Your solutions should be neat, correct and complete. Same instructions as Mission 1 apply here.
Recommended Homework from Textbook: problems:
$8.3,8.8,8.15,8.16,8.25,8.29,8.43,8.46,8.59,8.73,8.79,8.87,8.100,8.101,8.105$
I also reccommend you work on understanding whatever details of lecture seem mysterious at first.
Required Reading 5 [1pt] Your signature below indicates you have read:
(a.) I read Lectures 21 and 22 by Cook as announced in Blackboard: \qquad .
(b.) I read Chapter 8 and 9 of the required text: \qquad .

Problem 41 [3pts] Suppose $m_{1}=3.0 \mathrm{~kg}$ is at $\overrightarrow{\mathbf{r}}_{1}=(1.0 \mathrm{~m})\langle 1,2,3\rangle$ and $m_{2}=4.0 \mathrm{~kg}$ is at $\overrightarrow{\mathbf{r}}_{2}=$ $(1.0 \mathrm{~m})\langle-1,0,6\rangle$ and $m_{3}=3.0 \mathrm{~kg}$ is at $\overrightarrow{\mathbf{r}}_{3}=(1.0 \mathrm{~m})\langle 4,4,4\rangle$. Find the center of mass for this system of three masses.

Problem 42 [3pts] Suppose the linear mass density of a cone is given by $\lambda=\left(3.0 \mathrm{~kg} / \mathrm{m}^{2}\right) x$ for $0 \leq$ $x \leq 30 \mathrm{~cm}$ where $x=0$ corresponds to the tip of the cone and $x=30 \mathrm{~cm}$ gives the base. Find the center of mass for this distribution of mass (notice, while a cone is three-dimensional, clearly the center of mass is on the axis so we are able to treat the problem with single-variate calculus)

Problem 43 [3pts] A 2000 kg car collides with a 3000 kg elephant standing in the intersection. The initial speed of the car is $10 \mathrm{~m} / \mathrm{s}$. In the process of the collision the elephant sits on the car. What is the speed of the car-e-phant just after the collision?

Problem 44 [3pts] An exploding 0.025 kg bullet is fired at 30° above the horizontal at a speed of $500 \mathrm{~m} / \mathrm{s}$. At the top of its trajectory is explodes into two equal mass pieces. These pieces fly off in directions which initially form a right angle. How much energy was converted into kinetic energy by the explosion?

Problem 45 [3pts] A 3000 kg truck travels past a highway overpass at $20 \mathrm{~m} / \mathrm{s}$. A heavy ninja of mass 150 kg runs from a bridge which is nearly level with the top of the truck (we can ignore vertical motion). If the truck driver will notice a change of more than 1% in the speed then what is the minimum speed the ninja must run to jump on the truck without being noticed ?

Problem 46 [3pts] A bullet is shot through a clay pendulum bob. In the process of the bullets travel through the pendulum bob it loses half of its kinetic energy. The mass of the pendulum is 0.050 kg . How far does the pendulum swing upward?

Problem 47 [3pts] Problem 8.37 (football collision)

Problem 48 [3pts] Problem 8.44 (spring mass collision)

Problem 49 [3pts] Problem 8.70 (hockey repulsion)

Problem 50 [3pts] Problem 8.66 (force, momentum, integral calculus)

