These problems are worth 1 pt a piece at least. Feel free to use Mathematica or some other CAS to illustrate as needed.

Problem 201 Calculate the integral below. Define C to be the CCW oriented triangle with vertices $(0,0),,(0,1)$ and $(1,1)$.

$$
\oint_{C}\left(x y d x+x^{2} d y\right)
$$

Problem 202 Let C be the CCW oriented circle $x^{2}+y^{2}=1$. Calculate

$$
\oint_{C}(3 y d x+5 x d y)
$$

Problem 203 Let C be the CCW oriented rectangle with vertices $(0,0),(a, 0),(a, b)$ and $(0, b)$. Calculate

$$
\oint_{C} x^{2} d y
$$

Problem 204 Suppose that f, g are continuously differentiable on an simply connected open set R.
Show that if C is any piecewise-smooth simple closed curve in R then

$$
\oint[f(\vec{r})(\nabla g)(\vec{r})+g(\vec{r})(\nabla f)(\vec{r})] \cdot d \vec{r}=0
$$

