cy = x+ c(y) = Id(x) + cId(y)

for allx, y ∈ Rn and c ∈ R.

Example 5.2.18. Let L(x, y) = x2 + y2 define a mapping from R2 to R. This is not a linear
transformation since

L(c(x, y)) = L(cx, cy) = (cx)2 + (cy)2 = c2(x2 + y2) = c2L(x, y).

We say L is a nonlinear transformation.

Obviously we have not even begun to appreciate the wealth of possibilities that exist for linear
mappings. Clearly different types of matrices will decribe different types of geometric transforma-
tions from Rn to Rm. On the other hand, square matrices describe mappings from Rn to Rn and
these can be thought of as coordinate transformations. A square matrix may give us a way to
define new coordinates on Rn. We will return to the concept of linear transformations a number of
times in this course. Hopefully you already appreciate that linear algebra is not just about solving
equations. It always comes back to that, but there is more here to ponder.
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5.3 theory of linear transformations part two

If you are pondering what I am pondering then you probably would like to know if all linear
mappings from Rn to Rm can be reduced to matrix multiplication? We saw that if a map is defined
as a matrix multiplication then it will be linear. A natural question to ask: is the converse true?
Given a linear transformation from Rn to Rm can we write it as multiplication by a matrix ?

Theorem 5.3.1. fundamental theorem of linear algebra.

L : Rn → Rm is a linear transformation if and only if there exists A ∈ R m×n such that
L(x) = Ax for all x ∈ Rn.

Proof: (⇐) Assume there exists A ∈ R m×n such that L(x) = Ax for all x ∈ Rn. As we argued
before,

L(x+ cy) = A(x+ cy) = Ax+ cAy = L(x) + cL(y)

for all x, y ∈ Rn and c ∈ R hence L is a linear transformation.

(⇒) Assume L : Rn → Rm is a linear transformation. Let ei denote the standard basis in Rn
and let fj denote the standard basis in Rm. If x ∈ Rn then there exist constants xi such that
x = x1e1 + x2e2 + · · ·+ xnen and

L(x) = L(x1e1 + x2e2 + · · ·+ xnen)
= x1L(e1) + x2L(e2) + · · ·+ xnL(en)

where we made use of Proposition 5.1.2. Notice L(ei) ∈ Rm thus there exist constants, say Aij ,
such that

L(ei) = A1if1 +A2if2 + · · ·+Amifm

for each i = 1, 2, . . . , n. Let’s put it all together,

L(x) =
n∑
i=1

xiL(ei) =
n∑
i=1

xi

m∑
j=1

Ajifj =
n∑
i=1

m∑
j=1

Ajixifj = Ax.

Notice that Aji = L(ei)j for 1 ≤ i ≤ n and 1 ≤ j ≤ m hence A ∈ R m×n by its construction. �

The fundamental theorem of algebra allows us to make the following definition.

Definition 5.3.2.

Let L : Rn → Rm be a linear transformation, the matrix A ∈ R m×n such that L(x) = Ax
for all x ∈ Rn is called the standard matrix of L. We denote this by [L] = A or more
compactly, [LA] = A, we say that LA is the linear transformation induced by A. Moreover,
the components of the matrix A are found from Aji = (L(ei)))j .
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Example 5.3.3. Given that L([x, y, z]T ) = [x+2y, 3y+4z, 5x+6z]T for [x, y, z]T ∈ R3 find the the
standard matrix of L. We wish to find a 3×3 matrix such that L(v) = Av for all v = [x, y, z]T ∈ R3.
Write L(v) then collect terms with each coordinate in the domain,

L

 x
y
z

 =

 x+ 2y
3y + 4z
5x+ 6z

 = x

 1
0
5

+ y

 2
3
0

+ z

 0
4
6


It’s not hard to see that,

L

 x
y
z

 =

 1 2 0
0 3 4
5 0 6

 x
y
z

 ⇒ A = [L] =

 1 2 0
0 3 4
5 0 6


Notice that the columns in A are just as you’d expect from the proof of theorem 5.3.1.
[L] = [L(e1)|L(e2)|L(e3)]. In future examples I will exploit this observation to save writing.

Example 5.3.4. Suppose that L((t, x, y, z)) = (t+ x+ y + z, z − x, 0, 3t− z), find [L].

L(e1) = L((1, 0, 0, 0)) = (1, 0, 0, 3)
L(e2) = L((0, 1, 0, 0)) = (1,−1, 0, 0)
L(e3) = L((0, 0, 1, 0)) = (1, 0, 0, 0)
L(e4) = L((0, 0, 0, 1)) = (1, 1, 0,−1)

⇒ [L] =


1 1 1 1
0 −1 0 1
0 0 0 0
3 0 0 −1

 .
I invite the reader to check my answer here and see that L(v) = [L]v for all v ∈ R4 as claimed.

Very well, let’s return to the concepts of injective and surjectivity of linear mappings. How do
our theorems of LI and spanning inform us about the behaviour of linear transformations? The
following pair of theorems summarize the situtation nicely.

Theorem 5.3.5. linear map is injective iff only zero maps to zero.

L : Rn → Rm is an injective linear transformation iff the only solution to the equation
L(x) = 0 is x = 0.

Proof: this is a biconditional statement. I’ll prove the converse direction to begin.
( ⇐) Suppose L(x) = 0 iff x = 0 to begin. Let a, b ∈ Rn and suppose L(a) = L(b). By linearity we
have L(a− b) = L(a)− L(b) = 0 hence a− b = 0 therefore a = b and we find L is injective.
(⇒) Suppose L is injective. Suppose L(x) = 0. Note L(0) = 0 by linearity of L but then by 1-1
property we have L(x) = L(0) implies x = 0 hence the unique solution of L(x) = 0 is the zero
solution. �

Notice this is certainly not true for most functions. For example, f(x) = x2 has f(0) = 0 iff x = 0.
However, f is not one-to-one. The property of linearity gives a very special structure to a mapping.
For example, if the values of a linear mapping are given on a basis then there is a unique extension
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of the formula from that basis to the whole space. Notice2 that the standard matrix only needs to
be given the values of L on the standard basis. That data suffices to fix the values of L everywhere.

Theorem 5.3.6. injectivity and surjectivity of linear map characterized by its matrix

L : Rn → Rm is a linear transformation with standard matrix [L] then

1. L is 1-1 iff the columns of [L] are linearly independent,

2. L is onto Rm iff the columns of [L] span Rm.

Proof: To prove (1.) use Theorem 5.3.5:

L is 1-1 ⇔
{
L(x) = 0 ⇔ x = 0

}
⇔

{
[L]x = 0 ⇔ x = 0.

}
and the last equation simply states that if a linear combination of columns of L is zero then the
coefficients of that linear equation are zero so (1.) follows.

To prove (2.) recall that Theorem 4.3.9 stated that if A ∈ R m×n, v ∈ Rn then Av = b is consistent
for all b ∈ Rm iff the columns of A span Rm. To say L is onto Rm means that for each b ∈ Rm
there exists v ∈ Rn such that L(v) = b. But, this is equivalent to saying that [L]v = b is consistent
for each b ∈ Rm so (2.) follows. �

Example 5.3.7. 1. You can verify that the linear mappings in Examples 5.2.2, 5.2.3, 5.2.4,
5.2.5, 5.2.6, 5.2.7 and 5.2.8 wer both 1-1 and onto. You can see the columns of the tranfor-
mation matrices were both LI and spanned R2 in each of these examples.

2. In constrast, Examples 5.2.9 and 5.2.10 were neither 1-1 nor onto. Moreover, the columns of
transformation’s matrix were linearly dependent in each of these cases and they did not span
R2. Instead the span of the columns covered only a particular line in the range.

3. In Example 5.2.12 the mapping is injective and the columns of A were indeed linearly in-
dpendent. However, the columns do not span R3 and as expected the mapping is not onto
R3.

4. In Example 5.2.13 the mapping is not 1-1 and the columns are obviously linearly dependent.
On the other hand, the columns of A do span R2 and the mapping is onto.

5. In Example 5.2.14 the mapping is neither 1-1 nor onto and the columns of the matrix are
neither linearly independent nor do they span R2.

2a similar argument can be made for arbitrary bases of euclidean space or for linear tranformations on finite-
dimensional abstract vector spaces.
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Inverting a linear transformation is nicely connected to the problem of inverting a matrix.

Theorem 5.3.8. invertibility of a linear transformation

If LA : Rn → Rn is a linear transformation induced from A ∈ R n×n then LA is invertible
iff A is invertible. Moreover, if A−1 exists then (LA)−1 = LA−1 .

Proof: I’ll prove the simple direction. Suppose A−1 exists and consider the linear transformation
induced by A−1. Note that LA(LA−1(x)) = AA−1x = Ix = x and LA−1(LA(x)) = A−1Ax = Ix = x
for each x ∈ Rn thus LA is invertible and (LA)−1 = LA−1 . The proof of the other direction is similar
and rests upon the identity LA ◦LB = LAB which is shown in the optional Section 5.5. �

Definition 5.3.9. isomorphism

Let V,W be vector spaces then Φ : V → W is an isomorphism if it is a 1-1 and onto
mapping which is also a linear transformation. If there is an isomorphism between vector
spaces V and W then those vector spaces are isomorphic and we denote this by V uW .

The term ”isomorphism” means ”same shape”. An isomorphism is 1-1 thus it maps LI sets to LI
sets. On the other hand, an isomorphism is onto thus its range covers the whole codomain. It
follows that an isomorphism will map a basis to a basis. Consequently:

Theorem 5.3.10.

Vector spaces with the same dimension are isomorphic.

Example 5.3.11. Let V = R3 and W = P2. Define a mapping Φ : P2 → R3 by

Φ(ax2 + bx+ c) = (a, b, c)

for all ax2 + bx + c ∈ P2. As vector spaces, R3 and polynomials of upto quadratic order are the
same.

Example 5.3.12. Let Φ : R m×n → Rmn be defined by

Φ(
∑
i,j

AijEij ) = (A11, . . . , A1n, A21, . . . , A2n, . . . , Am1, . . . , Amn)

This map simply takes the entries in the matrix and strings them out to a vector of length mn.

Example 5.3.13. Let S2 be the set of 2× 2 symmetric matrices. Let Ψ : S2 → R3 be defined by

Ψ

[
x y
y z

]
=

 x
y
z


It is a simple exercise to show Ψ is an isomorphism.

All three examples above illustrate the fact that an n-dimensional vector space is isomorphic to Rn.
In the next section we study coordinate mappings. These are special isomorphisms which allow us
to use column vectors to analyze the structure of an abstract vector space.
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5.4 coordinates

Prelude: Think about Cartesian coordinates, if you define positive x, y as the East and North
directions and z as the vertical direction with the origin at Sonic on Wards Road then your friend
Trogdor defined x, z as the East and North directions and y as the vertical direction with the origin
at Sonic on Wards Road then when you compared equations they would not match. To remedy this
trouble you and Trogdor should use different notation. We could relable Trogdor coordinates with
bars; say x̄, ȳ, z̄ for the East, vertical, and North directions. Then, to compare equations about
villagers you could use the simple equations:

x̄ = x, ȳ = z, z̄ = y

to converse with Trogdor. This is the problem with coordinates for real world problems; there are
many choices. Therefore, we should like to develop techniques to change from one choice to another.

If you have a little imagination you might already have wondered why Trogdor chose the same ori-
gin as you. Or, why Trogdor didn’t use an origin on a train passing at constant velocity. Or worse
yet, Trogdor could have used a rotating coordinate system. Translating between moving coordinate
systems is more complicated. In fact, it involves a mixture of physics and linear algebra. It is a
topic you cover in the Junior level classical mechanics course. I have some notes posted on such
things if you wish to read. I will be more boring here, I just include this digression to alert you to
the limitations of what we’re doing here. Our coordinate change maintains the origin and is fixed
in time and space, the coordinates change in a linear way.

5.4.1 the coordinate map for a vector

Given a vector space and a basis3 we obtain a coordinate system. Given a basis β, for each vector
in v ∈ V we associate a unique4 column vector [v]β ∈ R.

Definition 5.4.1.

Suppose β = {f1, f2, . . . , fn} is a basis for V . If v ∈ V has

v = v1f1 + v2f2 + · · ·+ vnfn

then [v]β = [v1 v2 · · · vn]T ∈ Rn is called the coordinate vector of v with respect to β.
The coordinate map is Φβ : V → Rn defined by Φβ(v) = [v]β.

3Technically, the each basis considered in the course is an ”ordered basis”. This means the set of vectors that forms
the basis has an ordering to it. This is more structure than just a plain set since basic set theory does not distinguish
{1, 2} from {2, 1}. I should always say ”we have an ordered basis” but I will not (and most people do not) say that
in this course. Let it be understood that when we list the vectors in a basis they are listed in order and we cannot
change that order without changing the basis. For example v = [1, 2, 3]T has coordinate vector [v]B1 = [1, 2, 3]T with
respect to B1 = {e1, e2, e3}. On the other hand, if B2 = {e2, e1, e3} then the coordinate vector of v with respect to
B2 is [v]B2 = [2, 1, 3]T .

4see Math 321 notes for proof
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Example 5.4.2. Let β = {1, x, x2} be the basis for P2. Let us find the coordinate vector for
v = x2 + 2x+ 3. Simply observe that v = 3(1) + 2(x) + 1(x2) hence [v]β = [3, 2, 1]T .

The interesting thing about a coordinate vector is that it is always in Rn for any abstract finite-
dimensional vector space. One more abstract example and we’ll get to examples of primary interest.

Example 5.4.3. Let β = {E11, E12, E21, E22} be the basis for R 2×2. Suppose A =

[
a b
c d

]
.

Observe that:

A =

[
a b
c d

]
= a

[
1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+ d

[
0 0
0 1

]
.

Consequently, [A]β = [a, b, c, d]T .

I have included the abstract vector space examples above to expand you thinking a little. That
said, I am primarily interested that we come to a thorough understanding of coordinates for Rn.

Example 5.4.4. Let v =

[
1
3

]
find the coordinates of v relative to β1, β2 and β3 where β1 = {e1, e2}

and β2 = {e1, e1 +e2} and β3 = {e2, e1 +e2}. We’ll begin with the standard basis, (I hope you could
see this without writing it )

v =

[
1
3

]
= 1

[
1
0

]
+ 3

[
0
1

]
= 1e1 + 3e2

thus [v]β1 = [1 3]T . Find coordinates relative to the other two bases is not quite as obvious. Begin
with β2. We wish to find x, y such that

v = xe1 + y(e1 + e2)

we can just use brute-force,

v = e1 + 3e2 = xe1 + y(e1 + e2) = (x+ y)e1 + ye2

using linear independence of the standard basis we find 1 = x + y and y = 3 thus x = 1 − 3 = −2
and we see v = −2e1 + 3(e1 + e2) so [v]β2 = [−2 3]T . This is interesting, the same vector can have
different coordinate vectors relative to distinct bases. Finally, let’s find coordinates relative to β3.
I’ll try to be more clever this time: we wish to find x, y such that

v = xe2 + y(e1 + e2) ⇔
[

1
3

]
=

[
0 1
1 1

] [
x
y

]
We can solve this via the augemented coefficient matrix

rref

[
0 1 1
1 1 3

]
=

[
1 0 2
0 1 1

]
⇔ x = 2, y = 1.

Thus, [v]β3 = [2 1]T . Notice this is precisely the rightmost column in the rref matrix. Perhaps my
approach for β3 is a little like squashing a fly with with a dumptruck. However, once we get to an
example with 4-component vectors you may find the matric technique useful.
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Example 5.4.5. Given that β = {b1, b2, b3, b4} = {e1 + e2, e2 + e3, e3 + e4, e4} is a basis for R4×1

find coordinates for v = [1, 2, 3, 4]T ∈ R4×1. Given the discussion in the preceding example it is
clear we can find coordinates [x1, x2, x3, x4]T such that v =

∑
i xibi by calculating rref [b1|b2|b3|b4|v]

the rightmost column will be [v]β.

rref


1 0 0 0 1
1 1 0 0 2
0 1 1 0 3
0 0 1 1 4

 =


1 0 0 0 1
0 1 0 0 1
0 0 1 0 2
0 0 0 1 2

 ⇒ [v]β =


1
1
2
2


The proposition below gives us another way to calculate coordinates.

Proposition 5.4.6.

If Rn has basis β = {f1, f2, . . . , fn} and we denote [β] = [f1|f2| · · · |fn] then

[v]β = [β]−1v.

Proof: Let v ∈ Rn and suppose v = w1f1 +w2f2 + · · ·+wnfn =⇒ v = [fi][v]β where [wi] = [v]β.
Since {f1, f2, . . . , fn} are LI, [β] = [fi] is invertible. Thus we find [v]β = [fi]

−1v. �

Notice that when β = {e1, e2, . . . , en} then [β] = I hence [v]β = v.

Example 5.4.7. Work Example 5.4.5 once more using the proposition above. You can calculate
the inverse by our usual algorithm:

[β]−1 =


1 0 0 0
−1 1 0 0
1 −1 1 0
−1 1 −1 1

 ⇒ [v]β =


1 0 0 0
−1 1 0 0
1 −1 1 0
−1 1 −1 1




1
2
3
4

 =


1
1
2
2


This is what we found before. Here’s the real beauty, suppose x = [x1, x2, x3, x4]T . Calculate,

[x]β =


1 0 0 0
−1 1 0 0
1 −1 1 0
−1 1 −1 1



x1

x2

x3

x4

 =


x1

−x1 + x2

x1 − x2 + x3

−x1 + x2 − x3 + x4

 .
If we denote the coordinates with respect to the β = {b1, b2, b3, b4} of an arbitrary point by (x̄1, x̄2, x̄3, x̄4)
then the Cartesian coordinates of the point are related by the coordinate change formulas below:

x̄1 = x1, x̄2 = −x1 + x2, x̄3 = x1 − x2 + x3, x̄4 = −x1 + x2 − x3 + x4.

We can either reach the point by a linear combination of the standard basis or the β basis.

x = x1e1 + x2e2 + x3e3 + x4e4 = x̄1b1 + x̄2b2 + x̄3b3 + x̄4b4
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5.4.2 matrix of linear transformation

This definition is best explained by the diagram later on this page.

Definition 5.4.8.

Let vector spaces V and W . Let T : V →W be linear transformation bewteen and suppose
Φβ : V → Rn and Φβ̄ : W → Rm are coordinate mappings with respect to the bases β, β̄
for V,W respective. We define the matrix of T with respect to β, β̄ to be [T ]β,β̄ ∈ R m×n

to be the standard matrix of the operator Φ−1
β
◦T ◦Φβ̄.

This means L[T ]β,β̄
= Φ−1

β
◦T ◦Φβ̄. Or, you may find it easier to calculate with Φβ̄

◦T = L[T ]β,β̄
◦Φβ

which suggests we calculate the matrix [T ]β,β̄ by inspecting the equation:

[T (v)]β̄ = [T ]β,β̄[v]β.

I’ve denoted where v, T (v), ... are in the diagram below5 x by the m× n matrix [T ]β,β̄.

v ∈ V T // T (v) ∈W

Φβ̄

��
Φ−1
β

OO

[v]βRn L[T ]β,β̄

// [T (v)]β̄ ∈ Rm

Example 5.4.9. Consider V = W = R 2×2 and define T (A) = AT . Furthermore, use the usual

matrix-unit basis β = {E11, E12, E21, E22}. Let A =

[
a b
c d

]
thus T (A) =

[
a c
b d

]
. We want to

find a matrix [T ]β,β such that [T ]β,β [A]β = [T (A)]β

[T ]β,β


a
b
c
d

 =


a
c
b
d

 ⇒ [T ]β,β =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
Just for fun: we know that (AT )T = A. What does this suggest about the matrix above? Hint:
square the matrix see what happens.

5remember the notation L[T ]β,β̄
indicates the operation of left multiplication by the matrix [T ]β,β̄ ; that is

L[T ]β,β̄
(x) = [T ]β,β̄x for all x.
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The method I used in the example above can be replaced by the method suggested by the proposition
to follow. You can use whatever makes more sense. If you understand the diagram then you don’t
really need to memorize.

Proposition 5.4.10.

Given the data in the preceding definition,

coli([T ]β,β̄) = Φβ̄(T (Φ−1
β (ei))).

Proof: Apply Theorem 2.7.12. �

Let us examine see how this is fleshed out in a concrete example.

Example 5.4.11. Let β = {1, x, x2} be the basis for P2 and consider the derivative mapping
D : P2 → P2. Find the matrix of D assuming that P2 has coordinates with respect to β on both
copies of P2. Define and observe Φβ(xn) = en+1 whereas Φ−1

β (en) = xn−1 for n = 0, 1, 2. Recall

D(ax2 + bx+ c) = 2ax+ bx.

col1([D]β,β) = Φβ(D(Φ−1
β (e1))) = Φβ(D(1)) = Φβ(0) = 0

col2([D]β,β) = Φβ(D(Φ−1
β (e2))) = Φβ(D(x)) = Φβ(1) = e1

col3([D]β,β) = Φβ(D(Φ−1
β (e3))) = Φβ(D(x2)) = Φβ(2x) = 2e2

Therefore we find [D]β,β =

 0 1 0
0 0 2
0 0 0

.Calculate D3. Is this surprising?

Example 5.4.12. Let β = {[1,−1]T , [1, 1]T }. Define T by T ([x, y]T ) = [2x + 4y, 6y]T . Find the
matrix of T with respect to β. Observe that

[β]−1 =

[
1 1
−1 1

]−1

=
1

2

[
1 −1
1 1

]
⇒

[
x
y

]
β

=
1

2

[
1 −1
1 1

] [
x
y

]
=

[
1
2(x− y)
1
2(x+ y)

]
If v = [x, y]T then [v]β = 1

2 [x− y, x+ y]T . Consequently,

[T (v)]β =
[

[2x+ 4y, 6y]T
]
β

=
1

2
[2x+ 4y − 6y, 2x+ 4y + 6y]T = [x− y, x+ 5y]T .

We seek a matrix [T ]β,β =

[
a b
c d

]
such that [T ]β,β [v]β = [T (v)]β. Consider[

a b
c d

] [
1
2(x− y)
1
2(x+ y)

]
=

[
x− y
x+ 5y

]
If x = 1 and y = 1 then b = 0 and d = 6. On the other hand, if we set x = 1 and y = −1 then

we obtain a = 2 and c = −4. We find [T ]β,β =

[
2 0
−4 6

]
. In this case, there is a better way. See

Example 5.4.15
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5.4.3 coordinate change

We narrow the focus to euclidean space Rn in this section. We consider the case where the domain
and range are the same dimension since this is the case of most interest.

Proposition 5.4.13. Coordinate change for vectors and linear transformations on Rn.

Let Rn have bases β = {f1, f2, . . . , fn} and β̄ = {f̄1, f̄2, . . . , f̄n} such that [β]P = [β̄] where
I denoted [β] = [f1|f2| · · · |fn] and [β̄] = [f̄1|f̄2| · · · |f̄n] . If v =

∑
i vifi and v =

∑
j v̄j f̄j we

denote [v]β = [vi] and [v]β̄ = [v̄j ] and the coordinate vectors of v are related by

[v]β̄ = P−1[v]β

Moreover, if T : Rn → Rn is a linear operator then

[T ]β̄,β̄ = P−1[T ]β,βP.

Proof: Given the data above, note we can write
∑

i vifi = [β][v]β and
∑

j v̄j f̄j = [β̄][v]β̄ ( we can
do this since we are in Rn)

v = [β][v]β = [β]PP−1[v]β = [β̄]P−1[v]β

However, we also have v = [β̄][v]β̄. But [β̄] is an invertible matrix thus [β̄][v]β̄ = [β̄]P−1[v]β implies

[v]β̄ = P−1[v]β.

We defined [T ]β̄,β̄ implicitly through the equation T = Φ−1
β̄
◦L[T ]β̄,β̄

◦Φβ̄. In this special case the

coordinate maps and their inverses are matrix multiplication as described by Proposition 5.4.6 and
we calculate

T = Lβ̄ ◦L[T ]β̄,β̄
◦Lβ̄−1

But the matrix of a composite of linear transformations is the product the matrices of those
transformations, thus

T = L[β̄][T ]β̄,β̄ [β̄]−1

Therefore, the standard matrix of T is [T ] = [β̄][T ]β̄,β̄[β̄]−1. By the same argument we find [T ] =

[β][T ]β,β [β]−1. Thus,

[T ] = [β̄][T ]β̄,β̄[β̄]−1 = [β][T ]β,β [β]−1 ⇒ [T ]β̄,β̄ = [β̄]−1[β][T ]β,β [β]−1[β̄]

However, we defined P to be the matrix which satisfies [β]P = [β̄] thus P = [β]−1[β̄] and
P−1 = [β̄]−1[β]. �.

We should pause to consider a special case. If β̄ is the standard basis then [β̄] = I and the change
of basis matrix P satisfies [β]P = I hence P = β−1. It follows that

[T ] = (β−1)−1[T ]β,ββ
−1 ⇒ [T ]β,β = [β]−1[T ][β]

The Corollary below follows:
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Corollary 5.4.14. how to calculate the matrix w.r.t. nonstandard basis directly

If T : Rn → Rn has standard matrix [T ] and β is a basis for Rn then [T ]β,β = [β]−1[T ][β].

We worked Example 5.4.12 in the previous subsection without the insight above. You can compare
and see which method you think is best.

Example 5.4.15. Let β = {[1,−1]T , [1, 1]T }. Define T by T ([x, y]T ) = [2x + 4y, 6y]T . Note

[T ] =

[
2 4
0 6

]
. The inverse is found by the usual 2× 2 formula,

[β]−1 =

[
1 1
−1 1

]−1

=
1

2

[
1 −1
1 1

]
Calculate,

[T ]β,β = [β]−1[T ][β] =
1

2

[
1 −1
1 1

] [
2 4
0 6

] [
1 1
−1 1

]
=

1

2

[
1 −1
1 1

] [
−2 6
−6 6

]
=

1

2

[
4 0
−8 12

]
=

[
2 0
−4 6

]
.

Example 5.4.16. Let β = {[1, 1]T , [1,−1]T } and γ = {[1, 0]T , [1, 1]T } be bases for R2. Find [v]β
and [v]γ if v = [2, 4]T . Let me frame the problem, we wish to solve:

v = [β][v]β and v = [γ][v]γ

where I’m using the basis in brackets to denote the matrix formed by concatenating the basis into a
single matrix,

[β] =

[
1 1
1 −1

]
and [γ] =

[
1 1
0 1

]
This is the 2× 2 case so we can calculate the inverse from our handy-dandy formula:

[β]−1 =
1

2

[
1 1
1 −1

]
and [γ]−1 =

[
1 −1
0 1

]
Then multiplication by inverse yields [v]β = [β]−1v and [v]γ = [γ]−1v thus:

[v]β =
1

2

[
1 1
1 −1

] [
2
4

]
=

[
3
−1

]
and [v]γ =

[
1 −1
0 1

] [
2
4

]
=

[
−2

4

]
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Let’s verify the relation of [v]γ and [v]β relative to the change of basis matrix we denoted by P in
the prop; we hope to find [v]γ = P−1[v]β ( note γ is playing the role of β̄ in the statement of the
prop.)

[β]P = [γ] ⇒ P−1 = [γ]−1[β] =

[
1 −1
0 1

] [
1 1
1 −1

]
=

[
0 2
1 −1

]
Consider then ( as a check on our calculations and also the proposition)

P−1[v]β =

[
0 2
1 −1

] [
3
−1

]
=

[
−2

4

]
= [v]γ X

Now that we’ve seen an example, let’s find [v]β for an arbitrary v = [x, y]T ,

[v]β =
1

2

[
1 1
1 −1

] [
x
y

]
=

[
1
2(x+ y)
1
2(x− y)

]
If we denote [v]β = [x̄, ȳ]T then we can understand the calculation above as the relation between the
barred and standard coordinates:

x̄ = 1
2(x+ y) ȳ = 1

2(x− y)

Conversely, we can solve these for x, y to find the inverse transformations:

x = x̄+ ȳ y = x̄− ȳ.

Similar calculations are possible with respect to the γ-basis.
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Example 5.4.17. Let β̄ = {[1, 0, 1]T , [0, 1, 1]T , [4, 3, 1]T }. Furthermore, define a linear transforma-
tion T : R 3×1 → R 3×1 by the rule T ([x, y, z]T ) = [2x− 2y + 2z, x− z, 2x− 3y + 2z]T . Find the
matrix of T with respect to the basis β. Note first that the standard basis is read from the rule:

T

(  x
y
z

 ) =

 2x− 2y + 2z
x− z

2x− 3y + 2z

 =

 2 −2 2
1 0 −1
2 −3 2

 x
y
z


Consider then (omitting the details of calculating P−1) and applying Corollary 5.4.14:

P−1[T ]P =

 1/3 −2/3 2/3
−1/2 1/2 1/2

1/6 1/6 −1/6

 2 −2 2
1 0 −1
2 −3 2

 1 0 4
0 1 3
1 1 1


=

 1/3 −2/3 2/3
−1/2 1/2 1/2

1/6 1/6 −1/6

 4 0 4
0 −1 3
4 −1 1


=

 4 0 0
0 −1 0
0 0 1


Therefore, in the β̄-coordinates the linear operator T takes on a particularly simple form:

[
T

(  x̄
ȳ
z̄

 )]
β̄

=

 4x̄
−ȳ
z̄


In other words, if β̄ = {f1, f2, f3} then

T ([x̄, ȳ, z̄]T ) = 4x̄f1 − ȳf2 + z̄f3

This linear transformation acts in a special way in the f1, f2 and f3 directions. The basis we
considered here is actually what is known as a an eigenbasis for T .

If two matrices are related as [T ] and [T ]β,β are related above then the matrices are similar

Definition 5.4.18.

Let A,B ∈ R n×n we say A and B are similar matrices and write A ∼ B if there exists
an invertible matrix P such that B = P−1AP . We say that B is obtained from A by a
similarity transformation.

Past this chapter, much of what we do is in one way or another aimed towards finding the right
similarity transformation to simplify a given problem.
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5.5 new linear transformations from old*

This section is not required reading. This optional section shows how the set of linear transforma-
tions on a pair of vector spaces V,W is itself a vector space L(V,W ) because we can add and scalar
multiply linear transformations. We then turn to the problem of composition of linear operators
on Rn where we show that the definition of matrix multiplication arises naturally from the formula
for the composition of linear mappings.

Definition 5.5.1.

Suppose T : Rn → Rm and S : Rn → Rm are linear transformations then we define
T + S, T − S and cT for any c ∈ R by the rules

(T + S)(x) = T (x) + S(x). (T − S)(x) = T (x)− S(x), (cT )(x) = cT (x)

for all x ∈ Rn.

The following does say something new. Notice I’m talking about adding the transformations them-
selves not the points in the domain or range.

Proposition 5.5.2.

The sum, difference or scalar multiple of a linear transformations from Rn to Rm are once
more a linear transformation from Rn to Rm.

Proof: I’ll be greedy and prove all three at once:

(T + cS)(x+ by) = T (x+ by) + (cS)(x+ by) defn. of sum of transformations

= T (x+ by) + cS(x+ by) defn. of scalar mult. of transformations

= T (x) + bT (y) + c[S(x) + bS(y)] linearity of S and T

= T (x) + cS(x) + b[T (y) + cS(y)] vector algebra props.

= (T + cS)(x) + b(T + cS)(y) again, defn. of sum and scal. mult. of trans.

Let c = 1 and b = 1 to see T + S is additive. Let c = 1 and x = 0 to see T + S is homogeneous.
Let c = −1 and b = 1 to see T −S is additive. Let c = −1 and x = 0 to see T −S is homogeneous.
Finally, let T = 0 to see cS is additive (b = 1) and homogeneous (x = 0). �

Proposition 5.5.3.

Suppose T : Rn → Rm and S : Rn → Rm are linear transformations then

(1.) [T + S] = [T ] + [S], (2.) [T − S] = [T ]− [S], (3.) [cT ] = c[T ].

In words, the standard matrix of the sum, difference or scalar multiple of linear transfor-
mations is the sum, difference or scalar multiple of the standard matrices of the respsective
linear transformations.
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Proof: Note (T + cS)(ej) = T (ej) + cS(ej) hence ((T + cS)(ej))i = (T (ej))i + c(S(ej))i for all i, j
hence [T + cS] = [T ] + c[S]. �

Example 5.5.4. Suppose T (x, y) = (x+ y, x− y) and S(x, y) = (2x, 3y). It’s easy to see that

[T ] =

[
1 1
1 −1

]
and [S] =

[
2 0
0 3

]
⇒ [T + S] = [T ] + [S] =

[
3 1
1 2

]

Therefore, (T + S)(x, y) =

[
3 1
1 2

] [
x
y

]
=

[
3x+ y
x+ 2y

]
= (3x + y, x + 2y). Naturally this is the

same formula that we would obtain through direct addition of the formulas of T and S.

5.5.1 motivation of matrix multiplication

The definition of matrix multiplication is natural for a variety of reasons. Let’s think about compos-
ing two linear transformations. This will lead us to see why our definition of matrix multiplication
is natural.

Example 5.5.5. Let T : R 2×1 → R 2×1 be defined by

T ([x, y]T ) = [x+ y, 2x− y]T

for all [x, y]T ∈ R 2×1. Also let S : R 2×1 → R 3×1 be defined by

S([x, y]T ) = [x, x, 3x+ 4y]T

for all [x, y]T ∈ R 2×1. We calculate the composite as follows:

(S ◦T )([x, y]T ) = S(T ([x, y]T ))
= S([x+ y, 2x− y]T )
= [x+ y, x+ y, 3(x+ y) + 4(2x− y)]T

= [x+ y, x+ y, 11x− y]T

Notice we can write the formula above as a matrix multiplication,

(S ◦T )([x, y]T ) =

 1 1
1 1
11 −1

[ x
y

]
⇒ [S ◦T ] =

 1 1
1 1
11 −1

 .
Notice that the standard matrices of S and T are:

[S] =

 1 0
1 0
3 4

 [T ] =

[
1 1
2 −1

]

It’s easy to see that [S ◦T ] = [S][T ] (as we should expect since these are linear operators)
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Proposition 5.5.6.

L1 : Rm → Rn and L2 : Rn → Rp are linear transformations then L2 ◦L1 : Rm → Rp is a
linear transformation with matrix [L2 ◦L1] such that

[L2 ◦L1]ij =
n∑
k=1

[L2]ik[L1]kj

for all i = 1, 2, . . . p and j = 1, 2 . . . ,m.

Proof: Let x, y ∈ V1 and c ∈ R,

(L2 ◦L1)(x+ cy) = L2(L1(x+ cy)) defn. of composite
= L2(L1(x) + cL1(y)) L1 is linear trans.
= L2(L1(x)) + cL2(L1(y)) L2 is linear trans.
= (L2 ◦L1)(x) + c(L2 ◦L1)(y) defn. of composite

thus L2 ◦L1 is a linear transformation. To find the matrix of the composite we need only calculate
its action on the standard basis: by definition, [L2 ◦L1]ij = ((L2 ◦L1)(ej))i, observe

(L2 ◦L1)(ej) = L2(L1(ej))

= L2([L1]ej)

= L2(
∑
k

[L1]kjek)

=
∑
k

[L1]kjL2(ek)

=
∑
k

[L1]kj [L2]ek

=
∑
k

[L1]kj
∑
i

[L2]ikei

=
∑
k

∑
i

[L2]ik[L1]kjei

=
∑
i

[∑
k

[L2]ik[L1]kj

]
ei.

Therefore, [L2 ◦L1]ij =
∑

k[L2]jk[L1]ki and Item (2.) follows. �

In other words, we defined matrix multiplication such that the matrix of a composite is simply the
product of the composed transformation’s matrices. Originally the definition of matrix multiplica-
tion was given to help unravel subsititutions. Anton mentions that Eisenstein, a student of Gauss,
is credited with finding6 the matrix product.

6or creating
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5.6 applications

Geometry is conveniently described by parametrizations. The number of parameters needed to map
out some object is the dimension of the object. For example, the rule t 7→ ~r(t) describes a curve in
Rn. Of course we have the most experience in the cases ~r =< x, y > or ~r =< x, y, z >, these give
so-called planar curves or space curves respectively. Generally, a mapping from γ : R → S where
S is some space7 is called a path. The point set γ(S) can be identified as a sort of copy of R which
resides in S.

Next, we can consider mappings from R2 to some space S. In the case S = R3 we use
X(u, v) =< x(u, v), y(u, v), z(u, v) > to parametrize a surface. For example,

X(φ, θ) =< cos(θ) sin(φ), sin(θ) sin(φ), cos(φ) >

parametrizes a sphere if we insist that the angles 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. We call φ and θ
coordinates on the sphere, however, these are not coordinates in the technical sense later defined
in this course. These are so-called curvelinear coordinates. Generally a surface in some space is
sort-of a copy of R2 ( well, to be more precise it resembles some subset of R2).

Past the case of a surface we can talk about volumes which are parametrized by three parameters.
A volume would have to be embedded into some space which had at least 3 dimensions. For the
same reason we can only place a surface in a space with at least 2 dimensions. Perhaps you’d be
interested to learn that in relativity theory one considers the world-volume that a particle traces out
through spacetime, this is a hyper-volume, it’s a 4-dimensional subset of 4-dimensional spacetime.

Let me be a little more technical, if the space we consider is to be a k-dimensional parametric
subspace of S then that means there exists an invertible mapping X : U ⊆ Rk → S ⊆ Rn. It
turns out that for S = Rn where n ≥ k the condition that X be invertible means that the derivative
DpX : TpU → TX(p)S must be an invertible linear mapping at each point p in the parameter space
U . This in turn means that the tangent-vectors to the coordinate curves must come together to
form a linearly independent set. Linear independence is key.

7here S could be a set of matrices or functions or an abstract manifold... the concept of a path is very general
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Curvy surfaces and volumes and parametrizations that describe them analytically involve a fair
amount of theory which I have only begun to sketch here. However, if we limit our discussion to
affine subspaces of Rn we can be explicit. Let me go ahead and write the general form for a line,
surface, volume etc... in terms of linearly indpendent vectors ~A, ~B, ~C, . . .

~r(u) = ~ro + u ~A

X(u, v) = ~ro + u ~A+ v ~B

X(u, v, w) = ~ro + u ~A+ v ~B + w~C

I hope you you get the idea.

In each case the parameters give an invertible map only if the vectors are linearly independent. If
there was some linear dependence then the dimension of the subspace would collapse. For example,

X(u, v) =< 1, 1, 1 > +u < 1, 0, 1 > +v < 2, 0, 2 >

appears to give a plane, but upon further inspection you’ll notice

X(u, v) =< 1 + u+ 2v, 1, 1 + u+ 2v >=< 1, 1, 1 > +(u+ 2v) < 1, 0, 1 >

which reveals this is just a line with direction-vector < 1, 0, 1 > and parameter u+ 2v.
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Chapter 6

eigenvalues and eigenvectors

The terms eigenvalue and vector originate from the German school of mathematics which was very
influential in the early 20-th century. Heisenberg’s formulation of quantum mechanics gave new
importance to linear algebra and in particular the algebraic structure of matrices. In finite di-
mensional quantum systems the symmetries of the system were realized by linear operators. These
operators acted on states of the system which formed a complex vector space called Hilbert Space. 1

Operators representing momentum, energy, spin or angular momentum operate on a physical sys-
tem represented by a sum of eigenfunctions. The eigenvalues then account for possible value which
could be measured in an experiment. Generally, quantum mechanics involves complex vector spaces
and infinite dimensional vector spaces however many of the mathematical difficulties are already
present in our study of linear algebra. For example, one important question is how does one pick
a set of states which diagonalize an operator? Moreover, if one operator is diagonalized by a par-
ticular basis then can a second operator be diagonalized simultaneously? Linear algebra, and in
particular eigenvectors help give an answer for these questions. 2

Beyond, or perhaps I should say before, quantum mechanics eigenvectors have great application
in classical mechanics, optics, population growth, systems of differential equations, chaos theory,
difference equations and much much more. They are a fundmental tool which allow us to pick apart
a matrix into its very core. Diagonalization of matrices almost always allow us to see the nature of
a system more clearly.

