Your solutions should be neat, correct and complete. Correct units must be given on answers and if you are omitting units in calculations then there should be a sentence explaining your custom. Finally, the answer must be boxed where appropriate. For full credit the solution must be written on a print-out of this pdf by hand.

Suggested Reading You may find the following helpful resources beyond lecture,
(a.) Chapters 1, 2 of my lecture notes (pdf posted in Canvas)
(b.) Lectures $1,2,3,4,5,6,7,8,29$ as posted on the course website (see http://www.supermath.info/PhysicsI.html)
(c.) Chapters 1, 2, 3, 4 of Young and Freedman (see https://mylabmastering.pearson.com/ for the ebook, or better yet buy an old edition to read offline)

Problem 1: (4pts) For each $\overrightarrow{\mathbf{A}}=\left\langle A_{x}, A_{y}\right\rangle$ given below find \hat{A} and the standard angle for $\overrightarrow{\mathbf{A}}$.
(a.) $A_{x}=3$ and $A_{y}=4$,
(b.) $A_{x}=-8$ and $A_{y}=6$
(c.) $A_{x}=0$ and $A_{y}=-11$
(d.) $A_{x}=-2$ and $A_{y}=-\sqrt{21}$

Problem 2: $(2$ pts $)$ Suppose $\overrightarrow{\mathbf{A}}$ has $A=10$ directed at standard angle $\theta_{A}=30^{\circ}$ and $\overrightarrow{\mathbf{B}}$ has $B=20$ directed at standard angle $\theta_{B}=225^{\circ}$. If $\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}$ then find the magnitude and standard angle of $\overrightarrow{\mathbf{C}}$ and illustrate this vector addition with a tip-to-tail diagram.

Problem 3: (10pts) Let $\overrightarrow{\mathbf{A}}=2 \hat{\mathbf{x}}-3 \hat{\mathbf{z}}$ and $\overrightarrow{\mathbf{B}}=4 \hat{\mathbf{x}}+5 \hat{\mathbf{y}}$.
(a.) calculate $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$,
(b.) calculate $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$,
(c.) find $\angle(\overrightarrow{\mathbf{A}}, \overrightarrow{\mathbf{B}})$,
(d.) find a vector length 7 which is perpendicular to both $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$.
(e.) If $\overrightarrow{\mathbf{C}}=\langle\alpha, 1,2\rangle$ then find value for α for which the right-handed triple $\overrightarrow{\mathbf{A}}, \overrightarrow{\mathbf{B}}, \overrightarrow{\mathbf{C}}$ give the edges of a parallel-piped with a volume of 1 .

Problem 4: (2pts) Suppose we have three vectors $\vec{A}, \vec{B}, \vec{C}$ all of which are perpendicular to one another; $\angle(\vec{A}, \vec{B})=90^{\circ}, \angle(\vec{A}, \vec{C})=90^{\circ}, \angle(\vec{B}, \vec{C})=90^{\circ}$. Let $\vec{D}=\vec{A}+\vec{B}+\vec{C}$. Prove that:

$$
D^{2}=A^{2}+B^{2}+C^{2}
$$

where A, B, C denote the magnitudes of $\vec{A}, \vec{B}, \vec{C}$ respectively. Hint: do not attempt a picture. Instead, use $D^{2}=\vec{D} \cdot \vec{D}$ and the properties of the dot-product to formulate your solution.

Problem 5: (2pts) Suppose $\vec{A}=\langle 1,2,2\rangle$ and $\vec{B}=\langle-2,0,7\rangle$. Find \vec{C}, \vec{D} such that $\vec{B}=\vec{C}+\vec{D}$ where $\vec{C} \cdot \vec{D}=0$ and \vec{C} is parallel to \vec{A}.

Problem 6: (2pts) A ninja wanders through a dense cloud of hidden mist. He takes 40 steps northeast, then 80 steps 60° north of west, then 50 steps due south. The ninja then walks 20 steps up the northern face of a vertical tree and steps onto a platform. If the ninja wishes to ambush enemies who wander into his initial position then at what direction (in terms of degrees counter-clockwise from the east-direction) and at what angle below the horizontal should the ninja aim his attacks ? Assume his attacks have laser-like precision and follow a straight line back from his final to his initial position.

Problem 7: (2pts) Suppose m_{1} is suspended by ropes as pictured this makes the tension $T_{3}=m_{1} g$. Given $\theta_{1}=39^{\circ}$ and $\theta_{2}=51^{\circ}$, find the values of T_{1}, T_{2} in terms of $m_{1} g$. Hint: the sum of the tension forces at the point of attachment must be zero.

Problem 8: (2pts) A projectile is fired in such a way that its horizontal range is equal to four times its maximum height. At what angle of inclination was the projectile fired. Assume a level landscape and ignore air friction.

Problem 9: (3pts) Imagine you shoot an arrow at a speed of v_{o} at an angle of inclination of $\theta=30^{\circ}$. If the arrow leaves the bow at a height of 2.0 m above the ground and you are trying to shoot a cat (it's evil, in case you're worried) in a tree 200 m away in a branch 22 m above the ground. Find the speed v_{o} needed in order to shoot the cat.

