
Math 332 Mission 11: coderivatives, foliations, curvature of surface

Same instructions as Mission 1. Thanks!

Remark: I decided against using Renteln Chapter 8 because the calculation is rather involved. However,
for a surface the Cartan calculus makes quick work of the problem of curvature. In this Mission I walk
you through the high points of the calculation and we get straight to the point of calculating curvature for
a few interesting surfaces. The Cartan method of moving frames is far more general than its application
here, Renteln gives you some indication of that in Chapter 7, but I may not have time to lecture on
that in this course. To be frank, to cover the subject matter in Renteln deeply it takes a couple courses.
My apologies for not assigning you dozens of really interesting problems in his text, there is so much
more there to learn.

Problem 81 De Rahm, Hodge and others developed a theory to analyze closed vs. exact differential
forms. See my notes for an example of how the shape of the domain can come into play.
One interesting theorem Hodge proved was that if ω was any p-form on a Riemannian
manifold then there exists a (p− 1)-form α and a (p+ 1)-form β and a harmonic form γ
such that

ω = dα + δβ + γ.

In the special case M = R3 it is the case γ = 0. Use the theorem due to Hodge to
prove that any vector field can be written in terms of the gradient of a scalar
function and the curl of some vector field; that is, for any vector field F⃗ there
exists another vector field G⃗ and a function g such that F⃗ = ∇g+∇× G⃗. I think
if you examine the case ω = ωF⃗ then it ought to be about a line or two once you unravel
the notation. I let Hodge do the really hard part. ( you need to use the preceding problem
to understand the coderivative part)

Problem 82 Consider ω = (x + y)dx + (y + z)dy + (z + x)dz on R3. Verify Hodge’s Theorem (see
preceding problem) by finding α and β such that ω = dα + δβ. Begin your quest by
understanding what the degrees of α and β must be in your context.

Problem 83 Consider the one-form ω = xdx+ydy+zdz on R3. Find the foliation of three dimensional
space into two-dimensional submanifolds whose tangent spaces are spanned by vector fields
which are found in ker(ω). Check the condition needed to show ω is dual to a two-plane
field distribution on R3; that is verify ω∧ dω = 0. Incidentally, there is one point left out,
perhaps it would be more honest to say find a foliation of R3 − {(0, 0, 0)}.

Problem 84 Consider ω = dy + dz + xydx+ xzdx. Show that ω ∧ dω = 0 on all of R3. What foliation
of R3 does ω describe. Recall, we discussed that ω = dz corresponds to foliating R3 into
z = c (a family of horizontal planes, each leaf in the foliation labeled by c). Try to find
the corresponding family of surfaces for the ω given here.



Problem 85 We spent some time studying distributions. I think I could have said more about the dual
description. Here is a simple example: in R3 we can study the distribution generated by
∂x, ∂y lets say E = ⟨∂x, ∂y⟩ or we can say E = ⟨dz⟩. To be more explicit, E is either
formed from the span of the given vector fields or as the kernel of the annhilating form
dz. In R4 if we studied E = ⟨∂x, ∂y⟩ in (t, x, y, z) space then E = ⟨dt, dz⟩ would be the
dual description. More explicitly,

E = span{∂x, ∂y} = ker(dt) ∩ ker(dz)

The leaves of the foliation to E are simply two-dimensional spaces with constant t and
z. Each leaf takes x, y as coordinates. In general, in Rn we can describe a k-dimensional
distribution either with k-vector fields, or with n− k-annihilating one-forms:

E = ⟨X1, . . . , Xk⟩ = ⟨ω1, . . . , ωn−k⟩

The Frobenius Theorem explains when such a distribution naturally aligns itself with
submanifolds of dimension k. In the case the distribution is integrable the leaves of the
foliation are the submanifolds whose tangent spaces naturally correspond to E pointwise.
As we discussed, involutivity sufficed to give integrability of the distribution. What I
may have failed to emphasize is the corresponding result in terms of differential forms.
In particular, E is integrable if dω1, . . . , dωn−k annihilate E = ⟨ω1, . . . , ωn−k⟩. Or, we can
equivalently capture integrabilty of E via the existence of smooth one-forms αij such that:

dωi =
n−k∑
j=1

ωj ∧ αij.

Lectures 26 and 27 from 2015 are somewhat helpful , but, you can answer these without
watching.

(a.) Let V = ∂x + y∂z and W = ∂y + x∂z. Show E = ⟨V,W ⟩ is involutive.
(b.) Find a one-form ω for which E = ⟨ω⟩. Hint: calculate E⊥ and use the work-form

map to translate to a one-form.