However, not all matrices are diagonalizable. It turns out that any matrix is similar to a Jordan
Block matrix. Moreover, the similarity transformation is accomplished via a matrix formed from
concatenating generalized eigenvectors. When there are enough ordinary eigenvectors then the

1Hilbert Spaces and infinite dimensional linear algebra are typically discussed in graduate linear algebra and/or
the graduate course in functional analysis, we focus on the basics in this course.

2in addition to linear algebra one should also study group theory. In particular, matrix Lie groups and their
representation theory explains most of what we call ”chemistry”. Magic numbers, electronic numbers, etc... all of
these are eigenvalues which label the states of the so-called Casimir operators
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Jordan Form of the matrix is actually a diagonal matrix. The general theory for Jordan Forms,
in particular the proof of the existence of a Jordan Basis, is rather involved. I will forego typical
worries about existence and just show you a few examples. I feel this is important because the
Jordan Form actually does present itself in applications.

In my Chapter 9 (which I’m covering lightly this semester) we explore how eigenvectors and the
Jordan form are connected to solutions of systems of differential equations. The double root so-
lution for constant coefficient 2nd order ODEs actually has the Jordan form hiding in the details.
The matrix exponential allows for elegant solutions of any system of differential equations. My
approach is similar to that given in the text on DEqns by Nagel, Saff and Snider ( the text for
math 334 ). However, I should mention that if you wish to understand generalized eigenvectors
and Jordan forms in the abstract then you should really engage in a serious study of modules. If
you build a vector space over a ring instead of a field then you get a module. Many of the same
theorems hold, if you are interested I would be happy to point you to some sources to begin reading.
I would be a good topic for an independent study to follow this course.

Finally, there is the case of complex eigenvalues and complex eigenvectors. These have use in the
real case. A general princple for linear systems is that if a complex system has a solution then
the corresponding real system will inherit two solutions from the real and imaginary parts of the
complex solution. Complex eigenvalues abound in applications. For example, rotation matrices
have complex eigenvalues. We’ll find that complex eigenvectors are useful and not much more
trouble than the real case. The diagonalization provided from complex eigenvectors provides a
factorization of the matrix into complex matrices. We examine how to convert such factorizations
in terms of rotations. (this is one of the reasons I really like the text by Lay, his treatment of
these matters on page 338-340 really helps us understand what complex e-vectors are doing for real
matrices, although, it seems he only treats the 2× 2 case)).

6.1 why eigenvectors?

In this section I attempt to motivate why eigenvectors are natural to study for both mathematical
and physical reasons. In fact, you probably could write a book just on this question.

6.1.1 quantum mechanics

Physically measureable quantities are described by operators and states in quantum mechanics3.
The operators are linear operators and the states are usually taken to be the eigenvectors with
respect to a physical quantity of interest. For example:

p̂|p >= p|p > Ĵ2|j >= j(j + 1)|j > Ĥ|E >= E|E >

3you can skip this if you’re not a physics major, but maybe you’re interested despite the lack of direct relevance
to your major. Maybe your interested in an education not a degree. I believe this is possible so I write these words
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In the above the eigenvalues were p, j(j + 1) and E. Physically, p is the momentum, j(j + 1) is
the value of the square of the magnitude of the total angular momentum and E is the energy. The
exact mathematical formulation of the eigenstates of momentum, energy and angular momentum is
in general a difficult problem and well-beyond the scope of the mathematics we cover this semester.
You have to study Hilbert space which is an infinite-dimensional vector space with rather special
properties. In any event, if the physical system has nice boundary conditions then the quantum
mechanics gives mathematics which is within the reach of undergraduate linear algebra. For ex-
ample, one of the very interesting aspects of quantum mechanics is that we can only measure a
certain pairs of operators simultaneously. Such operators have eigenstates which are simultane-
ously eigenstates of both operators at once. The careful study of how to label states with respect
to the energy operator (called the Hamiltonian) and some other commuting symmetry operator
(like isospin or angular momentum etc...) gives rise to what we call Chemistry. In other words,
Chemistry is largely the tabulation of the specific interworkings of eigenstates as the correlate to
the energy, momentum and spin operators (this is a small part of what is known as representation
theory in modern mathematics). I may ask a question about simultaneous diagonalization. This is
a hard topic compared to most we study.

6.1.2 stochastic matrices

Definition 6.1.1.

Let P ∈ R n×n with Pij ≥ 0 for all i, j. If the sum of the entries in any column of P is one
then we say P is a stochastic matrix.

Example 6.1.2. Stochastic Matrix: A medical researcher4 is studying the spread of a virus in
1000 lab. mice. During any given week it’s estimated that there is an 80% probability that a mouse
will overcome the virus, and during the same week there is an 10% likelyhood a healthy mouse will
become infected. Suppose 100 mice are infected to start, (a.) how many sick next week? (b.) how
many sick in 2 weeks ? (c.) after many many weeks what is the steady state solution?

Ik = infected mice at beginning of week k
Nk = noninfected mice at beginning of week k

P =

[
0.2 0.1
0.8 0.9

]
We can study the evolution of the system through successive weeks by multiply the state-vector
Xk = [Ik, Nk] by the probability transition matrix P given above. Notice we are given that X1 =
[100, 900]T . Calculate then,

X2 =

[
0.2 0.1
0.8 0.9

] [
100
900

]
=

[
110
890

]
After one week there are 110 infected mice Continuing to the next week,

X3 =

[
0.2 0.1
0.8 0.9

] [
110
890

]
=

[
111
889

]
4this example and most of the other applied examples in these notes are borrowed from my undergraduate linear

algebra course taught from Larson’s text by Dr. Terry Anderson of Appalachian State University
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After two weeks we have 111 mice infected. What happens as k → ∞? Generally we have Xk =
PXk−1. Note that as k gets large there is little difference between k and k − 1, in the limit they
both tend to infinity. We define the steady-state solution to be X∗ = limk→∞Xk. Taking the limit
of Xk = PXk−1 as k →∞ we obtain the requirement X∗ = PX∗. In other words, the steady state
solution is found from solving (P − I)X∗ = 0. For the example considered here we find,

(P − I)X∗ =

[
−0.8 0.1
0.8 −0.1

] [
u
v

]
= 0 v = 8u X∗ =

[
u
8u

]
However, by conservation of mice, u + v = 1000 hence 9u = 1000 and u = 111.1̄1 thus the steady
state can be shown to be X∗ = [111.1̄1, 888.8̄8]

Example 6.1.3. Diagonal matrices are nice: Suppose that demand for doorknobs halves every
week while the demand for yo-yos it cut to 1/3 of the previous week’s demand every week due to
an amazingly bad advertising campaign5. At the beginning there is demand for 2 doorknobs and 5
yo-yos.

Dk = demand for doorknobs at beginning of week k
Yk = demand for yo-yos at beginning of week k

P =

[
1/2 0
0 1/3

]
We can study the evolution of the system through successive weeks by multiply the state-vector
Xk = [Dk, Yk] by the transition matrix P given above. Notice we are given that X1 = [2, 5]T .
Calculate then,

X2 =

[
1/2 0
0 1/3

] [
2
5

]
=

[
1

5/3

]
Notice that we can actually calculate the k-th state vector as follows:

Xk = P kX1 =

[
1/2 0
0 1/3

]k [
2
5

]
=

[
2−k 0
0 3−k

]k [
2
5

]
=

[
2−k+1

5(3−k)

]
Therefore, assuming this silly model holds for 100 weeks, we can calculate the 100-the step in the
process easily,

X100 = P 100X1 =

[
2−101

5(3−100)

]
Notice that for this example the analogue of X∗ is the zero vector since as k →∞ we find Xk has
components which both go to zero.

For some systems we’ll find a special state we called the ”steady-state” for the system. If the system
was attracted to some particular final state as t→∞ then that state satisfied PX∗ = X∗. We will
learn in this chapter to identify this makes X∗ is an eigenvector of P with eigenvalue 1.

5insert your own more interesting set of quantities that doubles/halves or triples during some regular interval of
time
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6.1.3 motion of points under linear transformations

Remark 6.1.4.

What follows here is just intended to show you how you might stumble into the concept of
an eigenvector even if you didn’t set out to find it. The calculations we study here are not
what we aim to ultimately disect in this chapter. This is purely a mathematical experiment
to show how eigenvectors arise naturally through repeated matrix multiplication on a given
point. Physically speaking the last two subsections were way more interesting.

I’ll focus on two dimensions to begin for the sake of illustration. Let’s take a matrix A and a point
xo and study what happens as we multiply by the matrix. We’ll denote x1 = Axo and generally
xk+1 = Axk. It is customary to call xk the ”k-th state of the system”. As we multiply the k-th
state by A we generate the k + 1-th state.6

Example 6.1.5. Let A =
[

3 0
8 −1

]
and let xo = [ 1

2 ]. Calculate,

x1 =
[

3 0
8 −1

]
[ 1

2 ] = [ 3
6 ]

x2 =
[

3 0
8 −1

]
[ 3

6 ] = [ 9
18 ]

x3 =
[

3 0
8 −1

]
[ 9

18 ] = [ 27
54 ]

x4 =
[

3 0
8 −1

]
[ 27

54 ] = [ 81
162 ]

Each time we multiply by A we scale the vector by a factor of three. If you want to look at xo as
a point in the plane the matrix A pushes the point xk to the point xk+1 = 3xk. Its not hard to see
that xk = 3kxo. What if we took some other point, say yo = [ 1

0 ] then what will A do?

y1 =
[

3 0
8 −1

]
[ 1

0 ] = [ 3
8 ]

y2 =
[

3 0
8 −1

]
[ 3

8 ] = [ 9
16 ]

y3 =
[

3 0
8 −1

]
[ 9

16 ] = [ 27
56 ]

y4 =
[

3 0
8 −1

]
[ 27

48 ] = [ 81
160 ]

Now, what happens for arbitrary k? Can you find a formula for yk? This point is not as simple as
xo. The vector xo is apparently a special vector for this matrix. Next study, zo = [ 0

2 ],

z1 =
[

3 0
8 −1

]
[ 0

2 ] =
[

0
−2

]
z2 =

[
3 0
8 −1

] [
0
−2

]
= [ 0

4 ]

z3 =
[

3 0
8 −1

]
[ 0

4 ] =
[

0
−8

]
z4 =

[
3 0
8 −1

] [
0
−8

]
= [ 0

16 ]

Let me illustrate what is happening with a picture. I have used color to track the motion of a
particular point. You can see that all points tend to get drawn into the line with direction vector
xo with the sole exception of the points along the y-axis which I have denoted via diamonds in the
picture below:

6ask Dr. Mavinga and he will show you how a recursively defined linear difference equation can be converted into
a matrix equation of the form xk+1 = Axk, this is much the same idea as saying that an n − th order ODE can be
converted into a system of n- first order ODEs.
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The directions [1, 2] and [0, 1] are special, the following picture illustrates the motion of those points
under A:

The line with direction vector [1, 2] seems to attract almost all states to itself. On the other hand, if
you could imagine yourself a solution walking along the y-axis then if you took the slightest mis-step
to the right or left then before another dozen or so steps you’d find yourself stuck along the line in
the [1, 2]-direction. There is a connection of the system xk+1 = Axk and the system of differential
equations dx/dt = Bx if we have B = I + A. Perhaps we’ll have time to explore the questions
posed in this example from the viewpoint of the corresponding system of differential equations. In
this case the motion is very discontinuous. I think you can connect the dots here to get a rough
picture of what the corresponding system’s solutions look like. In the differential equations Chapter
we develop these ideas a bit further. For now we are simply trying to get a feeling for how one
might discover that there are certain special vector(s) associated with a given matrix. We call these
vectors the ”eigenvectors” of A.

The next matrix will generate rather different motions on points in the plane.
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Example 6.1.6. Let A =

[
1
2

√
3

2

−
√

3
2

1
2

]
. Consider the trajectory of xo = [1, 0]T ,

x1 =

[
1
2 −

√
3

2√
3

2
1
2

] [
1
0

]
=

[
1
2√
3

2

]

x2 =

[
1
2 −

√
3

2√
3

2
1
2

][
1
2√
3

2

]
=

[
−1

2√
3

2

]

x3 =

[
1
2 −

√
3

2√
3

2
1
2

][
−1

2√
3

2

]
=

[
−1
0

]

x4 =

[
1
2 −

√
3

2√
3

2
1
2

] [
−1
0

]
=

[
−1

2

−
√

3
2

]

x5 =

[
1
2 −

√
3

2√
3

2
1
2

][
−1

2

−
√

3
2

]
=

[
1
2

−
√

3
2

]

x6 =

[
1
2 −

√
3

2√
3

2
1
2

][
1
2

−
√

3
2

]
=

[
1
0

]
Past this point we just cycle back to the same points, clearly xk = xk+6 for all k ≥ 0. If we started
with a different initial point we would find this pattern again. The reason for this is that A is the
matrix which rotates vectors by π/3 radians. The trajectories generated by this matrix are quite
different then the preceding example, there is no special direction in this case.

Although, generally this type of matrix generates elliptical orbits and then there are two special di-
rections. Namely the major and minor axis of the ellipitical orbits. Finally, this sort of matrix could
have a scaling factor built in so that the trajectories spiral in or out of the origin. I provide a picture
illustrating the various possibilities. The red dots in the picture below are generated from A as



174 CHAPTER 6. EIGENVALUES AND EIGENVECTORS

was given in the preceding example, the blue dots are generated from the matrix [1
2col1(A)|col2(A)]

whereas the green dots are obtained from the matrix [2col1(A)|col2(A)]. In each case I started with
the point (1, 0) and studied the motion of the point under repeated multiplications of matrix:

Let’s summarize our findings so far: if we study the motion of a given point under successive
multiplications of a matrix it may be pushed towards one of several directions or it may go in a
circular/spiral-type motion.
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6.2 eigenvector foundations

The preceding section was motivational. We now begin the real7 material. Given our experience on
coordinate change in the preceding chapter it should begin to be clear to you that the fundamental
objects of linear algebra are linear transformations. A matrix usually give us just one picture of
a more fundamental concept which is stated in terms of linear transformations and vector spaces.
In view of this wisdom we cast the definition of the eigenvalue and vector in terms of an abstract
linear transformation on a vector space.

Definition 6.2.1.

Let T : V → V be a linear transformation on a vector space V . If there exists v ∈ V such
that v 6= 0 such that T (v) = λv for some constant λ then we say v is an eigenvector of T
with eigenvalue λ.

Usually we work with real vector spaces so the scalar λ is taken from R, however it is both interesting
and useful to consider the extension to C. We do so at the conclusion of this chapter. For now
let me just introduce a little langauge. If λ ∈ R then I say λ is a real eigenvalue with real
eigenvector v. On the other hand, my typical notation is that if λ = α+ iβ ∈ C with β 6= 0 then
I say λ is a complex eigenvalue with complex eigenvector v = a+ ib.

Example 6.2.2. Let T (f) = Df where D is the derivative operator. This defines a linear trans-
formation on function space F . An eigenvector for T would be a function which is proportional to
its own derivative fucntion... in other words solve dy

dt = λy. Separation of variables yields y = ceλt.
The eigenfunctions for T are simply exponential functions.

Example 6.2.3. Let T (A) = AT for A ∈ R n×n. To find an eigenvector for T we want a matrix
V ∈ R n×n and a constant λ such that T (V ) = V T = λV . An obvious choice is λ = 1 and choose
a symmetric matrix V so V T = V . Another slightly less obvious guess exists. Can you think of it?

Notice that there are infinitely many eigenvectors for a given eigenvalue in both of the examples
above. The number of eigenvalues for the function space example is infinite since any λ ∈ R will
do. On the other hand, the matrix example only had two eigenvalues. The distinction between
these examples is that function space is infinite dimensional whereas the matrix example is finite-
dimensional. For the most part we focus on less abstract eigenvector examples. The following
definition dovetails with our definition above if you think about LA : Rn → Rn. An eigenvector of
LA is an eigenvector of A if we accept the definition that follows:

Definition 6.2.4.

Let A ∈ R n×n. If v ∈ Rn is nonzero and Av = λv for some λ ∈ C then we say v is an
eigenvector with eigenvalue λ of the matrix A.

We identify that the eigenvectors of A pointed in the direction where trajectories were asymp-
totically attracted in the examples of the preceding section. Although, the case of the circular

7I should mention that your text insists that e-vectors have real e-values. I make no such restriction. If we want
to insist the e-values are real I will say that explicitly.
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trajectories broke from that general pattern. We’ll discover those circular orbits correspond to the
complex case.

Our goal at this point is to find a clear and concise method to calculate eigenvalues and their corre-
sponding eigenvector(s). Fortunately, we soon find that guessing and solving differential equations
are not the usual method to calculate eigenvectors ( at least not in Math 321)

Proposition 6.2.5.

Let A ∈ R n×n then λ is an eigenvalue of A iff det(A−λI) = 0. We say P (λ) = det(A−λI)
the characteristic polynomial and det(A− λI) = 0 is the characteristic equation.

Proof: Suppose λ is an eigenvalue of A then there exists a nonzero vector v such that Av = λv
which is equivalent to Av − λv = 0 which is precisely (A − λI)v = 0. Notice that (A − λI)0 = 0
thus the matrix (A − λI) is singular as the equation (A − λI)x = 0 has more than one solution.
Consequently det(A− λI) = 0.

Conversely, suppose det(A − λI) = 0. It follows that (A − λI) is singular. Clearly the system
(A − λI)x = 0 is consistent as x = 0 is a solution hence we know there are infinitely many solu-
tions. In particular there exists at least one vector v 6= 0 such that (A−λI)v = 0 which means the
vector v satisfies Av = λv. Thus v is an eigenvector with eigenvalue λ for A 8. �

Let’s collect the observations of the above proof for future reference.

Proposition 6.2.6.

The following are equivalent for A ∈ R n×n and λ ∈ C,

1. λ is an eigenvalue of A

2. there exists v 6= 0 such that Av = λv

3. there exists v 6= 0 such that (A− λI)v = 0

4. λ is a solution to det(A− λI) = 0

5. (A− λI)v = 0 has infinitely many solutions.

6.2.1 characteristic equations

Example 6.2.7. Let A =
[

3 0
8 −1

]
. Find the eigenvalues of A from the characteristic equation:

det(A− λI) = det

[
3− λ 0

8 −1− λ

]
= (3− λ)(−1− λ) = (λ+ 1)(λ− 3) = 0

8It is worth mentioning that the theorems on uniqueness of solution and singular matrices and determinant hold
for linear systems with complex coefficients and variables. We don’t need a separate argument for the complex case
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Hence the eigenvalues are λ1 = −1 and λ2 = 3. Notice this is precisely the factor of 3 we saw
scaling the vector in the first example of the preceding section.

Example 6.2.8. Let A =

[
1
2

√
3

2

−
√

3
2

1
2

]
. Find the eigenvalues of A from the characteristic equation:

det(A− λI) = det

[
1
2 − λ

√
3

2

−
√

3
2

1
2 − λ

]
= (1

2 − λ)2 + 3
4 = (λ− 1

2)2 + 3
4 = 0

Well how convenient is that? The determinant completed the square for us. We find: λ = 1
2 ± i

√
3

2 .
It would seem that elliptical orbits somehow arise from complex eigenvalues

Proposition 3.3.3 proved that taking the determinant of a triagular matrix was easy. We just multi-
ply the diagonal entries together. This has interesting application in our discussion of eigenvalues.

Example 6.2.9. Given A below, find the eigenvalues. Use Proposition 3.3.3 to calculate the de-
terminant,

A =

 2 3 4
0 5 6
0 0 7

 ⇒ det(A− λI) =

 2− λ 3 4
0 5− λ 6
0 0 7− λ

 = (2− λ)(5− λ)(7− λ)

Therefore, λ1 = 2, λ2 = 5 and λ3 = 7.

Remark 6.2.10. eigenwarning

Calculation of eigenvalues does not need to be difficult. However, I urge you to be careful
in solving the characteristic equation. More often than not I see students make a mistake
in calculating the eigenvalues. If you do that wrong then the eigenvector calculations will
often turn into inconsistent equations. This should be a clue that the eigenvalues were
wrong, but often I see what I like to call the ”principle of minimal calculation” take over
and students just adhoc set things to zero, hoping against all logic that I will somehow not
notice this. Don’t be this student. If the eigenvalues are correct, the eigenvector equations
are consistent and you will be able to find nonzero eigenvectors. And don’t forget, the
eigenvectors must be nonzero.

6.2.2 eigenvector examples

Example 6.2.11. Let A =

[
3 1
3 1

]
find the e-values and e-vectors of A.

det(A− λI) = det

[
3− λ 1

3 1− λ

]
= (3− λ)(1− λ)− 3 = λ2 − 4λ = λ(λ− 4) = 0
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We find λ1 = 0 and λ2 = 4. Now find the e-vector with e-value λ1 = 0, let u1 = [u, v]T denote the
e-vector we wish to find. Calculate,

(A− 0I)u1 =

[
3 1
3 1

] [
u
v

]
=

[
3u+ v
3u+ v

]
=

[
0
0

]
Obviously the equations above are redundant and we have infinitely many solutions of the form

3u+ v = 0 which means v = −3u so we can write, u1 =

[
u
−3u

]
= u

[
1
−3

]
. In applications we

often make a choice to select a particular e-vector. Most modern graphing calculators can calcu-
late e-vectors. It is customary for the e-vectors to be chosen to have length one. That is a useful
choice for certain applications as we will later discuss. If you use a calculator it would likely give

u1 = 1√
10

[
1
−3

]
although the

√
10 would likely be approximated unless your calculator is smart.

Continuing we wish to find eigenvectors u2 = [u, v]T such that (A − 4I)u2 = 0. Notice that u, v
are disposable variables in this context, I do not mean to connect the formulas from the λ = 0 case
with the case considered now.

(A− 4I)u1 =

[
−1 1
3 −3

] [
u
v

]
=

[
−u+ v
3u− 3v

]
=

[
0
0

]
Again the equations are redundant and we have infinitely many solutions of the form v = u. Hence,

u2 =

[
u
u

]
= u

[
1
1

]
is an eigenvector for any u ∈ R such that u 6= 0.

Remark 6.2.12.

It was obvious the equations were redundant in the example above. However, we need not
rely on pure intuition. The problem of calculating all the e-vectors is precisely the same as
finding all the vectors in the null space of a matrix. We already have a method to do that
without ambiguity. We find the rref of the matrix and the general solution falls naturally
from that matrix. I don’t bother with the full-blown theory for simple examples because there
is no need. However, with 3 × 3 examples it may be advantageous to keep our earlier null
space theorems in mind.

Example 6.2.13. Let A =

 0 0 −4
2 4 2
2 0 6

 find the e-values and e-vectors of A.

0 = det(A− λI) = det

 −λ 0 −4
2 4− λ 2
2 0 6− λ


= (4− λ)

[
−λ(6− λ) + 8

]
= (4− λ)

[
λ2 − 6λ+ 8

]
= −(λ− 4)(λ− 4)(λ− 2)
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Thus we have a repeated e-value of λ1 = λ2 = 4 and λ3 = 2. Let’s find the eigenvector u3 = [u, v, w]T

such that (A− 2I)u3 = 0, we find the general solution by row reduction

rref

 −2 0 −4 0
2 2 2 0
2 0 4 0

 =

 1 0 2 0
0 1 −1 0
0 0 0 0

 ⇒ u+ 2w = 0
v − w = 0

⇒ u3 = w

 −2
1
1


Next find the e-vectors with e-value 4. Let u1 = [u, v, w]T satisfy (A− 4I)u1 = 0. Calculate,

rref

 −4 0 −4 0
2 0 2 0
2 0 2 0

 =

 1 0 1 0
0 0 0 0
0 0 0 0

 ⇒ u+ w = 0

Notice this case has two free variables, we can use v, w as parameters in the solution,

u1 =

 u
v
w

 =

 −wv
w

 = v

 0
1
0

+ w

 −1
0
1

 ⇒ u1 = v

 0
1
0

 and u2 = w

 −1
0
1


I have boxed two linearly independent eigenvectors u1, u2. These vectors will be linearly independent
for any pair of nonzero constants v, w.

You might wonder if it is always the case that repeated e-values get multiple e-vectors. In the pre-
ceding example the e-value 4 had multiplicity two and there were likewise two linearly independent
e-vectors. The next example shows that is not the case.

Example 6.2.14. Let A =

[
1 1
0 1

]
find the e-values and e-vectors of A.

det(A− λI) = det

[
1− λ 1

0 1− λ

]
= (1− λ)(1− λ) = 0

Hence we have a repeated e-value of λ1 = 1. Find all e-vectors for λ1 = 1, let u1 = [u, v]T ,

(A− I)u1 =

[
0 1
0 0

] [
u
v

]
=

[
0
0

]
⇒ v = 0 ⇒ u1 = u

[
1
0

]

We have only one e-vector for this system.

Incidentally, you might worry that we could have an e-value (in the sense of having a zero of the
characteristic equation) and yet have no e-vector. Don’t worry about that, we always get at least
one e-vector for each distinct e-value. See Proposition 6.2.6
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Example 6.2.15. Let A =

 1 2 3
4 5 6
7 8 9

 find the e-values and e-vectors of A.

0 = det(A− λI) = det

 1− λ 2 3
4 5− λ 6
7 8 9− λ


= (1− λ)

[
(5− λ)(9− λ)− 48

]
− 2
[
4(9− λ)− 42

]
+ 3
[
32− 7(5− λ)

]
= −λ3 + 15λ2 + 18λ

= −λ(λ2 − 15λ− 18)

Therefore, using the quadratic equation to factor the ugly part,

λ1 = 0, λ2 =
15 + 3

√
33

2
, λ3 =

15− 3
√

33

2

The e-vector for e-value zero is not too hard to calculate. Find u1 = [u, v]T such that (A−0I)u1 = 0.
This amounts to row reducing A itself:

rref

 1 2 3 0
4 5 6 0
7 8 9 0

 =

 1 0 −1 0
0 1 2 0
0 0 0 0

 ⇒ u− w = 0
v + 2w = 0

⇒ u1 = w

 1
−2
1


The e-vectors corresponding e-values λ2 and λ3 are hard to calculate without numerical help. Let’s
discuss Texas Instrument calculator output. To my knowledge, TI-85 and higher will calculate both
e-vectors and e-values. For example, my ancient TI-89, displays the following if I define our matrix
A = mat2,

eigV l(mat2) = {16.11684397, −1.11684397, 1.385788954e− 13}

Calculators often need a little interpretation, the third entry is really zero in disguise. The e-vectors
will be displayed in the same order, they are given from the ”eigVc” command in my TI-89,

eigV c(mat2) =

 .2319706872 .7858302387 .4082482905
.5253220933 .0867513393 −.8164965809
.8186734994 −.6123275602 .4082482905


From this we deduce that eigenvectors for λ1, λ2 and λ3 are

u1 =

 .2319706872
.5253220933
.8186734994

 u2 =

 .7858302387
.0867513393
−.6123275602

 u3 =

 .4082482905
−.8164965809
.4082482905


Notice that 1/

√
6 u 0.408248905 so you can see that u3 above is simply the u = 1/

√
6 case for

the family of e-vectors we calculated by hand already. The calculator chooses e-vectors so that the
vectors have length one.
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While we’re on the topic of calculators, perhaps it is worth revisiting the example where there was
only one e-vector. How will the calculator respond in that case? Can we trust the calculator?

Example 6.2.16. Recall Example 6.2.14. We let A =

[
1 1
0 1

]
and found a repeated e-value of

λ1 = 1 and single e-vector u1 = u

[
1
0

]
. Hey now, it’s time for technology, let A = a,

eigV l(a) = {1, 1} and eigV c(a) =

[
1. −1.
0. 1.e− 15

]
Behold, the calculator has given us two alleged e-vectors. The first column is the genuine e-vector
we found previously. The second column is the result of machine error. The calculator was tricked
by round-off error into claiming that [−1, 0.000000000000001] is a distinct e-vector for A. It is not.
Moral of story? When using calculator you must first master the theory or else you’ll stay mired
in ignorance as presribed by your robot masters.

Finally, I should mention that TI-calculators may or may not deal with complex e-vectors ade-
quately. There are doubtless many web resources for calculating e-vectors/values. I would wager
if you Googled it you’d find an online calculator that beats any calculator. Many of you have a
laptop with wireless so there is almost certainly a way to check your answers if you just take a
minute or two. I don’t mind you checking your answers. If I assign it in homework then I do want
you to work it out without technology. Otherwise, you could get a false confidence before the test.
Technology is to supplement not replace calculation.

Remark 6.2.17.

I would also remind you that there are oodles of examples beyond these lecture notes in
the homework solutions from previous year(s). If these notes do not have enough examples
on some topic then you should seek additional examples elsewhere, ask me, etc... Do not
suffer in silence, ask for help. Thanks.
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6.3 theory for eigenvalues and eigenvectors

In this subsection we collect a number of general results on eigenvalues and eigenvectors. To begin,
we prepare to argue a seemingly obvious proposition, namely that an n × n matrix will have n
eigenvalues. From the three examples in the earlier section that’s pretty obvious, however we
should avoid proof by example in as much is possible.

Theorem 6.3.1.

Fundamental Theorem of Algebra: if P (x) is an n-th order polynomial complex coefficients
then the equation P (x) = 0 has n-solutions where some of the solutions may be repeated.
Moreover, if P (x) is an n-th order polynomial with real coefficients then complex solutions
to P (x) = 0 come in conjugate pairs. It follows that any polynomial with real coefficients
can be factored into a unique product of repeated real and irreducible quadratic factors.

A proof of this theorem would take us far of topic here9. I state it to remind you what the
possibilities are for the characteristic equation. Recall that the determinant is simply a product
and sum of the entries in the matrix. Notice that A − λI has n-copies of λ and the determinant
formula never repeats the same entry twice in the same summand. It follows that solving the
characterictic equation for A ∈ R n×n boils down to factoring an n-th order polynomial in λ.

Proposition 6.3.2.

If A ∈ R n×n then A has n eigenvalues, however, some may be repeated and/or complex.

Proof: follows from definition of determinant and the Fundamental Theorem of Algebra 10 �

Notice that if P (λ) = det(A−λI) then λj is an e-value of the square matrix A iff (λ−λj) divides11

the characteristic polynomial P (λ).

Proposition 6.3.3.

The constant term in the characteristic polynomial P (λ) = det(A− λI) is the determinant
of A.

Proof: Suppose the characteristic polynomial P of A has coefficients ci:

P (λ) = det(A− λI) = cnλ
n + cn−1λ

n−1 + · · ·+ c1λ+ c0.

Notice that if λ = 0 then A− λI = A hence

P (0) = det(A) = cn0n + · · ·+ c10 + c0.

Thus det(A) = c0. �

9there is a nice proof which can be given in our complex variables course
10properties of eigenvalues and the characteristic equation can be understood from studying the minimal and

characteristic polynomials. We take a less sophsiticated approach in this course
11the term ”divides” is a technical term. If f(x) divides g(x) then there exists h(x) such that g(x) = h(x)f(x). In

other words, f(x) is a factor of g(x).
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Proposition 6.3.4.

Zero is an eigenvalue of A iff A is a singular matrix.

Proof: Let P (λ) be the characteristic polynomial of A. If zero is an eigenvalue then λ must factor
the characteristic polynomial. Moreover, the factor theorem tells us that P (0) = 0 since (λ − 0)
factors P (λ). Thus c0 = 0 and we deduce using the previous proposition that det(A) = c0 = 0.
Which shows that A is singular.

Conversely, assume A is singular then det(A) = 0. Again, using the previous proposition, det(A) =
c0 hence c0 = 0. But, this means we can factor out a λ in P (λ) hence P (0) = 0 and we find zero is
an e-value of A. �.

Proposition 6.3.5.

If A ∈ R n×n then A has n eigenvalues λ1, λ2, . . . , λn then det(A) = λ1λ2 · · ·λn.

Proof: If A ∈ R n×n then A has n eigenvalues λ1, λ2, . . . , λn then the characteristic polynomial
factors over C:

det(A− λI) = k(λ− λ1)(λ− λ2) · · · (λ− λn)

Moreover, if you think about A − λI it is clear that the leading term obtains a coefficient of
(−1)n hence k = (−1)n. If c0 is the constant term in the characteristic polynomial then algbera
reveals that c0 = (−1)n(−λ1)(−λ2) · · · (−λn) = λ1λ2 . . . λn. Therefore, using Proposition 6.3.3,
det(A) = λ1λ2 . . . λn. �.

Proposition 6.3.6.

If A ∈ R n×n has e-vector v with eigenvalue λ then v is a e-vector of Ak with e-value λk.

Proof: let A ∈ R n×n have e-vector v with eigenvalue λ. Consider,

Akv = Ak−1Av = Ak−1λv = λAk−2Av = λ2Ak−2v = · · · = λkv.

The · · · is properly replaced by a formal induction argument. �.

Proposition 6.3.7.

Let A be a upper or lower triangular matrix then the eigenvalues of A are the diagonal
entries of the matrix.

Proof: follows immediately from Proposition 3.3.3 since the diagonal entries of A − λI are of
the form Aii − λ hence the characteristic equation has the form det(A − λI) = (A11 − λ)(A22 −
λ) · · · (Ann − λ) which has solutions λ = Aii for i = 1, 2, . . . , n. �

We saw how this is useful in Example 3.4.5. The LU-factorization together with the proposition
above gives a calculationally superior method for calculation the determinant. In addition, once
you have the LU-factorization of A there are many other questions about A which are easier to
answer. See your text for more on this if you are interested.
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6.4 linear independendence of real eigenvectors

You might have noticed that e-vectors with distinct e-values are linearly independent. This is no
accident.

Proposition 6.4.1.

If A ∈ R n×n has e-vector v1 with e-value λ1 and e-vector v2 with e-value λ2 such that
λ1 6= λ2 then {v1, v2} is linearly independent.

Proof: Let v1, v2 have e-values λ1, λ2 respective and assume towards a contradction that v2 = kv2

for some nonzero constant k. Multiply by the matrix A,

Av1 = A(kv2) ⇒ λ1v1 = kλ2v2

But we can replace v1 on the l.h.s. with kv2 hence,

λ1kv2 = kλ2v2 ⇒ k(λ1 − λ2)v2 = 0

Note, k 6= 0 and v2 6= 0 by assumption thus the equation above indicates λ1 − λ2 = 0 therefore
λ1 = λ2 which is a contradiction. Therefore there does not exist such a k and the vectors are
linearly independent. �

Proposition 6.4.2.

If A ∈ R n×n has e-vectors v1, v2, . . . , vk with e-values λ1, λ2, . . . , λk such that λi 6= λj for
all i 6= j then {v1, v2, . . . , vk} is linearly independent.

Proof: Let e-vectors v1, v2, . . . , vk have e-values λ1, λ2, . . . , λk with respect toA and assume towards
a contradction that there is some vector vj which is a nontrivial linear combination of the other
vectors:

vj = c1v1 + c2v2 + · · ·+ ĉjvj + · · ·+ ckvk

Multiply by A,
Avj = c1Av1 + c2Av2 + · · ·+ ĉjAvj + · · ·+ ckAvk

Which yields,

λjvj = c1λ1v1 + c2λ2v2 + · · ·+ ĉjλjvj + · · ·+ ckλkvk

But, we can replace vj on the l.h.s with the linear combination of the other vectors. Hence

λj
[
c1v1 + c2v2 + · · ·+ ĉjvj + · · ·+ ckvk

]
= c1λ1v1 + c2λ2v2 + · · ·+ ĉjλjvj + · · ·+ ckλkvk

Consequently,

c1(λj − λ1)v1 + c2(λj − λ2)v2 + · · ·+ ̂cj(λj − λj)vj + · · ·+ ck(λj − λk)vk = 0

Since vi 6= 0 and ci are not all zero it follows at least one factor λj − λi = 0 for i 6= j but this is a
contradiction since we assumed the e-values were distinct. �
Notice the proof of the preceding two propositions was essentially identical. I provided the k = 2
proof to help make the second proof more accessible.
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Definition 6.4.3.

Let A ∈ R n×n then a basis {v1, v2, . . . , vn} for Rn is called an eigenbasis if each vector in
the basis is an e-vector for A. Notice we assume these are real vectors since they form a
basis for Rn.

Example 6.4.4. We calculated in Example 6.2.13 the e-values and e-vectors of A =

 0 0 −4
2 4 2
2 0 6


were λ1 = λ2 = 4 and λ3 = 2 with e-vectors

u1 =

 0
1
0

 u2 =

 −1
0
1

 u3 =

 −2
1
1


Linear indpendence of u3 from u1, u2 is given from the fact the e-values of u3 and u1, u2 are distinct.
Then is is clear that u1 is not a multiple of u2 thus they are linearly independent. It follows that
{u1, u2, u3} form a linearly independent set of vectors in R3, therefore {u1, u2, u3} is an eigenbasis.

Definition 6.4.5.

Let A ∈ R n×n then we call the set of all real e-vectors with real e-value λ unioned with the
zero-vector the λ-eigenspace and we denote this set by Wλ.

Example 6.4.6. Again using Example 6.2.13 we have two eigenspaces,

W4 = span{

 0
1
0

 ,
 −1

0
1

} W2 = span{

 −2
1
1

}
Proposition 6.4.7.

Eigenspaces are subspaces of Rn. Moreoever, dim(Wλ) ≤ m where m is multiplicity of the
λ solution in the characteristic equation.

Proof: By definition zero is in the eigenspace Wλ. Suppose x, y ∈ Wλ note that A(x + cy) =
Ax + cAy = λx + cλy = λ(x + cy) hence x + cy ∈ Wλ for all x, y ∈ Wλ and c ∈ R therefore
Wλ ≤ Rn. To prove dim(Wλ) ≤ m we simply need to show that dim(Wλ) > m yields a contra-
diction. This can be seen from showing that if there were more than m e-vectors with e-value λ
then the chacteristic equation would likewise more than m solutions of λ. The question then is
why does each linearly independent e-vector give a factor in the characteristic equation? Answer this
question for bonus points. �
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Definition 6.4.8.

Let A be a real square matrix with real e-value λ. The dimension of Wλ is called the
geometric multiplicity of λ. The number of times the λ solution is repeated in the
characteristic equation’s solution is called the algebraic multiplicity of λ.

We already know from the examples we’ve considered thus far that there will not always be an
eigenbasis for a given matrix A. In general, here are the problems we’ll face:

1. we could have complex e-vectors (see Example 6.7.2)

2. we could have less e-vectors than needed for a basis (see Example 6.2.14)

We can say case 2 is caused from the geometric multiplicity being less than the algebraic multiplicity.
What can we do about this? If we want to adjoin vectors to make-up for the lack of e-vectors then
how should we find them in case 2?

Definition 6.4.9.

A generalized eigenvector of order k with eigenvalue λ with respect to a matrix A ∈
R n×n is a nonzero vector v such that

(A− λI)kv = 0

It’s useful to construct generalized e-vectors from a chain-condition if possible.

Proposition 6.4.10.

Suppose A ∈ R n×n has e-value λ and e-vector v1 then if (A − λI)v2 = v1 has a solution
then v2 is a generalized e-vector of order 2 which is linearly independent from v1.

Proof: Suppose (A−λI)v2 = v1 is consistent then multiply by (A−λI) to find (A−λI)2v2 = (A−
λI)v1. However, we assumed v1 was an e-vector hence (A−λI)v1 = 0 and we find v2 is a generalized
e-vector of order 2. Suppose v2 = kv1 for some nonzero k then Av2 = Akv1 = kλv1 = λv2 hence
(A − λI)v2 = 0 but this contradicts the construction of v2 as the solution to (A − λI)v2 = v1.
Consequently, v2 is linearly independent from v1 by virtue of its construction. �.

Example 6.4.11. Let’s return to Example 6.2.14 and look for a generalized e-vector of order 2.

