Please solve these problems on other paper and clearly label each problem in the order which they are given here. Staple your work in the upper left corner with a metal staple and do not fold. Please show work for full credit. I am interested in the steps. This instruction applies for the remainder of the problem sets and it is assumed you remember this. **Thanks!**

Please do your best with the time you have, I would rather get two solved problems then none. Also, notice some of these problems are very simple. I marked the ones that I suspect take deeper thinking with *. In this particular Problem Set, many of the problems are little more than understanding notation and doing a simple, short calculation. Also, remember your calculus III, to find vector from P to Q use v = Q - P this is especially relevant to Problems 1 and 2.

Problem 1 Suppose a line \mathcal{L} in \mathbb{R}^3 contains the points (1, 1, 1) and (2, 4, 6). Describe \mathcal{L} as follows:

- (a.) parametrically with parameter λ .
- (b.) as the solution set of one or more equations in x, y, z.
- **Problem 2** Suppose a plane \mathcal{P} contains the points (1, 1, 0..., 0), (1, 2, 0..., 0) and (2, 1, 0..., 0) in \mathbb{R}^n . Describe \mathcal{P} as follows:
 - (a.) parametrically with parameters α, β
 - (b.) as the solution set of one of more equations in x_1, x_2, \ldots, x_n .
- **Problem 3** Suppose $\beta = \{1, x-1, (x-1)^2\}$ is a basis for polynomials P_2 . Find the coordinate vector of $f(x) = ax^2 + bx + c$ with respect to β . That is, find $\Phi_{\beta}(f(x))$. Furthermore, suppose $T : P_2 \to P_2$ is defined by T(f(x)) = f''(x). Find the matrix of T w.r.t. the basis β ; that is, calculate $[T]_{\beta,\beta}$.
- **Problem 4** Suppose X, Y are sets and $V \subseteq Y$ and $U \subseteq X$. Let $f : X \to Y$ be a function, we define the **inverse image of** V **under** f by:

$$f^{-1}(V) = \{ x \in X \mid f(x) \in V \},\$$

likewise, define the **image of** U **under** f by:

$$f(U) = \{y \in Y \mid \text{there exists } x \in U \text{ with } f(x) = y\} = \{f(x) \mid x \in U\}.$$

Given the definitions above, calculate the images and inverse images given below (find the set which describes the image or inverse image and if possible identify it geometrically) :

- (a.) if $F : \mathbb{R}^2 \to \mathbb{R}$ is defined by $F(x, y) = y x^2 1$ then describe $F^{-1}\{0\}$ as a point-set.
- (b.) if $G : \mathbb{R}^3 \to \mathbb{R}^2$ is given by $G(x, y, z) = (x^2 + y^2 + z^2, z)$ describe $G^{-1}(\mathbb{R}^2, k)$ geometrically. What condition do we need for $G^{-1}(\mathbb{R}^2, k) \neq \emptyset$? (assume $R, k \in \mathbb{R}$)
- (c.) let $X : \mathbb{R}^2 \to \mathbb{R}^n$ be defined by X(s,t) = p + sv + twwhere v, w are linearly independent *n*-vectors and $p \in \mathbb{R}^n$. Describe $X([0,1]^2)$.

- **Problem 5** Let $T : \mathbb{R}^n \to \mathbb{R}^m$ the standard matrix of T is denoted $[T] \in \mathbb{R}^{m \times n}$ and is defined by $[T]_{ij} = [T(e_j)]_i$ for $1 \le i \le m$ and $1 \le j \le n$. In matrix notation, this definition is nicely written as $[T] = [T(e_1)|T(e_2)|\cdots|T(e_n)]$. Use the given definition to find the standard matrix for the linear transformations given below:
 - (a.) $T_1(x,y) = (x+2y, 3x+4y)$
 - **(b.)** $T_2(x,y) = (x+y, 2x+2y, 3x+3y)$
 - (c.) $T_3(x, y, z) = x + 2y + 3z$
 - (d.) $T_4(x) = (x, 2x, 3x)$

Problem 6 Calculate the composition $T_3 \circ T_2 \circ T_1$ in two ways:

- (a.) from the definition of function composition $(T_3 \circ T_2 \circ T_1)(x, y) = T_3(T_2(T_1(x, y))),$
- (b.) via matrix multiplication $(T_3 \circ T_2 \circ T_1)(x, y) = [T_3 \circ T_2 \circ T_1](x, y) = [T_3][T_2][T_1][x, y]^T$.

remark: this is why the product of matrices is defined as it is.

