Section # | Extra Examples | Due Date | Assignment | Description / Hints |
Sec. 1.1 | math logic | Jan. 16 | 2[b,h,k], 3h, 4[b,g,j](proof by truth table), 8[a,b], 9a, 10[c,e,i], 11a | Propositions and Connectives, Proof by Truth Tables |
Sec. 1.2 | math logic | Jan. 23 | 4[b,c], 7, 9c, 10b | Conditionals and Biconditionals |
Sec. 1.3 | math logic | Jan. 23 | 5[a,c,d,g,h,j], 7[a,b,c], 8a | Quantifiers |
Sec. 1.4 | math logic | Jan. 23 | 5[a,e], 6[a,d], 7[f,g], 9a | Basic Proof Methods I |
Sec. 1.5 | math logic | Jan. 30 | 2[a,c], 3[c,d], 6a, 7a | Basic Proof Methods II |
Sec. 1.6 | math logic | Jan. 30 | 1[a,c], 2a, 5[b,d,f,g], 6[a,b,c], 7[d,e] | Proofs Involving Quantifiers |
Sec. 2.1 | Set Theory | Feb. 6 | 4[g,h], 5[a,d], 8b, 11, 14 | Set Concepts |
Sec. 2.2 | Set Theory | Feb. 6 | 1j, 2[f,h], 3[a,e,k], 4[a,b,c], 10[a,d,f], 13[a,b,c,d], 14[b,d], 16[c,e,g] | Set Operations, focus on set equality |
Sec. 2.3 | Set Theory | Feb. 13 | 1[c,g,k], 6[a,b], 9 | Indexed Families of Sets |
Sec. 2.4 | Set Theory | Feb. 13 | 8[a,d,e,m,n,u,t] | Induction |
Sec. 2.5 | Set Theory | Feb. 13 | 2(use PCI), 5b, 6[b,d], 7, 9 | Fibonacci numbers, Division Algorithm, WOP. |
Sec. 3.1 | Relations | Feb. 20 | 1a, 2, 5[a,b,c], 9[e,g], 12, 15 | Relations |
Sec. 3.2 | Relations | Feb. 20 | 1[c,f,h], 2[a,c,h], 8, 9, 12a | Equivalence Relations |
Sec. 3.3 | Relations | Feb. 20 | 2[a,b,c,d], 3a, 4, 7, 8b | Partitions |
Test I | . | Feb. 24 | Test I | Chapters 1,2 and 3 |
Sec. 4.1 | Functions | Mar. 6 | 1[b,f,h,i], 3[e,h,i], 4[b,e], 6[b,d], 11, 16c | functions as relations |
Sec. 4.2 | Functions | Mar. 6 | 1[b,d,f], 3[a,e,g,i], 4, 5, 6, 7c(many correct answers), 12[b,d], 16b, 18 | constructions of functions |
Sec. 4.3 | Functions | Mar. 6 | 1[a,b,c,h,j], 2[a,b,c,h,j], 4, 5, 8[a,b,c,d,e,f] | one-one and onto |
Event | . | Mar. 9-13 | Spring Break | The "Holidays" |
Sec. 4.4 | Functions | Mar. 20 | 2[a,b,c,e], 8[b,c], 11, 14a, 16, 18 | images of sets |
Sec. 5.1 | Cardinality | Mar. 27 | 1, 4, 5[d,g], 6b, 14, 17 | Equivalent Sets |
Sec. 5.2 | Cardinality | Mar. 27 | 1[a,d,h], 2a, 2f, 5[a,b,c,e,g], 9, 11 | Infinite Sets |
Sec. 5.3 | Cardinality | . | no homework, however, will likely cover Theorems of this section in class | Countable Sets |
Sec. 5.4 | Cardinality | Mar. 27 | 7, 8[b,c] | Ordering of Cardinal Numbers |
Sec. 6.1 | Algebra | Apr. 3 | 4[a,b,d,e,f,g,h,i], 7[a,b], 14[b,d], 15[a,b,c,d,f] | Algebraic Structures |
Sec. 6.2 | Algebra | Apr. 3 | 3, 6[a,b,d], 7, 8[a,c,d], 9a, 10, 13, 17, 18[a,d] | Groups |
Sec. 6.3 | Algebra | Apr. 10 | 6, 7[a,b], 9b, 17, 18a | Subgroups |
Sec. 6.4 | Algebra | Apr. 10 | 3, 7[a,b], 19, 21 | Operation Preserving Maps |
Sec. 6.5 | Algebra | Apr. 10 | 1[b,c,e], 2, 5, 7[a,c], 14 | rings and fields |
Event | . | Apr. 13 | . | Easter Break |
. | Test 2 Review | Apr. 14 | select problems | Review For Test 2 |
Test II | . | Apr. 16 | Test II | Chapters 4,5 and 6 |
. | Proof Day I | Apr. 21 | Proof Presentations (10 minute) | Proof Day I |
. | Proof Day II | Apr. 23 | Proof Presentations (10 minute) | Proof Day II |
. | Final Review | Apr. 28 | . | Review For Final |
Final | . | at official date | at official time | comprehensive |