Recall A =

[
1 1
0 1

]
and we found a repeated e-value of λ1 = 1 and single e-vector u1 =

[
1
0

]
(fix

u = 1 for convenience). Let’s complete the chain: find v2 = [u, v]T such that (A− I)u2 = u1,[
0 1
0 0

] [
u
v

]
=

[
1
0

]
⇒ v = 1, u is free

Any choice of u will do, in this case we can even set u = 0 to find

u2 =

[
0
1

]
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Clearly, {u1, u2} forms a basis of R 2×1. It is not an eigenbasis with respect to A, however it is
what is known as a Jordan basis for A.

Theorem 6.4.12.

Any matrix with real eigenvalues has a Jordan basis. We can always find enough generalized
e-vectors to form a basis for Rn with respect to A in the case that the e-values are all real.

Proof: not here, not now. This is a hard one. �

Proposition 6.4.13.

Let A ∈ R n×n and suppose λ is an e-value of A with e-vector v1 then if (A − λI)v2 = v1,
(A− λI)v3 = v2, . . . , (A− λI)vk = vk−1 are all consistent then {v1, v2, . . . , vk} is a linearly
independent set of vectors and vj is a generalized vector of order j for each j = 1, 2, . . . , k.

Proof: worth a bonus points if you can do it. �

Usually we can find a chain of generalized e-vectors for each e-value and that will product a Jordan
basis. However, there is a trap that you will not likely get caught in for a while. It is not always
possible to use a single chain for each e-value. Sometimes it takes a couple chains for a single e-value.
That said, the chain condition is very nice in that it automatically insures linear independence down
the chain. This is important since the solution to (A−λI)kv = 0 and the solution to (A−λI)v = 0
do not automatically provide a LI set. I do not attempt to describe the general algorithm to find
the Jordan basis for a given matrix, I merely wish to introduce you to the idea of the Jordan form
and perhaps convince you it’s interesting.

Example 6.4.14. Suppose A =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 it is not hard to show that det(A−λI) = (λ−1)4 =

0. We have a quadruple e-value λ1 = λ2 = λ3 = λ4 = 1.

0 = (A− I)~u =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ⇒ ~u =


s1

0
s3

0


Any nonzero choice of s1 or s3 gives us an e-vector. Let’s define two e-vectors which are clearly
linearly independent, ~u1 = [1, 0, 0, 0]T and ~u2 = [0, 0, 1, 0]T . We’ll find a generalized e-vector to go
with each of these. There are two length two chains to find here. In particular,

(A− I)~u3 = ~u1 ⇒


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



s1

s2

s3

s4

 =


1
0
0
0

 ⇒ s2 = 1, s4 = 0, s1, s3 free
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I choose s1 = 0 and s3 = 1 since I want a new vector, define ~u3 = [0, 0, 1, 0]T . Finally solving
(A − I)~u4 = ~u2 for ~u4 = [s1, s2, s3, s4]T yields conditions s4 = 1, s2 = 0 and s1, s3 free. I choose
~u4 = [0, 0, 0, 1]T . To summarize we have four linearly independent vectors which form two chains:

(A− I)~(u)3 = ~u1, (A− I)~u1 = 0 (A− I)~u4 = ~u2, (A− I)~u2 = 0

The matrix above was in an example of a matrix in Jordan form. When the matrix is in Jordan
form then the each elemement of then standard basis is an e-vector or generalized e-vector.

Example 6.4.15.

A =



2 1 0 0 0 0 0 0
0 2 1 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 3 1 0 0 0
0 0 0 0 3 1 0 0
0 0 0 0 0 3 1 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 4


Here we have the chain {e1, e2, e3} with e-value λ1 = 2, the chain {e4.e5, e6, e7} with e-value λ2 = 3
and finally a lone e-vector e8 with e-value λ3 = 4

6.5 diagonalization

If a matrix has n-linearly independent e-vectors then we’ll find that we can perform a similarity
transformation to transform the matrix into a diagonal form. Let me briefly summarize what is
required for us to have n-LI e-vectors. This is the natural extension of Proposition 6.4.2 to the case
of repeated e-values.

Proposition 6.5.1. criteria for real diagonalizability

Suppose that A ∈ R n×n has distinct eigenvalues λ1, λ2, . . . , λk ∈ R such that the charac-
teristic polynomial factors as follows:

PA(λ) = ±(λ− λ1)m1(λ− λ2)m2 · · · (λ− λk)mk .

We identify m1,m2, . . . ,mk are the algebraic mulitplicities of λ1, λ2, . . . , λk respective
and m1 + m2 + · · ·mk = n. Furthermore, suppose we say that the j-th eigenspace Wλj =
{x ∈ R | Ax = λjx} has dim(Wλj ) = nj for j = 1, 2, . . . k. The values n1, n2, . . . , nk are
called the geometric mulitplicities of λ1, λ2, . . . , λk respective. With all of the language
above in mind we can state that if mj = nj for all j = 1, 2, . . . k then A is diagonalizable.

All the proposition above really says is that if there exists an eigenbasis for A then it is diagonaliz-
able. Simply take the union of the basis for each eigenspace and note the LI of this union follows
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immediately from Proposition 6.4.2 and the fact they are bases12. Once we have an eigenbasis we
still need to prove diagonalizability follows. Since that is what is most interesting I’ll restate it
once more. Note in the proposition below the e-values may be repeated.

Proposition 6.5.2.

Suppose that A ∈ R n×n has e-values λ1, λ2, . . . , λn with linearly independent e-vectors
v1, v2, . . . , vn. If we define V = [v1|v2| · · · |vn] then D = V −1AV where D is a diagonal
matrix with the eigenvalues down the diagonal: D = [λ1e1|λ2e2| · · · |λnen].

Proof: Notice that V is invertible since we assume the e-vectors are linearly independent. More-
over, V −1V = I in terms of columns translates to V −1[v1|v2| · · · |vn] = [e1|e2| · · · |en]. From which
we deduce that V −1vj = ej for all j. Also, since vj has e-value λj we have Avj = λjvj . Observe,

V −1AV = V −1A[v1|v2| · · · |vn]

= V −1[Av1|Av2| · · · |Avn]

= V −1[λ1v1|λ2v2| · · · |λnvn]

= V −1[λ1v1|λ2v2| · · · |λnvn]

= [λ1V
−1v1|λ2V

−1v2| · · · |λnV −1vn]

= [λ1e1|λ2e2| · · · |λnen] �.

Remark 6.5.3.

In general, it is always possible to take a matrix with real e-values and perform a similarity
transformation to a matrix in Jordan form. The similarity transformation is constructed in
basically the same way as before; we calculate a Jordan basis then transform by its matrix.
This is precisely what we just did in the diagonalizable case. Incidentally, a diagonal matrix
is also in Jordan form but obviously the converse is not true in general. Finally, if there
are complex e-values you can still perform a similarity transformation to a matrix with a
complex Jordan form. To complete the story of cannonical forms we should also study the
rational cannonical form and see how all of this ties back into the theory of polynomials
and modules.

Example 6.5.4. Revisit Example 6.2.11 where we learned A =

[
3 1
3 1

]
had e-values λ1 = 0 and

λ2 = 4 with e-vectors: u1 = [1,−3]T and u2 = [1, 1]T . Let’s follow the advice of the proposition
above and diagonalize the matrix. We need to construct U = [u1|u2] and calculate U−1, which is
easy since this is a 2× 2 case:

U =

[
1 1
−3 1

]
⇒ U−1 =

1

4

[
1 −1
3 1

]
12actually there is something to show here but I leave it to the reader for now
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Now multiply,

U−1AU =
1

4

[
1 −1
3 1

] [
3 1
3 1

] [
1 1
−3 1

]
=

1

4

[
1 −1
3 1

] [
0 4
0 4

]
=

1

4

[
0 0
0 16

]

Therefore, we find confirmation of the proposition, U−1AU =

[
0 0
0 4

]
.

Notice there is one very unsettling aspect of diagonalization; we need to find the inverse of a matrix.
Generally this is not pleasant. Orthogonality will offer an insight to help us here. We’ll develop
additional tools to help with this topic in the next chapter.

Calculational inconvieniences aside, we have all the tools we need to diagonalize a matrix. What
then is the point? Why would we care if a matrix is diagonalized? One reason is that we can
calculate arbitrary powers of the matrix with a simple calculation. Note that: if A ∼ D then
Ak ∼ Dk. In particular: if D = P−1AP then A = PDP−1 thus:

Ak = AA · · ·A︸ ︷︷ ︸
k−factors

= (PDP−1)(PDP−1) · · · (PDP−1) = PDkP−1.

Note, Dk is easy to calculate. Try this formula out on the last example. Try calculating A25 directly
and then indirectly via this similarity transformation idea.

Beyond this there are applications of diagonalization too numerous to list. One reason I particularly
like the text by Lay is he adds much detail on possible applications that I do not go into here.
See sections 4.8, 4.9, 5.6, 5.7 for more on the applications of eigenvectors and diagonalization. My
chapter 9 does go considerably beyond Lay’s text on the problem of systems of ordinary differential
equations so you could also look there if you thirst for applications of eigenvectors.

6.5.1 linear differential equations and e-vectors: diagonalizable case

Any system of linear differential equations with constant coefficients13 can be reformulated into a
single system of linear differential equations in normal form d~x

dt = A~x + ~f where A ∈ R n×n and
~f : R→ Rn is a vector-valued function of a real variable which is usually called the inhomogeneous
term. To begin suppose ~f = 0 so the problem becomes the homogeneous system d~x

dt = A~x. We wish
to find a vector-valued function ~x(t) = (x1(t), x2(t), . . . , xn(t) such that when we differentiate it we
obtain the same result as if we multiplied it by A. This is what it means to solve the differential
equation d~x

dt = A~x. Essentially, solving this DEqn is like performing n-integrations at once. For
each integration we get a constant, these constants are fixed by initial conditions if we have n of
them. In any event, the general solution has the form:

~x(t) = c1~x1(t) + c2~x2(t) + · · ·+ cn~xn(t)

13there are many other linear differential equations which are far more subtle than the ones we consider here,
however, this case is of central importance to a myriad of applications
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where {~x1(t), ~x2(t), . . . , ~xn(t)} is a LI set of solutions to d~x
dt = A~x meaning

d~xj
dt = A~xj for each

j = 1, 2, . . . , n. Therefore, if we can find these n-LI solutions then we’ve solved the problem.
It turns out that the solutions are particularly simple if the matrix is diagonalizable: suppose
{~u1, ~u2, . . . , ~un} is an eigenbasis with e-values λ1, λ2, . . . , λn. Let ~xj = eλjt~uj and observe that

d~xj
dt

=
d

dt

[
eλjt~uj

]
=

d

dt

[
eλjt

]
~uj = eλjtλj~uj = eλjtA~uj = Aeλjt~uj = A~xj .

We find that each eigenvector ~uj yields a solution ~xj = eλjt~uj . If there are n-LI e-vectors then we
obtain n-LI solutions.

Example 6.5.5. Consider for example, the system

x′ = x+ y, y′ = 3x− y

We can write this as the matrix problem[
x′

y′

]
︸ ︷︷ ︸
d~x/dt

=

[
1 1
3 −1

]
︸ ︷︷ ︸

A

[
x
y

]
︸ ︷︷ ︸

~x

It is easily calculated that A has eigenvalue λ1 = −2 with e-vector ~u1 = (−1, 3) and λ2 = 2 with
e-vectors ~u2 = (1, 1). The general solution of d~x/dt = A~x is thus

~x(t) = c1e
−2t

[
−1

3

]
+ c2e

t

[
1
1

]
=

[
−c1e

−2t + c2e
2t

3c1e
−2t + c2e

2t

]
So, the scalar solutions are simply x(t) = −c1e

−2t + c2e
2t and y(t) = 3c1e

−2t + c2e
2t .

Thus far I have simply told you how to solve the system d~x/dt = A~x with e-vectors, it is interesting
to see what this means geometrically. For the sake of simplicity we’ll continue to think about the
preceding example. In it’s given form the DEqn is coupled which means the equations for the
derivatives of the dependent variables x, y cannot be solved one at a time. We have to solve both
at once. In the next example I solve the same problem we just solved but this time using a change
of variables approach.

Example 6.5.6. Suppose we change variables using the diagonalization idea: introduce new vari-
ables x̄, ȳ by P (x̄, ȳ) = (x, y) where P = [~u1|~u2]. Note (x̄, ȳ) = P−1(x, y). We can diagonalize A by
the similarity transformation by P ; D = P−1AP where Diag(D) = (−2, 2). Note that A = PDP−1

hence d~x/dt = A~x = PDP−1~x. Multiply both sides by P−1:

P−1d~x

dt
= P−1PDP−1~x ⇒ d(P−1~x)

dt
= D(P−1~x).

You might not recognize it but the equation above is decoupled. In particular, using the notation
(x̄, ȳ) = P−1(x, y) we read from the matrix equation above that

dx̄

dt
= −2x̄,

dȳ

dt
= 2ȳ.
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Separation of variables and a little algebra yields that x̄(t) = c1e
−2t and ȳ(t) = c2e

2t. Finally, to
find the solution back in the original coordinate system we multiply P−1~x = (c1e

−2t, c2e
2t) by P to

isolate ~x,

~x(t) =

[
−1 1

3 1

] [
c1e
−2t

c2e
2t

]
=

[
−c1e

−2t + c2e
2t

3c1e
−2t + c2e

2t

]
.

This is the same solution we found in the last example. Usually linear algebra texts present this
solution because it shows more interesting linear algebra, however, from a pragmatic viewpoint the
first method is clearly faster.

Finally, we can better appreciate the solutions we found if we plot the direction field (x′, y′) =
(x+y, 3x−y) via the ”pplane” tool in Matlab. I have clicked on the plot to show a few representative
trajectories (solutions):

6.5.2 linear differential equations and e-vectors: non-diagonalizable case

Generally, there does not exist an eigenbasis for the matrix in d~x/dt = A~x. If the e-values are
all real then the remaining solutions are obtained from the matrix exponential. It turns out that
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X = exp(tA) is a solution matrix for d~x/dt = A~x thus each column in the matrix exponential
is a solution. However, direct computation of the matrix exponential is not usually tractable.
Instead, an indirect approach is used. One calculates generalized e-vectors which when multiplied
on exp(tA) yield very simple solutions. For example, if (A − 3I)~u1 = 0 and A − 3I)~u2 = ~u1 and
(A − 3I)~u3 = ~u2 is a chain of generalized e-vectors with e-value λ = 3 we obtain solutions to
d~x/dt = A~x of the form:

~x1(t) = e3t~u1, ~x2(t) = e3t(~u2 + t~u1), ~x3(t) = e3t(~u3 + t~u2 +
1

2
t2~u1).

All these formulas stem from a simplification of ~xj = etA~uj which I call the the magic formula.
That said, if you’d like to understand what in the world this subsection really means then you
probably should read the DEqns chapter. There is one case left, if we have complex e-valued
then A is not real-diagonalizable and the solutions actually have the form ~x(t) = Re(etA~u) or
~x(t) = Im(etA~u) where ~u is either a complex e-vector or a generalized complex e-vector. Again, I
leave the details for the later chapter. My point here is mostly to alert you to the fact that there are
deep and interesting connections between diagonalization and the Jordan form and the solutions
to corresponding differential equations.

6.6 invariants of linear transformations*

Let V be a finite dimensional vector space. If T : V → V then both det(T ) and Tr(T ) are uniquely
specified by calculation of the determinant and trace with respect to any particular coordinate sys-
tem on V . There are a number of other interesting quantities associated with dimensions of various
subspaces of the linear transformation. Typically, the corresponding subspace in Rn depends on
the choice of coordinate but the dimension of the subspace is does not change when we perform a
similarity transformation.

Example 6.6.1. Consider the matrix

B =

 4 2 2
0 0 −4
0 2 6

 .
You can calculate the characteristic polynomial for B is PB(λ) = det(B − λI) = (λ − 4)2(λ − 2)
thus we find e-values of λ1 = 4 and λ2 = 2. Its also easy to calculate two LI e-vectors for λ1 = 4
namely (1, 0, 0) and (0, 1,−1) and one e-vector (1,−2, 1) with e-value λ2 = 2. The e-spaces have
the form

WB
λ1

= span{(1, 0, 0), (0, 1,−1)} WB
λ2

= span{(1,−2, 1)}

Clearly dimWB
λ1

= 2 and dimWB
λ2

= 1.
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Perhaps these seem a bit familar. Recall from Example 6.2.13 that the matrix

A =

 0 0 −4
2 4 2
2 0 6


also had e-values λ1 = 4 and λ2 = 2. However, the e-spaces have the form

WA
λ1

= span{(0, 1, 0), (−1, 0, 1)} WA
λ2

= span{(−2, 1, 1)}

I constructed B by performing a similarity transformation by P = E1↔2 so it is in fact true that
B ∼ A. Therefore, we can take the following view of this example: the matrix A defines a linear
operator T : Rn → Rn by T (v) = Av. The e-values of T are λ1 = 4 and λ2 = 2 and the dimensions
of the corresponding e-spaces are 2 and 1 respective. If we calculate the e-spaces WB

λ1
,WB

λ2
for

[T ]β,β = B with respect to a nonstandard basis β then the e-spaces will not be the same subspaces
of R3 as WA

λ1
,WA

λ2
.

Similar patterns will emerge if we study an abstract linear operator T : V → V . We choose a
basis β1 for V then the e-spaces for [T ]β1,β1 will be differ from those e-spaces of [T ]β2,β2 . The
e-spaces are all isomorphic to the corresponding abstract e-space which is in V . In particular,
Wλ = span{v ∈ V | T (v) = λv} maps down to W β

λ = {x ∈ Rn | [T ]β,βx = λx} and the precise
locations of this e-space depends on the choice of coordinates. An invariant is something we can
calculate for a linear operator which is indpendent of our choice of basis. Clearly the dimensions of
the e-spaces are invariants of a linear operator. In physics invariants are often something physically
interesting.

Remark 6.6.2.

If T : V → V is a linear transformation then the following are invariants:

1. nullity of T = dim(Null([T ]β,β)),

2. rank of T = dim(Col([T ]β,β)),

3. characteristic polynomial of T is P (λ) = det([T ]β,β − λI),

4. eigenvalues of T are solutions of det([T ]β,β − λI) = 0,

5. eigenspace dimension of T = dim(Null([T ]β,β − λI)),

6. trace(T ) = trace([T ]β,β)

7. det(T ) = det([T ]β,β)

Despite the apparent dependence on the basis β the objects above are uniquely defined. If
we use a basis γ 6= β in the definitions above then we will still obtain the same numbers
and polynomial.
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There are two interesting definitions that we could have presented in earlier chapters but I have
delayed until this juncture because I wanted to give e-vector examples to illustrate the definitions.
First, the concept of an invariant subspace of a linear transformation.

Definition 6.6.3.

Suppose T : V → V is a linear transformation and V1 ≤ V then we say that V1 is an
invariant subspace of T if T (V1) ⊆ V1.

Second the concept of a direct sum decomposition of a vector space into mostly non-overlapping
subspaces:

Definition 6.6.4.

Let V be a vector space and W1,W2 ≤ V . If every v ∈ V can be written as v = w1 + w2

for a some pair of w1 ∈W1 and w2 ∈W2 then we say that V = W1 +W2 is the sum of W1

and W2. If V = W1 +W2 and W1 ∩W2 = {0} then we say V is a direct sum of W1 and
W2 and denote this by writing V = W1 ⊕W2.

Think about eigenspaces. SupposeA ∈ R n×n has all real e-values. If λj 6= λk thenWλj∩Wλk = {0}.
To see this, suppose otherwise. If the intersection was nontrivial then there would exist nonzero
v ∈ Wλj ∩Wλk such that Av = λjv and Av = λkv hence λjv = λkv thus (λj − λk)v = 0 and since
v 6= 0 it follows λj = λk which contradicts λj 6= λk. Since eigenspaces are null spaces we already
have that they are subspaces. Put all of this together we have the following interesting proposition:

Proposition 6.6.5.

Suppose A ∈ R n×n is diagonalizable with distinct e-values λ1, λ2, . . . , λk then we can factor
into a direct sum of e-spaces Rn = Wλ1 ⊕Wλ2 ⊕ · · · ⊕Wλk . Moreover, each e-space is an
invariant subspace of LA : Rn → Rn.

Digression! In physics, the eigenspace above could represent sets of stable energy eigenstates. As
time progresses the hamiltonian operator acts on the states sending them to their next state. The
invariance of the subsets says that states with a particular energy mix only with those states of
the same energy. The eigenvalues of the Hamiltonian are in fact just the energies of the energy
eigenstates. In any event, this crude comment can hardly suffice for study of a good text on
representation theory and quantum mechanics. I enjoyed the text by Greiner on the subject. For a
broader, nearly encylopedic, text you could look at Hamermesh’s Group theory and its application
to physical problems. Group theory is discussed in Math 421. Representation theory is some
combination of group theory and linear algebra which is ubiquitious in modern physics. Quarks,
gluons, the Higgs Boson,... all explained within the confines of representation theory.
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6.7 complex eigenvector examples

Before I begin the material concerning complex eigenvectors I suppose I owe the reader a little
background on matrices with complex number entries.

6.7.1 concerning matrices and vectors with complex entries

To begin, we denote the complex numbers by C. As a two-dimensional real vector space we can
decompose the complex numbers into the direct sum of the real and pure-imaginary numbers;
C = R ⊕ iR. In other words, any complex number z ∈ R can be written as z = a + ib where
a, b ∈ R. It is convenient to define

If λ = α+ iβ ∈ C for α, β ∈ R then Re(λ) = α, Im(λ) = β

The projections onto the real or imaginary part of a complex number are actually linear transfor-
mations from C to R; Re : C→ R and Im : C→ R. Next, complex vectors are simply n-tuples of
complex numbers:

C n = {(z1, z2, . . . , zn) | zj ∈ C } .

Definitions of scalar multiplication and vector addition follow the obvious rules: if z, w ∈ C n and
c ∈ C then

(z + w)j = zj + wj (cz)j = czj

for each j = 1, 2, . . . , n. The complex n-space is again naturally decomposed into the direct sum of
two n-dimensional real spaces; C n = Rn⊕ iRn. In particular, any complex n-vector can be written
uniquely as the sum of real vectors are known as the real and imaginary vector components:

If v = a+ ib ∈ C n for a, b ∈ Rn then Re(v) = a, Im(v) = b.

Recall z = x + iy ∈ C has complex conjugate z∗ = x − iy. Let v ∈ C n we define the complex
conjugate of the vector v to be v∗ which is the vector of complex conjugates;

(v∗)j = (vj)
∗

for each j = 1, 2, . . . , n. For example, [1 + i, 2, 3 − i]∗ = [1 − i, 2, 3 + i]. It is easy to verify the
following properties for complex conjugation of numbers and vectors:

(v + w)∗ = v∗ + w∗, (cv)∗ = c∗v∗, v∗∗ = v.

Complex matrices C m×n can be added, subtracted, multiplied and scalar multiplied in precisely
the same ways as real matrices in R m×n. However, we can also identify them as C m×n = R m×n⊕
iR m×n via the real and imaginary part maps (Re(Z))ij = Re(Zij) and (Im(Z))ij = Im(Zij)
for all i, j. There is an obvious isomorphism C m×n u R 2m×2n which follows from stringing out
all the real and imaginary parts. Again, complex conjugation is also defined component-wise:
((X + iY )∗)ij = Xij − iYij . It’s easy to verify that

(Z +W )∗ = Z∗ +W ∗, (cZ)∗ = c∗Z∗, (ZW )∗ = Z∗W ∗
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for appropriately sized complex matrices Z,W and c ∈ C. Conjugation gives us a natural operation
to characterize the reality of a variable. Let c ∈ C then c is real iff c∗ = c. Likewise, if v ∈ C n

then we say that v is real iff v∗ = v. If Z ∈ C m×n then we say that Z is real iff Z∗ = Z. In short,
an object is real if all its imaginary components are zero. Finally, while there is of course much
more to say we will stop here for now.

6.7.2 complex eigenvectors

Proposition 6.7.1.

If A ∈ R n×n has e-value λ and e-vector v then λ∗ is likewise an e-value with e-vector v∗

for A.

Proof: We assume Av = λv for some λ ∈ C and v ∈ C n×1 with v 6= 0. We can write v = a + ib
and λ = α + iβ for some a, b ∈ Rn and α, β ∈ R. Take the complex conjugate of Av = λv to find
A∗v∗ = λ∗v∗. But, A ∈ R n×n thus A∗ = A and we find Av∗ = λ∗v∗. Moreover, if v = a + ib and
v 6= 0 then we cannot have a = 0 and b = 0. Thus v = a− ib 6= 0. Therefore, v∗ is an e-vector with
e-value λ∗. �

This is a useful proposition. It means that once we calculate one complex e-vectors we almost
automatically get a second e-vector merely by taking the complex conjugate.

Example 6.7.2. Let A =

[
0 1
−1 0

]
and find the e-values and e-vectors of the matrix. Observe

that det(A−λI) = λ2+1 hence the eigevalues are λ = ±i. Find u1 = [u, v]T such that (A−iI)u1 = 0

0 =

[
−i 1
−1 −i

] [
u
v

]
=

[
−iu+ v
−u− iv

]
⇒ −iu+ v = 0

−u− iv = 0
⇒ v = iu ⇒ u1 = u

[
1
i

]
We find infinitely many complex eigenvectors, one for each nonzero complex constant u. In appli-

cations, in may be convenient to set u = 1 so we can write, u1 =

[
1
0

]
+ i

[
0
1

]
Let’s generalize the last example.

Example 6.7.3. Let θ ∈ R and define A =

[
cos θ sin θ
− sin θ cos θ

]
and find the e-values and e-vectors

of the matrix. Observe

0 = det(A− λI) = det

[
cos θ − λ sin θ
− sin θ cos θ − λ

]
= (cos θ − λ)2 + sin2 θ

= cos2 θ − 2λ cos θ + λ2 + sin2 θ

= λ2 − 2λ cos θ + 1

= (λ− cos θ)2 − cos2 θ + 1

= (λ− cos θ)2 + sin2 θ
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Thus λ = cos θ ± i sin θ = e±iθ. Find u1 = [u, v]T such that (A− eiθI)u1 = 0

0 =

[
−i sin θ sin θ
− sin θ −i sin θ

] [
u
v

]
=

[
0
0

]
⇒ −iu sin θ + v sin θ = 0

If sin θ 6= 0 then we divide by sin θ to obtain v = iu hence u1 = [u, iu]T = u[1, i]T which is precisely
what we found in the preceding example. However, if sin θ = 0 we obtain no condition what-so-ever
on the matrix. That special case is not complex. Moreover, if sin θ = 0 it follows cos θ = 1 and in
fact A = I in this case. The identity matrix has the repeated eigenvalue of λ = 1 and every vector
in R2×1 is an e-vector.

Example 6.7.4. Let A =

 1 1 0
−1 1 0
0 0 3

 find the e-values and e-vectors of A.

0 = det(A− λI) =

 1− λ 1 0
−1 1− λ 0
0 0 3− λ


= (3− λ)

[
(1− λ)2 + 1

]
Hence λ1 = 3 and λ2 = 1 ± i. We have a pair of complex e-values and one real e-value. Notice
that for any n× n matrix we must have at least one real e-value since all odd polynomials possess
at least one zero. Let’s begin with the real e-value. Find u1 = [u, v, w]T such that (A− 3I)u1 = 0:

rref

 −2 1 0 0
−1 −2 0 0
0 0 0 0

 =

 1 0 0 0
0 1 0 0
0 0 0 0

 ⇒ u1 = w

 0
0
1


Next find e-vector with λ2 = 1 + i. We wish to find u2 = [u, v, w]T such that (A− (1 + i)I)u2 = 0: −i 1 0 0

−1 −i 0 0
0 0 −1− i 0

 r2 + ir1 → r2−−−−−−−−−→
1
−1−ir3 → r3
−−−−−−−−→

 −i 1 0 0
0 0 0 0
0 0 1 0


One more row-swap and a rescaling of row 1 and it’s clear that

rref

 −i 1 0 0
−1 −i 0 0
0 0 −1− i 0

 =

 1 i 0 0
0 0 1 0
0 0 0 0

 ⇒ u+ iv = 0
w = 0

⇒ u2 = v

 i
1
0


I chose the free parameter to be v. Any choice of a nonzero complex constant v will yield an e-vector
with e-value λ2 = 1 + i. For future reference, it’s worth noting that if we choose v = 1 then we find

u2 =

 0
1
0

+ i

 1
0
0


We identify that Re(u2) = e2 and Im(u2) = e1
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Example 6.7.5. Let B =

[
0 1
−1 0

]
and let C =

[
1
2

√
3

2

−
√

3
2

1
2

]
. Define A to be the block

matrix

A =

[
B 0

0 C

]
=


0 1 0 0
−1 0 0 0

0 0 1
2

√
3

2

0 0 −
√

3
2

1
2


find the e-values and e-vectors of the matrix. Block matrices have nice properties: the blocks
behave like numbers. Of course there is something to prove here, and I have yet to discuss block
multiplication in these notes.

det(A− λI) = det

[
B − λI 0

0 C − λI

]
= det(B − λI)det(C − λI)

Notice that both B and C are rotation matrices. B is the rotation matrix with θ = π/2 whereas C
is the rotation by θ = π/3. We already know the e-values and e-vectors for each of the blocks if we
ignore the other block. It would be nice if a block matrix allowed for analysis of each block one at
a time. This turns out to be true, I can tell you without further calculation that we have e-values

λ1 = ±i and λ2 = 1
2 ± i

√
3

2 which have complex e-vectors

u1 =


1
i
0
0

 = e1 + ie2 u2 =


0
0
1
i

 = e3 + ie4

I invite the reader to check my results through explicit calculation. Technically, this is bad form as
I have yet to prove anything about block matrices. Perhaps this example gives you a sense of why
we should talk about the blocks at some point.

Finally, you might wonder are there matrices which have a repeated complex e-value. And if so are
there always as many complex e-vectors as there are complex e-values? The answer: sometimes.

Take for instance A =

[
B 0

0 B

]
(where B is the same B as in the preceding example) this

matrix will have a repeated e-value of λ = ±i and you’ll be able to calculate u1 = e1 ± ie2 and
u2 = e3± ie4 are linearly independent e-vectors for A. However, there are other matrices for which
only one complex e-vector is available despite a repeat of the e-value. Bonus point if you can give
me an example soon ( it’ll need to be at least a 4× 4 matrix).
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6.8 linear independendence of complex eigenvectors

The complex case faces essentially the same difficulties. Complex e-vectors give us pair of linearly
independent vectors with which we are welcome to form a basis. However, the complex case can
also fail to provide a sufficient number of complex e-vectors to fill out a basis. In such a case we
can still look for generalized complex e-vectors. Each generalized complex e-vector will give us
a pair of linearly independent real vectors which are linearly independent from the pairs already
constructed from the complex e-vectors. Although many of the arguments transfer directly from
pervious sections there are a few features which are uniquely complex.

Proposition 6.8.1.

If A ∈ R m×n has complex e-value λ = α+iβ such that β 6= 0 and e-vector v = a+ib ∈ C n×1

such that a, b ∈ Rn then λ∗ = α − iβ is a complex e-value with e-vector v∗ = a − ib and
{v, v∗} is a linearly independent set of vectors over C.

Proof: Proposition 6.7.1 showed that v∗ is an e-vector with e-value λ∗ = α − iβ. Notice that
λ 6= λ∗ since b 6= 0. Therefore, v and v∗ are e-vectors with distinct e-values. Note that Proposition
6.4.2 is equally valid for complex e-values and e-vectors. Hence, {v, v∗} is linearly independent
since these are e-vectors with distinct e-values. �

Proposition 6.8.2.

If A ∈ R m×n has complex e-value λ = α+iβ such that β 6= 0 and e-vector v = a+ib ∈ C n×1

such that a, b ∈ Rn then a 6= 0 and b 6= 0.

Proof: Expand Av = λv into the real components,

λv = (α+ iβ)(a+ ib) = αa− βb+ i(βa+ αb)

and
Av = A(a+ ib) = Aa+ iAb

Equating real and imaginary components yeilds two real matrix equations,

Aa = αa− βb and Ab = βa+ αb

Suppose a = 0 towards a contradiction, note that 0 = −βb but then b = 0 since β 6= 0 thus
v = 0 + i0 = 0 but this contradicts v being an e-vector. Likewise if b = 0 we find βa = 0 which
implies a = 0 and again v = 0 which contradicts v being an e-vector. Therefore, a, b 6= 0. �

Proposition 6.8.3.

If A ∈ R n×n and λ = α + iβ ∈ C with α, β ∈ R and β 6= 0 is an e-value with e-vector
v = a+ ib ∈ C n×1 and a, b ∈ Rn then {a, b} is a linearly independent set of real vectors.
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Proof: Add and subtract the equations v = a+ ib and v∗ = a− ib to deduce

a = 1
2(v + v∗) and b = 1

2i(v − v∗)

Let c1, c2 ∈ R then consider,

c1a+ c2b = 0 ⇒ c1[1
2(v + v∗)] + c2[ 1

2i(v − v∗)] = 0

⇒ [c1 − ic2]v + [c1 + ic2]v∗ = 0

But, {v, v∗} is linearly independent hence c1 − ic2 = 0 and c1 + ic2 = 0. Adding these equations
gives 2c1 = 0. Subtracting yields 2ic2 = 0. Thus c1 = c2 = 0 and we conclude {a, b} is linearly
independent. �

Proposition 6.8.4.

If A ∈ R m×n has complex e-value λ = α + iβ such that β 6= 0 and chain of generalized
e-vectors vk = ak + ibk ∈ C n×1 of orders k = 1, 2, . . . ,m such that ak, bk ∈ R then
{a1, b1, a2, b2, . . . am, bm} is linearly independent.

Proof: will earn bonus points. Give it to me it soon please. �

6.9 diagonalization in complex case

Given a matrix A ∈ R n×n, we restrict our attention to the case that there are enough e-vectors
both real and complex to complete a basis for Rn. We have seen that each complex e-vector yields
two LI real vectors so if we have k-complex e-vectors we assume that there are another n− 2k-real
e-vectors to complex a basis for Rn. This is not an e-basis, but it’s close. We seek to analyze how
this basis will transform a given matrix. These notes loosely follow Lay’s Text pages 339-341.

To begin let’s try an experiment using the e-vector and complex e-vectors for found in Example 6.7.4.
We’ll perform a similarity transformation based on this complex basis: β = {(i, 1, 0), (−i, 1, 0), (0, 0, 1)}.
Notice that

[β] =

 i −i 0
1 1 0
0 0 1

 ⇒ [β]−1 =
1

2

 −i 1 0
i 1 0
0 0 2


Then, we can calculate that

[β]−1A[β] =
1

2

 −i 1 0
i 1 0
0 0 2

 1 1 0
−1 1 0
0 0 3

 i −i 0
1 1 0
0 0 1

 =

 1 + i 0 0
0 1− i 0
0 0 3


I would say that A is complex-diagonalizable in this case. However, usually we are interested in
obtaining factorizations in terms of real matrices so we should continue thinking.
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Example 6.9.1. Suppose C =

[
a −b
b a

]
. We can calculate that det(A− λI) = (a− λ)2 + b2 = 0

hence we have two(one), typically complex, e-value λ = a±ib. Denoting r =
√
a2 + b2 (the modulus

of a+ ib). We can work out that

C =

[
a −b
b a

]
= r

[
a/r −b/r
b/r a/r

]
=

[
r 0
0 r

] [
cos(β) − sin(β)
sin(β) cos(β)

]
Therefore, a 2 × 2 matrix with complex-evalue will factor into a dilation by the modulus of the
e-value |λ| times a rotation by the arugment of the e-value. If we write λ = rexp(iβ) then we can
identify that r > 0 is the modulus and β is an arugment (there is degeneracy here because angle are
multiply defined).

Continuing to think about the 2× 2 case, note that our complex e-vector yields two real LI-vectors
and hence a basis for R2. Performing a similarity transformation by P = [Re(~u)|Im(~u)] will uncover
the rotation hiding inside the matrix. We may work this out in lecture if there is interest.



Chapter 7

linear geometry

The concept of a geometry is very old. Philosophers in the nineteenth century failed miserably in
their analysis of geometry and the physical world. They became mired in the popular misconception
that mathematics must be physical. They argued that because 3 dimensional Eulcidean geometry
was the only geometry familar to everyday experience it must surely follow that a geometry which
differs from Euclidean geometry must be nonsensical. However, why should physical intuition factor
into the argument? We understand now that geometry is a mathematical construct, not a physical
one. There are many possible geometries. On the other hand, it would seem the geometry of space
and time probably takes just one form. We are tempted by this misconception every time we ask
”but what is this math really”. That question is usually wrong-headed. A better question is ”is
this math logically consistent” and if so what physical systems is it known to model.

The modern view of geometry is stated in the langauge of manifolds, fiber bundles,algebraic ge-
ometry and perhaps even more fantastic structures. There is currently great debate as to how we
should model the true intrinsic geometry of the universe. Branes, strings, quivers, noncommutative
geometry, twistors, ... this list is endless. However, at the base of all these things we must begin
by understanding what the geometry of a flat space entails.

Vector spaces are flat manifolds. They possess a global coordinate system once a basis is chosen.
Up to this point we have only cared about algebraic conditions of linear independence and span-
ning. There is more structure we can assume. We can ask what is the length of a vector? Or, given
two vectors we might want to know what is the angle bewtween those vectors? Or when are two
vectors orthogonal?

If we desire we can also insist that the basis consist of vectors which are orthogonal which means
”perpendicular” in a generalized sense. A geometry is a vector space plus an idea of orthogonality
and length. The concepts of orthogonality and length are encoded by an inner-product. Inner-
products are symmetric, positive definite, bilinear forms, they’re like a dot-product. Once we have
a particular geometry in mind then we often restrict the choice of bases to only those bases which
preserve the length of vectors.

203
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The mathematics of orthogonality is exhibited by the dot-products and vectors in calculus III.
However, it turns out the concept of an inner-product allows us to extend the idea or perpendicu-
lar to abstract vectors such as functions. This means we can even ask interesting questions such
as ”how close is one function to another” or ”what is the closest function to a set of functions”.
Least-squares curve fitting is based on this geometry.

This chapter begins by defining dot-products and the norm (a.k.a. length) of a vector in Rn. Then
we discuss orthogonality, the Gram Schmidt algorithm, orthogonal complements and finally the
application to the problem of least square analysis. The chapter concludes with a consideration of
the similar, but abstract, concept of an inner product space. We look at how least squares gener-
alizes to that context and we see how Fourier analysis naturally flows from our finite dimensional
discussions of orthogonality. 1

Let me digress from linear algebra for a little while. In physics it is customary to only allow coordi-
nates which fit the physics. In classical mechanics one often works with intertial frames which are
related by a rigid motion. Certain quantities are the same in all intertial frames, notably force. This
means Newtons laws have the same form in all intertial frames. The geometry of special relativity
is 4 dimensional. In special relativity, one considers coordinates which preserve Einstein’s three
axioms. Allowed coordinates are related to other coordinates by Lorentz transformations. These
Lorentz transformations include rotations and velocity boosts. These transformations are designed
to make the speed of a light ray invariant in all frames. For a linear algebraist the vector space is
the starting point and then coordinates are something we add on later. Physics, in contrast, tends
to start with coordinates and if the author is kind he might warn you which transformations are
allowed.

What coordinate transformations are allowed actually tells you what kind of physics you are dealing
with. This is an interesting and nearly universal feature of modern physics. The allowed transfor-
mations form what is known to physicsists as a ”group” ( however, strictly speaking these groups
do not always have the strict structure that mathematicians insist upon for a group). In special
relativity the group of interest is the Poincaire group. In quantum mechanics you use unitary
groups because unitary transformations preserve probabilities. In supersymmetric physics you use
the super Poincaire group because it is the group of transformations on superspace which preserves
supersymmetry. In general relativity you allow general coordinate transformations which are locally
lorentzian because all coordinate systems are physical provided they respect special relativity in a
certain approximation. In solid state physics there is something called the renormilzation group
which plays a central role in physical predictions of field-theoretic models. My point? Transfor-
mations of coordinates are important if you care about physics. We study the basic case of vector
spaces in this course. If you are interested in the more sophisticated topics just ask, I can show
you where to start reading.

