These problems are worth 1 pt a piece at least. Feel free to use Mathematica or some other CAS to illustrate as needed. If I have derived a normal vector field in the notes or lecture then you may use it, but please mention the source of the fact.

Problem 205 Show that for a simply connected region R with consistently oriented boundary ∂R if f, g are differentiable on some open set containing R then

$$
\iint_{R}\left(f \nabla^{2} g+\nabla f \cdot \nabla g\right) d A=\int_{\partial R} f \nabla g \cdot \widehat{n} d s .
$$

Problem 206 Show that for a simply connected region R with consistently oriented boundary ∂R if f, g are differentiable on some open set containing R then

$$
\iint_{R}\left(f \nabla^{2} g-g \nabla^{2} f\right) d A=\int_{\partial R}[f \nabla g \bullet \widehat{n}-g \nabla f \bullet \widehat{n}] d s .
$$

Problem 207 Suppose $\nabla^{2} f=0$ on a simply connected region R. If $\left.f\right|_{\partial R}=0$ then what can you say about f throughout R ?
(here $\left.\right|_{\partial R}$ denotes restriction of f to the subset ∂R. In particular this means you are given that $f(x, y)=0$ for all $(x, y) \in \partial R$.)

Problem 208 Suppose $b: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a particular function and $\nabla^{2} f=b$ on a simply connected region R. If g is another such solution $\left(\nabla^{2} g=b\right)$ on R then show that $f=g$ on R.
The equation $\nabla^{2} f=b$ is called Poisson's Equation. When $b=0$ then it's called Laplace's Equation. You are showing the solution to Poisson's Equation is unique on a simply connected region. Hint: use the last problem's result on $f-g \ldots h m m m \ldots$ I guess this is a retroactive hint for Problem 207 if you think about it.

Problem 209 Find the surface area of $z=x y$ for $x^{2}+y^{2} \leq 1$.

Problem 210 Find the surface area of the plane $y+2 z=2$ bounded by the cylinder $x^{2}+y^{2}=1$.

Problem 211 Find the surface area of the cone frustrum $z=\frac{1}{3} \sqrt{x^{2}+y^{2}}$ with $1 \leq z \leq 4 / 3$

Problem 212 Find the surface area of torus with radii $A, R>0$ and $R \geq A$ parametrized by

$$
\vec{X}(\alpha, \beta)=\langle[R+A \cos (\alpha)] \cos (\beta),[R+A \cos (\alpha)] \sin (\beta), A \sin (\alpha)\rangle
$$

for $0 \leq \alpha \leq 2 \pi$ and $0 \leq \beta \leq 2 \pi$.

Problem 213 Find an explicit double integral which gives the surface area of the graph $x=g(y, z)$ for $(y, z) \in D$.

Problem 214 Consider a napkin ring which is formed by taking a sphere of radius R and drilling out a circular cylinder of radius B through the center of the sphere. Find the surface area of the napkin ring (include the inner as well as outer surfaces).

Problem 215 Integrate $H(x, y, z)=x y z$ over the surface of the solid $[0, a] \times[0, b] \times[0, c]$ where $a, b, c>0$.

Problem 216 Integrate $G(x, y, z)=x^{2}$ over the surface of the unit-sphere.

Problem 217 Integrate $H(x, y, z)=z-x$ on the graph $z=x+y^{2}$ over the triangular region with vertices $(0,0,0),(1,0,0)$ and $(0,1,0)$.

Problem 218 Consider a thin-shell of constant density δ. Let the shell be cut from the cone $x^{2}+y^{2}-$ $z^{2}=0$ by the planes $z=1$ and $z=2$. Find (a.) the center of mass and (b.) the moment of intertia with respect to the z-axis.

Problem 219 Find the flux of $\vec{F}(x, y, z)=\left\langle z^{2}, x,-3 z\right\rangle$ through the parabolic cylinder $z=4-y^{2}$ bounded by the planes $x=0, x=1$ and $z=0$. Assume the orientation of the surface is outward, away from the x-axis.

Problem 220 Find the flux of $\vec{F}(x, y, z)=z \widehat{\mathbf{z}}$ through the portion the sphere of radius R in the first octant. Give the sphere an orientation which points away from the origin. In other words, assume the sphere is outwardly oriented.

Problem 221 Find the flux of $\vec{F}(x, y, z)=\left\langle-x,-y, z^{2}\right\rangle$ through the conical frustrum $z=\sqrt{x^{2}+y^{2}}$ between the planes $z=1$ and $z=2$ with outward orientation.

Problem 222 Let S be the outward oriented paraboloid $z=6-x^{2}-y^{2}$ for $x, z \geq 0$. Calculate the flux of $\vec{F}=\left(x^{2}+y^{2}\right) \widehat{\mathbf{z}}$

Problem 223 Find the flux of $\vec{F}(x, y, z)=\langle 2 x y, 2 y z, 2 x z\rangle$ upward through the subset of the plane $x+y+z=2 c$ where $(x, y) \in[0, c] \times[0, c]$.

Problem 224 Suppose \vec{C} is a constant vector. Let $\vec{F}(x, y, z)=\vec{C}$ find the flux of \vec{F} through a surface S on plane with nonzero vectors \vec{A}, \vec{B}. In particular, the surface S is parametrized by $\vec{r}(u, v)=\vec{r}_{o}+u \vec{A}+v \vec{B}$ for $(u, v) \in \Omega$.

