These problems are worth 1pt a piece at least. Feel free to use Mathematica or some other CAS to illustrate as needed. If I have derived a normal vector field in the notes or lecture then you may use it, but please mention the source of the fact.

Problem 205 Show that for a simply connected region R with consistently oriented boundary ∂R if f, g are differentiable on some open set containing R then

$$\iint_{R} (f\nabla^{2}g + \nabla f \cdot \nabla g) dA = \int_{\partial R} f\nabla g \cdot \widehat{n} \, ds.$$

Problem 206 Show that for a simply connected region R with consistently oriented boundary ∂R if f, g are differentiable on some open set containing R then

$$\iint_{R} (f\nabla^{2}g - g\nabla^{2}f) dA = \int_{\partial R} [f\nabla g \cdot \hat{n} - g\nabla f \cdot \hat{n}] ds.$$

Problem 207 Suppose $\nabla^2 f = 0$ on a simply connected region R. If $f|_{\partial R} = 0$ then what can you say about f throughout R? (here $|_{\partial R}$ denotes restriction of f to the subset ∂R . In particular this means you are given that f(x, y) = 0 for all $(x, y) \in \partial R$.) **Problem 208** Suppose $b : \mathbb{R}^2 \to \mathbb{R}$ is a particular function and $\nabla^2 f = b$ on a simply connected region R. If g is another such solution ($\nabla^2 g = b$) on R then show that f = g on R.

The equation $\nabla^2 f = b$ is called Poisson's Equation. When b = 0 then it's called Laplace's Equation. You are showing the solution to Poisson's Equation is unique on a simply connected region. Hint: use the last problem's result on f - g... hmmm... I guess this is a retroactive hint for Problem 207 if you think about it.

Problem 209 Find the surface area of z = xy for $x^2 + y^2 \le 1$.

Problem 210 Find the surface area of the plane y + 2z = 2 bounded by the cylinder $x^2 + y^2 = 1$.

Problem 211 Find the surface area of the cone frustrum $z = \frac{1}{3}\sqrt{x^2 + y^2}$ with $1 \le z \le 4/3$

Problem 212 Find the surface area of torus with radii A, R > 0 and $R \ge A$ parametrized by

$$\vec{X}(\alpha,\beta) = \left\langle \left[R + A\cos(\alpha) \right] \cos(\beta), \left[R + A\cos(\alpha) \right] \sin(\beta), A\sin(\alpha) \right\rangle$$

for $0 \le \alpha \le 2\pi$ and $0 \le \beta \le 2\pi$.

Problem 213 Find an explicit double integral which gives the surface area of the graph x = g(y, z) for $(y, z) \in D$.

Problem 214 Consider a napkin ring which is formed by taking a sphere of radius R and drilling out a circular cylinder of radius B through the center of the sphere. Find the surface area of the napkin ring (include the inner as well as outer surfaces).

Problem 215 Integrate H(x, y, z) = xyz over the surface of the solid $[0, a] \times [0, b] \times [0, c]$ where a, b, c > 0.

Problem 216 Integrate $G(x, y, z) = x^2$ over the surface of the unit-sphere.

Problem 217 Integrate H(x, y, z) = z - x on the graph $z = x + y^2$ over the triangular region with vertices (0, 0, 0), (1, 0, 0) and (0, 1, 0).

Problem 218 Consider a thin-shell of constant density δ . Let the shell be cut from the cone $x^2 + y^2 - z^2 = 0$ by the planes z = 1 and z = 2. Find (a.) the center of mass and (b.) the moment of intertia with respect to the z-axis.

Problem 219 Find the flux of $\vec{F}(x, y, z) = \langle z^2, x, -3z \rangle$ through the parabolic cylinder $z = 4 - y^2$ bounded by the planes x = 0, x = 1 and z = 0. Assume the orientation of the surface is outward, away from the x-axis.

Problem 220 Find the flux of $\vec{F}(x, y, z) = z \hat{z}$ through the portion the sphere of radius R in the first octant. Give the sphere an orientation which points away from the origin. In other words, assume the sphere is outwardly oriented.

Problem 221 Find the flux of $\vec{F}(x, y, z) = \langle -x, -y, z^2 \rangle$ through the conical frustrum $z = \sqrt{x^2 + y^2}$ between the planes z = 1 and z = 2 with outward orientation.

Problem 222 Let S be the outward oriented paraboloid $z = 6 - x^2 - y^2$ for $x, z \ge 0$. Calculate the flux of $\vec{F} = (x^2 + y^2)\hat{z}$

Problem 223 Find the flux of $\vec{F}(x, y, z) = \langle 2xy, 2yz, 2xz \rangle$ upward through the subset of the plane x + y + z = 2c where $(x, y) \in [0, c] \times [0, c]$.

Problem 224 Suppose \vec{C} is a constant vector. Let $\vec{F}(x, y, z) = \vec{C}$ find the flux of \vec{F} through a surface S on plane with nonzero vectors \vec{A}, \vec{B} . In particular, the surface S is parametrized by $\vec{r}(u, v) = \vec{r_o} + u\vec{A} + v\vec{B}$ for $(u, v) \in \Omega$.

