Show your work and justify steps.

Problem 17 [10pts] Let V, W be finite dimensional vector spaces with norms $\|\cdot\|_{V}$ and $\|\cdot\|_{W}$ respectively. Suppose $T: V \rightarrow W$ is a linear transformation. Show T is continuous.

Problem 18 [10pts] Suppose $R \in \mathbb{R}$ is a fixed, positive constant. Let $X: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be defined by

$$
X(\theta, \phi, \psi)=(R \cos \theta \sin \phi \sin \psi, R \sin \theta \sin \phi \sin \psi, R \cos \phi \sin \psi, R \cos \psi)
$$

Let $X\left(\mathbb{R}^{3}\right)=V$. Let $F(x, y, z, t)=x^{2}+y^{2}+z^{2}+t^{2}$. Show that $V=F^{-1}\{R\}$. Let $p=$ $X(\pi / 4, \pi / 4, \pi / 6)$. Find $T_{p} V$ and $N_{p} V$. You may describe $T_{p} C$ and $N_{p} C$ as a span or as point-sets in \mathbb{R}^{4} given by cartesian equations, your choice.

Problem 19 [10pts] Suppose we wish to find the extrema of $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ on some compact domain given by $G^{-1}\{0\}$ where $G=\left(G_{1}, \ldots, G_{p}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$. Consider the function $H\left(x, \lambda_{1}, \ldots, \lambda_{p}\right)=$ $F(x)-\sum_{i=1}^{p} \lambda_{i} G_{i}(x)$ where $H: \mathbb{R}^{n} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$. Explain what critical points of H yield.