Problem 225 Let $\vec{F}(x, y, z)=\langle a, b, c\rangle$ for some constants a, b, c. Calculate the flux of \vec{F} through the upper-half of the outward oriented sphere $\rho=R$.

Problem 226 Once more consider the constant vector field $\vec{F}(x, y, z)=\langle a, b, c\rangle$. Calculate the flux of \vec{F} through the downward oriented disk $z=0$ for $\phi=\pi / 2$.

Problem 227 Let $\vec{F}=\left\langle x^{2}, y^{2}, z^{2}\right\rangle$. Calculate the flux of \vec{F} through $z=4-x^{2}-y^{2}$ for $z \geq 0$.

Problem 228 Let $\vec{F}=\left\langle x^{2}, y^{2}, z^{2}\right\rangle$. Calculate the flux of \vec{F} through the downward oriented disk $x^{2}+y^{2} \leq 4$ with $\phi=\pi / 2$.

Problem 229 Let $\phi=\pi / 4$ define a closed surface S with $0 \leq \rho \leq 2$. Find the flux of

$$
\vec{F}(\rho, \phi, \theta)=\phi^{2} \widehat{\rho}+\rho \widehat{\phi}+\widehat{\theta}
$$

through the outward oriented S.

Problem 230 Consider the closed cylinder $x^{2}+y^{2}=R^{2}$ for $0 \leq z \leq L$. Find the flux of

$$
\vec{F}(r, \theta, z)=\theta \widehat{\mathbf{z}}+z \widehat{\theta}+r^{2} \widehat{\mathbf{r}}
$$

out of the cylinder.

Problem 231 Let S be the pseudo-tetrahedra with vertices $(0,0,0),(1,0,0),(0,1,0)$ and $(0,0,1)$. Three of the faces of S_{1} are subsets of the coordinate planes call these $S_{x y}, S_{z x}, S_{y z}$ with the obvious meanings and call S_{T} the top face. Let $\vec{F}=\langle y,-x, y\rangle$ and define $\vec{G}=\nabla \times \vec{F}$.
(a.) Calculate the circulation of \vec{F} around each face.
(b.) Calculate the flux of \vec{G} through each face.
(c.) do you see any pattern?

Problem 232 Let $\vec{F}(x, y, z)=\left\langle x^{2}, 2 x, z^{2}\right\rangle$. Calculate $\int_{E} \vec{F} \bullet d \vec{r}$ where E is the CCW oriented ellipse $4 x^{2}+y^{2}=4$ with $z=0$. (use Stoke's Theorem)

Problem 233 Let $\vec{F}(x, y, z)=\left\langle y^{2}+z^{2}, x^{2}+z^{2}, x^{2}+y^{2}\right\rangle$. Find the work done by \vec{F} around the CCW (as viewed from above) triangle formed from the intersection of the plane $x+y+z=1$ and the coordinate planes. (use Stoke's Theorem)

Problem 234 Let $\vec{F}(x, y, z)=\left\langle y^{2}+z^{2}, x^{2}+y^{2}, x^{2}+y^{2}\right\rangle$. Find the work done by \vec{F} around the CCWoriented square bounded by $x= \pm 1$ and $y= \pm 1$ in the $z=0$ plane (use Stoke's Theorem).

Problem 235 Consider the elliptical shell $4 x^{2}+9 y^{2}+36 z^{2}=36$ with $z \geq 0$ and let

$$
\vec{F}(x, y, z)=\left\langle y, x^{2},\left(x^{2}+y^{4}\right)^{\frac{3}{2}} \sin (\exp (\sqrt{x y z}))\right\rangle .
$$

Find the flux of $\nabla \times \vec{F}$ through the outwards oriented shell.

Problem 236 Let $\vec{F}=\langle 2 x, 2 y, 2 z\rangle$ and suppose S is a simply connected surface with boundary ∂S a simple closed curve. Show by Stoke's theorem that $\int_{\partial S} \vec{F} \bullet d \vec{r}=0$

Problem 237 Suppose S is the union of the cylinder $x^{2}+y^{2}=1$ for $0 \leq z \leq 1$ and the disk $x^{2}+y^{2} \leq 1$ at $z=1$. Suppose \vec{F} is a vector field such that

$$
\nabla \times \vec{F}=\left\langle\sinh (z)\left(x^{2}+y^{2}\right), z e^{x y+\cos (x+y)},(x z+y) \tan ^{-1}(z)\right\rangle
$$

Calculate the flux of $\nabla \times \vec{F}$ though S.

Problem 238 Let E be the cube $[-1,1]^{3}$. Calculate the flux through ∂E of the vector field

$$
\vec{F}(x, y, z)=\langle y-x, z-y, y-x\rangle
$$

(please use the divergence theorem!)

Problem 239 Let E be the set of (x, y, z) such that $x^{2}+y^{2} \leq 4$ and $0 \leq z \leq x^{2}+y^{2}$. Find the flux through ∂E of the vector field \vec{F} given below:

$$
\vec{F}(x, y, z)=\langle y, x y,-z\rangle
$$

(please use the divergence theorem)

Problem 240 Suppose E is the spherical shell $R_{1} \leq \rho \leq R_{2}$ and suppose $\vec{F}(x, y, z)=\nabla \times \vec{A}$ for some everywhere smooth vector field \vec{A}. Show that the flux through $\rho=R_{1}$ is the same as the flux through $\rho=R_{2}$ by applying the divergence theorem to the spherical shell.