Problem 225 Let $\vec{F}(x, y, z) = \langle a, b, c \rangle$ for some constants a, b, c. Calculate the flux of \vec{F} through the upper-half of the outward oriented sphere $\rho = R$.

Problem 226 Once more consider the constant vector field $\vec{F}(x, y, z) = \langle a, b, c \rangle$. Calculate the flux of \vec{F} through the downward oriented disk z = 0 for $\phi = \pi/2$.

Problem 227 Let $\vec{F} = \langle x^2, y^2, z^2 \rangle$. Calculate the flux of \vec{F} through $z = 4 - x^2 - y^2$ for $z \ge 0$.

Problem 228 Let $\vec{F} = \langle x^2, y^2, z^2 \rangle$. Calculate the flux of \vec{F} through the downward oriented disk $x^2 + y^2 \leq 4$ with $\phi = \pi/2$.

Problem 229 Let $\phi = \pi/4$ define a closed surface S with $0 \le \rho \le 2$. Find the flux of

$$\vec{F}(\rho,\phi,\theta) = \phi^2 \widehat{\rho} + \rho \widehat{\phi} + \widehat{\theta}$$

through the outward oriented S.

Problem 230 Consider the closed cylinder $x^2 + y^2 = R^2$ for $0 \le z \le L$. Find the flux of

$$\vec{F}(r,\theta,z) = \theta \,\widehat{\mathbf{z}} + z\widehat{\theta} + r^2\widehat{\mathbf{r}}$$

out of the cylinder.

- **Problem 231** Let S be the pseudo-tetrahedra with vertices (0,0,0), (1,0,0), (0,1,0) and (0,0,1). Three of the faces of S_1 are subsets of the coordinate planes call these S_{xy}, S_{zx}, S_{yz} with the obvious meanings and call S_T the top face. Let $\vec{F} = \langle y, -x, y \rangle$ and define $\vec{G} = \nabla \times \vec{F}$.
 - (a.) Calculate the circulation of \vec{F} around each face .
 - (b.) Calculate the flux of \vec{G} through each face.
 - (c.) do you see any pattern?

Problem 232 Let $\vec{F}(x, y, z) = \langle x^2, 2x, z^2 \rangle$. Calculate $\int_E \vec{F} \cdot d\vec{r}$ where E is the CCW oriented ellipse $4x^2 + y^2 = 4$ with z = 0. (use Stoke's Theorem)

Problem 233 Let $\vec{F}(x, y, z) = \langle y^2 + z^2, x^2 + z^2, x^2 + y^2 \rangle$. Find the work done by \vec{F} around the CCW (as viewed from above) triangle formed from the intersection of the plane x + y + z = 1 and the coordinate planes. (use Stoke's Theorem)

Problem 234 Let $\vec{F}(x, y, z) = \langle y^2 + z^2, x^2 + y^2, x^2 + y^2 \rangle$. Find the work done by \vec{F} around the CCW-oriented square bounded by $x = \pm 1$ and $y = \pm 1$ in the z = 0 plane (use Stoke's Theorem).

Problem 235 Consider the elliptical shell $4x^2 + 9y^2 + 36z^2 = 36$ with $z \ge 0$ and let

$$\vec{F}(x,y,z) = \left\langle y, x^2, (x^2 + y^4)^{\frac{3}{2}} \sin(\exp(\sqrt{xyz})) \right\rangle.$$

Find the flux of $\nabla \times \vec{F}$ through the outwards oriented shell.

Problem 236 Let $\vec{F} = \langle 2x, 2y, 2z \rangle$ and suppose S is a simply connected surface with boundary ∂S a simple closed curve. Show by Stoke's theorem that $\int_{\partial S} \vec{F} \cdot d\vec{r} = 0$

Problem 237 Suppose S is the union of the cylinder $x^2 + y^2 = 1$ for $0 \le z \le 1$ and the disk $x^2 + y^2 \le 1$ at z = 1. Suppose \vec{F} is a vector field such that

$$\nabla \times \vec{F} = \left\langle \sinh(z)(x^2 + y^2), ze^{xy + \cos(x+y)}, (xz+y)\tan^{-1}(z) \right\rangle.$$

Calculate the flux of $\nabla \times \vec{F}$ though S.

Problem 238 Let E be the cube $[-1, 1]^3$. Calculate the flux through ∂E of the vector field

$$\vec{F}(x,y,z) = \langle y - x, z - y, y - x \rangle$$

(please use the divergence theorem!)

Problem 239 Let *E* be the set of (x, y, z) such that $x^2 + y^2 \le 4$ and $0 \le z \le x^2 + y^2$. Find the flux through ∂E of the vector field \vec{F} given below:

$$\vec{F}(x,y,z) = \langle y, xy, -z \rangle$$

(please use the divergence theorem)

Problem 240 Suppose *E* is the spherical shell $R_1 \leq \rho \leq R_2$ and suppose $\vec{F}(x, y, z) = \nabla \times \vec{A}$ for some everywhere smooth vector field \vec{A} . Show that the flux through $\rho = R_1$ is the same as the flux through $\rho = R_2$ by applying the divergence theorem to the spherical shell.