[MATH 334: MISSION 5 ]i

Make sure you name is on each page and the assignment is stapled. Thanks and enjoy.

Problem 1 Find power series expansion for f(z) = z”?sin(z*) centereed at z, = 0. Do not do this by
Taylor’s Theorem directly!

Problem 2 exercise 1 of page 438 in text.

Problem 3 exercise 16 of page 439 in text.

Problem 4 exercise 23 of page 440 in text.

Problem 5 exercise 24 of page 440 in text.

Problem 6 exercise 32 of page 440 in text.

Problem 7 exercise 13 of page 450 in text.

Problem 8 exercise 22 of page 450 in text.

Problem 9 exercise 25 of page 450 in text.

Problem 10 exercise 17 of page 456 in text.

Problem 11 Find the power series expansion for f(z) = zsin(z) centered at z, = 3.
Problem 12 Find the power series expansion of f(z) = {—;—C centered at x, = —1.

Problem 13 Define e* = Y oo ) Lz™ and likewise for e¥. Prove e“e¥ = e**¥ by multiplying the series
for e and e¥. Use the Cauchy product defined on pg. 434 of your text to multiply the series.

Problem 14 Suppose Y g (aakz® + bors122 ! = €% + cos(z + 2). Find explicit formulas for ay; and
bors1 via X-notation algebra.

Problem 15 Find a power series solution to the integrals below:

(a.) [ 242 dz

1—x3

(b.) [a8e®+2dz

Problem 16 Calculate the 427%-derivative of 22 cos(z) at z = 1. (use power series techniques)

Problem 17 Find the complete power series solution of y” + z®y’ + 2zy = 0 about the ordinary
point z = 0. Your answer should include nice formulas for arbitrary coefficients in each of the
fundamental solutions. You need to both set-up and solve the reccurrence relations as best you
can.

Problem 18 (Ritger & Rose 7-2 problem 7 part ¢) Find the first four nonzero terms in the power
series solution about zero for the initial value problem (z + 2)y” + 3y = 0 with y(0) = 0 and

y'(0) = 1.



Problem 19 (Ritger & Rose 7-2 problem 7 part d) Find the first four nonzero terms in the power
series solution about zero for the initial value problem y” + sin(z)y’ + (z — 1)y = 0 with y(0) =1
and y'(0) = 0.

Problem 20 Construct a differential equation with y1(z) = ili_-’ﬁl for z # 0 and 41 (0) = 1, ya(2) = =
as its fundamental solution set. To accomplish this task do two tasks:

! "

y vy
(a.) Argue from appropriate facts from the theory of determinants that Lly] = det | y1 1 ¥
Y2 Y2 Ys
is a linear ODE with solutions y; and ys,.
b.) calculate L[y] explicitly as a linear ODE of the form py" + qy +ry = 0 where p,q,r are
p
perhaps given as Taylor expansions about zero. (just find the first few terms in the taylor
expansions of the coefficient functions p, g, T)
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