Your solutions should be neat, correct and complete. Same instructions as Mission 1 apply here.
Recommended Homework from Textbook: problems:
$6.2,6.5,6.11,6.20,6.34,6.47,6.52,6.60,6.71,6.79,6.85,6.93,6.101$
$7.5,7.7,7.15,7.35,7.38,7.39,7.47,7.49,7.55,7.64,7.65,7.86$
I also reccommend you work on understanding whatever details of lecture seem mysterious at first.
Required Reading 4 [1pt] Your signature below indicates you have read:
(a.) I read Lectures 16, 17, 18 and 19 by Cook as announced in Blackboard: \qquad .
(b.) I read Chapter 7 of the required text: \qquad .

Problem 31 [3pts] A projectile is shot with a speed v_{o} at an angle of inclination θ such that it has $1 / 2$ as much kinetic energy is half the initial kinetic energy. Find θ.

Problem 32 [3pts] An Atwood machine consists of two masses m_{1}, m_{2} hung over a pulley by a string. Assume the pulley and string are massless and friction is neglible. Suppose $m_{2}=4 m_{1}$. What is the speed of m_{2} once it has fallen a distance h from its initial state of rest.

Problem 33 [3pts] Again consider an Atwood machine where the pulley and string are massless and friction is neglible. Assume $m_{1}=10.0 \mathrm{~kg}$ and $m_{2}=3.0 \mathrm{~kg}$. Furthermore, the m_{2} is attached to a vertical spring with constant $k=100 \mathrm{~N} / \mathrm{m}$. If the masses have an initial speed of $3.0 \mathrm{~m} / \mathrm{s}$ and the spring is at its equilbrium position then find how far the spring stretches. What happens after that point? Describe the motion.

Problem 34 [3pts] Suppose $U(x)=x^{2}-x^{4}$ is the potential energy function. Plot the energy diagram and comment on the stability of any critical points. If F is the force described by this potential energy function then explain where the force is directed right/left. Please give your answer in terms of interval notation. (for example if $2 \leq x \leq 3$ was where F points right then you would say "the force is directed to the right on $[2,3]$)

Problem 35 [3pts] Find the potential energy for spring with variable spring "constant". In particular, suppose $F=(k+\alpha x) x$ where k, α are constants. Find the pontential energy function for this force.

Problem 36 [3pts] Problem 7.12 (Tarzan and Jane)

Problem 37 [3pts] Problem 7.32 (Sliding Toolbox)

Problem 38 [3pts] Problem 7.36 (deriving force from PE)

Problem 39 [3pts] Problem 7.45 (Roller Coaster)