1we ignore analytical issues of convergence since we have only in mind a Fourier approximation, not the infinite
series
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7.1 Euclidean geometry of Rn

The dot-product is a mapping from Rn × Rn to R. We take in a pair of vectors and output a real
number.

Definition 7.1.1.

Let x, y ∈ Rn we define x · y ∈ R by

x · y = xT y = x1y1 + x2y2 + · · ·xnyn

Example 7.1.2. Let v = [1, 2, 3, 4, 5]T and w = [6, 7, 8, 9, 10]T

v · w = 6 + 14 + 24 + 36 + 50 = 130

The dot-product can be used to define the length or norm of a vector and the angle between two
vectors.

Definition 7.1.3.

The length or norm of x ∈ Rn is a real number which is defined by ||x|| =
√
x · x.

Furthermore, let x, y be nonzero vectors in Rn we define the angle θ between x and y by
cos−1

[ x·y
||x|| ||y||

]
. R together with these defintions of length and angle forms a Euclidean

Geometry.

Technically, before we make this definition we should make sure that the formulas given above even
make sense. I have not shown that x ·x is nonnegative and how do we know that the inverse cosine
is well-defined? The first proposition below shows the norm of x is well-defined and establishes
several foundational properties of the dot-product.
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Proposition 7.1.4.

Suppose x, y, z ∈ Rn and c ∈ R then

1. x · y = y · x

2. x · (y + z) = x · y + x · z

3. c(x · y) = (cx) · y = x · (cy)

4. x · x ≥ 0 and x · x = 0 iff x = 0

Proof: the proof of (1.) is easy, x · y =
∑n

i=1 xiyi =
∑n

i=1 yixi = y · x. Likewise,

x · (y + z) =

n∑
i=1

xi(y + z)i =

n∑
i=1

(xiyi + xizi) =

n∑
i=1

xiyi +

n∑
i=1

xizi = x · y + x · z

proves (2.) and since

c
n∑
i=1

xiyi =
n∑
i=1

cxiyi =
n∑
i=1

(cx)iyi =
n∑
i=1

xi(cy)i

we find c(x ·y) = (cx) ·y = x · (cy). Continuting to (4.) notice that x ·x = x1
2 +x2

2 + · · ·+xn
2 thus

x · x is the sum of squares and it must be nonnegative. Suppose x = 0 then x · x = xTx = 0T 0 = 0.
Conversely, suppose x · x = 0. Suppose x 6= 0 then we find a contradiction since it would have a
nonzero component which implies x1

2 + x2
2 + · · ·+ xn

2 6= 0. This completes the proof of (4.). �

The formula cos−1
[ x·y
||x|| ||y||

]
is harder to justify. The inequality that we need for it to be reasonable

is
∣∣ x·y
||x|| ||y||

∣∣ ≤ 1, otherwise we would not have a number in the dom(cos−1) = range(cos) = [−1, 1].

An equivalent inequality is |x · y| ≤ ||x|| ||y|| which is known as the Cauchy-Schwarz inequality.

Proposition 7.1.5.

If x, y ∈ Rn then |x · y| ≤ ||x|| ||y||

Proof: I’ve looked in a few linear algebra texts and I must say the proof given in Spence, Insel and
Friedberg is probably the most efficient and clear. Other texts typically run up against a quadratic
inequality in some part of their proof (for example the linear algebra texts by Apostle, Larson&
Edwards, Anton & Rorres to name a few). That is somehow hidden in the proof that follows: let
x, y ∈ Rn. If either x = 0 or y = 0 then the inequality is clearly true. Suppose then that both x
and y are nonzero vectors. It follows that ||x||, ||y|| 6= 0 and we can define vectors of unit-length;
x̂ = x

||x|| and ŷ = y
||y|| . Notice that x̂ · x̂ = x

||x|| ·
x
||x|| = 1

||x||2 x̂ · x = x·x
x·x = 1 and likewise ŷ · ŷ = 1.
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Consider,

0 ≤ ||x̂± ŷ||2 = (x̂± ŷ) · (x̂± ŷ)

= x̂ · x̂± 2(x̂ · ŷ) + ŷ · ŷ
= 2± 2(x̂ · ŷ)

⇒ −2 ≤ ±2(x̂ · ŷ)

⇒ ±x̂ · ŷ ≤ 1

⇒ |x̂ · ŷ| ≤ 1

Therefore, noting that x = ||x||x̂ and y = ||y||ŷ,

|x · y| = | ||x||x̂ · ||y||ŷ | = ||x|| ||y|| |x̂ · ŷ| ≤ ||x|| ||y||.

The use of unit vectors is what distinguishes this proof from the others I’ve found. �

Remark 7.1.6.

The dot-product is but one of many geometries for Rn. We will explore generalizations of
the dot-product in a later section. However, in this section we will work exclusively with the
standard dot-product on Rn. Generally, unless explicitly indicated otherwise, we assume
Euclidean geometry for Rn.

Just for fun here’s a picture of a circle in the hyperbolic geometry of special relativity, technically
it’s not a geometry since we have nonzero-vectors with zero length ( so-called null-vectors ). Per-
haps we will offer a course in special relativity some time and we could draw these pictures with
understanding in that course.
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Example 7.1.7. Let v = [1, 2, 3, 4, 5]T and w = [6, 7, 8, 9, 10]T find the angle between these vectors
and calculate the unit vectors in the same directions as v and w. Recall that, v ·w = 6 + 14 + 24 +
36 + 50 = 130. Furthermore,

||v|| =
√

12 + 22 + 32 + 42 + 52 =
√

1 + 4 + 9 + 16 + 25 =
√

55

||w|| =
√

62 + 72 + 82 + 92 + 102 =
√

36 + 49 + 64 + 81 + 100 =
√

330

We find unit vectors via the standard trick, you just take the given vector and multiply it by the
reciprocal of its length. This is called normalizing the vector,

v̂ = 1√
55

[1, 2, 3, 4, 5]T ŵ = 1√
330

[6, 7, 8, 9, 10]T

The angle is calculated from the definition of angle,

θ = cos−1

(
130√

55
√

330

)
= 15.21o

It’s good we have this definition, 5-dimensional protractors are very expensive.

Proposition 7.1.8.

Let x, y ∈ Rn and suppose c ∈ R then

1. ||cx|| = |c| ||x||

2. ||x+ y|| ≤ ||x||+ ||y||

Proof: let x ∈ Rn and c ∈ R then calculate,

||cx||2 = (cx) · (cx) = c2x · x = c2||x||2

Since ||cx|| ≥ 0 the squareroot yields ||cx|| =
√
c2||x|| and

√
c2 = |c| thus ||cx|| = |c|||x||. Item (2.)

is called the triangle inequality for reasons that will be clear when we later discuss the distance
function. Let x, y ∈ Rn,

||x+ y||2 = |(x+ y) · (x+ y)| defn. of norm

= |x · (x+ y) + y · (x+ y)| prop. of dot-product

= |x · x+ x · y + y · x+ y · y| prop. of dot-product

= | ||x||2 + 2x · y + ||y||2 | prop. of dot-product

≤ ||x||2 + 2|x · y|+ ||y||2 triangle ineq. for R
≤ ||x||2 + 2||x|| ||y||+ ||y||2 Cauchy-Schwarz ineq.

≤ (||x||+ ||y||)2 algebra

Notice that both ||x + y|| and ||x|| + ||y|| are nonnegative by (4.) of Proposition 7.1.4 hence the
inequality above yields ||x+ y|| ≤ ||x||+ ||y||. �
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Definition 7.1.9.

The distance between a ∈ Rn and b ∈ Rn is defined to be d(a, b) ≡ ||b− a||.

If we draw a picture this definition is very natural. Here we are thinking of the points a, b as vectors
from the origin then b − a is the vector which points from a to b (this is algebraically clear since
a+ (b− a) = b). Then the distance between the points is the length of the vector that points from
one point to the other. If you plug in two dimensional vectors you should recognize the distance
formula from middle school math:

d((a1, a2), (b1, b2)) =
√

(b1 − a1)2 + (b2 − a2)2

Proposition 7.1.10.

Let d : Rn × Rn → R be the distance function then

1. d(x, y) = d(y, x)

2. d(x, y) ≥ 0

3. d(x, x) = 0

4. d(x, y) + d(y, z) ≥ d(x, z)

Proof: I leave the proof of (1.), (2.) and (3.) to the reader. Item (4.) is also known as the
triangle inequality. Think of the points x, y, z as being the vertices of a triangle, this inequality
says the sum of the lengths of two sides cannot be smaller than the length of the remaining side.
Let x, y, z ∈ Rn and note by the triangle inequality for || · ||,

d(x, z) = ||z − x|| = ||z − y + y − x|| ≤ ||z − y||+ ||y − x|| = d(y, z) + d(x, y). �

We study the 2 and 3 dimensional case in some depth in calculus III. I would recommend you take
that course, even if it’s not ”on your sheet”.
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7.2 orthogonality in Rn

Two vectors are orthogonal if the vectors point in mutually exclusive directions. We saw in calculus
III the dot-product allowed us to pick apart vectors into pieces. The same is true in n-dimensions:
we can take a vector an disassemble it into component vectors which are orthogonal.

Definition 7.2.1.

Let v, w ∈ Rn then we say v and w are orthogonal iff v · w = 0.

Example 7.2.2. Let v = [1, 2, 3]T describe the set of all vectors which are orthogonal to v. Let
r = [x, y, z]T be an arbitrary vector and consider the orthogonality condition:

0 = v · r = [1, 2, 3][x, y, z]T = x+ 2y + 3z = 0.

If you’ve studied 3 dimensional Cartesian geometry you should recognize this as the equation of a
plane through the origin with normal vector < 1, 2, 3 >.

Proposition 7.2.3. Pythagorean Theorem in n-dimensions

If x, y ∈ Rn are orthogonal vectors then ||x||2 + ||y||2 = ||x+ y||2.

Proof: Calculuate ||x+ y||2 from the dot-product,

||x+ y||2 = (x+ y) · (x+ y) = x · x+ x · y + y · x+ y · y = ||x||2 + ||y||2. �

Proposition 7.2.4.

The zero vector is orthogonal to all other vectors in Rn.

Proof: let x ∈ Rn note 2(0) = 0 thus 0 · x = 2(0) · x = 2(0 · x) which implies 0 · x = 0. �

Definition 7.2.5.

A set S of vectors in Rn is orthogonal iff every pair of vectors in the set is orthogonal. If
S is orthogonal and all vectors in S have length one then we say S is orthonormal.

Example 7.2.6. Let u = [1, 1, 0], v = [1,−1, 0] and w = [0, 0, 1]. We calculate

u · v = 0, u · w, v · w = 0

thus S = {u, v, w} is an orthogonal set. However, it is not orthonormal since ||u|| =
√

2. It is easy
to create an orthonormal set, we just normalize the vectors; T = {û, v̂, ŵ} meaning,

T =
{

1√
2
[1, 1, 0], 1√

2
[1,−1, 0], [0, 0, 1]

}
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Proposition 7.2.7. Extended Pythagorean Theorem in n-dimensions

If x1, x2, . . . xk are orthogonal then

||x1||2 + ||x2||2 + · · ·+ ||xk||2 = ||x1 + x2 + · · ·+ xk||2

Proof: we can prove the second statement by applying the Pythagorean Theorem for two vectors
repeatedly, starting with

||x1 + (x2 + · · ·+ xk)||2 = ||x1||2 + ||x2 + · · ·+ xk||2

but then we can apply the Pythagorean Theorem to the rightmost term

||x2 + (x3 + · · ·+ xk)||2 = ||x2||2 + ||x3 + · · ·+ xk||2.

Continuing in this fashion until we obtain the Pythagorean Theorem for k-orthogonal vectors. �

I have illustrated the proof above in the case of three dimensions and k-dimensions, however my
k-dimensional diagram takes a little imagination. Another thing to think about: given v = v1e1 +
v2e2 + · · ·+ vnen if ei are orthonormal then ||v||2 = v2

1 + v2
2 + · · ·+ v2

n. Therefore, if we use a basis
which is orthonormal then we obtain the standard formula for length of a vector with respect to
the coordinates. If we were to use a basis of vectors which were not orthogonal or normalizes then
the formula for the length of a vector in terms of the coordinates could look quite different.

Example 7.2.8. Use the basis {v1 = [1, 1]T , v2 = [2, 0]T } for R 2×1. Notice that {v1, v2} is not
orthogonal or normal. Given x, y ∈ R we wish to find a, b ∈ R such that r = [x, y]T = av1 + bv2,
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this amounts to the matrix calculation:

rref [v1|v2|r] = rref

[
1 2 x
1 0 y

]
=

[
1 0 y
0 1 1

2(x− y)

]
Thus a = y and b = 1

2(x− y). Let’s check my answer,

av1 + bv2 = y[1, 1]T + 1
2(x− y)[2, 0]T = [y + x− y, y + 0]T = [x, y]T .

Furthermore, solving for x, y in terms of a, b yields x = 2b+ a and y = a. Therefore, ||[x, y]T ||2 =
x2 + y2 is modified to

||av1 + bv2||2 = (2b+ a)2 + a2 6= ||av1||2 + ||bv2||2.

If we use a basis which is not orthonormal then we should take care not to assume formulas given
for the standard basis equally well apply. However, if we trade the standard basis for a new basis
which is orthogonal then we have less to worry about. The Pythagorean Theorem only applies in
the orthogonal case. For two normalized, but possibly non-orthogonal, vectors we can replace the
Pythagorean Theorem with a generalization of the Law of Cosines in Rn.

||av1 + bv2||2 = a2 + b2 + 2ab cos θ

where v1 · v2 = cos θ. ( I leave the proof to the reader )

Proposition 7.2.9.

If S = {v1, v2, . . . , vk} ⊂ Rn is an orthogonal set of nonzero vectors then S is linearly
independent.

Proof: suppose c1, c2, . . . , ck ∈ R such that

c1v1 + c2v2 + · · · ckvk = 0

Take the dot-product of both sides with respect to vj ∈ S,

c1v1 · vj + c2v2 · vj + · · ·+ ckvk · vj = 0 · vj = 0

Notice all terms in the sum above vanish by orthogonality except for one term and we are left with
cjvj · vj = 0. However, vj 6= 0 thus vj · vj 6= 0 and it follows we can divide by the nonzero scalar
vj · vj leaving cj = 0. But j was arbitrary hence c1 = c2 = · · · = ck = 0 and hence S is linearly
independent. �

The converse of the proposition above is false. Given a linearly indepdent set of vectors it is not
necessarily true that set is also orthogonal. However, we can modify any linearly independent set
of vectors to obtain a linearly indepedent set. The procedure for this modification is known as the
Gram-Schmidt orthogonalization. It is based on a generalization of the idea the vector projection
from calculus III. Let me remind you: we found the projection operator to be a useful construction
in calculus III. The projection operation allowed us to select the vector component of one vector
that pointed in the direction of another given vector. We used this to find the distance from a
point to a plane.
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Definition 7.2.10.

Let ~A 6= 0, ~B be vectors then we define

Proj ~A( ~B) = ( ~B · Â)Â

where Â = 1
||A||A. Moreover, the length of Proj ~A( ~B) is called the component of ~B in the

~A-direction and is denoted Comp ~A( ~B) = ||Proj ~A( ~B)||. Finally, the orthogonal comple-

ment is defined by Orth ~A( ~B) = ~B − Proj ~A( ~B).

Example 7.2.11. Suppose ~A =< 2, 2, 1 > and ~B =< 2, 4, 6 > notice that we can also express the
projection opertation by Proj ~A( ~B) = ( ~B · Â)Â = 1

|| ~A||2
( ~B · ~A) ~A thus

Proj ~A( ~B) = 1
9(< 2, 4, 6 > · < 2, 2, 1 >) < 2, 2, 1 >= 4+8+6

9 < 2, 2, 1 >=< 4, 4, 2 >

The length of the projection vector gives Comp ~A( ~B) =
√

16 + 16 + 4 = 6. One application of this
algebra is to calculate the distance from the plane 2x + 2y + z = 0 to the point (2, 4, 6). The
”distance” from a plane to a point is defined to be the shortest distance. It’s geometrically clear
that the shortest path from the plane is found along the normal to the plane. If you draw a picture
its not hard to see that (2, 4, 6) − Proj ~A( ~B) =< 2, 4, 6 > − < 4, 4, 2 >= (−2, 0, 4) is the closest
point to (2, 4, 6) that lies on the plane 2x+ 2y+ z = 0. Moreover the distance from the plane to the
point is just 6.
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Example 7.2.12. We studied ~A =< 2, 2, 1 > and ~B =< 2, 4, 6 > in the preceding example. We
found that notice that Proj ~A( ~B) =< 4, 4, 2 >. The projection of ~B onto ~A is the part of ~B which

points in the direction of ~A. It stands to reason that if we subtract away the projection then we will
be left with the part of ~B which does not point in the direction of ~A, it should be orthogonal.

Orth ~A( ~B) = ~B − Proj ~A( ~B) =< 2, 4, 6 > − < 4, 4, 2 >=< −2, 0, 4 >

Let’s verify Orth ~A( ~B) is indeed orthogonal to ~A,

Orth ~A( ~B) · ~A =< −2, 0, 4 > · < 2, 2, 1 >= −4 + 4 = 0.

Notice that the projection operator has given us the following orthogonal decomposition of ~B:

< 2, 4, 6 >= ~B = Proj ~A( ~B) +Orth ~A( ~B) =< 4, 4, 2 > + < −2, 0, 4 > .

If ~A, ~B are any two nonzero vectors it is probably clear that we can perform the decomposition
outlined in the example above. It would not be hard to show that if S = { ~A, ~B} is linearly
indepedendent then S′ = { ~A,Orth ~A( ~B)} is an orthogonal set, moreover they have the same span.
This is a partial answer to the converse of Proposition 7.2.9. But, what if we had three vectors
instead of two? How would we orthogonalize a set of three linearly independent vectors?

Remark 7.2.13.

I hope you can forgive me for reverting to calculus III notation in the last page or two. It
should be clear enough to the reader that the orthogonalization and projection operations
can be implemented on either rows or columns. I return to our usual custom of thinking pri-
marily about column vectors at this point. We’ve already seen the definition from Calculus
III, now we turn to the n-dimensional case in matrix notation.
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Definition 7.2.14.

Suppose a 6= 0 ∈ Rn, define the projection of b onto a to be the mapping Proja :
Rn → Rn such that Proja(b) = 1

aT a
(aT b)a. Moreover, we define Ortha : Rn → Rn by

Ortha(b) = b− Proja(b) = b− 1
aT a

(aT b)a for all b ∈ Rn.

Proposition 7.2.15.

If a 6= 0 ∈ Rn then Proja and Ortha are linear transformations.

1. Ortha(b) · a = 0 for all b ∈ Rn,

2. Ortha(b) · Proja(y) = 0 for all b, y ∈ Rn,

3. the projection is idempotent; Proja ◦Proja = Proja.

I leave the proof of linearity as an exercise. Begin with (1.): let a 6= 0 ∈ Rn and let b ∈ Rn,

a ·Ortha(b) = aT (b− 1
aT a

(aT b)a)

= aT b− aT ( 1
aT a

(aT b)a)

= aT b− 1
aT a

(aT b)aTa

= aT b− aT b = 0.

notice I used the fact that aT b, aTa were scalars to commute the aT to the end of the expression.
Notice that (2.) follows since Proja(y) = ka for some constant k. Next, let b ∈ Rn and consider:

(Proja ◦Proja)(b) = Proja(Proja(b))

= Proja(
1
aT a

(aT b)a)

= 1
aT a

(aT [ 1
aT a

(aT b)a])a

= 1
aT a

( a
T b
aT a

aTa)a

= 1
aT a

(aT b)a

= Proja(b)

since the above holds for all b ∈ Rn we find Proja ◦Proja = Proja. This can also be denoted
Proj2

a = Proja. �

Proposition 7.2.16.

If S = {a, b, c} be a linearly independent set of vectors in Rn then S′ = {a′, b′, c′} is an
orthogonal set of vectors in Rn if we define a′, b′, c′ as follows:

a′ = a, b′ = Ortha′(b), c′ = Ortha′(Orthb′(c)).
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Proof: to prove S′ orthogonal we must show that a′ · b′ = 0, a′ · c′ = 0 and b′ · c′ = 0. We already
proved a′ · b′ = 0 in the Proposition 7.2.15. Likewise, a′ · c′ = 0 since Ortha′(x) is orthogonal to a′

for any x. Consider:

b′ · c′ = b′ ·Ortha′(Orthb′(c))
= b′ ·

[
Orthb′(c)− Proja′(Orthb′(c))

]
= b′ ·Orthb′(c)−Ortha(b) · Proja(Orthb′(c))
= 0

Where we again used (1.) and (2.) of Proposition 7.2.15 in the critical last step. The logic of
the formulas is very natural. To construct b′ we simply remove the part of b which points in the
direction of a′. Then to construct c′ we first remove the part of c in the b′ direction and then the
part in the a′ direction. This means no part of c′ will point in the a′ or b′ directions. In principle,
one might worry we would subtract away so much that nothing is left, but the linear independence
of the vectors insures that is not possible. If it were that would imply a linear dependence of the
original set of vectors. �

For convenience let me work out the formulas we just discovered in terms of an explicit formula with
dot-products. We can also perform the same process for a set of 4 or 5 or more vectors. I’ll state the
process for arbitrary order, you’ll forgive me if I skip the proof this time. There is a careful proof
on page 379 of Spence, Insel and Friedberg. The connection between my Orth operator approach
and the formulas in the proposition that follows is just algebra:

v′3 = Orthv′1(Orthv′2(v3))

= Orthv′2(v3)− Projv′1(Orthv′2(v3))

= v3 − Projv′2(v3)− Projv′1(v3 − Projv′2(v3))

= v3 − Projv′2(v3)− Projv′1(v3)− Projv′1(Projv′2(v3))

= v3 −
v3 · v′2
v′2 · v′2

v′2 −
v3 · v′1
v′1 · v′1

v′1

The last term vanished because v′1 · v′2 = 0 and the projections are just scalar multiples of those
vectors.
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Proposition 7.2.17. The Gram-Schmidt Process

If S = {v1, v2, . . . , vk} is a linearly independent set of vectors in Rn then S′ = {v′1, v′2, . . . , v′k}
is an orthogonal set of vectors in Rn if we define v′i as follows:

v′1 = v1

v′2 = v2 −
v2 · v′1
v′1 · v′1

v′1

v′3 = v3 −
v3 · v′2
v′2 · v′2

v′2 −
v3 · v′1
v′1 · v′1

v′1

v′k = vk −
vk · v′k−1

v′k−1 · v′k−1

v′k−1 −
vk · v′k−2

v′k−2 · v′k−2

v′k−2 − · · · −
vk · v′1
v′1 · v′1

v′1.

Example 7.2.18. Suppose v1 = [1, 0, 0, 0]T , v2 = [3, 1, 0, 0]T , v3 = [3, 2, 0, 3]T . Let’s use the Gram-
Schmidt Process to orthogonalize these vectors: let v′1 = v1 = [1, 0, 0, 0]T and calculate:

v′2 = v2 −
v2 · v1

v1 · v1
v1 = [3, 1, 0, 0]T − 3[1, 0, 0, 0]T = [0, 1, 0, 0]T .

Next,

v′3 = v3 −
v3 · v′2
v′2 · v′2

v′2 −
v3 · v′1
v′1 · v′1

v′1 = [3, 2, 0, 3]T − 2[0, 1, 0, 0]− 3[1, 0, 0, 0]T = [0, 0, 0, 3]T

We find the orthogonal set of vectors {e1, e2, e4}. It just so happens this is also an orthonormal set
of vectors.

Proposition 7.2.19. Normalization

If S′ = {v′1, v′2, . . . , v′k} is an orthogonal subset of Rn then S′′ = {v′′1 , v′′2 , . . . , v′′k} is an

orthonormal set if we define v′′i = v̂′i = 1
||v′i||

v′i for each i = 1, 2, . . . , k.

Example 7.2.20. Suppose v1 = [1, 1, 1]T , v2 = [1, 2, 3]T , v3 = [0, 0, 3]T find an orthonormal set
of vectors that spans span{v1, v2, v3}. We can use Gram-Schmidt followed by a normalization, let
v′1 = [1, 1, 1]T then calculate

v′2 = [1, 2, 3]T −
(

1 + 2 + 3

3

)
[1, 1, 1]T = [1, 2, 3]T − [2, 2, 2]T = [−1, 0, 1]T .

as a quick check on my arthimetic note v′1 · v′2 = 0 (good). Next,

v′3 = [0, 0, 3]T −
(

0(−1) + 0(0) + 3(1)

2

)
[−1, 0, 1]T −

(
0(1) + 0(1) + 3(1)

3

)
[1, 1, 1]T
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⇒ v′3 = [0, 0, 3]T + [3
2 , 0,−

3
2 ]T − [1, 1, 1]T = [1

2 ,−1, 1
2 ]T

again it’s good to check that v′2 · v′3 = 0 and v′1 · v′3 = 0 as we desire. Finally, note that ||v′1|| =√
3, ||v′2|| =

√
2 and ||v′3|| =

√
3/2 hence

v′′1 = 1√
3
[1, 1, 1]T , v′′2 = 1√

2
[−1, 0, 1]T , v′′3 =

√
2
3 [1

2 ,−1, 1
2 ]T

are orthonormal vectors.

Definition 7.2.21.

A basis for a subspace W of Rn is an orthogonal basis for W iff it is an orthogonal set of
vectors which is a basis for W . Likewise, an orthonormal basis for W is a basis which is
orthonormal.

Proposition 7.2.22. Existence of Orthonormal Basis

If W ≤ Rn then there exists an orthonormal basis of W

Proof: since W is a subspace it has a basis. Apply Gram-Schmidt to that basis then normalize
the vectors to obtain an orthnormal basis. �

Example 7.2.23. Let W = span{[1, 0, 0, 0]T , [3, 1, 0, 0]T , [3, 2, 0, 3]T }. Find an orthonormal basis
for W ≤ R 4×1. Recall from Example 7.2.18 we applied Gram-Schmidt and found the orthonormal
set of vectors {e1, e2, e4}. That is an orthonormal basis for W .

Example 7.2.24. In Example 7.2.20 we found {v′′1 , v′′2 , v′′3} is an orthonormal set of vectors.
Since orthogonality implies linear independence it follows that this set is in fact a basis for R3×1.
It is an orthonormal basis. Of course there are other bases which are orthogonal. For example,
the standard basis is orthonormal.

Example 7.2.25. Let us define S = {v1, v2, v3, v4} ⊂ R 4×1 as follows:

v1 =


1
0
1
1

 , v2 =


1
1
1
1

 , v3 =


0
0
2
3

 , v4 =


3
2
0
3


It is easy to verify that S defined below is a linearly independent set vectors basis for span(S) ≤
R 4×1. Let’s see how to find an orthonormal basis for span(S). The procedure is simple: apply the
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Gram-Schmidt algorithm then normalize the vectors.

v′1 = v1 =


1
0
1
1



v′2 = v2 −
(
v2 · v′1
v′1 · v′1

)
v′1 =


1
1
1
1

− 3

3


1
0
1
1

 =


0
1
0
0



v′3 = v3 −
(
v3 · v′2
v′2 · v′2

)
v′2 −

(
v3 · v′1
v′1 · v′1

)
v′1 =


0
0
2
3

− 0

1


0
1
0
0

− 5

3


1
0
1
1

 =
1

3


−5

0
1
4



v′4 = v4 −
(v4·v′3
v′3·v′3

)
v′3 −

(v3·v′2
v′2·v′2

)
v′2 −

(v3·v′1
v′1·v′1

)
v′1 =


3
2
0
3

− 1
14


−5

0
1
4

−


0
2
0
0

−


2
0
2
2

 = 1
14


9
0

−27
18



Then normalize to obtain the orthonormal basis for Span(S) below:

β =
1√
3


1
0
1
1

 ,


0
1
0
0

 , 1√
42


−5

0
1
4

 , 1
9
√

14


9
0

−27
18

}

Proposition 7.2.26. Coordinates with respect to an Orthonormal Basis

If W ≤ Rn has an orthonormal basis {v1, v2, . . . , vk} and if w =
∑k

i=1wivi then wi = w · vi
for all i = 1, 2, . . . , k. In other words, each vector w ∈W may be expressed as

w = (w · v1)v1 + (w · v2)v2 + · · ·+ (w · · · vk)vk

Proof: Let w = w1v1 + w2v2 + · · ·+ wkvk and take the dot-product with vj ,

w · vj = (w1v1 + w2v2 + · · ·+ wkvk) · vj = w1(v1 · vj) + w2(v2 · vj) + · · ·+ wk(vk · vj)

Orthonormality of the basis is compactly expressed by the Kronecker Delta; vi · vj = δij this is zero
if i 6= j and it is 1 if they are equal. The whole sum collapses except for the j-th term which yields:
w · vj = wj . But, j was arbitrary hence the proposition follows. �.
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The proposition above reveals the real reason we like to work with orthonormal coordinates. It’s
easy to figure out the coordinates, we simply take dot-products. This technique was employed with
great sucess in (you guessed it) Calculus III. The standard {̂i, ĵ, k̂} is an orthonormal basis and one
of the first things we discuss is that if ~v =< A,B,C > then A = ~v · î, B = ~v · ĵ and C = ~v · k̂.

Example 7.2.27. For the record, the standard basis of Rn is an orthonormal basis and

v = (v · e1)e1 + (v · e2)e2 + · · ·+ (v · en)en

for any vector v in Rn.

Example 7.2.28. Let v = [1, 2, 3, 4]. Find the coordinates of v with respect to the orthonormal
basis β found in Example 7.2.25.

β = {f1, f2, f3, f4} =

{
1√
3


1
0
1
1

 ,


0
1
0
0

 , 1√
42


−5

0
1
4

 , 1
9
√

14


9
0

−27
18

}

Let us denote the coordinates vector [v]β = [w1, w2, w3, w4] we know we can calculate these by taking
the dot-products with the vectors in the orthonormal basis β:

w1 = v · f1 =
1√
3

[1, 2, 3, 4][1, 0, 1, 1]T =
8√
3

w2 = v · f2 = [1, 2, 3, 4][0, 1, 0, 0]T = 2

w3 = v · f3 =
1√
42

[1, 2, 3, 4][−5, 0, 1, 4]T =
14√
42

w4 = v · f4 = 1
9
√

14
[1, 2, 3, 4][9, 0,−27, 18]T = 0

9
√

14
= 0

Therefore, [v]β = [ 8√
3
, 2, 14√

42
, 0]. Now, let’s check our answer. What should this mean if it is
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correct? We should be able verify v = w1f1 + w2f2 + w3f3 + w4f4:

w1f1 + w2f2 + w3f3 + w4f4 =
8√
3

1√
3


1
0
1
1

+ 2


0
1
0
0

+
14√
42

1√
42


−5

0
1
4



=
8

3


1
0
1
1

+ 2


0
1
0
0

+
1

3


−5

0
1
4



=


8/3− 5/3

2
8/3 + 1/3
8/3 + 4/3



=


1
2
3
4


Well, that’s a relief.

7.3 orthogonal complements and projections

Upto now we have discussed projections with respect to one vector at a time, however we can just
as well discuss the projection onto some subspace of Rn. We need a few definitions to clarify and
motivate the projection.

Definition 7.3.1.

Suppose W1,W2 ⊆ Rn then we say W1 is orthogonal to W2 iff w1 ·w2 = 0 for all w1 ∈W1

and w2 ∈W2. We denote orthogonality by writing W1 ⊥W2.

Example 7.3.2. Let W1 = span{e1, e2} and W2 = span{e3} then W1,W2 ≤ Rn. Let w1 =
ae1 + be2 ∈W1 and w2 = ce3 ∈W2 calculate,

w1 · w2 = (ae1 + be2) · (ce3) = ace1 · e3 + bce2 · e3 = 0

Hence W1 ⊥W2. Geometrically, we have shown the xy-plane is orthogonal to the z-axis.

We notice that orthogonality relative to the basis will naturally extend to the span of the basis
since the dot-product has nice linearity properties.
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Proposition 7.3.3.

Suppose W1,W2 ≤ Rn the subspace W1 is orthogonal to the subspace W2 iff wi · vj = 0
for all i, j relative to a pair of bases {wi} for W1 and {vj} for W2.

Proof: Suppose {wi}ri=1 is a basis for W1 ≤ Rn and {vj}sj=1 for W2 ≤ Rn. If W1 ⊥W2 then clearly
{wi}ri=1 is orthogonal to {vj}sj=1. Conversely, suppose {wi}ri=1 is orthogonal to {vj}sj=1 then let
x ∈W1 and y ∈W2:

x · y =

( r∑
i=1

xiwi

)
·
( s∑

i=1

yjwj

)
=

r∑
i=1

s∑
j=1

xiyj(wi · vj) = 0. �

Given a subspace W which lives in Rn we might wonder what is the largest subspace which is
orthogonal to W? In R 3×1 it is clear that the xy-plane is the largest subspace which is orthogonal
to the z-axis, however, if the xy-plane was viewed as a subset of R 4×1 we could actually find a
volume which was orthogonal to the z-axis (in particular span{e1, e2, e4} ⊥ span{e3}).

Definition 7.3.4.

Let W ⊆ Rn then W⊥ is defined as follows:

W⊥ = {v ∈ Rn|v · w = 0 for all w ∈W}

It is clear that W⊥ is the largest subset in Rn which is orthogonal to W . Better than just that,
it’s the largest subspace orthogonal to W .

Proposition 7.3.5.

Let S ⊂ Rn then S⊥ ≤ Rn.

Proof: Let x, y ∈ S⊥ and let c ∈ R. Furthermore, suppose s ∈ S and note

(x+ cy) · s = x · s+ c(y · s) = 0 + c(0) = 0.

Thus an aribtrary linear combination of elements of S⊥ are again in S⊥ which is nonempty as
0 ∈ S⊥ hence by the subspace test S⊥ ≤ Rn. It is interesting that S need not be a subspace for
this argument to hold. �

Example 7.3.6. Find the orthogonal complement to W = span{v1 = [1, 1, 0, 0]T , v2 = [0, 1, 0, 2]T }.
Let’s treat this as a matrix problem. We wish to describe a typical vector in W⊥. Towards that
goal, let r = [x, y, z, w]T ∈ W⊥ then the conditions that r must satisfy are v1 · r = vT1 r = 0 and
v2 · r = vT2 r = 0. But this is equivalent to the single matrix equation below:

[
1 1 0 0
0 1 0 2

]
x
y
z
w

 =

[
0
0

]
⇒ r =


2w
−2w
z
w

 = z


0
0
1
0

+ w


2
−2
0
1
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Thus, W⊥ = span{[0, 0, 1, 0]T , [2,−2, 0, 1]T }.

If you study the preceding example it becomes clear that finding the orthogonal complement of a
set of vectors is equivalent to calculating the null space of a particular matrix. We have considerable
experience in such calculations so this is a welcome observation.

Proposition 7.3.7.

If S = {v1, v2, . . . , vk} ⊆ Rn and A = [v1|v2| · · · |vk] then S⊥ = Null(AT )

Proof: Denote A = [v1|v2| · · · |vk] ∈ R n×k and x = [x1, x2, . . . , xk]
T . Observe that:

x ∈ Null(AT )⇔ ATx = 0

⇔ [row1(AT )x, row2(AT )x, · · · , rowk(AT )x] = 0

⇔ [(col1(A))Tx, (col2(A))Tx, · · · , (colk(A))Tx] = 0

⇔ [v1 · x, v2 · x, · · · , vk · x] = 0

⇔ vj · x = 0 for j = 1, 2, . . . , k

⇔ x ∈ S⊥

Therefore, Null(AT ) = S⊥. �

Given the correspondence above we should be interested in statements which can be made about
the row and column space of a matrix. It turns out there are two simple statements to be made in
general:

Proposition 7.3.8.

Let A ∈ R m×n then

1. Null(AT ) ⊥ Col(A).

2. Null(A) ⊥ Row(A).

Proof: Let S = {col1(A), col2(A), . . . , coln(A)} and use Proposition 7.3.7 to deduce S⊥ = Null(AT ).
Therefore, each column of A is orthogonal to all vectors in Null(AT ), in particular each column is
orthgonal to the basis for Null(AT ). Since the pivot columns are a basis for Col(A) we can use
Proposition 7.3.3 to conclude Null(AT ) ⊥ Col(A).

To prove of (2.) apply (1.) to B = AT to deduce Null(BT ) ⊥ Col(B). Hence, Null((AT )T ) ⊥
Col(AT ) and we find Null(A) ⊥ Col(AT ). But, Col(AT ) = Row(A) thus Null(A) ⊥ Row(A). �

The proof above makes ample use of previous work. I encourage the reader to try to prove this
proposition from scratch. I don’t think it’s that hard and you might learn something. Just take an
arbitrary element of each subspace and argue why the dot-product is zero.
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Proposition 7.3.9.

Let W1,W2 ≤ Rn, if W1 ⊥W2 then W1 ∩W2 = {0}

Proof: let z ∈ W1 ∩W2 then z ∈ W1 and z ∈ W2 and since W1 ⊥ W2 it follows z · z = 0 hence
z = 0 and W1 ∩W2 ⊆ {0}. The reverse inclusion {0} ⊆ W1 ∩W2 is clearly true since 0 is in every
subspace. Therefore, W1 ∩W2 = {0} �

We defined the direct sum of two subspaces in the eigenvector chapter where we learned that the
eigenspaces of a A decompose at least part of Rn into a direct sum of invariant subspaces of LA. If
A was diagonalizable then the direct sum of the e-spaces covered all of Rn. Just a reminder, now
let’s see how the direct sum is also of importance here:

Proposition 7.3.10.

Let W ≤ Rn then

1. Rn = W ⊕W⊥.

2. dim(W ) + dim(W⊥) = n,

3. (W⊥)⊥ = W ,

Proof: Let W ≤ Rn and choose an orthonormal basis β = {v1, v2, . . . vk} for S. Let z ∈ Rn and
define

ProjW (z) =

k∑
i=1

(z · vi)vi and OrthW (z) = z − ProjW (z).

Observe that z = ProjW (z) + OrthW (z) and clearly ProjW (z) ∈ S. We now seek to argue that
OrthW (z) ∈ S⊥. Let vj ∈ β then

vj ·OrthW (z) = vj · (z − ProjW (z))

= vj · z − vj ·
( k∑
i=1

(z · vi)vi
)

= vj · z −
k∑
i=1

(z · vi)(vj · vi)

= vj · z −
k∑
i=1

(z · vi)δij

= vj · z − z · vj
= 0

Therefore, Rn = W ⊕W⊥. To prove (2.) notice we know by Proposition 7.3.5 that W⊥ ≤ Rn
and consequently there exists an orthonormal basis Γ = {w1, w2, . . . , wl} for W⊥. Furthermore,
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by Proposition 7.3.9 we find β ∩ Γ = ∅ since 0 is not in either basis. We argue that β ∪ Γ is
a basis for Rn. Observe that β ∪ Γ clearly spans Rn since z = ProjW (z) + OrthW (z) for each
z ∈ Rn and ProjW (z) ∈ span(β) while OrthW (z) ∈ span(Γ). Furthermore, I argue that β ∪ Γ
is an orthonormal set. By construction β and Γ are orthonormal, so all we need prove is that
the dot-product of vectors from β and Γ is zero, but that is immediate from the construction of
Γ. We learned in Proposition 7.2.9 that orthogonality for set of nonzero vectors implies linearly
independence. Hence, β ∪ Γ is a linearly independent spanning set for Rn. By the dimension
theorem we deduce that there must be n-vectors in β ∪ Γ since it must have the same number of
vectors as any other basis for Rn ( the standard basis obviously has n-vectors). Therefore,

dim(W ) + dim(W⊥) = n.

in particular, we count dim(W⊥) = n − k in my current notation. Now turn to ponder the proof
of (3.). Let z ∈ (W⊥)⊥ and expand z in the basis β ∪ Γ to gain further insight, z = z1v1 + z2v2 +
· · · zkvk + zk+1w1 + zk+2w2 + · · · znwn−k. Since z ∈ (W⊥)⊥ then z · w⊥ = 0 for all w⊥ ∈ W⊥, in
particular z · wj = 0 for all j = 1, 2, . . . , n− k. But, this implies zk+1 = zk+2 = · · · = zn = 0 since
Proposition 7.2.26 showed the coordinates w.r.t. an orthonormal basis are given by dot-products.
Therefore, z ∈ span(β) = W and we have shown (W⊥)⊥ ⊆ W . In invite the reader to prove the
reverse inclusion to complete this proof. �

Two items I defined for the purposes of the proof above have application far beyond the proof.
Let’s state them again for future reference. I give two equivalent definitions, technically we should
prove that the second basis dependent statement follows from the first basis-independent statement.
Primary definitions are as a point of mathematical elegance stated in a coordinate free langauge in
as much as possible, however the second statement is far more useful.