Problem 10: (3pts) Ron Swanson mistakedly orders a sausage sandwhich at a vegan run donut shop. After taking a bite he recoils in horror and throws the faux-meat entree at $15 \mathrm{~m} / \mathrm{s}$ as shown below. At what θ did Ron Swanson throw the pathetic veggy sandwhich?

Problem 11: (3pts) You shoot a cannon on earth (ignore friction). The cannon ball lands 1000 m away and you hear the explosion of the cannon ball hitting the level ground some 7.0 s later than what speed and angle of inclination did you shoot the cannon? You are given that the speed of sound is $333.3 \mathrm{~m} / \mathrm{s}$ in the given atmospheric conditions.

Problem 12: $(2 \mathrm{pts})$ A ninja on horseback throws a shuriken at horizontally to hit a target 1.25 m below the release point. If the horse is galloping at $15 \mathrm{~m} / \mathrm{s}$ then how far from the target must he throw the shuriken? Assume the ninja can throw a shuriken at $20 \mathrm{~m} / \mathrm{s}$ when seated.

Problem 13: (2pts) A rocket car accelerates with a net-force of four times its weight over a distance of L. Then the car applies brakes which give $a=-g$ until the car comes to rest. Find the total distance the car travels. Your answer should be in terms of the given distance L.

Problem 14: (2pts) The force exterted by the wind on the sails of a sailboat is 390 N north. The water exerts a force of 180 N east. If the boat (including its crew) has a mass of 270 kg , what are the magntude and direction of its acceleration ?

Problem 15: (2pts) Let \widehat{u} be a unit-vector directed 30° north of west. Suppose forces

$$
\vec{F}_{1}=(3.0 N) \hat{\mathbf{x}}+(6.0 N) \hat{\mathbf{y}} \quad \& \quad \vec{F}_{2}=(20 N) \widehat{u}
$$

act on a body with mass $M=10 \mathrm{~kg}$. Find the magnitude and direction of the resulting acceleration of the mass.

Problem 16: (3pts) Consider coordinate systems $\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(y_{1}, y_{2}, y_{3}\right)$ and $\left(z_{1}, z_{2}, z_{3}\right)$. Suppose a given particle has the following trajectories as measured by the x, y and z observers respective:

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{3}\right) & =\left(1-t, 2+2 t, 3-7 t+t^{2}\right) \\
\left(y_{1}, y_{2}, y_{3}\right) & =\left(3 t, 4,8 t+(t-1)^{2}\right) \\
\left(z_{1}, z_{2}, z_{3}\right) & =\left(4-t, 4 t, t^{3}\right)
\end{aligned}
$$

(a.) Calculate velocities with respect to the given coordinate systems: $\vec{v}_{X}, \vec{v}_{Y}, \vec{v}_{Z}$.
(b.) Calculate accelerations with respect to the given coordinate systems: $\vec{a}_{X}, \vec{a}_{Y}, \vec{a}_{Z}$.
(c.) Suppose that $\left(x_{1}, x_{2}, x_{3}\right)$ is an inertial coordinate system. Which of the other coordinate systems could be inertial as well ?

Remark: if $\vec{a}_{Y}=R \vec{a}_{X}$ where R is a rotation matrix then we can calculate, using linear algebra, $\vec{a}_{Y} \bullet \vec{a}_{Y}=\left(R \vec{a}_{X}\right) \cdot\left(R \vec{a}_{X}\right)=\vec{a}_{X} \bullet \vec{a}_{X}$. Thus, in the case $\vec{a}_{Y} \neq \vec{a}_{X}$ we can check if they accelerations are inertially related by checking if they have equal magnitudes.

Problem 17: (3pts) A 55 kg physics student stands on a bathroom scale in an elevator. As the elevator starts moving, the scale reads 45 kg . For the questions below take up to be the positive direction.
(a.) Find the acceleration of the elevator.
(b.) What is the acceleration if the scale reads 67 kg ?
(c.) If the scale reads zero, what is the acceleration of the elevator? Should the student worry in this case ?

Problem 18: (2pts) Suppose the acceleration of Bob is given by $\vec{a}=\left\langle\cos (2 t), t, 4 e^{2 t}\right\rangle$. If Bob is at $\langle 0,0,0\rangle$ with velocity $\langle 1,2,2\rangle$ at time $t=0$ then find Bob's position and velocity and speed as functions of time t. (forgive me for omitting units to reduce clutter here)

Problem 19: (2pts) Suppose \vec{c} is a constant vector. Further, suppose the initial position of a particle is \vec{r}_{o} and the initial velocity is \vec{v}_{o} at time $t=0$. Given that the acceleration $\vec{a}=t \vec{c}$, find the velocity and position as a function of time t in terms of the given vectors.

Problem 20: (2pts) Suppose the net-force on a mass M is given by $F=-\beta v$ where v is velocity and $\beta>0$ is a constant. Let v_{o} and x_{o} denote the velocity and position at $t=0$.
(a.) Calculate the velocity as a function of position x.
(b.) Calculate the velocity as a function of time t.

Hint: for part (a.), assume the motion is one-dimensional, $a=\frac{d v}{d t}=\frac{d x}{d t} \frac{d v}{d x}=v \frac{d v}{d x}$.

