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TEST 1 |
Please work the problems in the white space provided and clearly box your solutions. You
are allowed one 3" x 5” notecard. Enjoy!
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Problem 2 (9pts) Find the magnitude, standard-angle and unit-vector for B= (=2, V/3).
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Problem 3 (6pts) For the vectors pictured below. Draw A — B and explain which direction A x B
points. Please draw A — B starting at the point P.
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Problem 1 (5pts) Find a nonzero vector which is orthogonal to both T and 4+ 7.

Problem 4 (15pts) Let A = (1,1,1) and B = (0,3,4). Find the following:

(a) a vector of length 4 in the direction of B
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(b) the projection of A in the direction of B
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Problem 5 (7pts) A plane contains the point (1,1,1). Also, the line 7(t) = (2 +t, 3t, 6) is normal to
the plane. Find the Cartesian equation of the plane. @ ~— """
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L (x=1) + 3(0-1)+ o(z-1) = 0
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Problem 6 (10pts) Find the Cartesian equation of the plane containing the points P = (1,1,1),
Q = (0,1,0) and R = (0,0, 1).
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Problem 7 (5pts) Suppose S is a surface is the collection of all (z,y, z) € R3 such that 22 =22 4 ¢2. 4 . [
Find a parametrization of S which does not use square roots and sketch and name the Check

surface. PQar
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Problem 8 (14pts) Let 4(t) = (5sint,4cost,3cost) for ¢ > 0. Find the arclength function of this
curve based at t = 0. Also, find the T, N and B vectorfields at time ¢ (or arclength s if
you prefer). Finally, find the curvature and torsion of the curve.
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Problem 9 (10pts) Suppose @ = tZ is the acceleration at time ¢ for a ninja. Given that the ninja is

initially springing into action with velocity (1,2,3) at the position (0,0, 0) find both the
veletity and position of the ninja at time ¢.
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Problem 10 (5pts) Show —[A B] = —tnB + A. % You may assume A, B are vectors in two-

dimensions.
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Problem 11 (5pts) Calculate, and simplify as much as possible, the following derivative:
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Problem 12 (4pts) Parametrize the ellipse 2?/a® 4+ y?/b* = 1 found in the z = 3 plane.
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Problem 13 (4pts) Find the equation of the sphere z® + y* + z* = R? in cylindrical coordinates.
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Problem 14 (6pts) Suppose (4,7) = sA + tB where A = (1,1) and B = (1,~1). Find s and t.
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Problem 15 (5pts) Let fl’, C be nonzero, non-colinear vectors. Let v be a curve parametrized by:

F(t) = 7o+ f(R)A+ g(t)C

for ¢ € R where f,g: R — R are smooth functions and 7, is a constant vector. Find the
torsion of .
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