Definition 7.3.11.

Let W ≤ Rn if z ∈ Rn and z = u + w for some u ∈ W and w ∈ W⊥ then we
define u = ProjW (z) and w = OrthW (z). Equivalently, choose an orthonormal basis
β = {v1, v2, . . . vk} for W then if z ∈ Rn we define

ProjW (z) =

k∑
i=1

(z · vi)vi and OrthW (z) = z − ProjW (z).

Example 7.3.12. Let W = span{e1+e2, e3} and x = [1, 2, 3]T calculate ProjW (x). To begin I note
that the given spanning set is orthogonal and hence linear indpendent. We need only orthonormalize
to obtain an orthonormal basis β for W

β = {v1, v2} with v1 = 1√
2
[1, 1, 0]T , v2 = [0, 0, 1]T

Calculate, v1 · x = 3√
2

and v2 · x = 3. Thus,

ProjW ([1, 2, 3]T ) = (v1 · x)v1 + (v2 · x)v2 = 3√
2
v1 + 3v2 = [3

2 ,
3
2 , 3]T
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Then it’s easy to calculate the orthogonal part,

OrthW ([1, 2, 3]T ) = [1, 2, 3]T − [3
2 ,

3
2 , 3]T = [−1

2 ,
1
2 , 0]T

As a check on the calculation note that ProjW (x) +OrthW (x) = x and ProjW (x) ·OrthW (x) = 0.

Example 7.3.13. Let W = span{u1, u2, u3} ≤ R 4×1 where

u1 =


2
1
2
0

 u2 =


0
−2
1
1

 u3 =


−1
2
0
−1


calculate ProjW ([0, 6, 0, 6]T ) 2. Notice that the given spanning set appears to be linearly independent
but it is not orthogonal. Apply Gram-Schmidt to fix it:

v1 = u1 = [2, 1, 2, 0]T

v2 = u2 − u2·v1
v1·v1

v1 = u2 = [0,−2, 1, 1]T

v3 = u3 − u3·v1
v1·v1

v1 − u3·v2
v2·v2

v2 = u3 + 5
6v2 = [−1, 2, 0,−1]T + [0,−10

6 ,
5
6 ,

5
6 ]T

We calculate,

v3 = [−1, 2− 5
3 ,

5
6 , −1 + 5

6 ]T = [−1, 1
3 ,

5
6 , −

1
6 ]T = 1

6 [−6, 2, 5,−1]T

The normalized basis follows easily,

v′1 = 1
3 [2, 1, 2, 0]T v′2 = 1√

6
[0,−2, 1, 1]T v′3 = 1√

66
[−6, 2, 5,−1]T

Calculate dot-products in preparation for the projection calculation,

v′1 · x = 1
3 [2, 1, 2, 0][0, 6, 0, 6]T = 2

v′2 · x = 1√
6
[0,−2, 1, 1][0, 6, 0, 6]T = 1√

6
(−12 + 6) = −

√
6

v′3 · x = 1√
66

[−6, 2, 5,−1][0, 6, 0, 6]T = 1√
66

(12− 6) = 6√
66

Now we calculate the projection of x = [0, 6, 0, 6]T onto W with ease:

ProjW (x) = (x · v′1)v′1 + (x · v′2)v′2 + (x · v′3)v′3

= (2)1
3 [2, 1, 2, 0]T − (

√
6) 1√

6
[0,−2, 1, 1]T + ( 6√

66
) 1√

66
[−6, 2, 5,−1]T

= [4
3 ,

2
3 ,

4
3 , 0]T + [0, 2,−1,−1]T + [−6

11 ,
2
11 ,

5
11 ,
−1
11 ]T

= [26
33 ,

94
33 ,

26
33 ,

−36
33 ]T

and,
OrthW (x) = [−26

33 ,
104
33 ,

−26
33 ,

234
33 ]T

2this problem is inspired from Anton & Rorres’ §6.4 homework problem 3 part d. from the 9th. ed.



7.4. THE CLOSEST VECTOR PROBLEM 227

7.4 the closest vector problem

Suppose we are given a subspace and a vector not in the subspace, which vector in the subspace is
closest to the external vector ? Naturally the projection answers this question. The projection of
the external vector onto the subspace will be closest. Let me be a bit more precise:

Proposition 7.4.1. Closest vector inequality.

If S ≤ Rn and b ∈ Rn such that b /∈ S then for all u ∈ S with u 6= ProjS(b),

||b− ProjS(b)|| < ||b− u||.

This means ProjS(b) is the closest vector to b in S.

Proof: Noice that b − u = b − ProjS(b) + ProjS(b) − u. Furthermore note that b − ProjS(b) =
OrthS(b) ∈ S⊥ whereas ProjS(b)−u ∈ S hence these are orthogonal vectors and we can apply the
Pythagorean Theorem,

||b− u||2 = ||b− ProjS(b)||2 + ||ProjS(b)− u||2

Notice that u 6= ProjS(b) implies ProjS(b) − u 6= 0 hence ||ProjS(b) − u||2 > 0. It follows that
||b−ProjS(b)||2 < ||b− u||2. And as the || · || is nonnegative3 we can take the squareroot to obtain
||b− ProjS(b)|| < ||b− u||. �

Remark 7.4.2.

In calculus III I show at least three distinct methods to find the point off a plane which
is closest to the plane. We can minimize the distance function via the 2nd derivative test
for two variables, or use Lagrange Multipliers or use the geometric solution which invokes
the projection operator. It’s nice that we have an explicit proof that the geometric solution
is valid. We had argued on the basis of geometric intuition that OrthS(b) is the shortest
vector from the plane S to the point b off the plane4 Now we have proof. Better yet, our
proof equally well applies to subspaces of Rn. In fact, this discussion extends to the context
of inner product spaces.

Example 7.4.3. Consider R 2×1 let S = span{[1, 1]}. Find the point on the line S closest to the
point [4, 0]T .

ProjS([4, 0]T ) = 1
2([1, 1] · [4, 0])[1, 1]T = [2, 2]T

Thus, [2, 2]T ∈ S is the closest point to [4, 0]T . Geometrically, this is something you should have
been able to derive for a few years now. The points (2, 2) and (4, 0) are on the perpendicular bisector
of y = x (the set S is nothing more than the line y = x making the usual identification of points
and vectors)

3notice a2 < b2 need not imply a < b in general. For example, (5)2 < (−7)2 yet 5 ≮ −7. Generally, a2 < b2

together with the added condition a, b > 0 implies a < b.
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Example 7.4.4. In Example 7.3.13 we found that W = span{u1, u2, u3} ≤ R 4×1 where

u1 =


2
1
2
0

 u2 =


0
−2
1
1

 u3 =


−1
2
0
−1


has ProjW ([0, 6, 0, 6]T ) = [26

33 ,
94
33 ,

26
33 ,

−36
33 ]T . We can calculate that

rref


2 0 −1 0
1 −2 2 6
2 1 0 0
0 1 −1 6

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


This means that [0, 6, 0, 6]T /∈W . However, we learned in Proposition 7.4.1 that ProjW ([0, 6, 0, 6]T )
is the vector in W which is closest to [0, 6, 0, 6]T . Notice that we can deduce that the orthogonal basis
from Example 7.3.13 unioned with OrthW ([0, 6, 0, 6]T ) will form an orthogonal basis for R 4×1.

Example 7.4.5. Example 7.3.12 shows that W = span{e1 + e2, e3} and x = [1, 2, 3]T yields
ProjW (x) = [3

2 ,
3
2 , 3]T . Again we can argue that x /∈ Col[e1 + e2|e3] = W but ProjW (x) is in fact

in W . Moreover, ProjW (x) is the closest vector to x which is in W . In this case, the geometry is
that OrthW (x) = [−1

2 ,
1
2 , 0]T is the precisely the normal vector to the plane W .

The examples above are somewhat special in that the subspaces considered have only one dimension
less than the total vector space. This means that the orthogonal projection of any vector outside
the subspace will return the same vector modulo a nonzero constant. In other words, the orthogonal
complement is selecting the normal vector to our subspace. In general if we had a subspace which
was two or more dimensions smaller than the total vector space then there would be more variety in
the output of the orthogonal projection with respect to the subspace. For example, if we consider
a plane inside R4×1 then there is more than just one direction which is orthogonal to the plane,
the orthogonal projection would itself fill out a plane in R4×1.
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7.5 inconsistent equations

We’ve spent considerable time solving systems of equations which were consistent. What if a system
of equations Ax = b is inconsistent? What if anything can we say? Let A ∈ R m×n then we found

in Proposition 4.7.3 Ax = b is consistent iff b ∈ Col(A). In other words, the system has a solution

iff there is some linear combination of the columns of A such that we obtain b. Here the columns
of A and b are both m-dimensional vectors. If rank(A) = dim(Col(A)) = m then the system is
consistent no matter which choice for b is made. However, if rank(A) < m then there are some
vectors in R m×1 which are not in the column space of A and if b /∈ Col(A) then there will be no
x ∈ Rn such that Ax = b. We can picture it as follows: the Col(A) is a subspace of R m×1 and
b ∈ R m×1 is a vector pointing out of the subspace. The shadow of b onto the subspace Col(A) is
given by ProjCol(A)(b).

Notice that ProjCol(A)(b) ∈ Col(A) thus the system Ax = ProjCol(A)(b) has a solution for any
b ∈ R m×1. In fact, we can argue that x which solves Ax = ProjCol(A)(b) is the solution which
comes closest to solving Ax = b. Closest in the sense that ||Ax− b||2 is minimized. We call such x
the least squares solution to Ax = b (which is kind-of funny terminology since x is not actually a
solution, perhaps we should really call it the ”least squares approximation”).

Proposition 7.5.1.

If Ax = b is inconsistent then the solution of Au = Projcol(A)(b) minimizes ||Ax− b||2.

Proof: We can break-up the vector b into a vector ProjCol(A)(b) ∈ Col(A) and Orthcol(A)(b) ∈
Col(A)⊥ where

b = ProjCol(A)(b) +OrthCol(A)(b).

Since Ax = b is inconsistent it follows that b /∈ Col(A) thus OrthCol(A)(b) 6= 0. Observe that:

||Ax− b||2 = ||Ax− ProjCol(A)(b)−OrthCol(A)(b)||2

= ||Ax− ProjCol(A)(b)||2 + ||OrthCol(A)(b)||2
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Therefore, the solution of Ax = ProjCol(A)(b) minimizes ||Ax−b||2 since any other vector will make
||Ax− ProjCol(A)(b)||2 > 0. �

Admittably, there could be more than one solution of Ax = ProjCol(A)(b), however it is usually the
case that this system has a unique solution. Especially for expermentally determined data sets.

We already have a technique to calculate projections and of course we can solve systems but it is
exceedingly tedious to use the proposition above from scratch. Fortunately there is no need:

Proposition 7.5.2.

If Ax = b is inconsistent then the solution(s) of Au = ProjCol(A)(b) are solutions of the

so-called normal equations ATAu = AT b.

Proof: Observe that,

Au = ProjCol(A)(b) ⇔ b−Au = b− ProjCol(A)(b) = OrthCol(A)(b)

⇔ b−Au ∈ Col(A)⊥

⇔ b−Au ∈ Null(AT )

⇔ AT (b−Au) = 0

⇔ ATAu = AT b,

where we used Proposition 7.3.8 in the third step. �

The proposition below follows immediately from the preceding proposition.

Proposition 7.5.3.

If det(ATA) 6= 0 then there is a unique solution of Au = ProjCol(A)(b).

7.6 least squares analysis

In experimental studies we often have some model with coefficients which appear linearly. We
perform an experiment, collect data, then our goal is to find coefficients which make the model fit
the collected data. Usually the data will be inconsistent with the model, however we’ll be able to
use the idea of the last section to find the so-called best-fit curve. I’ll begin with a simple linear
model. This linear example contains all the essential features of the least-squares analysis.

7.6.1 linear least squares problem

Problem: find values of c1, c2 such that y = c1x+ c2 most closely models a given
data set: {(x1, y1), (x2, y2), . . . , (xk, yk)}
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Solution: Plug the data into the model and see what equations result:

y1 = c1x1 + c2, y2 = c1x2 + c2, . . . yk = c1xk + c2

arrange these as a matrix equation,
y1

y2
...
yk

 =


x1 1
x2 1
...

...
xk 1


[
c1

c2

]
⇒ ~y = M~v

where ~y = [y1, y2, . . . , yk]
T , v = [c1, c2]T and M is defined in the obvious way. The system ~y = M~v

will be inconsistent due to the fact that error in the data collection will5 make the results bounce
above and below the true solution. We can solve the normal equations MT~y = MTM~v to find
c1, c2 which give the best-fit curve6.

Example 7.6.1. Find the best fit line through the points (0, 2), (1, 1), (2, 4), (3, 3). Our model is
y = c1 + c2x. Assemble M and ~y as in the discussion preceding this example:

~y =


2
1
4
3

 M =


0 1
1 1
2 1
3 1

 ⇒ MTM =

[
0 1 2 3
1 1 1 1

]
0 1
1 1
2 1
3 1

 =

[
14 6
6 4

]

and we calculate: MT y =

[
0 1 2 3
1 1 1 1

]
2
1
4
3

 =

[
18
10

]

The normal equations7 are MTM~v = MT~y. Note that (MTM)−1 = 1
20

[
4 −6
−6 14

]
thus the

solution of the normal equations is simply,

~v = (MTM)−1MT~y = 1
20

[
4 −6
−6 14

] [
18
10

]
=

[
3
5
8
5

]
=

[
c1

c2

]
Thus, y = 0.6x+ 1.6 is the best-fit line. This solution minimizes the vertical distances squared
between the data and the model.

It’s really nice that the order of the normal equations is only as large as the number of coefficients
in the model. If the order depended on the size of the data set this could be much less fun for

5almost always
6notice that if xi are not all the same then it is possible to show det(MTM) 6= 0 and then the solution to the

normal equations is unique
7notice my choice to solve this system of 2 equations and 2 unknowns is just a choice, You can solve it a dozen

different ways, you do it the way which works best for you.



232 CHAPTER 7. LINEAR GEOMETRY

real-world examples. Let me set-up the linear least squares problem for 3-coefficients and data from
R3, the set-up for more coefficients and higher-dimensional data is similar. We already proved this
in general in the last section, the proposition simply applies mathematics we already derived. I
state it for your convenience.

Proposition 7.6.2.

Given data {~r1, ~r2, . . . , ~rn} ⊂ R3, with ~rk = [xk, yk, zk]
T , the best-fit of the linear model

z = c1x+ c2y + c3 is obtained by solving the normal equations MTM~v = MT~z where

~z =

 c1

c2

c3

 M =


x1 y1 1
x2 y2 1
...

...
...

xn yn 1

 ~z =


z1

z2
...
zn

 .

Example 7.6.3. Find the plane which is closest to the points (0, 0, 0), (1, 2, 3), (4, 0, 1), (0, 3, 0), (1, 1, 1).
An arbitrary8 plane has the form z = c1x+ c2y + c3. Work on the normal equations,

M =


0 0 1
1 2 1
4 0 1
0 3 1
1 1 1

 ~z =


0
3
1
0
1

 ⇒ MTM =

 0 1 4 0 1
0 2 0 3 1
1 1 1 1 1




0 0 1
1 2 1
4 0 1
0 3 1
1 1 1

 =

 18 3 6
3 14 6
6 6 5



also, MT~z =

 0 1 4 0 1
0 2 0 3 1
1 1 1 1 1




0
3
1
0
1

 =

 8
7
5



We solve MTM~v = MT~z by row operations, after some calculation we find:

rref [MTM |MT~z] =

 1 0 1 89/279
0 1 1 32/93
0 0 1 19/93

 ⇒
c1 = 89/279
c2 = 32/93
c3 = 19/93

Therefore, z = 89
293x+ 32

93y+ 19
93 is the plane which is ”closest” to the given points. Technically, I’m

not certain that is is the absolute closest. We used the vertical distance squared as a measure of
distance from the point. Distance from a point to the plane is measured along the normal direction,
so there is no garauntee this is really the absolute ”best” fit. For the purposes of this course we
will ignore this subtle and annoying point. When I say ”best-fit” I mean the least squares fit of the
model.

8technically, the general form for a plane is ax+ by + cz = d, if c = 0 for the best solution then our model misses
it. In such a case we could let x or y play the role that z plays in our set-up.
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7.6.2 nonlinear least squares

Problem: find values of c1, c2 such that y = c1f1(x)x+ c2f2(x) + · · ·+ cnfn(x) most
closely models a given data set: {(x1, y1), (x2, y2), . . . , (xk, yk)}. We assume the
coefficients c1, c2 appear linearly on (possibly nonlinear) functions f1, f2, . . . fn.

Solution: Plug the data into the model and see what equations result:

y1 = c1f1(x1) + c2f2(x1) + · · ·+ cnfn(x1),

y2 = c1f1(x2) + c2f2(x2) + · · ·+ cnfn(x2),

...
...

...

yk = c1f1(xk) + c2f2(xk) + · · ·+ cnfn(xk)

arrange these as a matrix equation,
y1

y2
...
yk

 =


f1(x1) f2(x1) · · · fn(x1)
f1(x1) f2(x1) · · · fn(x1)

...
...

...
...

f1(xk) f2(xk) · · · fn(xk)



c1

c2
...
cn

 ⇒ ~y = M~v

where ~y = [y1, y2, . . . , yk]
T , v = [c1, c2, . . . , cn]T and M is defined in the obvious way. The system

~y = M~v will be inconsistent due to the fact that error in the data collection will9 make the results
bounce above and below the true solution. We can solve the normal equations MT~y = MTM~v to
find c1, c2, . . . , cn which give the best-fit curve10.

Remark 7.6.4.

Nonlinear least squares includes the linear case as a subcase, take f1(x) = x and f2(x) = 1
and we return to the linear least squares examples. We will use data sets from R2 in this
subsection. These techniques do extend to data sets with more variables as I demonstrated
in the simple case of a plane.

Example 7.6.5. Find the best-fit parabola through the data (0, 0), (1, 3), (4, 4), (3, 6), (2, 2). Our
model has the form y = c1x

2 + c2x+ c3. Identify that f1(x) = x2, f2(x) = x and f3(x) = 1 thus we
should study the normal equations: MTM~v = MT~y where:

M =


f1(0) f2(0) f3(0)
f1(1) f2(1) f3(1)
f1(4) f2(4) f3(4)
f1(3) f2(3) f3(3)
f1(2) f2(2) f3(2)

 =


0 0 1
1 1 1
16 4 1
9 3 1
4 2 1

 and ~y =


0
3
4
6
2

 .
9almost always

10notice that if fj(xi) are not all the same then it is possible to show det(MTM) 6= 0 and then the solution to the
normal equations is unique
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Hence, calculate

MTM =

 0 1 16 9 4
0 1 4 3 2
1 1 1 1 1




0 0 1
1 1 1
16 4 1
9 3 1
4 2 1

 =

 354 100 30
100 30 10
30 10 5



and,

MT~y =

 0 1 16 9 4
0 1 4 3 2
1 1 1 1 1




0
3
4
6
2

 =

 129
41
15


After a few row operations we can deduce,

rref [MTM |MT~y] =

 1 0 1 −5/14
0 1 1 177/70
0 0 1 3/35

 ⇒
c1 = −5/14 u −0.357
c2 = 177/70 u 2.529
c3 = 3/35 = 0.086

We find the best-fit parabola is y = −0.357x2 + 2.529x+ 0.086

Yes..., but what’s this for?
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Example 7.6.6. Suppose you land on a mysterious planet. You find that if you throw a ball it’s
height above the ground y at time t is measured at times t = 0, 1, 2, 3, 4 seconds to be y = 0, 2, 3, 6, 4
meters respective. Assume that Newton’s Law of gravity holds and determine the gravitational
acceleration from the data. We already did the math in the last example. Newton’s law approximated
for heights near the surface of the planet simply says y′′ = −g which integrates twice to yield
y(t) = −gt2/2 +vot+y0 where vo is the initial velocity in the vertical direction. We find the best-fit
parabola through the data set {(0, 0), (1, 3), (4, 4), (3, 6), (2, 2)} by the math in the last example,

y(t) = −0.357t2 + 2.529 + 0.086

we deduce that g = 2(0.357)m/s2 = 0.714m/s2. Apparently the planet is smaller than Earth’s moon
(which has gmoon ≈ 1

69.8m/s2 = 1.63m/s2.

Remark 7.6.7.

If I know for certain that the ball is at y = 0 at t = 0 would it be equally reasonable to
assume yo in our model? If we do it simplifies the math. The normal equations would only
be order 2 in that case.

Example 7.6.8. Find the best-fit parabola that passes through the origin and the points
(1, 3), (4, 4), (3, 6), (2, 2). To begin we should state our model: since the parabola goes through the
origin we know the y-intercept is zero hence y = c1x

2 + c2x. Identify f1(x) = x2 and f2(x) = x.
As usual set-up the M and ~y,

M =


f1(1) f2(1)
f1(4) f2(4)
f1(3) f2(3)
f1(2) f2(2)

 =


1 1
16 4
9 3
4 2

 and ~y =


3
4
6
2

 .
Calculate,

MTM =

[
1 16 9 4
1 4 3 2

]
1 1
16 4
9 3
4 2

 =

[
354 100
100 30

]
⇒ (MTM)−1 =

1

620

[
30 −100
−100 354

]

and,

MT~y =

[
1 16 9 4
1 4 3 2

]
3
4
6
2

 =

[
129
41

]

We solve MTM~v = MT~y by multiplying both sides by (MTM)−1 which yeilds,

~v = (MTM)−1MT~y =
1

620

[
30 −100
−100 354

] [
129
41

]
=

[
−23/62
807/310

]
⇒ c1 = −23/62 u −0.371

c2 = 807/310 u 2.603

Thus the best-fit parabola through the origin is y = −0.371x2 + 2.603x
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Sometimes an application may not allow for direct implementation of the least squares method,
however a rewrite of the equations makes the unknown coefficients appear linearly in the model.

Example 7.6.9. Newton’s Law of Cooling states that an object changes temperature T at a rate
proportional to the difference between T and the room-temperature. Suppose room temperature is
known to be 70o then dT/dt = −k(T − 70) = −kT + 70k. Calculus reveals solutions have the form
T (t) = c0e

−kt + 70. Notice this is very intuitive since T (t) → 70 for t >> 0. Suppose we measure
the temperature at successive times and we wish to find the best model for the temperature at time
t. In particular we measure: T (0) = 100, T (1) = 90, T (2) = 85, T (3) = 83, T (4) = 82. One
unknown coefficient is k and the other is c1. Clearly k does not appear linearly. We can remedy
this by working out the model for the natural log of T − 70. Properties of logarithms will give us a
model with linearly appearing unknowns:

ln(T (t)− 70) = ln(c0e
−kt) = ln(c0) + ln(e−kt) = ln(c0)− kt

Let c1 = ln(c0), c2 = −k then identify f1(t) = 1 while f2(t) = t and y = ln(T (t)− 70. Our model is
y = c1f1(t) + c2f2(t) and the data can be generated from the given data for T (t):

t1 = 0 : y1 = ln(T (0)− 70) = ln(100− 70) = ln(30)

t2 = 1 : y2 = ln(T (1)− 90) = ln(90− 70) = ln(20)

t3 = 2 : y3 = ln(T (2)− 85) = ln(85− 70) = ln(15)

t4 = 3 : y4 = ln(T (2)− 83) = ln(83− 70) = ln(13)

t5 = 4 : y5 = ln(T (2)− 82) = ln(82− 70) = ln(12)

Our data for (t, y) is (0, ln 30), (1, ln 20), (2, ln 15), (3, ln 13), (4, ln 12). We should solve normal equa-
tions MTM~v = MT~y where

M =


f1(0) f2(0)
f1(1) f2(1)
f1(2) f2(2)
f1(3) f2(3)
f1(4) f2(4)

 =


1 0
1 1
1 2
1 3
1 4

 and ~y =


ln 30
ln 20
ln 15
ln 13
ln 12

 .

We can calculate MTM =

[
5 10
10 30

]
and MT~y u

[
14.15
26.05

]
. Solve MTM~v = MT~y by multipli-

cation by inverse of MTM :

~y = (MTM)−1MT~y =

[
3.284
−0.2263

]
⇒ c1 u 3.284

c2 u −0.2263
.

Therefore, y(t) = ln(T (t) − 70) = 3.284 − 0.2263 we identify that k = 0.2263 and ln(c0) = 3.284
which yields c0 = e3.284 = 26.68. We find the best-fit temperature function is

T (t) = 26.68e−0.2263t + 70.
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Now we could give good estimates for the temperature T (t) for other times. If Newton’s Law of
cooling is an accurate model and our data was collected carefully then we ought to be able to make
accurate predictions with our model.

Remark 7.6.10.

The accurate analysis of data is more involved than my silly examples reveal here. Each
experimental fact comes with an error which must be accounted for. A real experimentalist
never gives just a number as the answer. Rather, one must give a number and an uncertainty
or error. There are ways of accounting for the error of various data. Our approach here
takes all data as equally valid. There are weighted best-fits which minimize a weighted least
squares. Technically, this takes us into the realm of math of inner-product spaces. Finite
dimensional inner-product spaces also allows for least-norm analysis. The same philosophy
guides the analysis: the square of the norm measures the sum of the squares of the errors in
the data. The collected data usually does not precisely fit the model, thus the equations are
inconsistent. However, we project the data onto the plane representative of model solutions
and this gives us the best model for our data. Generally we would like to minimize χ2,
this is the notation for the sum of the squares of the error often used in applications. In
statistics finding the best-fit line is called doing ”linear regression”.
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7.7 orthogonal transformations and geometry

If we begin with an orthogonal subset of Rn and we preform a linear transformation then will the
image of the set still be orthogonal? We would like to characterize linear transformations which
maintain orthogonality. These transformations should take an orthogonal basis to a new basis
which is still orthogonal.

Definition 7.7.1.

If T : Rn → Rn is a linear transformation such that T (x) ·T (y) = x · y for all x, y ∈ Rn then
we say that T is an orthogonal transformation

Example 7.7.2. Let {e1, e2} be the standard basis for R 2×1 and let R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
be

a rotation of the coordinates by angle θ in the clockwise direction,[
x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
=

[
x cos θ + y sin θ
−x sin θ + y cos θ

]
As a check on my sign conventions, consider rotating [1, 0]T by R(π/2), we obtain [x′, y′]T = [0, 1].
See the picture for how to derive these transformations from trigonometry. Intuitively, a rotation
should not change the length of a vector, let’s check the math: let v, w ∈ R 2×1,

R(θ)v ·R(θ)w = [R(θ)v]TR(θ)w

= vTR(θ)TR(θ)w

Now calculate R(θ)TR(θ),

R(θ)TR(θ) =

[
cos θ sin θ
− sin θ cos θ

] [
cos θ − sin θ
sin θ cos θ

]
=

[
cos2 θ + sin2 θ 0

0 sin2 θ + cos2 θ

]
= I

Therefore, R(θ)v · R(θ) = vT Iw = vTw = v · w for all v, w ∈ R 2×1 and we find LR(θ) is an
orthogonal transformation.

This shows the matrix of a rotation LR satisfies RTR = I. Is this always true or was this just a spe-
cial formula for rotations? Or is this just a two-dimensional thing? What if we look at orthhogonal
transformations on Rn what general condition is there on the matrix of the transformation?

Definition 7.7.3.

Let A ∈ R n×n then we say that A is an orthogonal matrix iff ATA = I. Moreover, we
say A is a reflection matrix if A is orthogonal and det(A) = −1 whereas we say A is
a rotation matrix if A is orthogonal with det(A) = 1. The set of all orthogonal n × n
matrices is denoted O(n) and the set of all n× n rotation matrices is denoted SO(n).
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Proposition 7.7.4. matrix of an orthogonal transformation is orthogonal

If A is the matrix of an orthogonal transformation on Rn then ATA = I and either A is a
rotation matrix or A is a reflection matrix.

Proof: Suppose L(x) = Ax and L is an orthogonal transformation on Rn. Notice that

L(ei) · L(ej) = [Aei]
TAej = eTi [ATA]ej

and
ei · ej = eTi ej = eTi Iej

hence eTi [ATA − I]ej = 0 for all i, j thus ATA − I = 0 by Example 2.7.11 and we find ATA = I.
Following a homework you did earlier in the course,

det(ATA) = det(I) ⇔ det(A)det(A) = 1 ⇔ det(A) = ±1

Thus A ∈ SO(n) or A is a reflection matrix. �

The proposition below is immediate from the definitions of length, angle and linear transformation.

Proposition 7.7.5. orthogonal transformations preserve lengths and angles

If v, w ∈ Rn and L is an orthogonal transformation such that v′ = L(v) and w′ = L(w)
then the angle between v′ and w′ is the same as the angle between v and w, in addition the
length of v′ is the same as v.

Remark 7.7.6.

Reflections, unlike rotations, will spoil the ”handedness” of a coordinate system. If we take
a right-handed coordinate system and perform a reflection we will obtain a new coordinate
system which is left-handed. If you’d like to know more just ask me sometime.

If orthogonal transformations preserve the geometry of Rn you might wonder if there are other
non-linear transformations which also preserve distance and angle. The answer is yes, but we need
to be careful to distinguish between the length of a vector and the distance bewtween points. It
turns out that the translation defined below will preserve the distance, but not the norm or length
of a vector.

Definition 7.7.7.

Fix b ∈ Rn then a translation by b is the mapping Tb(x) = x+ b for all x ∈ Rn.

This is known as an affine transformation, it is not linear since T (0) = b 6= 0 in general. ( if
b = 0 then the translation is both affine and linear). Anyhow, affine transformations should be
familar to you: y = mx+ b is an affine transformation on R.
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Proposition 7.7.8. translations preserve geometry

Suppose Tb : Rn → Rn is a translation then

1. If ∠(xyz) denotes the angle formed by line segments x̄y, ȳz which have endpoints x, y
and y, z respectively then ∠(Tb(x)Tb(y)Tb(z)) = ∠(xyz)

2. The distance from x to y is the equal to the distance from Tb(x) to Tb(y).

Proof: I’ll begin with (2.) since it’s easy:

d(Tb(x), Tb(y)) = ||Tb(y)− Tb(x)|| = ||y + b− (x+ b)|| = ||y − x|| = d(x, y).

Next, the angle ∠(xyz) is the angle between x− y and z − y. Likewise the angle ∠Tb(x)Tb(y)Tb(z)
is the angle between Tb(x) − Tb(y) and Tb(z) − Tb(y). But, these are the same vectors since
Tb(x)− Tb(y) = x+ b− (y + b) = x− y and Tb(z)− Tb(y) = z + b− (y + b) = z − y. �

Definition 7.7.9.

Suppose T (x) = Ax + b where A ∈ SO(n) and b ∈ Rn for all x ∈ Rn then we say T is a
rigid motion.

In high-school geometry you studied the concept of congruence. To objects were congruent if they
had the same size and shape. From the viewpoint of analytic geometry we can say two objects are
congruent iff one is the image of the other with respect to some rigid motion. We leave further
discussion of such matters to the modern geometry course where you study these concepts in depth.

Remark 7.7.10.

In Chapter 6 of my Mathematical Models in Physics notes I describe how Euclidean geometry
is implicit and foundational in classical Newtonian Mechanics. The concept of a rigid motion
is used to define what is meant by an intertial frame. I have these notes posted on my
website, ask if your interested. Chapter 7 of the same notes describes how Special Relativity
has hyperbolic geometry as its core. The dot-product is replaced with a Minkowski-product
which yields all manner of curious results like time-dilation, length contraction, and the
constant speed of light. If your interested in hearing a lecture or two on the geometry of
Special Relativity please ask and I’ll try to find a time and a place.
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7.8 eigenvectors and orthogonality

We can apply the Gram-Schmidt process to orthogonalize the set of e-vectors. If the resulting set
of orthogonal vectors is still an eigenbasis then we can prove the matrix formed from e-vectors is
an orthogonal matrix.

Proposition 7.8.1.

If A ∈ R n×n has e-values λ1, λ2, . . . , λn with orthonormal e-vectors v1, v2, . . . , vn and if we
define V = [v1|v2| · · · |vn] then V −1 = V T and D = V TAV where D is a diagonal matrix
with the eigenvalues down the diagonal: D = [λ1e1|λ2e2| · · · |λnen].

Proof: Orthonormality implies vTi vj = δij . Observe that

V TV =


vT1
vT2
...

vTn

 [v1|v2| · · · |vn] =


vT1 v1 vT1 v2 · · · vT1 vn
vT1 v1 vT1 v2 · · · vT1 vn

...
... · · ·

...
vTn v1 vTn v2 · · · vTn vn

 =


1 0 · · · 0
0 1 · · · 0
...

... · · ·
...

0 0 · · · 1

 .

Thus V −1 = V T . The proposition follows from Proposition 6.5.2. �

This is great news. We now have hope of finding the diagonalization of a matrix without going
to the trouble of inverting the e-vector matrix. Notice that there is no gaurantee that we can
find n-orthonormal e-vectors. Even in the case we have n-linearly independent e-vectors it could
happen that when we do the Gram-Schmidt process the resulting vectors are not e-vectors. That
said, there is one important, and common, type of example where we are in fact gauranteed the
existence of an orthonormal eigenbases for A.

Theorem 7.8.2.

A matrix A ∈ R n×n is symmetric iff there exists an orthonormal eigenbasis for A.

Proof: I’ll prove the reverse implication in these notes. Your text has a complete proof of the
forward implication in Appendix C, it’s very neat, but we don’t have that much time. Assume
there exists and orthonormal eigenbasis {v1, v2, . . . , vn} for A. Let V = [v1|v2| · · · |vn] and use
Proposition 7.8.1, V TAV = D where D is a diagonal matrix with the e-values down the diagonal.
Clearly DT = D. Transposing the equation yields (V TAV )T = D. Use the socks-shoes property for
transpose to see (V TAV )T = V TAT (V T )T = V TATV . We find that V TATV = V TAV . Multiply
on the left by V and on the right by V T and we find AT = A thus A is symmetric. �.

This theorem is a useful bit of trivia to know. But, be careful not to overstate the result. This
theorem does not state that all diagonalizable matrices are symmetric.
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Example 7.8.3. In Example 6.2.13 we found the e-values and e-vectors of A =

 0 0 −4
2 4 2
2 0 6


were λ1 = λ2 = 4 and λ3 = 2 with e-vectors

u1 =

 0
1
0

 u2 =

 −1
0
1

 u3 =

 −2
1
1


We argued in Example 6.4.4 that {u1, u2, u3} is an eigenbasis. In view of the Theorem above we
know there is no way to perform the Gram-Schmidt process and get and orthonormal set of e-vectors
for A. We could orthonormalize the basis, but it would not result in a set of e-vectors. We can
be certain of this since A is not symmetric. I invite you to try Gram-Schmidt and see how the
process spoils the e-values. The principle calculational observation is simply that when you add
e-vectors with different e-values there is no reason to expect the sum is again an e-vector. There is
an exception to my last observation, what is it?

Example 7.8.4. Let A =

 0 0 0
0 1 2
0 2 1

. Observe that det(A − λI) = −λ(λ + 1)(λ − 3) thus λ1 =

0, λ2 = −1, λ3 = 3. We can calculate orthonormal e-vectors of v1 = [1, 0, 0]T , v2 = 1√
2
[0, 1,−1]T

and v3 = 1√
2
[0, 1, 1]T . I invite the reader to check the validity of the following equation: 1 0 0

0 1√
2
−1√

2

0 1√
2

1√
2


 0 0 0

0 1 2
0 2 1


 1 0 0

0 1√
2

1√
2

0 −1√
2

1√
2

 =

 0 0 0
0 −1 0
0 0 3


Its really neat that to find the inverse of a matrix of orthonormal e-vectors we need only take the

transpose; note

 1 0 0
0 1√

2
−1√

2

0 1√
2

1√
2


 1 0 0

0 1√
2

1√
2

0 −1√
2

1√
2

 =

 1 0 0
0 1 0
0 0 1

.
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7.9 conic sections and quadric surfaces

Some of you have taken calculus III others have not, but most of you still have much to learn about
level curves and surfaces. Let me give two examples to get us started:

x2 + y2 = 4 level curve; generally has form f(x, y) = k

x2 + 4y2 + z2 = 1 level surface; generally has form F (x, y, z) = k

Alternatively, some special surfaces can be written as a graph. The top half of the ellipsoid
F (x, y, z) = x2 + 4y2 + z2 = 1 is the graph(f) where f(x, y) =

√
1− x2 − 4y2 and graph(f) =

{x, y, f(x, y) |(x, y) ∈ dom(f)}. Of course there is a great variety of examples to offer here and I
only intend to touch on a few standard examples in this section. Our goal is to see what linear
algebra has to say about conic sections and quadric surfaces.

7.9.1 quadratic forms and their matrix

Definition 7.9.1.

Generally, a quadratic form Q is a function Q : Rn → R whose formula can be written
Q(~x) = ~xTA~x for all ~x ∈ Rn where A ∈ R n×n such that AT = A. In particular, if ~x = (x, y)

and A =

[
a b
b c

]
then

Q(~x) = ~xTA~x = ax2 + bxy + byx+ cy2 = ax2 + 2bxy + y2.

The n = 3 case is similar,denote A = [Aij ] and ~x = (x, y, z) so that

Q(~x) = ~xTA~x = A11x
2 + 2A12xy + 2A13xz +A22y

2 + 2A23yz +A33z
2.

Generally, if [Aij ] ∈ R n×n and ~x = [xi]
T then the associated quadratic form is

Q(~x) = ~xTA~x =
∑
i,j

Aijxixj =

n∑
i=1

Aiix
2
i +

∑
i<j

2Aijxixj .

In case you wondering, yes you could write a given quadratic form with a different matrix which
is not symmetric, but we will find it convenient to insist that our matrix is symmetric since that
choice is always possible for a given quadratic form.

Also, you may recall (from the future) I said a bilinear form was a mapping from V × V → R
which is linear in each slot. For example, an inner-product as defined in Definition 7.12.1 is a
symmetric, positive definite bilinear form. When we discussed < x, y > we allowed x 6= y, in
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contrast a quadratic form is more like < x, x >. Of course the dot-product is also an inner product
and we can write a given quadratic form in terms of a dot-product:

~xTA~x = ~x · (A~x) = (A~x) · ~x = ~xTAT~x

Some texts actually use the middle equality above to define a symmetric matrix.

Example 7.9.2.

2x2 + 2xy + 2y2 =
[
x y

] [ 2 1
1 2

] [
x
y

]
Example 7.9.3.

2x2 + 2xy + 3xz − 2y2 − z2 =
[
x y z

]  2 1 3/2
1 −2 0

3/2 0 −1

 x
y
z


Proposition 7.9.4.

The values of a quadratic form on Rn − {0} is completely determined by it’s values on
the (n − 1)-sphere Sn−1 = {~x ∈ Rn | ||~x|| = 1}. In particular, Q(~x) = ||~x||2Q(x̂) where
x̂ = 1

||~x||~x.