- **Problem 7** Let $A_3 = \{A \in \mathbb{R}^{3 \times 3} \mid A^T = -A\}$. Find a basis $\{f_1, f_2, f_3\}$ for A_3 by writing $A = \begin{bmatrix} a & b & c \end{bmatrix}$
 - $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ and studying the condition $A^T = -A$. You should find dim $(A_3) = 3$.

Bonus: study the isomorphism $\Phi : A_3 \to \mathbb{R}^3$ defined by linearly extending $\Phi(f_i) = e_i$, if we think of antisymmetric 3×3 matrices as vectors then what is the geometric meaning of matrix multiplication for A_3 ?

- **Problem 8*** Suppose *P* is a paralellogram in \mathbb{R}^3 in the octant with positive coordinates. Furthermore, define $P = \{\vec{r_o} + u\vec{A} + v\vec{B} \mid (u, v) \in [0, 1]^2\}.$
 - (a.) find Area(P).
 - (b.) define $L_{ij}(\vec{v}) = (\vec{v} \cdot \hat{x}_i) \hat{x}_i + (\vec{v} \cdot \hat{x}_j) \hat{x}_j$ and prove using properties of dot-products that L_{ij} is a linear transformation.
 - (c.) assume that linear transformations map parallelograms to lines, parallelograms or points and use this presupposition to establish the following equation:

$$Area(P)^{2} = Area(L_{12}(P))^{2} + Area(L_{31}(P))^{2} + Area(L_{23}(P))^{2}$$

Problem 9 Let $c \in \mathbb{R}$, $A, X \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ we define $AB \in \mathbb{R}^{m \times p}$, $A + X, cA \in \mathbb{R}^{m \times n}$ by:

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}, \qquad (A+X)_{ij} = A_{ij} + X_{ij}, \qquad (cA)_{ij} = cA_{ij},$$

Using the index notation given above, show (for appropriately sized matrices)

- (a.) A(B+C) = AB + AC
- (**b.**) if $(A^T)_{ij} = A_{ji}$ for all i, j then $(AB)^T = B^T A^T$ (socks-shoes identity)
- (c.) If $I \in \mathbb{R}^{n \times n}$ such that $I_{ij} = \delta_{ij}$ and $X \in \mathbb{R}^{n \times p}$ then IX = X.

Problem 10 It is convenient to introduce some notation: the Kronecker delta is defined by

 $\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$. Note the standard basis for \mathbb{R}^n is nicely described by $(e_i)_j = \delta_{ij}$.

It is also often convenient to introduce the completely antisymmetric symbol in *n*-dimensions (the Levi-Civita symbol);

$$\epsilon_{i_1i_2\dots i_n} = \det[e_{i_1}|e_{i_2}|\cdots|e_{i_n}].$$

The formula above means that $\epsilon_{12...n} = det[I] = 1$ and all other nontrivial values can be obtained by swapping indices. Each swap changes the sign. For example, $\epsilon_{123...n} = -\epsilon_{213...n} = -1$. If any index is repeated then the antisymmetric symbol is zero.

A popular convention in physics and some math is that when an index is repeated a summation is implied. For example, $A_iB_i = \sum_i A_iB_i$ where the \sum_i ranges over whatever is the accepted range of the index *i*. Let A_i, B_i denote three-dimensional vectors. Verify that

(a.) $A \cdot B = A_i B_i$ (b.) $A \times B = A_i B_i \epsilon_{ijk} e_k$