(c.) Find the leaves in the foliation induced from E.

To answer the last part, there are two natural approaches. Pick a point p. First, you could
find parametrizations of the leaf through p by flowing along V and W appropriately.
Second, you could try to write ω = dF for some F = F (x, y, z) then F (x, y, z) = c
implicitly describes the leaf for c such that F (p) = c. Perhaps I should discuss why such
an F should exist in this context.



Problem 86 A frame {E1, E2, E3} in R3 is typically an orthonormal frame; Ei •Ej = δij. To each
frame {E1, E2, E3} we find a coframe {θ1, θ2, θ3} where θi(Ej) = δij on R3. Naturally, we
may omit some points and speak of frames and coframes on some domain of R3 in the
same sense. For example, the spherical coordinate frame is technically a frame on some
subset of R3 as we face degeneracy of the frame at the origin and pole.

The natural Riemannian connection in R3 is given by:

∇V (W ) =
3∑

i=1

V [W i]
∂

∂xi

since Γk
ij = 0 in this context. We introduce connection coefficients ωij for the frame

{E1, E2, E3} by defining:
ωij(v) = ∇v(Ei) •Ej.

Then the meaning is clear, ωij(v) measures how much Ei is rotating into the Ej-direction
as we approach the point the v-direction (the point notation is omitted in the equation
above). Notice, we also have:

∇vEi =
3∑

j=1

ωij(v)Ej

It can be shown (we will take it on faith here) that ωij = −ωji and these solve Cartan’s
Structure Equations:

dθi =
3∑

j=1

ωij ∧ θj & dωij =
3∑

k=1

ωik ∧ ωkj.

If M is a surface in R3 then an orthonormal frame {E1, E2, E3} is said to be adapted to
M if span{E1(p), E2(p)} = TpM for each p ∈ M . Then E3 ∈ (TpM)⊥ with respect to the
standard Euclidean metric of R3. The coframe {θ1, θ2, θ3} of such an adapted frame has
θ3 = 0 on M hence θ1, θ2 serve as a basis for one-forms on M .

(a.) Show for a frame field {E1, E2, E3} on R3 if W =
∑3

i=1 fiEi then

∇VW =
3∑

j=1

(
V [fj] +

3∑
i=1

fiωij(V )

)
Ej

(b.) likewise, show if α =
∑3

i=1 aiθi then show

dα =
3∑

j=1

(
daj +

3∑
i=1

aiωij

)
∧ θj



Problem 87 Continuing the previous problem,

(a.) If E1, E2, E3 is adapted to M in the sense that θ3 = 0 on M then show Cartan’s
Structure Equations yield:

dθ1 = ω12 ∧ θ2 structure equation for dθ1 (1)

dθ2 = ω21 ∧ θ1 structure equation dθ2 (2)

ω31 ∧ θ1 + ω32 ∧ θ2 = 0 symmetry equation (3)

dω12 = ω13 ∧ ω32 Gauss equation (4)

dω13 = ω12 ∧ ω23 Codazzi equation for dω13 (5)

dω23 = ω21 ∧ ω13 Codazzi equation for dω23 (6)

(b.) For the adapted frame E1, E2, E3 we have E3 is everywhere normal to the tangent
space of M ; that is, E3 serves as a unit-normal vector field on M . In classical
differential geometry we use the normal to define the shape operator. In particular,
in our current context,

S(v) = −∇vE3 = ω13(v)E1 + ω23(v)E2.

the shape operator measures the change in the normal along the surface. The mean
curvature H and the Gaussian curvature K are defined by 2H = trace(S) and
K = det(S). Your mission, should you accept it, is to show that:

ω13 ∧ ω23 = Kθ1 ∧ θ2 & ω13 ∧ θ2 + θ1 ∧ ω23 = 2Hθ1 ∧ θ2

(c.) given your work above, explain why dω12 = −Kθ1 ∧ θ2.

Problem 88 There is a choice of spherical coordinates where spherical angles α, β naturally provide
θ1 = R cosα dβ and θ2 = Rdα with ω12 = sinα dβ. Given these toys, calculate the
Gaussian curvature of the sphere of radius R.

Problem 89 Calculate E1, E2, E3 and θ1, θ2 and ω12 as well as K for the cone parametrized via:

X(u, v) = (v cosu, v sinu, v)

Problem 90 Calculate E1, E2, E3 and θ1, θ2 and ω12 as well as K for the Helicoid parametrized via
(b ̸= 0 is a constant)

X(u, v) = (u cos v, u sin v, bv)