Proof: Let Q(~x) = ~xTA~x. Notice that we can write any nonzero vector as the product of its
magnitude ||x|| and its direction x̂ = 1

||~x||~x,

Q(~x) = Q(||~x||x̂) = (||~x||x̂)TA||~x||x̂ = ||~x||2x̂TAx̂ = ||x||2Q(x̂).

Therefore Q(~x) is simply proportional to Q(x̂) with proportionality constant ||~x||2. �

The proposition above is very interesting. It says that if we know how Q works on unit-vectors then
we can extrapolate its action on the remainder of Rn. If f : S → R then we could say f(S) > 0
iff f(s) > 0 for all s ∈ S. Likewise, f(S) < 0 iff f(s) < 0 for all s ∈ S. The proposition below
follows from the proposition above since ||~x||2 ranges over all nonzero positive real numbers in the
equations above.

Proposition 7.9.5.

If Q is a quadratic form on Rn and we denote Rn∗ = Rn − {0}

1.(negative definite) Q(Rn∗ ) < 0 iff Q(Sn−1) < 0

2.(positive definite) Q(Rn∗ ) > 0 iff Q(Sn−1) > 0

3.(non-definite) Q(Rn∗ ) = R− {0} iff Q(Sn−1) has both positive and negative values.

Before I get too carried away with the theory let’s look at a couple examples.
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Example 7.9.6. Consider the quadric form Q(x, y) = x2 + y2. You can check for yourself that
z = Q(x, y) is a cone and Q has positive outputs for all inputs except (0, 0). Notice that Q(v) = ||v||2
so it is clear that Q(S1) = 1. We find agreement with the preceding proposition. Next, think about
the application of Q(x, y) to level curves; x2 + y2 = k is simply a circle of radius

√
k or just the

origin. Here’s a graph of z = Q(x, y):

Notice that Q(0, 0) = 0 is the absolute minimum for Q. Finally, let’s take a moment to write

Q(x, y) = [x, y]

[
1 0
0 1

] [
x
y

]
in this case the matrix is diagonal and we note that the e-values are

λ1 = λ2 = 1.

Example 7.9.7. Consider the quadric form Q(x, y) = x2 − 2y2. You can check for yourself
that z = Q(x, y) is a hyperboloid and Q has non-definite outputs since sometimes the x2 term
dominates whereas other points have −2y2 as the dominent term. Notice that Q(1, 0) = 1 whereas
Q(0, 1) = −2 hence we find Q(S1) contains both positive and negative values and consequently we
find agreement with the preceding proposition. Next, think about the application of Q(x, y) to level
curves; x2 − 2y2 = k yields either hyperbolas which open vertically (k > 0) or horizontally (k < 0)
or a pair of lines y = ±x

2 in the k = 0 case. Here’s a graph of z = Q(x, y):

The origin is a saddle point. Finally, let’s take a moment to write Q(x, y) = [x, y]

[
1 0
0 −2

] [
x
y

]
in this case the matrix is diagonal and we note that the e-values are λ1 = 1 and λ2 = −2.
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Example 7.9.8. Consider the quadric form Q(x, y) = 3x2. You can check for yourself that z =
Q(x, y) is parabola-shaped trough along the y-axis. In this case Q has positive outputs for all inputs
except (0, y), we would call this form positive semi-definite. A short calculation reveals that
Q(S1) = [0, 3] thus we again find agreement with the preceding proposition (case 3). Next, think
about the application of Q(x, y) to level curves; 3x2 = k is a pair of vertical lines: x = ±

√
k/3 or

just the y-axis. Here’s a graph of z = Q(x, y):

Finally, let’s take a moment to write Q(x, y) = [x, y]

[
3 0
0 0

] [
x
y

]
in this case the matrix is

diagonal and we note that the e-values are λ1 = 3 and λ2 = 0.

Example 7.9.9. Consider the quadric form Q(x, y, z) = x2+2y2+3z2. Think about the application
of Q(x, y, z) to level surfaces; x2 + 2y2 + 3z2 = k is an ellipsoid. I can’t graph a function of three
variables, however, we can look at level surfaces of the function. I use Mathematica to plot several
below:

Finally, let’s take a moment to write Q(x, y, z) = [x, y, z]

 1 0 0
0 2 0
0 0 3

[ x
y

]
in this case the matrix

is diagonal and we note that the e-values are λ1 = 1 and λ2 = 2 and λ3 = 3.
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The examples given thus far are the simplest cases. We don’t really need linear algebra to un-
derstand them. In contrast, e-vectors and e-values will prove a useful tool to unravel the later
examples.

Proposition 7.9.10.

If Q is a quadratic form on Rn with matrix A and e-values λ1, λ2, . . . , λn with orthonormal
e-vectors v1, v2, . . . , vn then

Q(vi) = λi
2

for i = 1, 2, . . . , n. Moreover, if P = [v1|v2| · · · |vn] then

Q(~x) = (P T~x)TP TAPP T~x = λ1y
2
1 + λ2y

2
2 + · · ·+ λny

2
n

where we defined ~y = P T~x.

Let me restate the proposition above in simple terms: we can transform a given quadratic form to
a diagonal form by finding orthonormalized e-vectors and performing the appropriate coordinate
transformation. Since P is formed from orthonormal e-vectors we know that P will be either a
rotation or reflection. This proposition says we can remove ”cross-terms” by transforming the
quadratic forms with an appropriate rotation.

Example 7.9.11. Consider the quadric form Q(x, y) = 2x2 + 2xy + 2y2. It’s not immediately
obvious (to me) what the level curves Q(x, y) = k look like. We’ll make use of the preceding

proposition to understand those graphs. Notice Q(x, y) = [x, y]

[
2 1
1 2

] [
x
y

]
. Denote the matrix

of the form by A and calculate the e-values/vectors:

det(A− λI) = det

[
2− λ 1

1 2− λ

]
= (λ− 2)2 − 1 = λ2 − 4λ+ 3 = (λ− 1)(λ− 3) = 0

Therefore, the e-values are λ1 = 1 and λ2 = 3.

(A− I)~u1 =

[
1 1
1 1

] [
u
v

]
=

[
0
0

]
⇒ ~u1 =

1√
2

[
1
−1

]
I just solved u+ v = 0 to give v = −u choose u = 1 then normalize to get the vector above. Next,

(A− 3I)~u2 =

[
−1 1
1 −1

] [
u
v

]
=

[
0
0

]
⇒ ~u2 =

1√
2

[
1
1

]
I just solved u − v = 0 to give v = u choose u = 1 then normalize to get the vector above. Let
P = [~u1|~u2] and introduce new coordinates ~y = [x̄, ȳ]T defined by ~y = P T~x. Note these can be
inverted by multiplication by P to give ~x = P~y. Observe that

P =
1

2

[
1 1
−1 1

]
⇒ x = 1

2(x̄+ ȳ)
y = 1

2(−x̄+ ȳ)
or

x̄ = 1
2(x− y)

ȳ = 1
2(x+ y)
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The proposition preceding this example shows that substitution of the formulas above into Q yield11:

Q̃(x̄, ȳ) = x̄2 + 3ȳ2

It is clear that in the barred coordinate system the level curve Q(x, y) = k is an ellipse. If we draw
the barred coordinate system superposed over the xy-coordinate system then you’ll see that the graph
of Q(x, y) = 2x2 + 2xy + 2y2 = k is an ellipse rotated by 45 degrees. Or, if you like, we can plot
z = Q(x, y):

Example 7.9.12. Consider the quadric form Q(x, y) = x2 +2xy+y2. It’s not immediately obvious
(to me) what the level curves Q(x, y) = k look like. We’ll make use of the preceding proposition to

understand those graphs. Notice Q(x, y) = [x, y]

[
1 1
1 1

] [
x
y

]
. Denote the matrix of the form by

A and calculate the e-values/vectors:

det(A− λI) = det

[
1− λ 1

1 1− λ

]
= (λ− 1)2 − 1 = λ2 − 2λ = λ(λ− 2) = 0

Therefore, the e-values are λ1 = 0 and λ2 = 2.

(A− 0)~u1 =

[
1 1
1 1

] [
u
v

]
=

[
0
0

]
⇒ ~u1 =

1√
2

[
1
−1

]
I just solved u+ v = 0 to give v = −u choose u = 1 then normalize to get the vector above. Next,

(A− 2I)~u2 =

[
−1 1
1 −1

] [
u
v

]
=

[
0
0

]
⇒ ~u2 =

1√
2

[
1
1

]
I just solved u − v = 0 to give v = u choose u = 1 then normalize to get the vector above. Let
P = [~u1|~u2] and introduce new coordinates ~y = [x̄, ȳ]T defined by ~y = P T~x. Note these can be
inverted by multiplication by P to give ~x = P~y. Observe that

P =
1

2

[
1 1
−1 1

]
⇒ x = 1

2(x̄+ ȳ)
y = 1

2(−x̄+ ȳ)
or

x̄ = 1
2(x− y)

ȳ = 1
2(x+ y)

11technically Q̃(x̄, ȳ) is Q(x(x̄, ȳ), y(x̄, ȳ))
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The proposition preceding this example shows that substitution of the formulas above into Q yield:

Q̃(x̄, ȳ) = 2ȳ2

It is clear that in the barred coordinate system the level curve Q(x, y) = k is a pair of paralell
lines. If we draw the barred coordinate system superposed over the xy-coordinate system then you’ll
see that the graph of Q(x, y) = x2 + 2xy + y2 = k is a line with slope −1. Indeed, with a little
algebraic insight we could have anticipated this result since Q(x, y) = (x+y)2 so Q(x, y) = k implies
x+ y =

√
k thus y =

√
k − x. Here’s a plot which again verifies what we’ve already found:

Example 7.9.13. Consider the quadric form Q(x, y) = 4xy. It’s not immediately obvious (to
me) what the level curves Q(x, y) = k look like. We’ll make use of the preceding proposition to

understand those graphs. Notice Q(x, y) = [x, y]

[
0 2
0 2

] [
x
y

]
. Denote the matrix of the form by

A and calculate the e-values/vectors:

det(A− λI) = det

[
−λ 2
2 −λ

]
= λ2 − 4 = (λ+ 2)(λ− 2) = 0

Therefore, the e-values are λ1 = −2 and λ2 = 2.

(A+ 2I)~u1 =

[
2 2
2 2

] [
u
v

]
=

[
0
0

]
⇒ ~u1 =

1√
2

[
1
−1

]
I just solved u+ v = 0 to give v = −u choose u = 1 then normalize to get the vector above. Next,

(A− 2I)~u2 =

[
−2 2
2 −2

] [
u
v

]
=

[
0
0

]
⇒ ~u2 =

1√
2

[
1
1

]
I just solved u − v = 0 to give v = u choose u = 1 then normalize to get the vector above. Let
P = [~u1|~u2] and introduce new coordinates ~y = [x̄, ȳ]T defined by ~y = P T~x. Note these can be
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inverted by multiplication by P to give ~x = P~y. Observe that

P =
1

2

[
1 1
−1 1

]
⇒ x = 1

2(x̄+ ȳ)
y = 1

2(−x̄+ ȳ)
or

x̄ = 1
2(x− y)

ȳ = 1
2(x+ y)

The proposition preceding this example shows that substitution of the formulas above into Q yield:

Q̃(x̄, ȳ) = −2x̄2 + 2ȳ2

It is clear that in the barred coordinate system the level curve Q(x, y) = k is a hyperbola. If we
draw the barred coordinate system superposed over the xy-coordinate system then you’ll see that
the graph of Q(x, y) = 4xy = k is a hyperbola rotated by 45 degrees. The graph z = 4xy is thus a
hyperbolic paraboloid:

The fascinating thing about the mathematics here is that if you don’t want to graph z = Q(x, y),
but you do want to know the general shape then you can determine which type of quadraic surface
you’re dealing with by simply calculating the eigenvalues of the form.

Remark 7.9.14.

I made the preceding triple of examples all involved the same rotation. This is purely for my
lecturing convenience. In practice the rotation could be by all sorts of angles. In addition,
you might notice that a different ordering of the e-values would result in a redefinition of
the barred coordinates. 12

We ought to do at least one 3-dimensional example.

Example 7.9.15. Consider the quadric form Q defined below:

Q(x, y, z) = [x, y, z]

 6 −2 0
−2 6 0

0 0 5

 x
y
z
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Denote the matrix of the form by A and calculate the e-values/vectors:

det(A− λI) = det

 6− λ −2 0
−2 6− λ 0
0 0 5− λ


= [(λ− 6)2 − 4](5− λ)

= (5− λ)[λ2 − 12λ+ 32](5− λ)

= (λ− 4)(λ− 8)(5− λ)

Therefore, the e-values are λ1 = 4, λ2 = 8 and λ3 = 5. After some calculation we find the following
orthonormal e-vectors for A:

~u1 =
1√
2

 1
1
0

 ~u2 =
1√
2

 1
−1
0

 ~u3 =

 0
0
1


Let P = [~u1|~u2|~u3] and introduce new coordinates ~y = [x̄, ȳ, z̄]T defined by ~y = P T~x. Note these
can be inverted by multiplication by P to give ~x = P~y. Observe that

P =
1√
2

 1 1 0
−1 1 0

0 0
√

2

 ⇒
x = 1

2(x̄+ ȳ)
y = 1

2(−x̄+ ȳ)
z = z̄

or
x̄ = 1

2(x− y)
ȳ = 1

2(x+ y)
z̄ = z

The proposition preceding this example shows that substitution of the formulas above into Q yield:

Q̃(x̄, ȳ, z̄) = 4x̄2 + 8ȳ2 + 5z̄2

It is clear that in the barred coordinate system the level surface Q(x, y, z) = k is an ellipsoid. If we
draw the barred coordinate system superposed over the xyz-coordinate system then you’ll see that
the graph of Q(x, y, z) = k is an ellipsoid rotated by 45 degrees around the z − axis. Plotted below
are a few representative ellipsoids:
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Remark 7.9.16.

If you would like to read more about conic sections or quadric surfaces and their connection
to e-values/vectors I reccommend sections 9.6 and 9.7 of Anton’s 9th. ed. text. I have yet
to add examples on how to include translations in the analysis. It’s not much more trouble
but I decided it would just be an unecessary complication this semester. Also, section
7.1,7.2 and 7.3 in Lay’s text show a bit more about how to use this math to solve concrete
applied problems. You might also take a look in Strang’s text, his discussion of tests for
positive-definite matrices is much more complete than I will give here.

7.9.2 summary of quadratic form analysis

There is a connection between the shape of level curves Q(x1, x2, . . . , xn) = k and the graph xn+1 =
f(x1, x2, . . . , xn) of f . I’ll discuss n = 2 but these comments equally well apply to w = f(x, y, z) or
higher dimensional examples. Consider a critical point (a, b) for f(x, y) then the Taylor expansion
about (a, b) has the form

f(a+ h, b+ k) = f(a, b) +Q(h, k)

where Q(h, k) = 1
2h

2fxx(a, b) +hkfxy(a, b) + 1
2h

2fyy(a, b) = [h, k][Q](h, k). Since [Q]T = [Q] we can
find orthonormal e-vectors ~u1, ~u2 for [Q] with e-values λ1 and λ2 respective. Using U = [~u1|~u2] we
can introduce rotated coordinates (h̄, k̄) = U(h, k). These will give

Q(h̄, k̄) = λ1h̄
2 + λ2k̄

2

Clearly if λ1 > 0 and λ2 > 0 then f(a, b) yields the local minimum whereas if λ1 < 0 and λ2 < 0
then f(a, b) yields the local maximum. Edwards discusses these matters on pgs. 148-153. In short,
supposing f ≈ f(p) + Q, if all the e-values of Q are positive then f has a local minimum of f(p)
at p whereas if all the e-values of Q are negative then f reaches a local maximum of f(p) at p.
Otherwise Q has both positive and negative e-values and we say Q is non-definite and the function
has a saddle point. If all the e-values of Q are positive then Q is said to be positive-definite
whereas if all the e-values of Q are negative then Q is said to be negative-definite. Edwards
gives a few nice tests for ascertaining if a matrix is positive definite without explicit computation
of e-values. Finally, if one of the e-values is zero then the graph will be like a trough.

Remark 7.9.17. summary of the summary.

In short, the behaviour of a quadratic form Q(x) = xTAx is governed by it’s spectrum
{λ1, λ2, . . . , λk}. Moreover, the form can be written as Q(y) = λ1y

2
1 + λ2y

2
2 + · · ·+ λky

2
k by

choosing the coordinate system which is built from the orthonormal eigenbasis of col(A).
In this coordinate system questions of optimization become trivial (see section 7.3 of Lay
for applied problems)
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7.10 Taylor series for functions of two or more variables

It turns out that linear algebra and e-vectors can give us great insight into locating local extrema
for a function of several variables. To summarize, we can calculate the multivariate Taylor series
and we’ll find that the quadratic terms correspond to a quadratic form. In fact, each quadratic
form has a symmetric matrix representative. We know that symmetric matrices are diagonalizable
hence the e-values of a symmetric matrix will be real. Moreover, the eigenvalues tell you what the
min/max value of the function is at a critical point (usually). This is the n-dimensional general-
ization of the 2nd-derivative test from calculus. I’ll only study the n = 2 and n = 3 case in this
course. If you’d like to see these claims explained in more depth feel free ask me about offering
Advanced Calculus.

Our goal here is to find an analogue for Taylor’s Theorem for function from Rn to R. Recall that if
g : U ⊆ R→ R is smooth at a ∈ R then we can compute as many derivatives as we wish, moreover
we can generate the Taylor’s series for g centered at a:

g(a+ h) = g(a) + g′(a)h+
1

2
g′′(a)h2 +

1

3!
g′′(a)h3 + · · · =

∞∑
n=0

g(n)(a)

n!
hn

The equation above assumes that g is analytic at a. In other words, the function actually matches
it’s Taylor series near a. This concept can be made rigorous by discussing the remainder. If one
can show the remainder goes to zero then that proves the function is analytic. (read p117-127 of
Edwards for more on these concepts, I did cover some of that in class this semester, Theorem 6.3
is particularly interesting).

7.10.1 deriving the two-dimensional Taylor formula

The idea is fairly simple: create a function on R with which we can apply the ordinary Taylor series
result. Much like our discussion of directional derivatives we compose a function of two variables
with linear path in the domain. Let f : U ⊆ R2 → R be smooth with smooth partial derivatives
of all orders. Furthermore, let (a, b) ∈ U and construct a line through (a, b) with direction vector
(h1, h2) as usual:

φ(t) = (a, b) + t(h1, h2) = (a+ th1, b+ th2)

for t ∈ R. Note φ(0) = (a, b) and φ′(t) = (h1, h2) = φ′(0). Construct g = f ◦φ : R → R and
differentiate, note we use the chain rule for functions of several variables in what follows:

g′(t) = (f ◦φ)′(t) = f ′(φ(t))φ′(t)

= ∇f(φ(t)) · (h1, h2)

= h1fx(a+ th1, b+ th2) + h2fy(a+ th1, b+ th2)
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Note g′(0) = h1fx(a, b)+h2fy(a, b). Differentiate again (I omit (φ(t)) dependence in the last steps),

g′′(t) = h1f
′
x(a+ th1, b+ th2) + h2f

′
y(a+ th1, b+ th2)

= h1∇fx(φ(t)) · (h1, h2) + h2∇fy(φ(t)) · (h1, h2)

= h2
1fxx + h1h2fyx + h2h1fxy + h2

2fyy

= h2
1fxx + 2h1h2fxy + h2

2fyy

Thus, making explicit the point dependence, g′′(0) = h2
1fxx(a, b) + 2h1h2fxy(a, b) + h2

2fyy(a, b). We
may construct the Taylor series for g up to quadratic terms:

g(0 + t) = g(0) + tg′(0) +
1

2
g′′(0) + · · ·

= f(a, b) + t[h1fx(a, b) + h2fy(a, b)] +
t2

2

[
h2

1fxx(a, b) + 2h1h2fxy(a, b) + h2
2fyy(a, b)

]
+ · · ·

Note that g(t) = f(a+ th1, b+ th2) hence g(1) = f(a+ h1, b+ h2) and consequently,

f(a+ h1, b+ h2) = f(a, b) + h1fx(a, b) + h2fy(a, b)+

+
1

2

[
h2

1fxx(a, b) + 2h1h2fxy(a, b) + h2
2fyy(a, b)

]
+ · · ·

Omitting point dependence on the 2nd derivatives,

f(a+ h1, b+ h2) = f(a, b) + h1fx(a, b) + h2fy(a, b) + 1
2

[
h2

1fxx + 2h1h2fxy + h2
2fyy

]
+ · · ·

Sometimes we’d rather have an expansion about (x, y). To obtain that formula simply substitute
x − a = h1 and y − b = h2. Note that the point (a, b) is fixed in this discussion so the derivatives
are not modified in this substitution,

f(x, y) = f(a, b) + (x− a)fx(a, b) + (y − b)fy(a, b)+

+
1

2

[
(x− a)2fxx(a, b) + 2(x− a)(y − b)fxy(a, b) + (y − b)2fyy(a, b)

]
+ · · ·

At this point we ought to recognize the first three terms give the tangent plane to z = f(z, y) at
(a, b, f(a, b)). The higher order terms are nonlinear corrections to the linearization, these quadratic
terms form a quadratic form. If we computed third, fourth or higher order terms we’d find that,
using a = a1 and b = a2 as well as x = x1 and y = x2,

f(x, y) =

∞∑
n=0

n∑
i1=0

n∑
i2=0

· · ·
n∑

in=0

1

n!

∂(n)f(a1, a2)

∂xi1∂xi2 · · · ∂xin
(xi1 − ai1)(xi2 − ai2) · · · (xin − ain)

The multivariate Taylor formula for a function of j-variables for j > 2 is very similar. Rather than
even state the formula I will show a few examples in the subsection that follows.
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7.10.2 examples

Example 7.10.1. Suppose f(x, y) = exp(−x2 − y2 + 2y − 1) expand f about the point (0, 1):

f(x, y) = exp(−x2)exp(−y2 + 2y − 1) = exp(−x2)exp(−(y − 1)2)

expanding,

f(x, y) = (1− x2 + · · · )(1− (y − 1)2 + · · · ) = 1− x2 − (y − 1)2 + · · ·

Recenter about the point (0, 1) by setting x = h and y = 1 + k so

f(h, 1 + k) = 1− h2 − k2 + · · ·

If (h, k) is near (0, 0) then the dominant terms are simply those we’ve written above hence the graph
is like that of a quadraic surface with a pair of negative e-values. It follows that f(0, 1) is a local
maximum. In fact, it happens to be a global maximum for this function.

Example 7.10.2. Suppose f(x, y) = 4− (x− 1)2 + (y− 2)2 +Aexp(−(x− 1)2− (y− 2)2) + 2B(x−
1)(y− 2) for some constants A,B. Analyze what values for A,B will make (1, 2) a local maximum,
minimum or neither. Expanding about (1, 2) we set x = 1 + h and y = 2 + k in order to see clearly
the local behaviour of f at (1, 2),

f(1 + h, 2 + k) = 4− h2 − k2 +Aexp(−h2 − k2) + 2Bhk
= 4− h2 − k2 +A(1− h2 − k2) + 2Bhk · · ·
= 4 +A− (A+ 1)h2 + 2Bhk − (A+ 1)k2 + · · ·

There is no nonzero linear term in the expansion at (1, 2) which indicates that f(1, 2) = 4 + A
may be a local extremum. In this case the quadratic terms are nontrivial which means the graph of
this function is well-approximated by a quadraic surface near (1, 2). The quadratic form Q(h, k) =
−(A+ 1)h2 + 2Bhk − (A+ 1)k2 has matrix

[Q] =

[
−(A+ 1) B

B −(A+ 1)2

]
.

The characteristic equation for Q is

det([Q]− λI) = det

[
−(A+ 1)− λ B

B −(A+ 1)2 − λ

]
= (λ+A+ 1)2 −B2 = 0

We find solutions λ1 = −A− 1 +B and λ2 = −A− 1−B. The possibilities break down as follows:

1. if λ1, λ2 > 0 then f(1, 2) is local minimum.

2. if λ1, λ2 < 0 then f(1, 2) is local maximum.

3. if just one of λ1, λ2 is zero then f is constant along one direction and min/max along another
so technically it is a local extremum.
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4. if λ1λ2 < 0 then f(1, 2) is not a local etremum, however it is a saddle point.

In particular, the following choices for A,B will match the choices above

1. Let A = −3 and B = 1 so λ1 = 3 and λ2 = 1;

2. Let A = 3 and B = 1 so λ1 = −3 and λ2 = −5

3. Let A = −3 and B = −2 so λ1 = 0 and λ2 = 4

4. Let A = 1 and B = 3 so λ1 = 1 and λ2 = −5

Here are the graphs of the cases above, note the analysis for case 3 is more subtle for Taylor
approximations as opposed to simple quadraic surfaces. In this example, case 3 was also a local
minimum. In contrast, in Example 7.9.12 the graph was like a trough. The behaviour of f away
from the critical point includes higher order terms whose influence turns the trough into a local
minimum.

Example 7.10.3. Suppose f(x, y) = sin(x) cos(y) to find the Taylor series centered at (0, 0) we
can simply multiply the one-dimensional result sin(x) = x − 1

3!x
3 + 1

5!x
5 + · · · and cos(y) = 1 −

1
2!y

2 + 1
4!y

4 + · · · as follows:

f(x, y) = (x− 1
3!x

3 + 1
5!x

5 + · · · )(1− 1
2!y

2 + 1
4!y

4 + · · · )
= x− 1

2xy
2 + 1

24xy
4 − 1

6x
3 − 1

12x
3y2 + · · ·

= x+ · · ·

The origin (0, 0) is a critical point since fx(0, 0) = 0 and fy(0, 0) = 0, however, this particular
critical point escapes the analysis via the quadratic form term since Q = 0 in the Taylor series
for this function at (0, 0). This is analogous to the inconclusive case of the 2nd derivative test in
calculus III.

Example 7.10.4. Suppose f(x, y, z) = xyz. Calculate the multivariate Taylor expansion about the
point (1, 2, 3). I’ll actually calculate this one via differentiation, I have used tricks and/or calculus
II results to shortcut any differentiation in the previous examples. Calculate first derivatives

fx = yz fy = xz fz = xy,
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and second derivatives,
fxx = 0 fxy = z fxz = y

fyx = z fyy = 0 fyz = x

fzx = y fzy = x fzz = 0,

and the nonzero third derivatives,

fxyz = fyzx = fzxy = fzyx = fyxz = fxzy = 1.

It follows,

f(a+ h, b+ k, c+ l) =
= f(a, b, c) + fx(a, b, c)h + fy(a, b, c)k + fz(a, b, c)l +

1
2( fxxhh+ fxyhk + fxzhl + fyxkh+ fyykk + fyzkl + fzxlh+ fzylk + fzzll ) + · · ·

Of course certain terms can be combined since fxy = fyx etc... for smooth functions (we assume
smooth in this section, moreover the given function here is clearly smooth). In total,

f(1 + h, 2 + k, 3 + l) = 6 + 6h+ 3k + 2l +
1

2

(
3hk + 2hl + 3kh+ kl + 2lh+ lk

)
+

1

3!
(6)hkl

Of course, we could also obtain this from simple algebra:

f(1 + h, 2 + k, 3 + l) = (1 + h)(2 + k)(3 + l) = 6 + 6h+ 3k + l + 3hk + 2hl + kl + hkl.

Remark 7.10.5.

One very interesting application of the orthogonal complement theorem is to the method of
Lagrange multipliers. The problem is to maximize an objective function f(x1, x2, . . . , xn)
with respect to a set of constraint functions g1(x1, x2, . . . , xn) = 0, g2(x1, x2, . . . , xn) = 0
and gk(x1, x2, . . . , xn) = 0. One can argue that extreme values for f must satisfy

∇f = λ1∇g1 + λ2∇g2 + · · ·+ λk∇gk

for a particular set of Lagrange multipliers λ1, λ2, . . . , λk. The crucial step in the analysis
relies on the orthogonal decomposition theorem. It is the fact that forces the gradient of
the objective function to reside in the span of the gradients of the constraints. See my
Advanced Calculus 2010 notes Chapter 8, or consult many advanced calculus texts.
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7.11 intertia tensor, an application of quadratic forms

We can use quadratic forms to elegantly state a number of interesting quantities in classical me-
chanics. For example, the translational kinetic energy of a mass m with velocity v is

Ttrans(v) =
m

2
vT v = [v1, v2, v3]

 m/2 0 0
0 m/2 0
0 0 m/2

 v1

v2

v3

 .

On the other hand, the rotational kinetic energy of an object with moment of intertia I and angular
velocity ω with respect to a particular axis of rotation is

Trot(v) =
I

2
ωTω.

In addition you might recall that the force F applied at radial arm r gave rise to a torque of
τ = r × F which made the angular momentum L = Iω have the time-rate of change τ = dL

dt . In
the first semester of physics this is primarily all we discuss. We are usually careful to limit the
discussion to rotations which happen to occur with respect to a particular axis. But, what about
other rotations? What about rotations with respect to less natural axes of rotation? How should
we describe the rotational physics of a rigid body which spins around some axis which doesn’t
happen to line up with one of the nice examples you find in an introductory physics text?

The answer is found in extending the idea of the moment of intertia to what is called the inertia
tensor Iij (in this section I is not the identity). To begin I’ll provide a calculation which motivates
the definition for the inertia tensor.

Consider a rigid mass with density ρ = dm/dV which is a function of position r = (x1, x2, x3).
Suppose the body rotates with angular velocity ω about some axis through the origin, however
it is otherwise not in motion. This means all of the energy is rotational. Suppose that dm is at
r then we define v = (ẋ1, ẋ2, ẋ3) = dr/dt. In this context, the velocity v of dm is also given by
the cross-product with the angular velocity; v = ω × r. Using the einstein repeated summation
notation the k-th component of the cross-product is nicely expressed via the Levi-Civita symbol;
(ω × r)k = εklmωlxm. Therefore, vk = εklmωlxm. The infinitesimal kinetic energy due to this little
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bit of rotating mass dm is hence

dT =
dm

2
vkvk

=
dm

2
(εklmωlxm)(εkijωixj)

=
dm

2
εklmεkijωlωixmxj

=
dm

2
(δliδmj − δljδmi)ωlωixmxj

=
dm

2
(δliδmjωlωixmxj − δljδmiωlωixmxj)

= ωl
dm

2
(δliδmjxmxj − δljδmixmxj)ωi

= ωl

[
dm

2
(δli||r||2 − xlxi)

]
ωi.

Integrating over the mass, if we add up all the little bits of kinetic energy we obtain the total kinetic
energy for this rotating body: we replace dm with ρ(r)dV and the integration is over the volume
of the body,

T =

∫
ωl

[
1

2
(δli||r||2 − xlxi)

]
ωiρ(r)dV

However, the body is rigid so the angular velocity is the same for each dm and we can pull the
components of the angular velocity out of the integration13 to give:

T =
1

2
ωj

[∫
(δjk||r||2 − xjxk)ρ(r)dV

]
︸ ︷︷ ︸

Ijk

ωk

This integral defines the intertia tensor Ijk for the rotating body. Given the inertia tensor Ilk the
kinetic energy is simply the value of the quadratic form below:

T (ω) =
1

2
ωTω = [ω1, ω2, ω3]

 I11 I12 I13

I21 I22 I23

I31 I32 I33

 ω1

ω2

ω3

 .
The matrix above is not generally diagonal, however you can prove it is symmetric (easy). There-
fore, we can find an orthonormal eigenbasis β = {u1, u2, u3} and if P = [β] then it follows by
orthonormality of the basis that [I]β,β = P T [I]P is diagonal. The eigenvalues of the inertia tensor (
the matrix [Ijk]) are called the principle moments of inertia and the eigenbasis β = {u1, u2, u3}
define the principle axes of the body.

13I also relabled the indices to have nicer final formula, nothing profound here
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The study of the rotational dynamics flows from analyzing the equations:

Li = Iijωj and τi =
dLi
dt

If the initial angular velocity is in the direction of a principle axis u1 then the motion is basically
described in the same way as in the introductory physics course provided that the torque is also
in the direction of u1. The moment of intertia is simply the first principle moment of inertia and
L = λ1ω. However, if the torque is not in the direction of a princple axis or the initial angular ve-
locity is not along a principle axis then the motion is more complicated since the rotational motion
is connected to more than one axis of rotation. Think about a spinning top which is spinning in
place. There is wobbling and other more complicated motions that are covered by the mathematics
described here.

Example 7.11.1. The intertia tensor for a cube with one corner at the origin is found to be

I =
2

3
Ms2

 1 −3/8 −3/8
−3/8 1 −3/8
−3/8 −3/8 1


Introduce m = M/8 to remove the fractions,

I =
2

3
Ms2

 8 −3 −3
−3 8 −3
−3 −3 8


You can calculate that the e-values are λ1 = 2 and λ2 = 11 = λ3 with principle axis in the directions

u1 =
1√
3

(1, 1, 1), u2 =
1√
2

(−1, 1, 0), u3 =
1√
2

(−1, 0, 1).

The choice of u2, u3 is not unique. We could just as well choose any other orthonormal basis for
span{u2, u3} = W11.

Finally, a word of warning, for a particular body there may be so much symmetry that no particular
eigenbasis is specified. There may be many choices of an orthonormal eigenbasis for the system.
Consider a sphere. Any orthonormal basis will give a set of principle axes. Or, for a right circular
cylinder the axis of the cylinder is clearly a principle axis however the other two directions are
arbitrarily chosen from the plane which is the orthogonal complement of the axis. I think it’s fair
to say that if a body has a unique (up to ordering) set of principle axes then the shape has to
be somewhat ugly. Symmetry is beauty but it implies ambiguity for the choice of certain princple
axes.
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7.12 inner products

We follow Chapter 6 of Anton & Rorres’ Elementary Linear Algebra 9th. ed., this material is also
§ 7.5 of Spence, Insel & Friedberg’s Elementary Linear Algebra, a Matrix Approach. The definition
of an inner product is based on the idea of the dot product. Proposition 7.1.4 summarized the most
important properties. We take these as the definition for an inner product. If you examine proofs in
§ 7.1 you’ll notice most of what I argued was based on using these 4 simple facts for the dot-product.

WARNING: the next couple pages is dense. It’s a reiteration of the main
theoretical accomplishments of this chapter in the context of inner product
spaces. If you need to see examples first then skip ahead as needed.

Definition 7.12.1.

Let V be a vector space over R. If there is a function < , >: V × V → R such that for all
x, y, z ∈ V and c ∈ R,

1. < x, y > = < y, x > (symmetric),

2. < x+ y, z > = < x, z > + < y, z >,

3. < cx, y > = c < x, y >,

4. < x, x > ≥ 0 and < x, x >= 0 iff x = 0,

then we say < , > is an inner product on V . In this case we say V with < > is
an inner product space. Items (1.), (2.) and (3.) together allow us to call < , > a
real-valued symmetric-bilinear-form on V . We may find it useful to use the notation
g(x, y) =< x, y > for some later arguments, one should keep in mind the notation < , > is
not the only choice.

Technically, items (2.) and (3.) give us ”linearity in the first slot”. To obtain bilinearity we need
to have linearity in the second slot as well. This means < x, y + z >=< x, y > + < x, z > and
< x, cy >= c < x, y > for all x, y, z ∈ V and c ∈ R. Fortunately, the symmetry property will
transfer the linearity to the second slot. I leave that as an exercise for the reader.

Example 7.12.2. Obviously Rn together with the dot-product forms an inner product space. More-
over, the dot-product is an inner product.

Once we have an inner product for a vector space then we also have natural definitions for the
length of a vector and the distance between two points.

Definition 7.12.3.

Let V be an inner product vector space with inner product < , >. The norm or length
of a vector is defined by ||x|| = √< x, x > for each x ∈ V . Likewise the distance between
a, b ∈ V is defined by d(a, b) =

√
< b− a, b− a > = ||b − a|| for all a, b ∈ V . We say these

are the length and distance functions induced by < , >. Likewise the angle between two
nonzero vectors is defined implicitly by < v,w >= ||v||||w|| cos(θ).
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As before the definition above is only logical if certain properties hold for the inner product, norm
and distance function. Happily we find all the same general properties for the inner product and
its induced norm and distance function.

Proposition 7.12.4.

If V is an inner product space with induced norm || · || and x, y ∈ V then | < x, y > | ≤
||x|| ||y||.

Proof: since ||x|| = √< x, x > the proof we gave for the case of the dot-product equally well ap-
plies here. You’ll notice in retrospect I only used those 4 properties which we take as the defining
axioms for the inner product. �

In fact, all the propositions from §7.1 apply equally well to an arbitrary finite-dimensional inner
product space. The proof of the proposition below is similar to those I gave in §7.1

Proposition 7.12.5. Properties for induced norm and distance function on an inner product space.

If V is an inner product space with inner product < , > and norm ||x|| = √x, x and distance
function d(x, y) = ||y − x|| then for all x, y, z ∈ V and c ∈ R

(i.) ||x|| ≥ 0 (v.) d(x, y) ≥ 0
(ii.) ||x|| = 0⇔ x = 0 (vi.) d(x, y) = 0⇔ x = y
(iii.) ||cx|| = |c|||x|| (vii.) d(x, y) = d(y, x)
(iv.) ||x+ y|| ≤ ||x||+ ||y|| (viii.) d(x, z) ≤ d(x, y) + d(y, z)

An norm is simply an operation which satisfies (i.) − (iv.). If we are given a vector space with a
norm then that is called a normed linear space. If in addition all Cauchy sequences converge in the
space it is said to be a complete normed linear space. A Banach Space is defined to be a complete
normed linear space. A distance function is simply an operation which satisfies (v.) − (viii.). A
set with a distance function is called a metric space. I’ll let you ponder all these things in some
other course, I mention them here merely for breadth. These topics are more interesting infinite-
dimensional case.

What is truly interesting is that the orthogonal complement theorems and closest vector theory
transfer over to the case of an inner product space.

Definition 7.12.6.

Let V be an inner product space with inner product < , >. Let x, y ∈ V then we say x is
orthogonal to y iff < x, y >= 0. A set S is said to be orthogonal iff every pair of vectors
in S is orthogonal. If W ≤ V then the orthogonal complement of W is defined to be
W⊥ = {v ∈ V | v · w = 0 ∀w ∈W}.
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Proposition 7.12.7. Orthogonality results for inner product space.

If V is an inner product space with inner product < , > and norm ||x|| =
√
x, x then for

all x, y, z ∈ V and W ≤ V ,

(i.) < x, y >= 0 ⇒ ||x+ y||2 = ||x||2 + ||y||2
(ii.) if S ⊂ V is orthogonal ⇒ S is linearly independent
(iii.) S ⊂ V ⇒ S⊥ ≤ V
(iv.) W⊥ ∩W = {0}
(v.) V = W ⊕W⊥

Definition 7.12.8.

Let V be an inner product space with inner product < , >. A basis of < , >-orthogonal
vectors is an orthogonal basis. Likewise, if every vector in an orthogonal basis has length
one then we call it an orthonormal basis.

Every finite dimensional inner product space permits a choice of an orthonormal basis. Examine
my proof in the case of the dot-product. You’ll find I made all arguments on the basis of the axioms
for an inner-product. The Gram-Schmidt process works equally well for inner product spaces, we
just need to exchange dot-products for inner-products as appropriate.

Proposition 7.12.9. Orthonormal coordinates and projection results.

If V is an inner product space with inner product < , > and β = {v1, v2, . . . , vk} is a
orthonormal basis for a subspace W then

(i.) w =< w, v1 > v1+ < w, v2 > v2 + · · ·+ < w, vk > vk for each w ∈W,
(ii.) ProjW (x) ≡< x, v1 > v1+ < x, v2 > v2 + · · ·+ < x, vk > vk ∈W for each x ∈ V,
(iii.) OrthW (x) ≡ x− ProjW (x) ∈W⊥for each x ∈ V,
(iv.) x = ProjW (x) +OrthW (x) and < ProjW (x), OrthW (x) >= 0 for each x ∈ V,
(v.) ||x− ProjW (x)|| < ||x− y|| for all y /∈W.

