Please work the problems in the white space provided and clearly box your solutions. You are allowed one $3'' \times 5''$ notecard. Enjoy! This quiz has 3pts of bonus credit.

Problem 1 (0.5 pt) Parametrize the line-segment from $P_1 = (3, 0, 7)$ to $P_2 = (10, 10, 10)$. Also, find the distance between P_1 and P_2 .

Problem 2 (0.5 pt) Find an integral which represents the arclength function starting at t = 0 for $\vec{\gamma}(t) = \langle t^2 \sin(t), t, \frac{1}{2t+3} \rangle$. DO NOT ATTEMPT THE INTEGRAL.

Problem 3 (0.5 pt) Where does the helix $x = 7 \cos t$, $y = 7 \sin t$, z = 3t intersect the $z = \pi$ plane?

Problem 4 (0.5 pt) Suppose A = 2, B = 3 and $\vec{A} \cdot \vec{B} = 3$. Find the angle between \vec{A} and \vec{B} .

Problem 5 (0.5 pt) Find the spherical coordinates of the point $(1, 1, \sqrt{7})$

Problem 6 (1 pt) Find the point on the plane x + 2y + 3z = 6 which is closest to (3, 5, 7).

- **Problem 7** (0.5 pt) Let P = (2, 0, 3), Q = (1, -3, 0) and R = (0, 0, 1). Find a parametrization of the plane which contains the points P, Q, R.
- **Problem 8** (0.5 pt) Find the Cartesian equation of the plane which contains the points P, Q, R of the previous problem.

Problem 9 (1 pt) Find the volume of the parallel-piped which has edges which line up with the vectors $\vec{A} = \langle 2, 0, 3 \rangle$, $\vec{B} = \langle 1, -3, 0 \rangle$ and $\vec{C} = \langle 0, 0, 1 \rangle$.

Problem 10 (1 pt) Let $\vec{r}(t) = \langle 1, t^2, te^t \rangle$. Find the parametrization of the tangent line to the given curve at (1, 1, e).

Problem 11 (1 pt) Consider a circle centered at (1, 1, 3) which lies in a plane parallel to the *xy*-plane. If the circle has radius 2 then parametrize the part of the circle with $x \ge 1$. (include the domain of the parameter in your solution) **Problem 12** (0.5 pt) Find the projection of $\vec{A} = \langle 1, 2, 2 \rangle$ in the $\vec{B} = \langle 1, 1, 0 \rangle$ -direction.

Problem 13 (1 pt) Let \vec{A}, \vec{B} be constant vectors. Let $\vec{F}(t) = \cos t \vec{A} + \sin t \vec{B}$. Calculate $\int \vec{F}(t) dt$ and also calculate $d\vec{F}/dt$.

Problem 14 (2 pt) Let $\vec{G} = \cos(t)\hat{A} + \sin(t)\hat{B}$ where \vec{A}, \vec{B} are nonzero constant vectors. If G is constant then determine the angle between \vec{A} and \vec{B} .

Problem 15 (2 pt) Suppose $\vec{v}(t) = \langle 2t, -\sin t, \cos t \rangle$ is the velocity of a ninja hound which is at (0, 1, 0) at time t = 0. Calculate the position $\vec{r}(t)$ and acceleration \vec{a} at time t. Also, calculate the tangential and normal components of \vec{a} (find a_T and a_N).

Problem 16 A surface S has parametric equations as given below:

 $x = \sinh \beta \cos t, \qquad y = \sinh \beta \sin t, \qquad z = \cosh t.$

Find the Cartesian equation of S and identify the surface.

- **Problem 17** Suppose $\vec{A} \cdot \vec{B} = 0$ for all \vec{B} . Show $\vec{A} = 0$.
- **Problem 18** Find all vectors \vec{A} for which $\vec{A} \cdot \hat{z} = 3$ and $\vec{A} \times \hat{z} = 0$. If there are many solutions then characterize them in your solution.
- **Problem 19** Show $\frac{d}{dt}[f\vec{A}] = \frac{df}{dt}\vec{A} + f\frac{d\vec{A}}{dt}$.
- **Problem 20** Find the parametrization of the curve of intersection of the plane x 2y + 3z = 1 and the cone $\phi = \pi/6$.
- **Problem 21** Let \vec{A}, \vec{B} be nonzero, non-colinear vectors. Let C be a curve parametrized by:

$$\vec{\gamma}(t) = \vec{r_o} + f(t)\vec{A} + g(t)\vec{B}$$

for $t \in \mathbb{R}$ where $f, g : \mathbb{R} \to \mathbb{R}$ are smooth functions. Find the torsion of C.