MATH 200 section 1: Transition to Advanced Mathematics
MATH 200 section 1 Homepage

Welcome, please note that the offical syllabus is linked here. Please note this webpage is where test solutions and further assignments are to be posted. For your convenience,

I. Course Contact Information:
• Instructor: Dr. James S. Cook
• Office: Applied Science 105
• Office Hours: M-T-W-R-F from 11:00am-12:00pm
• Email: jcook4@liberty.edu
• Office Phone: 434-582-2476
• Lectures and tests are in Teacher Education 125
• Lecture Times: T-TH 12:25-1:40pm

III. Test reviews and solutions:

IV. Worked Problems:
I have solved a few problems from your homework. I hope these solutions help supplement the text. V. Course Notes for Transitions to Advanced Mathematics:
I think your text is rather useful, however in places the examples are a bit terse and/or strange. I'll try to add examples that supplement the text in the notes posted below. At the present time the notes are incomplete. I will add sections as the course progresses.

• Course Notes (added 3-15-09, hopefully complete)

• Technically, these are not the course notes for Math 200, but Math 115 has much overlap with the first few weeks of our course. Naturally, Math 115 is an easier course, however you may learn something from Ginny's notes. Peruse these for added perspective if you wish. Beware the truth table notation in Math 115 is sort-of weird. Also I don't endorse their definition of "implication". Anyhow,

VI. Bonus Point Policy:
It is possible to earn bonus points by asking particularly good questions or suggesting corrections to errors in notes and materials on the course website. This does not include spelling or grammatical errors, those are provided for your amusement. Once I notify the class of the error you may no longer ask for that point.
I also provide a little bonus project from time to time. These are not required. It is entirely possible to earn an A without completing these. I will usually be able to take these as late as the final exam day, just ask.
• BONUS PROJECT on Sequences and Series is open to interpretation. More work, more difficulty, more credit. It's up to you.

VII. Required Homework List:

Homework in advanced mathematics is just as important as it was in calculus, algebra and trigonometry. However, in practice most advanced math courses are not about building skill in calculations. Rather, the focus is on absorbing new definitions and concepts. Homework in advanced mathematics courses is more often about gaining conceptual skill. As we work more and more "proofs" we gain an understanding of what the purpose of doing proofs is. Mathematical maturity is not gained overnight, but rather in a series of small but consequential battles. You need to be determined to persevere against the homework even when it seems to be pointless. There is a point, you'll see it in time.

General Advice: When confronting many "proof" problems in this course (and in more advanced abstract math courses) you ought to ask yourself:
1. What information is given in the proof?
2. What is not given? What are we trying to show?
3. What are the definitions that apply?
It is not usually the case that you will find the same proof in my notes or the text. Definitions are key, I cannot emphasize this enough. I have provided a wealth of solved problems for your convenience. Some of those problems are a little more advanced than your homework, but there is something to learn in most everything I solved. If nothing else you can hunt for errors, there are likely many bonus points to be gleaned. I was pretty tired when I wrote them.

 Section # Extra Examples Due Date Assignment Description / Hints Sec. 1.1 math logic Jan. 16 2[b,h,k], 3h, 4[b,g,j](proof by truth table), 8[a,b], 9a, 10[c,e,i], 11a Propositions and Connectives, Proof by Truth Tables Sec. 1.2 math logic Jan. 23 4[b,c], 7, 9c, 10b Conditionals and Biconditionals Sec. 1.3 math logic Jan. 23 5[a,c,d,g,h,j], 7[a,b,c], 8a Quantifiers Sec. 1.4 math logic Jan. 23 5[a,e], 6[a,d], 7[f,g], 9a Basic Proof Methods I Sec. 1.5 math logic Jan. 30 2[a,c], 3[c,d], 6a, 7a Basic Proof Methods II Sec. 1.6 math logic Jan. 30 1[a,c], 2a, 5[b,d,f,g], 6[a,b,c], 7[d,e] Proofs Involving Quantifiers Sec. 2.1 Set Theory Feb. 6 4[g,h], 5[a,d], 8b, 11, 14 Set Concepts Sec. 2.2 Set Theory Feb. 6 1j, 2[f,h], 3[a,e,k], 4[a,b,c], 10[a,d,f], 13[a,b,c,d], 14[b,d], 16[c,e,g] Set Operations, focus on set equality Sec. 2.3 Set Theory Feb. 13 1[c,g,k], 6[a,b], 9 Indexed Families of Sets Sec. 2.4 Set Theory Feb. 13 8[a,d,e,m,n,u,t] Induction Sec. 2.5 Set Theory Feb. 13 2(use PCI), 5b, 6[b,d], 7, 9 Fibonacci numbers, Division Algorithm, WOP. Sec. 3.1 Relations Feb. 20 1a, 2, 5[a,b,c], 9[e,g], 12, 15 Relations Sec. 3.2 Relations Feb. 20 1[c,f,h], 2[a,c,h], 8, 9, 12a Equivalence Relations Sec. 3.3 Relations Feb. 20 2[a,b,c,d], 3a, 4, 7, 8b Partitions Test I . Feb. 24 Test I Chapters 1,2 and 3 Sec. 4.1 Functions Mar. 6 1[b,f,h,i], 3[e,h,i], 4[b,e], 6[b,d], 11, 16c functions as relations Sec. 4.2 Functions Mar. 6 1[b,d,f], 3[a,e,g,i], 4, 5, 6, 7c(many correct answers), 12[b,d], 16b, 18 constructions of functions Sec. 4.3 Functions Mar. 6 1[a,b,c,h,j], 2[a,b,c,h,j], 4, 5, 8[a,b,c,d,e,f] one-one and onto Event . Mar. 9-13 Spring Break The "Holidays" Sec. 4.4 Functions Mar. 20 2[a,b,c,e], 8[b,c], 11, 14a, 16, 18 images of sets Sec. 5.1 Cardinality Mar. 27 1, 4, 5[d,g], 6b, 14, 17 Equivalent Sets Sec. 5.2 Cardinality Mar. 27 1[a,d,h], 2a, 2f, 5[a,b,c,e,g], 9, 11 Infinite Sets Sec. 5.3 Cardinality . no homework, however, will likely cover Theorems of this section in class Countable Sets Sec. 5.4 Cardinality Mar. 27 7, 8[b,c] Ordering of Cardinal Numbers Sec. 6.1 Algebra Apr. 3 4[a,b,d,e,f,g,h,i], 7[a,b], 14[b,d], 15[a,b,c,d,f] Algebraic Structures Sec. 6.2 Algebra Apr. 3 3, 6[a,b,d], 7, 8[a,c,d], 9a, 10, 13, 17, 18[a,d] Groups Sec. 6.3 Algebra Apr. 10 6, 7[a,b], 9b, 17, 18a Subgroups Sec. 6.4 Algebra Apr. 10 3, 7[a,b], 19, 21 Operation Preserving Maps Sec. 6.5 Algebra Apr. 10 1[b,c,e], 2, 5, 7[a,c], 14 rings and fields Event . Apr. 13 . Easter Break . Test 2 Review Apr. 14 select problems Review For Test 2 Test II . Apr. 16 Test II Chapters 4,5 and 6 . Proof Day I Apr. 21 Proof Presentations (10 minute) Proof Day I . Proof Day II Apr. 23 Proof Presentations (10 minute) Proof Day II . Final Review Apr. 28 . Review For Final Final . at official date at official time comprehensive

Back to my Home