Notice that we can use the Gram-Schmidt idea to implement the least squares analysis in the
context of an inner-product space. However, we cannot multiply abstract vectors by matrices so
the short-cut normal equations may not make sense in this context. We have to implement the
closest vector idea without the help of those normal equations. I’ll demonstrate this idea in the
Fourier analysis section.

7.12.1 examples of inner-products

The dot-product is just one of many inner products. We examine an assortment of other inner-
products for various finite dimensional vector spaces.
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Example 7.12.10. Let V = R 2×1 and define < v,w >= v1w1 + 3v2w2 for all v = [v1, v2]T , w =
[w1, w2]T ∈ V . Let u, v, w ∈ V and c ∈ R,

1. symmetric property,

< v,w >= v1w1 + 3v2w2 = w1v1 + 3w2v2 =< w, v >

2. additive property:

< u+ v, w > = (u+ v)1w1 + 3(u+ v)2w2

= (u1 + v1)w1 + 3(u2 + v2)w2

= u1w1 + v1w1 + 3u2w2 + 3v2w2

=< u,w > + < v,w >

3. homogeneous property:
< cv,w > = cv1w1 + 3cv2w2

= c(v1w1 + 3v2w2)
= c < v,w >

4. positive definite property:

< v, v > = v2
1 + 3v2

2 ≥ 0 and < v, v >= 0 ⇔ v = 0.

Notice e1 = [1, 0]T is an orthonormalized vector with respect to < , > but e2 = [0, 1]T not unit-
length. Instead, < e2, e2 >= 3 thus ||e2|| =

√
3 so the unit-vector in the e2-direction is u = 1√

3
[0, 1]T

and with respect to < , > we have an orthonormal basis {e1, u}.

Example 7.12.11. Let V = R m×n we define the Frobenious inner-product as follows:

< A,B >=
m∑
i=1

n∑
j=1

AijBij .

It is clear that < A,A >≥ 0 since it is the sum of squares and it is also clear that < A,A >= 0 iff
A = 0. Symmetry follows from the calculation

< A,B >=

m∑
i=1

n∑
j=1

AijBij =

m∑
i=1

n∑
j=1

BijAij =< B,A >

where we can commute Bij and Aij for each pair i, j since the components are just real numbers.
Linearity and homogeneity follow from:

< λA+B,C > =

m∑
i=1

n∑
j=1

(λA+B)ijCij =

m∑
i=1

n∑
j=1

(λAij +Bij)Cij

= λ
m∑
i=1

n∑
j=1

AijCij +
m∑
i=1

n∑
j=1

BijCij = λ < A,C > + < B,C >
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Therefore. the Frobenius inner-product is in fact an inner product. The Frobenious norm of a
matrix is induced as usual:

||A|| =
√
< A,A >

as a consequence of the theory in this chapter we already know a few interesting properties form
the matrix-norm, in particular || < A,B > || ≤ ||A||||B||. The particular case of square matrices
allows further comments. If A,B ∈ R n×n then notice

< A,B >=
∑
i,j

AijBij =
∑
i

∑
j

Aij(B
T )ji = trace(ABT ) ⇒ ||A|| = trace(AAT )

We find an interesting identity for any square matrix |trace(ABT )| ≤
√
trace(AAT )trace(BBT ).

Example 7.12.12. Let C[a, b] denote the set of functions which are continuous on [a, b]. This is
an infinite dimensional vector space. We can define an inner-product via the definite integral of
the product of two functions: let f, g ∈ C[a, b] define

< f, g >=

∫ b

a
f(x)g(x)dx.

We can prove this is an inner-product. I’ll just show additivity,

< f + g, h > =

∫ b

a
(f(x) + g(x))(x)h(x)dx

=

∫ b

a
f(x)h(x)dx+

∫ b

a
g(x)h(x)dx =< f, h > + < g, h > .

I leave the proof of the other properties to the reader.

Example 7.12.13. Consider the inner-product < f, g >=
∫ 1
−1 f(x)g(x)dx for f, g ∈ C[−1, 1]. Let’s

calculate the length squared of the standard basis:

< 1, 1 >=

∫ 1

−1
1 · 1dx = 2, < x, x >=

∫ 1

−1
x2dx =

x3

3

∣∣∣∣1
−1

=
2

3

< x2, x2 >=

∫ 1

−1
x4dx =

x5

5

∣∣∣∣1
−1

=
2

5

Notice that the standard basis of P2 are not all < , >-orthogonal:

< 1, x >=

∫ 1

−1
xdx = 0 < 1, x2 >=< x, x >=

∫ 1

−1
x2dx =

2

3
< x, x2 >=

∫ 1

−1
x3dx = 0

We can use the Gram-Schmidt process on {1, x, x2} to find an orthonormal basis for P2 on [−1, 1].
Let, u1(x) = 1 and

u2(x) = x− < x, 1 >

< 1, 1 >
= x

u3(x) = x2 − < x2, x >

< x, x >
x− < x2, 1 >

< 1, 1 >
= x2 − 1

3
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We have an orthogonal set of functions {u1, u2, u3} we already calculated the length of u1 and u2

so we can immediately normalize those by dividing by their lengths; v1(x) = 1√
2

and v2(x) =
√

3
2x.

We need to calculate the length of u3 so we can normalize it as well:

< u3, u3 >=

∫ 1

−1

(
x2 − 1

3

)2
dx =

∫ 1

−1

(
x4 − 2

3x
2 + 1

9

)
dx = 2

5 −
4
9 + 2

9 = 8
45

Thus v3(x) =
√

8
45

(
x2− 1

3

)
has length one. Therefore,

{
1√
2
,
√

3
2x,
√

8
45

(
x2− 1

3

)}
is an orthonormal

basis for P2 restricted to [−1, 1]. Other intervals would not have the same basis. This construction
depends both on our choice of inner-product and the interval considered. Incidentally, these are
the first three Legendre Polynomials. These arise naturally as solutions to certain differential
equations. The theory of orthogonal polynomials is full of such calculations. Orthogonal poly-
nomials are quite useful as approximating functions. If we offered a second course in differential
equations we could see the full function of such objects.

Example 7.12.14. Clearly f(x) = ex /∈ P2. What is the least-squares approximation of f? Use
the projection onto P2: Proj P2(f) =< f, v1 > v1+ < f, v2 > v2+ < f, v3 > v3. We calculate,

< f, v1 >=

∫ 1

−1

1√
2
exdx = 1√

2
(e1 − e−1) u 1.661

< f, v2 >=

∫ 1

−1

√
3
2xe

xdx =
√

3
2(xex − ex)|1−1 =

√
3
2 [−(−e−1 − e−1)] =

√
6e−1 u 0.901

< f, v3 >=

∫ 1

−1

√
8
45

(
x2 − 1

3

)
exdx = 2e

3 −
14e−1

3 u 0.0402

Thus,

Proj P2(f)(x) = 1.661v1(x) + 0.901v2(x) + 0.0402v3(x)

= 1.03 + 1.103x+ 0.017x2

This is closest a quadratic can come to approximating the exponential function on the interval
[−1, 1]. What’s the giant theoretical leap we made in this example? We wouldn’t face the same leap
if we tried to approximate f(x) = x4 with P2. What’s the difference? Where does ex live?

Example 7.12.15. Consider C[−π, π] with inner product < f, g >=
∫ π
−π f(x)g(x)dx. The set of

sine and cosine functions {1, cos(x), sin(x), cos(2x), sin(2x), . . . , cos(kx), sin(kx)} is an orthogonal
set of functions.

< cos(mx), cos(nx) >=

∫ π

−π
cos(mx) cos(nx)dx = πδmn

< sin(mx), sin(nx) >=

∫ π

−π
sin(mx) sin(nx)dx = πδmn
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< sin(mx), cos(nx) >=

∫ π

−π
sin(mx) cos(nx)dx = 0

Thus we find the following is a set of orthonormal functions

βtrig = { 1√
2π
, 1√

π
cos(x), 1√

π
sin(x), 1√

π
cos(2x), 1√

π
sin(2x), . . . , 1√

π
cos(kx), 1√

π
sin(kx)}

7.12.2 Fourier analysis

The idea of Fourier analysis is based on the least-squares approximation and the last example of
the preceding section. We wish to represent a function with a sum of sines and cosines, this is called
a Fourier sum. Much like a power series, the more terms we use to approximate the function the
closer the approximating sum of functions gets to the real function. In the limit the approximation
can become exact, the Fourier sum goes to a Fourier series. I do not wish to confront the analytical
issues pertaining to the convergence of Fourier series. As a practical matter, it’s difficult to calculate
infinitely many terms so in practice we just keep the first say 10 or 20 terms and it will come very
close to the real function. The advantage of a Fourier sum over a polynomial is that sums of
trigonometric functions have natural periodicities. If we approximate the function over the interval
[−π, π] we will also find our approximation repeats itself outside the interval. This is desireable if
one wishes to model a wave-form of some sort. Enough talk. Time for an example. ( there also an
example in your text on pages 540-542 of Spence, Insel and Friedberg)

Example 7.12.16. Suppose f(t) =

{
1 0 < t < π

−1 − π < t < 0
and f(t + 2nπ) = f(t) for all n ∈ Z.

This is called a square wave for the obvious reason (draw its graph). Find the first few terms in
a Fourier sum to represent the function. We’ll want to use the projection: it’s convenient to bring
the normalizing constants out so we can focus on the integrals without too much clutter. 14

ProjW (f)(t) = 1
2π < f, 1 > + 1

π < f, cos t > cos t+ 1
π < f, sin t > sin t+

+ 1
π < f, cos 2t > cos 2t+ 1

π < f, sin 2t > sin 2t+ · · ·

Where W = span(βtrig). The square wave is constant on (0, π] and [−π, 0) and the value at zero is
not defined ( you can give it a particular value but that will not change the integrals that calculate
the Fourier coefficients). Calculate,

< f, 1 >=

∫ π

−π
f(t)dt = 0

< f, cos t >=

∫ π

−π
cos(t)f(t)dt = 0

14In fact, various texts put these little normalization factors in different places so when you look up results on
Fourier series beware conventional discrepancies
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Notice that f(t) and cos(t)f(t) are odd functions so we can conclude the integrals above are zero
without further calculation. On the other hand, sin(−t)f(−t) = (− sin t)(−f(t)) = sin tf(t) thus
sin(t)f(t) is an even function, thus:

< f, sin t >=

∫ π

−π
sin(t)f(t)dt = 2

∫ π

0
sin(t)f(t)dt = 2

∫ π

0
sin(t)dt = 4

Notice that f(t) cos(kt) is odd for all k ∈ N thus < f, cos(kt) >= 0. Whereas, f(t) sin(kt) is even
for all k ∈ N thus

< f, sin kt > =

∫ π

−π
sin(kt)f(t)dt = 2

∫ π

0
sin(kt)f(t)dt

= 2

∫ π

0
sin(kt)dt =

2

k

[
1− cos(kπ)

]
=

{
0, k even
4
k , k odd

Putting it all together we find (the ∼ indicates the functions are nearly the same except for a finite
subset of points),

f(t) ∼ 4

π

(
sin t+

1

3
sin 3t+ +

1

5
sin 5t+ · · ·

)
=
∞∑
n=1

4

(2n− 1)π
sin(2n− 1)t

I have graphed the Fourier sums up the sum with 11 terms.

Remark 7.12.17.

The treatment of Fourier sums and series is by no means complete in these notes. There is
much more to say and do. Our goal here is simply to connect Fourier analysis with the more
general story of orthogonality. In the math 334 course we use Fourier series to construct
solutions to partial differential equations. Those calculations are foundational to describe
interesting physical examples such as the electric and magnetic fields in a waveguide, the
vibrations of a drum, the flow of heat through some solid, even the vibrations of a string
instrument.



Chapter 8

systems of differential equations

This chapter is an application linear algebra to the problem of differential equations. We’ll see how
to use primarily algebraic arguments to solve systems of linear differential equations. The big idea
of this chapter is centered around the matrix exponential. It turns out that once we can extract
all our solutions from the matrix exponential by simple multiplication of e-vectors and generalized
e-vectors. Both complex and real e-vectors are generally of interest. This is one of the reasons I
do not limit our discussion earlier in this course to merely real e-vectors. The algebra allows for
real and complex e-values and both have physical significance in basic applications of linear algebra.

For the interested reader: Chapter 4 of my Spring 2012 Math 334 notes have a much more readable
treatment of systems of differential equations. I include more examples, less theory, and some
discussion of the geometric meaning of e-values as they relate to critical points of ODEs. In fact, I
was tempted to transfer many examples from those notes to these for the sake of illustrating how
linear algebra is used in DEqns. I resisted this temptation since many of you have not had DEqns
at this point. I urge you to think about these connections sometime before you graduate. Linear
algebra and differential equations complement one another in many ways. One great textbook to
read about differential equations with linear algebra is Finney and Ostberg’s Elementary Differential
Equations With Linear Algebra.

269
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8.1 calculus of matrices

A more apt title would be ”calculus of matrix-valued functions of a real variable”.

Definition 8.1.1.

A matrix-valued function of a real variable is a function from I ⊆ R to R m×n. Suppose
A : I ⊆ R → R m×n is such that Aij : I ⊆ R → R is differentiable for each i, j then we
define

dA
dt =

[dAij
dt

]
which can also be denoted (A′)ij = A′ij . We likewise define

∫
Adt = [

∫
Aijdt] for A with

integrable components. Definite integrals and higher derivatives are also defined component-
wise.

Example 8.1.2. Suppose A(t) =

[
2t 3t2

4t3 5t4

]
. I’ll calculate a few items just to illustrate the

definition above. calculate; to differentiate a matrix we differentiate each component one at a time:

A′(t) =

[
2 6t

12t2 20t3

]
A′′(t) =

[
0 6

24t 60t2

]
A′(0) =

[
2 0
0 0

]
Integrate by integrating each component:

∫
A(t)dt =

[
t2 + c1 t3 + c2

t4 + c3 t5 + c4

] ∫ 2

0
A(t)dt =

 t2
∣∣2
0

t3
∣∣2
0

t4
∣∣2
0

t5
∣∣2
0

 =

[
4 8
16 32

]

Proposition 8.1.3.

Suppose A,B are matrix-valued functions of a real variable, f is a function of a real variable,
c is a constant, and C is a constant matrix then

1. (AB)′ = A′B +AB′ (product rule for matrices)

2. (AC)′ = A′C

3. (CA)′ = CA′

4. (fA)′ = f ′A+ fA′

5. (cA)′ = cA′

6. (A+B)′ = A′ +B′

where each of the functions is evaluated at the same time t and I assume that the functions
and matrices are differentiable at that value of t and of course the matrices A,B,C are such
that the multiplications are well-defined.
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Proof: Suppose A(t) ∈ R m×n and B(t) ∈ R n×p consider,

(AB)′ij = d
dt((AB)ij) defn. derivative of matrix

= d
dt(
∑

k AikBkj) defn. of matrix multiplication

=
∑

k
d
dt(AikBkj) linearity of derivative

=
∑

k

[
dAik
dt Bkj +Aik

dBkj
dt

]
ordinary product rules

=
∑

k
dAik
dt Bkj +

∑
k Aik

dBkj
dt algebra

= (A′B)ij + (AB′)ij defn. of matrix multiplication
= (A′B +AB′)ij defn. matrix addition

this proves (1.) as i, j were arbitrary in the calculation above. The proof of (2.) and (3.) follow
quickly from (1.) since C constant means C ′ = 0. Proof of (4.) is similar to (1.):

(fA)′ij = d
dt((fA)ij) defn. derivative of matrix

= d
dt(fAij) defn. of scalar multiplication

= df
dtAij + f

dAij
dt ordinary product rule

= (dfdtA+ f dAdt )ij defn. matrix addition

= (dfdtA+ f dAdt )ij defn. scalar multiplication.

The proof of (5.) follows from taking f(t) = c which has f ′ = 0. I leave the proof of (6.) as an
exercise for the reader. �.

To summarize: the calculus of matrices is the same as the calculus of functions with the small
qualifier that we must respect the rules of matrix algebra. The noncommutativity of matrix mul-
tiplication is the main distinguishing feature.

Since we’re discussing this type of differentiation perhaps it would be worthwhile for me to insert
a comment about complex functions here. Differentiation of functions from R to C is defined by
splitting a given function into its real and imaginary parts then we just differentiate with respect
to the real variable one component at a time. For example:

d

dt
(e2t cos(t) + ie2t sin(t)) =

d

dt
(e2t cos(t)) + i

d

dt
(e2t sin(t))

= (2e2t cos(t)− e2t sin(t)) + i(2e2t sin(t) + e2t cos(t)) (8.1)

= e2t(2 + i)(cos(t) + i sin(t))

= (2 + i)e(2+i)t

where we made use of the identity1 ex+iy = ex(cos(y) + i sin(y)). We just saw that d
dte

λt = λeλt

which seems obvious enough until you appreciate that we just proved it for λ = 2 + i. We make
use of this calculation in the next section in the case we have complex e-values.

1or definition, depending on how you choose to set-up the complex exponential, I take this as the definition in
calculus II
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8.2 introduction to systems of linear differential equations

A differential equation (DEqn) is simply an equation that is stated in terms of derivatives. The
highest order derivative that appears in the DEqn is called the order of the DEqn. In calculus
we learned to integrate. Recall that

∫
f(x)dx = y iff dy

dx = f(x). Everytime you do an integral
you are solving a first order DEqn. In fact, it’s an ordinary DEnq (ODE) since there is only one
indpendent variable ( it was x ). A system of ODEs is a set of differential equations with a common
independent variable. It turns out that any linear differential equation can be written as a system
of ODEs in normal form. I’ll define normal form then illustrate with a few examples.

Definition 8.2.1.

Let t be a real variable and suppose x1, x2, . . . , xn are functions of t. If Aij , fi are functions
of t for all 1 ≤ i ≤ m and 1 ≤ j ≤ n then the following set of differential equations is defined
to be a system of linear differential equations in normal form:

dx1
dt = A11x1 +A12x2 + · · ·A1nxn + f1

dx2
dt = A21x1 +A22x2 + · · ·A2nxn + f2

... =
...

... · · ·
...

dxm
dt = Am1x1 +Am2x2 + · · ·Amnxn + fm

In matrix notation, dx
dt = Ax + f . The system is called homogeneous if f = 0 whereas

the system is called nonhomogeneous if f 6= 0. The system is called constant coefficient
if d

dt(Aij) = 0 for all i, j. If m = n and a set of intial conditions x1(t0) = y1, x2(t0) =
y2, . . . , xn(t0) = yn are given then this is called an initial value problem (IVP).

Example 8.2.2. If x is the number of tigers and y is the number of rabbits then

dx
dt = x+ y dy

dt = −100x+ 20y

is a model for the population growth of tigers and bunnies in some closed environment. My logic for
my made-up example is as follows: the coefficient 1 is the growth rate for tigers which don’t breed to
quickly. Whereas the growth rate for bunnies is 20 since bunnies reproduce like, well bunnies. Then
the y in the dx

dt equation goes to account for the fact that more bunnies means more tiger food and
hence the tiger reproduction should speed up (this is probably a bogus term, but this is my made up
example so deal). Then the −100x term accounts for the fact that more tigers means more tigers
eating bunnies so naturally this should be negative. In matrix form[ dx

dt
dy
dt

]
=

[
1 1
−100 20

] [
x
y

]
How do we solve such a system? This is the question we seek to answer.
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The preceding example is a predator-prey model. There are many other terms that can be added to
make the model more realistic. Ultimately all population growth models are only useful if they can
account for all significant effects. History has shown population growth models are of only limited
use for humans.

Example 8.2.3. Reduction of Order in calculus II you may have studied how to solve y′′+by′+
cy = 0 for any choice of constants b, c. This is a second order ODE. We can reduce it to a system
of first order ODEs by introducing new variables: x1 = y and x2 = y′ then we have

x′1 = y′ = x2

and,
x′2 = y′′ = −by′ − cy = −bx2 − cx1

As a matrix DEqn, [
x1

x2

]′
=

[
0 1
−c −b

] [
x1

x2

]
Similarly if y′′′′ + 2y′′′ + 3y′′ + 4y′ + 5y = 0 we can introduce variables to reduce the order: x1 =
y, x2 = y′, x3 = y′′, x4 = y′′′ then you can show:

x1

x2

x3

x4


′

=


0 1 0 0
0 0 1 0
0 0 0 1
−5 −4 −3 −2



x1

x2

x3

x4


is equivalent to y′′′′+ 2y′′′+ 3y′′+ 4y′+ 5y = 0. We call the matrix above the companion matrix
of the n-th order constant coefficient ODE. There is a beautiful interplay between solutions to n-th
order ODEs and the linear algebra of the compansion matrix.

Example 8.2.4. Suppose y′′ + 4y′ + 5y = 0 and x′′ + x = 0. The is a system of linear second
order ODEs. It can be recast as a system of 4 first order ODEs by introducing new variables:
x1 = y, x2 = y′ and x3 = x, x4 = x′. In matrix form the given system in normal form is:

x1

x2

x3

x4


′

=


0 1 0 0
−5 −4 0 0
0 0 0 1
0 0 −1 0



x1

x2

x3

x4


The companion matrix above will be found to have eigenvalues λ = −2 ± i and λ = ±i. I know
this without further calculation purely on the basis of what I know from DEqns and the interplay I
alluded to in the last example.

Example 8.2.5. If y′′′′ + 2y′′ + y = 0 we can introduce variables to reduce the order: x1 = y, x2 =
y′, x3 = y′′, x4 = y′′′ then you can show:

x1

x2

x3

x4


′

=


0 1 0 0
0 0 1 0
0 0 0 1
−1 0 −2 0



x1

x2

x3

x4
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is equivalent to y′′′′+2y′′+y = 0. If we solve the matrix system then we solve the equation in y and
vice-versa. I happen to know the solution to the y equation is y = c1 cos t+c2 sin t+c3t cos t+c4t sin t.
From this I can deduce that the companion matrix has a repeated e-value of λ = ±i and just one
complex e-vector and its conjugate. This matrix would answer the bonus point question I posed a
few sections back. I invite the reader to verify my claims.

Remark 8.2.6.

For those of you who will or have taken math 334 my guesswork above is predicated on two
observations:

1. the ”auxillarly” or ”characteristic” equation in the study of the constant coefficient
ODEs is identical to the characteristic equation of the companion matrix.

2. ultimately eigenvectors will give us exponentials and sines and cosines in the solution
to the matrix ODE whereas solutions which have multiplications by t stem from
generalized e-vectors. Conversely, if the DEqn has a t or t2 multiplying cosine, sine
or exponential functions then the companion matrix must in turn have generalized
e-vectors to account for the t or t2 etc...

I will not explain (1.) in this course, however we will hopefully make sense of (2.) by the
end of this section.

8.3 the matrix exponential

Perhaps the most important first order ODE is dy
dt = ay. This DEqn says that the rate of change in

y is simply proportional to the amount of y at time t. Geometrically, this DEqn states the solutions
value is proportional to its slope at every point in its domain. The solution2 is the exponential
function y(t) = eat.

We face a new differential equation; dxdt = Ax where x is a vector-valued function of t and A ∈ R n×n.
Given our success with the exponential function for the scalar case is it not natural to suppose that
x = etA is the solution to the matrix DEqn? The answer is yes. However, we need to define a few
items before we can understand the true structure of the claim.

Definition 8.3.1.

Let AR n×n define eA ∈ R n×n by the following formula

eA =
∞∑
n=0

1
n!A

n = I +A+ 1
2A

2 + 1
3!A

3 + · · · .

We also denote eA = exp(A) when convenient.

2ok, technically separation of variables yields the general solution y = ceat but I’m trying to focus on the expo-
nential function for the moment.
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This definition is the natural extension of the Taylor series formula for the exponential function we
derived in calculus II. Of course, you should be skeptical of this definition. How do I even know the
series converges for an arbitrary matrix A? And, what do I even mean by ”converge” for a series
of matrices? (skip the next subsection if you don’t care)

8.3.1 analysis for matrices

Remark 8.3.2.

The purpose of this section is to alert the reader to the gap in the development here. We
will use the matrix exponential despite our inability to fully grasp the underlying analysis.
Much in the same way we calculate series in calculus without proving every last theorem. I
will attempt to at least sketch the analytical underpinnings of the matrix exponential. The
reader will be happy to learn this is not part of the required material.

We use the Frobenius norm for A ∈ R n×n, ||A|| =
√∑

i,j(Aij)
2. We already proved this was a

norm in a previous chapter. A sequence of square matrices is a function from N to R n×n. We
say the sequence {An}∞n=1 converges to L ∈ R n×n iff for each ε > 0 there exists M ∈ N such that
||An − L|| < ε for all n > M . This is the same definition we used in calculus, just now the norm is
the Frobenius norm and the functions are replaced by matrices. The definition of a series is also
analogus to the definition you learned in calculus II.

Definition 8.3.3.

Let Ak ∈ R m×m for all k, the sequence of partial sums of
∑∞

k=0Ak is given by Sn =∑n
k=1Ak. We say the series

∑∞
k=0Ak converges to L ∈ R m×m iff the sequence of partial

sums converges to L. In other words,

∞∑
k=1

Ak = lim
n→∞

n∑
k=1

Ak.

Many of the same theorems hold for matrices:

Proposition 8.3.4.

Let t → SA(t) =
∑
Ak(t) and t → SB(t) =

∑
k Bk(t) be matrix valued functions of a real

variable t where the series are uniformly convergent and c ∈ R then

1.
∑

k cAk = c
∑

k Ak

2.
∑

k(Ak +Bk) =
∑

k Ak +
∑

k Bk

3. d
dt

[∑
k Ak

]
=
∑

k
d
dt

[
Ak
]

4.
∫ [∑

k Ak
]
dt = C +

∑
k

∫
Akdt where C is a constant matrix.

The summations can go to infinity and the starting index can be any integer.
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Uniform convergence means the series converge without regard to the value of t. Let me just
refer you to the analysis course, we should discuss uniform convergence in that course, the concept
equally well applies here. It is the crucial fact which one needs to interchange the limits which
are implicit within

∑
k and d

dt . There are counterexamples in the case the series is not uniformly
convergent. Fortunately,

Proposition 8.3.5.

Let A be a square matrix then exp(A) =
∑∞

k=0
1
k!A

k is a uniformly convergent series of
matrices.

Basically, the argument is as follows: The set of square matrices with the Frobenius norm is
isometric to Rn2

which is a complete space. A complete space is one in which every Cauchy sequence
converges. We can show that the sequence of partial sums for exp(A) is a Cauchy sequence in R n×n

hence it converges. Obviously I’m leaving some details out here. You can look at the excellent
Calculus text by Apostle to see more gory details. Also, if you don’t like my approach to the matrix
exponential then he has several other ways to look it.

(Past this point I expect you to start following along again. )

8.3.2 formulas for the matrix exponential

Now for the fun part.

Proposition 8.3.6.

Let A be a square matrix then d
dt

[
exp(tA)

]
= Aexp(tA)

Proof: I’ll give the proof in two notations. First,

d
dt

[
exp(tA)

]
= d

dt

[ ∞∑
k=0

1
k! t

kAk
]

defn. of matrix exponential

=

∞∑
k=0

d
dt

[
1
k! t

kAk
]

since matrix exp. uniformly conv.

=

∞∑
k=0

k
k! t

k−1Ak Ak constant and d
dt(t

k) = ktk−1

= A
∞∑
k=1

1
(k−1)! t

k−1Ak−1 since k! = k(k − 1)! and Ak = AAk−1.

= Aexp(tA) defn. of matrix exponential.
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I suspect the following argument is easier to follow:

d
dt(exp(tA)) = d

dt(I + tA+ 1
2 t

2A2 + 1
3! t

3A3 + · · · )
= d

dt(I) + d
dt(tA) + 1

2
d
dt(t

2A2) + 1
3·2

d
dt(t

3A3) + · · ·
= A+ tA2 + 1

2 t
2A3 + · · ·

= A(I + tA+ 1
2 t

2A2 + · · · )
= Aexp(tA). �

Notice that we have all we need to see that exp(tA) is a matrix of solutions to the differential
equation x′ = Ax. The following prop. follows from the preceding prop. and Prop. 2.3.12.

Proposition 8.3.7.

If X = exp(tA) then X ′ = Aexp(tA) = AX. This means that each column in X is a
solution to x′ = Ax.

Let us illustrate this proposition with a particularly simple example.

Example 8.3.8. Suppose x′ = x, y′ = 2y, z′ = 3z then in matrix form we have: x
y
z

′ =
 1 0 0

0 2 0
0 0 3

 x
y
z


The coefficient matrix is diagonal which makes the k-th power particularly easy to calculate,

Ak =

 1 0 0
0 2 0
0 0 3

k =

 1 0 0
0 2k 0
0 0 3k


⇒ exp(tA) =

∞∑
k=0

tk

k!

 1 0 0
0 2k 0
0 0 3k

 =


∑∞

k=0
tk

k! 1
k 0 0

0
∑∞

k=0
tk

k! 2
k 0

0 0
∑∞

k=0
tk

k! 3
k


⇒ exp(tA) =

 et 0 0
0 e2t 0
0 0 e3t


Thus we find three solutions to x′ = Ax,

x1(t) =

 et

0
0

 x2(t) =

 0
e2t

0

 x3(t) =

 0
0
e3t


In turn these vector solutions amount to the solutions x = et, y = 0, z = 0 or x = 0, y = e2t, z = 0
or x = 0, y = 0, z = e3t. It is easy to check these solutions.
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Usually we cannot calculate the matrix exponential explicitly by such a straightforward calculation.
We need e-vectors and sometimes generalized e-vectors to reliably calculate the solutions of interest.

Proposition 8.3.9.

If A,B are square matrices such that AB = BA then eA+B = eAeB

Proof: I’ll show how this works for terms up to quadratic order,

eAeB = (1 +A+ 1
2A

2 + · · · )(1 +B + 1
2B

2 + · · · ) = 1 + (A+B) + 1
2A

2 +AB + 1
2B

2 + · · · .

However, since AB = BA and

(A+B)2 = (A+B)(A+B) = A2 +AB +BA+B2 = A2 + 2AB +B2.

Thus,
eAeB = 1 + (A+B) + 1

2(A+B)2 + · · · = eA+B �

You might wonder what happens if AB 6= BA. In this case we can account for the departure from
commutativity by the commutator of A and B.

Definition 8.3.10.

Let A,B ∈ R n×n then the commutator of A and B is [A,B] = AB −BA.

Proposition 8.3.11.

Let A,B,C ∈ R n×n then

1. [A,B] = −[B,A]

2. [A+B,C] = [A,C] + [B,C]

3. [AB,C] = A[B,C] + [A,C]B

4. [A,BC] = B[A,C] + [A,B]C

5. [[A,B], C] + [[B,C], A] + [[C,A], B] = 0

The proofs of the properties above are not difficult. In contrast, the following formula known as
the Baker-Campbell-Hausdorff (BCH) relation takes considerably more calculation:

eAeB = eA+B+
1
2 [A,B]+

1
12 [[A,B],B]++

1
12 [[B,A],A]+··· BCH-formula

The higher order terms can also be written in terms of nested commutators. What this means is
that if we know the values of the commutators of two matrices then we can calculate the product
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of their exponentials with a little patience. This connection between multiplication of exponentials
and commutators of matrices is at the heart of Lie theory. Actually, mathematicians have greatly
abstracted the idea of Lie algebras and Lie groups way past matrices but the concrete example of
matrix Lie groups and algebras is perhaps the most satisfying. If you’d like to know more just ask.
It would make an excellent topic for an independent study that extended this course.

Remark 8.3.12.

In fact the BCH holds in the abstract as well. For example, it holds for the Lie algebra of
derivations on smooth functions. A derivation is a linear differential operator which satisfies
the product rule. The derivative operator is a derivation since D[fg] = D[f ]g+ fD[g]. The
commutator of derivations is defined by [X,Y ][f ] = X(Y (f))− Y (X(f)). It can be shown
that [D,D] = 0 thus the BCH formula yields

eaDebD = e(a+b)D.

If the coefficient of D is thought of as position then multiplication by ebD generates a
translation in the position. By the way, we can state Taylor’s Theorem rather compactly in
this operator notation: f(x+h) = exp(hD)f(x) = f(x)+hf ′(x)+ h2

2 f
′′(x)+ h3

3! f
′′′(x)+ · · · .

Proposition 8.3.13.

Let A,P ∈ R n×n and assume P is invertible then

exp(P−1AP ) = P−1exp(A)P

Proof: this identity follows from the following observation:

(P−1AP )k = P−1APP−1APP−1AP · · ·P−1AP = P−1AkP.

Thus exp(P−1AP ) =
∑∞

k=0
1
k!(P

−1AP )k = P−1(
∑∞

k=0
1
k!A

k)P = P−1exp(A)P . �

Proposition 8.3.14.

Let A be a square matrix, det(exp(A)) = exp(trace(A)).

Proof: If the matrix A is diagonalizable then the proof is simple. Diagonalizability means there
exists invertibleP = [v1|v2| · · · |vn] such that P−1AP = D = [λ1v1|λ2v2| · · · |λnvn] where vi is an
e-vector with e-value λi for all i. Use the preceding proposition to calculate

det(exp(D)) = det(exp(P−1AP ) = det(P−1exp(A)P ) = det(P−1P ) det(exp(A)) = det(exp(A))

On the other hand, the trace is cyclic trace(ABC) = trace(BCA)

trace(D) = trace(P−1AP ) = trace(PP−1A) = trace(A)
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But, we also know D is diagonal with eigenvalues on the diagonal hence exp(D) is diagonal with
eλi on the corresponding diagonals

det(exp(D)) = eλ1eλ2 · · · eλn and trace(D) = λ1 + λ2 + · · ·+ λn

Finally, use the laws of exponents to complete the proof,

etrace(A) = etrace(D) = eλ1+λ2+···+λn = eλ1eλ2 · · · eλn = det(exp(D)) = det(exp(A)).

I’ve seen this proof in texts presented as if it were the general proof. But, not all matrices are
diagonalizable so this is a curious proof. I stated the proposition for an arbitrary matrix and I
meant it. The proof, the real proof, is less obvious. Let me sketch it for you:

better proof: The preceding proof shows it may be hopeful to suppose that det(exp(tA)) =
exp(t trace(A)) for t ∈ R. Notice that y = ekt satisfies the differential equation dy

dt = ky. Conversely,

if dy
dt = ky for some constant k then the general solution is given by y = coe

kt for some co ∈ R.
Let f(t) = det(exp(tA)). If we can show that f ′(t) = trace(A)f(t) then we can conclude f(t) =
c0e

t trace(A). Consider:

f ′(t) = d
dh

(
f(t+ h)

∣∣∣∣
h=0

= d
dh

(
det(exp[(t+ h)A])

∣∣∣∣
h=0

= d
dh

(
det(exp[tA+ hA])

∣∣∣∣
h=0

= d
dh

(
det(exp[tA]exp[hA])

∣∣∣∣
h=0

= det(exp[tA]) d
dh

(
det(exp[hA])

∣∣∣∣
h=0

= f(t) d
dh

(
det(I + hA+ 1

2h
2A2 + 1

3!h
3A3 + · · · )

∣∣∣∣
h=0

= f(t) d
dh

(
det(I + hA))

∣∣∣∣
h=0
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Let us discuss the d
dh(det(I + hA)) term seperately for a moment:3

d
dh(det(I + hA)) = d

dh [
∑
i1,...,in

εi1i2...in(I + hA)i11(I + hA)i22 · · · (I + hA)inn]h=0

=
∑
i1,...,in

εi1i2...in
d
dh [(I + hA)1i1(I + hA)1i2 · · · (I + hA)nin ]h=0

=
∑
i1,...,in

εi1i2...in(A1i1I1i2 · · · Inin + I1i1A2i2 · · · Inin + · · ·+ I1i1I2i2 · · ·Anin)

=
∑
i1

εi12...nA1i1 +
∑
i2

ε1i2...nA2i2 + · · ·+
∑
in

ε12...InAnin

= A11 +A22 + · · ·+Ann

= trace(A)

Therefore, f ′(t) = trace(A)f(t) consequently, f(t) = coe
t trace(A) = det(exp(tA)). However, we can

resolve co by calculating f(0) = det(exp(0)) = det(I) = 1 = co hence

et trace(A) = det(exp(tA))

Take t = 1 to obtain the desired result. �

Remark 8.3.15.

The formula det(exp(A)) = exp(trace(A)) is very important to the theory of matrix Lie
groups and Lie algebras. Generically, if G is the Lie group and g is the Lie algebra then
they are connected via the matrix exponential: exp : g→ Go where I mean Go to denoted
the connected component of the identity. For example, the set of all nonsingular matrices
GL(n) forms a Lie group which is disconnected. Half of GL(n) has positive determinant
whereas the other half has negative determinant. The set of all n × n matrices is denoted
gl(n) and it can be shown that exp(gl(n)) maps into the part of GL(n) which has positive
determinant. One can even define a matrix logarithm map which serves as a local inverse for
the matrix exponential near the identity. Generally the matrix exponential is not injective
thus some technical considerations must be discussed before we could put the matrix log on
a solid footing. This would take us outside the scope of this course. However, this would
be a nice topic to do a follow-up independent study. The theory of matrix Lie groups and
their representations is ubiqitious in modern quantum mechanical physics.

3I use the definition of the identity matrix Iij = δij in eliminating all but the last summation in the fourth line.
Then the levi-civita symbols serve the same purpose in going to the fifth line as εi12...n = δ1i1 ,ε1i2...n = δ2i2 etc...
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Finally, we come to the formula that is most important to our study of systems of DEqns. Let’s
call this the magic formula.

Proposition 8.3.16.

Let λ ∈ C and suppose A ∈ R n×n then

exp(tA) = eλt(I + t(A− λI) + t2

2 (A− λI)2 + t3

3! (A− λI)3 + · · · ).

Proof: Notice that tA = t(A− λI) + tλI and tλI commutes with all matrices thus,

exp(tA) = exp(t(A− λI) + tλI)

= exp(t(A− λI))exp(tλI)

= eλtexp(t(A− λI))

= eλt
(
I + t(A− λI) + t2

2 (A− λI)2 + t3

3! (A− λI)3 + · · ·
)

In the third line I used the identity proved below,

exp(tλI) = I + tλI + 1
2(tλ)2I2 + · · · = I(1 + tλ+ (tλ)2

2 + · · · ) = Ietλ. �

While the proofs leading up to the magic formula only dealt with real matrices it is not hard to see
the proofs are easily modified to allow for complex matrices.

8.4 solutions for systems of DEqns with real eigenvalues

Let us return to the problem of solving ~x ′ = A~x for a constant square matrix A where ~x =
[x1, x2, . . . , xn] is a vector of functions of t. I’m adding the vector notation to help distinguish the
scalar function x1 from the vector function ~x1 in this section. Let me state one theorem from the
theory of differential equations. The existence of solutions theorem which is the heart of of this
theorem is fairly involved to prove, you’ll find it in one of the later chapters of the differential
equations text by Nagel Saff and Snider.

Theorem 8.4.1.

If ~x ′ = A~x and A is a constant matrix then any solution to the system has the form

~x(t) = c1~x1(t) + c2~x2(t) + · · ·+ cn~xn(t)

where {~x1, ~x2, . . . , ~xn} is a linearly independent set of solutions defined on R (this is
called the fundamental solution set). Moreover, these fundamental solutions can be
concatenated into a single invertible solution matrix called the fundamental matrix
X = [~x1|~x2| · · · |~xn] and the general solution can be expressed as ~x(t) = X(t)~c where ~c
is an arbitrary vector of real constants. If an initial condtion ~x(to) = ~xo is given then the
solution to the IVP is ~x(t) = X−1(to)X(t)~xo.
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We proved in the previous section that the matrix exponential exp(tA) is a solution matrix and the
inverse is easy enought to guess: exp(tA)−1 = exp(−tA). This proves the columns of exp(tA) are
solutions to ~x ′ = A~x which are linearly independent and as such form a fundamental solution set.

