These problems are worth 1 pt a piece at least. Feel free to use Mathematica or some other CAS to illustrate as needed.

Problem 151 Calculate

$$
\int_{0}^{2} \int_{0}^{4}(3 x+4 y) d x d y
$$

Problem 152

$$
\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \sin (x) \cos (y) d x d y
$$

Problem 153

$$
\int_{-1}^{1} \int_{0}^{1} \sin ^{3}(x) \cos ^{42}(y) d y d x
$$

Problem 154 Calculate the average of $f(x, y)=x^{2}+y^{2}$ on the unit-square.

Problem 155 Calculate the average of $f(x, y)=x^{2}+y^{2}$ on the region bounded by $x^{2}+y^{2}=R^{2}$.

Problem 156 Calculate the average of $f(x, y)=x y$ on $[1,2] \times[3,4]$.

Problem 157 Show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \int_{0}^{1} x^{n} y^{n} d x d y=0
$$

Problem 158 Calculate

$$
\int_{0}^{\ln (2)} \int_{0}^{\ln (3)} e^{x+y} d x d y
$$

Problem 159 Suppose $\iint_{R} f d A=\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}}(1+x) d y d x$. Calculate the given integral.

Problem 160 For the integral given in the previous problem, explicitly write R as a subset of \mathbb{R}^{2} using set-builder notation. In addition, calculate the integral once more with the interation of the integrals beginning with $d x$. Draw a picture to explain the inequalities which form the basis for your new set-up to the integral.

Problem 161 Reverse the order of integration in order to calculate the following integral:

$$
\int_{0}^{\sqrt{\pi}} \int_{y}^{\sqrt{\pi}} \sin \left(x^{2}\right) d x d y
$$

Problem 162 Reverse the order of integration in order to calculate the following integral:

$$
\int_{0}^{1} \int_{y}^{1} \frac{1}{1+x^{4}} d x d y
$$

Problem 163 Find the average of $f(x, y)=x y$ over the triangle with vertices $(0,0),(3,1)$ and $(-2,4)$.

Problem 164 Find volume bounded by $z=y+e^{x}$ and the $x y$-plane for $(x, y) \in[0,1] \times[0,2]$.

Problem 165 Find the volume bounded inside the cylinder $x^{2}+y^{2}=1$ and the planes $z=x+1$ and $z=y-3$.

Problem 166 Find the volume bounded by the coordinate planes and the plane $3 x+2 y+z=6$.

Problem 167 Calculate the integral (use polars):

$$
\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}}\left(x^{2}+y^{2}\right)^{3 / 2} d y d x
$$

Problem 168 Calculate the integral (use polars):

$$
\int_{0}^{1} \int_{x}^{1}\left(x^{2}+y^{2}\right)^{3} d y d x
$$

Problem 169 Suppose R is the region bounded by $y+|x|$ and $x^{2}+(y-1)^{2}=1$. Express R in polar coordinates. In other words, draw a picture and indicate how the points in R are reached by particular ranges of r and θ.

Problem 170 Find volume bounded by the paraboloid $x=y^{2}+2 z^{2}$ and the parabolic cylinder $x=2-y^{2}$.

Problem 171 Find the volume bounded by the cones $z=\sqrt{x^{2}+y^{2}}$ and $z=2 \sqrt{x^{2}+y^{2}}$ and the sphere $\rho=3$.

Problem 172 Let B be a ball of radius R centered at the origin. Calculate $\iiint_{B} e^{-\rho^{3}} d V$

Problem 173 Let $u=\frac{2 x}{x^{2}+y^{2}}$ and $v=\frac{-2 y}{x^{2}+y^{2}}$ calculate $\frac{\partial(x, y)}{\partial(u, v)}$.

Problem 174 Suppose $\delta(x, y, z)=1=d M / d V$ for $x, y, z>0$. Find center of mass for a sphere with this density δ centered at $(1,2,3)$.

Problem 175 Suppose $\delta(x, y, z)=x y z=d M / d V$ for $x, y, z>0$. Find center of mass for a sphere with this density centered at $(1,2,3)$.