Problem: we cannot directly calculate exp(tA) for most matrices A. We have a solution we
can’t calculate. What good is that?

When can we explicitly calculate exp(tA) without much thought? Two cases come to mind: (1.) if
A is diagonal then it’s easy, saw this in Example 8.3.8, (2.) if A is a nilpotent matrix then there
is some finite power of the matrix which is zero; Ak = 0. In the nilpotent case the infinite series
defining the matrix exponential truncates at order k:

exp(tA) = I + tA+ t2

2 A
2 + · · ·+ tk−1

(k−1)!A
k−1

Example 8.4.2. Let A =

[
0 1
0 0

]
we calculate A2 =

[
0 1
0 0

] [
0 1
0 0

]
=

[
0 0
0 0

]
thus

exp(tA) = I + tA =

[
1 0
0 1

]
+ t

[
0 1
0 0

]
=

[
1 t
0 1

]

Incidentally, the solution to ~x ′ = A~x is generally ~x(t) = c1

[
1
0

]
+ c2

[
t
1

]
. In other words,

x1(t) = c2 + c2t whereas x2(t) = c2. These solutions are easily seen to solve the system x′1 = x2

and x′2 = 0.

Unfortunately, the calculation we just did in the last example almost never works. For example,

try to calculate an arbitrary power of A =

[
1 2
3 4

]
, let me know how it works out. We would like

for all examples to truncate. The magic formula gives us a way around this dilemma:

Proposition 8.4.3.

Let A ∈ R n×n. Suppose v is an e-vector with e-value λ then exp(tA)v = eλtv.

Proof: we are given that (A− λI)v = 0 and it follows that (A− λI)kv = 0 for all k ≥ 1. Use the
magic formula,

exp(tA)v = eλt(I + t(A− λI) + · · · )v = eλt(Iv + t(A− λI)v + · · · = eλtv

noting all the higher order terms vanish since (A− λI)kv = 0. �

We can’t hope for the matrix exponential itself to truncate, but when we multiply exp(tA) on an
e-vector something special happens. Since eλt 6= 0 the set of vector functions
{eλ1tv1, e

λ2tv2, . . . , e
λktvk} will be linearly independent if the e-vectors vi are linearly independent. If
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the matrix A is diagonalizable then we’ll be able to find enough e-vectors to construct a fundamental
solution set using e-vectors alone. However, if A is not diagonalizable, and has only real e-values,
then we can still find a Jordan basis {v1, v2, . . . , vn} which consists of generalized e-vectors and it
follows that {etAv1, e

tAv2, . . . , e
tAvn} forms a fundamental solution set. Moreover, this is not just

of theoretical use. We can actually calculate this solution set.

Proposition 8.4.4.

Let A ∈ R n×n. Suppose A has a chain {v1, v2, . . . , vk} is of generalized e-vectors with
e-value λ, meaning (A− λ)v1 = 0 and (A− λ)vk−1 = vk for k ≥ 2, then

1. etAv1 = eλtv1,

2. etAv2 = eλt(v2 + tv1),

3. etAv3 = eλt
(
v3 + tv2 + t2

2 v1

)
,

4. etAvk = eλt
(
vk + tvk−1 + · · ·+ tk−1

(k−1)!v1

)
.

Proof: Study the chain condition,

(A− λI)v2 = v1 ⇒ (A− λ)2v2 = (A− λI)v1 = 0

(A− λI)v3 = v2 ⇒ (A− λI)2v3 = (A− λI)v2 = v1

Continuing with such calculations4 we find (A − λI)jvi = vi−j for all i > j and (A − λI)ivi = 0.
The magic formula completes the proof:

etAv2 = eλt
(
v2 + t(A− λI)v2 + t2

2 (A− λI)2v2 · · ·
)

= eλt
(
v2 + tv1

)
likewise,

etAv3 = eλt
(
v3 + t(A− λI)v3 + t2

2 (A− λI)2v3 + t3

3! (A− λI)3v3 + · · ·
)

= eλt
(
v3 + tv2 + t2

2 (A− λI)v2

)
= eλt

(
v3 + tv2 + t2

2 v1

)
.

We already proved the e-vector case in the preceding proposition and the general case follows from
essentially the same calculation. �

We have all the theory we need to solve systems of homogeneous constant coefficient ODEs.

4keep in mind these conditions hold because of our current labling scheme, if we used a different indexing system
then you’d have to think about how the chain conditions work out, to test your skill perhaps try to find the general
solution for the system with the matrix from Example 6.4.14
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Example 8.4.5. Recall Example 6.2.11 we found A =

[
3 1
3 1

]
had e-values λ1 = 0 and λ2 = 4

and corresponding e-vectors

~u1 =

[
1
−3

]
and ~u2 =

[
1
1

]
thus we find the general solution to ~x ′ = A~x is simply,

~x(t) = c1

[
1
−3

]
+ c2e

4t

[
1
1

]
just to illustrate the terms: we have fundmamental solution set and matrix:{[

1
−3

]
,

[
e4t

e4t

]}
X =

[
1 e4t

−3 e4t

]
Notice that a different choice of e-vector scaling would just end up adjusting the values of c1, c2 in
the event an initial condition was given. This is why different choices of e-vectors still gives us the
same general solution. It is the flexibility to change c1, c2 that allows us to fit any initial condition.

Example 8.4.6. We can modify Example 8.2.2 and propose a different model for a tiger/bunny
system. Suppose x is the number of tigers and y is the number of rabbits then

dx
dt = x− 4y dy

dt = −10x+ 19y

is a model for the population growth of tigers and bunnies in some closed environment. Suppose
that there is initially 2 tigers and 100 bunnies. Find the populations of tigers and bunnies
at time t > 0:

Solution: notice that we must solve ~x ′ = A~x where A =

[
1 −4
−10 19

]
and ~x(0) = [2, 100]T . We

can calculate the eigenvalues and corresponding eigenvectors:

det(A− λI) = 0 ⇒ λ1 = −1, λ2 = 21 ⇒ u1 =

[
2
1

]
, u2 =

[
−1
5

]
Therefore, using Proposition 8.4.4, the general solution has the form:

~x(t) = c1e
−t
[

2
1

]
+ c2e

21t

[
−1
5

]
.

However, we also know that ~x(0) = [2, 100]T hence[
2

100

]
= c1

[
2
1

]
+ c2

[
−1
5

]
⇒

[
2

100

]
=

[
2 −1
1 5

] [
c1

c2

]

⇒
[
c1

c2

]
=

1

11

[
5 1
−1 2

] [
2

100

]
=

1

11

[
110
198

]
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Finally, we find the vector-form of the solution to the given initial value problem:

~x(t) = 10e−t
[

2
1

]
+ 198

11 e
21t

[
−1
5

]
Which means that x(t) = 20e−t − 198

11 e
21t and y(t) = 1020e−t + 90e21t are the number of tigers and

bunnies respective at time t.

Notice that a different choice of e-vectors would have just made for a different choice of c1, c2 in
the preceding example. Also, notice that when an initial condition is given there ought not be any
undetermined coefficients in the final answer5.

Example 8.4.7. We found that in Example 6.2.13 the matrix A =

 0 0 −4
2 4 2
2 0 6

 has e-values

λ1 = λ2 = 4 and λ3 = 2 with corresponding e-vectors

~u1 =

 0
1
0

 ~u2 =

 −1
0
1

 ~u3 =

 −2
1
1


Hence, using Proposition 8.4.4 and Theorem 8.4.1 the general solution of d~x

dt = A~x is simply:

~x(t) = c1e
4t~u1 + c2e

4t~u2 + c3e
2t~u3 = c1e

4t

 0
1
0

+ c2e
4t

 −1
0
1

+ c3e
2t

 −2
1
1


Example 8.4.8. Find the general solution of d~x

dt = A~x given that:

A =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .
We analyzed this matrix in Example 6.4.14. We found a pair of chains of generalized e-vectors all
with eigenvalue λ = 1 which satisfied the following conditions:

(A− I)~u3 = ~u1, (A− I)~u1 = 0 (A− I)~u4 = ~u2, (A− I)~u2 = 0

In particular, ~uj = ej for j = 1, 2, 3, 4. We can use the magic formula to extract 4 solutions from
the matrix exponential, by Proposition 8.4.4 we find:

~x1 = eAt~u1 = et~u1 = ete1 (8.2)

~x2 = eAt~u2 = et(e2 + te1)

~x3 = eAt~u3 = ete3

~x4 = eAt~u4 = et(e4 + te3)

5Assuming of course that there are enough initial conditions given to pick a unique solution from the family of
solutions which we call the ”general solution”.
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Let’s write the general solution in vector and scalar form, by Theorem 8.4.1,

~x(t) = c1~x1 +c2~x2 +c3~x3 +c4~x4 = c1e
te1 +c2e

t(e2 + te1)+c3e
te3 +c4e

t(e4 + te3) =


c1e

t + tc2e
t

c2e
t

c3e
t + tc4e

t

c4e
t


In other words, x1(t) = c1e

t + tc2e
t, x2(t) = c2e

t, x3(t) = c3e
t + tc4e

t and x4(t) = c4e
t form the

general solution to the given system of differential equations.

Example 8.4.9. Find the general solution of d~x
dt = A~x given (generalized)eigenvectors ~ui, i =

1, 2, 3, 4, 5, 6, 7, 8, 9 such that:

(A− I)~u1 = 0, A~u2 = ~u2, A~u3 = 7~u3, (A− I)~u4 = ~u1

(A+ 5I)~u5 = 0, (A− 3I)~u6 = ~u7 A~u7 = 3~u7, A~u8 = 0, (A− 3I)~u9 = ~u6

We can use the magic formula to extract 9 solutions from the matrix exponential, by Proposition
8.4.4 we find:

~x1 = eAt~u1 = et~u1 = et~u1 (8.3)

~x2 = eAt~u2 = et~u2

~x3 = eAt~u3 = e7t~u3

~x4 = eAt~u4 = et(~u4 + t~u1) can you see why?

~x5 = eAt~u5 = e−5t~u5

~x6 = eAt~u6 = e3t(~u6 + t~u7) can you see why?

~x7 = eAt~u7 = e3t~u7

~x8 = eAt~u8 = ~u8

~x9 = eAt~u9 = e3t(~u9 + t~u6 + 1
2 t

2~u7) can you see why?

Let’s write the general solution in vector and scalar form, by Theorem 8.4.1,

~x(t) =
9∑
i=1

ci~xi

where the formulas for each solution ~xi was given above. If I was to give an explicit matrix A with
the eigenvectors given above it would be a 9 × 9 matrix. Challenge: find the matrix exponential
eAt in terms of the given (generalized)eigenvectors.
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Hopefully the examples have helped the theory settle in by now. We have one last question to
settle for systems of DEqns.

Theorem 8.4.10.

The nonhomogeneous case ~x ′ = A~x+ ~f the general solution is ~x(t) = X(t)c+~xp(t) where X
is a fundamental matrix for the corresponding homogeneous system and ~xp is a particular

solution to the nonhomogeneous system. We can calculate ~xp(t) = X(t)
∫
X−1 ~fdt.

Proof: suppose that ~xp = X~v for X a fundamental matrix of ~x ′ = A~x and some vector of unknown

functions ~v. We seek conditions on ~v which make ~xp satisfy ~xp
′ = A~xp + ~f . Consider,

(~xp)
′ = (X~v)′ = X ′~v +X~v′ = AX~v +X~v′

But, ~xp
′ = A ~Xp + ~f = AX~v + ~f hence

X d~v
dt = ~f ⇒ d~v

dt = X−1 ~f

Integrate to find ~v =
∫
X−1 ~fdt therefore xp(t) = X(t)

∫
X−1 ~fdt. �

If you ever work through variation of parameters for higher order ODEqns then you should appreci-
ate the calculation above. In fact, we can derive n-th order variation of parameters from converting
the n-th order ODE by reduction of order to a system of n first order linear ODEs. You can show
that the so-called Wronskian of the fundamental solution set is precisely the determinant of the
fundamental matrix for the system ~x ′ = A~x where A is the companion matrix. I have this worked
out in an old test from a DEqns course I taught at NCSU6

Example 8.4.11. Suppose that A =

[
3 1
3 1

]
and ~f =

[
et

e−t

]
, find the general solution of the

nonhomogenous DEqn ~x ′ = A~x+~f . Recall that in Example 8.4.5 we found ~x ′ = A~x has fundamental

matrix X =

[
1 e4t

−3 e4t

]
. Use variation of parameters for systems of ODEs to constuct ~xp. First

calculate the inverse of the fundamental matrix, for a 2× 2 we know a formula:

X−1(t) = 1
e4t−(−3)e4t

[
e4t −e4t

3 1

]
= 1

4

[
1 −1

3e−4t e−4t

]
6see solution of Problem 6 in www.supermath.info/ma341f07test2 sol.pdf for the n = 2 case of this comment,

also §6.4 of Nagel Saff and Snider covers n-th order variation of parameters if you want to see details
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Thus,

xp(t) = X(t)

∫
1
4

[
1 −1

3e−4t e−4t

] [
et

e−t

]
dt = 1

4X(t)

∫ [
et − e−t

3e−3t + e−5t

]
dt

= 1
4

[
1 e4t

−3 e4t

] [
et + e−t

−e−3t − 1
5e
−5t

]
= 1

4

[
1(et + e−t) + e4t(−e−3t − 1

5e
−5t)

−3(et + e−t) + e4t(−e−3t − 1
5e
−5t)

]
= 1

4

[
et + e−t − et − 1

5e
−t

−3et − 3e−t − et − 1
5e
−t

]
= 1

4

[
4
5e
−t

−4et − 16
5 e
−t

]
Therefore, the general solution is

~x(t) = c1

[
1
−3

]
+ c2e

4t

[
1
1

]
+ 1

5

[
e−t

−et − 4e−t

]
.

The general scalar solutions implicit within the general vector solution ~x(t) = [x(t), y(t)]T are

x(t) = c1 + c2e
4t + 1

5e
−t y(t) = −3c1 + c2e

4t − 1
5e
t − 4

5e
−t.

I’ll probably ask you to solve a 3× 3 system in the homework. The calculation is nearly the same
as the preceding example with the small inconvenience that finding the inverse of a 3× 3 requires
some calculation.

Remark 8.4.12.

You might wonder how would you solve a system of ODEs x′ = Ax such that the coefficients
Aij are not constant. We will not cover such problems in this course. We do cover how to
solve an n− th order ODE with nonconstant coefficients via series techniques in Math 334.
It’s probably possible to extend some of those techniques to systems. Laplace Transforms
also extend to systems of ODEs. It’s just a matter of algebra. Nontrivial algebra.
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8.5 solutions for systems of DEqns with complex eigenvalues

The calculations in the preceding section still make sense for a complex e-value and complex e-
vector. However, we usually need to find real solutions. How to fix this? The same way as
always. We extract real solutions from the complex solutions. Fortunately, our previous work on
linear independence of complex e-vectors insures that the resulting solution set will be linearly
independent.

Proposition 8.5.1.

Let A ∈ R n×n. Suppose A has a chain {v1, v2, . . . , vk} is of generalized complex e-vectors
with e-value λ = α + iβ, meaning (A − λ)v1 = 0 and (A − λ)vk−1 = vk for k ≥ 2 and
vj = aj + ibj for aj , bj ∈ Rn for each j, then

1. etAv1 = eλtv1,

2. etAv2 = eλt(v2 + tv1),

3. etAv3 = eλt
(
v3 + tv2 + t2

2 v1

)
,

4. etAvk = eλt
(
vk + tvk−1 + · · ·+ tk−1

(k−1)!v1

)
.

Furthermore, the following are the 2k linearly independent real solutions that are implicit
within the complex solutions above,

1. x1 = Re(etAv1) = eαt
[
(cosβt)a1 − (sinβt)b1

]
,

2. x2 = Im(etAv1) = eαt
[
(sinβt)a1 + (cosβt)b1

]
),

3. x3 = Re(etAv2) = eαt
[
(cosβt)(a2 + ta1)− (sinβt)(b2 + tb1)

]
,

4. x4 = Im(etAv2) = eαt
[
(sinβt)(a2 + ta1) + (cosβt)(b2 + tb1)

]
,

5. x5 = Re(etAv3) = eαt
[
(cosβt)(a3 + ta2 + t2

2 a1)− (sinβt)(b3 + tb2 + t2

2 b1)
]
,

6. x6 = Im(etAv3) = eαt
[
(cosβt)(a3 + ta2 + t2

2 a1)− (sinβt)(b3 + tb2 + t2

2 b1)
]
.

Proof: the magic formula calculations of the last section just as well apply to the complex case.
Furthermore, we proved that

Re
[
eαt+iβt(v + iw)

]
= eαt

[
(cosβt)v − (sinβt)w

]
and

Im
[
eαt+iβt(v + iw)

]
= eαt

[
(sinβtv + (cosβt)w

]
,

the proposition follows. �
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Example 8.5.2. This example uses the results derived in Example 6.7.2. Let A =

[
0 1
−1 0

]
and

find the e-values and e-vectors of the matrix. Observe that det(A−λI) = λ2 +1 hence the eigevalues
are λ = ±i. We find u1 = [1, i]T . Notice that

u1 =

[
1
i

]
=

[
1
0

]
+ i

[
0
1

]
.

This means that ~x ′ = A~x has general solution:

~x(t) = c1

(
cos(t)

[
1
0

]
− sin(t)

[
0
1

])
+ c2

(
sin(t)

[
1
0

]
+ cos(t)

[
0
1

])
.

The solution above is the ”vector-form of the solution”. We can add the terms together to find the
scalar solutions: denoting ~x(t) = [x(t), y(t)]T ,

x(t) = c1 cos(t) + c2 sin(t) y(t) = −c1 sin(t) + c2 cos(t)

These are the parametric equations of a circle with radius R =
√
c2

1 + c2
2.

Example 8.5.3. We solved the e-vector problem for A =

 1 1 0
−1 1 0
0 0 3

 in Example 6.7.4. We

found one real e-value λ1 = 3 and a pair of complex e-values λ2 = 1±i. The corresponding e-vectors
were:

~u1 =

 0
0
1

 ~u2 =

 0
1
0

+ i

 1
0
0


We identify that Re(~u2) = e2 and Im(~u2) = e1. The general solution of ~x ′ = A~x should have the
form:

~x(t) = c1e
At~u1 + c2Re(e

At~u2) + c3Im(eAt~u2)

The vectors above are e-vectors so these solution simplify nicely:

~x(t) = c1e
3te3 + c2e

t(cos(t)e2 − sin(t)e1) + c3e
t(sin(t)e2 + cos(t)e1)

For fun let’s look at the scalar form of the solution. Denoting ~x(t) = [x(t), y(t), z(t)]T ,

x(t) = −c2e
t sin(t) + c3e

t cos(t), y(t) = c2e
t cos(t) + c3e

t sin(t), z(t) = c1e
3t

Believe it or not this is a spiral helix which has an exponentially growing height and radius.
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Example 8.5.4. Let’s suppose we have a chain of 2 complex eigenvectors ~u1, ~u2 with eigenvalue
λ = 2 + i3. I’m assuming that

(A− (2 + i)I)~u2 = ~u1, (A− (2 + i)I)~u1 = 0.

We get a pair of complex-vector solutions (using the magic formula which truncates since these are
e-vectors):

~z1(t) = eAt ~u1 = e(2+i)t ~u1, ~z2(t) = eAt ~u2 = e(2+i)t( ~u2 + t ~u1),

The real and imaginary parts of these solutions give us 4 real solutions which form the general
solution:

~x(t) = c1e
2t
[
cos(3t)Re(~u1)− sin(3t)Im(~u1)

]
+ c2e

2t
[
sin(3t)Re(~u1) + cos(3t)Im(~u1)

]
+ c3e

2t
[
cos(3t)[Re(~u2) + tRe(~u1)]− sin(3t)[Im(~u2) + tIm(~u1)]

]
+ c4e

2t
[
sin(3t)[Re(~u2) + tRe(~u1)] + cos(3t)[Im(~u2) + tIm(~u1)]

]
.
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8.6 geometry and difference equations revisited

In Example 6.1.5 we studied A =
[

3 0
8 −1

]
and how it pushed the point xo = [ 1

2 ] around the plane.
We found xi for i = 1, 2, 3, 4 by multiplication by A directly. That method is fine for small i
but what is we wished to know the formula for the 1000-th state? We should hope there is some
way to find that state without direct multiplication repeated 1000 times. One method is to make
use of the diagonalization of the matrix. We know that e-vectors (if they exist) can be glued
together to make the diagonalizing similarity transforming matrix; there exists P ∈ R n×n such
that P−1AP = D where D is a diagonal matrix. Notice that Dk is easy to calculate. We can solve
for A = PDP−1 and find that A2 = PDP−1PDP−1 = PD2P−1. The you can prove inductively
that Ak = PDkP−1. It is much easier to calculate PDkP−1 when k >> 1.

8.6.1 difference equations vs. differential equations

I mentioned that the equation xk+1 = Axk is a difference equation. We can think of this as a
differential equation where the time-step is always one-unit. To see this I should remind you how
~x ′ = B~x is defined in terms of a limiting process:

~x ′(t) = lim
h→0

~x(t+ h)− ~x(t)

h
= B~x(t)

A gross approximation to the continuous limiting process would be to just take h = 1 and drop the
limit. That approximation yields:

B~x(t) = ~x(t+ 1)− ~x(t).

We then suppose t ∈ N and denote ~x(t) = ~xt to obtain:

~xt+1 = (B + I)~xt.

We see that the differential equation ~x ′ = B~x is crudely approximated by the difference equation
~xt+1 = A~xt. where A = B + I. Since we now have tools to solve differential equations directly it
should be interesting to contrast the motion generated by the difference equation to the exact para-
metric equations which follow from the e-vector solution of the corresponding differential equation.
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Chapter 9

matrix factorizations

There are many strategies to simplify numerical computation of linear algebra. In this chapter I
collect some such results. If Matlab cooperates, then we may explore some of these concepts via
computer projects.

9.1 LU factorization

In this section we will use elementary matrices which correspond to the forward pass of the Gaussian
elimination to factor matrices into a pair of simpler matrices; our goal is to factor a matrix A into
a lower triangular matrix L and a upper triangular matrix U ; we hope to find A = LU . In the
abstract the idea for the factorization simply comes from thinking about how we calculate ref(A).
To obtain ref(A) one begins with A and then performs row operations until we have reduced
the matrix to the form ref(A). Each row operation can be implemented by a corresponding left
multiplication by an elementary matrix so symbollically we can summarize the forward pass by the
following equation:

EkEk−1 · · ·E3E2E1A = ref(A)

The matrix ref(A) has pivot positions with a nonzero number ? in each such entry. Moreover,
by construction there are no nonzero entries below the pivot positions hence ref(A) is an upper
triangular matrix. Generically the pattern is something like

ref(A) =

 ? ∗ ∗ ∗
0 0 ? ∗
0 0 0 0


where again ? 6= 0 but ∗’s can be anything. Solve the boxed equation for A,

A = E−1
1 E−1

2 E−1
3 · · ·E

−1
k−1E

−1
k︸ ︷︷ ︸

maybe L ?

ref(A)︸ ︷︷ ︸
U

295



296 CHAPTER 9. MATRIX FACTORIZATIONS

The inverse of elementary matrices are easily obtained and the product of those matrices is easily
assembled if we just keep track of the row reduction to produce ref(A). Let’s see how this works
out for a few examples.

Example 9.1.1. Let me modify the row reduction we studied in Example 1.2.3,

A =

 1 −1 1
3 −3 0
2 −2 −3

 r2 − 3r1 → r2−−−−−−−−−→
(this is E1)

 1 −1 1
0 0 −3
2 −2 −3

 r3 − 2r1 → r3−−−−−−−−−→
(this is E2)

 1 −1 1
0 0 −3
0 0 −5

 r3 − 5
3r2 → r3

−−−−−−−−−−→
(this is E3)

 1 −1 1
0 0 −3
0 0 0

 = U

Recall that elementary matrices are obtained by performing the corresponding operations on the
identity matrix. We have U = E3E2E1A, in particular E1 = {I : r2 − 3r1 → r2}. Observe that
A = E−1

1 E−1
2 E−1

3 U and calculate the product E−1
1 E−1

2 E−1
3 as follows: 1

I =

 1 0 0
0 1 0
0 0 1

 r3 + 5
3r2 → r3

−−−−−−−−−−→
(this is E−1

3 )

 1 0 0
0 1 0
0 5

3 1

 r3 + 2r1 → r3−−−−−−−−−→

 1 0 0
0 1 0
2 5

3 1

 r2 + 3r1 → r2−−−−−−−−−→

 1 0 0
3 1 0
2 5

3 1

 = L

At the end of this section I’ll return to this example once more and streamline the calculation. I’m
trying to explain why the later algorithm works in detail to begin. The reason we are doing this and
not just the algorithm at the end of the section is that you still need to think more about elementary
matrices and this is a pretty good mathematical laboratory to test things out. We find A is factored
into a lower and upper triangular matrix:

A =

 1 0 0
3 1 0
2 5

3 1


︸ ︷︷ ︸

L

 1 −1 1
0 0 −3
0 0 0


︸ ︷︷ ︸

U

.

1note the E−1
3 goes first since E−1

1 E−1
2 E−1

3 = E−1
1 E−1

2 E−1
3 I, we have to multiply I on left to interpret elementary

matrices as row operations, if I was to multiply on the right then it does column operations instead... anyway, this
is how to quickly calculate the product of elementary matrices. If for some reason this is confusing then perhaps you
might try writing down the 3× 3 matrices for each elementary matrix E−1

1 , E−1
2 , E−1

3 then explicitly multiply these
out. I prefer to do a few row operations on the identity matrix instead
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Example 9.1.2. Find an LU-decomposition of A given below (if possible).

A =

 1 1 1 1
2 3 4 5
2 2 2 2

 r2 − 2r1 → r2−−−−−−−−−→

 1 1 1 1
0 1 2 3
2 2 2 2

 r3 − 2r1 → r3−−−−−−−−−→

 1 1 1 1
0 1 2 3
0 0 0 0

 = U

In this example, we have U = E2E1A hence A = E−1
1 E−1

2 U and we can calculate the product
E−1

1 E−1
2 as follows:

I =

 1 0 0
0 1 0
0 0 1

 r3 + 2r1 → r3−−−−−−−−−→

 1 0 0
0 1 0
2 0 1

 r2 + 2r1 → r2−−−−−−−−−→

 1 0 0
2 1 0
2 0 1

 = L

We find A factors as follows:

A =

 1 0 0
2 1 0
2 0 1


︸ ︷︷ ︸

L

 1 1 1 1
0 1 2 3
0 0 0 0


︸ ︷︷ ︸

U

Notice that in both of the last examples the L was really obtained by taking the identity matrix
and inserting a couple numbers below the diagonal. In both cases those numbers were linked to
the row operations performed in the forward pass. Keep this in mind for the end of the section.

If we can reduce A to an upper triangular matrix U using only row additions as in the last two
examples then it seems entirely plausible that we will be able to find an LU -decomposition for A.
However, in the next example we’ll see that row-interchanges spoils the simplicity of the method.
Let’s see how:

Example 9.1.3. In Example 1.2.2 we needed to use row interchanges to reduce the matrix. For
that reason I chose to study it again here.

A =

 1 2 −3 1
2 4 0 7
−1 3 2 0

 r2 − 2r1 → r2−−−−−−−−−→

 1 2 −3 1
0 0 6 5
−1 3 2 0

 r3 + r1 → r3−−−−−−−−→

 1 2 −3 1
0 0 6 5
0 5 −1 1

 r2 ↔ r3−−−−−→

 1 2 −3 1
0 5 −1 1
0 0 6 5

 = U
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We have U = E3E2E1A hence A = E−1
1 E−1

2 E−1
3 U and we can calculate the product E−1

1 E−1
2 E−1

3

as follows:

I =

 1 0 0
0 1 0
0 0 1

 r2 ↔ r3−−−−−→

 1 0 0
0 0 1
0 1 0

 r3 − r1 → r3−−−−−−−−→

 1 0 0
0 0 1
−1 1 0

 r2 + 2r1 → r2−−−−−−−−−→

 1 0 0
2 0 1
−1 1 0

 = PL

I have inserted a ”P” in front of the L since the matrix above is not lower triangular. However, if
we go one step further and let r2 ↔ r3 then we will obtain a lower triangular matrix:

PL =

 1 0 0
2 0 1
−1 1 0

 r2 ↔ r3−−−−−→

 1 0 0
−1 1 0
2 0 1

 = L

Therefore, we find that E−1
1 E−1

2 E−1
3 = PL where L is as above and P = E2↔3. This means that A

has a modified LU -decomposition. Some mathemticians call it a PLU -decomposition,

A =

 1 0 0
0 0 1
0 1 0


︸ ︷︷ ︸

P

 1 0 0
−1 1 0
2 0 1


︸ ︷︷ ︸

L

 1 2 −3 1
0 5 −1 1
0 0 6 5


︸ ︷︷ ︸

U

=

 1 0 0
2 0 1
−1 1 0


︸ ︷︷ ︸

PL

 1 2 −3 1
0 5 −1 1
0 0 6 5


︸ ︷︷ ︸

U

.

Since permutation matrices all satisfy the condition P 2 = I the existence of a PLU -decomposition
for A naturally suggests that PA = LU . Therefore, even when a LU decomposition is not available
we can just flip a few rows to find a LU -decomposable matrix. This is a useful observation because
it means that the slick algorithms developed for LU -decompositions apply to all matrices with just
a little extra fine print. We’ll examine how the LU -decomposition allows efficient solution of the
problem Ax = b at the conclusion of this section.

As I have hinted at several times, if you examine the calculation of the LU -decomposition carefully
you’ll see certain patterns. If no permutations are needed then whenever we make the row operation
rj +λrk → rj it inevitably places a −λ in the jk-position of L. Basically we just need to keep track
of the λ-multipliers from each row operation. Let me do our first example in a slick notation that
avoids explicit stand-alone computation of L

Example 9.1.4.

A =

 1 −1 1
3 −3 0
2 −2 −3

 r2 − 3r1 → r2−−−−−−−−−→

 1 −1 1
(3) 0 −3
2 −2 −3

 r3 − 2r1 → r3−−−−−−−−−→

 1 −1 1
(3) 0 −3
(2) 0 −5

 r3 − 5
3r2 → r3

−−−−−−−−−−→

 1 −1 1
(3) 0 −3
(2) (5

3) 0

 = U
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The parenthetical entries are deleted to obtain U and they are inserted into the identity matrix to
obtain the product E−1

3 E−1
2 E−1

1 as follows:

L =

 1 0 0
3 1 0
2 5

3 1

 and U =

 1 −1 1
0 0 −3
0 0 0

 .
Which is precisely what we found before.

Example 9.1.5. Returning to our example for which A = PLU let’s try the slick notation and see
if it still works.

A =

 1 2 −3 1
2 4 0 7
−1 3 2 0

 r2 − 2r1 → r2−−−−−−−−−→

 1 2 −3 1
(2) 0 6 5
−1 3 2 0

 r3 + r1 → r3−−−−−−−−→

 1 2 −3 1
(2) 0 6 5

(−1) 5 −1 1

 r2 ↔ r3−−−−−→

 1 2 −3 1
(−1) 5 −1 1
(2) 0 6 5

 = U

We find if we remove the parenthetical entries from U and ajoing them to I then it gives back the
matrix L we found previously:

U =

 1 2 −3 1
0 5 −1 1
0 0 6 5

 L =

 1 0 0
−1 1 0
2 0 1

 .
The matrices above give us the LU -decomposition of PA where P is precisely the permutation we
encountered in the calculation of U .

Remark 9.1.6.

I hope these examples are sufficient to exhibit the method. If we insist that L has units on
the diagonal then I believe the factorization we have calculated is unique provided the matrix
A is invertible. Uniqueness aside the application of the factorization to ladder networks is
fascinating. Lay explains how the U -factor corresponds to a series circuit whereas a L-factor
corresponds to a shunt circuit. The problem of finding an LU -decomposition for a given
transfer matrix amounts to finding the necessary shunt and series circuits which in tandem
will produce the desired transfer characteristic. We study the mathematical application of
LU -decompositions in this course.
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9.1.1 application of LU factorization to equation solving

Suppose we wish to solve Ax = b and we are given an LU -decomposition of A. This means that we
wish to solve LUx = b. Define y = Ux and note that we then have two separate problems to solve:

Ax = b, A = LU ⇔ (1.) y = Ux
(2.) Ly = b

.

It’s easy to solve (2.) and then (1.).

Example 9.1.7. Solve Ax = b given that

A =

 1 −1 1
3 −3 0
2 −2 −3

 =

 1 0 0
3 1 0
2 5

3 1


︸ ︷︷ ︸

L

 1 −1 1
0 0 −3
0 0 0


︸ ︷︷ ︸

U

and b =

 3
1
200
3

 .

Solve Ly = b by forward substitution 1 0 0
3 1 0
2 5

3 1

 y1

y2

y3

 =

 3
1
200
3

 ⇒ y1 = 3,
9 + y2 = 1 ⇒ y2 = −8,
6− 40

3 + y3 = 200
3 ⇒ y3 = 0.

Then solve Ux = y by back substitution 1 −1 1
0 0 −3
0 0 0

 x1

x2

x3

 =

 3
−8
0

 ⇒ −3x3 = −8, ⇒ x3 = 8/3,
x1 + x2 + 8/3 = 3 ⇒ x1 = −1/3− x2.

We find that Ax = b has solutions of the form (−1
3 − t, t,

8
3) for t ∈ R.

Note all the possibilities we encountered in previous work are still possible here. A different choice
of b could make Ax = b inconsistent. On the other hand, no choice of b will force a unique solution
for the A considered here. In any event, it should be clear enough that forward/back substitution
will provide a speedy solution to the problem Ax = b.
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9.2 orthogonal matrices and the QR factorization

In principle the material in this section could be covered after a couple lectures on linear geometry
are complete. I include it here since it fits with the theme of this chapter. Depending on the pace
of the course, I may lecture on aspects of this section before I cover least squares.

Suppose we have an orthogonal basis β = {v1, v2, . . . , vn} for Rn. Let’s investigate the properties
of the matrix of this basis. Note that ||vj || 6= 0 for each j since β is linearly independent set of
vectors. Moreover, if we denote ||vj || = lj then we can compactly summarize orthogonality of β
with the following relation:

vj · vk = l2j δjk.

As a matrix equation we recognize that [vj ]
T vk is also the jk − th component of the product of

[β]T and [β]. Let me expand on this in matrix notation:

[β]T [β] =


vT1
vT2
...
vTn

 [v1|v2| · · · |vn] =


vT1 v1 vT1 v2 · · · vT1 vn
vT2 v1 vT2 v2 · · · vT2 vn

...
... · · ·

...
vTn v1 vTn v2 · · · vTn vn

 =


l21 0 · · · 0
0 l22 · · · 0
...

... · · ·
...

0 0 · · · l2n


This means that [β]T is almost the inverse of [β]. Observe if we had lj = 1 for j = 1, 2, . . . , n then
[β]T = [β]−1. In other words, if we use an orthonormal basis then the inverse of the basis matrix
is obtained by transposition. In fact, matrices with this property have a name:

Definition 9.2.1.

Let A ∈ R n×n then we say that A is an orthogonal matrix iff ATA = I. The set of all
orthogonal n× n matrices is denoted O(n).

The discussion preceding the definition provides a proof for the following proposition:

Proposition 9.2.2. matrix of an orthonormal basis is an orthogonal matrix

If β is an orthonormal basis then [β]T [β] = I or equivalently [β]T = [β]−1.

So far we have considered only bases for all of Rn but we can also find similar results for a subspace
W ≤ Rn. Suppose dim(W ) < n. If β is an orthonormal basis for W then it is still true that
[β]T [β] = Idim(W ) however since [β] is not a square matrix it does not make sense to say that

[β]T = [β]−1. The QR-factorization of a matrix is tied to this discussion.

Proposition 9.2.3. QR factorization of a full-rank matrix

If A ∈ R m×n is a matrix with linearly independent columns then there exists a matrix Q ∈
R m×n whose columns form an orthonormal basis for Col(A) and square matrix R ∈ R n×n

which is upper triangular and has Rii > 0 for i = 1, 2, . . . , n.
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Proof: begin by performing the Gram-Schmidt procedure on the columns of A. Next, normalize
that orthogonal basis to obtain an orthonormal basis β = {u1, u2, . . . , un} for Col(A). Note that
since each column in A is in Col(A) it follows that some linear combination of the vectors in β will
produce that column;

colj(A) = R1ju1 +R2ju2 + · · ·+Rnjun = [u1|u2| · · · |un][R1j , R2j , · · · , Rnj ]T

for some constants R1j , R2j , · · · , Rnj ∈ R. Let R be the matrix formed from the coefficients of
the linear combinations that link columns of A and the orthonormal basis; in particular define R
such that colj(R) = (R1j , R2j , · · · , Rnj). It follows that if we denote [β] = Q we have for each
j = 1, 2, . . . , n the relation

colj(A) = Qcolj(R)

Hence,

A = [col1(A)|col2(A)| · · · |coln(A)] = [Qcol1(R)|Qcol2(R)| · · · |Qcoln(R)]

and we find by the concatenation proposition

A = Q[col1(R)|col2(R)| · · · |coln(R)] = QR

where R ∈ R n×n as we wished. It remains to show that R is upper triangular with positive
diagonal entries. Recall how Gram-Schmidt is accomplished (I’ll do normalization along side the
orthogonalization for the purposes of this argument). We began by defining u1 = 1

||col1(A)||col1(A)

hence col1(A) = ||col1(A)||u1 and we identify that col1(R) = (||col1(A)||, 0, . . . , 0). The next step
in the algorithm is to define u2 by calculating v2 (since we normalized u1 · u1 = 1 )

v2 = col2(A)− (col2(A) · u1)u1

and normalizing (I define l2 in the last equality below)

u2 =
1

||col2(A)− (col2(A) · u1)u1||
v2 =

1

l2
v2

In other words, l2u2 = v2 = col2(A)− (col2(A) · u1)u1 hence

col2(A) = l2u2 − (col2(A) · u1)u1

From which we can read the second column of R as

col2(R) = (−(col2(A) · u1), l2, 0, . . . , 0).

Continuing in this fashion, if we define lj to be the length of the orthogonalization of colj(A) with
respect to the preceding {u1, u2, . . . , uj−1} orthonormal vectors then a calculation similar to the
one just performed will reveal that

colj(R) = (?, . . . , ?, lj , 0, . . . , 0)
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and ? are possibly nonzero components in rows 1 through j − 1 of the column vector and lj is the
j-th component which is necessarily posititive since it is the length of some nonzero vector. Put all
of this together and we find that R is upper triangular with positive diagonal entries2. �

Very well, we now know that a QR-factorization exists for a matrix with LI columns. This leaves
us with two natural questions:

1. how do we calculate the factorization of a given matrix A ?

2. what is the use of the QR factorization ?

We will answer (1.) with an example or two and I will merely scratch the surface for question (2.).
If you took a serious numerical linear algebra course then it is likely you would delve deeper.

Example 9.2.4. I make use of Example 8.2.25 to illustrate how to find the QR-factorization
of a matrix. Basically once you find the Gram-Schmidt then it is as simple as multiplying the
orthonormalized column vectors and the matrix since A = QR implies R = QTA.

Finally, returning to (2.). One nice use of the QR-factorization is to simplify calculation of the
normal equations. We sought to solve ATAu = AT b. Suppose that A = QR to obtain:

(QR)T (QR)u = (QR)T b ⇒ RTQTQRu = RTQT b ⇒ Ru = QT b .

This problem is easily solved by back-substitution since R is upper-triangular. I may ask you a
homework to examine this in more detail for a specific example.

2see Lay pg. 405-406 if you don’t like my proof
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9.3 singular value decomposition

See section 9.5 of Anton and Rorres’ 10th ed.

9.4 spectral decomposition

See section 7.2 of Anton and Rorres’ 10th ed.
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